]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/hugetlb.c
Merge branch 'for-linus' of git://www.jni.nu/cris
[net-next-2.6.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/gfp.h>
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/module.h>
9#include <linux/mm.h>
e1759c21 10#include <linux/seq_file.h>
1da177e4
LT
11#include <linux/sysctl.h>
12#include <linux/highmem.h>
cddb8a5c 13#include <linux/mmu_notifier.h>
1da177e4 14#include <linux/nodemask.h>
63551ae0 15#include <linux/pagemap.h>
5da7ca86 16#include <linux/mempolicy.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
aa888a74 19#include <linux/bootmem.h>
a3437870 20#include <linux/sysfs.h>
d6606683 21
63551ae0
DG
22#include <asm/page.h>
23#include <asm/pgtable.h>
78a34ae2 24#include <asm/io.h>
63551ae0
DG
25
26#include <linux/hugetlb.h>
7835e98b 27#include "internal.h"
1da177e4
LT
28
29const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03
MG
30static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
31unsigned long hugepages_treat_as_movable;
a5516438 32
e5ff2159
AK
33static int max_hstate;
34unsigned int default_hstate_idx;
35struct hstate hstates[HUGE_MAX_HSTATE];
36
53ba51d2
JT
37__initdata LIST_HEAD(huge_boot_pages);
38
e5ff2159
AK
39/* for command line parsing */
40static struct hstate * __initdata parsed_hstate;
41static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 42static unsigned long __initdata default_hstate_size;
e5ff2159
AK
43
44#define for_each_hstate(h) \
45 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
396faf03 46
3935baa9
DG
47/*
48 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
49 */
50static DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 51
96822904
AW
52/*
53 * Region tracking -- allows tracking of reservations and instantiated pages
54 * across the pages in a mapping.
84afd99b
AW
55 *
56 * The region data structures are protected by a combination of the mmap_sem
57 * and the hugetlb_instantion_mutex. To access or modify a region the caller
58 * must either hold the mmap_sem for write, or the mmap_sem for read and
59 * the hugetlb_instantiation mutex:
60 *
61 * down_write(&mm->mmap_sem);
62 * or
63 * down_read(&mm->mmap_sem);
64 * mutex_lock(&hugetlb_instantiation_mutex);
96822904
AW
65 */
66struct file_region {
67 struct list_head link;
68 long from;
69 long to;
70};
71
72static long region_add(struct list_head *head, long f, long t)
73{
74 struct file_region *rg, *nrg, *trg;
75
76 /* Locate the region we are either in or before. */
77 list_for_each_entry(rg, head, link)
78 if (f <= rg->to)
79 break;
80
81 /* Round our left edge to the current segment if it encloses us. */
82 if (f > rg->from)
83 f = rg->from;
84
85 /* Check for and consume any regions we now overlap with. */
86 nrg = rg;
87 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
88 if (&rg->link == head)
89 break;
90 if (rg->from > t)
91 break;
92
93 /* If this area reaches higher then extend our area to
94 * include it completely. If this is not the first area
95 * which we intend to reuse, free it. */
96 if (rg->to > t)
97 t = rg->to;
98 if (rg != nrg) {
99 list_del(&rg->link);
100 kfree(rg);
101 }
102 }
103 nrg->from = f;
104 nrg->to = t;
105 return 0;
106}
107
108static long region_chg(struct list_head *head, long f, long t)
109{
110 struct file_region *rg, *nrg;
111 long chg = 0;
112
113 /* Locate the region we are before or in. */
114 list_for_each_entry(rg, head, link)
115 if (f <= rg->to)
116 break;
117
118 /* If we are below the current region then a new region is required.
119 * Subtle, allocate a new region at the position but make it zero
120 * size such that we can guarantee to record the reservation. */
121 if (&rg->link == head || t < rg->from) {
122 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
123 if (!nrg)
124 return -ENOMEM;
125 nrg->from = f;
126 nrg->to = f;
127 INIT_LIST_HEAD(&nrg->link);
128 list_add(&nrg->link, rg->link.prev);
129
130 return t - f;
131 }
132
133 /* Round our left edge to the current segment if it encloses us. */
134 if (f > rg->from)
135 f = rg->from;
136 chg = t - f;
137
138 /* Check for and consume any regions we now overlap with. */
139 list_for_each_entry(rg, rg->link.prev, link) {
140 if (&rg->link == head)
141 break;
142 if (rg->from > t)
143 return chg;
144
145 /* We overlap with this area, if it extends futher than
146 * us then we must extend ourselves. Account for its
147 * existing reservation. */
148 if (rg->to > t) {
149 chg += rg->to - t;
150 t = rg->to;
151 }
152 chg -= rg->to - rg->from;
153 }
154 return chg;
155}
156
157static long region_truncate(struct list_head *head, long end)
158{
159 struct file_region *rg, *trg;
160 long chg = 0;
161
162 /* Locate the region we are either in or before. */
163 list_for_each_entry(rg, head, link)
164 if (end <= rg->to)
165 break;
166 if (&rg->link == head)
167 return 0;
168
169 /* If we are in the middle of a region then adjust it. */
170 if (end > rg->from) {
171 chg = rg->to - end;
172 rg->to = end;
173 rg = list_entry(rg->link.next, typeof(*rg), link);
174 }
175
176 /* Drop any remaining regions. */
177 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
178 if (&rg->link == head)
179 break;
180 chg += rg->to - rg->from;
181 list_del(&rg->link);
182 kfree(rg);
183 }
184 return chg;
185}
186
84afd99b
AW
187static long region_count(struct list_head *head, long f, long t)
188{
189 struct file_region *rg;
190 long chg = 0;
191
192 /* Locate each segment we overlap with, and count that overlap. */
193 list_for_each_entry(rg, head, link) {
194 int seg_from;
195 int seg_to;
196
197 if (rg->to <= f)
198 continue;
199 if (rg->from >= t)
200 break;
201
202 seg_from = max(rg->from, f);
203 seg_to = min(rg->to, t);
204
205 chg += seg_to - seg_from;
206 }
207
208 return chg;
209}
210
e7c4b0bf
AW
211/*
212 * Convert the address within this vma to the page offset within
213 * the mapping, in pagecache page units; huge pages here.
214 */
a5516438
AK
215static pgoff_t vma_hugecache_offset(struct hstate *h,
216 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 217{
a5516438
AK
218 return ((address - vma->vm_start) >> huge_page_shift(h)) +
219 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
220}
221
08fba699
MG
222/*
223 * Return the size of the pages allocated when backing a VMA. In the majority
224 * cases this will be same size as used by the page table entries.
225 */
226unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
227{
228 struct hstate *hstate;
229
230 if (!is_vm_hugetlb_page(vma))
231 return PAGE_SIZE;
232
233 hstate = hstate_vma(vma);
234
235 return 1UL << (hstate->order + PAGE_SHIFT);
236}
237
3340289d
MG
238/*
239 * Return the page size being used by the MMU to back a VMA. In the majority
240 * of cases, the page size used by the kernel matches the MMU size. On
241 * architectures where it differs, an architecture-specific version of this
242 * function is required.
243 */
244#ifndef vma_mmu_pagesize
245unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
246{
247 return vma_kernel_pagesize(vma);
248}
249#endif
250
84afd99b
AW
251/*
252 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
253 * bits of the reservation map pointer, which are always clear due to
254 * alignment.
255 */
256#define HPAGE_RESV_OWNER (1UL << 0)
257#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 258#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 259
a1e78772
MG
260/*
261 * These helpers are used to track how many pages are reserved for
262 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
263 * is guaranteed to have their future faults succeed.
264 *
265 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
266 * the reserve counters are updated with the hugetlb_lock held. It is safe
267 * to reset the VMA at fork() time as it is not in use yet and there is no
268 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
269 *
270 * The private mapping reservation is represented in a subtly different
271 * manner to a shared mapping. A shared mapping has a region map associated
272 * with the underlying file, this region map represents the backing file
273 * pages which have ever had a reservation assigned which this persists even
274 * after the page is instantiated. A private mapping has a region map
275 * associated with the original mmap which is attached to all VMAs which
276 * reference it, this region map represents those offsets which have consumed
277 * reservation ie. where pages have been instantiated.
a1e78772 278 */
e7c4b0bf
AW
279static unsigned long get_vma_private_data(struct vm_area_struct *vma)
280{
281 return (unsigned long)vma->vm_private_data;
282}
283
284static void set_vma_private_data(struct vm_area_struct *vma,
285 unsigned long value)
286{
287 vma->vm_private_data = (void *)value;
288}
289
84afd99b
AW
290struct resv_map {
291 struct kref refs;
292 struct list_head regions;
293};
294
2a4b3ded 295static struct resv_map *resv_map_alloc(void)
84afd99b
AW
296{
297 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
298 if (!resv_map)
299 return NULL;
300
301 kref_init(&resv_map->refs);
302 INIT_LIST_HEAD(&resv_map->regions);
303
304 return resv_map;
305}
306
2a4b3ded 307static void resv_map_release(struct kref *ref)
84afd99b
AW
308{
309 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
310
311 /* Clear out any active regions before we release the map. */
312 region_truncate(&resv_map->regions, 0);
313 kfree(resv_map);
314}
315
316static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
317{
318 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 319 if (!(vma->vm_flags & VM_MAYSHARE))
84afd99b
AW
320 return (struct resv_map *)(get_vma_private_data(vma) &
321 ~HPAGE_RESV_MASK);
2a4b3ded 322 return NULL;
a1e78772
MG
323}
324
84afd99b 325static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
326{
327 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 328 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 329
84afd99b
AW
330 set_vma_private_data(vma, (get_vma_private_data(vma) &
331 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
332}
333
334static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
335{
04f2cbe3 336 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 337 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
338
339 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
340}
341
342static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
343{
344 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
345
346 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
347}
348
349/* Decrement the reserved pages in the hugepage pool by one */
a5516438
AK
350static void decrement_hugepage_resv_vma(struct hstate *h,
351 struct vm_area_struct *vma)
a1e78772 352{
c37f9fb1
AW
353 if (vma->vm_flags & VM_NORESERVE)
354 return;
355
f83a275d 356 if (vma->vm_flags & VM_MAYSHARE) {
a1e78772 357 /* Shared mappings always use reserves */
a5516438 358 h->resv_huge_pages--;
84afd99b 359 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a1e78772
MG
360 /*
361 * Only the process that called mmap() has reserves for
362 * private mappings.
