]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/filemap.c
vfs: Export __generic_file_aio_write() and add some comments
[net-next-2.6.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
1da177e4
LT
12#include <linux/module.h>
13#include <linux/slab.h>
14#include <linux/compiler.h>
15#include <linux/fs.h>
c22ce143 16#include <linux/uaccess.h>
1da177e4 17#include <linux/aio.h>
c59ede7b 18#include <linux/capability.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
32#include <linux/syscalls.h>
44110fe3 33#include <linux/cpuset.h>
2f718ffc 34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
8a9f3ccd 35#include <linux/memcontrol.h>
4f98a2fe 36#include <linux/mm_inline.h> /* for page_is_file_cache() */
0f8053a5
NP
37#include "internal.h"
38
1da177e4 39/*
1da177e4
LT
40 * FIXME: remove all knowledge of the buffer layer from the core VM
41 */
42#include <linux/buffer_head.h> /* for generic_osync_inode */
43
1da177e4
LT
44#include <asm/mman.h>
45
5ce7852c 46
1da177e4
LT
47/*
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
50 *
51 * Shared mappings now work. 15.8.1995 Bruno.
52 *
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 *
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57 */
58
59/*
60 * Lock ordering:
61 *
62 * ->i_mmap_lock (vmtruncate)
63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
1da177e4 66 *
1b1dcc1b 67 * ->i_mutex
1da177e4
LT
68 * ->i_mmap_lock (truncate->unmap_mapping_range)
69 *
70 * ->mmap_sem
71 * ->i_mmap_lock
b8072f09 72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
74 *
75 * ->mmap_sem
76 * ->lock_page (access_process_vm)
77 *
82591e6e
NP
78 * ->i_mutex (generic_file_buffered_write)
79 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 80 *
1b1dcc1b 81 * ->i_mutex
1da177e4
LT
82 * ->i_alloc_sem (various)
83 *
84 * ->inode_lock
85 * ->sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
88 * ->i_mmap_lock
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
b8072f09 92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 93 *
b8072f09 94 * ->page_table_lock or pte_lock
5d337b91 95 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (page_remove_rmap->set_page_dirty)
103 * ->inode_lock (zap_pte_range->set_page_dirty)
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
105 *
106 * ->task->proc_lock
107 * ->dcache_lock (proc_pid_lookup)
108 */
109
110/*
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
19fd6231 113 * is safe. The caller must hold the mapping's tree_lock.
1da177e4
LT
114 */
115void __remove_from_page_cache(struct page *page)
116{
117 struct address_space *mapping = page->mapping;
118
119 radix_tree_delete(&mapping->page_tree, page->index);
120 page->mapping = NULL;
121 mapping->nrpages--;
347ce434 122 __dec_zone_page_state(page, NR_FILE_PAGES);
45426812 123 BUG_ON(page_mapped(page));
3a692790
LT
124
125 /*
126 * Some filesystems seem to re-dirty the page even after
127 * the VM has canceled the dirty bit (eg ext3 journaling).
128 *
129 * Fix it up by doing a final dirty accounting check after
130 * having removed the page entirely.
131 */
132 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
133 dec_zone_page_state(page, NR_FILE_DIRTY);
134 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
135 }
1da177e4
LT
136}
137
138void remove_from_page_cache(struct page *page)
139{
140 struct address_space *mapping = page->mapping;
141
cd7619d6 142 BUG_ON(!PageLocked(page));
1da177e4 143
19fd6231 144 spin_lock_irq(&mapping->tree_lock);
1da177e4 145 __remove_from_page_cache(page);
19fd6231 146 spin_unlock_irq(&mapping->tree_lock);
e767e056 147 mem_cgroup_uncharge_cache_page(page);
1da177e4
LT
148}
149
150static int sync_page(void *word)
151{
152 struct address_space *mapping;
153 struct page *page;
154
07808b74 155 page = container_of((unsigned long *)word, struct page, flags);
1da177e4
LT
156
157 /*
dd1d5afc
WLII
158 * page_mapping() is being called without PG_locked held.
159 * Some knowledge of the state and use of the page is used to
160 * reduce the requirements down to a memory barrier.
161 * The danger here is of a stale page_mapping() return value
162 * indicating a struct address_space different from the one it's
163 * associated with when it is associated with one.
164 * After smp_mb(), it's either the correct page_mapping() for
165 * the page, or an old page_mapping() and the page's own
166 * page_mapping() has gone NULL.
167 * The ->sync_page() address_space operation must tolerate
168 * page_mapping() going NULL. By an amazing coincidence,
169 * this comes about because none of the users of the page
170 * in the ->sync_page() methods make essential use of the
171 * page_mapping(), merely passing the page down to the backing
172 * device's unplug functions when it's non-NULL, which in turn
4c21e2f2 173 * ignore it for all cases but swap, where only page_private(page) is
dd1d5afc
WLII
174 * of interest. When page_mapping() does go NULL, the entire
175 * call stack gracefully ignores the page and returns.
176 * -- wli
1da177e4
LT
177 */
178 smp_mb();
179 mapping = page_mapping(page);
180 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
181 mapping->a_ops->sync_page(page);
182 io_schedule();
183 return 0;
184}
185
2687a356
MW
186static int sync_page_killable(void *word)
187{
188 sync_page(word);
189 return fatal_signal_pending(current) ? -EINTR : 0;
190}
191
1da177e4 192/**
485bb99b 193 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
194 * @mapping: address space structure to write
195 * @start: offset in bytes where the range starts
469eb4d0 196 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 197 * @sync_mode: enable synchronous operation
1da177e4 198 *
485bb99b
RD
199 * Start writeback against all of a mapping's dirty pages that lie
200 * within the byte offsets <start, end> inclusive.
201 *
1da177e4 202 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 203 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
204 * these two operations is that if a dirty page/buffer is encountered, it must
205 * be waited upon, and not just skipped over.
206 */
ebcf28e1
AM
207int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
208 loff_t end, int sync_mode)
1da177e4
LT
209{
210 int ret;
211 struct writeback_control wbc = {
212 .sync_mode = sync_mode,
05fe478d 213 .nr_to_write = LONG_MAX,
111ebb6e
OH
214 .range_start = start,
215 .range_end = end,
1da177e4
LT
216 };
217
218 if (!mapping_cap_writeback_dirty(mapping))
219 return 0;
220
221 ret = do_writepages(mapping, &wbc);
222 return ret;
223}
224
225static inline int __filemap_fdatawrite(struct address_space *mapping,
226 int sync_mode)
227{
111ebb6e 228 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
229}
230
231int filemap_fdatawrite(struct address_space *mapping)
232{
233 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
234}
235EXPORT_SYMBOL(filemap_fdatawrite);
236
f4c0a0fd 237int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 238 loff_t end)
1da177e4
LT
239{
240 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
241}
f4c0a0fd 242EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 243
485bb99b
RD
244/**
245 * filemap_flush - mostly a non-blocking flush
246 * @mapping: target address_space
247 *
1da177e4
LT
248 * This is a mostly non-blocking flush. Not suitable for data-integrity
249 * purposes - I/O may not be started against all dirty pages.
250 */
251int filemap_flush(struct address_space *mapping)
252{
253 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
254}
255EXPORT_SYMBOL(filemap_flush);
256
485bb99b
RD
257/**
258 * wait_on_page_writeback_range - wait for writeback to complete
259 * @mapping: target address_space
260 * @start: beginning page index
261 * @end: ending page index
262 *
1da177e4
LT
263 * Wait for writeback to complete against pages indexed by start->end
264 * inclusive
265 */
ebcf28e1 266int wait_on_page_writeback_range(struct address_space *mapping,
1da177e4
LT
267 pgoff_t start, pgoff_t end)
268{
269 struct pagevec pvec;
270 int nr_pages;
271 int ret = 0;
272 pgoff_t index;
273
274 if (end < start)
275 return 0;
276
277 pagevec_init(&pvec, 0);
278 index = start;
279 while ((index <= end) &&
280 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
281 PAGECACHE_TAG_WRITEBACK,
282 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
283 unsigned i;
284
285 for (i = 0; i < nr_pages; i++) {
286 struct page *page = pvec.pages[i];
287
288 /* until radix tree lookup accepts end_index */
289 if (page->index > end)
290 continue;
291
292 wait_on_page_writeback(page);
293 if (PageError(page))
294 ret = -EIO;
295 }
296 pagevec_release(&pvec);
297 cond_resched();
298 }
299
300 /* Check for outstanding write errors */
301 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
302 ret = -ENOSPC;
303 if (test_and_clear_bit(AS_EIO, &mapping->flags))
304 ret = -EIO;
305
306 return ret;
307}
308
d3bccb6f
JK
309/**
310 * filemap_fdatawait_range - wait for all under-writeback pages to complete in a given range
311 * @mapping: address space structure to wait for
312 * @start: offset in bytes where the range starts
313 * @end: offset in bytes where the range ends (inclusive)
314 *
315 * Walk the list of under-writeback pages of the given address space
316 * in the given range and wait for all of them.
