]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/kmemleak.c
kmemleak: Trace the kmalloc_large* functions in slub
[net-next-2.6.git] / mm / kmemleak.c
CommitLineData
3c7b4e6b
CM
1/*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/kmemleak.txt.
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
32 * blocks. The object_tree_root is a priority search tree used to look-up
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
4698c1f2
CM
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
54 * pointer
3c7b4e6b
CM
55 *
56 * The kmemleak_object structures have a use_count incremented or decremented
57 * using the get_object()/put_object() functions. When the use_count becomes
58 * 0, this count can no longer be incremented and put_object() schedules the
59 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60 * function must be protected by rcu_read_lock() to avoid accessing a freed
61 * structure.
62 */
63
ae281064
JP
64#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65
3c7b4e6b
CM
66#include <linux/init.h>
67#include <linux/kernel.h>
68#include <linux/list.h>
69#include <linux/sched.h>
70#include <linux/jiffies.h>
71#include <linux/delay.h>
72#include <linux/module.h>
73#include <linux/kthread.h>
74#include <linux/prio_tree.h>
75#include <linux/gfp.h>
76#include <linux/fs.h>
77#include <linux/debugfs.h>
78#include <linux/seq_file.h>
79#include <linux/cpumask.h>
80#include <linux/spinlock.h>
81#include <linux/mutex.h>
82#include <linux/rcupdate.h>
83#include <linux/stacktrace.h>
84#include <linux/cache.h>
85#include <linux/percpu.h>
86#include <linux/hardirq.h>
87#include <linux/mmzone.h>
88#include <linux/slab.h>
89#include <linux/thread_info.h>
90#include <linux/err.h>
91#include <linux/uaccess.h>
92#include <linux/string.h>
93#include <linux/nodemask.h>
94#include <linux/mm.h>
95
96#include <asm/sections.h>
97#include <asm/processor.h>
98#include <asm/atomic.h>
99
100#include <linux/kmemleak.h>
101
102/*
103 * Kmemleak configuration and common defines.
104 */
105#define MAX_TRACE 16 /* stack trace length */
3c7b4e6b 106#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
3c7b4e6b
CM
107#define SECS_FIRST_SCAN 60 /* delay before the first scan */
108#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
2587362e 109#define GRAY_LIST_PASSES 25 /* maximum number of gray list scans */
3c7b4e6b
CM
110
111#define BYTES_PER_POINTER sizeof(void *)
112
216c04b0
CM
113/* GFP bitmask for kmemleak internal allocations */
114#define GFP_KMEMLEAK_MASK (GFP_KERNEL | GFP_ATOMIC)
115
3c7b4e6b
CM
116/* scanning area inside a memory block */
117struct kmemleak_scan_area {
118 struct hlist_node node;
119 unsigned long offset;
120 size_t length;
121};
122
123/*
124 * Structure holding the metadata for each allocated memory block.
125 * Modifications to such objects should be made while holding the
126 * object->lock. Insertions or deletions from object_list, gray_list or
127 * tree_node are already protected by the corresponding locks or mutex (see
128 * the notes on locking above). These objects are reference-counted
129 * (use_count) and freed using the RCU mechanism.
130 */
131struct kmemleak_object {
132 spinlock_t lock;
133 unsigned long flags; /* object status flags */
134 struct list_head object_list;
135 struct list_head gray_list;
136 struct prio_tree_node tree_node;
137 struct rcu_head rcu; /* object_list lockless traversal */
138 /* object usage count; object freed when use_count == 0 */
139 atomic_t use_count;
140 unsigned long pointer;
141 size_t size;
142 /* minimum number of a pointers found before it is considered leak */
143 int min_count;
144 /* the total number of pointers found pointing to this object */
145 int count;
146 /* memory ranges to be scanned inside an object (empty for all) */
147 struct hlist_head area_list;
148 unsigned long trace[MAX_TRACE];
149 unsigned int trace_len;
150 unsigned long jiffies; /* creation timestamp */
151 pid_t pid; /* pid of the current task */
152 char comm[TASK_COMM_LEN]; /* executable name */
153};
154
155/* flag representing the memory block allocation status */
156#define OBJECT_ALLOCATED (1 << 0)
157/* flag set after the first reporting of an unreference object */
158#define OBJECT_REPORTED (1 << 1)
159/* flag set to not scan the object */
160#define OBJECT_NO_SCAN (1 << 2)
2587362e
CM
161/* flag set on newly allocated objects */
162#define OBJECT_NEW (1 << 3)
3c7b4e6b
CM
163
164/* the list of all allocated objects */
165static LIST_HEAD(object_list);
166/* the list of gray-colored objects (see color_gray comment below) */
167static LIST_HEAD(gray_list);
168/* prio search tree for object boundaries */
169static struct prio_tree_root object_tree_root;
170/* rw_lock protecting the access to object_list and prio_tree_root */
171static DEFINE_RWLOCK(kmemleak_lock);
172
173/* allocation caches for kmemleak internal data */
174static struct kmem_cache *object_cache;
175static struct kmem_cache *scan_area_cache;
176
177/* set if tracing memory operations is enabled */
178static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
179/* set in the late_initcall if there were no errors */
180static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
181/* enables or disables early logging of the memory operations */
182static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
183/* set if a fata kmemleak error has occurred */
184static atomic_t kmemleak_error = ATOMIC_INIT(0);
185
186/* minimum and maximum address that may be valid pointers */
187static unsigned long min_addr = ULONG_MAX;
188static unsigned long max_addr;
189
3c7b4e6b 190static struct task_struct *scan_thread;
acf4968e 191/* used to avoid reporting of recently allocated objects */
3c7b4e6b 192static unsigned long jiffies_min_age;
acf4968e 193static unsigned long jiffies_last_scan;
3c7b4e6b
CM
194/* delay between automatic memory scannings */
195static signed long jiffies_scan_wait;
196/* enables or disables the task stacks scanning */
e0a2a160 197static int kmemleak_stack_scan = 1;
4698c1f2 198/* protects the memory scanning, parameters and debug/kmemleak file access */
3c7b4e6b 199static DEFINE_MUTEX(scan_mutex);
3c7b4e6b 200
3c7b4e6b 201/*
2030117d 202 * Early object allocation/freeing logging. Kmemleak is initialized after the
3c7b4e6b 203 * kernel allocator. However, both the kernel allocator and kmemleak may
2030117d 204 * allocate memory blocks which need to be tracked. Kmemleak defines an
3c7b4e6b
CM
205 * arbitrary buffer to hold the allocation/freeing information before it is
206 * fully initialized.