363 */
a5516438 364 h->resv_huge_pages--;
a1e78772
MG
365 }
366}
367
04f2cbe3 368/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
369void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
370{
371 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 372 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
373 vma->vm_private_data = (void *)0;
374}
375
376/* Returns true if the VMA has associated reserve pages */
7f09ca51 377static int vma_has_reserves(struct vm_area_struct *vma)
a1e78772 378{
f83a275d 379 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51
MG
380 return 1;
381 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
382 return 1;
383 return 0;
a1e78772
MG
384}
385
69d177c2
AW
386static void clear_gigantic_page(struct page *page,
387 unsigned long addr, unsigned long sz)
388{
389 int i;
390 struct page *p = page;
391
392 might_sleep();
393 for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
394 cond_resched();
395 clear_user_highpage(p, addr + i * PAGE_SIZE);
396 }
397}
a5516438
AK
398static void clear_huge_page(struct page *page,
399 unsigned long addr, unsigned long sz)
79ac6ba4
DG
400{
401 int i;
402
ebdd4aea
HE
403 if (unlikely(sz > MAX_ORDER_NR_PAGES)) {
404 clear_gigantic_page(page, addr, sz);
405 return;
406 }
69d177c2 407
79ac6ba4 408 might_sleep();
a5516438 409 for (i = 0; i < sz/PAGE_SIZE; i++) {
79ac6ba4 410 cond_resched();
281e0e3b 411 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
79ac6ba4
DG
412 }
413}
414
69d177c2
AW
415static void copy_gigantic_page(struct page *dst, struct page *src,
416 unsigned long addr, struct vm_area_struct *vma)
417{
418 int i;
419 struct hstate *h = hstate_vma(vma);
420 struct page *dst_base = dst;
421 struct page *src_base = src;
422 might_sleep();
423 for (i = 0; i < pages_per_huge_page(h); ) {
424 cond_resched();
425 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
426
427 i++;
428 dst = mem_map_next(dst, dst_base, i);
429 src = mem_map_next(src, src_base, i);
430 }
431}
79ac6ba4 432static void copy_huge_page(struct page *dst, struct page *src,
9de455b2 433 unsigned long addr, struct vm_area_struct *vma)
79ac6ba4
DG
434{
435 int i;
a5516438 436 struct hstate *h = hstate_vma(vma);
79ac6ba4 437
ebdd4aea
HE
438 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
439 copy_gigantic_page(dst, src, addr, vma);
440 return;
441 }
69d177c2 442
79ac6ba4 443 might_sleep();
a5516438 444 for (i = 0; i < pages_per_huge_page(h); i++) {
79ac6ba4 445 cond_resched();
9de455b2 446 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
79ac6ba4
DG
447 }
448}
449
a5516438 450static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
451{
452 int nid = page_to_nid(page);
a5516438
AK
453 list_add(&page->lru, &h->hugepage_freelists[nid]);
454 h->free_huge_pages++;
455 h->free_huge_pages_node[nid]++;
1da177e4
LT
456}
457
a5516438 458static struct page *dequeue_huge_page(struct hstate *h)
348e1e04
NA
459{
460 int nid;
461 struct page *page = NULL;
462
463 for (nid = 0; nid < MAX_NUMNODES; ++nid) {
a5516438
AK
464 if (!list_empty(&h->hugepage_freelists[nid])) {
465 page = list_entry(h->hugepage_freelists[nid].next,
348e1e04
NA
466 struct page, lru);
467 list_del(&page->lru);
a5516438
AK
468 h->free_huge_pages--;
469 h->free_huge_pages_node[nid]--;
348e1e04
NA
470 break;
471 }
472 }
473 return page;
474}
475
a5516438
AK
476static struct page *dequeue_huge_page_vma(struct hstate *h,
477 struct vm_area_struct *vma,
04f2cbe3 478 unsigned long address, int avoid_reserve)
1da177e4 479{
31a5c6e4 480 int nid;
1da177e4 481 struct page *page = NULL;
480eccf9 482 struct mempolicy *mpol;
19770b32 483 nodemask_t *nodemask;
396faf03 484 struct zonelist *zonelist = huge_zonelist(vma, address,
19770b32 485 htlb_alloc_mask, &mpol, &nodemask);
dd1a239f
MG
486 struct zone *zone;
487 struct zoneref *z;
1da177e4 488
a1e78772
MG
489 /*
490 * A child process with MAP_PRIVATE mappings created by their parent
491 * have no page reserves. This check ensures that reservations are
492 * not "stolen". The child may still get SIGKILLed
493 */
7f09ca51 494 if (!vma_has_reserves(vma) &&
a5516438 495 h->free_huge_pages - h->resv_huge_pages == 0)
a1e78772
MG
496 return NULL;
497
04f2cbe3 498 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 499 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
04f2cbe3
MG
500 return NULL;
501
19770b32
MG
502 for_each_zone_zonelist_nodemask(zone, z, zonelist,
503 MAX_NR_ZONES - 1, nodemask) {
54a6eb5c
MG
504 nid = zone_to_nid(zone);
505 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
a5516438
AK
506 !list_empty(&h->hugepage_freelists[nid])) {
507 page = list_entry(h->hugepage_freelists[nid].next,
3abf7afd
AM
508 struct page, lru);
509 list_del(&page->lru);
a5516438
AK
510 h->free_huge_pages--;
511 h->free_huge_pages_node[nid]--;
04f2cbe3
MG
512
513 if (!avoid_reserve)
a5516438 514 decrement_hugepage_resv_vma(h, vma);
a1e78772 515
5ab3ee7b 516 break;
3abf7afd 517 }
1da177e4 518 }
52cd3b07 519 mpol_cond_put(mpol);
1da177e4
LT
520 return page;
521}
522
a5516438 523static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
524{
525 int i;
a5516438 526
18229df5
AW
527 VM_BUG_ON(h->order >= MAX_ORDER);
528
a5516438
AK
529 h->nr_huge_pages--;
530 h->nr_huge_pages_node[page_to_nid(page)]--;
531 for (i = 0; i < pages_per_huge_page(h); i++) {
6af2acb6
AL
532 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
533 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
534 1 << PG_private | 1<< PG_writeback);
535 }
536 set_compound_page_dtor(page, NULL);
537 set_page_refcounted(page);
7f2e9525 538 arch_release_hugepage(page);
a5516438 539 __free_pages(page, huge_page_order(h));
6af2acb6
AL
540}
541
e5ff2159
AK
542struct hstate *size_to_hstate(unsigned long size)
543{
544 struct hstate *h;
545
546 for_each_hstate(h) {
547 if (huge_page_size(h) == size)
548 return h;
549 }
550 return NULL;
551}
552
27a85ef1
DG
553static void free_huge_page(struct page *page)
554{
a5516438
AK
555 /*
556 * Can't pass hstate in here because it is called from the
557 * compound page destructor.
558 */
e5ff2159 559 struct hstate *h = page_hstate(page);
7893d1d5 560 int nid = page_to_nid(page);
c79fb75e 561 struct address_space *mapping;
27a85ef1 562
c79fb75e 563 mapping = (struct address_space *) page_private(page);
e5df70ab 564 set_page_private(page, 0);
7893d1d5 565 BUG_ON(page_count(page));
27a85ef1
DG
566 INIT_LIST_HEAD(&page->lru);
567
568 spin_lock(&hugetlb_lock);
aa888a74 569 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
a5516438
AK
570 update_and_free_page(h, page);
571 h->surplus_huge_pages--;
572 h->surplus_huge_pages_node[nid]--;
7893d1d5 573 } else {
a5516438 574 enqueue_huge_page(h, page);
7893d1d5 575 }
27a85ef1 576 spin_unlock(&hugetlb_lock);
c79fb75e 577 if (mapping)
9a119c05 578 hugetlb_put_quota(mapping, 1);
27a85ef1
DG
579}
580
a5516438 581static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6
AK
582{
583 set_compound_page_dtor(page, free_huge_page);
584 spin_lock(&hugetlb_lock);
a5516438
AK
585 h->nr_huge_pages++;
586 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
587 spin_unlock(&hugetlb_lock);
588 put_page(page); /* free it into the hugepage allocator */
589}
590
20a0307c
WF
591static void prep_compound_gigantic_page(struct page *page, unsigned long order)
592{
593 int i;
594 int nr_pages = 1 << order;
595 struct page *p = page + 1;
596
597 /* we rely on prep_new_huge_page to set the destructor */
598 set_compound_order(page, order);
599 __SetPageHead(page);
600 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
601 __SetPageTail(p);
602 p->first_page = page;
603 }
604}
605
606int PageHuge(struct page *page)
607{
608 compound_page_dtor *dtor;
609
610 if (!PageCompound(page))
611 return 0;
612
613 page = compound_head(page);
614 dtor = get_compound_page_dtor(page);
615
616 return dtor == free_huge_page;
617}
618
a5516438 619static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 620{
1da177e4 621 struct page *page;
f96efd58 622
aa888a74
AK
623 if (h->order >= MAX_ORDER)
624 return NULL;
625
6484eb3e 626 page = alloc_pages_exact_node(nid,
551883ae
NA
627 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
628 __GFP_REPEAT|__GFP_NOWARN,
a5516438 629 huge_page_order(h));
1da177e4 630 if (page) {
7f2e9525 631 if (arch_prepare_hugepage(page)) {
caff3a2c 632 __free_pages(page, huge_page_order(h));
7b8ee84d 633 return NULL;
7f2e9525 634 }
a5516438 635 prep_new_huge_page(h, page, nid);
1da177e4 636 }
63b4613c
NA
637
638 return page;
639}
640
5ced66c9
AK
641/*
642 * Use a helper variable to find the next node and then
643 * copy it back to hugetlb_next_nid afterwards:
644 * otherwise there's a window in which a racer might
6484eb3e 645 * pass invalid nid MAX_NUMNODES to alloc_pages_exact_node.
5ced66c9
AK
646 * But we don't need to use a spin_lock here: it really
647 * doesn't matter if occasionally a racer chooses the
648 * same nid as we do. Move nid forward in the mask even
649 * if we just successfully allocated a hugepage so that
650 * the next caller gets hugepages on the next node.
