]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/hugetlb.c
jbd: Check return value of __getblk()
[net-next-2.6.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
0fe6e20b 21#include <linux/rmap.h>
fd6a03ed
NH
22#include <linux/swap.h>
23#include <linux/swapops.h>
d6606683 24
63551ae0
DG
25#include <asm/page.h>
26#include <asm/pgtable.h>
78a34ae2 27#include <asm/io.h>
63551ae0
DG
28
29#include <linux/hugetlb.h>
9a305230 30#include <linux/node.h>
7835e98b 31#include "internal.h"
1da177e4
LT
32
33const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03
MG
34static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35unsigned long hugepages_treat_as_movable;
a5516438 36
e5ff2159
AK
37static int max_hstate;
38unsigned int default_hstate_idx;
39struct hstate hstates[HUGE_MAX_HSTATE];
40
53ba51d2
JT
41__initdata LIST_HEAD(huge_boot_pages);
42
e5ff2159
AK
43/* for command line parsing */
44static struct hstate * __initdata parsed_hstate;
45static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 46static unsigned long __initdata default_hstate_size;
e5ff2159
AK
47
48#define for_each_hstate(h) \
49 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
396faf03 50
3935baa9
DG
51/*
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53 */
54static DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 55
96822904
AW
56/*
57 * Region tracking -- allows tracking of reservations and instantiated pages
58 * across the pages in a mapping.
84afd99b
AW
59 *
60 * The region data structures are protected by a combination of the mmap_sem
61 * and the hugetlb_instantion_mutex. To access or modify a region the caller
62 * must either hold the mmap_sem for write, or the mmap_sem for read and
63 * the hugetlb_instantiation mutex:
64 *
65 * down_write(&mm->mmap_sem);
66 * or
67 * down_read(&mm->mmap_sem);
68 * mutex_lock(&hugetlb_instantiation_mutex);
96822904
AW
69 */
70struct file_region {
71 struct list_head link;
72 long from;
73 long to;
74};
75
76static long region_add(struct list_head *head, long f, long t)
77{
78 struct file_region *rg, *nrg, *trg;
79
80 /* Locate the region we are either in or before. */
81 list_for_each_entry(rg, head, link)
82 if (f <= rg->to)
83 break;
84
85 /* Round our left edge to the current segment if it encloses us. */
86 if (f > rg->from)
87 f = rg->from;
88
89 /* Check for and consume any regions we now overlap with. */
90 nrg = rg;
91 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
92 if (&rg->link == head)
93 break;
94 if (rg->from > t)
95 break;
96
97 /* If this area reaches higher then extend our area to
98 * include it completely. If this is not the first area
99 * which we intend to reuse, free it. */
100 if (rg->to > t)
101 t = rg->to;
102 if (rg != nrg) {
103 list_del(&rg->link);
104 kfree(rg);
105 }
106 }
107 nrg->from = f;
108 nrg->to = t;
109 return 0;
110}
111
112static long region_chg(struct list_head *head, long f, long t)
113{
114 struct file_region *rg, *nrg;
115 long chg = 0;
116
117 /* Locate the region we are before or in. */
118 list_for_each_entry(rg, head, link)
119 if (f <= rg->to)
120 break;
121
122 /* If we are below the current region then a new region is required.
123 * Subtle, allocate a new region at the position but make it zero
124 * size such that we can guarantee to record the reservation. */
125 if (&rg->link == head || t < rg->from) {
126 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
127 if (!nrg)
128 return -ENOMEM;
129 nrg->from = f;
130 nrg->to = f;
131 INIT_LIST_HEAD(&nrg->link);
132 list_add(&nrg->link, rg->link.prev);
133
134 return t - f;
135 }
136
137 /* Round our left edge to the current segment if it encloses us. */
138 if (f > rg->from)
139 f = rg->from;
140 chg = t - f;
141
142 /* Check for and consume any regions we now overlap with. */
143 list_for_each_entry(rg, rg->link.prev, link) {
144 if (&rg->link == head)
145 break;
146 if (rg->from > t)
147 return chg;
148
149 /* We overlap with this area, if it extends futher than
150 * us then we must extend ourselves. Account for its
151 * existing reservation. */
152 if (rg->to > t) {
153 chg += rg->to - t;
154 t = rg->to;
155 }
156 chg -= rg->to - rg->from;
157 }
158 return chg;
159}
160
161static long region_truncate(struct list_head *head, long end)
162{
163 struct file_region *rg, *trg;
164 long chg = 0;
165
166 /* Locate the region we are either in or before. */
167 list_for_each_entry(rg, head, link)
168 if (end <= rg->to)
169 break;
170 if (&rg->link == head)
171 return 0;
172
173 /* If we are in the middle of a region then adjust it. */
174 if (end > rg->from) {
175 chg = rg->to - end;
176 rg->to = end;
177 rg = list_entry(rg->link.next, typeof(*rg), link);
178 }
179
180 /* Drop any remaining regions. */
181 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
182 if (&rg->link == head)
183 break;
184 chg += rg->to - rg->from;
185 list_del(&rg->link);
186 kfree(rg);
187 }
188 return chg;
189}
190
84afd99b
AW
191static long region_count(struct list_head *head, long f, long t)
192{
193 struct file_region *rg;
194 long chg = 0;
195
196 /* Locate each segment we overlap with, and count that overlap. */
197 list_for_each_entry(rg, head, link) {
198 int seg_from;
199 int seg_to;
200
201 if (rg->to <= f)
202 continue;
203 if (rg->from >= t)
204 break;
205
206 seg_from = max(rg->from, f);
207 seg_to = min(rg->to, t);
208
209 chg += seg_to - seg_from;
210 }
211
212 return chg;
213}
214
e7c4b0bf
AW
215/*
216 * Convert the address within this vma to the page offset within
217 * the mapping, in pagecache page units; huge pages here.
218 */
a5516438
AK
219static pgoff_t vma_hugecache_offset(struct hstate *h,
220 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 221{
a5516438
AK
222 return ((address - vma->vm_start) >> huge_page_shift(h)) +
223 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
224}
225
0fe6e20b
NH
226pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
227 unsigned long address)
228{
229 return vma_hugecache_offset(hstate_vma(vma), vma, address);
230}
231
08fba699
MG
232/*
233 * Return the size of the pages allocated when backing a VMA. In the majority
234 * cases this will be same size as used by the page table entries.
235 */
236unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
237{
238 struct hstate *hstate;
239
240 if (!is_vm_hugetlb_page(vma))
241 return PAGE_SIZE;
242
243 hstate = hstate_vma(vma);
244
245 return 1UL << (hstate->order + PAGE_SHIFT);
246}
f340ca0f 247EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 248
3340289d
MG
249/*
250 * Return the page size being used by the MMU to back a VMA. In the majority
251 * of cases, the page size used by the kernel matches the MMU size. On
252 * architectures where it differs, an architecture-specific version of this
253 * function is required.
254 */
255#ifndef vma_mmu_pagesize
256unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
257{
258 return vma_kernel_pagesize(vma);
259}
260#endif
261
84afd99b
AW
262/*
263 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
264 * bits of the reservation map pointer, which are always clear due to
265 * alignment.
266 */
267#define HPAGE_RESV_OWNER (1UL << 0)
268#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 269#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 270
a1e78772
MG
271/*
272 * These helpers are used to track how many pages are reserved for
273 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
274 * is guaranteed to have their future faults succeed.
275 *
276 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
277 * the reserve counters are updated with the hugetlb_lock held. It is safe
278 * to reset the VMA at fork() time as it is not in use yet and there is no
279 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
280 *
281 * The private mapping reservation is represented in a subtly different
282 * manner to a shared mapping. A shared mapping has a region map associated
283 * with the underlying file, this region map represents the backing file
284 * pages which have ever had a reservation assigned which this persists even
285 * after the page is instantiated. A private mapping has a region map
286 * associated with the original mmap which is attached to all VMAs which
287 * reference it, this region map represents those offsets which have consumed
288 * reservation ie. where pages have been instantiated.
a1e78772 289 */
e7c4b0bf
AW
290static unsigned long get_vma_private_data(struct vm_area_struct *vma)
291{
292 return (unsigned long)vma->vm_private_data;
293}
294
295static void set_vma_private_data(struct vm_area_struct *vma,
296 unsigned long value)
297{
298 vma->vm_private_data = (void *)value;
299}
300
84afd99b
AW
301struct resv_map {
302 struct kref refs;
303 struct list_head regions;
304};
305
2a4b3ded 306static struct resv_map *resv_map_alloc(void)
84afd99b
AW
307{
308 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
309 if (!resv_map)
310 return NULL;
311
312 kref_init(&resv_map->refs);
313 INIT_LIST_HEAD(&resv_map->regions);
314
315 return resv_map;
316}
317
2a4b3ded 318static void resv_map_release(struct kref *ref)
84afd99b
AW
319{
320 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
321
322 /* Clear out any active regions before we release the map. */
323 region_truncate(&resv_map->regions, 0);
324 kfree(resv_map);
325}
326
327static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
328{
329 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 330 if (!(vma->vm_flags & VM_MAYSHARE))
84afd99b
AW
331 return (struct resv_map *)(get_vma_private_data(vma) &
332 ~HPAGE_RESV_MASK);
2a4b3ded 333 return NULL;
a1e78772
MG
334}
335
84afd99b 336static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
337{
338 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 339 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 340
84afd99b
AW
341 set_vma_private_data(vma, (get_vma_private_data(vma) &
342 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
343}
344
345static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
346{
04f2cbe3 347 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 348 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
349
350 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
351}
352
353static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
354{
355 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
356
357 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
358}
359
360/* Decrement the reserved pages in the hugepage pool by one */
a5516438
AK
361static void decrement_hugepage_resv_vma(struct hstate *h,
362 struct vm_area_struct *vma)
a1e78772 363{
c37f9fb1
AW
364 if (vma->vm_flags & VM_NORESERVE)
365 return;
366
f83a275d 367 if (vma->vm_flags & VM_MAYSHARE) {
a1e78772 368 /* Shared mappings always use reserves */
a5516438 369 h->resv_huge_pages--;
84afd99b 370 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a1e78772
MG
371 /*
372 * Only the process that called mmap() has reserves for
373 * private mappings.