207 */
208
209/* kmemleak operation type for early logging */
210enum {
211 KMEMLEAK_ALLOC,
212 KMEMLEAK_FREE,
213 KMEMLEAK_NOT_LEAK,
214 KMEMLEAK_IGNORE,
215 KMEMLEAK_SCAN_AREA,
216 KMEMLEAK_NO_SCAN
217};
218
219/*
220 * Structure holding the information passed to kmemleak callbacks during the
221 * early logging.
222 */
223struct early_log {
224 int op_type; /* kmemleak operation type */
225 const void *ptr; /* allocated/freed memory block */
226 size_t size; /* memory block size */
227 int min_count; /* minimum reference count */
228 unsigned long offset; /* scan area offset */
229 size_t length; /* scan area length */
230};
231
232/* early logging buffer and current position */
a9d9058a 233static struct early_log early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE];
3c7b4e6b
CM
234static int crt_early_log;
235
236static void kmemleak_disable(void);
237
238/*
239 * Print a warning and dump the stack trace.
240 */
241#define kmemleak_warn(x...) do { \
242 pr_warning(x); \
243 dump_stack(); \
244} while (0)
245
246/*
247 * Macro invoked when a serious kmemleak condition occured and cannot be
2030117d 248 * recovered from. Kmemleak will be disabled and further allocation/freeing
3c7b4e6b
CM
249 * tracing no longer available.
250 */
000814f4 251#define kmemleak_stop(x...) do { \
3c7b4e6b
CM
252 kmemleak_warn(x); \
253 kmemleak_disable(); \
254} while (0)
255
256/*
257 * Object colors, encoded with count and min_count:
258 * - white - orphan object, not enough references to it (count < min_count)
259 * - gray - not orphan, not marked as false positive (min_count == 0) or
260 * sufficient references to it (count >= min_count)
261 * - black - ignore, it doesn't contain references (e.g. text section)
262 * (min_count == -1). No function defined for this color.
263 * Newly created objects don't have any color assigned (object->count == -1)
264 * before the next memory scan when they become white.
265 */
266static int color_white(const struct kmemleak_object *object)
267{
268 return object->count != -1 && object->count < object->min_count;
269}
270
271static int color_gray(const struct kmemleak_object *object)
272{
273 return object->min_count != -1 && object->count >= object->min_count;
274}
275
2587362e
CM
276static int color_black(const struct kmemleak_object *object)
277{
278 return object->min_count == -1;
279}
280
3c7b4e6b
CM
281/*
282 * Objects are considered unreferenced only if their color is white, they have
283 * not be deleted and have a minimum age to avoid false positives caused by
284 * pointers temporarily stored in CPU registers.
285 */
286static int unreferenced_object(struct kmemleak_object *object)
287{
288 return (object->flags & OBJECT_ALLOCATED) && color_white(object) &&
acf4968e
CM
289 time_before_eq(object->jiffies + jiffies_min_age,
290 jiffies_last_scan);
3c7b4e6b
CM
291}
292
293/*
bab4a34a
CM
294 * Printing of the unreferenced objects information to the seq file. The
295 * print_unreferenced function must be called with the object->lock held.
3c7b4e6b 296 */
3c7b4e6b
CM
297static void print_unreferenced(struct seq_file *seq,
298 struct kmemleak_object *object)
299{
300 int i;
301
bab4a34a
CM
302 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
303 object->pointer, object->size);
304 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu\n",
305 object->comm, object->pid, object->jiffies);
306 seq_printf(seq, " backtrace:\n");
3c7b4e6b
CM
307
308 for (i = 0; i < object->trace_len; i++) {
309 void *ptr = (void *)object->trace[i];
bab4a34a 310 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
3c7b4e6b
CM
311 }
312}
313
314/*
315 * Print the kmemleak_object information. This function is used mainly for
316 * debugging special cases when kmemleak operations. It must be called with
317 * the object->lock held.
318 */
319static void dump_object_info(struct kmemleak_object *object)
320{
321 struct stack_trace trace;
322
323 trace.nr_entries = object->trace_len;
324 trace.entries = object->trace;
325
ae281064 326 pr_notice("Object 0x%08lx (size %zu):\n",
3c7b4e6b
CM
327 object->tree_node.start, object->size);
328 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
329 object->comm, object->pid, object->jiffies);
330 pr_notice(" min_count = %d\n", object->min_count);
331 pr_notice(" count = %d\n", object->count);
332 pr_notice(" backtrace:\n");
333 print_stack_trace(&trace, 4);
334}
335
336/*
337 * Look-up a memory block metadata (kmemleak_object) in the priority search
338 * tree based on a pointer value. If alias is 0, only values pointing to the
339 * beginning of the memory block are allowed. The kmemleak_lock must be held
340 * when calling this function.
341 */
342static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
343{
344 struct prio_tree_node *node;
345 struct prio_tree_iter iter;
346 struct kmemleak_object *object;
347
348 prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr);
349 node = prio_tree_next(&iter);
350 if (node) {
351 object = prio_tree_entry(node, struct kmemleak_object,
352 tree_node);
353 if (!alias && object->pointer != ptr) {
ae281064 354 kmemleak_warn("Found object by alias");
3c7b4e6b
CM
355 object = NULL;
356 }
357 } else
358 object = NULL;
359
360 return object;
361}
362
363/*
364 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
365 * that once an object's use_count reached 0, the RCU freeing was already
366 * registered and the object should no longer be used. This function must be
367 * called under the protection of rcu_read_lock().
368 */
369static int get_object(struct kmemleak_object *object)
370{
371 return atomic_inc_not_zero(&object->use_count);
372}
373
374/*
375 * RCU callback to free a kmemleak_object.
376 */
377static void free_object_rcu(struct rcu_head *rcu)
378{
379 struct hlist_node *elem, *tmp;
380 struct kmemleak_scan_area *area;
381 struct kmemleak_object *object =
382 container_of(rcu, struct kmemleak_object, rcu);
383
384 /*
385 * Once use_count is 0 (guaranteed by put_object), there is no other
386 * code accessing this object, hence no need for locking.