651 */
652static int hstate_next_node(struct hstate *h)
653{
654 int next_nid;
655 next_nid = next_node(h->hugetlb_next_nid, node_online_map);
656 if (next_nid == MAX_NUMNODES)
657 next_nid = first_node(node_online_map);
658 h->hugetlb_next_nid = next_nid;
659 return next_nid;
660}
661
a5516438 662static int alloc_fresh_huge_page(struct hstate *h)
63b4613c
NA
663{
664 struct page *page;
665 int start_nid;
666 int next_nid;
667 int ret = 0;
668
a5516438 669 start_nid = h->hugetlb_next_nid;
63b4613c
NA
670
671 do {
a5516438 672 page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
63b4613c
NA
673 if (page)
674 ret = 1;
5ced66c9 675 next_nid = hstate_next_node(h);
a5516438 676 } while (!page && h->hugetlb_next_nid != start_nid);
63b4613c 677
3b116300
AL
678 if (ret)
679 count_vm_event(HTLB_BUDDY_PGALLOC);
680 else
681 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
682
63b4613c 683 return ret;
1da177e4
LT
684}
685
a5516438
AK
686static struct page *alloc_buddy_huge_page(struct hstate *h,
687 struct vm_area_struct *vma, unsigned long address)
7893d1d5
AL
688{
689 struct page *page;
d1c3fb1f 690 unsigned int nid;
7893d1d5 691
aa888a74
AK
692 if (h->order >= MAX_ORDER)
693 return NULL;
694
d1c3fb1f
NA
695 /*
696 * Assume we will successfully allocate the surplus page to
697 * prevent racing processes from causing the surplus to exceed
698 * overcommit
699 *
700 * This however introduces a different race, where a process B
701 * tries to grow the static hugepage pool while alloc_pages() is
702 * called by process A. B will only examine the per-node
703 * counters in determining if surplus huge pages can be
704 * converted to normal huge pages in adjust_pool_surplus(). A
705 * won't be able to increment the per-node counter, until the
706 * lock is dropped by B, but B doesn't drop hugetlb_lock until
707 * no more huge pages can be converted from surplus to normal
708 * state (and doesn't try to convert again). Thus, we have a
709 * case where a surplus huge page exists, the pool is grown, and
710 * the surplus huge page still exists after, even though it
711 * should just have been converted to a normal huge page. This
712 * does not leak memory, though, as the hugepage will be freed
713 * once it is out of use. It also does not allow the counters to
714 * go out of whack in adjust_pool_surplus() as we don't modify
715 * the node values until we've gotten the hugepage and only the
716 * per-node value is checked there.
717 */
718 spin_lock(&hugetlb_lock);
a5516438 719 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
720 spin_unlock(&hugetlb_lock);
721 return NULL;
722 } else {
a5516438
AK
723 h->nr_huge_pages++;
724 h->surplus_huge_pages++;
d1c3fb1f
NA
725 }
726 spin_unlock(&hugetlb_lock);
727
551883ae
NA
728 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
729 __GFP_REPEAT|__GFP_NOWARN,
a5516438 730 huge_page_order(h));
d1c3fb1f 731
caff3a2c
GS
732 if (page && arch_prepare_hugepage(page)) {
733 __free_pages(page, huge_page_order(h));
734 return NULL;
735 }
736
d1c3fb1f 737 spin_lock(&hugetlb_lock);
7893d1d5 738 if (page) {
2668db91
AL
739 /*
740 * This page is now managed by the hugetlb allocator and has
741 * no users -- drop the buddy allocator's reference.
742 */
743 put_page_testzero(page);
744 VM_BUG_ON(page_count(page));
d1c3fb1f 745 nid = page_to_nid(page);
7893d1d5 746 set_compound_page_dtor(page, free_huge_page);
d1c3fb1f
NA
747 /*
748 * We incremented the global counters already
749 */
a5516438
AK
750 h->nr_huge_pages_node[nid]++;
751 h->surplus_huge_pages_node[nid]++;
3b116300 752 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 753 } else {
a5516438
AK
754 h->nr_huge_pages--;
755 h->surplus_huge_pages--;
3b116300 756 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 757 }
d1c3fb1f 758 spin_unlock(&hugetlb_lock);
7893d1d5
AL
759
760 return page;
761}
762
e4e574b7
AL
763/*
764 * Increase the hugetlb pool such that it can accomodate a reservation
765 * of size 'delta'.
766 */
a5516438 767static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
768{
769 struct list_head surplus_list;
770 struct page *page, *tmp;
771 int ret, i;
772 int needed, allocated;
773
a5516438 774 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 775 if (needed <= 0) {
a5516438 776 h->resv_huge_pages += delta;
e4e574b7 777 return 0;
ac09b3a1 778 }
e4e574b7
AL
779
780 allocated = 0;
781 INIT_LIST_HEAD(&surplus_list);
782
783 ret = -ENOMEM;
784retry:
785 spin_unlock(&hugetlb_lock);
786 for (i = 0; i < needed; i++) {
a5516438 787 page = alloc_buddy_huge_page(h, NULL, 0);
e4e574b7
AL
788 if (!page) {
789 /*
790 * We were not able to allocate enough pages to
791 * satisfy the entire reservation so we free what
792 * we've allocated so far.
793 */
794 spin_lock(&hugetlb_lock);
795 needed = 0;
796 goto free;
797 }
798
799 list_add(&page->lru, &surplus_list);
800 }
801 allocated += needed;
802
803 /*
804 * After retaking hugetlb_lock, we need to recalculate 'needed'
805 * because either resv_huge_pages or free_huge_pages may have changed.
806 */
807 spin_lock(&hugetlb_lock);
a5516438
AK
808 needed = (h->resv_huge_pages + delta) -
809 (h->free_huge_pages + allocated);
e4e574b7
AL
810 if (needed > 0)
811 goto retry;
812
813 /*
814 * The surplus_list now contains _at_least_ the number of extra pages
815 * needed to accomodate the reservation. Add the appropriate number
816 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
817 * allocator. Commit the entire reservation here to prevent another
818 * process from stealing the pages as they are added to the pool but
819 * before they are reserved.
e4e574b7
AL
820 */
821 needed += allocated;
a5516438 822 h->resv_huge_pages += delta;
e4e574b7
AL
823 ret = 0;
824free:
19fc3f0a 825 /* Free the needed pages to the hugetlb pool */
e4e574b7 826 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
827 if ((--needed) < 0)
828 break;
e4e574b7 829 list_del(&page->lru);
a5516438 830 enqueue_huge_page(h, page);
19fc3f0a
AL
831 }
832
833 /* Free unnecessary surplus pages to the buddy allocator */
834 if (!list_empty(&surplus_list)) {
835 spin_unlock(&hugetlb_lock);
836 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
837 list_del(&page->lru);
af767cbd 838 /*
2668db91
AL
839 * The page has a reference count of zero already, so
840 * call free_huge_page directly instead of using
841 * put_page. This must be done with hugetlb_lock
af767cbd
AL
842 * unlocked which is safe because free_huge_page takes
843 * hugetlb_lock before deciding how to free the page.
844 */
2668db91 845 free_huge_page(page);
af767cbd 846 }
19fc3f0a 847 spin_lock(&hugetlb_lock);
e4e574b7
AL
848 }
849
850 return ret;
851}
852
853/*
854 * When releasing a hugetlb pool reservation, any surplus pages that were
855 * allocated to satisfy the reservation must be explicitly freed if they were
856 * never used.
857 */
a5516438
AK
858static void return_unused_surplus_pages(struct hstate *h,
859 unsigned long unused_resv_pages)
e4e574b7
AL
860{
861 static int nid = -1;
862 struct page *page;
863 unsigned long nr_pages;
864
11320d17
NA
865 /*
866 * We want to release as many surplus pages as possible, spread
867 * evenly across all nodes. Iterate across all nodes until we
868 * can no longer free unreserved surplus pages. This occurs when
869 * the nodes with surplus pages have no free pages.
870 */
62bc62a8 871 unsigned long remaining_iterations = nr_online_nodes;
11320d17 872
ac09b3a1 873 /* Uncommit the reservation */
a5516438 874 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 875
aa888a74
AK
876 /* Cannot return gigantic pages currently */
877 if (h->order >= MAX_ORDER)
878 return;
879
a5516438 880 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 881
11320d17 882 while (remaining_iterations-- && nr_pages) {
e4e574b7
AL
883 nid = next_node(nid, node_online_map);
884 if (nid == MAX_NUMNODES)
885 nid = first_node(node_online_map);
886
a5516438 887 if (!h->surplus_huge_pages_node[nid])
e4e574b7
AL
888 continue;
889
a5516438
AK
890 if (!list_empty(&h->hugepage_freelists[nid])) {
891 page = list_entry(h->hugepage_freelists[nid].next,
e4e574b7
AL
892 struct page, lru);
893 list_del(&page->lru);
a5516438
AK
894 update_and_free_page(h, page);
895 h->free_huge_pages--;
896 h->free_huge_pages_node[nid]--;
897 h->surplus_huge_pages--;
898 h->surplus_huge_pages_node[nid]--;
e4e574b7 899 nr_pages--;
62bc62a8 900 remaining_iterations = nr_online_nodes;
e4e574b7
AL
901 }
902 }
903}
904
c37f9fb1
AW
905/*
906 * Determine if the huge page at addr within the vma has an associated
907 * reservation. Where it does not we will need to logically increase
908 * reservation and actually increase quota before an allocation can occur.
909 * Where any new reservation would be required the reservation change is
910 * prepared, but not committed. Once the page has been quota'd allocated
911 * an instantiated the change should be committed via vma_commit_reservation.
912 * No action is required on failure.