374 */
a5516438 375 h->resv_huge_pages--;
a1e78772
MG
376 }
377}
378
04f2cbe3 379/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
380void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
381{
382 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 383 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
384 vma->vm_private_data = (void *)0;
385}
386
387/* Returns true if the VMA has associated reserve pages */
7f09ca51 388static int vma_has_reserves(struct vm_area_struct *vma)
a1e78772 389{
f83a275d 390 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51
MG
391 return 1;
392 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
393 return 1;
394 return 0;
a1e78772
MG
395}
396
69d177c2
AW
397static void clear_gigantic_page(struct page *page,
398 unsigned long addr, unsigned long sz)
399{
400 int i;
401 struct page *p = page;
402
403 might_sleep();
404 for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
405 cond_resched();
406 clear_user_highpage(p, addr + i * PAGE_SIZE);
407 }
408}
a5516438
AK
409static void clear_huge_page(struct page *page,
410 unsigned long addr, unsigned long sz)
79ac6ba4
DG
411{
412 int i;
413
74dbdd23 414 if (unlikely(sz/PAGE_SIZE > MAX_ORDER_NR_PAGES)) {
ebdd4aea
HE
415 clear_gigantic_page(page, addr, sz);
416 return;
417 }
69d177c2 418
79ac6ba4 419 might_sleep();
a5516438 420 for (i = 0; i < sz/PAGE_SIZE; i++) {
79ac6ba4 421 cond_resched();
281e0e3b 422 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
79ac6ba4
DG
423 }
424}
425
69d177c2
AW
426static void copy_gigantic_page(struct page *dst, struct page *src,
427 unsigned long addr, struct vm_area_struct *vma)
428{
429 int i;
430 struct hstate *h = hstate_vma(vma);
431 struct page *dst_base = dst;
432 struct page *src_base = src;
433 might_sleep();
434 for (i = 0; i < pages_per_huge_page(h); ) {
435 cond_resched();
436 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
437
438 i++;
439 dst = mem_map_next(dst, dst_base, i);
440 src = mem_map_next(src, src_base, i);
441 }
442}
79ac6ba4 443static void copy_huge_page(struct page *dst, struct page *src,
9de455b2 444 unsigned long addr, struct vm_area_struct *vma)
79ac6ba4
DG
445{
446 int i;
a5516438 447 struct hstate *h = hstate_vma(vma);
79ac6ba4 448
ebdd4aea
HE
449 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
450 copy_gigantic_page(dst, src, addr, vma);
451 return;
452 }
69d177c2 453
79ac6ba4 454 might_sleep();
a5516438 455 for (i = 0; i < pages_per_huge_page(h); i++) {
79ac6ba4 456 cond_resched();
9de455b2 457 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
79ac6ba4
DG
458 }
459}
460
a5516438 461static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
462{
463 int nid = page_to_nid(page);
a5516438
AK
464 list_add(&page->lru, &h->hugepage_freelists[nid]);
465 h->free_huge_pages++;
466 h->free_huge_pages_node[nid]++;
1da177e4
LT
467}
468
a5516438
AK
469static struct page *dequeue_huge_page_vma(struct hstate *h,
470 struct vm_area_struct *vma,
04f2cbe3 471 unsigned long address, int avoid_reserve)
1da177e4 472{
31a5c6e4 473 int nid;
1da177e4 474 struct page *page = NULL;
480eccf9 475 struct mempolicy *mpol;
19770b32 476 nodemask_t *nodemask;
c0ff7453 477 struct zonelist *zonelist;
dd1a239f
MG
478 struct zone *zone;
479 struct zoneref *z;
1da177e4 480
c0ff7453
MX
481 get_mems_allowed();
482 zonelist = huge_zonelist(vma, address,
483 htlb_alloc_mask, &mpol, &nodemask);
a1e78772
MG
484 /*
485 * A child process with MAP_PRIVATE mappings created by their parent
486 * have no page reserves. This check ensures that reservations are
487 * not "stolen". The child may still get SIGKILLed
488 */
7f09ca51 489 if (!vma_has_reserves(vma) &&
a5516438 490 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 491 goto err;
a1e78772 492
04f2cbe3 493 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 494 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 495 goto err;;
04f2cbe3 496
19770b32
MG
497 for_each_zone_zonelist_nodemask(zone, z, zonelist,
498 MAX_NR_ZONES - 1, nodemask) {
54a6eb5c
MG
499 nid = zone_to_nid(zone);
500 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
a5516438
AK
501 !list_empty(&h->hugepage_freelists[nid])) {
502 page = list_entry(h->hugepage_freelists[nid].next,
3abf7afd
AM
503 struct page, lru);
504 list_del(&page->lru);
a5516438
AK
505 h->free_huge_pages--;
506 h->free_huge_pages_node[nid]--;
04f2cbe3
MG
507
508 if (!avoid_reserve)
a5516438 509 decrement_hugepage_resv_vma(h, vma);
a1e78772 510
5ab3ee7b 511 break;
3abf7afd 512 }
1da177e4 513 }
c0ff7453 514err:
52cd3b07 515 mpol_cond_put(mpol);
c0ff7453 516 put_mems_allowed();
1da177e4
LT
517 return page;
518}
519
a5516438 520static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
521{
522 int i;
a5516438 523
18229df5
AW
524 VM_BUG_ON(h->order >= MAX_ORDER);
525
a5516438
AK
526 h->nr_huge_pages--;
527 h->nr_huge_pages_node[page_to_nid(page)]--;
528 for (i = 0; i < pages_per_huge_page(h); i++) {
6af2acb6
AL
529 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
530 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
531 1 << PG_private | 1<< PG_writeback);
532 }
533 set_compound_page_dtor(page, NULL);
534 set_page_refcounted(page);
7f2e9525 535 arch_release_hugepage(page);
a5516438 536 __free_pages(page, huge_page_order(h));
6af2acb6
AL
537}
538
e5ff2159
AK
539struct hstate *size_to_hstate(unsigned long size)
540{
541 struct hstate *h;
542
543 for_each_hstate(h) {
544 if (huge_page_size(h) == size)
545 return h;
546 }
547 return NULL;
548}
549
27a85ef1
DG
550static void free_huge_page(struct page *page)
551{
a5516438
AK
552 /*
553 * Can't pass hstate in here because it is called from the
554 * compound page destructor.
555 */
e5ff2159 556 struct hstate *h = page_hstate(page);
7893d1d5 557 int nid = page_to_nid(page);
c79fb75e 558 struct address_space *mapping;
27a85ef1 559
c79fb75e 560 mapping = (struct address_space *) page_private(page);
e5df70ab 561 set_page_private(page, 0);
23be7468 562 page->mapping = NULL;
7893d1d5 563 BUG_ON(page_count(page));
0fe6e20b 564 BUG_ON(page_mapcount(page));
27a85ef1
DG
565 INIT_LIST_HEAD(&page->lru);
566
567 spin_lock(&hugetlb_lock);
aa888a74 568 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
a5516438
AK
569 update_and_free_page(h, page);
570 h->surplus_huge_pages--;
571 h->surplus_huge_pages_node[nid]--;
7893d1d5 572 } else {
a5516438 573 enqueue_huge_page(h, page);
7893d1d5 574 }
27a85ef1 575 spin_unlock(&hugetlb_lock);
c79fb75e 576 if (mapping)
9a119c05 577 hugetlb_put_quota(mapping, 1);
27a85ef1
DG
578}
579
a5516438 580static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6
AK
581{
582 set_compound_page_dtor(page, free_huge_page);
583 spin_lock(&hugetlb_lock);
a5516438
AK
584 h->nr_huge_pages++;
585 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
586 spin_unlock(&hugetlb_lock);
587 put_page(page); /* free it into the hugepage allocator */
588}
589
20a0307c
WF
590static void prep_compound_gigantic_page(struct page *page, unsigned long order)
591{
592 int i;
593 int nr_pages = 1 << order;
594 struct page *p = page + 1;
595
596 /* we rely on prep_new_huge_page to set the destructor */
597 set_compound_order(page, order);
598 __SetPageHead(page);
599 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
600 __SetPageTail(p);
601 p->first_page = page;
602 }
603}
604
605int PageHuge(struct page *page)
606{
607 compound_page_dtor *dtor;
608
609 if (!PageCompound(page))
610 return 0;
611
612 page = compound_head(page);
613 dtor = get_compound_page_dtor(page);
614
615 return dtor == free_huge_page;
616}
617
43131e14
NH
618EXPORT_SYMBOL_GPL(PageHuge);
619
a5516438 620static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 621{
1da177e4 622 struct page *page;
f96efd58 623
aa888a74
AK
624 if (h->order >= MAX_ORDER)
625 return NULL;
626
6484eb3e 627 page = alloc_pages_exact_node(nid,
551883ae
NA
628 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
629 __GFP_REPEAT|__GFP_NOWARN,
a5516438 630 huge_page_order(h));
1da177e4 631 if (page) {
7f2e9525 632 if (arch_prepare_hugepage(page)) {
caff3a2c 633 __free_pages(page, huge_page_order(h));
7b8ee84d 634 return NULL;
7f2e9525 635 }
a5516438 636 prep_new_huge_page(h, page, nid);
1da177e4 637 }
63b4613c
NA
638
639 return page;
640}
641
9a76db09 642/*
6ae11b27
LS
643 * common helper functions for hstate_next_node_to_{alloc|free}.
644 * We may have allocated or freed a huge page based on a different
645 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
646 * be outside of *nodes_allowed. Ensure that we use an allowed
647 * node for alloc or free.
9a76db09 648 */
6ae11b27 649static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
9a76db09 650{
6ae11b27 651 nid = next_node(nid, *nodes_allowed);
9a76db09 652 if (nid == MAX_NUMNODES)
6ae11b27 653 nid = first_node(*nodes_allowed);
9a76db09
LS
654 VM_BUG_ON(nid >= MAX_NUMNODES);
655
656 return nid;
657}
658
6ae11b27
LS
659static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
660{
661 if (!node_isset(nid, *nodes_allowed))
662 nid = next_node_allowed(nid, nodes_allowed);
663 return nid;
664}
665
5ced66c9 666/*
6ae11b27
LS
667 * returns the previously saved node ["this node"] from which to
668 * allocate a persistent huge page for the pool and advance the
669 * next node from which to allocate, handling wrap at end of node
670 * mask.
5ced66c9 671 */
6ae11b27
LS
672static int hstate_next_node_to_alloc(struct hstate *h,
673 nodemask_t *nodes_allowed)
5ced66c9 674{
6ae11b27
LS
675 int nid;
676
677 VM_BUG_ON(!nodes_allowed);
678
679 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
680 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
9a76db09 681
9a76db09 682 return nid;
5ced66c9
AK
683}
684
6ae11b27 685static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
63b4613c
NA
686{
687 struct page *page;
688 int start_nid;
689 int next_nid;
690 int ret = 0;
691
6ae11b27 692 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 693 next_nid = start_nid;
63b4613c
NA
694
695 do {
e8c5c824 696 page = alloc_fresh_huge_page_node(h, next_nid);
9a76db09 697 if (page) {
63b4613c 698 ret = 1;
9a76db09
LS
699 break;
700 }
6ae11b27 701 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
9a76db09 702 } while (next_nid != start_nid);
63b4613c 703
3b116300
AL
704 if (ret)
705 count_vm_event(HTLB_BUDDY_PGALLOC);
706 else
707 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
708
63b4613c 709 return ret;
1da177e4
LT
710}
711
e8c5c824 712/*
6ae11b27
LS
713 * helper for free_pool_huge_page() - return the previously saved
714 * node ["this node"] from which to free a huge page. Advance the
715 * next node id whether or not we find a free huge page to free so
716 * that the next attempt to free addresses the next node.
e8c5c824 717 */
6ae11b27 718static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
e8c5c824 719{
6ae11b27
LS
720 int nid;
721
722 VM_BUG_ON(!nodes_allowed);
723
724 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
725 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
9a76db09 726
9a76db09 727 return nid;
e8c5c824
LS
728}
729
730/*
731 * Free huge page from pool from next node to free.
732 * Attempt to keep persistent huge pages more or less
733 * balanced over allowed nodes.
734 * Called with hugetlb_lock locked.
735 */
6ae11b27
LS
736static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
737 bool acct_surplus)
e8c5c824
LS
738{
739 int start_nid;
740 int next_nid;
741 int ret = 0;
742
6ae11b27 743 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
744 next_nid = start_nid;
745
746 do {
685f3457
LS
747 /*
748 * If we're returning unused surplus pages, only examine
749 * nodes with surplus pages.
750 */
751 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
752 !list_empty(&h->hugepage_freelists[next_nid])) {
e8c5c824
LS
753 struct page *page =
754 list_entry(h->hugepage_freelists[next_nid].next,
755 struct page, lru);
756 list_del(&page->lru);
757 h->free_huge_pages--;
758 h->free_huge_pages_node[next_nid]--;
685f3457
LS
759 if (acct_surplus) {
760 h->surplus_huge_pages--;
761 h->surplus_huge_pages_node[next_nid]--;
762 }
e8c5c824
LS
763 update_and_free_page(h, page);
764 ret = 1;
9a76db09 765 break;
e8c5c824 766 }
6ae11b27 767 next_nid = hstate_next_node_to_free(h, nodes_allowed);
9a76db09 768 } while (next_nid != start_nid);
e8c5c824
LS
769
770 return ret;
771}
772
a5516438
AK
773static struct page *alloc_buddy_huge_page(struct hstate *h,
774 struct vm_area_struct *vma, unsigned long address)
7893d1d5
AL
775{
776 struct page *page;
d1c3fb1f 777 unsigned int nid;
7893d1d5 778
aa888a74
AK
779 if (h->order >= MAX_ORDER)
780 return NULL;
781
d1c3fb1f
NA
782 /*
783 * Assume we will successfully allocate the surplus page to
784 * prevent racing processes from causing the surplus to exceed
785 * overcommit
786 *
787 * This however introduces a different race, where a process B
788 * tries to grow the static hugepage pool while alloc_pages() is
789 * called by process A. B will only examine the per-node
790 * counters in determining if surplus huge pages can be
791 * converted to normal huge pages in adjust_pool_surplus(). A
792 * won't be able to increment the per-node counter, until the
793 * lock is dropped by B, but B doesn't drop hugetlb_lock until
794 * no more huge pages can be converted from surplus to normal
795 * state (and doesn't try to convert again). Thus, we have a
796 * case where a surplus huge page exists, the pool is grown, and
797 * the surplus huge page still exists after, even though it
798 * should just have been converted to a normal huge page. This
799 * does not leak memory, though, as the hugepage will be freed
800 * once it is out of use. It also does not allow the counters to
801 * go out of whack in adjust_pool_surplus() as we don't modify
802 * the node values until we've gotten the hugepage and only the
803 * per-node value is checked there.