387 */
388 hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
389 hlist_del(elem);
390 kmem_cache_free(scan_area_cache, area);
391 }
392 kmem_cache_free(object_cache, object);
393}
394
395/*
396 * Decrement the object use_count. Once the count is 0, free the object using
397 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
398 * delete_object() path, the delayed RCU freeing ensures that there is no
399 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
400 * is also possible.
401 */
402static void put_object(struct kmemleak_object *object)
403{
404 if (!atomic_dec_and_test(&object->use_count))
405 return;
406
407 /* should only get here after delete_object was called */
408 WARN_ON(object->flags & OBJECT_ALLOCATED);
409
410 call_rcu(&object->rcu, free_object_rcu);
411}
412
413/*
414 * Look up an object in the prio search tree and increase its use_count.
415 */
416static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
417{
418 unsigned long flags;
419 struct kmemleak_object *object = NULL;
420
421 rcu_read_lock();
422 read_lock_irqsave(&kmemleak_lock, flags);
423 if (ptr >= min_addr && ptr < max_addr)
424 object = lookup_object(ptr, alias);
425 read_unlock_irqrestore(&kmemleak_lock, flags);
426
427 /* check whether the object is still available */
428 if (object && !get_object(object))
429 object = NULL;
430 rcu_read_unlock();
431
432 return object;
433}
434
435/*
436 * Create the metadata (struct kmemleak_object) corresponding to an allocated
437 * memory block and add it to the object_list and object_tree_root.
438 */
439static void create_object(unsigned long ptr, size_t size, int min_count,
440 gfp_t gfp)
441{
442 unsigned long flags;
443 struct kmemleak_object *object;
444 struct prio_tree_node *node;
445 struct stack_trace trace;
446
216c04b0 447 object = kmem_cache_alloc(object_cache, gfp & GFP_KMEMLEAK_MASK);
3c7b4e6b 448 if (!object) {
ae281064 449 kmemleak_stop("Cannot allocate a kmemleak_object structure\n");
3c7b4e6b
CM
450 return;
451 }
452
453 INIT_LIST_HEAD(&object->object_list);
454 INIT_LIST_HEAD(&object->gray_list);
455 INIT_HLIST_HEAD(&object->area_list);
456 spin_lock_init(&object->lock);
457 atomic_set(&object->use_count, 1);
2587362e 458 object->flags = OBJECT_ALLOCATED | OBJECT_NEW;
3c7b4e6b
CM
459 object->pointer = ptr;
460 object->size = size;
461 object->min_count = min_count;
462 object->count = -1; /* no color initially */
463 object->jiffies = jiffies;
464
465 /* task information */
466 if (in_irq()) {
467 object->pid = 0;
468 strncpy(object->comm, "hardirq", sizeof(object->comm));
469 } else if (in_softirq()) {
470 object->pid = 0;
471 strncpy(object->comm, "softirq", sizeof(object->comm));
472 } else {
473 object->pid = current->pid;
474 /*
475 * There is a small chance of a race with set_task_comm(),
476 * however using get_task_comm() here may cause locking
477 * dependency issues with current->alloc_lock. In the worst
478 * case, the command line is not correct.
479 */
480 strncpy(object->comm, current->comm, sizeof(object->comm));
481 }
482
483 /* kernel backtrace */
484 trace.max_entries = MAX_TRACE;
485 trace.nr_entries = 0;
486 trace.entries = object->trace;
487 trace.skip = 1;
488 save_stack_trace(&trace);
489 object->trace_len = trace.nr_entries;
490
491 INIT_PRIO_TREE_NODE(&object->tree_node);
492 object->tree_node.start = ptr;
493 object->tree_node.last = ptr + size - 1;
494
495 write_lock_irqsave(&kmemleak_lock, flags);
496 min_addr = min(min_addr, ptr);
497 max_addr = max(max_addr, ptr + size);
498 node = prio_tree_insert(&object_tree_root, &object->tree_node);
499 /*
500 * The code calling the kernel does not yet have the pointer to the
501 * memory block to be able to free it. However, we still hold the
502 * kmemleak_lock here in case parts of the kernel started freeing
503 * random memory blocks.
504 */
505 if (node != &object->tree_node) {
506 unsigned long flags;
507
ae281064
JP
508 kmemleak_stop("Cannot insert 0x%lx into the object search tree "
509 "(already existing)\n", ptr);
3c7b4e6b
CM
510 object = lookup_object(ptr, 1);
511 spin_lock_irqsave(&object->lock, flags);
512 dump_object_info(object);
513 spin_unlock_irqrestore(&object->lock, flags);
514
515 goto out;
516 }
517 list_add_tail_rcu(&object->object_list, &object_list);
518out:
519 write_unlock_irqrestore(&kmemleak_lock, flags);
520}
521
522/*
523 * Remove the metadata (struct kmemleak_object) for a memory block from the
524 * object_list and object_tree_root and decrement its use_count.
525 */
526static void delete_object(unsigned long ptr)
527{
528 unsigned long flags;
529 struct kmemleak_object *object;
530
531 write_lock_irqsave(&kmemleak_lock, flags);
532 object = lookup_object(ptr, 0);
533 if (!object) {
b6e68722 534#ifdef DEBUG
ae281064 535 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
3c7b4e6b 536 ptr);
b6e68722 537#endif
3c7b4e6b
CM
538 write_unlock_irqrestore(&kmemleak_lock, flags);
539 return;
540 }
541 prio_tree_remove(&object_tree_root, &object->tree_node);
542 list_del_rcu(&object->object_list);
543 write_unlock_irqrestore(&kmemleak_lock, flags);
544
545 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
546 WARN_ON(atomic_read(&object->use_count) < 1);
547
548 /*
549 * Locking here also ensures that the corresponding memory block
550 * cannot be freed when it is being scanned.
551 */
552 spin_lock_irqsave(&object->lock, flags);
3c7b4e6b
CM
553 object->flags &= ~OBJECT_ALLOCATED;
554 spin_unlock_irqrestore(&object->lock, flags);
555 put_object(object);
556}
557
558/*
559 * Make a object permanently as gray-colored so that it can no longer be
560 * reported as a leak. This is used in general to mark a false positive.