913 */
e2f17d94 914static long vma_needs_reservation(struct hstate *h,
a5516438 915 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
916{
917 struct address_space *mapping = vma->vm_file->f_mapping;
918 struct inode *inode = mapping->host;
919
f83a275d 920 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 921 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1
AW
922 return region_chg(&inode->i_mapping->private_list,
923 idx, idx + 1);
924
84afd99b
AW
925 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
926 return 1;
c37f9fb1 927
84afd99b 928 } else {
e2f17d94 929 long err;
a5516438 930 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
931 struct resv_map *reservations = vma_resv_map(vma);
932
933 err = region_chg(&reservations->regions, idx, idx + 1);
934 if (err < 0)
935 return err;
936 return 0;
937 }
c37f9fb1 938}
a5516438
AK
939static void vma_commit_reservation(struct hstate *h,
940 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
941{
942 struct address_space *mapping = vma->vm_file->f_mapping;
943 struct inode *inode = mapping->host;
944
f83a275d 945 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 946 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1 947 region_add(&inode->i_mapping->private_list, idx, idx + 1);
84afd99b
AW
948
949 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a5516438 950 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
951 struct resv_map *reservations = vma_resv_map(vma);
952
953 /* Mark this page used in the map. */
954 region_add(&reservations->regions, idx, idx + 1);
c37f9fb1
AW
955 }
956}
957
a1e78772 958static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 959 unsigned long addr, int avoid_reserve)
1da177e4 960{
a5516438 961 struct hstate *h = hstate_vma(vma);
348ea204 962 struct page *page;
a1e78772
MG
963 struct address_space *mapping = vma->vm_file->f_mapping;
964 struct inode *inode = mapping->host;
e2f17d94 965 long chg;
a1e78772
MG
966
967 /*
968 * Processes that did not create the mapping will have no reserves and
969 * will not have accounted against quota. Check that the quota can be
970 * made before satisfying the allocation
c37f9fb1
AW
971 * MAP_NORESERVE mappings may also need pages and quota allocated
972 * if no reserve mapping overlaps.
a1e78772 973 */
a5516438 974 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1
AW
975 if (chg < 0)
976 return ERR_PTR(chg);
977 if (chg)
a1e78772
MG
978 if (hugetlb_get_quota(inode->i_mapping, chg))
979 return ERR_PTR(-ENOSPC);
1da177e4
LT
980
981 spin_lock(&hugetlb_lock);
a5516438 982 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1da177e4 983 spin_unlock(&hugetlb_lock);
b45b5bd6 984
68842c9b 985 if (!page) {
a5516438 986 page = alloc_buddy_huge_page(h, vma, addr);
68842c9b 987 if (!page) {
a1e78772 988 hugetlb_put_quota(inode->i_mapping, chg);
68842c9b
KC
989 return ERR_PTR(-VM_FAULT_OOM);
990 }
991 }
348ea204 992
a1e78772
MG
993 set_page_refcounted(page);
994 set_page_private(page, (unsigned long) mapping);
90d8b7e6 995
a5516438 996 vma_commit_reservation(h, vma, addr);
c37f9fb1 997
90d8b7e6 998 return page;
b45b5bd6
DG
999}
1000
91f47662 1001int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1002{
1003 struct huge_bootmem_page *m;
1004 int nr_nodes = nodes_weight(node_online_map);
1005
1006 while (nr_nodes) {
1007 void *addr;
1008
1009 addr = __alloc_bootmem_node_nopanic(
1010 NODE_DATA(h->hugetlb_next_nid),
1011 huge_page_size(h), huge_page_size(h), 0);
1012
1013 if (addr) {
1014 /*
1015 * Use the beginning of the huge page to store the
1016 * huge_bootmem_page struct (until gather_bootmem
1017 * puts them into the mem_map).
1018 */
1019 m = addr;
91f47662 1020 goto found;
aa888a74
AK
1021 }
1022 hstate_next_node(h);
1023 nr_nodes--;
1024 }
1025 return 0;
1026
1027found:
1028 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1029 /* Put them into a private list first because mem_map is not up yet */
1030 list_add(&m->list, &huge_boot_pages);
1031 m->hstate = h;
1032 return 1;
1033}
1034
18229df5
AW
1035static void prep_compound_huge_page(struct page *page, int order)
1036{
1037 if (unlikely(order > (MAX_ORDER - 1)))
1038 prep_compound_gigantic_page(page, order);
1039 else
1040 prep_compound_page(page, order);
1041}
1042
aa888a74
AK
1043/* Put bootmem huge pages into the standard lists after mem_map is up */
1044static void __init gather_bootmem_prealloc(void)
1045{
1046 struct huge_bootmem_page *m;
1047
1048 list_for_each_entry(m, &huge_boot_pages, list) {
1049 struct page *page = virt_to_page(m);
1050 struct hstate *h = m->hstate;
1051 __ClearPageReserved(page);
1052 WARN_ON(page_count(page) != 1);
18229df5 1053 prep_compound_huge_page(page, h->order);
aa888a74
AK
1054 prep_new_huge_page(h, page, page_to_nid(page));
1055 }
1056}
1057
8faa8b07 1058static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1059{
1060 unsigned long i;
a5516438 1061
e5ff2159 1062 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1063 if (h->order >= MAX_ORDER) {
1064 if (!alloc_bootmem_huge_page(h))
1065 break;
1066 } else if (!alloc_fresh_huge_page(h))
1da177e4 1067 break;
1da177e4 1068 }
8faa8b07 1069 h->max_huge_pages = i;
e5ff2159
AK
1070}
1071
1072static void __init hugetlb_init_hstates(void)
1073{
1074 struct hstate *h;
1075
1076 for_each_hstate(h) {
8faa8b07
AK
1077 /* oversize hugepages were init'ed in early boot */
1078 if (h->order < MAX_ORDER)
1079 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1080 }
1081}
1082
4abd32db
AK
1083static char * __init memfmt(char *buf, unsigned long n)
1084{
1085 if (n >= (1UL << 30))
1086 sprintf(buf, "%lu GB", n >> 30);
1087 else if (n >= (1UL << 20))
1088 sprintf(buf, "%lu MB", n >> 20);
1089 else
1090 sprintf(buf, "%lu KB", n >> 10);
1091 return buf;
1092}
1093
e5ff2159
AK
1094static void __init report_hugepages(void)
1095{
1096 struct hstate *h;
1097
1098 for_each_hstate(h) {
4abd32db
AK
1099 char buf[32];
1100 printk(KERN_INFO "HugeTLB registered %s page size, "
1101 "pre-allocated %ld pages\n",
1102 memfmt(buf, huge_page_size(h)),
1103 h->free_huge_pages);
e5ff2159
AK
1104 }
1105}
1106
1da177e4 1107#ifdef CONFIG_HIGHMEM
a5516438 1108static void try_to_free_low(struct hstate *h, unsigned long count)
1da177e4 1109{
4415cc8d
CL
1110 int i;
1111
aa888a74
AK
1112 if (h->order >= MAX_ORDER)
1113 return;
1114
1da177e4
LT
1115 for (i = 0; i < MAX_NUMNODES; ++i) {
1116 struct page *page, *next;
a5516438
AK
1117 struct list_head *freel = &h->hugepage_freelists[i];
1118 list_for_each_entry_safe(page, next, freel, lru) {
1119 if (count >= h->nr_huge_pages)
6b0c880d 1120 return;
1da177e4
LT
1121 if (PageHighMem(page))
1122 continue;
1123 list_del(&page->lru);
e5ff2159 1124 update_and_free_page(h, page);
a5516438
AK
1125 h->free_huge_pages--;
1126 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1127 }
1128 }
1129}
1130#else
a5516438 1131static inline void try_to_free_low(struct hstate *h, unsigned long count)
1da177e4
LT
1132{
1133}
1134#endif
1135
20a0307c
WF
1136/*
1137 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1138 * balanced by operating on them in a round-robin fashion.
1139 * Returns 1 if an adjustment was made.
1140 */
1141static int adjust_pool_surplus(struct hstate *h, int delta)
1142{
1143 static int prev_nid;
1144 int nid = prev_nid;
1145 int ret = 0;
1146
1147 VM_BUG_ON(delta != -1 && delta != 1);
1148 do {
1149 nid = next_node(nid, node_online_map);
1150 if (nid == MAX_NUMNODES)
1151 nid = first_node(node_online_map);
1152
1153 /* To shrink on this node, there must be a surplus page */
1154 if (delta < 0 && !h->surplus_huge_pages_node[nid])
1155 continue;
1156 /* Surplus cannot exceed the total number of pages */
1157 if (delta > 0 && h->surplus_huge_pages_node[nid] >=
1158 h->nr_huge_pages_node[nid])
1159 continue;
1160
1161 h->surplus_huge_pages += delta;
1162 h->surplus_huge_pages_node[nid] += delta;
1163 ret = 1;
1164 break;
1165 } while (nid != prev_nid);
1166
1167 prev_nid = nid;
1168 return ret;
1169}
1170
a5516438 1171#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
e5ff2159 1172static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
1da177e4 1173{
7893d1d5 1174 unsigned long min_count, ret;
1da177e4 1175
aa888a74
AK
1176 if (h->order >= MAX_ORDER)
1177 return h->max_huge_pages;
1178
7893d1d5
AL
1179 /*
1180 * Increase the pool size
1181 * First take pages out of surplus state. Then make up the
1182 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1183 *
1184 * We might race with alloc_buddy_huge_page() here and be unable
1185 * to convert a surplus huge page to a normal huge page. That is
1186 * not critical, though, it just means the overall size of the
1187 * pool might be one hugepage larger than it needs to be, but
1188 * within all the constraints specified by the sysctls.
7893d1d5 1189 */
1da177e4 1190 spin_lock(&hugetlb_lock);
a5516438
AK
1191 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1192 if (!adjust_pool_surplus(h, -1))
7893d1d5
AL
1193 break;
1194 }
1195
a5516438 1196 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1197 /*
1198 * If this allocation races such that we no longer need the
1199 * page, free_huge_page will handle it by freeing the page
1200 * and reducing the surplus.