317 *
318 * This is just a simple wrapper so that callers don't have to convert offsets
319 * to page indexes themselves
320 */
321int filemap_fdatawait_range(struct address_space *mapping, loff_t start,
322 loff_t end)
323{
324 return wait_on_page_writeback_range(mapping, start >> PAGE_CACHE_SHIFT,
325 end >> PAGE_CACHE_SHIFT);
326}
327EXPORT_SYMBOL(filemap_fdatawait_range);
328
485bb99b
RD
329/**
330 * sync_page_range - write and wait on all pages in the passed range
331 * @inode: target inode
332 * @mapping: target address_space
333 * @pos: beginning offset in pages to write
334 * @count: number of bytes to write
335 *
1da177e4
LT
336 * Write and wait upon all the pages in the passed range. This is a "data
337 * integrity" operation. It waits upon in-flight writeout before starting and
338 * waiting upon new writeout. If there was an IO error, return it.
339 *
1b1dcc1b 340 * We need to re-take i_mutex during the generic_osync_inode list walk because
1da177e4
LT
341 * it is otherwise livelockable.
342 */
343int sync_page_range(struct inode *inode, struct address_space *mapping,
268fc16e 344 loff_t pos, loff_t count)
1da177e4
LT
345{
346 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
347 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
348 int ret;
349
350 if (!mapping_cap_writeback_dirty(mapping) || !count)
351 return 0;
352 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
353 if (ret == 0) {
1b1dcc1b 354 mutex_lock(&inode->i_mutex);
1da177e4 355 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1b1dcc1b 356 mutex_unlock(&inode->i_mutex);
1da177e4
LT
357 }
358 if (ret == 0)
359 ret = wait_on_page_writeback_range(mapping, start, end);
360 return ret;
361}
362EXPORT_SYMBOL(sync_page_range);
363
485bb99b 364/**
7682486b 365 * sync_page_range_nolock - write & wait on all pages in the passed range without locking
485bb99b
RD
366 * @inode: target inode
367 * @mapping: target address_space
368 * @pos: beginning offset in pages to write
369 * @count: number of bytes to write
370 *
72fd4a35 371 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
1da177e4
LT
372 * as it forces O_SYNC writers to different parts of the same file
373 * to be serialised right until io completion.
374 */
268fc16e
OH
375int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
376 loff_t pos, loff_t count)
1da177e4
LT
377{
378 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
379 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
380 int ret;
381
382 if (!mapping_cap_writeback_dirty(mapping) || !count)
383 return 0;
384 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
385 if (ret == 0)
386 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
387 if (ret == 0)
388 ret = wait_on_page_writeback_range(mapping, start, end);
389 return ret;
390}
268fc16e 391EXPORT_SYMBOL(sync_page_range_nolock);
1da177e4
LT
392
393/**
485bb99b 394 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 395 * @mapping: address space structure to wait for
485bb99b
RD
396 *
397 * Walk the list of under-writeback pages of the given address space
398 * and wait for all of them.
1da177e4
LT
399 */
400int filemap_fdatawait(struct address_space *mapping)
401{
402 loff_t i_size = i_size_read(mapping->host);
403
404 if (i_size == 0)
405 return 0;
406
407 return wait_on_page_writeback_range(mapping, 0,
408 (i_size - 1) >> PAGE_CACHE_SHIFT);
409}
410EXPORT_SYMBOL(filemap_fdatawait);
411
412int filemap_write_and_wait(struct address_space *mapping)
413{
28fd1298 414 int err = 0;
1da177e4
LT
415
416 if (mapping->nrpages) {
28fd1298
OH
417 err = filemap_fdatawrite(mapping);
418 /*
419 * Even if the above returned error, the pages may be
420 * written partially (e.g. -ENOSPC), so we wait for it.
421 * But the -EIO is special case, it may indicate the worst
422 * thing (e.g. bug) happened, so we avoid waiting for it.
423 */
424 if (err != -EIO) {
425 int err2 = filemap_fdatawait(mapping);
426 if (!err)
427 err = err2;
428 }
1da177e4 429 }
28fd1298 430 return err;
1da177e4 431}
28fd1298 432EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 433
485bb99b
RD
434/**
435 * filemap_write_and_wait_range - write out & wait on a file range
436 * @mapping: the address_space for the pages
437 * @lstart: offset in bytes where the range starts
438 * @lend: offset in bytes where the range ends (inclusive)
439 *
469eb4d0
AM
440 * Write out and wait upon file offsets lstart->lend, inclusive.
441 *
442 * Note that `lend' is inclusive (describes the last byte to be written) so
443 * that this function can be used to write to the very end-of-file (end = -1).
444 */
1da177e4
LT
445int filemap_write_and_wait_range(struct address_space *mapping,
446 loff_t lstart, loff_t lend)
447{
28fd1298 448 int err = 0;
1da177e4
LT
449
450 if (mapping->nrpages) {
28fd1298
OH
451 err = __filemap_fdatawrite_range(mapping, lstart, lend,
452 WB_SYNC_ALL);
453 /* See comment of filemap_write_and_wait() */
454 if (err != -EIO) {
455 int err2 = wait_on_page_writeback_range(mapping,
456 lstart >> PAGE_CACHE_SHIFT,
457 lend >> PAGE_CACHE_SHIFT);
458 if (!err)
459 err = err2;
460 }
1da177e4 461 }
28fd1298 462 return err;
1da177e4 463}
f6995585 464EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 465
485bb99b 466/**
e286781d 467 * add_to_page_cache_locked - add a locked page to the pagecache
485bb99b
RD
468 * @page: page to add
469 * @mapping: the page's address_space
470 * @offset: page index
471 * @gfp_mask: page allocation mode
472 *
e286781d 473 * This function is used to add a page to the pagecache. It must be locked.
1da177e4
LT
474 * This function does not add the page to the LRU. The caller must do that.
475 */
e286781d 476int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
6daa0e28 477 pgoff_t offset, gfp_t gfp_mask)
1da177e4 478{
e286781d
NP
479 int error;
480
481 VM_BUG_ON(!PageLocked(page));
482
483 error = mem_cgroup_cache_charge(page, current->mm,
2c26fdd7 484 gfp_mask & GFP_RECLAIM_MASK);
35c754d7
BS
485 if (error)
486 goto out;
1da177e4 487
35c754d7 488 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
1da177e4 489 if (error == 0) {
e286781d
NP
490 page_cache_get(page);
491 page->mapping = mapping;
492 page->index = offset;
493
19fd6231 494 spin_lock_irq(&mapping->tree_lock);
1da177e4 495 error = radix_tree_insert(&mapping->page_tree, offset, page);
e286781d 496 if (likely(!error)) {
1da177e4 497 mapping->nrpages++;
347ce434 498 __inc_zone_page_state(page, NR_FILE_PAGES);
e767e056 499 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
500 } else {
501 page->mapping = NULL;
e767e056 502 spin_unlock_irq(&mapping->tree_lock);
69029cd5 503 mem_cgroup_uncharge_cache_page(page);
e286781d
NP
504 page_cache_release(page);
505 }
1da177e4 506 radix_tree_preload_end();
35c754d7 507 } else
69029cd5 508 mem_cgroup_uncharge_cache_page(page);
8a9f3ccd 509out:
1da177e4
LT
510 return error;
511}
e286781d 512EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
513
514int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 515 pgoff_t offset, gfp_t gfp_mask)
1da177e4 516{
4f98a2fe
RR
517 int ret;
518
519 /*
520 * Splice_read and readahead add shmem/tmpfs pages into the page cache
521 * before shmem_readpage has a chance to mark them as SwapBacked: they
522 * need to go on the active_anon lru below, and mem_cgroup_cache_charge
523 * (called in add_to_page_cache) needs to know where they're going too.
524 */
525 if (mapping_cap_swap_backed(mapping))
526 SetPageSwapBacked(page);
527
528 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
529 if (ret == 0) {
530 if (page_is_file_cache(page))
531 lru_cache_add_file(page);
532 else
533 lru_cache_add_active_anon(page);
534 }
1da177e4
LT
535 return ret;
536}
18bc0bbd 537EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 538
44110fe3 539#ifdef CONFIG_NUMA
2ae88149 540struct page *__page_cache_alloc(gfp_t gfp)
44110fe3
PJ
541{
542 if (cpuset_do_page_mem_spread()) {
543 int n = cpuset_mem_spread_node();
6484eb3e 544 return alloc_pages_exact_node(n, gfp, 0);
44110fe3 545 }
2ae88149 546 return alloc_pages(gfp, 0);
44110fe3 547}
2ae88149 548EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
549#endif
550
db37648c
NP
551static int __sleep_on_page_lock(void *word)
552{
553 io_schedule();
554 return 0;
555}
556
1da177e4
LT
557/*
558 * In order to wait for pages to become available there must be
559 * waitqueues associated with pages. By using a hash table of
560 * waitqueues where the bucket discipline is to maintain all
561 * waiters on the same queue and wake all when any of the pages
562 * become available, and for the woken contexts to check to be
563 * sure the appropriate page became available, this saves space
564 * at a cost of "thundering herd" phenomena during rare hash
565 * collisions.