561 */
562static void make_gray_object(unsigned long ptr)
563{
564 unsigned long flags;
565 struct kmemleak_object *object;
566
567 object = find_and_get_object(ptr, 0);
568 if (!object) {
ae281064 569 kmemleak_warn("Graying unknown object at 0x%08lx\n", ptr);
3c7b4e6b
CM
570 return;
571 }
572
573 spin_lock_irqsave(&object->lock, flags);
574 object->min_count = 0;
575 spin_unlock_irqrestore(&object->lock, flags);
576 put_object(object);
577}
578
579/*
580 * Mark the object as black-colored so that it is ignored from scans and
581 * reporting.
582 */
583static void make_black_object(unsigned long ptr)
584{
585 unsigned long flags;
586 struct kmemleak_object *object;
587
588 object = find_and_get_object(ptr, 0);
589 if (!object) {
ae281064 590 kmemleak_warn("Blacking unknown object at 0x%08lx\n", ptr);
3c7b4e6b
CM
591 return;
592 }
593
594 spin_lock_irqsave(&object->lock, flags);
595 object->min_count = -1;
596 spin_unlock_irqrestore(&object->lock, flags);
597 put_object(object);
598}
599
600/*
601 * Add a scanning area to the object. If at least one such area is added,
602 * kmemleak will only scan these ranges rather than the whole memory block.
603 */
604static void add_scan_area(unsigned long ptr, unsigned long offset,
605 size_t length, gfp_t gfp)
606{
607 unsigned long flags;
608 struct kmemleak_object *object;
609 struct kmemleak_scan_area *area;
610
611 object = find_and_get_object(ptr, 0);
612 if (!object) {
ae281064
JP
613 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
614 ptr);
3c7b4e6b
CM
615 return;
616 }
617
216c04b0 618 area = kmem_cache_alloc(scan_area_cache, gfp & GFP_KMEMLEAK_MASK);
3c7b4e6b 619 if (!area) {
ae281064 620 kmemleak_warn("Cannot allocate a scan area\n");
3c7b4e6b
CM
621 goto out;
622 }
623
624 spin_lock_irqsave(&object->lock, flags);
625 if (offset + length > object->size) {
ae281064 626 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
3c7b4e6b
CM
627 dump_object_info(object);
628 kmem_cache_free(scan_area_cache, area);
629 goto out_unlock;
630 }
631
632 INIT_HLIST_NODE(&area->node);
633 area->offset = offset;
634 area->length = length;
635
636 hlist_add_head(&area->node, &object->area_list);
637out_unlock:
638 spin_unlock_irqrestore(&object->lock, flags);
639out:
640 put_object(object);
641}
642
643/*
644 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
645 * pointer. Such object will not be scanned by kmemleak but references to it
646 * are searched.
647 */
648static void object_no_scan(unsigned long ptr)
649{
650 unsigned long flags;
651 struct kmemleak_object *object;
652
653 object = find_and_get_object(ptr, 0);
654 if (!object) {
ae281064 655 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
3c7b4e6b
CM
656 return;
657 }
658
659 spin_lock_irqsave(&object->lock, flags);
660 object->flags |= OBJECT_NO_SCAN;
661 spin_unlock_irqrestore(&object->lock, flags);
662 put_object(object);
663}
664
665/*
666 * Log an early kmemleak_* call to the early_log buffer. These calls will be
667 * processed later once kmemleak is fully initialized.
668 */
669static void log_early(int op_type, const void *ptr, size_t size,
670 int min_count, unsigned long offset, size_t length)
671{
672 unsigned long flags;
673 struct early_log *log;
674
675 if (crt_early_log >= ARRAY_SIZE(early_log)) {
a9d9058a
CM
676 pr_warning("Early log buffer exceeded\n");
677 kmemleak_disable();
3c7b4e6b
CM
678 return;
679 }
680
681 /*
682 * There is no need for locking since the kernel is still in UP mode
683 * at this stage. Disabling the IRQs is enough.
684 */
685 local_irq_save(flags);
686 log = &early_log[crt_early_log];
687 log->op_type = op_type;
688 log->ptr = ptr;
689 log->size = size;
690 log->min_count = min_count;
691 log->offset = offset;
692 log->length = length;
693 crt_early_log++;
694 local_irq_restore(flags);
695}
696
697/*
698 * Memory allocation function callback. This function is called from the
699 * kernel allocators when a new block is allocated (kmem_cache_alloc, kmalloc,
700 * vmalloc etc.).
701 */
702void kmemleak_alloc(const void *ptr, size_t size, int min_count, gfp_t gfp)
703{
704 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
705
706 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
707 create_object((unsigned long)ptr, size, min_count, gfp);
708 else if (atomic_read(&kmemleak_early_log))
709 log_early(KMEMLEAK_ALLOC, ptr, size, min_count, 0, 0);
710}
711EXPORT_SYMBOL_GPL(kmemleak_alloc);
712
713/*
714 * Memory freeing function callback. This function is called from the kernel
715 * allocators when a block is freed (kmem_cache_free, kfree, vfree etc.).
716 */
717void kmemleak_free(const void *ptr)
718{
719 pr_debug("%s(0x%p)\n", __func__, ptr);
720
721 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
722 delete_object((unsigned long)ptr);
723 else if (atomic_read(&kmemleak_early_log))
724 log_early(KMEMLEAK_FREE, ptr, 0, 0, 0, 0);
725}
726EXPORT_SYMBOL_GPL(kmemleak_free);
727
728/*
729 * Mark an already allocated memory block as a false positive. This will cause
730 * the block to no longer be reported as leak and always be scanned.
731 */
732void kmemleak_not_leak(const void *ptr)
733{
734 pr_debug("%s(0x%p)\n", __func__, ptr);
735
736 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
737 make_gray_object((unsigned long)ptr);
738 else if (atomic_read(&kmemleak_early_log))
739 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0, 0, 0);
740}
741EXPORT_SYMBOL(kmemleak_not_leak);
742
743/*
744 * Ignore a memory block. This is usually done when it is known that the
745 * corresponding block is not a leak and does not contain any references to
746 * other allocated memory blocks.