1201 */
1202 spin_unlock(&hugetlb_lock);
a5516438 1203 ret = alloc_fresh_huge_page(h);
7893d1d5
AL
1204 spin_lock(&hugetlb_lock);
1205 if (!ret)
1206 goto out;
1207
1208 }
7893d1d5
AL
1209
1210 /*
1211 * Decrease the pool size
1212 * First return free pages to the buddy allocator (being careful
1213 * to keep enough around to satisfy reservations). Then place
1214 * pages into surplus state as needed so the pool will shrink
1215 * to the desired size as pages become free.
d1c3fb1f
NA
1216 *
1217 * By placing pages into the surplus state independent of the
1218 * overcommit value, we are allowing the surplus pool size to
1219 * exceed overcommit. There are few sane options here. Since
1220 * alloc_buddy_huge_page() is checking the global counter,
1221 * though, we'll note that we're not allowed to exceed surplus
1222 * and won't grow the pool anywhere else. Not until one of the
1223 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1224 */
a5516438 1225 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1226 min_count = max(count, min_count);
a5516438
AK
1227 try_to_free_low(h, min_count);
1228 while (min_count < persistent_huge_pages(h)) {
1229 struct page *page = dequeue_huge_page(h);
1da177e4
LT
1230 if (!page)
1231 break;
a5516438 1232 update_and_free_page(h, page);
1da177e4 1233 }
a5516438
AK
1234 while (count < persistent_huge_pages(h)) {
1235 if (!adjust_pool_surplus(h, 1))
7893d1d5
AL
1236 break;
1237 }
1238out:
a5516438 1239 ret = persistent_huge_pages(h);
1da177e4 1240 spin_unlock(&hugetlb_lock);
7893d1d5 1241 return ret;
1da177e4
LT
1242}
1243
a3437870
NA
1244#define HSTATE_ATTR_RO(_name) \
1245 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1246
1247#define HSTATE_ATTR(_name) \
1248 static struct kobj_attribute _name##_attr = \
1249 __ATTR(_name, 0644, _name##_show, _name##_store)
1250
1251static struct kobject *hugepages_kobj;
1252static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1253
1254static struct hstate *kobj_to_hstate(struct kobject *kobj)
1255{
1256 int i;
1257 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1258 if (hstate_kobjs[i] == kobj)
1259 return &hstates[i];
1260 BUG();
1261 return NULL;
1262}
1263
1264static ssize_t nr_hugepages_show(struct kobject *kobj,
1265 struct kobj_attribute *attr, char *buf)
1266{
1267 struct hstate *h = kobj_to_hstate(kobj);
1268 return sprintf(buf, "%lu\n", h->nr_huge_pages);
1269}
1270static ssize_t nr_hugepages_store(struct kobject *kobj,
1271 struct kobj_attribute *attr, const char *buf, size_t count)
1272{
1273 int err;
1274 unsigned long input;
1275 struct hstate *h = kobj_to_hstate(kobj);
1276
1277 err = strict_strtoul(buf, 10, &input);
1278 if (err)
1279 return 0;
1280
1281 h->max_huge_pages = set_max_huge_pages(h, input);
1282
1283 return count;
1284}
1285HSTATE_ATTR(nr_hugepages);
1286
1287static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1288 struct kobj_attribute *attr, char *buf)
1289{
1290 struct hstate *h = kobj_to_hstate(kobj);
1291 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1292}
1293static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1294 struct kobj_attribute *attr, const char *buf, size_t count)
1295{
1296 int err;
1297 unsigned long input;
1298 struct hstate *h = kobj_to_hstate(kobj);
1299
1300 err = strict_strtoul(buf, 10, &input);
1301 if (err)
1302 return 0;
1303
1304 spin_lock(&hugetlb_lock);
1305 h->nr_overcommit_huge_pages = input;
1306 spin_unlock(&hugetlb_lock);
1307
1308 return count;
1309}
1310HSTATE_ATTR(nr_overcommit_hugepages);
1311
1312static ssize_t free_hugepages_show(struct kobject *kobj,
1313 struct kobj_attribute *attr, char *buf)
1314{
1315 struct hstate *h = kobj_to_hstate(kobj);
1316 return sprintf(buf, "%lu\n", h->free_huge_pages);
1317}
1318HSTATE_ATTR_RO(free_hugepages);
1319
1320static ssize_t resv_hugepages_show(struct kobject *kobj,
1321 struct kobj_attribute *attr, char *buf)
1322{
1323 struct hstate *h = kobj_to_hstate(kobj);
1324 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1325}
1326HSTATE_ATTR_RO(resv_hugepages);
1327
1328static ssize_t surplus_hugepages_show(struct kobject *kobj,
1329 struct kobj_attribute *attr, char *buf)
1330{
1331 struct hstate *h = kobj_to_hstate(kobj);
1332 return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1333}
1334HSTATE_ATTR_RO(surplus_hugepages);
1335
1336static struct attribute *hstate_attrs[] = {
1337 &nr_hugepages_attr.attr,
1338 &nr_overcommit_hugepages_attr.attr,
1339 &free_hugepages_attr.attr,
1340 &resv_hugepages_attr.attr,
1341 &surplus_hugepages_attr.attr,
1342 NULL,
1343};
1344
1345static struct attribute_group hstate_attr_group = {
1346 .attrs = hstate_attrs,
1347};
1348
1349static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1350{
1351 int retval;
1352
1353 hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1354 hugepages_kobj);
1355 if (!hstate_kobjs[h - hstates])
1356 return -ENOMEM;
1357
1358 retval = sysfs_create_group(hstate_kobjs[h - hstates],
1359 &hstate_attr_group);
1360 if (retval)
1361 kobject_put(hstate_kobjs[h - hstates]);
1362
1363 return retval;
1364}
1365
1366static void __init hugetlb_sysfs_init(void)
1367{
1368 struct hstate *h;
1369 int err;
1370
1371 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1372 if (!hugepages_kobj)
1373 return;
1374
1375 for_each_hstate(h) {
1376 err = hugetlb_sysfs_add_hstate(h);
1377 if (err)
1378 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1379 h->name);
1380 }
1381}
1382
1383static void __exit hugetlb_exit(void)
1384{
1385 struct hstate *h;
1386
1387 for_each_hstate(h) {
1388 kobject_put(hstate_kobjs[h - hstates]);
1389 }
1390
1391 kobject_put(hugepages_kobj);
1392}
1393module_exit(hugetlb_exit);
1394
1395static int __init hugetlb_init(void)
1396{
0ef89d25
BH
1397 /* Some platform decide whether they support huge pages at boot
1398 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1399 * there is no such support
1400 */
1401 if (HPAGE_SHIFT == 0)
1402 return 0;
a3437870 1403
e11bfbfc
NP
1404 if (!size_to_hstate(default_hstate_size)) {
1405 default_hstate_size = HPAGE_SIZE;
1406 if (!size_to_hstate(default_hstate_size))
1407 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1408 }
e11bfbfc
NP
1409 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1410 if (default_hstate_max_huge_pages)
1411 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1412
1413 hugetlb_init_hstates();
1414
aa888a74
AK
1415 gather_bootmem_prealloc();
1416
a3437870
NA
1417 report_hugepages();
1418
1419 hugetlb_sysfs_init();
1420
1421 return 0;
1422}
1423module_init(hugetlb_init);
1424
1425/* Should be called on processing a hugepagesz=... option */
1426void __init hugetlb_add_hstate(unsigned order)
1427{
1428 struct hstate *h;
8faa8b07
AK
1429 unsigned long i;
1430
a3437870
NA
1431 if (size_to_hstate(PAGE_SIZE << order)) {
1432 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1433 return;
1434 }
1435 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1436 BUG_ON(order == 0);
1437 h = &hstates[max_hstate++];
1438 h->order = order;
1439 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
1440 h->nr_huge_pages = 0;
1441 h->free_huge_pages = 0;
1442 for (i = 0; i < MAX_NUMNODES; ++i)
1443 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1444 h->hugetlb_next_nid = first_node(node_online_map);
a3437870
NA
1445 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1446 huge_page_size(h)/1024);
8faa8b07 1447
a3437870
NA
1448 parsed_hstate = h;
1449}
1450
e11bfbfc 1451static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
1452{
1453 unsigned long *mhp;
8faa8b07 1454 static unsigned long *last_mhp;
a3437870
NA
1455
1456 /*
1457 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1458 * so this hugepages= parameter goes to the "default hstate".
1459 */
1460 if (!max_hstate)
1461 mhp = &default_hstate_max_huge_pages;
1462 else
1463 mhp = &parsed_hstate->max_huge_pages;
1464
8faa8b07
AK
1465 if (mhp == last_mhp) {
1466 printk(KERN_WARNING "hugepages= specified twice without "
1467 "interleaving hugepagesz=, ignoring\n");
1468 return 1;
1469 }
1470
a3437870
NA
1471 if (sscanf(s, "%lu", mhp) <= 0)
1472 *mhp = 0;
1473
8faa8b07
AK
1474 /*
1475 * Global state is always initialized later in hugetlb_init.
1476 * But we need to allocate >= MAX_ORDER hstates here early to still
1477 * use the bootmem allocator.