566 */
567static wait_queue_head_t *page_waitqueue(struct page *page)
568{
569 const struct zone *zone = page_zone(page);
570
571 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
572}
573
574static inline void wake_up_page(struct page *page, int bit)
575{
576 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
577}
578
920c7a5d 579void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
580{
581 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
582
583 if (test_bit(bit_nr, &page->flags))
584 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
585 TASK_UNINTERRUPTIBLE);
586}
587EXPORT_SYMBOL(wait_on_page_bit);
588
385e1ca5
DH
589/**
590 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
591 * @page: Page defining the wait queue of interest
592 * @waiter: Waiter to add to the queue
385e1ca5
DH
593 *
594 * Add an arbitrary @waiter to the wait queue for the nominated @page.
595 */
596void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
597{
598 wait_queue_head_t *q = page_waitqueue(page);
599 unsigned long flags;
600
601 spin_lock_irqsave(&q->lock, flags);
602 __add_wait_queue(q, waiter);
603 spin_unlock_irqrestore(&q->lock, flags);
604}
605EXPORT_SYMBOL_GPL(add_page_wait_queue);
606
1da177e4 607/**
485bb99b 608 * unlock_page - unlock a locked page
1da177e4
LT
609 * @page: the page
610 *
611 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
612 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
613 * mechananism between PageLocked pages and PageWriteback pages is shared.
614 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
615 *
8413ac9d
NP
616 * The mb is necessary to enforce ordering between the clear_bit and the read
617 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 618 */
920c7a5d 619void unlock_page(struct page *page)
1da177e4 620{
8413ac9d
NP
621 VM_BUG_ON(!PageLocked(page));
622 clear_bit_unlock(PG_locked, &page->flags);
623 smp_mb__after_clear_bit();
1da177e4
LT
624 wake_up_page(page, PG_locked);
625}
626EXPORT_SYMBOL(unlock_page);
627
485bb99b
RD
628/**
629 * end_page_writeback - end writeback against a page
630 * @page: the page
1da177e4
LT
631 */
632void end_page_writeback(struct page *page)
633{
ac6aadb2
MS
634 if (TestClearPageReclaim(page))
635 rotate_reclaimable_page(page);
636
637 if (!test_clear_page_writeback(page))
638 BUG();
639
1da177e4
LT
640 smp_mb__after_clear_bit();
641 wake_up_page(page, PG_writeback);
642}
643EXPORT_SYMBOL(end_page_writeback);
644
485bb99b
RD
645/**
646 * __lock_page - get a lock on the page, assuming we need to sleep to get it
647 * @page: the page to lock
1da177e4 648 *
485bb99b 649 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
1da177e4
LT
650 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
651 * chances are that on the second loop, the block layer's plug list is empty,
652 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
653 */
920c7a5d 654void __lock_page(struct page *page)
1da177e4
LT
655{
656 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
657
658 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
659 TASK_UNINTERRUPTIBLE);
660}
661EXPORT_SYMBOL(__lock_page);
662
b5606c2d 663int __lock_page_killable(struct page *page)
2687a356
MW
664{
665 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
666
667 return __wait_on_bit_lock(page_waitqueue(page), &wait,
668 sync_page_killable, TASK_KILLABLE);
669}
18bc0bbd 670EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 671
7682486b
RD
672/**
673 * __lock_page_nosync - get a lock on the page, without calling sync_page()
674 * @page: the page to lock
675 *
db37648c
NP
676 * Variant of lock_page that does not require the caller to hold a reference
677 * on the page's mapping.
678 */
920c7a5d 679void __lock_page_nosync(struct page *page)
db37648c
NP
680{
681 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
682 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
683 TASK_UNINTERRUPTIBLE);
684}
685
485bb99b
RD
686/**
687 * find_get_page - find and get a page reference
688 * @mapping: the address_space to search
689 * @offset: the page index
690 *
da6052f7
NP
691 * Is there a pagecache struct page at the given (mapping, offset) tuple?
692 * If yes, increment its refcount and return it; if no, return NULL.
1da177e4 693 */
a60637c8 694struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
1da177e4 695{
a60637c8 696 void **pagep;
1da177e4
LT
697 struct page *page;
698
a60637c8
NP
699 rcu_read_lock();
700repeat:
701 page = NULL;
702 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
703 if (pagep) {
704 page = radix_tree_deref_slot(pagep);
705 if (unlikely(!page || page == RADIX_TREE_RETRY))
706 goto repeat;
707
708 if (!page_cache_get_speculative(page))
709 goto repeat;
710
711 /*
712 * Has the page moved?
713 * This is part of the lockless pagecache protocol. See
714 * include/linux/pagemap.h for details.
715 */
716 if (unlikely(page != *pagep)) {
717 page_cache_release(page);
718 goto repeat;
719 }
720 }
721 rcu_read_unlock();
722
1da177e4
LT
723 return page;
724}
1da177e4
LT
725EXPORT_SYMBOL(find_get_page);
726
1da177e4
LT
727/**
728 * find_lock_page - locate, pin and lock a pagecache page
67be2dd1
MW
729 * @mapping: the address_space to search
730 * @offset: the page index
1da177e4
LT
731 *
732 * Locates the desired pagecache page, locks it, increments its reference
733 * count and returns its address.
734 *
735 * Returns zero if the page was not present. find_lock_page() may sleep.
736 */
a60637c8 737struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
738{
739 struct page *page;
740
1da177e4 741repeat:
a60637c8 742 page = find_get_page(mapping, offset);
1da177e4 743 if (page) {
a60637c8
NP
744 lock_page(page);
745 /* Has the page been truncated? */
746 if (unlikely(page->mapping != mapping)) {
747 unlock_page(page);
748 page_cache_release(page);
749 goto repeat;
1da177e4 750 }
a60637c8 751 VM_BUG_ON(page->index != offset);
1da177e4 752 }
1da177e4
LT
753 return page;
754}
1da177e4
LT
755EXPORT_SYMBOL(find_lock_page);
756
757/**
758 * find_or_create_page - locate or add a pagecache page
67be2dd1
MW
759 * @mapping: the page's address_space
760 * @index: the page's index into the mapping
761 * @gfp_mask: page allocation mode
1da177e4
LT
762 *
763 * Locates a page in the pagecache. If the page is not present, a new page
764 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
765 * LRU list. The returned page is locked and has its reference count
766 * incremented.
767 *
768 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
769 * allocation!
770 *
771 * find_or_create_page() returns the desired page's address, or zero on
772 * memory exhaustion.
773 */
774struct page *find_or_create_page(struct address_space *mapping,
57f6b96c 775 pgoff_t index, gfp_t gfp_mask)
1da177e4 776{
eb2be189 777 struct page *page;
1da177e4
LT
778 int err;
779repeat:
780 page = find_lock_page(mapping, index);
781 if (!page) {
eb2be189
NP
782 page = __page_cache_alloc(gfp_mask);
783 if (!page)
784 return NULL;
67d58ac4
NP
785 /*
786 * We want a regular kernel memory (not highmem or DMA etc)
787 * allocation for the radix tree nodes, but we need to honour
788 * the context-specific requirements the caller has asked for.
789 * GFP_RECLAIM_MASK collects those requirements.
790 */
791 err = add_to_page_cache_lru(page, mapping, index,
792 (gfp_mask & GFP_RECLAIM_MASK));
eb2be189
NP
793 if (unlikely(err)) {
794 page_cache_release(page);
795 page = NULL;
796 if (err == -EEXIST)
797 goto repeat;
1da177e4 798 }
1da177e4 799 }
1da177e4
LT
800 return page;
801}
1da177e4
LT
802EXPORT_SYMBOL(find_or_create_page);
803
804/**
805 * find_get_pages - gang pagecache lookup
806 * @mapping: The address_space to search
807 * @start: The starting page index
808 * @nr_pages: The maximum number of pages
809 * @pages: Where the resulting pages are placed
810 *
811 * find_get_pages() will search for and return a group of up to
812 * @nr_pages pages in the mapping. The pages are placed at @pages.
813 * find_get_pages() takes a reference against the returned pages.
814 *
815 * The search returns a group of mapping-contiguous pages with ascending
816 * indexes. There may be holes in the indices due to not-present pages.
817 *
818 * find_get_pages() returns the number of pages which were found.
819 */
820unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
821 unsigned int nr_pages, struct page **pages)
822{
823 unsigned int i;
824 unsigned int ret;
a60637c8
NP
825 unsigned int nr_found;
826
827 rcu_read_lock();
828restart:
829 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
830 (void ***)pages, start, nr_pages);
831 ret = 0;
832 for (i = 0; i < nr_found; i++) {
833 struct page *page;
834repeat:
835 page = radix_tree_deref_slot((void **)pages[i]);
836 if (unlikely(!page))
837 continue;
838 /*
839 * this can only trigger if nr_found == 1, making livelock
840 * a non issue.
841 */
842 if (unlikely(page == RADIX_TREE_RETRY))
843 goto restart;
844
845 if (!page_cache_get_speculative(page))
846 goto repeat;
847
848 /* Has the page moved? */
849 if (unlikely(page != *((void **)pages[i]))) {
850 page_cache_release(page);
851 goto repeat;
852 }
1da177e4 853
a60637c8
NP
854 pages[ret] = page;
855 ret++;
856 }
857 rcu_read_unlock();
1da177e4
LT
858 return ret;
859}
860
ebf43500
JA
861/**
862 * find_get_pages_contig - gang contiguous pagecache lookup
863 * @mapping: The address_space to search
864 * @index: The starting page index
865 * @nr_pages: The maximum number of pages
866 * @pages: Where the resulting pages are placed
867 *
868 * find_get_pages_contig() works exactly like find_get_pages(), except
869 * that the returned number of pages are guaranteed to be contiguous.