804 */
805 spin_lock(&hugetlb_lock);
a5516438 806 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
807 spin_unlock(&hugetlb_lock);
808 return NULL;
809 } else {
a5516438
AK
810 h->nr_huge_pages++;
811 h->surplus_huge_pages++;
d1c3fb1f
NA
812 }
813 spin_unlock(&hugetlb_lock);
814
551883ae
NA
815 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
816 __GFP_REPEAT|__GFP_NOWARN,
a5516438 817 huge_page_order(h));
d1c3fb1f 818
caff3a2c
GS
819 if (page && arch_prepare_hugepage(page)) {
820 __free_pages(page, huge_page_order(h));
821 return NULL;
822 }
823
d1c3fb1f 824 spin_lock(&hugetlb_lock);
7893d1d5 825 if (page) {
2668db91
AL
826 /*
827 * This page is now managed by the hugetlb allocator and has
828 * no users -- drop the buddy allocator's reference.
829 */
830 put_page_testzero(page);
831 VM_BUG_ON(page_count(page));
d1c3fb1f 832 nid = page_to_nid(page);
7893d1d5 833 set_compound_page_dtor(page, free_huge_page);
d1c3fb1f
NA
834 /*
835 * We incremented the global counters already
836 */
a5516438
AK
837 h->nr_huge_pages_node[nid]++;
838 h->surplus_huge_pages_node[nid]++;
3b116300 839 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 840 } else {
a5516438
AK
841 h->nr_huge_pages--;
842 h->surplus_huge_pages--;
3b116300 843 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 844 }
d1c3fb1f 845 spin_unlock(&hugetlb_lock);
7893d1d5
AL
846
847 return page;
848}
849
e4e574b7
AL
850/*
851 * Increase the hugetlb pool such that it can accomodate a reservation
852 * of size 'delta'.
853 */
a5516438 854static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
855{
856 struct list_head surplus_list;
857 struct page *page, *tmp;
858 int ret, i;
859 int needed, allocated;
860
a5516438 861 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 862 if (needed <= 0) {
a5516438 863 h->resv_huge_pages += delta;
e4e574b7 864 return 0;
ac09b3a1 865 }
e4e574b7
AL
866
867 allocated = 0;
868 INIT_LIST_HEAD(&surplus_list);
869
870 ret = -ENOMEM;
871retry:
872 spin_unlock(&hugetlb_lock);
873 for (i = 0; i < needed; i++) {
a5516438 874 page = alloc_buddy_huge_page(h, NULL, 0);
e4e574b7
AL
875 if (!page) {
876 /*
877 * We were not able to allocate enough pages to
878 * satisfy the entire reservation so we free what
879 * we've allocated so far.
880 */
881 spin_lock(&hugetlb_lock);
882 needed = 0;
883 goto free;
884 }
885
886 list_add(&page->lru, &surplus_list);
887 }
888 allocated += needed;
889
890 /*
891 * After retaking hugetlb_lock, we need to recalculate 'needed'
892 * because either resv_huge_pages or free_huge_pages may have changed.
893 */
894 spin_lock(&hugetlb_lock);
a5516438
AK
895 needed = (h->resv_huge_pages + delta) -
896 (h->free_huge_pages + allocated);
e4e574b7
AL
897 if (needed > 0)
898 goto retry;
899
900 /*
901 * The surplus_list now contains _at_least_ the number of extra pages
902 * needed to accomodate the reservation. Add the appropriate number
903 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
904 * allocator. Commit the entire reservation here to prevent another
905 * process from stealing the pages as they are added to the pool but
906 * before they are reserved.
e4e574b7
AL
907 */
908 needed += allocated;
a5516438 909 h->resv_huge_pages += delta;
e4e574b7
AL
910 ret = 0;
911free:
19fc3f0a 912 /* Free the needed pages to the hugetlb pool */
e4e574b7 913 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
914 if ((--needed) < 0)
915 break;
e4e574b7 916 list_del(&page->lru);
a5516438 917 enqueue_huge_page(h, page);
19fc3f0a
AL
918 }
919
920 /* Free unnecessary surplus pages to the buddy allocator */
921 if (!list_empty(&surplus_list)) {
922 spin_unlock(&hugetlb_lock);
923 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
924 list_del(&page->lru);
af767cbd 925 /*
2668db91
AL
926 * The page has a reference count of zero already, so
927 * call free_huge_page directly instead of using
928 * put_page. This must be done with hugetlb_lock
af767cbd
AL
929 * unlocked which is safe because free_huge_page takes
930 * hugetlb_lock before deciding how to free the page.
931 */
2668db91 932 free_huge_page(page);
af767cbd 933 }
19fc3f0a 934 spin_lock(&hugetlb_lock);
e4e574b7
AL
935 }
936
937 return ret;
938}
939
940/*
941 * When releasing a hugetlb pool reservation, any surplus pages that were
942 * allocated to satisfy the reservation must be explicitly freed if they were
943 * never used.
685f3457 944 * Called with hugetlb_lock held.
e4e574b7 945 */
a5516438
AK
946static void return_unused_surplus_pages(struct hstate *h,
947 unsigned long unused_resv_pages)
e4e574b7 948{
e4e574b7
AL
949 unsigned long nr_pages;
950
ac09b3a1 951 /* Uncommit the reservation */
a5516438 952 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 953
aa888a74
AK
954 /* Cannot return gigantic pages currently */
955 if (h->order >= MAX_ORDER)
956 return;
957
a5516438 958 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 959
685f3457
LS
960 /*
961 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
962 * evenly across all nodes with memory. Iterate across these nodes
963 * until we can no longer free unreserved surplus pages. This occurs
964 * when the nodes with surplus pages have no free pages.
965 * free_pool_huge_page() will balance the the freed pages across the
966 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
967 */
968 while (nr_pages--) {
9b5e5d0f 969 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
685f3457 970 break;
e4e574b7
AL
971 }
972}
973
c37f9fb1
AW
974/*
975 * Determine if the huge page at addr within the vma has an associated
976 * reservation. Where it does not we will need to logically increase
977 * reservation and actually increase quota before an allocation can occur.
978 * Where any new reservation would be required the reservation change is
979 * prepared, but not committed. Once the page has been quota'd allocated
980 * an instantiated the change should be committed via vma_commit_reservation.
981 * No action is required on failure.
982 */
e2f17d94 983static long vma_needs_reservation(struct hstate *h,
a5516438 984 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
985{
986 struct address_space *mapping = vma->vm_file->f_mapping;
987 struct inode *inode = mapping->host;
988
f83a275d 989 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 990 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1
AW
991 return region_chg(&inode->i_mapping->private_list,
992 idx, idx + 1);
993
84afd99b
AW
994 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
995 return 1;
c37f9fb1 996
84afd99b 997 } else {
e2f17d94 998 long err;
a5516438 999 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1000 struct resv_map *reservations = vma_resv_map(vma);
1001
1002 err = region_chg(&reservations->regions, idx, idx + 1);
1003 if (err < 0)
1004 return err;
1005 return 0;
1006 }
c37f9fb1 1007}
a5516438
AK
1008static void vma_commit_reservation(struct hstate *h,
1009 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1010{
1011 struct address_space *mapping = vma->vm_file->f_mapping;
1012 struct inode *inode = mapping->host;
1013
f83a275d 1014 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1015 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1 1016 region_add(&inode->i_mapping->private_list, idx, idx + 1);
84afd99b
AW
1017
1018 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a5516438 1019 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1020 struct resv_map *reservations = vma_resv_map(vma);
1021
1022 /* Mark this page used in the map. */
1023 region_add(&reservations->regions, idx, idx + 1);
c37f9fb1
AW
1024 }
1025}
1026
a1e78772 1027static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1028 unsigned long addr, int avoid_reserve)
1da177e4 1029{
a5516438 1030 struct hstate *h = hstate_vma(vma);
348ea204 1031 struct page *page;
a1e78772
MG
1032 struct address_space *mapping = vma->vm_file->f_mapping;
1033 struct inode *inode = mapping->host;
e2f17d94 1034 long chg;
a1e78772
MG
1035
1036 /*
1037 * Processes that did not create the mapping will have no reserves and
1038 * will not have accounted against quota. Check that the quota can be
1039 * made before satisfying the allocation
c37f9fb1
AW
1040 * MAP_NORESERVE mappings may also need pages and quota allocated
1041 * if no reserve mapping overlaps.
a1e78772 1042 */
a5516438 1043 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1
AW
1044 if (chg < 0)
1045 return ERR_PTR(chg);
1046 if (chg)
a1e78772
MG
1047 if (hugetlb_get_quota(inode->i_mapping, chg))
1048 return ERR_PTR(-ENOSPC);
1da177e4
LT
1049
1050 spin_lock(&hugetlb_lock);
a5516438 1051 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1da177e4 1052 spin_unlock(&hugetlb_lock);
b45b5bd6 1053
68842c9b 1054 if (!page) {
a5516438 1055 page = alloc_buddy_huge_page(h, vma, addr);
68842c9b 1056 if (!page) {
a1e78772 1057 hugetlb_put_quota(inode->i_mapping, chg);
4a6018f7 1058 return ERR_PTR(-VM_FAULT_SIGBUS);
68842c9b
KC
1059 }
1060 }
348ea204 1061
a1e78772
MG
1062 set_page_refcounted(page);
1063 set_page_private(page, (unsigned long) mapping);
90d8b7e6 1064
a5516438 1065 vma_commit_reservation(h, vma, addr);
c37f9fb1 1066
90d8b7e6 1067 return page;
b45b5bd6
DG
1068}
1069
91f47662 1070int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1071{
1072 struct huge_bootmem_page *m;
9b5e5d0f 1073 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
aa888a74
AK
1074
1075 while (nr_nodes) {
1076 void *addr;
1077
1078 addr = __alloc_bootmem_node_nopanic(
6ae11b27 1079 NODE_DATA(hstate_next_node_to_alloc(h,
9b5e5d0f 1080 &node_states[N_HIGH_MEMORY])),
aa888a74
AK
1081 huge_page_size(h), huge_page_size(h), 0);
1082
1083 if (addr) {
1084 /*
1085 * Use the beginning of the huge page to store the
1086 * huge_bootmem_page struct (until gather_bootmem
1087 * puts them into the mem_map).