1478 */
1479 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1480 hugetlb_hstate_alloc_pages(parsed_hstate);
1481
1482 last_mhp = mhp;
1483
a3437870
NA
1484 return 1;
1485}
e11bfbfc
NP
1486__setup("hugepages=", hugetlb_nrpages_setup);
1487
1488static int __init hugetlb_default_setup(char *s)
1489{
1490 default_hstate_size = memparse(s, &s);
1491 return 1;
1492}
1493__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 1494
8a213460
NA
1495static unsigned int cpuset_mems_nr(unsigned int *array)
1496{
1497 int node;
1498 unsigned int nr = 0;
1499
1500 for_each_node_mask(node, cpuset_current_mems_allowed)
1501 nr += array[node];
1502
1503 return nr;
1504}
1505
1506#ifdef CONFIG_SYSCTL
1da177e4
LT
1507int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1508 struct file *file, void __user *buffer,
1509 size_t *length, loff_t *ppos)
1510{
e5ff2159
AK
1511 struct hstate *h = &default_hstate;
1512 unsigned long tmp;
1513
1514 if (!write)
1515 tmp = h->max_huge_pages;
1516
1517 table->data = &tmp;
1518 table->maxlen = sizeof(unsigned long);
1da177e4 1519 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
e5ff2159
AK
1520
1521 if (write)
1522 h->max_huge_pages = set_max_huge_pages(h, tmp);
1523
1da177e4
LT
1524 return 0;
1525}
396faf03
MG
1526
1527int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1528 struct file *file, void __user *buffer,
1529 size_t *length, loff_t *ppos)
1530{
1531 proc_dointvec(table, write, file, buffer, length, ppos);
1532 if (hugepages_treat_as_movable)
1533 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1534 else
1535 htlb_alloc_mask = GFP_HIGHUSER;
1536 return 0;
1537}
1538
a3d0c6aa
NA
1539int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1540 struct file *file, void __user *buffer,
1541 size_t *length, loff_t *ppos)
1542{
a5516438 1543 struct hstate *h = &default_hstate;
e5ff2159
AK
1544 unsigned long tmp;
1545
1546 if (!write)
1547 tmp = h->nr_overcommit_huge_pages;
1548
1549 table->data = &tmp;
1550 table->maxlen = sizeof(unsigned long);
a3d0c6aa 1551 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
e5ff2159
AK
1552
1553 if (write) {
1554 spin_lock(&hugetlb_lock);
1555 h->nr_overcommit_huge_pages = tmp;
1556 spin_unlock(&hugetlb_lock);
1557 }
1558
a3d0c6aa
NA
1559 return 0;
1560}
1561
1da177e4
LT
1562#endif /* CONFIG_SYSCTL */
1563
e1759c21 1564void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 1565{
a5516438 1566 struct hstate *h = &default_hstate;
e1759c21 1567 seq_printf(m,
4f98a2fe
RR
1568 "HugePages_Total: %5lu\n"
1569 "HugePages_Free: %5lu\n"
1570 "HugePages_Rsvd: %5lu\n"
1571 "HugePages_Surp: %5lu\n"
1572 "Hugepagesize: %8lu kB\n",
a5516438
AK
1573 h->nr_huge_pages,
1574 h->free_huge_pages,
1575 h->resv_huge_pages,
1576 h->surplus_huge_pages,
1577 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
1578}
1579
1580int hugetlb_report_node_meminfo(int nid, char *buf)
1581{
a5516438 1582 struct hstate *h = &default_hstate;
1da177e4
LT
1583 return sprintf(buf,
1584 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
1585 "Node %d HugePages_Free: %5u\n"
1586 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
1587 nid, h->nr_huge_pages_node[nid],
1588 nid, h->free_huge_pages_node[nid],
1589 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
1590}
1591
1da177e4
LT
1592/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1593unsigned long hugetlb_total_pages(void)
1594{
a5516438
AK
1595 struct hstate *h = &default_hstate;
1596 return h->nr_huge_pages * pages_per_huge_page(h);
1da177e4 1597}
1da177e4 1598
a5516438 1599static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
1600{
1601 int ret = -ENOMEM;
1602
1603 spin_lock(&hugetlb_lock);
1604 /*
1605 * When cpuset is configured, it breaks the strict hugetlb page
1606 * reservation as the accounting is done on a global variable. Such
1607 * reservation is completely rubbish in the presence of cpuset because
1608 * the reservation is not checked against page availability for the
1609 * current cpuset. Application can still potentially OOM'ed by kernel
1610 * with lack of free htlb page in cpuset that the task is in.
1611 * Attempt to enforce strict accounting with cpuset is almost
1612 * impossible (or too ugly) because cpuset is too fluid that
1613 * task or memory node can be dynamically moved between cpusets.
1614 *
1615 * The change of semantics for shared hugetlb mapping with cpuset is
1616 * undesirable. However, in order to preserve some of the semantics,
1617 * we fall back to check against current free page availability as
1618 * a best attempt and hopefully to minimize the impact of changing
1619 * semantics that cpuset has.
1620 */
1621 if (delta > 0) {
a5516438 1622 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
1623 goto out;
1624
a5516438
AK
1625 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1626 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
1627 goto out;
1628 }
1629 }
1630
1631 ret = 0;
1632 if (delta < 0)
a5516438 1633 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
1634
1635out:
1636 spin_unlock(&hugetlb_lock);
1637 return ret;
1638}
1639
84afd99b
AW
1640static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1641{
1642 struct resv_map *reservations = vma_resv_map(vma);
1643
1644 /*
1645 * This new VMA should share its siblings reservation map if present.
1646 * The VMA will only ever have a valid reservation map pointer where
1647 * it is being copied for another still existing VMA. As that VMA
1648 * has a reference to the reservation map it cannot dissappear until
1649 * after this open call completes. It is therefore safe to take a
1650 * new reference here without additional locking.
1651 */
1652 if (reservations)
1653 kref_get(&reservations->refs);
1654}
1655
a1e78772
MG
1656static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1657{
a5516438 1658 struct hstate *h = hstate_vma(vma);
84afd99b
AW
1659 struct resv_map *reservations = vma_resv_map(vma);
1660 unsigned long reserve;
1661 unsigned long start;
1662 unsigned long end;
1663
1664 if (reservations) {
a5516438
AK
1665 start = vma_hugecache_offset(h, vma, vma->vm_start);
1666 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b
AW
1667
1668 reserve = (end - start) -
1669 region_count(&reservations->regions, start, end);
1670
1671 kref_put(&reservations->refs, resv_map_release);
1672
7251ff78 1673 if (reserve) {
a5516438 1674 hugetlb_acct_memory(h, -reserve);
7251ff78
AL
1675 hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
1676 }
84afd99b 1677 }
a1e78772
MG
1678}
1679
1da177e4
LT
1680/*
1681 * We cannot handle pagefaults against hugetlb pages at all. They cause
1682 * handle_mm_fault() to try to instantiate regular-sized pages in the
1683 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1684 * this far.
1685 */
d0217ac0 1686static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1687{
1688 BUG();
d0217ac0 1689 return 0;
1da177e4
LT
1690}
1691
1692struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 1693 .fault = hugetlb_vm_op_fault,
84afd99b 1694 .open = hugetlb_vm_op_open,
a1e78772 1695 .close = hugetlb_vm_op_close,
1da177e4
LT
1696};
1697
1e8f889b
DG
1698static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1699 int writable)
63551ae0
DG
1700{
1701 pte_t entry;
1702
1e8f889b 1703 if (writable) {
63551ae0
DG
1704 entry =
1705 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1706 } else {
7f2e9525 1707 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
63551ae0
DG
1708 }
1709 entry = pte_mkyoung(entry);
1710 entry = pte_mkhuge(entry);
1711
1712 return entry;
1713}
1714
1e8f889b
DG
1715static void set_huge_ptep_writable(struct vm_area_struct *vma,
1716 unsigned long address, pte_t *ptep)
1717{
1718 pte_t entry;
1719
7f2e9525
GS
1720 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1721 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
8dab5241 1722 update_mmu_cache(vma, address, entry);
8dab5241 1723 }
1e8f889b
DG
1724}
1725
1726
63551ae0
DG
1727int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1728 struct vm_area_struct *vma)
1729{
1730 pte_t *src_pte, *dst_pte, entry;
1731 struct page *ptepage;
1c59827d 1732 unsigned long addr;
1e8f889b 1733 int cow;
a5516438
AK
1734 struct hstate *h = hstate_vma(vma);
1735 unsigned long sz = huge_page_size(h);
1e8f889b
DG
1736
1737 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 1738
a5516438 1739 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
c74df32c
HD
1740 src_pte = huge_pte_offset(src, addr);
1741 if (!src_pte)
1742 continue;
a5516438 1743 dst_pte = huge_pte_alloc(dst, addr, sz);
63551ae0
DG
1744 if (!dst_pte)
1745 goto nomem;
c5c99429
LW
1746
1747 /* If the pagetables are shared don't copy or take references */
1748 if (dst_pte == src_pte)
1749 continue;
1750
c74df32c 1751 spin_lock(&dst->page_table_lock);
46478758 1752 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
7f2e9525 1753 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 1754 if (cow)
7f2e9525
GS
1755 huge_ptep_set_wrprotect(src, addr, src_pte);
1756 entry = huge_ptep_get(src_pte);
1c59827d
HD
1757 ptepage = pte_page(entry);
1758 get_page(ptepage);
1c59827d
HD
1759 set_huge_pte_at(dst, addr, dst_pte, entry);
1760 }
1761 spin_unlock(&src->page_table_lock);
c74df32c 1762 spin_unlock(&dst->page_table_lock);
63551ae0
DG
1763 }
1764 return 0;
1765
1766nomem:
1767 return -ENOMEM;
1768}
1769
502717f4 1770void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 1771 unsigned long end, struct page *ref_page)
63551ae0
DG
1772{
1773 struct mm_struct *mm = vma->vm_mm;
1774 unsigned long address;
c7546f8f 1775 pte_t *ptep;
63551ae0
DG
1776 pte_t pte;
1777 struct page *page;
fe1668ae 1778 struct page *tmp;
a5516438
AK
1779 struct hstate *h = hstate_vma(vma);
1780 unsigned long sz = huge_page_size(h);
1781
c0a499c2
KC
1782 /*
1783 * A page gathering list, protected by per file i_mmap_lock. The
1784 * lock is used to avoid list corruption from multiple unmapping
1785 * of the same page since we are using page->lru.
1786 */
fe1668ae 1787 LIST_HEAD(page_list);
63551ae0
DG
1788
1789 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
1790 BUG_ON(start & ~huge_page_mask(h));
1791 BUG_ON(end & ~huge_page_mask(h));
63551ae0 1792
cddb8a5c 1793 mmu_notifier_invalidate_range_start(mm, start, end);
508034a3 1794 spin_lock(&mm->page_table_lock);
a5516438 1795 for (address = start; address < end; address += sz) {
c7546f8f 1796 ptep = huge_pte_offset(mm, address);
4c887265 1797 if (!ptep)
c7546f8f
DG
1798 continue;
1799
39dde65c
KC
1800 if (huge_pmd_unshare(mm, &address, ptep))
1801 continue;
1802
04f2cbe3
MG
1803 /*
1804 * If a reference page is supplied, it is because a specific
1805 * page is being unmapped, not a range. Ensure the page we
1806 * are about to unmap is the actual page of interest.
1807 */
1808 if (ref_page) {
1809 pte = huge_ptep_get(ptep);
1810 if (huge_pte_none(pte))
1811 continue;
1812 page = pte_page(pte);
1813 if (page != ref_page)
1814 continue;
1815
1816 /*
1817 * Mark the VMA as having unmapped its page so that
1818 * future faults in this VMA will fail rather than
1819 * looking like data was lost
1820 */
1821 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1822 }
1823
c7546f8f 1824 pte = huge_ptep_get_and_clear(mm, address, ptep);
7f2e9525 1825 if (huge_pte_none(pte))
63551ae0 1826 continue;
c7546f8f 1827
63551ae0 1828 page = pte_page(pte);
6649a386
KC
1829 if (pte_dirty(pte))
1830 set_page_dirty(page);
fe1668ae 1831 list_add(&page->lru, &page_list);
63551ae0 1832 }
1da177e4 1833 spin_unlock(&mm->page_table_lock);
508034a3 1834 flush_tlb_range(vma, start, end);
cddb8a5c 1835 mmu_notifier_invalidate_range_end(mm, start, end);
fe1668ae
KC
1836 list_for_each_entry_safe(page, tmp, &page_list, lru) {
1837 list_del(&page->lru);
1838 put_page(page);
1839 }
1da177e4 1840}
63551ae0 1841
502717f4 1842void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 1843 unsigned long end, struct page *ref_page)
502717f4 1844{
a137e1cc
AK
1845 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1846 __unmap_hugepage_range(vma, start, end, ref_page);
1847 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
502717f4
KC
1848}
1849
04f2cbe3
MG
1850/*
1851 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1852 * mappping it owns the reserve page for. The intention is to unmap the page
1853 * from other VMAs and let the children be SIGKILLed if they are faulting the
1854 * same region.