870 *
871 * find_get_pages_contig() returns the number of pages which were found.
872 */
873unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
874 unsigned int nr_pages, struct page **pages)
875{
876 unsigned int i;
877 unsigned int ret;
a60637c8
NP
878 unsigned int nr_found;
879
880 rcu_read_lock();
881restart:
882 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
883 (void ***)pages, index, nr_pages);
884 ret = 0;
885 for (i = 0; i < nr_found; i++) {
886 struct page *page;
887repeat:
888 page = radix_tree_deref_slot((void **)pages[i]);
889 if (unlikely(!page))
890 continue;
891 /*
892 * this can only trigger if nr_found == 1, making livelock
893 * a non issue.
894 */
895 if (unlikely(page == RADIX_TREE_RETRY))
896 goto restart;
ebf43500 897
a60637c8 898 if (page->mapping == NULL || page->index != index)
ebf43500
JA
899 break;
900
a60637c8
NP
901 if (!page_cache_get_speculative(page))
902 goto repeat;
903
904 /* Has the page moved? */
905 if (unlikely(page != *((void **)pages[i]))) {
906 page_cache_release(page);
907 goto repeat;
908 }
909
910 pages[ret] = page;
911 ret++;
ebf43500
JA
912 index++;
913 }
a60637c8
NP
914 rcu_read_unlock();
915 return ret;
ebf43500 916}
ef71c15c 917EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 918
485bb99b
RD
919/**
920 * find_get_pages_tag - find and return pages that match @tag
921 * @mapping: the address_space to search
922 * @index: the starting page index
923 * @tag: the tag index
924 * @nr_pages: the maximum number of pages
925 * @pages: where the resulting pages are placed
926 *
1da177e4 927 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 928 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
929 */
930unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
931 int tag, unsigned int nr_pages, struct page **pages)
932{
933 unsigned int i;
934 unsigned int ret;
a60637c8
NP
935 unsigned int nr_found;
936
937 rcu_read_lock();
938restart:
939 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
940 (void ***)pages, *index, nr_pages, tag);
941 ret = 0;
942 for (i = 0; i < nr_found; i++) {
943 struct page *page;
944repeat:
945 page = radix_tree_deref_slot((void **)pages[i]);
946 if (unlikely(!page))
947 continue;
948 /*
949 * this can only trigger if nr_found == 1, making livelock
950 * a non issue.
951 */
952 if (unlikely(page == RADIX_TREE_RETRY))
953 goto restart;
954
955 if (!page_cache_get_speculative(page))
956 goto repeat;
957
958 /* Has the page moved? */
959 if (unlikely(page != *((void **)pages[i]))) {
960 page_cache_release(page);
961 goto repeat;
962 }
963
964 pages[ret] = page;
965 ret++;
966 }
967 rcu_read_unlock();
1da177e4 968
1da177e4
LT
969 if (ret)
970 *index = pages[ret - 1]->index + 1;
a60637c8 971
1da177e4
LT
972 return ret;
973}
ef71c15c 974EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 975
485bb99b
RD
976/**
977 * grab_cache_page_nowait - returns locked page at given index in given cache
978 * @mapping: target address_space
979 * @index: the page index
980 *
72fd4a35 981 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1da177e4
LT
982 * This is intended for speculative data generators, where the data can
983 * be regenerated if the page couldn't be grabbed. This routine should
984 * be safe to call while holding the lock for another page.
985 *
986 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
987 * and deadlock against the caller's locked page.
988 */
989struct page *
57f6b96c 990grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1da177e4
LT
991{
992 struct page *page = find_get_page(mapping, index);
1da177e4
LT
993
994 if (page) {
529ae9aa 995 if (trylock_page(page))
1da177e4
LT
996 return page;
997 page_cache_release(page);
998 return NULL;
999 }
2ae88149 1000 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
67d58ac4 1001 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1da177e4
LT
1002 page_cache_release(page);
1003 page = NULL;
1004 }
1005 return page;
1006}
1da177e4
LT
1007EXPORT_SYMBOL(grab_cache_page_nowait);
1008
76d42bd9
WF
1009/*
1010 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1011 * a _large_ part of the i/o request. Imagine the worst scenario:
1012 *
1013 * ---R__________________________________________B__________
1014 * ^ reading here ^ bad block(assume 4k)
1015 *
1016 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1017 * => failing the whole request => read(R) => read(R+1) =>
1018 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1019 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1020 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1021 *
1022 * It is going insane. Fix it by quickly scaling down the readahead size.
1023 */
1024static void shrink_readahead_size_eio(struct file *filp,
1025 struct file_ra_state *ra)
1026{
76d42bd9 1027 ra->ra_pages /= 4;
76d42bd9
WF
1028}
1029
485bb99b 1030/**
36e78914 1031 * do_generic_file_read - generic file read routine
485bb99b
RD
1032 * @filp: the file to read
1033 * @ppos: current file position
1034 * @desc: read_descriptor
1035 * @actor: read method
1036 *
1da177e4 1037 * This is a generic file read routine, and uses the
485bb99b 1038 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1039 *
1040 * This is really ugly. But the goto's actually try to clarify some
1041 * of the logic when it comes to error handling etc.
1da177e4 1042 */
36e78914
CH
1043static void do_generic_file_read(struct file *filp, loff_t *ppos,
1044 read_descriptor_t *desc, read_actor_t actor)
1da177e4 1045{
36e78914 1046 struct address_space *mapping = filp->f_mapping;
1da177e4 1047 struct inode *inode = mapping->host;
36e78914 1048 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1049 pgoff_t index;
1050 pgoff_t last_index;
1051 pgoff_t prev_index;
1052 unsigned long offset; /* offset into pagecache page */
ec0f1637 1053 unsigned int prev_offset;
1da177e4 1054 int error;
1da177e4 1055
1da177e4 1056 index = *ppos >> PAGE_CACHE_SHIFT;
7ff81078
FW
1057 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1058 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1da177e4
LT
1059 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1060 offset = *ppos & ~PAGE_CACHE_MASK;
1061
1da177e4
LT
1062 for (;;) {
1063 struct page *page;
57f6b96c 1064 pgoff_t end_index;
a32ea1e1 1065 loff_t isize;
1da177e4
LT
1066 unsigned long nr, ret;
1067
1da177e4 1068 cond_resched();
1da177e4
LT
1069find_page:
1070 page = find_get_page(mapping, index);
3ea89ee8 1071 if (!page) {
cf914a7d 1072 page_cache_sync_readahead(mapping,
7ff81078 1073 ra, filp,
3ea89ee8
FW
1074 index, last_index - index);
1075 page = find_get_page(mapping, index);
1076 if (unlikely(page == NULL))
1077 goto no_cached_page;
1078 }
1079 if (PageReadahead(page)) {
cf914a7d 1080 page_cache_async_readahead(mapping,
7ff81078 1081 ra, filp, page,
3ea89ee8 1082 index, last_index - index);
1da177e4 1083 }
8ab22b9a
HH
1084 if (!PageUptodate(page)) {
1085 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1086 !mapping->a_ops->is_partially_uptodate)
1087 goto page_not_up_to_date;
529ae9aa 1088 if (!trylock_page(page))
8ab22b9a
HH
1089 goto page_not_up_to_date;
1090 if (!mapping->a_ops->is_partially_uptodate(page,
1091 desc, offset))
1092 goto page_not_up_to_date_locked;
1093 unlock_page(page);
1094 }
1da177e4 1095page_ok:
a32ea1e1
N
1096 /*
1097 * i_size must be checked after we know the page is Uptodate.
1098 *
1099 * Checking i_size after the check allows us to calculate
1100 * the correct value for "nr", which means the zero-filled
1101 * part of the page is not copied back to userspace (unless
1102 * another truncate extends the file - this is desired though).
1103 */
1104
1105 isize = i_size_read(inode);
1106 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1107 if (unlikely(!isize || index > end_index)) {
1108 page_cache_release(page);
1109 goto out;
1110 }
1111
1112 /* nr is the maximum number of bytes to copy from this page */
1113 nr = PAGE_CACHE_SIZE;
1114 if (index == end_index) {
1115 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1116 if (nr <= offset) {
1117 page_cache_release(page);
1118 goto out;
1119 }
1120 }
1121 nr = nr - offset;
1da177e4
LT
1122
1123 /* If users can be writing to this page using arbitrary
1124 * virtual addresses, take care about potential aliasing
1125 * before reading the page on the kernel side.
1126 */
1127 if (mapping_writably_mapped(mapping))
1128 flush_dcache_page(page);
1129
1130 /*
ec0f1637
JK
1131 * When a sequential read accesses a page several times,
1132 * only mark it as accessed the first time.
1da177e4 1133 */
ec0f1637 1134 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1135 mark_page_accessed(page);
1136 prev_index = index;
1137
1138 /*
1139 * Ok, we have the page, and it's up-to-date, so
1140 * now we can copy it to user space...