747 */
748void kmemleak_ignore(const void *ptr)
749{
750 pr_debug("%s(0x%p)\n", __func__, ptr);
751
752 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
753 make_black_object((unsigned long)ptr);
754 else if (atomic_read(&kmemleak_early_log))
755 log_early(KMEMLEAK_IGNORE, ptr, 0, 0, 0, 0);
756}
757EXPORT_SYMBOL(kmemleak_ignore);
758
759/*
760 * Limit the range to be scanned in an allocated memory block.
761 */
762void kmemleak_scan_area(const void *ptr, unsigned long offset, size_t length,
763 gfp_t gfp)
764{
765 pr_debug("%s(0x%p)\n", __func__, ptr);
766
767 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
768 add_scan_area((unsigned long)ptr, offset, length, gfp);
769 else if (atomic_read(&kmemleak_early_log))
770 log_early(KMEMLEAK_SCAN_AREA, ptr, 0, 0, offset, length);
771}
772EXPORT_SYMBOL(kmemleak_scan_area);
773
774/*
775 * Inform kmemleak not to scan the given memory block.
776 */
777void kmemleak_no_scan(const void *ptr)
778{
779 pr_debug("%s(0x%p)\n", __func__, ptr);
780
781 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
782 object_no_scan((unsigned long)ptr);
783 else if (atomic_read(&kmemleak_early_log))
784 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0, 0, 0);
785}
786EXPORT_SYMBOL(kmemleak_no_scan);
787
3c7b4e6b
CM
788/*
789 * Memory scanning is a long process and it needs to be interruptable. This
790 * function checks whether such interrupt condition occured.
791 */
792static int scan_should_stop(void)
793{
794 if (!atomic_read(&kmemleak_enabled))
795 return 1;
796
797 /*
798 * This function may be called from either process or kthread context,
799 * hence the need to check for both stop conditions.
800 */
801 if (current->mm)
802 return signal_pending(current);
803 else
804 return kthread_should_stop();
805
806 return 0;
807}
808
809/*
810 * Scan a memory block (exclusive range) for valid pointers and add those
811 * found to the gray list.
812 */
813static void scan_block(void *_start, void *_end,
4b8a9674 814 struct kmemleak_object *scanned, int allow_resched)
3c7b4e6b
CM
815{
816 unsigned long *ptr;
817 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
818 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
819
820 for (ptr = start; ptr < end; ptr++) {
821 unsigned long flags;
822 unsigned long pointer = *ptr;
823 struct kmemleak_object *object;
824
4b8a9674
CM
825 if (allow_resched)
826 cond_resched();
3c7b4e6b
CM
827 if (scan_should_stop())
828 break;
829
3c7b4e6b
CM
830 object = find_and_get_object(pointer, 1);
831 if (!object)
832 continue;
833 if (object == scanned) {
834 /* self referenced, ignore */
835 put_object(object);
836 continue;
837 }
838
839 /*
840 * Avoid the lockdep recursive warning on object->lock being
841 * previously acquired in scan_object(). These locks are
842 * enclosed by scan_mutex.
843 */
844 spin_lock_irqsave_nested(&object->lock, flags,
845 SINGLE_DEPTH_NESTING);
846 if (!color_white(object)) {
847 /* non-orphan, ignored or new */
848 spin_unlock_irqrestore(&object->lock, flags);
849 put_object(object);
850 continue;
851 }
852
853 /*
854 * Increase the object's reference count (number of pointers
855 * to the memory block). If this count reaches the required
856 * minimum, the object's color will become gray and it will be
857 * added to the gray_list.
858 */
859 object->count++;
860 if (color_gray(object))
861 list_add_tail(&object->gray_list, &gray_list);
862 else
863 put_object(object);
864 spin_unlock_irqrestore(&object->lock, flags);
865 }
866}
867
868/*
869 * Scan a memory block corresponding to a kmemleak_object. A condition is
870 * that object->use_count >= 1.
871 */
872static void scan_object(struct kmemleak_object *object)
873{
874 struct kmemleak_scan_area *area;
875 struct hlist_node *elem;
876 unsigned long flags;
877
878 /*
879 * Once the object->lock is aquired, the corresponding memory block
880 * cannot be freed (the same lock is aquired in delete_object).
881 */
882 spin_lock_irqsave(&object->lock, flags);
883 if (object->flags & OBJECT_NO_SCAN)
884 goto out;
885 if (!(object->flags & OBJECT_ALLOCATED))
886 /* already freed object */
887 goto out;
888 if (hlist_empty(&object->area_list))
889 scan_block((void *)object->pointer,
4b8a9674 890 (void *)(object->pointer + object->size), object, 0);
3c7b4e6b
CM
891 else
892 hlist_for_each_entry(area, elem, &object->area_list, node)
893 scan_block((void *)(object->pointer + area->offset),
894 (void *)(object->pointer + area->offset
4b8a9674 895 + area->length), object, 0);
3c7b4e6b
CM
896out:
897 spin_unlock_irqrestore(&object->lock, flags);
898}
899
900/*
901 * Scan data sections and all the referenced memory blocks allocated via the
902 * kernel's standard allocators. This function must be called with the
903 * scan_mutex held.
904 */
905static void kmemleak_scan(void)
906{
907 unsigned long flags;
908 struct kmemleak_object *object, *tmp;
909 struct task_struct *task;
910 int i;
4698c1f2 911 int new_leaks = 0;
2587362e 912 int gray_list_pass = 0;
3c7b4e6b 913
acf4968e
CM
914 jiffies_last_scan = jiffies;
915
3c7b4e6b
CM
916 /* prepare the kmemleak_object's */
917 rcu_read_lock();
918 list_for_each_entry_rcu(object, &object_list, object_list) {
919 spin_lock_irqsave(&object->lock, flags);
920#ifdef DEBUG
921 /*
922 * With a few exceptions there should be a maximum of
923 * 1 reference to any object at this point.