1855 */
2a4b3ded
HH
1856static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
1857 struct page *page, unsigned long address)
04f2cbe3 1858{
7526674d 1859 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
1860 struct vm_area_struct *iter_vma;
1861 struct address_space *mapping;
1862 struct prio_tree_iter iter;
1863 pgoff_t pgoff;
1864
1865 /*
1866 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1867 * from page cache lookup which is in HPAGE_SIZE units.
1868 */
7526674d 1869 address = address & huge_page_mask(h);
04f2cbe3
MG
1870 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1871 + (vma->vm_pgoff >> PAGE_SHIFT);
1872 mapping = (struct address_space *)page_private(page);
1873
1874 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1875 /* Do not unmap the current VMA */
1876 if (iter_vma == vma)
1877 continue;
1878
1879 /*
1880 * Unmap the page from other VMAs without their own reserves.
1881 * They get marked to be SIGKILLed if they fault in these
1882 * areas. This is because a future no-page fault on this VMA
1883 * could insert a zeroed page instead of the data existing
1884 * from the time of fork. This would look like data corruption
1885 */
1886 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1887 unmap_hugepage_range(iter_vma,
7526674d 1888 address, address + huge_page_size(h),
04f2cbe3
MG
1889 page);
1890 }
1891
1892 return 1;
1893}
1894
1e8f889b 1895static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3
MG
1896 unsigned long address, pte_t *ptep, pte_t pte,
1897 struct page *pagecache_page)
1e8f889b 1898{
a5516438 1899 struct hstate *h = hstate_vma(vma);
1e8f889b 1900 struct page *old_page, *new_page;
79ac6ba4 1901 int avoidcopy;
04f2cbe3 1902 int outside_reserve = 0;
1e8f889b
DG
1903
1904 old_page = pte_page(pte);
1905
04f2cbe3 1906retry_avoidcopy:
1e8f889b
DG
1907 /* If no-one else is actually using this page, avoid the copy
1908 * and just make the page writable */
1909 avoidcopy = (page_count(old_page) == 1);
1910 if (avoidcopy) {
1911 set_huge_ptep_writable(vma, address, ptep);
83c54070 1912 return 0;
1e8f889b
DG
1913 }
1914
04f2cbe3
MG
1915 /*
1916 * If the process that created a MAP_PRIVATE mapping is about to
1917 * perform a COW due to a shared page count, attempt to satisfy
1918 * the allocation without using the existing reserves. The pagecache
1919 * page is used to determine if the reserve at this address was
1920 * consumed or not. If reserves were used, a partial faulted mapping
1921 * at the time of fork() could consume its reserves on COW instead
1922 * of the full address range.
1923 */
f83a275d 1924 if (!(vma->vm_flags & VM_MAYSHARE) &&
04f2cbe3
MG
1925 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1926 old_page != pagecache_page)
1927 outside_reserve = 1;
1928
1e8f889b 1929 page_cache_get(old_page);
04f2cbe3 1930 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 1931
2fc39cec 1932 if (IS_ERR(new_page)) {
1e8f889b 1933 page_cache_release(old_page);
04f2cbe3
MG
1934
1935 /*
1936 * If a process owning a MAP_PRIVATE mapping fails to COW,
1937 * it is due to references held by a child and an insufficient
1938 * huge page pool. To guarantee the original mappers
1939 * reliability, unmap the page from child processes. The child
1940 * may get SIGKILLed if it later faults.
1941 */
1942 if (outside_reserve) {
1943 BUG_ON(huge_pte_none(pte));
1944 if (unmap_ref_private(mm, vma, old_page, address)) {
1945 BUG_ON(page_count(old_page) != 1);
1946 BUG_ON(huge_pte_none(pte));
1947 goto retry_avoidcopy;
1948 }
1949 WARN_ON_ONCE(1);
1950 }
1951
2fc39cec 1952 return -PTR_ERR(new_page);
1e8f889b
DG
1953 }
1954
1955 spin_unlock(&mm->page_table_lock);
9de455b2 1956 copy_huge_page(new_page, old_page, address, vma);
0ed361de 1957 __SetPageUptodate(new_page);
1e8f889b
DG
1958 spin_lock(&mm->page_table_lock);
1959
a5516438 1960 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 1961 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1e8f889b 1962 /* Break COW */
8fe627ec 1963 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
1964 set_huge_pte_at(mm, address, ptep,
1965 make_huge_pte(vma, new_page, 1));
1966 /* Make the old page be freed below */
1967 new_page = old_page;
1968 }
1969 page_cache_release(new_page);
1970 page_cache_release(old_page);
83c54070 1971 return 0;
1e8f889b
DG
1972}
1973
04f2cbe3 1974/* Return the pagecache page at a given address within a VMA */
a5516438
AK
1975static struct page *hugetlbfs_pagecache_page(struct hstate *h,
1976 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
1977{
1978 struct address_space *mapping;
e7c4b0bf 1979 pgoff_t idx;
04f2cbe3
MG
1980
1981 mapping = vma->vm_file->f_mapping;
a5516438 1982 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
1983
1984 return find_lock_page(mapping, idx);
1985}
1986
a1ed3dda 1987static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1e8f889b 1988 unsigned long address, pte_t *ptep, int write_access)
ac9b9c66 1989{
a5516438 1990 struct hstate *h = hstate_vma(vma);
ac9b9c66 1991 int ret = VM_FAULT_SIGBUS;
e7c4b0bf 1992 pgoff_t idx;
4c887265 1993 unsigned long size;
4c887265
AL
1994 struct page *page;
1995 struct address_space *mapping;
1e8f889b 1996 pte_t new_pte;
4c887265 1997
04f2cbe3
MG
1998 /*
1999 * Currently, we are forced to kill the process in the event the
2000 * original mapper has unmapped pages from the child due to a failed
2001 * COW. Warn that such a situation has occured as it may not be obvious
2002 */
2003 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2004 printk(KERN_WARNING
2005 "PID %d killed due to inadequate hugepage pool\n",
2006 current->pid);
2007 return ret;
2008 }
2009
4c887265 2010 mapping = vma->vm_file->f_mapping;
a5516438 2011 idx = vma_hugecache_offset(h, vma, address);
4c887265
AL
2012
2013 /*
2014 * Use page lock to guard against racing truncation
2015 * before we get page_table_lock.
2016 */
6bda666a
CL
2017retry:
2018 page = find_lock_page(mapping, idx);
2019 if (!page) {
a5516438 2020 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2021 if (idx >= size)
2022 goto out;
04f2cbe3 2023 page = alloc_huge_page(vma, address, 0);
2fc39cec
AL
2024 if (IS_ERR(page)) {
2025 ret = -PTR_ERR(page);
6bda666a
CL
2026 goto out;
2027 }
a5516438 2028 clear_huge_page(page, address, huge_page_size(h));
0ed361de 2029 __SetPageUptodate(page);
ac9b9c66 2030
f83a275d 2031 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2032 int err;
45c682a6 2033 struct inode *inode = mapping->host;
6bda666a
CL
2034
2035 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2036 if (err) {
2037 put_page(page);
6bda666a
CL
2038 if (err == -EEXIST)
2039 goto retry;
2040 goto out;
2041 }
45c682a6
KC
2042
2043 spin_lock(&inode->i_lock);
a5516438 2044 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2045 spin_unlock(&inode->i_lock);
6bda666a
CL
2046 } else
2047 lock_page(page);
2048 }
1e8f889b 2049
57303d80
AW
2050 /*
2051 * If we are going to COW a private mapping later, we examine the
2052 * pending reservations for this page now. This will ensure that
2053 * any allocations necessary to record that reservation occur outside
2054 * the spinlock.
2055 */
2056 if (write_access && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2057 if (vma_needs_reservation(h, vma, address) < 0) {
2058 ret = VM_FAULT_OOM;
2059 goto backout_unlocked;
2060 }
57303d80 2061
ac9b9c66 2062 spin_lock(&mm->page_table_lock);
a5516438 2063 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2064 if (idx >= size)
2065 goto backout;
2066
83c54070 2067 ret = 0;
7f2e9525 2068 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2069 goto backout;
2070
1e8f889b
DG
2071 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2072 && (vma->vm_flags & VM_SHARED)));
2073 set_huge_pte_at(mm, address, ptep, new_pte);
2074
2075 if (write_access && !(vma->vm_flags & VM_SHARED)) {
2076 /* Optimization, do the COW without a second fault */
04f2cbe3 2077 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1e8f889b
DG
2078 }
2079
ac9b9c66 2080 spin_unlock(&mm->page_table_lock);
4c887265
AL
2081 unlock_page(page);
2082out:
ac9b9c66 2083 return ret;
4c887265
AL
2084
2085backout:
2086 spin_unlock(&mm->page_table_lock);
2b26736c 2087backout_unlocked:
4c887265
AL
2088 unlock_page(page);
2089 put_page(page);
2090 goto out;
ac9b9c66
HD
2091}
2092
86e5216f
AL
2093int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2094 unsigned long address, int write_access)
2095{
2096 pte_t *ptep;
2097 pte_t entry;
1e8f889b 2098 int ret;
57303d80 2099 struct page *pagecache_page = NULL;
3935baa9 2100 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
a5516438 2101 struct hstate *h = hstate_vma(vma);
86e5216f 2102
a5516438 2103 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2104 if (!ptep)
2105 return VM_FAULT_OOM;
2106
3935baa9
DG
2107 /*
2108 * Serialize hugepage allocation and instantiation, so that we don't
2109 * get spurious allocation failures if two CPUs race to instantiate
2110 * the same page in the page cache.