1088 */
1089 m = addr;
91f47662 1090 goto found;
aa888a74 1091 }
aa888a74
AK
1092 nr_nodes--;
1093 }
1094 return 0;
1095
1096found:
1097 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1098 /* Put them into a private list first because mem_map is not up yet */
1099 list_add(&m->list, &huge_boot_pages);
1100 m->hstate = h;
1101 return 1;
1102}
1103
18229df5
AW
1104static void prep_compound_huge_page(struct page *page, int order)
1105{
1106 if (unlikely(order > (MAX_ORDER - 1)))
1107 prep_compound_gigantic_page(page, order);
1108 else
1109 prep_compound_page(page, order);
1110}
1111
aa888a74
AK
1112/* Put bootmem huge pages into the standard lists after mem_map is up */
1113static void __init gather_bootmem_prealloc(void)
1114{
1115 struct huge_bootmem_page *m;
1116
1117 list_for_each_entry(m, &huge_boot_pages, list) {
1118 struct page *page = virt_to_page(m);
1119 struct hstate *h = m->hstate;
1120 __ClearPageReserved(page);
1121 WARN_ON(page_count(page) != 1);
18229df5 1122 prep_compound_huge_page(page, h->order);
aa888a74
AK
1123 prep_new_huge_page(h, page, page_to_nid(page));
1124 }
1125}
1126
8faa8b07 1127static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1128{
1129 unsigned long i;
a5516438 1130
e5ff2159 1131 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1132 if (h->order >= MAX_ORDER) {
1133 if (!alloc_bootmem_huge_page(h))
1134 break;
9b5e5d0f
LS
1135 } else if (!alloc_fresh_huge_page(h,
1136 &node_states[N_HIGH_MEMORY]))
1da177e4 1137 break;
1da177e4 1138 }
8faa8b07 1139 h->max_huge_pages = i;
e5ff2159
AK
1140}
1141
1142static void __init hugetlb_init_hstates(void)
1143{
1144 struct hstate *h;
1145
1146 for_each_hstate(h) {
8faa8b07
AK
1147 /* oversize hugepages were init'ed in early boot */
1148 if (h->order < MAX_ORDER)
1149 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1150 }
1151}
1152
4abd32db
AK
1153static char * __init memfmt(char *buf, unsigned long n)
1154{
1155 if (n >= (1UL << 30))
1156 sprintf(buf, "%lu GB", n >> 30);
1157 else if (n >= (1UL << 20))
1158 sprintf(buf, "%lu MB", n >> 20);
1159 else
1160 sprintf(buf, "%lu KB", n >> 10);
1161 return buf;
1162}
1163
e5ff2159
AK
1164static void __init report_hugepages(void)
1165{
1166 struct hstate *h;
1167
1168 for_each_hstate(h) {
4abd32db
AK
1169 char buf[32];
1170 printk(KERN_INFO "HugeTLB registered %s page size, "
1171 "pre-allocated %ld pages\n",
1172 memfmt(buf, huge_page_size(h)),
1173 h->free_huge_pages);
e5ff2159
AK
1174 }
1175}
1176
1da177e4 1177#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1178static void try_to_free_low(struct hstate *h, unsigned long count,
1179 nodemask_t *nodes_allowed)
1da177e4 1180{
4415cc8d
CL
1181 int i;
1182
aa888a74
AK
1183 if (h->order >= MAX_ORDER)
1184 return;
1185
6ae11b27 1186 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1187 struct page *page, *next;
a5516438
AK
1188 struct list_head *freel = &h->hugepage_freelists[i];
1189 list_for_each_entry_safe(page, next, freel, lru) {
1190 if (count >= h->nr_huge_pages)
6b0c880d 1191 return;
1da177e4
LT
1192 if (PageHighMem(page))
1193 continue;
1194 list_del(&page->lru);
e5ff2159 1195 update_and_free_page(h, page);
a5516438
AK
1196 h->free_huge_pages--;
1197 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1198 }
1199 }
1200}
1201#else
6ae11b27
LS
1202static inline void try_to_free_low(struct hstate *h, unsigned long count,
1203 nodemask_t *nodes_allowed)
1da177e4
LT
1204{
1205}
1206#endif
1207
20a0307c
WF
1208/*
1209 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1210 * balanced by operating on them in a round-robin fashion.
1211 * Returns 1 if an adjustment was made.
1212 */
6ae11b27
LS
1213static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1214 int delta)
20a0307c 1215{
e8c5c824 1216 int start_nid, next_nid;
20a0307c
WF
1217 int ret = 0;
1218
1219 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1220
e8c5c824 1221 if (delta < 0)
6ae11b27 1222 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 1223 else
6ae11b27 1224 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
1225 next_nid = start_nid;
1226
1227 do {
1228 int nid = next_nid;
1229 if (delta < 0) {
e8c5c824
LS
1230 /*
1231 * To shrink on this node, there must be a surplus page
1232 */
9a76db09 1233 if (!h->surplus_huge_pages_node[nid]) {
6ae11b27
LS
1234 next_nid = hstate_next_node_to_alloc(h,
1235 nodes_allowed);
e8c5c824 1236 continue;
9a76db09 1237 }
e8c5c824
LS
1238 }
1239 if (delta > 0) {
e8c5c824
LS
1240 /*
1241 * Surplus cannot exceed the total number of pages
1242 */
1243 if (h->surplus_huge_pages_node[nid] >=
9a76db09 1244 h->nr_huge_pages_node[nid]) {
6ae11b27
LS
1245 next_nid = hstate_next_node_to_free(h,
1246 nodes_allowed);
e8c5c824 1247 continue;
9a76db09 1248 }
e8c5c824 1249 }
20a0307c
WF
1250
1251 h->surplus_huge_pages += delta;
1252 h->surplus_huge_pages_node[nid] += delta;
1253 ret = 1;
1254 break;
e8c5c824 1255 } while (next_nid != start_nid);
20a0307c 1256
20a0307c
WF
1257 return ret;
1258}
1259
a5516438 1260#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1261static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1262 nodemask_t *nodes_allowed)
1da177e4 1263{
7893d1d5 1264 unsigned long min_count, ret;
1da177e4 1265
aa888a74
AK
1266 if (h->order >= MAX_ORDER)
1267 return h->max_huge_pages;
1268
7893d1d5
AL
1269 /*
1270 * Increase the pool size
1271 * First take pages out of surplus state. Then make up the
1272 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1273 *
1274 * We might race with alloc_buddy_huge_page() here and be unable
1275 * to convert a surplus huge page to a normal huge page. That is
1276 * not critical, though, it just means the overall size of the
1277 * pool might be one hugepage larger than it needs to be, but
1278 * within all the constraints specified by the sysctls.
7893d1d5 1279 */
1da177e4 1280 spin_lock(&hugetlb_lock);
a5516438 1281 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1282 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1283 break;
1284 }
1285
a5516438 1286 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1287 /*
1288 * If this allocation races such that we no longer need the
1289 * page, free_huge_page will handle it by freeing the page
1290 * and reducing the surplus.
1291 */
1292 spin_unlock(&hugetlb_lock);
6ae11b27 1293 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1294 spin_lock(&hugetlb_lock);
1295 if (!ret)
1296 goto out;
1297
536240f2
MG
1298 /* Bail for signals. Probably ctrl-c from user */
1299 if (signal_pending(current))
1300 goto out;
7893d1d5 1301 }
7893d1d5
AL
1302
1303 /*
1304 * Decrease the pool size
1305 * First return free pages to the buddy allocator (being careful
1306 * to keep enough around to satisfy reservations). Then place
1307 * pages into surplus state as needed so the pool will shrink
1308 * to the desired size as pages become free.
d1c3fb1f
NA
1309 *
1310 * By placing pages into the surplus state independent of the
1311 * overcommit value, we are allowing the surplus pool size to
1312 * exceed overcommit. There are few sane options here. Since
1313 * alloc_buddy_huge_page() is checking the global counter,
1314 * though, we'll note that we're not allowed to exceed surplus
1315 * and won't grow the pool anywhere else. Not until one of the
1316 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1317 */
a5516438 1318 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1319 min_count = max(count, min_count);
6ae11b27 1320 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1321 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1322 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1323 break;
1da177e4 1324 }
a5516438 1325 while (count < persistent_huge_pages(h)) {
6ae11b27 1326 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1327 break;
1328 }
1329out:
a5516438 1330 ret = persistent_huge_pages(h);
1da177e4 1331 spin_unlock(&hugetlb_lock);
7893d1d5 1332 return ret;
1da177e4
LT
1333}
1334
a3437870
NA
1335#define HSTATE_ATTR_RO(_name) \
1336 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1337
1338#define HSTATE_ATTR(_name) \
1339 static struct kobj_attribute _name##_attr = \
1340 __ATTR(_name, 0644, _name##_show, _name##_store)
1341
1342static struct kobject *hugepages_kobj;
1343static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1344
9a305230
LS
1345static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1346
1347static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1348{
1349 int i;
9a305230 1350
a3437870 1351 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1352 if (hstate_kobjs[i] == kobj) {
1353 if (nidp)
1354 *nidp = NUMA_NO_NODE;
a3437870 1355 return &hstates[i];
9a305230
LS
1356 }
1357
1358 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1359}
1360
06808b08 1361static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1362 struct kobj_attribute *attr, char *buf)
1363{
9a305230
LS
1364 struct hstate *h;
1365 unsigned long nr_huge_pages;
1366 int nid;
1367
1368 h = kobj_to_hstate(kobj, &nid);
1369 if (nid == NUMA_NO_NODE)
1370 nr_huge_pages = h->nr_huge_pages;
1371 else
1372 nr_huge_pages = h->nr_huge_pages_node[nid];
1373
1374 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1375}
06808b08
LS
1376static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1377 struct kobject *kobj, struct kobj_attribute *attr,
1378 const char *buf, size_t len)
a3437870
NA
1379{
1380 int err;
9a305230 1381 int nid;
06808b08 1382 unsigned long count;
9a305230 1383 struct hstate *h;
bad44b5b 1384 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1385
06808b08 1386 err = strict_strtoul(buf, 10, &count);
a3437870
NA
1387 if (err)
1388 return 0;
1389
9a305230
LS
1390 h = kobj_to_hstate(kobj, &nid);
1391 if (nid == NUMA_NO_NODE) {
1392 /*
1393 * global hstate attribute
1394 */
1395 if (!(obey_mempolicy &&
1396 init_nodemask_of_mempolicy(nodes_allowed))) {
1397 NODEMASK_FREE(nodes_allowed);
1398 nodes_allowed = &node_states[N_HIGH_MEMORY];
1399 }
1400 } else if (nodes_allowed) {
1401 /*
1402 * per node hstate attribute: adjust count to global,
1403 * but restrict alloc/free to the specified node.
1404 */
1405 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1406 init_nodemask_of_node(nodes_allowed, nid);
1407 } else
1408 nodes_allowed = &node_states[N_HIGH_MEMORY];
1409
06808b08 1410 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1411
9b5e5d0f 1412 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
06808b08
LS
1413 NODEMASK_FREE(nodes_allowed);
1414
1415 return len;
1416}
1417
1418static ssize_t nr_hugepages_show(struct kobject *kobj,
1419 struct kobj_attribute *attr, char *buf)
1420{
1421 return nr_hugepages_show_common(kobj, attr, buf);
1422}
1423
1424static ssize_t nr_hugepages_store(struct kobject *kobj,
1425 struct kobj_attribute *attr, const char *buf, size_t len)
1426{
1427 return nr_hugepages_store_common(false, kobj, attr, buf, len);
a3437870
NA
1428}
1429HSTATE_ATTR(nr_hugepages);
1430
06808b08
LS
1431#ifdef CONFIG_NUMA
1432
1433/*
1434 * hstate attribute for optionally mempolicy-based constraint on persistent
1435 * huge page alloc/free.