924 */
925 if (atomic_read(&object->use_count) > 1) {
ae281064 926 pr_debug("object->use_count = %d\n",
3c7b4e6b
CM
927 atomic_read(&object->use_count));
928 dump_object_info(object);
929 }
930#endif
931 /* reset the reference count (whiten the object) */
932 object->count = 0;
2587362e 933 object->flags &= ~OBJECT_NEW;
3c7b4e6b
CM
934 if (color_gray(object) && get_object(object))
935 list_add_tail(&object->gray_list, &gray_list);
936
937 spin_unlock_irqrestore(&object->lock, flags);
938 }
939 rcu_read_unlock();
940
941 /* data/bss scanning */
4b8a9674
CM
942 scan_block(_sdata, _edata, NULL, 1);
943 scan_block(__bss_start, __bss_stop, NULL, 1);
3c7b4e6b
CM
944
945#ifdef CONFIG_SMP
946 /* per-cpu sections scanning */
947 for_each_possible_cpu(i)
948 scan_block(__per_cpu_start + per_cpu_offset(i),
4b8a9674 949 __per_cpu_end + per_cpu_offset(i), NULL, 1);
3c7b4e6b
CM
950#endif
951
952 /*
953 * Struct page scanning for each node. The code below is not yet safe
954 * with MEMORY_HOTPLUG.
955 */
956 for_each_online_node(i) {
957 pg_data_t *pgdat = NODE_DATA(i);
958 unsigned long start_pfn = pgdat->node_start_pfn;
959 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
960 unsigned long pfn;
961
962 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
963 struct page *page;
964
965 if (!pfn_valid(pfn))
966 continue;
967 page = pfn_to_page(pfn);
968 /* only scan if page is in use */
969 if (page_count(page) == 0)
970 continue;
4b8a9674 971 scan_block(page, page + 1, NULL, 1);
3c7b4e6b
CM
972 }
973 }
974
975 /*
976 * Scanning the task stacks may introduce false negatives and it is
977 * not enabled by default.
978 */
979 if (kmemleak_stack_scan) {
980 read_lock(&tasklist_lock);
981 for_each_process(task)
982 scan_block(task_stack_page(task),
4b8a9674
CM
983 task_stack_page(task) + THREAD_SIZE,
984 NULL, 0);
3c7b4e6b
CM
985 read_unlock(&tasklist_lock);
986 }
987
988 /*
989 * Scan the objects already referenced from the sections scanned
990 * above. More objects will be referenced and, if there are no memory
991 * leaks, all the objects will be scanned. The list traversal is safe
992 * for both tail additions and removals from inside the loop. The
993 * kmemleak objects cannot be freed from outside the loop because their
994 * use_count was increased.
995 */
2587362e 996repeat:
3c7b4e6b
CM
997 object = list_entry(gray_list.next, typeof(*object), gray_list);
998 while (&object->gray_list != &gray_list) {
57d81f6f 999 cond_resched();
3c7b4e6b
CM
1000
1001 /* may add new objects to the list */
1002 if (!scan_should_stop())
1003 scan_object(object);
1004
1005 tmp = list_entry(object->gray_list.next, typeof(*object),
1006 gray_list);
1007
1008 /* remove the object from the list and release it */
1009 list_del(&object->gray_list);
1010 put_object(object);
1011
1012 object = tmp;
1013 }
2587362e
CM
1014
1015 if (scan_should_stop() || ++gray_list_pass >= GRAY_LIST_PASSES)
1016 goto scan_end;
1017
1018 /*
1019 * Check for new objects allocated during this scanning and add them
1020 * to the gray list.
1021 */
1022 rcu_read_lock();
1023 list_for_each_entry_rcu(object, &object_list, object_list) {
1024 spin_lock_irqsave(&object->lock, flags);
1025 if ((object->flags & OBJECT_NEW) && !color_black(object) &&
1026 get_object(object)) {
1027 object->flags &= ~OBJECT_NEW;
1028 list_add_tail(&object->gray_list, &gray_list);
1029 }
1030 spin_unlock_irqrestore(&object->lock, flags);
1031 }
1032 rcu_read_unlock();
1033
1034 if (!list_empty(&gray_list))
1035 goto repeat;
1036
1037scan_end:
3c7b4e6b 1038 WARN_ON(!list_empty(&gray_list));
4698c1f2 1039
17bb9e0d 1040 /*
2587362e
CM
1041 * If scanning was stopped or new objects were being allocated at a
1042 * higher rate than gray list scanning, do not report any new
1043 * unreferenced objects.
17bb9e0d 1044 */
2587362e 1045 if (scan_should_stop() || gray_list_pass >= GRAY_LIST_PASSES)
17bb9e0d
CM
1046 return;
1047
4698c1f2
CM
1048 /*
1049 * Scanning result reporting.
1050 */
1051 rcu_read_lock();
1052 list_for_each_entry_rcu(object, &object_list, object_list) {
1053 spin_lock_irqsave(&object->lock, flags);
1054 if (unreferenced_object(object) &&
1055 !(object->flags & OBJECT_REPORTED)) {
1056 object->flags |= OBJECT_REPORTED;
1057 new_leaks++;
1058 }
1059 spin_unlock_irqrestore(&object->lock, flags);
1060 }
1061 rcu_read_unlock();
1062
1063 if (new_leaks)
1064 pr_info("%d new suspected memory leaks (see "
1065 "/sys/kernel/debug/kmemleak)\n", new_leaks);
1066
3c7b4e6b
CM
1067}
1068
1069/*
1070 * Thread function performing automatic memory scanning. Unreferenced objects
1071 * at the end of a memory scan are reported but only the first time.
1072 */
1073static int kmemleak_scan_thread(void *arg)
1074{
1075 static int first_run = 1;
1076
ae281064 1077 pr_info("Automatic memory scanning thread started\n");
bf2a76b3 1078 set_user_nice(current, 10);
3c7b4e6b
CM
1079
1080 /*
1081 * Wait before the first scan to allow the system to fully initialize.
1082 */
1083 if (first_run) {
1084 first_run = 0;
1085 ssleep(SECS_FIRST_SCAN);
1086 }
1087
1088 while (!kthread_should_stop()) {
3c7b4e6b
CM
1089 signed long timeout = jiffies_scan_wait;
1090
1091 mutex_lock(&scan_mutex);
3c7b4e6b 1092 kmemleak_scan();
3c7b4e6b 1093 mutex_unlock(&scan_mutex);
4698c1f2 1094
3c7b4e6b
CM
1095 /* wait before the next scan */
1096 while (timeout && !kthread_should_stop())
1097 timeout = schedule_timeout_interruptible(timeout);
1098 }
1099
ae281064 1100 pr_info("Automatic memory scanning thread ended\n");
3c7b4e6b
CM
1101
1102 return 0;
1103}
1104
1105/*
1106 * Start the automatic memory scanning thread. This function must be called
4698c1f2 1107 * with the scan_mutex held.