2111 */
2112 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
2113 entry = huge_ptep_get(ptep);
2114 if (huge_pte_none(entry)) {
3935baa9 2115 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
b4d1d99f 2116 goto out_mutex;
3935baa9 2117 }
86e5216f 2118
83c54070 2119 ret = 0;
1e8f889b 2120
57303d80
AW
2121 /*
2122 * If we are going to COW the mapping later, we examine the pending
2123 * reservations for this page now. This will ensure that any
2124 * allocations necessary to record that reservation occur outside the
2125 * spinlock. For private mappings, we also lookup the pagecache
2126 * page now as it is used to determine if a reservation has been
2127 * consumed.
2128 */
2129 if (write_access && !pte_write(entry)) {
2b26736c
AW
2130 if (vma_needs_reservation(h, vma, address) < 0) {
2131 ret = VM_FAULT_OOM;
b4d1d99f 2132 goto out_mutex;
2b26736c 2133 }
57303d80 2134
f83a275d 2135 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
2136 pagecache_page = hugetlbfs_pagecache_page(h,
2137 vma, address);
2138 }
2139
1e8f889b
DG
2140 spin_lock(&mm->page_table_lock);
2141 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f
DG
2142 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2143 goto out_page_table_lock;
2144
2145
2146 if (write_access) {
2147 if (!pte_write(entry)) {
57303d80
AW
2148 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2149 pagecache_page);
b4d1d99f
DG
2150 goto out_page_table_lock;
2151 }
2152 entry = pte_mkdirty(entry);
2153 }
2154 entry = pte_mkyoung(entry);
2155 if (huge_ptep_set_access_flags(vma, address, ptep, entry, write_access))
2156 update_mmu_cache(vma, address, entry);
2157
2158out_page_table_lock:
1e8f889b 2159 spin_unlock(&mm->page_table_lock);
57303d80
AW
2160
2161 if (pagecache_page) {
2162 unlock_page(pagecache_page);
2163 put_page(pagecache_page);
2164 }
2165
b4d1d99f 2166out_mutex:
3935baa9 2167 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
2168
2169 return ret;
86e5216f
AL
2170}
2171
ceb86879
AK
2172/* Can be overriden by architectures */
2173__attribute__((weak)) struct page *
2174follow_huge_pud(struct mm_struct *mm, unsigned long address,
2175 pud_t *pud, int write)
2176{
2177 BUG();
2178 return NULL;
2179}
2180
4b2e38ad
KM
2181static int huge_zeropage_ok(pte_t *ptep, int write, int shared)
2182{
2183 if (!ptep || write || shared)
2184 return 0;
2185 else
2186 return huge_pte_none(huge_ptep_get(ptep));
2187}
2188
63551ae0
DG
2189int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2190 struct page **pages, struct vm_area_struct **vmas,
5b23dbe8
AL
2191 unsigned long *position, int *length, int i,
2192 int write)
63551ae0 2193{
d5d4b0aa
KC
2194 unsigned long pfn_offset;
2195 unsigned long vaddr = *position;
63551ae0 2196 int remainder = *length;
a5516438 2197 struct hstate *h = hstate_vma(vma);
4b2e38ad
KM
2198 int zeropage_ok = 0;
2199 int shared = vma->vm_flags & VM_SHARED;
63551ae0 2200
1c59827d 2201 spin_lock(&mm->page_table_lock);
63551ae0 2202 while (vaddr < vma->vm_end && remainder) {
4c887265
AL
2203 pte_t *pte;
2204 struct page *page;
63551ae0 2205
4c887265
AL
2206 /*
2207 * Some archs (sparc64, sh*) have multiple pte_ts to
2208 * each hugepage. We have to make * sure we get the
2209 * first, for the page indexing below to work.
2210 */
a5516438 2211 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
4b2e38ad
KM
2212 if (huge_zeropage_ok(pte, write, shared))
2213 zeropage_ok = 1;
63551ae0 2214
4b2e38ad
KM
2215 if (!pte ||
2216 (huge_pte_none(huge_ptep_get(pte)) && !zeropage_ok) ||
7f2e9525 2217 (write && !pte_write(huge_ptep_get(pte)))) {
4c887265 2218 int ret;
63551ae0 2219
4c887265 2220 spin_unlock(&mm->page_table_lock);
5b23dbe8 2221 ret = hugetlb_fault(mm, vma, vaddr, write);
4c887265 2222 spin_lock(&mm->page_table_lock);
a89182c7 2223 if (!(ret & VM_FAULT_ERROR))
4c887265 2224 continue;
63551ae0 2225
4c887265
AL
2226 remainder = 0;
2227 if (!i)
2228 i = -EFAULT;
2229 break;
2230 }
2231
a5516438 2232 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 2233 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 2234same_page:
d6692183 2235 if (pages) {
4b2e38ad
KM
2236 if (zeropage_ok)
2237 pages[i] = ZERO_PAGE(0);
2238 else
69d177c2 2239 pages[i] = mem_map_offset(page, pfn_offset);
4b2e38ad 2240 get_page(pages[i]);
d6692183 2241 }
63551ae0
DG
2242
2243 if (vmas)
2244 vmas[i] = vma;
2245
2246 vaddr += PAGE_SIZE;
d5d4b0aa 2247 ++pfn_offset;
63551ae0
DG
2248 --remainder;
2249 ++i;
d5d4b0aa 2250 if (vaddr < vma->vm_end && remainder &&
a5516438 2251 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
2252 /*
2253 * We use pfn_offset to avoid touching the pageframes
2254 * of this compound page.
2255 */
2256 goto same_page;
2257 }
63551ae0 2258 }
1c59827d 2259 spin_unlock(&mm->page_table_lock);
63551ae0
DG
2260 *length = remainder;
2261 *position = vaddr;
2262
2263 return i;
2264}
8f860591
ZY
2265
2266void hugetlb_change_protection(struct vm_area_struct *vma,
2267 unsigned long address, unsigned long end, pgprot_t newprot)
2268{
2269 struct mm_struct *mm = vma->vm_mm;
2270 unsigned long start = address;
2271 pte_t *ptep;
2272 pte_t pte;
a5516438 2273 struct hstate *h = hstate_vma(vma);
8f860591
ZY
2274
2275 BUG_ON(address >= end);
2276 flush_cache_range(vma, address, end);
2277
39dde65c 2278 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591 2279 spin_lock(&mm->page_table_lock);
a5516438 2280 for (; address < end; address += huge_page_size(h)) {
8f860591
ZY
2281 ptep = huge_pte_offset(mm, address);
2282 if (!ptep)
2283 continue;
39dde65c
KC
2284 if (huge_pmd_unshare(mm, &address, ptep))
2285 continue;
7f2e9525 2286 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591
ZY
2287 pte = huge_ptep_get_and_clear(mm, address, ptep);
2288 pte = pte_mkhuge(pte_modify(pte, newprot));
2289 set_huge_pte_at(mm, address, ptep, pte);
8f860591
ZY
2290 }
2291 }
2292 spin_unlock(&mm->page_table_lock);
39dde65c 2293 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591
ZY
2294
2295 flush_tlb_range(vma, start, end);
2296}
2297
a1e78772
MG
2298int hugetlb_reserve_pages(struct inode *inode,
2299 long from, long to,
5a6fe125
MG
2300 struct vm_area_struct *vma,
2301 int acctflag)
e4e574b7 2302{
17c9d12e 2303 long ret, chg;
a5516438 2304 struct hstate *h = hstate_inode(inode);
e4e574b7 2305
17c9d12e
MG
2306 /*
2307 * Only apply hugepage reservation if asked. At fault time, an
2308 * attempt will be made for VM_NORESERVE to allocate a page
2309 * and filesystem quota without using reserves
2310 */
2311 if (acctflag & VM_NORESERVE)
2312 return 0;
2313
a1e78772
MG
2314 /*
2315 * Shared mappings base their reservation on the number of pages that
2316 * are already allocated on behalf of the file. Private mappings need
2317 * to reserve the full area even if read-only as mprotect() may be
2318 * called to make the mapping read-write. Assume !vma is a shm mapping
2319 */
f83a275d 2320 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 2321 chg = region_chg(&inode->i_mapping->private_list, from, to);
17c9d12e
MG
2322 else {
2323 struct resv_map *resv_map = resv_map_alloc();
2324 if (!resv_map)
2325 return -ENOMEM;
2326
a1e78772 2327 chg = to - from;
84afd99b 2328
17c9d12e
MG
2329 set_vma_resv_map(vma, resv_map);
2330 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2331 }
2332
e4e574b7
AL
2333 if (chg < 0)
2334 return chg;
8a630112 2335
17c9d12e 2336 /* There must be enough filesystem quota for the mapping */
90d8b7e6
AL
2337 if (hugetlb_get_quota(inode->i_mapping, chg))
2338 return -ENOSPC;
5a6fe125
MG
2339
2340 /*
17c9d12e
MG
2341 * Check enough hugepages are available for the reservation.
2342 * Hand back the quota if there are not
5a6fe125 2343 */
a5516438 2344 ret = hugetlb_acct_memory(h, chg);
68842c9b
KC
2345 if (ret < 0) {
2346 hugetlb_put_quota(inode->i_mapping, chg);
a43a8c39 2347 return ret;
68842c9b 2348 }
17c9d12e
MG
2349
2350 /*
2351 * Account for the reservations made. Shared mappings record regions
2352 * that have reservations as they are shared by multiple VMAs.
2353 * When the last VMA disappears, the region map says how much
2354 * the reservation was and the page cache tells how much of
2355 * the reservation was consumed. Private mappings are per-VMA and
2356 * only the consumed reservations are tracked. When the VMA
2357 * disappears, the original reservation is the VMA size and the
2358 * consumed reservations are stored in the map. Hence, nothing
2359 * else has to be done for private mappings here
2360 */
f83a275d 2361 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 2362 region_add(&inode->i_mapping->private_list, from, to);
a43a8c39
KC
2363 return 0;
2364}
2365
2366void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2367{
a5516438 2368 struct hstate *h = hstate_inode(inode);
a43a8c39 2369 long chg = region_truncate(&inode->i_mapping->private_list, offset);
45c682a6
KC
2370
2371 spin_lock(&inode->i_lock);
a5516438 2372 inode->i_blocks -= blocks_per_huge_page(h);
45c682a6
KC
2373 spin_unlock(&inode->i_lock);
2374
90d8b7e6 2375 hugetlb_put_quota(inode->i_mapping, (chg - freed));
a5516438 2376 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 2377}