1141 *
1142 * The actor routine returns how many bytes were actually used..
1143 * NOTE! This may not be the same as how much of a user buffer
1144 * we filled up (we may be padding etc), so we can only update
1145 * "pos" here (the actor routine has to update the user buffer
1146 * pointers and the remaining count).
1147 */
1148 ret = actor(desc, page, offset, nr);
1149 offset += ret;
1150 index += offset >> PAGE_CACHE_SHIFT;
1151 offset &= ~PAGE_CACHE_MASK;
6ce745ed 1152 prev_offset = offset;
1da177e4
LT
1153
1154 page_cache_release(page);
1155 if (ret == nr && desc->count)
1156 continue;
1157 goto out;
1158
1159page_not_up_to_date:
1160 /* Get exclusive access to the page ... */
85462323
ON
1161 error = lock_page_killable(page);
1162 if (unlikely(error))
1163 goto readpage_error;
1da177e4 1164
8ab22b9a 1165page_not_up_to_date_locked:
da6052f7 1166 /* Did it get truncated before we got the lock? */
1da177e4
LT
1167 if (!page->mapping) {
1168 unlock_page(page);
1169 page_cache_release(page);
1170 continue;
1171 }
1172
1173 /* Did somebody else fill it already? */
1174 if (PageUptodate(page)) {
1175 unlock_page(page);
1176 goto page_ok;
1177 }
1178
1179readpage:
1180 /* Start the actual read. The read will unlock the page. */
1181 error = mapping->a_ops->readpage(filp, page);
1182
994fc28c
ZB
1183 if (unlikely(error)) {
1184 if (error == AOP_TRUNCATED_PAGE) {
1185 page_cache_release(page);
1186 goto find_page;
1187 }
1da177e4 1188 goto readpage_error;
994fc28c 1189 }
1da177e4
LT
1190
1191 if (!PageUptodate(page)) {
85462323
ON
1192 error = lock_page_killable(page);
1193 if (unlikely(error))
1194 goto readpage_error;
1da177e4
LT
1195 if (!PageUptodate(page)) {
1196 if (page->mapping == NULL) {
1197 /*
1198 * invalidate_inode_pages got it
1199 */
1200 unlock_page(page);
1201 page_cache_release(page);
1202 goto find_page;
1203 }
1204 unlock_page(page);
7ff81078 1205 shrink_readahead_size_eio(filp, ra);
85462323
ON
1206 error = -EIO;
1207 goto readpage_error;
1da177e4
LT
1208 }
1209 unlock_page(page);
1210 }
1211
1da177e4
LT
1212 goto page_ok;
1213
1214readpage_error:
1215 /* UHHUH! A synchronous read error occurred. Report it */
1216 desc->error = error;
1217 page_cache_release(page);
1218 goto out;
1219
1220no_cached_page:
1221 /*
1222 * Ok, it wasn't cached, so we need to create a new
1223 * page..
1224 */
eb2be189
NP
1225 page = page_cache_alloc_cold(mapping);
1226 if (!page) {
1227 desc->error = -ENOMEM;
1228 goto out;
1da177e4 1229 }
eb2be189 1230 error = add_to_page_cache_lru(page, mapping,
1da177e4
LT
1231 index, GFP_KERNEL);
1232 if (error) {
eb2be189 1233 page_cache_release(page);
1da177e4
LT
1234 if (error == -EEXIST)
1235 goto find_page;
1236 desc->error = error;
1237 goto out;
1238 }
1da177e4
LT
1239 goto readpage;
1240 }
1241
1242out:
7ff81078
FW
1243 ra->prev_pos = prev_index;
1244 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1245 ra->prev_pos |= prev_offset;
1da177e4 1246
f4e6b498 1247 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
0c6aa263 1248 file_accessed(filp);
1da177e4 1249}
1da177e4
LT
1250
1251int file_read_actor(read_descriptor_t *desc, struct page *page,
1252 unsigned long offset, unsigned long size)
1253{
1254 char *kaddr;
1255 unsigned long left, count = desc->count;
1256
1257 if (size > count)
1258 size = count;
1259
1260 /*
1261 * Faults on the destination of a read are common, so do it before
1262 * taking the kmap.
1263 */
1264 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1265 kaddr = kmap_atomic(page, KM_USER0);
1266 left = __copy_to_user_inatomic(desc->arg.buf,
1267 kaddr + offset, size);
1268 kunmap_atomic(kaddr, KM_USER0);
1269 if (left == 0)
1270 goto success;
1271 }
1272
1273 /* Do it the slow way */
1274 kaddr = kmap(page);
1275 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1276 kunmap(page);
1277
1278 if (left) {
1279 size -= left;
1280 desc->error = -EFAULT;
1281 }
1282success:
1283 desc->count = count - size;
1284 desc->written += size;
1285 desc->arg.buf += size;
1286 return size;
1287}
1288
0ceb3314
DM
1289/*
1290 * Performs necessary checks before doing a write
1291 * @iov: io vector request
1292 * @nr_segs: number of segments in the iovec
1293 * @count: number of bytes to write
1294 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1295 *
1296 * Adjust number of segments and amount of bytes to write (nr_segs should be
1297 * properly initialized first). Returns appropriate error code that caller
1298 * should return or zero in case that write should be allowed.
1299 */
1300int generic_segment_checks(const struct iovec *iov,
1301 unsigned long *nr_segs, size_t *count, int access_flags)
1302{
1303 unsigned long seg;
1304 size_t cnt = 0;
1305 for (seg = 0; seg < *nr_segs; seg++) {
1306 const struct iovec *iv = &iov[seg];
1307
1308 /*
1309 * If any segment has a negative length, or the cumulative
1310 * length ever wraps negative then return -EINVAL.
1311 */
1312 cnt += iv->iov_len;
1313 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1314 return -EINVAL;
1315 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1316 continue;
1317 if (seg == 0)
1318 return -EFAULT;
1319 *nr_segs = seg;
1320 cnt -= iv->iov_len; /* This segment is no good */
1321 break;
1322 }
1323 *count = cnt;
1324 return 0;
1325}
1326EXPORT_SYMBOL(generic_segment_checks);
1327
485bb99b 1328/**
b2abacf3 1329 * generic_file_aio_read - generic filesystem read routine
485bb99b
RD
1330 * @iocb: kernel I/O control block
1331 * @iov: io vector request
1332 * @nr_segs: number of segments in the iovec
b2abacf3 1333 * @pos: current file position
485bb99b 1334 *
1da177e4
LT
1335 * This is the "read()" routine for all filesystems
1336 * that can use the page cache directly.
1337 */
1338ssize_t
543ade1f
BP
1339generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1340 unsigned long nr_segs, loff_t pos)
1da177e4
LT
1341{
1342 struct file *filp = iocb->ki_filp;
1343 ssize_t retval;
1344 unsigned long seg;
1345 size_t count;
543ade1f 1346 loff_t *ppos = &iocb->ki_pos;
1da177e4
LT
1347
1348 count = 0;
0ceb3314
DM
1349 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1350 if (retval)
1351 return retval;
1da177e4
LT
1352
1353 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1354 if (filp->f_flags & O_DIRECT) {
543ade1f 1355 loff_t size;
1da177e4
LT
1356 struct address_space *mapping;
1357 struct inode *inode;
1358
1359 mapping = filp->f_mapping;
1360 inode = mapping->host;
1da177e4
LT
1361 if (!count)
1362 goto out; /* skip atime */
1363 size = i_size_read(inode);
1364 if (pos < size) {
48b47c56
NP
1365 retval = filemap_write_and_wait_range(mapping, pos,
1366 pos + iov_length(iov, nr_segs) - 1);
a969e903
CH
1367 if (!retval) {
1368 retval = mapping->a_ops->direct_IO(READ, iocb,
1369 iov, pos, nr_segs);
1370 }
1da177e4
LT
1371 if (retval > 0)
1372 *ppos = pos + retval;
11fa977e
HD
1373 if (retval) {
1374 file_accessed(filp);
1375 goto out;
1376 }
0e0bcae3 1377 }
1da177e4
LT
1378 }
1379
11fa977e
HD
1380 for (seg = 0; seg < nr_segs; seg++) {
1381 read_descriptor_t desc;
1da177e4 1382
11fa977e
HD
1383 desc.written = 0;
1384 desc.arg.buf = iov[seg].iov_base;
1385 desc.count = iov[seg].iov_len;
1386 if (desc.count == 0)
1387 continue;
1388 desc.error = 0;
1389 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1390 retval += desc.written;
1391 if (desc.error) {
1392 retval = retval ?: desc.error;
1393 break;
1da177e4 1394 }
11fa977e
HD
1395 if (desc.count > 0)
1396 break;
1da177e4
LT
1397 }
1398out:
1399 return retval;
1400}
1da177e4
LT
1401EXPORT_SYMBOL(generic_file_aio_read);
1402
1da177e4
LT
1403static ssize_t
1404do_readahead(struct address_space *mapping, struct file *filp,
57f6b96c 1405 pgoff_t index, unsigned long nr)
1da177e4
LT
1406{
1407 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1408 return -EINVAL;
1409
f7e839dd 1410 force_page_cache_readahead(mapping, filp, index, nr);
1da177e4
LT
1411 return 0;
1412}
1413
6673e0c3 1414SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1da177e4
LT
1415{
1416 ssize_t ret;
1417 struct file *file;
1418
1419 ret = -EBADF;
1420 file = fget(fd);
1421 if (file) {
1422 if (file->f_mode & FMODE_READ) {
1423 struct address_space *mapping = file->f_mapping;
57f6b96c
FW
1424 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1425 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1da177e4
LT
1426 unsigned long len = end - start + 1;
1427 ret = do_readahead(mapping, file, start, len);
1428 }
1429 fput(file);
1430 }
1431 return ret;
1432}
6673e0c3
HC
1433#ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1434asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1435{
1436 return SYSC_readahead((int) fd, offset, (size_t) count);
1437}
1438SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1439#endif
1da177e4
LT
1440
1441#ifdef CONFIG_MMU
485bb99b
RD
1442/**
1443 * page_cache_read - adds requested page to the page cache if not already there
1444 * @file: file to read
1445 * @offset: page index
1446 *
1da177e4
LT
1447 * This adds the requested page to the page cache if it isn't already there,
1448 * and schedules an I/O to read in its contents from disk.