1436 */
1437static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1438 struct kobj_attribute *attr, char *buf)
1439{
1440 return nr_hugepages_show_common(kobj, attr, buf);
1441}
1442
1443static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1444 struct kobj_attribute *attr, const char *buf, size_t len)
1445{
1446 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1447}
1448HSTATE_ATTR(nr_hugepages_mempolicy);
1449#endif
1450
1451
a3437870
NA
1452static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1453 struct kobj_attribute *attr, char *buf)
1454{
9a305230 1455 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1456 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1457}
1458static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1459 struct kobj_attribute *attr, const char *buf, size_t count)
1460{
1461 int err;
1462 unsigned long input;
9a305230 1463 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1464
1465 err = strict_strtoul(buf, 10, &input);
1466 if (err)
1467 return 0;
1468
1469 spin_lock(&hugetlb_lock);
1470 h->nr_overcommit_huge_pages = input;
1471 spin_unlock(&hugetlb_lock);
1472
1473 return count;
1474}
1475HSTATE_ATTR(nr_overcommit_hugepages);
1476
1477static ssize_t free_hugepages_show(struct kobject *kobj,
1478 struct kobj_attribute *attr, char *buf)
1479{
9a305230
LS
1480 struct hstate *h;
1481 unsigned long free_huge_pages;
1482 int nid;
1483
1484 h = kobj_to_hstate(kobj, &nid);
1485 if (nid == NUMA_NO_NODE)
1486 free_huge_pages = h->free_huge_pages;
1487 else
1488 free_huge_pages = h->free_huge_pages_node[nid];
1489
1490 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1491}
1492HSTATE_ATTR_RO(free_hugepages);
1493
1494static ssize_t resv_hugepages_show(struct kobject *kobj,
1495 struct kobj_attribute *attr, char *buf)
1496{
9a305230 1497 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1498 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1499}
1500HSTATE_ATTR_RO(resv_hugepages);
1501
1502static ssize_t surplus_hugepages_show(struct kobject *kobj,
1503 struct kobj_attribute *attr, char *buf)
1504{
9a305230
LS
1505 struct hstate *h;
1506 unsigned long surplus_huge_pages;
1507 int nid;
1508
1509 h = kobj_to_hstate(kobj, &nid);
1510 if (nid == NUMA_NO_NODE)
1511 surplus_huge_pages = h->surplus_huge_pages;
1512 else
1513 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1514
1515 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1516}
1517HSTATE_ATTR_RO(surplus_hugepages);
1518
1519static struct attribute *hstate_attrs[] = {
1520 &nr_hugepages_attr.attr,
1521 &nr_overcommit_hugepages_attr.attr,
1522 &free_hugepages_attr.attr,
1523 &resv_hugepages_attr.attr,
1524 &surplus_hugepages_attr.attr,
06808b08
LS
1525#ifdef CONFIG_NUMA
1526 &nr_hugepages_mempolicy_attr.attr,
1527#endif
a3437870
NA
1528 NULL,
1529};
1530
1531static struct attribute_group hstate_attr_group = {
1532 .attrs = hstate_attrs,
1533};
1534
094e9539
JM
1535static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1536 struct kobject **hstate_kobjs,
1537 struct attribute_group *hstate_attr_group)
a3437870
NA
1538{
1539 int retval;
9a305230 1540 int hi = h - hstates;
a3437870 1541
9a305230
LS
1542 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1543 if (!hstate_kobjs[hi])
a3437870
NA
1544 return -ENOMEM;
1545
9a305230 1546 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1547 if (retval)
9a305230 1548 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1549
1550 return retval;
1551}
1552
1553static void __init hugetlb_sysfs_init(void)
1554{
1555 struct hstate *h;
1556 int err;
1557
1558 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1559 if (!hugepages_kobj)
1560 return;
1561
1562 for_each_hstate(h) {
9a305230
LS
1563 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1564 hstate_kobjs, &hstate_attr_group);
a3437870
NA
1565 if (err)
1566 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1567 h->name);
1568 }
1569}
1570
9a305230
LS
1571#ifdef CONFIG_NUMA
1572
1573/*
1574 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1575 * with node sysdevs in node_devices[] using a parallel array. The array
1576 * index of a node sysdev or _hstate == node id.
1577 * This is here to avoid any static dependency of the node sysdev driver, in
1578 * the base kernel, on the hugetlb module.
1579 */
1580struct node_hstate {
1581 struct kobject *hugepages_kobj;
1582 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1583};
1584struct node_hstate node_hstates[MAX_NUMNODES];
1585
1586/*
1587 * A subset of global hstate attributes for node sysdevs
1588 */
1589static struct attribute *per_node_hstate_attrs[] = {
1590 &nr_hugepages_attr.attr,
1591 &free_hugepages_attr.attr,
1592 &surplus_hugepages_attr.attr,
1593 NULL,
1594};
1595
1596static struct attribute_group per_node_hstate_attr_group = {
1597 .attrs = per_node_hstate_attrs,
1598};
1599
1600/*
1601 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1602 * Returns node id via non-NULL nidp.
1603 */
1604static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1605{
1606 int nid;
1607
1608 for (nid = 0; nid < nr_node_ids; nid++) {
1609 struct node_hstate *nhs = &node_hstates[nid];
1610 int i;
1611 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1612 if (nhs->hstate_kobjs[i] == kobj) {
1613 if (nidp)
1614 *nidp = nid;
1615 return &hstates[i];
1616 }
1617 }
1618
1619 BUG();
1620 return NULL;
1621}
1622
1623/*
1624 * Unregister hstate attributes from a single node sysdev.
1625 * No-op if no hstate attributes attached.
1626 */
1627void hugetlb_unregister_node(struct node *node)
1628{
1629 struct hstate *h;
1630 struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1631
1632 if (!nhs->hugepages_kobj)
9b5e5d0f 1633 return; /* no hstate attributes */
9a305230
LS
1634
1635 for_each_hstate(h)
1636 if (nhs->hstate_kobjs[h - hstates]) {
1637 kobject_put(nhs->hstate_kobjs[h - hstates]);
1638 nhs->hstate_kobjs[h - hstates] = NULL;
1639 }
1640
1641 kobject_put(nhs->hugepages_kobj);
1642 nhs->hugepages_kobj = NULL;
1643}
1644
1645/*
1646 * hugetlb module exit: unregister hstate attributes from node sysdevs
1647 * that have them.
1648 */
1649static void hugetlb_unregister_all_nodes(void)
1650{
1651 int nid;
1652
1653 /*
1654 * disable node sysdev registrations.
1655 */
1656 register_hugetlbfs_with_node(NULL, NULL);
1657
1658 /*
1659 * remove hstate attributes from any nodes that have them.
1660 */
1661 for (nid = 0; nid < nr_node_ids; nid++)
1662 hugetlb_unregister_node(&node_devices[nid]);
1663}
1664
1665/*
1666 * Register hstate attributes for a single node sysdev.
1667 * No-op if attributes already registered.
1668 */
1669void hugetlb_register_node(struct node *node)
1670{
1671 struct hstate *h;
1672 struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1673 int err;
1674
1675 if (nhs->hugepages_kobj)
1676 return; /* already allocated */
1677
1678 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1679 &node->sysdev.kobj);
1680 if (!nhs->hugepages_kobj)
1681 return;
1682
1683 for_each_hstate(h) {
1684 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1685 nhs->hstate_kobjs,
1686 &per_node_hstate_attr_group);
1687 if (err) {
1688 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1689 " for node %d\n",
1690 h->name, node->sysdev.id);
1691 hugetlb_unregister_node(node);
1692 break;
1693 }
1694 }
1695}
1696
1697/*
9b5e5d0f
LS
1698 * hugetlb init time: register hstate attributes for all registered node
1699 * sysdevs of nodes that have memory. All on-line nodes should have
1700 * registered their associated sysdev by this time.
9a305230
LS
1701 */
1702static void hugetlb_register_all_nodes(void)
1703{
1704 int nid;
1705
9b5e5d0f 1706 for_each_node_state(nid, N_HIGH_MEMORY) {
9a305230
LS
1707 struct node *node = &node_devices[nid];
1708 if (node->sysdev.id == nid)
1709 hugetlb_register_node(node);
1710 }
1711
1712 /*
1713 * Let the node sysdev driver know we're here so it can
1714 * [un]register hstate attributes on node hotplug.
1715 */
1716 register_hugetlbfs_with_node(hugetlb_register_node,
1717 hugetlb_unregister_node);
1718}
1719#else /* !CONFIG_NUMA */
1720
1721static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1722{
1723 BUG();
1724 if (nidp)
1725 *nidp = -1;
1726 return NULL;
1727}
1728
1729static void hugetlb_unregister_all_nodes(void) { }
1730
1731static void hugetlb_register_all_nodes(void) { }
1732
1733#endif
1734
a3437870
NA
1735static void __exit hugetlb_exit(void)
1736{
1737 struct hstate *h;
1738
9a305230
LS
1739 hugetlb_unregister_all_nodes();
1740
a3437870
NA
1741 for_each_hstate(h) {
1742 kobject_put(hstate_kobjs[h - hstates]);
1743 }
1744
1745 kobject_put(hugepages_kobj);
1746}
1747module_exit(hugetlb_exit);
1748
1749static int __init hugetlb_init(void)
1750{
0ef89d25
BH
1751 /* Some platform decide whether they support huge pages at boot
1752 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1753 * there is no such support
1754 */
1755 if (HPAGE_SHIFT == 0)
1756 return 0;
a3437870 1757
e11bfbfc
NP
1758 if (!size_to_hstate(default_hstate_size)) {
1759 default_hstate_size = HPAGE_SIZE;
1760 if (!size_to_hstate(default_hstate_size))
1761 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1762 }
e11bfbfc
NP
1763 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1764 if (default_hstate_max_huge_pages)
1765 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1766
1767 hugetlb_init_hstates();
1768
aa888a74
AK
1769 gather_bootmem_prealloc();
1770
a3437870
NA
1771 report_hugepages();
1772
1773 hugetlb_sysfs_init();
1774
9a305230
LS
1775 hugetlb_register_all_nodes();
1776
a3437870
NA
1777 return 0;
1778}
1779module_init(hugetlb_init);
1780
1781/* Should be called on processing a hugepagesz=... option */
1782void __init hugetlb_add_hstate(unsigned order)
1783{
1784 struct hstate *h;
8faa8b07
AK
1785 unsigned long i;
1786
a3437870
NA
1787 if (size_to_hstate(PAGE_SIZE << order)) {
1788 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1789 return;
1790 }
1791 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1792 BUG_ON(order == 0);
1793 h = &hstates[max_hstate++];
1794 h->order = order;
1795 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
1796 h->nr_huge_pages = 0;
1797 h->free_huge_pages = 0;
1798 for (i = 0; i < MAX_NUMNODES; ++i)
1799 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
9b5e5d0f
LS
1800 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1801 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
a3437870
NA
1802 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1803 huge_page_size(h)/1024);
8faa8b07 1804
a3437870
NA
1805 parsed_hstate = h;
1806}
1807
e11bfbfc 1808static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
1809{
1810 unsigned long *mhp;
8faa8b07 1811 static unsigned long *last_mhp;
a3437870
NA
1812
1813 /*
1814 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1815 * so this hugepages= parameter goes to the "default hstate".
1816 */
1817 if (!max_hstate)
1818 mhp = &default_hstate_max_huge_pages;
1819 else
1820 mhp = &parsed_hstate->max_huge_pages;
1821
8faa8b07
AK
1822 if (mhp == last_mhp) {
1823 printk(KERN_WARNING "hugepages= specified twice without "
1824 "interleaving hugepagesz=, ignoring\n");
1825 return 1;
1826 }
1827
a3437870
NA
1828 if (sscanf(s, "%lu", mhp) <= 0)
1829 *mhp = 0;
1830
8faa8b07
AK
1831 /*
1832 * Global state is always initialized later in hugetlb_init.
1833 * But we need to allocate >= MAX_ORDER hstates here early to still
1834 * use the bootmem allocator.