3c7b4e6b
CM
1108 */
1109void start_scan_thread(void)
1110{
1111 if (scan_thread)
1112 return;
1113 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1114 if (IS_ERR(scan_thread)) {
ae281064 1115 pr_warning("Failed to create the scan thread\n");
3c7b4e6b
CM
1116 scan_thread = NULL;
1117 }
1118}
1119
1120/*
1121 * Stop the automatic memory scanning thread. This function must be called
4698c1f2 1122 * with the scan_mutex held.
3c7b4e6b
CM
1123 */
1124void stop_scan_thread(void)
1125{
1126 if (scan_thread) {
1127 kthread_stop(scan_thread);
1128 scan_thread = NULL;
1129 }
1130}
1131
1132/*
1133 * Iterate over the object_list and return the first valid object at or after
1134 * the required position with its use_count incremented. The function triggers
1135 * a memory scanning when the pos argument points to the first position.
1136 */
1137static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1138{
1139 struct kmemleak_object *object;
1140 loff_t n = *pos;
b87324d0
CM
1141 int err;
1142
1143 err = mutex_lock_interruptible(&scan_mutex);
1144 if (err < 0)
1145 return ERR_PTR(err);
3c7b4e6b 1146
3c7b4e6b
CM
1147 rcu_read_lock();
1148 list_for_each_entry_rcu(object, &object_list, object_list) {
1149 if (n-- > 0)
1150 continue;
1151 if (get_object(object))
1152 goto out;
1153 }
1154 object = NULL;
1155out:
1156 rcu_read_unlock();
1157 return object;
1158}
1159
1160/*
1161 * Return the next object in the object_list. The function decrements the
1162 * use_count of the previous object and increases that of the next one.
1163 */
1164static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1165{
1166 struct kmemleak_object *prev_obj = v;
1167 struct kmemleak_object *next_obj = NULL;
1168 struct list_head *n = &prev_obj->object_list;
1169
1170 ++(*pos);
3c7b4e6b
CM
1171
1172 rcu_read_lock();
1173 list_for_each_continue_rcu(n, &object_list) {
1174 next_obj = list_entry(n, struct kmemleak_object, object_list);
1175 if (get_object(next_obj))
1176 break;
1177 }
1178 rcu_read_unlock();
288c857d 1179
3c7b4e6b
CM
1180 put_object(prev_obj);
1181 return next_obj;
1182}
1183
1184/*
1185 * Decrement the use_count of the last object required, if any.
1186 */
1187static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1188{
b87324d0
CM
1189 if (!IS_ERR(v)) {
1190 /*
1191 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1192 * waiting was interrupted, so only release it if !IS_ERR.
1193 */
1194 mutex_unlock(&scan_mutex);
1195 if (v)
1196 put_object(v);
1197 }
3c7b4e6b
CM
1198}
1199
1200/*
1201 * Print the information for an unreferenced object to the seq file.
1202 */
1203static int kmemleak_seq_show(struct seq_file *seq, void *v)
1204{
1205 struct kmemleak_object *object = v;
1206 unsigned long flags;
1207
1208 spin_lock_irqsave(&object->lock, flags);
288c857d 1209 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
17bb9e0d 1210 print_unreferenced(seq, object);
3c7b4e6b
CM
1211 spin_unlock_irqrestore(&object->lock, flags);
1212 return 0;
1213}
1214
1215static const struct seq_operations kmemleak_seq_ops = {
1216 .start = kmemleak_seq_start,
1217 .next = kmemleak_seq_next,
1218 .stop = kmemleak_seq_stop,
1219 .show = kmemleak_seq_show,
1220};
1221
1222static int kmemleak_open(struct inode *inode, struct file *file)
1223{
3c7b4e6b
CM
1224 if (!atomic_read(&kmemleak_enabled))
1225 return -EBUSY;
1226
b87324d0 1227 return seq_open(file, &kmemleak_seq_ops);
3c7b4e6b
CM
1228}
1229
1230static int kmemleak_release(struct inode *inode, struct file *file)
1231{
b87324d0 1232 return seq_release(inode, file);
3c7b4e6b
CM
1233}
1234
1235/*
1236 * File write operation to configure kmemleak at run-time. The following
1237 * commands can be written to the /sys/kernel/debug/kmemleak file:
1238 * off - disable kmemleak (irreversible)
1239 * stack=on - enable the task stacks scanning
1240 * stack=off - disable the tasks stacks scanning
1241 * scan=on - start the automatic memory scanning thread
1242 * scan=off - stop the automatic memory scanning thread
1243 * scan=... - set the automatic memory scanning period in seconds (0 to
1244 * disable it)
4698c1f2 1245 * scan - trigger a memory scan
3c7b4e6b
CM
1246 */
1247static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1248 size_t size, loff_t *ppos)
1249{
1250 char buf[64];
1251 int buf_size;
b87324d0 1252 int ret;
3c7b4e6b
CM
1253
1254 buf_size = min(size, (sizeof(buf) - 1));
1255 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1256 return -EFAULT;
1257 buf[buf_size] = 0;
1258
b87324d0
CM
1259 ret = mutex_lock_interruptible(&scan_mutex);
1260 if (ret < 0)
1261 return ret;
1262
3c7b4e6b
CM
1263 if (strncmp(buf, "off", 3) == 0)
1264 kmemleak_disable();
1265 else if (strncmp(buf, "stack=on", 8) == 0)
1266 kmemleak_stack_scan = 1;
1267 else if (strncmp(buf, "stack=off", 9) == 0)
1268 kmemleak_stack_scan = 0;
1269 else if (strncmp(buf, "scan=on", 7) == 0)
1270 start_scan_thread();
1271 else if (strncmp(buf, "scan=off", 8) == 0)
1272 stop_scan_thread();
1273 else if (strncmp(buf, "scan=", 5) == 0) {
1274 unsigned long secs;
3c7b4e6b 1275
b87324d0
CM
1276 ret = strict_strtoul(buf + 5, 0, &secs);
1277 if (ret < 0)
1278 goto out;
3c7b4e6b
CM
1279 stop_scan_thread();
1280 if (secs) {
1281 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1282 start_scan_thread();
1283 }
4698c1f2
CM
1284 } else if (strncmp(buf, "scan", 4) == 0)
1285 kmemleak_scan();
1286 else
b87324d0
CM
1287 ret = -EINVAL;
1288
1289out:
1290 mutex_unlock(&scan_mutex);
1291 if (ret < 0)
1292 return ret;
3c7b4e6b
CM
1293
1294 /* ignore the rest of the buffer, only one command at a time */
1295 *ppos += size;
1296 return size;
1297}
1298
1299static const struct file_operations kmemleak_fops = {
1300 .owner = THIS_MODULE,
1301 .open = kmemleak_open,
1302 .read = seq_read,
1303 .write = kmemleak_write,
1304 .llseek = seq_lseek,
1305 .release = kmemleak_release,
1306};
1307
1308/*
1309 * Perform the freeing of the kmemleak internal objects after waiting for any
1310 * current memory scan to complete.