1449 */
920c7a5d 1450static int page_cache_read(struct file *file, pgoff_t offset)
1da177e4
LT
1451{
1452 struct address_space *mapping = file->f_mapping;
1453 struct page *page;
994fc28c 1454 int ret;
1da177e4 1455
994fc28c
ZB
1456 do {
1457 page = page_cache_alloc_cold(mapping);
1458 if (!page)
1459 return -ENOMEM;
1460
1461 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1462 if (ret == 0)
1463 ret = mapping->a_ops->readpage(file, page);
1464 else if (ret == -EEXIST)
1465 ret = 0; /* losing race to add is OK */
1da177e4 1466
1da177e4 1467 page_cache_release(page);
1da177e4 1468
994fc28c
ZB
1469 } while (ret == AOP_TRUNCATED_PAGE);
1470
1471 return ret;
1da177e4
LT
1472}
1473
1474#define MMAP_LOTSAMISS (100)
1475
ef00e08e
LT
1476/*
1477 * Synchronous readahead happens when we don't even find
1478 * a page in the page cache at all.
1479 */
1480static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1481 struct file_ra_state *ra,
1482 struct file *file,
1483 pgoff_t offset)
1484{
1485 unsigned long ra_pages;
1486 struct address_space *mapping = file->f_mapping;
1487
1488 /* If we don't want any read-ahead, don't bother */
1489 if (VM_RandomReadHint(vma))
1490 return;
1491
70ac23cf
WF
1492 if (VM_SequentialReadHint(vma) ||
1493 offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
7ffc59b4
WF
1494 page_cache_sync_readahead(mapping, ra, file, offset,
1495 ra->ra_pages);
ef00e08e
LT
1496 return;
1497 }
1498
1499 if (ra->mmap_miss < INT_MAX)
1500 ra->mmap_miss++;
1501
1502 /*
1503 * Do we miss much more than hit in this file? If so,
1504 * stop bothering with read-ahead. It will only hurt.
1505 */
1506 if (ra->mmap_miss > MMAP_LOTSAMISS)
1507 return;
1508
d30a1100
WF
1509 /*
1510 * mmap read-around
1511 */
ef00e08e
LT
1512 ra_pages = max_sane_readahead(ra->ra_pages);
1513 if (ra_pages) {
d30a1100
WF
1514 ra->start = max_t(long, 0, offset - ra_pages/2);
1515 ra->size = ra_pages;
1516 ra->async_size = 0;
1517 ra_submit(ra, mapping, file);
ef00e08e
LT
1518 }
1519}
1520
1521/*
1522 * Asynchronous readahead happens when we find the page and PG_readahead,
1523 * so we want to possibly extend the readahead further..
1524 */
1525static void do_async_mmap_readahead(struct vm_area_struct *vma,
1526 struct file_ra_state *ra,
1527 struct file *file,
1528 struct page *page,
1529 pgoff_t offset)
1530{
1531 struct address_space *mapping = file->f_mapping;
1532
1533 /* If we don't want any read-ahead, don't bother */
1534 if (VM_RandomReadHint(vma))
1535 return;
1536 if (ra->mmap_miss > 0)
1537 ra->mmap_miss--;
1538 if (PageReadahead(page))
2fad6f5d
WF
1539 page_cache_async_readahead(mapping, ra, file,
1540 page, offset, ra->ra_pages);
ef00e08e
LT
1541}
1542
485bb99b 1543/**
54cb8821 1544 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
1545 * @vma: vma in which the fault was taken
1546 * @vmf: struct vm_fault containing details of the fault
485bb99b 1547 *
54cb8821 1548 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
1549 * mapped memory region to read in file data during a page fault.
1550 *
1551 * The goto's are kind of ugly, but this streamlines the normal case of having
1552 * it in the page cache, and handles the special cases reasonably without
1553 * having a lot of duplicated code.
1554 */
d0217ac0 1555int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1556{
1557 int error;
54cb8821 1558 struct file *file = vma->vm_file;
1da177e4
LT
1559 struct address_space *mapping = file->f_mapping;
1560 struct file_ra_state *ra = &file->f_ra;
1561 struct inode *inode = mapping->host;
ef00e08e 1562 pgoff_t offset = vmf->pgoff;
1da177e4 1563 struct page *page;
2004dc8e 1564 pgoff_t size;
83c54070 1565 int ret = 0;
1da177e4 1566
1da177e4 1567 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1568 if (offset >= size)
5307cc1a 1569 return VM_FAULT_SIGBUS;
1da177e4 1570
1da177e4
LT
1571 /*
1572 * Do we have something in the page cache already?
1573 */
ef00e08e
LT
1574 page = find_get_page(mapping, offset);
1575 if (likely(page)) {
1da177e4 1576 /*
ef00e08e
LT
1577 * We found the page, so try async readahead before
1578 * waiting for the lock.
1da177e4 1579 */
ef00e08e
LT
1580 do_async_mmap_readahead(vma, ra, file, page, offset);
1581 lock_page(page);
1da177e4 1582
ef00e08e
LT
1583 /* Did it get truncated? */
1584 if (unlikely(page->mapping != mapping)) {
1585 unlock_page(page);
1586 put_page(page);
1587 goto no_cached_page;
1da177e4 1588 }
ef00e08e
LT
1589 } else {
1590 /* No page in the page cache at all */
1591 do_sync_mmap_readahead(vma, ra, file, offset);
1592 count_vm_event(PGMAJFAULT);
1593 ret = VM_FAULT_MAJOR;
1594retry_find:
1595 page = find_lock_page(mapping, offset);
1da177e4
LT
1596 if (!page)
1597 goto no_cached_page;
1598 }
1599
1da177e4 1600 /*
d00806b1
NP
1601 * We have a locked page in the page cache, now we need to check
1602 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 1603 */
d00806b1 1604 if (unlikely(!PageUptodate(page)))
1da177e4
LT
1605 goto page_not_uptodate;
1606
ef00e08e
LT
1607 /*
1608 * Found the page and have a reference on it.
1609 * We must recheck i_size under page lock.
1610 */
d00806b1 1611 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1612 if (unlikely(offset >= size)) {
d00806b1 1613 unlock_page(page);
745ad48e 1614 page_cache_release(page);
5307cc1a 1615 return VM_FAULT_SIGBUS;
d00806b1
NP
1616 }
1617
ef00e08e 1618 ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
d0217ac0 1619 vmf->page = page;
83c54070 1620 return ret | VM_FAULT_LOCKED;
1da177e4 1621
1da177e4
LT
1622no_cached_page:
1623 /*
1624 * We're only likely to ever get here if MADV_RANDOM is in
1625 * effect.
1626 */
ef00e08e 1627 error = page_cache_read(file, offset);
1da177e4
LT
1628
1629 /*
1630 * The page we want has now been added to the page cache.
1631 * In the unlikely event that someone removed it in the
1632 * meantime, we'll just come back here and read it again.
1633 */
1634 if (error >= 0)
1635 goto retry_find;
1636
1637 /*
1638 * An error return from page_cache_read can result if the
1639 * system is low on memory, or a problem occurs while trying
1640 * to schedule I/O.
1641 */
1642 if (error == -ENOMEM)
d0217ac0
NP
1643 return VM_FAULT_OOM;
1644 return VM_FAULT_SIGBUS;
1da177e4
LT
1645
1646page_not_uptodate:
1da177e4
LT
1647 /*
1648 * Umm, take care of errors if the page isn't up-to-date.
1649 * Try to re-read it _once_. We do this synchronously,
1650 * because there really aren't any performance issues here
1651 * and we need to check for errors.