1835 */
1836 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1837 hugetlb_hstate_alloc_pages(parsed_hstate);
1838
1839 last_mhp = mhp;
1840
a3437870
NA
1841 return 1;
1842}
e11bfbfc
NP
1843__setup("hugepages=", hugetlb_nrpages_setup);
1844
1845static int __init hugetlb_default_setup(char *s)
1846{
1847 default_hstate_size = memparse(s, &s);
1848 return 1;
1849}
1850__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 1851
8a213460
NA
1852static unsigned int cpuset_mems_nr(unsigned int *array)
1853{
1854 int node;
1855 unsigned int nr = 0;
1856
1857 for_each_node_mask(node, cpuset_current_mems_allowed)
1858 nr += array[node];
1859
1860 return nr;
1861}
1862
1863#ifdef CONFIG_SYSCTL
06808b08
LS
1864static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1865 struct ctl_table *table, int write,
1866 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1867{
e5ff2159
AK
1868 struct hstate *h = &default_hstate;
1869 unsigned long tmp;
1870
1871 if (!write)
1872 tmp = h->max_huge_pages;
1873
1874 table->data = &tmp;
1875 table->maxlen = sizeof(unsigned long);
8d65af78 1876 proc_doulongvec_minmax(table, write, buffer, length, ppos);
e5ff2159 1877
06808b08 1878 if (write) {
bad44b5b
DR
1879 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1880 GFP_KERNEL | __GFP_NORETRY);
06808b08
LS
1881 if (!(obey_mempolicy &&
1882 init_nodemask_of_mempolicy(nodes_allowed))) {
1883 NODEMASK_FREE(nodes_allowed);
1884 nodes_allowed = &node_states[N_HIGH_MEMORY];
1885 }
1886 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1887
1888 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1889 NODEMASK_FREE(nodes_allowed);
1890 }
e5ff2159 1891
1da177e4
LT
1892 return 0;
1893}
396faf03 1894
06808b08
LS
1895int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1896 void __user *buffer, size_t *length, loff_t *ppos)
1897{
1898
1899 return hugetlb_sysctl_handler_common(false, table, write,
1900 buffer, length, ppos);
1901}
1902
1903#ifdef CONFIG_NUMA
1904int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1905 void __user *buffer, size_t *length, loff_t *ppos)
1906{
1907 return hugetlb_sysctl_handler_common(true, table, write,
1908 buffer, length, ppos);
1909}
1910#endif /* CONFIG_NUMA */
1911
396faf03 1912int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
8d65af78 1913 void __user *buffer,
396faf03
MG
1914 size_t *length, loff_t *ppos)
1915{
8d65af78 1916 proc_dointvec(table, write, buffer, length, ppos);
396faf03
MG
1917 if (hugepages_treat_as_movable)
1918 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1919 else
1920 htlb_alloc_mask = GFP_HIGHUSER;
1921 return 0;
1922}
1923
a3d0c6aa 1924int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 1925 void __user *buffer,
a3d0c6aa
NA
1926 size_t *length, loff_t *ppos)
1927{
a5516438 1928 struct hstate *h = &default_hstate;
e5ff2159
AK
1929 unsigned long tmp;
1930
1931 if (!write)
1932 tmp = h->nr_overcommit_huge_pages;
1933
1934 table->data = &tmp;
1935 table->maxlen = sizeof(unsigned long);
8d65af78 1936 proc_doulongvec_minmax(table, write, buffer, length, ppos);
e5ff2159
AK
1937
1938 if (write) {
1939 spin_lock(&hugetlb_lock);
1940 h->nr_overcommit_huge_pages = tmp;
1941 spin_unlock(&hugetlb_lock);
1942 }
1943
a3d0c6aa
NA
1944 return 0;
1945}
1946
1da177e4
LT
1947#endif /* CONFIG_SYSCTL */
1948
e1759c21 1949void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 1950{
a5516438 1951 struct hstate *h = &default_hstate;
e1759c21 1952 seq_printf(m,
4f98a2fe
RR
1953 "HugePages_Total: %5lu\n"
1954 "HugePages_Free: %5lu\n"
1955 "HugePages_Rsvd: %5lu\n"
1956 "HugePages_Surp: %5lu\n"
1957 "Hugepagesize: %8lu kB\n",
a5516438
AK
1958 h->nr_huge_pages,
1959 h->free_huge_pages,
1960 h->resv_huge_pages,
1961 h->surplus_huge_pages,
1962 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
1963}
1964
1965int hugetlb_report_node_meminfo(int nid, char *buf)
1966{
a5516438 1967 struct hstate *h = &default_hstate;
1da177e4
LT
1968 return sprintf(buf,
1969 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
1970 "Node %d HugePages_Free: %5u\n"
1971 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
1972 nid, h->nr_huge_pages_node[nid],
1973 nid, h->free_huge_pages_node[nid],
1974 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
1975}
1976
1da177e4
LT
1977/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1978unsigned long hugetlb_total_pages(void)
1979{
a5516438
AK
1980 struct hstate *h = &default_hstate;
1981 return h->nr_huge_pages * pages_per_huge_page(h);
1da177e4 1982}
1da177e4 1983
a5516438 1984static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
1985{
1986 int ret = -ENOMEM;
1987
1988 spin_lock(&hugetlb_lock);
1989 /*
1990 * When cpuset is configured, it breaks the strict hugetlb page
1991 * reservation as the accounting is done on a global variable. Such
1992 * reservation is completely rubbish in the presence of cpuset because
1993 * the reservation is not checked against page availability for the
1994 * current cpuset. Application can still potentially OOM'ed by kernel
1995 * with lack of free htlb page in cpuset that the task is in.
1996 * Attempt to enforce strict accounting with cpuset is almost
1997 * impossible (or too ugly) because cpuset is too fluid that
1998 * task or memory node can be dynamically moved between cpusets.
1999 *
2000 * The change of semantics for shared hugetlb mapping with cpuset is
2001 * undesirable. However, in order to preserve some of the semantics,
2002 * we fall back to check against current free page availability as
2003 * a best attempt and hopefully to minimize the impact of changing
2004 * semantics that cpuset has.
2005 */
2006 if (delta > 0) {
a5516438 2007 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2008 goto out;
2009
a5516438
AK
2010 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2011 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2012 goto out;
2013 }
2014 }
2015
2016 ret = 0;
2017 if (delta < 0)
a5516438 2018 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2019
2020out:
2021 spin_unlock(&hugetlb_lock);
2022 return ret;
2023}
2024
84afd99b
AW
2025static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2026{
2027 struct resv_map *reservations = vma_resv_map(vma);
2028
2029 /*
2030 * This new VMA should share its siblings reservation map if present.
2031 * The VMA will only ever have a valid reservation map pointer where
2032 * it is being copied for another still existing VMA. As that VMA
2033 * has a reference to the reservation map it cannot dissappear until
2034 * after this open call completes. It is therefore safe to take a
2035 * new reference here without additional locking.
2036 */
2037 if (reservations)
2038 kref_get(&reservations->refs);
2039}
2040
a1e78772
MG
2041static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2042{
a5516438 2043 struct hstate *h = hstate_vma(vma);
84afd99b
AW
2044 struct resv_map *reservations = vma_resv_map(vma);
2045 unsigned long reserve;
2046 unsigned long start;
2047 unsigned long end;
2048
2049 if (reservations) {
a5516438
AK
2050 start = vma_hugecache_offset(h, vma, vma->vm_start);
2051 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b
AW
2052
2053 reserve = (end - start) -
2054 region_count(&reservations->regions, start, end);
2055
2056 kref_put(&reservations->refs, resv_map_release);
2057
7251ff78 2058 if (reserve) {
a5516438 2059 hugetlb_acct_memory(h, -reserve);
7251ff78
AL
2060 hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2061 }
84afd99b 2062 }
a1e78772
MG
2063}
2064
1da177e4
LT
2065/*
2066 * We cannot handle pagefaults against hugetlb pages at all. They cause
2067 * handle_mm_fault() to try to instantiate regular-sized pages in the
2068 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2069 * this far.
2070 */
d0217ac0 2071static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2072{
2073 BUG();
d0217ac0 2074 return 0;
1da177e4
LT
2075}
2076
f0f37e2f 2077const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2078 .fault = hugetlb_vm_op_fault,
84afd99b 2079 .open = hugetlb_vm_op_open,
a1e78772 2080 .close = hugetlb_vm_op_close,
1da177e4
LT
2081};
2082
1e8f889b
DG
2083static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2084 int writable)
63551ae0
DG
2085{
2086 pte_t entry;
2087
1e8f889b 2088 if (writable) {
63551ae0
DG
2089 entry =
2090 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2091 } else {
7f2e9525 2092 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
63551ae0
DG
2093 }
2094 entry = pte_mkyoung(entry);
2095 entry = pte_mkhuge(entry);
2096
2097 return entry;
2098}
2099
1e8f889b
DG
2100static void set_huge_ptep_writable(struct vm_area_struct *vma,
2101 unsigned long address, pte_t *ptep)
2102{
2103 pte_t entry;
2104
7f2e9525
GS
2105 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2106 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
4b3073e1 2107 update_mmu_cache(vma, address, ptep);
8dab5241 2108 }
1e8f889b
DG
2109}
2110
2111
63551ae0
DG
2112int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2113 struct vm_area_struct *vma)
2114{
2115 pte_t *src_pte, *dst_pte, entry;
2116 struct page *ptepage;
1c59827d 2117 unsigned long addr;
1e8f889b 2118 int cow;
a5516438
AK
2119 struct hstate *h = hstate_vma(vma);
2120 unsigned long sz = huge_page_size(h);
1e8f889b
DG
2121
2122 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2123
a5516438 2124 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
c74df32c
HD
2125 src_pte = huge_pte_offset(src, addr);
2126 if (!src_pte)
2127 continue;
a5516438 2128 dst_pte = huge_pte_alloc(dst, addr, sz);
63551ae0
DG
2129 if (!dst_pte)
2130 goto nomem;
c5c99429
LW
2131
2132 /* If the pagetables are shared don't copy or take references */
2133 if (dst_pte == src_pte)
2134 continue;
2135
c74df32c 2136 spin_lock(&dst->page_table_lock);
46478758 2137 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
7f2e9525 2138 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 2139 if (cow)
7f2e9525
GS
2140 huge_ptep_set_wrprotect(src, addr, src_pte);
2141 entry = huge_ptep_get(src_pte);
1c59827d
HD
2142 ptepage = pte_page(entry);
2143 get_page(ptepage);
0fe6e20b 2144 page_dup_rmap(ptepage);
1c59827d
HD
2145 set_huge_pte_at(dst, addr, dst_pte, entry);
2146 }
2147 spin_unlock(&src->page_table_lock);
c74df32c 2148 spin_unlock(&dst->page_table_lock);
63551ae0
DG
2149 }
2150 return 0;
2151
2152nomem:
2153 return -ENOMEM;
2154}
2155
fd6a03ed
NH
2156static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2157{
2158 swp_entry_t swp;
2159
2160 if (huge_pte_none(pte) || pte_present(pte))
2161 return 0;
2162 swp = pte_to_swp_entry(pte);
2163 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) {
2164 return 1;
2165 } else
2166 return 0;
2167}
2168
502717f4 2169void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2170 unsigned long end, struct page *ref_page)
63551ae0
DG
2171{
2172 struct mm_struct *mm = vma->vm_mm;
2173 unsigned long address;
c7546f8f 2174 pte_t *ptep;
63551ae0
DG
2175 pte_t pte;
2176 struct page *page;
fe1668ae 2177 struct page *tmp;
a5516438
AK
2178 struct hstate *h = hstate_vma(vma);
2179 unsigned long sz = huge_page_size(h);
2180
c0a499c2
KC
2181 /*
2182 * A page gathering list, protected by per file i_mmap_lock. The
2183 * lock is used to avoid list corruption from multiple unmapping
2184 * of the same page since we are using page->lru.
2185 */
fe1668ae 2186 LIST_HEAD(page_list);
63551ae0
DG
2187
2188 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2189 BUG_ON(start & ~huge_page_mask(h));
2190 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2191
cddb8a5c 2192 mmu_notifier_invalidate_range_start(mm, start, end);
508034a3 2193 spin_lock(&mm->page_table_lock);
a5516438 2194 for (address = start; address < end; address += sz) {
c7546f8f 2195 ptep = huge_pte_offset(mm, address);
4c887265 2196 if (!ptep)
c7546f8f
DG
2197 continue;
2198
39dde65c
KC
2199 if (huge_pmd_unshare(mm, &address, ptep))
2200 continue;
2201
04f2cbe3
MG
2202 /*
2203 * If a reference page is supplied, it is because a specific
2204 * page is being unmapped, not a range. Ensure the page we
2205 * are about to unmap is the actual page of interest.
2206 */
2207 if (ref_page) {
2208 pte = huge_ptep_get(ptep);
2209 if (huge_pte_none(pte))
2210 continue;
2211 page = pte_page(pte);
2212 if (page != ref_page)
2213 continue;
2214
2215 /*
2216 * Mark the VMA as having unmapped its page so that
2217 * future faults in this VMA will fail rather than
2218 * looking like data was lost
2219 */
2220 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2221 }
2222
c7546f8f 2223 pte = huge_ptep_get_and_clear(mm, address, ptep);
7f2e9525 2224 if (huge_pte_none(pte))
63551ae0 2225 continue;
c7546f8f 2226
fd6a03ed
NH
2227 /*
2228 * HWPoisoned hugepage is already unmapped and dropped reference
2229 */
2230 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2231 continue;
2232
63551ae0 2233 page = pte_page(pte);
6649a386
KC
2234 if (pte_dirty(pte))
2235 set_page_dirty(page);
fe1668ae 2236 list_add(&page->lru, &page_list);
63551ae0 2237 }
1da177e4 2238 spin_unlock(&mm->page_table_lock);
508034a3 2239 flush_tlb_range(vma, start, end);
cddb8a5c 2240 mmu_notifier_invalidate_range_end(mm, start, end);
fe1668ae 2241 list_for_each_entry_safe(page, tmp, &page_list, lru) {
0fe6e20b 2242 page_remove_rmap(page);
fe1668ae
KC
2243 list_del(&page->lru);
2244 put_page(page);
2245 }
1da177e4 2246}
63551ae0 2247
502717f4 2248void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2249 unsigned long end, struct page *ref_page)
502717f4 2250{
a137e1cc
AK
2251 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2252 __unmap_hugepage_range(vma, start, end, ref_page);
2253 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
502717f4
KC
2254}
2255
04f2cbe3
MG
2256/*
2257 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2258 * mappping it owns the reserve page for. The intention is to unmap the page
2259 * from other VMAs and let the children be SIGKILLed if they are faulting the
2260 * same region.