1311 */
1312static int kmemleak_cleanup_thread(void *arg)
1313{
1314 struct kmemleak_object *object;
1315
4698c1f2 1316 mutex_lock(&scan_mutex);
3c7b4e6b 1317 stop_scan_thread();
3c7b4e6b 1318
3c7b4e6b
CM
1319 rcu_read_lock();
1320 list_for_each_entry_rcu(object, &object_list, object_list)
1321 delete_object(object->pointer);
1322 rcu_read_unlock();
1323 mutex_unlock(&scan_mutex);
1324
1325 return 0;
1326}
1327
1328/*
1329 * Start the clean-up thread.
1330 */
1331static void kmemleak_cleanup(void)
1332{
1333 struct task_struct *cleanup_thread;
1334
1335 cleanup_thread = kthread_run(kmemleak_cleanup_thread, NULL,
1336 "kmemleak-clean");
1337 if (IS_ERR(cleanup_thread))
ae281064 1338 pr_warning("Failed to create the clean-up thread\n");
3c7b4e6b
CM
1339}
1340
1341/*
1342 * Disable kmemleak. No memory allocation/freeing will be traced once this
1343 * function is called. Disabling kmemleak is an irreversible operation.
1344 */
1345static void kmemleak_disable(void)
1346{
1347 /* atomically check whether it was already invoked */
1348 if (atomic_cmpxchg(&kmemleak_error, 0, 1))
1349 return;
1350
1351 /* stop any memory operation tracing */
1352 atomic_set(&kmemleak_early_log, 0);
1353 atomic_set(&kmemleak_enabled, 0);
1354
1355 /* check whether it is too early for a kernel thread */
1356 if (atomic_read(&kmemleak_initialized))
1357 kmemleak_cleanup();
1358
1359 pr_info("Kernel memory leak detector disabled\n");
1360}
1361
1362/*
1363 * Allow boot-time kmemleak disabling (enabled by default).
1364 */
1365static int kmemleak_boot_config(char *str)
1366{
1367 if (!str)
1368 return -EINVAL;
1369 if (strcmp(str, "off") == 0)
1370 kmemleak_disable();
1371 else if (strcmp(str, "on") != 0)
1372 return -EINVAL;
1373 return 0;
1374}
1375early_param("kmemleak", kmemleak_boot_config);
1376
1377/*
2030117d 1378 * Kmemleak initialization.
3c7b4e6b
CM
1379 */
1380void __init kmemleak_init(void)
1381{
1382 int i;
1383 unsigned long flags;
1384
3c7b4e6b
CM
1385 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1386 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1387
1388 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1389 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1390 INIT_PRIO_TREE_ROOT(&object_tree_root);
1391
1392 /* the kernel is still in UP mode, so disabling the IRQs is enough */
1393 local_irq_save(flags);
1394 if (!atomic_read(&kmemleak_error)) {
1395 atomic_set(&kmemleak_enabled, 1);
1396 atomic_set(&kmemleak_early_log, 0);
1397 }
1398 local_irq_restore(flags);
1399
1400 /*
1401 * This is the point where tracking allocations is safe. Automatic
1402 * scanning is started during the late initcall. Add the early logged
1403 * callbacks to the kmemleak infrastructure.
1404 */
1405 for (i = 0; i < crt_early_log; i++) {
1406 struct early_log *log = &early_log[i];
1407
1408 switch (log->op_type) {
1409 case KMEMLEAK_ALLOC:
1410 kmemleak_alloc(log->ptr, log->size, log->min_count,
1411 GFP_KERNEL);
1412 break;
1413 case KMEMLEAK_FREE:
1414 kmemleak_free(log->ptr);
1415 break;
1416 case KMEMLEAK_NOT_LEAK:
1417 kmemleak_not_leak(log->ptr);
1418 break;
1419 case KMEMLEAK_IGNORE:
1420 kmemleak_ignore(log->ptr);
1421 break;
1422 case KMEMLEAK_SCAN_AREA:
1423 kmemleak_scan_area(log->ptr, log->offset, log->length,
1424 GFP_KERNEL);
1425 break;
1426 case KMEMLEAK_NO_SCAN:
1427 kmemleak_no_scan(log->ptr);
1428 break;
1429 default:
1430 WARN_ON(1);
1431 }
1432 }
1433}
1434
1435/*
1436 * Late initialization function.
1437 */
1438static int __init kmemleak_late_init(void)
1439{
1440 struct dentry *dentry;
1441
1442 atomic_set(&kmemleak_initialized, 1);
1443
1444 if (atomic_read(&kmemleak_error)) {
1445 /*
1446 * Some error occured and kmemleak was disabled. There is a
1447 * small chance that kmemleak_disable() was called immediately
1448 * after setting kmemleak_initialized and we may end up with
1449 * two clean-up threads but serialized by scan_mutex.
1450 */
1451 kmemleak_cleanup();
1452 return -ENOMEM;
1453 }
1454
1455 dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1456 &kmemleak_fops);
1457 if (!dentry)
ae281064 1458 pr_warning("Failed to create the debugfs kmemleak file\n");
4698c1f2 1459 mutex_lock(&scan_mutex);
3c7b4e6b 1460 start_scan_thread();
4698c1f2 1461 mutex_unlock(&scan_mutex);
3c7b4e6b
CM
1462
1463 pr_info("Kernel memory leak detector initialized\n");
1464
1465 return 0;
1466}
1467late_initcall(kmemleak_late_init);