1652 */
1da177e4 1653 ClearPageError(page);
994fc28c 1654 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
1655 if (!error) {
1656 wait_on_page_locked(page);
1657 if (!PageUptodate(page))
1658 error = -EIO;
1659 }
d00806b1
NP
1660 page_cache_release(page);
1661
1662 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 1663 goto retry_find;
1da177e4 1664
d00806b1 1665 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 1666 shrink_readahead_size_eio(file, ra);
d0217ac0 1667 return VM_FAULT_SIGBUS;
54cb8821
NP
1668}
1669EXPORT_SYMBOL(filemap_fault);
1670
1da177e4 1671struct vm_operations_struct generic_file_vm_ops = {
54cb8821 1672 .fault = filemap_fault,
1da177e4
LT
1673};
1674
1675/* This is used for a general mmap of a disk file */
1676
1677int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1678{
1679 struct address_space *mapping = file->f_mapping;
1680
1681 if (!mapping->a_ops->readpage)
1682 return -ENOEXEC;
1683 file_accessed(file);
1684 vma->vm_ops = &generic_file_vm_ops;
d0217ac0 1685 vma->vm_flags |= VM_CAN_NONLINEAR;
1da177e4
LT
1686 return 0;
1687}
1da177e4
LT
1688
1689/*
1690 * This is for filesystems which do not implement ->writepage.
1691 */
1692int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1693{
1694 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1695 return -EINVAL;
1696 return generic_file_mmap(file, vma);
1697}
1698#else
1699int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1700{
1701 return -ENOSYS;
1702}
1703int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1704{
1705 return -ENOSYS;
1706}
1707#endif /* CONFIG_MMU */
1708
1709EXPORT_SYMBOL(generic_file_mmap);
1710EXPORT_SYMBOL(generic_file_readonly_mmap);
1711
6fe6900e 1712static struct page *__read_cache_page(struct address_space *mapping,
57f6b96c 1713 pgoff_t index,
1da177e4
LT
1714 int (*filler)(void *,struct page*),
1715 void *data)
1716{
eb2be189 1717 struct page *page;
1da177e4
LT
1718 int err;
1719repeat:
1720 page = find_get_page(mapping, index);
1721 if (!page) {
eb2be189
NP
1722 page = page_cache_alloc_cold(mapping);
1723 if (!page)
1724 return ERR_PTR(-ENOMEM);
1725 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1726 if (unlikely(err)) {
1727 page_cache_release(page);
1728 if (err == -EEXIST)
1729 goto repeat;
1da177e4 1730 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
1731 return ERR_PTR(err);
1732 }
1da177e4
LT
1733 err = filler(data, page);
1734 if (err < 0) {
1735 page_cache_release(page);
1736 page = ERR_PTR(err);
1737 }
1738 }
1da177e4
LT
1739 return page;
1740}
1741
7682486b
RD
1742/**
1743 * read_cache_page_async - read into page cache, fill it if needed
1744 * @mapping: the page's address_space
1745 * @index: the page index
1746 * @filler: function to perform the read
1747 * @data: destination for read data
1748 *
6fe6900e
NP
1749 * Same as read_cache_page, but don't wait for page to become unlocked
1750 * after submitting it to the filler.
7682486b
RD
1751 *
1752 * Read into the page cache. If a page already exists, and PageUptodate() is
1753 * not set, try to fill the page but don't wait for it to become unlocked.
1754 *
1755 * If the page does not get brought uptodate, return -EIO.
1da177e4 1756 */
6fe6900e 1757struct page *read_cache_page_async(struct address_space *mapping,
57f6b96c 1758 pgoff_t index,
1da177e4
LT
1759 int (*filler)(void *,struct page*),
1760 void *data)
1761{
1762 struct page *page;
1763 int err;
1764
1765retry:
1766 page = __read_cache_page(mapping, index, filler, data);
1767 if (IS_ERR(page))
c855ff37 1768 return page;
1da177e4
LT
1769 if (PageUptodate(page))
1770 goto out;
1771
1772 lock_page(page);
1773 if (!page->mapping) {
1774 unlock_page(page);
1775 page_cache_release(page);
1776 goto retry;
1777 }
1778 if (PageUptodate(page)) {
1779 unlock_page(page);
1780 goto out;
1781 }
1782 err = filler(data, page);
1783 if (err < 0) {
1784 page_cache_release(page);
c855ff37 1785 return ERR_PTR(err);
1da177e4 1786 }
c855ff37 1787out:
6fe6900e
NP
1788 mark_page_accessed(page);
1789 return page;
1790}
1791EXPORT_SYMBOL(read_cache_page_async);
1792
1793/**
1794 * read_cache_page - read into page cache, fill it if needed
1795 * @mapping: the page's address_space
1796 * @index: the page index
1797 * @filler: function to perform the read
1798 * @data: destination for read data
1799 *
1800 * Read into the page cache. If a page already exists, and PageUptodate() is
1801 * not set, try to fill the page then wait for it to become unlocked.
1802 *
1803 * If the page does not get brought uptodate, return -EIO.
1804 */
1805struct page *read_cache_page(struct address_space *mapping,
57f6b96c 1806 pgoff_t index,
6fe6900e
NP
1807 int (*filler)(void *,struct page*),
1808 void *data)
1809{
1810 struct page *page;
1811
1812 page = read_cache_page_async(mapping, index, filler, data);
1813 if (IS_ERR(page))
1814 goto out;
1815 wait_on_page_locked(page);
1816 if (!PageUptodate(page)) {
1817 page_cache_release(page);
1818 page = ERR_PTR(-EIO);
1819 }
1da177e4
LT
1820 out:
1821 return page;
1822}
1da177e4
LT
1823EXPORT_SYMBOL(read_cache_page);
1824
1da177e4
LT
1825/*
1826 * The logic we want is
1827 *
1828 * if suid or (sgid and xgrp)
1829 * remove privs
1830 */
01de85e0 1831int should_remove_suid(struct dentry *dentry)
1da177e4
LT
1832{
1833 mode_t mode = dentry->d_inode->i_mode;
1834 int kill = 0;
1da177e4
LT
1835
1836 /* suid always must be killed */
1837 if (unlikely(mode & S_ISUID))
1838 kill = ATTR_KILL_SUID;
1839
1840 /*
1841 * sgid without any exec bits is just a mandatory locking mark; leave
1842 * it alone. If some exec bits are set, it's a real sgid; kill it.
1843 */
1844 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1845 kill |= ATTR_KILL_SGID;
1846
7f5ff766 1847 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
01de85e0 1848 return kill;
1da177e4 1849
01de85e0
JA
1850 return 0;
1851}
d23a147b 1852EXPORT_SYMBOL(should_remove_suid);
01de85e0 1853
7f3d4ee1 1854static int __remove_suid(struct dentry *dentry, int kill)
01de85e0
JA
1855{
1856 struct iattr newattrs;
1857
1858 newattrs.ia_valid = ATTR_FORCE | kill;
1859 return notify_change(dentry, &newattrs);
1860}
1861
2f1936b8 1862int file_remove_suid(struct file *file)
01de85e0 1863{
2f1936b8 1864 struct dentry *dentry = file->f_path.dentry;
b5376771
SH
1865 int killsuid = should_remove_suid(dentry);
1866 int killpriv = security_inode_need_killpriv(dentry);
1867 int error = 0;
01de85e0 1868
b5376771
SH
1869 if (killpriv < 0)
1870 return killpriv;
1871 if (killpriv)
1872 error = security_inode_killpriv(dentry);
1873 if (!error && killsuid)
1874 error = __remove_suid(dentry, killsuid);
01de85e0 1875
b5376771 1876 return error;
1da177e4 1877}
2f1936b8 1878EXPORT_SYMBOL(file_remove_suid);
1da177e4 1879
2f718ffc 1880static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1da177e4
LT
1881 const struct iovec *iov, size_t base, size_t bytes)
1882{
f1800536 1883 size_t copied = 0, left = 0;
1da177e4
LT
1884
1885 while (bytes) {
1886 char __user *buf = iov->iov_base + base;
1887 int copy = min(bytes, iov->iov_len - base);
1888
1889 base = 0;
f1800536 1890 left = __copy_from_user_inatomic(vaddr, buf, copy);
1da177e4
LT
1891 copied += copy;
1892 bytes -= copy;
1893 vaddr += copy;
1894 iov++;
1895
01408c49 1896 if (unlikely(left))
1da177e4 1897 break;
1da177e4
LT
1898 }
1899 return copied - left;
1900}
1901
2f718ffc
NP
1902/*
1903 * Copy as much as we can into the page and return the number of bytes which
1904 * were sucessfully copied. If a fault is encountered then return the number of
1905 * bytes which were copied.
1906 */
1907size_t iov_iter_copy_from_user_atomic(struct page *page,
1908 struct iov_iter *i, unsigned long offset, size_t bytes)
1909{
1910 char *kaddr;
1911 size_t copied;
1912
1913 BUG_ON(!in_atomic());
1914 kaddr = kmap_atomic(page, KM_USER0);
1915 if (likely(i->nr_segs == 1)) {
1916 int left;
1917 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 1918 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2f718ffc
NP
1919 copied = bytes - left;
1920 } else {
1921 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1922 i->iov, i->iov_offset, bytes);
1923 }
1924 kunmap_atomic(kaddr, KM_USER0);
1925
1926 return copied;
1927}
89e10787 1928EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2f718ffc
NP
1929
1930/*
1931 * This has the same sideeffects and return value as
1932 * iov_iter_copy_from_user_atomic().