2261 */
2a4b3ded
HH
2262static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2263 struct page *page, unsigned long address)
04f2cbe3 2264{
7526674d 2265 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2266 struct vm_area_struct *iter_vma;
2267 struct address_space *mapping;
2268 struct prio_tree_iter iter;
2269 pgoff_t pgoff;
2270
2271 /*
2272 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2273 * from page cache lookup which is in HPAGE_SIZE units.
2274 */
7526674d 2275 address = address & huge_page_mask(h);
04f2cbe3
MG
2276 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
2277 + (vma->vm_pgoff >> PAGE_SHIFT);
2278 mapping = (struct address_space *)page_private(page);
2279
4eb2b1dc
MG
2280 /*
2281 * Take the mapping lock for the duration of the table walk. As
2282 * this mapping should be shared between all the VMAs,
2283 * __unmap_hugepage_range() is called as the lock is already held
2284 */
2285 spin_lock(&mapping->i_mmap_lock);
04f2cbe3
MG
2286 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2287 /* Do not unmap the current VMA */
2288 if (iter_vma == vma)
2289 continue;
2290
2291 /*
2292 * Unmap the page from other VMAs without their own reserves.
2293 * They get marked to be SIGKILLed if they fault in these
2294 * areas. This is because a future no-page fault on this VMA
2295 * could insert a zeroed page instead of the data existing
2296 * from the time of fork. This would look like data corruption
2297 */
2298 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4eb2b1dc 2299 __unmap_hugepage_range(iter_vma,
7526674d 2300 address, address + huge_page_size(h),
04f2cbe3
MG
2301 page);
2302 }
4eb2b1dc 2303 spin_unlock(&mapping->i_mmap_lock);
04f2cbe3
MG
2304
2305 return 1;
2306}
2307
0fe6e20b
NH
2308/*
2309 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2310 */
1e8f889b 2311static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3
MG
2312 unsigned long address, pte_t *ptep, pte_t pte,
2313 struct page *pagecache_page)
1e8f889b 2314{
a5516438 2315 struct hstate *h = hstate_vma(vma);
1e8f889b 2316 struct page *old_page, *new_page;
79ac6ba4 2317 int avoidcopy;
04f2cbe3 2318 int outside_reserve = 0;
1e8f889b
DG
2319
2320 old_page = pte_page(pte);
2321
04f2cbe3 2322retry_avoidcopy:
1e8f889b
DG
2323 /* If no-one else is actually using this page, avoid the copy
2324 * and just make the page writable */
0fe6e20b 2325 avoidcopy = (page_mapcount(old_page) == 1);
1e8f889b 2326 if (avoidcopy) {
56c9cfb1
NH
2327 if (PageAnon(old_page))
2328 page_move_anon_rmap(old_page, vma, address);
1e8f889b 2329 set_huge_ptep_writable(vma, address, ptep);
83c54070 2330 return 0;
1e8f889b
DG
2331 }
2332
04f2cbe3
MG
2333 /*
2334 * If the process that created a MAP_PRIVATE mapping is about to
2335 * perform a COW due to a shared page count, attempt to satisfy
2336 * the allocation without using the existing reserves. The pagecache
2337 * page is used to determine if the reserve at this address was
2338 * consumed or not. If reserves were used, a partial faulted mapping
2339 * at the time of fork() could consume its reserves on COW instead
2340 * of the full address range.
2341 */
f83a275d 2342 if (!(vma->vm_flags & VM_MAYSHARE) &&
04f2cbe3
MG
2343 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2344 old_page != pagecache_page)
2345 outside_reserve = 1;
2346
1e8f889b 2347 page_cache_get(old_page);
b76c8cfb
LW
2348
2349 /* Drop page_table_lock as buddy allocator may be called */
2350 spin_unlock(&mm->page_table_lock);
04f2cbe3 2351 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2352
2fc39cec 2353 if (IS_ERR(new_page)) {
1e8f889b 2354 page_cache_release(old_page);
04f2cbe3
MG
2355
2356 /*
2357 * If a process owning a MAP_PRIVATE mapping fails to COW,
2358 * it is due to references held by a child and an insufficient
2359 * huge page pool. To guarantee the original mappers
2360 * reliability, unmap the page from child processes. The child
2361 * may get SIGKILLed if it later faults.
2362 */
2363 if (outside_reserve) {
2364 BUG_ON(huge_pte_none(pte));
2365 if (unmap_ref_private(mm, vma, old_page, address)) {
2366 BUG_ON(page_count(old_page) != 1);
2367 BUG_ON(huge_pte_none(pte));
b76c8cfb 2368 spin_lock(&mm->page_table_lock);
04f2cbe3
MG
2369 goto retry_avoidcopy;
2370 }
2371 WARN_ON_ONCE(1);
2372 }
2373
b76c8cfb
LW
2374 /* Caller expects lock to be held */
2375 spin_lock(&mm->page_table_lock);
2fc39cec 2376 return -PTR_ERR(new_page);
1e8f889b
DG
2377 }
2378
0fe6e20b
NH
2379 /*
2380 * When the original hugepage is shared one, it does not have
2381 * anon_vma prepared.
2382 */
2383 if (unlikely(anon_vma_prepare(vma)))
2384 return VM_FAULT_OOM;
2385
9de455b2 2386 copy_huge_page(new_page, old_page, address, vma);
0ed361de 2387 __SetPageUptodate(new_page);
1e8f889b 2388
b76c8cfb
LW
2389 /*
2390 * Retake the page_table_lock to check for racing updates
2391 * before the page tables are altered
2392 */
2393 spin_lock(&mm->page_table_lock);
a5516438 2394 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 2395 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1e8f889b 2396 /* Break COW */
3edd4fc9
DD
2397 mmu_notifier_invalidate_range_start(mm,
2398 address & huge_page_mask(h),
2399 (address & huge_page_mask(h)) + huge_page_size(h));
8fe627ec 2400 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2401 set_huge_pte_at(mm, address, ptep,
2402 make_huge_pte(vma, new_page, 1));
0fe6e20b 2403 page_remove_rmap(old_page);
cd67f0d2 2404 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
2405 /* Make the old page be freed below */
2406 new_page = old_page;
3edd4fc9
DD
2407 mmu_notifier_invalidate_range_end(mm,
2408 address & huge_page_mask(h),
2409 (address & huge_page_mask(h)) + huge_page_size(h));
1e8f889b
DG
2410 }
2411 page_cache_release(new_page);
2412 page_cache_release(old_page);
83c54070 2413 return 0;
1e8f889b
DG
2414}
2415
04f2cbe3 2416/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2417static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2418 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2419{
2420 struct address_space *mapping;
e7c4b0bf 2421 pgoff_t idx;
04f2cbe3
MG
2422
2423 mapping = vma->vm_file->f_mapping;
a5516438 2424 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2425
2426 return find_lock_page(mapping, idx);
2427}
2428
3ae77f43
HD
2429/*
2430 * Return whether there is a pagecache page to back given address within VMA.
2431 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2432 */
2433static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2434 struct vm_area_struct *vma, unsigned long address)
2435{
2436 struct address_space *mapping;
2437 pgoff_t idx;
2438 struct page *page;
2439
2440 mapping = vma->vm_file->f_mapping;
2441 idx = vma_hugecache_offset(h, vma, address);
2442
2443 page = find_get_page(mapping, idx);
2444 if (page)
2445 put_page(page);
2446 return page != NULL;
2447}
2448
a1ed3dda 2449static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2450 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2451{
a5516438 2452 struct hstate *h = hstate_vma(vma);
ac9b9c66 2453 int ret = VM_FAULT_SIGBUS;
e7c4b0bf 2454 pgoff_t idx;
4c887265 2455 unsigned long size;
4c887265
AL
2456 struct page *page;
2457 struct address_space *mapping;
1e8f889b 2458 pte_t new_pte;
4c887265 2459
04f2cbe3
MG
2460 /*
2461 * Currently, we are forced to kill the process in the event the
2462 * original mapper has unmapped pages from the child due to a failed
2463 * COW. Warn that such a situation has occured as it may not be obvious
2464 */
2465 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2466 printk(KERN_WARNING
2467 "PID %d killed due to inadequate hugepage pool\n",
2468 current->pid);
2469 return ret;
2470 }
2471
4c887265 2472 mapping = vma->vm_file->f_mapping;
a5516438 2473 idx = vma_hugecache_offset(h, vma, address);
4c887265
AL
2474
2475 /*
2476 * Use page lock to guard against racing truncation
2477 * before we get page_table_lock.
2478 */
6bda666a
CL
2479retry:
2480 page = find_lock_page(mapping, idx);
2481 if (!page) {
a5516438 2482 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2483 if (idx >= size)
2484 goto out;
04f2cbe3 2485 page = alloc_huge_page(vma, address, 0);
2fc39cec
AL
2486 if (IS_ERR(page)) {
2487 ret = -PTR_ERR(page);
6bda666a
CL
2488 goto out;
2489 }
a5516438 2490 clear_huge_page(page, address, huge_page_size(h));
0ed361de 2491 __SetPageUptodate(page);
ac9b9c66 2492
f83a275d 2493 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2494 int err;
45c682a6 2495 struct inode *inode = mapping->host;
6bda666a
CL
2496
2497 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2498 if (err) {
2499 put_page(page);
6bda666a
CL
2500 if (err == -EEXIST)
2501 goto retry;
2502 goto out;
2503 }
45c682a6
KC
2504
2505 spin_lock(&inode->i_lock);
a5516438 2506 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2507 spin_unlock(&inode->i_lock);
0fe6e20b 2508 page_dup_rmap(page);
23be7468 2509 } else {
6bda666a 2510 lock_page(page);
0fe6e20b
NH
2511 if (unlikely(anon_vma_prepare(vma))) {
2512 ret = VM_FAULT_OOM;
2513 goto backout_unlocked;
2514 }
2515 hugepage_add_new_anon_rmap(page, vma, address);
23be7468 2516 }
0fe6e20b
NH
2517 } else {
2518 page_dup_rmap(page);
6bda666a 2519 }
1e8f889b 2520
fd6a03ed
NH
2521 /*
2522 * Since memory error handler replaces pte into hwpoison swap entry
2523 * at the time of error handling, a process which reserved but not have
2524 * the mapping to the error hugepage does not have hwpoison swap entry.
2525 * So we need to block accesses from such a process by checking
2526 * PG_hwpoison bit here.
2527 */
2528 if (unlikely(PageHWPoison(page))) {
2529 ret = VM_FAULT_HWPOISON;
2530 goto backout_unlocked;
6bda666a 2531 }
1e8f889b 2532
57303d80
AW
2533 /*
2534 * If we are going to COW a private mapping later, we examine the
2535 * pending reservations for this page now. This will ensure that
2536 * any allocations necessary to record that reservation occur outside
2537 * the spinlock.
2538 */
788c7df4 2539 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2540 if (vma_needs_reservation(h, vma, address) < 0) {
2541 ret = VM_FAULT_OOM;
2542 goto backout_unlocked;
2543 }
57303d80 2544
ac9b9c66 2545 spin_lock(&mm->page_table_lock);
a5516438 2546 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2547 if (idx >= size)
2548 goto backout;
2549
83c54070 2550 ret = 0;
7f2e9525 2551 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2552 goto backout;
2553
1e8f889b
DG
2554 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2555 && (vma->vm_flags & VM_SHARED)));
2556 set_huge_pte_at(mm, address, ptep, new_pte);
2557
788c7df4 2558 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 2559 /* Optimization, do the COW without a second fault */
04f2cbe3 2560 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1e8f889b
DG
2561 }
2562
ac9b9c66 2563 spin_unlock(&mm->page_table_lock);
4c887265
AL
2564 unlock_page(page);
2565out:
ac9b9c66 2566 return ret;
4c887265
AL
2567
2568backout:
2569 spin_unlock(&mm->page_table_lock);
2b26736c 2570backout_unlocked:
4c887265
AL
2571 unlock_page(page);
2572 put_page(page);
2573 goto out;
ac9b9c66
HD
2574}
2575
86e5216f 2576int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2577 unsigned long address, unsigned int flags)
86e5216f
AL
2578{
2579 pte_t *ptep;
2580 pte_t entry;
1e8f889b 2581 int ret;
0fe6e20b 2582 struct page *page = NULL;
57303d80 2583 struct page *pagecache_page = NULL;
3935baa9 2584 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
a5516438 2585 struct hstate *h = hstate_vma(vma);
86e5216f 2586
fd6a03ed
NH
2587 ptep = huge_pte_offset(mm, address);
2588 if (ptep) {
2589 entry = huge_ptep_get(ptep);
2590 if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2591 return VM_FAULT_HWPOISON;
2592 }
2593
a5516438 2594 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2595 if (!ptep)
2596 return VM_FAULT_OOM;
2597
3935baa9
DG
2598 /*
2599 * Serialize hugepage allocation and instantiation, so that we don't
2600 * get spurious allocation failures if two CPUs race to instantiate
2601 * the same page in the page cache.
2602 */
2603 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
2604 entry = huge_ptep_get(ptep);
2605 if (huge_pte_none(entry)) {
788c7df4 2606 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
b4d1d99f 2607 goto out_mutex;
3935baa9 2608 }
86e5216f 2609
83c54070 2610 ret = 0;
1e8f889b 2611
57303d80
AW
2612 /*
2613 * If we are going to COW the mapping later, we examine the pending
2614 * reservations for this page now. This will ensure that any
2615 * allocations necessary to record that reservation occur outside the
2616 * spinlock. For private mappings, we also lookup the pagecache
2617 * page now as it is used to determine if a reservation has been
2618 * consumed.
2619 */
788c7df4 2620 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2b26736c
AW
2621 if (vma_needs_reservation(h, vma, address) < 0) {
2622 ret = VM_FAULT_OOM;
b4d1d99f 2623 goto out_mutex;
2b26736c 2624 }
57303d80 2625
f83a275d 2626 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
2627 pagecache_page = hugetlbfs_pagecache_page(h,
2628 vma, address);
2629 }
2630
56c9cfb1
NH
2631 /*
2632 * hugetlb_cow() requires page locks of pte_page(entry) and
2633 * pagecache_page, so here we need take the former one
2634 * when page != pagecache_page or !pagecache_page.
2635 * Note that locking order is always pagecache_page -> page,
2636 * so no worry about deadlock.
2637 */
2638 page = pte_page(entry);
2639 if (page != pagecache_page)
0fe6e20b 2640 lock_page(page);
0fe6e20b 2641
1e8f889b
DG
2642 spin_lock(&mm->page_table_lock);
2643 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f
DG
2644 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2645 goto out_page_table_lock;
2646
2647
788c7df4 2648 if (flags & FAULT_FLAG_WRITE) {
b4d1d99f 2649 if (!pte_write(entry)) {
57303d80
AW
2650 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2651 pagecache_page);
b4d1d99f
DG
2652 goto out_page_table_lock;
2653 }
2654 entry = pte_mkdirty(entry);
2655 }
2656 entry = pte_mkyoung(entry);
788c7df4
HD
2657 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2658 flags & FAULT_FLAG_WRITE))
4b3073e1 2659 update_mmu_cache(vma, address, ptep);
b4d1d99f
DG
2660
2661out_page_table_lock:
1e8f889b 2662 spin_unlock(&mm->page_table_lock);
57303d80
AW
2663
2664 if (pagecache_page) {
2665 unlock_page(pagecache_page);
2666 put_page(pagecache_page);
2667 }
56c9cfb1 2668 unlock_page(page);
57303d80 2669
b4d1d99f 2670out_mutex:
3935baa9 2671 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
2672
2673 return ret;
86e5216f
AL
2674}
2675
ceb86879
AK
2676/* Can be overriden by architectures */
2677__attribute__((weak)) struct page *
2678follow_huge_pud(struct mm_struct *mm, unsigned long address,
2679 pud_t *pud, int write)
2680{
2681 BUG();
2682 return NULL;
2683}
2684
63551ae0
DG
2685int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2686 struct page **pages, struct vm_area_struct **vmas,
5b23dbe8 2687 unsigned long *position, int *length, int i,
2a15efc9 2688 unsigned int flags)
63551ae0 2689{
d5d4b0aa
KC
2690 unsigned long pfn_offset;
2691 unsigned long vaddr = *position;
63551ae0 2692 int remainder = *length;
a5516438 2693 struct hstate *h = hstate_vma(vma);
63551ae0 2694
1c59827d 2695 spin_lock(&mm->page_table_lock);
63551ae0 2696 while (vaddr < vma->vm_end && remainder) {
4c887265 2697 pte_t *pte;
2a15efc9 2698 int absent;
4c887265 2699 struct page *page;
63551ae0 2700
4c887265
AL
2701 /*
2702 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 2703 * each hugepage. We have to make sure we get the
4c887265
AL
2704 * first, for the page indexing below to work.
2705 */
a5516438 2706 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2a15efc9
HD
2707 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2708
2709 /*
2710 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
2711 * an error where there's an empty slot with no huge pagecache
2712 * to back it. This way, we avoid allocating a hugepage, and
2713 * the sparse dumpfile avoids allocating disk blocks, but its
2714 * huge holes still show up with zeroes where they need to be.
2a15efc9 2715 */
3ae77f43
HD
2716 if (absent && (flags & FOLL_DUMP) &&
2717 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2a15efc9
HD
2718 remainder = 0;
2719 break;
2720 }
63551ae0 2721
2a15efc9
HD
2722 if (absent ||
2723 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
4c887265 2724 int ret;
63551ae0 2725
4c887265 2726 spin_unlock(&mm->page_table_lock);
2a15efc9
HD
2727 ret = hugetlb_fault(mm, vma, vaddr,
2728 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
4c887265 2729 spin_lock(&mm->page_table_lock);
a89182c7 2730 if (!(ret & VM_FAULT_ERROR))
4c887265 2731 continue;
63551ae0 2732
4c887265 2733 remainder = 0;
4c887265
AL
2734 break;
2735 }
2736
a5516438 2737 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 2738 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 2739same_page:
d6692183 2740 if (pages) {
2a15efc9 2741 pages[i] = mem_map_offset(page, pfn_offset);
4b2e38ad 2742 get_page(pages[i]);
d6692183 2743 }
63551ae0
DG
2744
2745 if (vmas)
2746 vmas[i] = vma;
2747
2748 vaddr += PAGE_SIZE;
d5d4b0aa 2749 ++pfn_offset;
63551ae0
DG
2750 --remainder;
2751 ++i;
d5d4b0aa 2752 if (vaddr < vma->vm_end && remainder &&
a5516438 2753 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
2754 /*
2755 * We use pfn_offset to avoid touching the pageframes
2756 * of this compound page.
2757 */
2758 goto same_page;
2759 }
63551ae0 2760 }
1c59827d 2761 spin_unlock(&mm->page_table_lock);
63551ae0
DG
2762 *length = remainder;
2763 *position = vaddr;
2764
2a15efc9 2765 return i ? i : -EFAULT;
63551ae0 2766}
8f860591
ZY
2767
2768void hugetlb_change_protection(struct vm_area_struct *vma,
2769 unsigned long address, unsigned long end, pgprot_t newprot)
2770{
2771 struct mm_struct *mm = vma->vm_mm;
2772 unsigned long start = address;
2773 pte_t *ptep;
2774 pte_t pte;
a5516438 2775 struct hstate *h = hstate_vma(vma);
8f860591
ZY
2776
2777 BUG_ON(address >= end);
2778 flush_cache_range(vma, address, end);
2779
39dde65c 2780 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591 2781 spin_lock(&mm->page_table_lock);
a5516438 2782 for (; address < end; address += huge_page_size(h)) {
8f860591
ZY
2783 ptep = huge_pte_offset(mm, address);
2784 if (!ptep)
2785 continue;
39dde65c
KC
2786 if (huge_pmd_unshare(mm, &address, ptep))
2787 continue;
7f2e9525 2788 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591
ZY
2789 pte = huge_ptep_get_and_clear(mm, address, ptep);
2790 pte = pte_mkhuge(pte_modify(pte, newprot));
2791 set_huge_pte_at(mm, address, ptep, pte);
8f860591
ZY
2792 }
2793 }
2794 spin_unlock(&mm->page_table_lock);
39dde65c 2795 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591
ZY
2796
2797 flush_tlb_range(vma, start, end);
2798}
2799
a1e78772
MG
2800int hugetlb_reserve_pages(struct inode *inode,
2801 long from, long to,
5a6fe125
MG
2802 struct vm_area_struct *vma,
2803 int acctflag)
e4e574b7 2804{
17c9d12e 2805 long ret, chg;
a5516438 2806 struct hstate *h = hstate_inode(inode);
e4e574b7 2807
17c9d12e
MG
2808 /*
2809 * Only apply hugepage reservation if asked. At fault time, an
2810 * attempt will be made for VM_NORESERVE to allocate a page
2811 * and filesystem quota without using reserves
2812 */
2813 if (acctflag & VM_NORESERVE)
2814 return 0;
2815
a1e78772
MG
2816 /*
2817 * Shared mappings base their reservation on the number of pages that
2818 * are already allocated on behalf of the file. Private mappings need
2819 * to reserve the full area even if read-only as mprotect() may be
2820 * called to make the mapping read-write. Assume !vma is a shm mapping
2821 */
f83a275d 2822 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 2823 chg = region_chg(&inode->i_mapping->private_list, from, to);
17c9d12e
MG
2824 else {
2825 struct resv_map *resv_map = resv_map_alloc();
2826 if (!resv_map)
2827 return -ENOMEM;
2828
a1e78772 2829 chg = to - from;
84afd99b 2830
17c9d12e
MG
2831 set_vma_resv_map(vma, resv_map);
2832 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2833 }
2834
e4e574b7
AL
2835 if (chg < 0)
2836 return chg;
8a630112 2837
17c9d12e 2838 /* There must be enough filesystem quota for the mapping */
90d8b7e6
AL
2839 if (hugetlb_get_quota(inode->i_mapping, chg))
2840 return -ENOSPC;
5a6fe125
MG
2841
2842 /*
17c9d12e
MG
2843 * Check enough hugepages are available for the reservation.
2844 * Hand back the quota if there are not
5a6fe125 2845 */
a5516438 2846 ret = hugetlb_acct_memory(h, chg);
68842c9b
KC
2847 if (ret < 0) {
2848 hugetlb_put_quota(inode->i_mapping, chg);
a43a8c39 2849 return ret;
68842c9b 2850 }
17c9d12e
MG
2851
2852 /*
2853 * Account for the reservations made. Shared mappings record regions
2854 * that have reservations as they are shared by multiple VMAs.
2855 * When the last VMA disappears, the region map says how much
2856 * the reservation was and the page cache tells how much of
2857 * the reservation was consumed. Private mappings are per-VMA and
2858 * only the consumed reservations are tracked. When the VMA
2859 * disappears, the original reservation is the VMA size and the
2860 * consumed reservations are stored in the map. Hence, nothing
2861 * else has to be done for private mappings here
2862 */
f83a275d 2863 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 2864 region_add(&inode->i_mapping->private_list, from, to);
a43a8c39
KC
2865 return 0;
2866}
2867
2868void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2869{
a5516438 2870 struct hstate *h = hstate_inode(inode);
a43a8c39 2871 long chg = region_truncate(&inode->i_mapping->private_list, offset);
45c682a6
KC
2872
2873 spin_lock(&inode->i_lock);
e4c6f8be 2874 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
2875 spin_unlock(&inode->i_lock);
2876
90d8b7e6 2877 hugetlb_put_quota(inode->i_mapping, (chg - freed));
a5516438 2878 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 2879}
93f70f90
NH
2880
2881/*
2882 * This function is called from memory failure code.
2883 * Assume the caller holds page lock of the head page.
2884 */
2885void __isolate_hwpoisoned_huge_page(struct page *hpage)
2886{
2887 struct hstate *h = page_hstate(hpage);
2888 int nid = page_to_nid(hpage);
2889
2890 spin_lock(&hugetlb_lock);
2891 list_del(&hpage->lru);
2892 h->free_huge_pages--;
2893 h->free_huge_pages_node[nid]--;
2894 spin_unlock(&hugetlb_lock);
2895}