1933 * The difference is that it attempts to resolve faults.
1934 * Page must not be locked.
1935 */
1936size_t iov_iter_copy_from_user(struct page *page,
1937 struct iov_iter *i, unsigned long offset, size_t bytes)
1938{
1939 char *kaddr;
1940 size_t copied;
1941
1942 kaddr = kmap(page);
1943 if (likely(i->nr_segs == 1)) {
1944 int left;
1945 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 1946 left = __copy_from_user(kaddr + offset, buf, bytes);
2f718ffc
NP
1947 copied = bytes - left;
1948 } else {
1949 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1950 i->iov, i->iov_offset, bytes);
1951 }
1952 kunmap(page);
1953 return copied;
1954}
89e10787 1955EXPORT_SYMBOL(iov_iter_copy_from_user);
2f718ffc 1956
f7009264 1957void iov_iter_advance(struct iov_iter *i, size_t bytes)
2f718ffc 1958{
f7009264
NP
1959 BUG_ON(i->count < bytes);
1960
2f718ffc
NP
1961 if (likely(i->nr_segs == 1)) {
1962 i->iov_offset += bytes;
f7009264 1963 i->count -= bytes;
2f718ffc
NP
1964 } else {
1965 const struct iovec *iov = i->iov;
1966 size_t base = i->iov_offset;
1967
124d3b70
NP
1968 /*
1969 * The !iov->iov_len check ensures we skip over unlikely
f7009264 1970 * zero-length segments (without overruning the iovec).
124d3b70 1971 */
94ad374a 1972 while (bytes || unlikely(i->count && !iov->iov_len)) {
f7009264 1973 int copy;
2f718ffc 1974
f7009264
NP
1975 copy = min(bytes, iov->iov_len - base);
1976 BUG_ON(!i->count || i->count < copy);
1977 i->count -= copy;
2f718ffc
NP
1978 bytes -= copy;
1979 base += copy;
1980 if (iov->iov_len == base) {
1981 iov++;
1982 base = 0;
1983 }
1984 }
1985 i->iov = iov;
1986 i->iov_offset = base;
1987 }
1988}
89e10787 1989EXPORT_SYMBOL(iov_iter_advance);
2f718ffc 1990
afddba49
NP
1991/*
1992 * Fault in the first iovec of the given iov_iter, to a maximum length
1993 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1994 * accessed (ie. because it is an invalid address).
1995 *
1996 * writev-intensive code may want this to prefault several iovecs -- that
1997 * would be possible (callers must not rely on the fact that _only_ the
1998 * first iovec will be faulted with the current implementation).
1999 */
2000int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2f718ffc 2001{
2f718ffc 2002 char __user *buf = i->iov->iov_base + i->iov_offset;
afddba49
NP
2003 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2004 return fault_in_pages_readable(buf, bytes);
2f718ffc 2005}
89e10787 2006EXPORT_SYMBOL(iov_iter_fault_in_readable);
2f718ffc
NP
2007
2008/*
2009 * Return the count of just the current iov_iter segment.
2010 */
2011size_t iov_iter_single_seg_count(struct iov_iter *i)
2012{
2013 const struct iovec *iov = i->iov;
2014 if (i->nr_segs == 1)
2015 return i->count;
2016 else
2017 return min(i->count, iov->iov_len - i->iov_offset);
2018}
89e10787 2019EXPORT_SYMBOL(iov_iter_single_seg_count);
2f718ffc 2020
1da177e4
LT
2021/*
2022 * Performs necessary checks before doing a write
2023 *
485bb99b 2024 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2025 * Returns appropriate error code that caller should return or
2026 * zero in case that write should be allowed.
2027 */
2028inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2029{
2030 struct inode *inode = file->f_mapping->host;
2031 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2032
2033 if (unlikely(*pos < 0))
2034 return -EINVAL;
2035
1da177e4
LT
2036 if (!isblk) {
2037 /* FIXME: this is for backwards compatibility with 2.4 */
2038 if (file->f_flags & O_APPEND)
2039 *pos = i_size_read(inode);
2040
2041 if (limit != RLIM_INFINITY) {
2042 if (*pos >= limit) {
2043 send_sig(SIGXFSZ, current, 0);
2044 return -EFBIG;
2045 }
2046 if (*count > limit - (typeof(limit))*pos) {
2047 *count = limit - (typeof(limit))*pos;
2048 }
2049 }
2050 }
2051
2052 /*
2053 * LFS rule
2054 */
2055 if (unlikely(*pos + *count > MAX_NON_LFS &&
2056 !(file->f_flags & O_LARGEFILE))) {
2057 if (*pos >= MAX_NON_LFS) {
1da177e4
LT
2058 return -EFBIG;
2059 }
2060 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2061 *count = MAX_NON_LFS - (unsigned long)*pos;
2062 }
2063 }
2064
2065 /*
2066 * Are we about to exceed the fs block limit ?
2067 *
2068 * If we have written data it becomes a short write. If we have
2069 * exceeded without writing data we send a signal and return EFBIG.
2070 * Linus frestrict idea will clean these up nicely..
2071 */
2072 if (likely(!isblk)) {
2073 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2074 if (*count || *pos > inode->i_sb->s_maxbytes) {
1da177e4
LT
2075 return -EFBIG;
2076 }
2077 /* zero-length writes at ->s_maxbytes are OK */
2078 }
2079
2080 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2081 *count = inode->i_sb->s_maxbytes - *pos;
2082 } else {
9361401e 2083#ifdef CONFIG_BLOCK
1da177e4
LT
2084 loff_t isize;
2085 if (bdev_read_only(I_BDEV(inode)))
2086 return -EPERM;
2087 isize = i_size_read(inode);
2088 if (*pos >= isize) {
2089 if (*count || *pos > isize)
2090 return -ENOSPC;
2091 }
2092
2093 if (*pos + *count > isize)
2094 *count = isize - *pos;
9361401e
DH
2095#else
2096 return -EPERM;
2097#endif
1da177e4
LT
2098 }
2099 return 0;
2100}
2101EXPORT_SYMBOL(generic_write_checks);
2102
afddba49
NP
2103int pagecache_write_begin(struct file *file, struct address_space *mapping,
2104 loff_t pos, unsigned len, unsigned flags,
2105 struct page **pagep, void **fsdata)
2106{
2107 const struct address_space_operations *aops = mapping->a_ops;
2108
4e02ed4b 2109 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2110 pagep, fsdata);
afddba49
NP
2111}
2112EXPORT_SYMBOL(pagecache_write_begin);
2113
2114int pagecache_write_end(struct file *file, struct address_space *mapping,
2115 loff_t pos, unsigned len, unsigned copied,
2116 struct page *page, void *fsdata)
2117{
2118 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2119
4e02ed4b
NP
2120 mark_page_accessed(page);
2121 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2122}
2123EXPORT_SYMBOL(pagecache_write_end);
2124
1da177e4
LT
2125ssize_t
2126generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2127 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2128 size_t count, size_t ocount)
2129{
2130 struct file *file = iocb->ki_filp;
2131 struct address_space *mapping = file->f_mapping;
2132 struct inode *inode = mapping->host;
2133 ssize_t written;
a969e903
CH
2134 size_t write_len;
2135 pgoff_t end;
1da177e4
LT
2136
2137 if (count != ocount)
2138 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2139
a969e903
CH
2140 write_len = iov_length(iov, *nr_segs);
2141 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
a969e903 2142
48b47c56 2143 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2144 if (written)
2145 goto out;
2146
2147 /*
2148 * After a write we want buffered reads to be sure to go to disk to get
2149 * the new data. We invalidate clean cached page from the region we're
2150 * about to write. We do this *before* the write so that we can return
6ccfa806 2151 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2152 */
2153 if (mapping->nrpages) {
2154 written = invalidate_inode_pages2_range(mapping,
2155 pos >> PAGE_CACHE_SHIFT, end);
6ccfa806
HH
2156 /*
2157 * If a page can not be invalidated, return 0 to fall back
2158 * to buffered write.
2159 */
2160 if (written) {
2161 if (written == -EBUSY)
2162 return 0;
a969e903 2163 goto out;
6ccfa806 2164 }
a969e903
CH
2165 }
2166
2167 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2168
2169 /*
2170 * Finally, try again to invalidate clean pages which might have been
2171 * cached by non-direct readahead, or faulted in by get_user_pages()
2172 * if the source of the write was an mmap'ed region of the file
2173 * we're writing. Either one is a pretty crazy thing to do,
2174 * so we don't support it 100%. If this invalidation
2175 * fails, tough, the write still worked...
2176 */
2177 if (mapping->nrpages) {
2178 invalidate_inode_pages2_range(mapping,
2179 pos >> PAGE_CACHE_SHIFT, end);
2180 }
2181
1da177e4
LT
2182 if (written > 0) {
2183 loff_t end = pos + written;
2184 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2185 i_size_write(inode, end);
2186 mark_inode_dirty(inode);
2187 }
2188 *ppos = end;
2189 }
2190
2191 /*
2192 * Sync the fs metadata but not the minor inode changes and
2193 * of course not the data as we did direct DMA for the IO.
1b1dcc1b 2194 * i_mutex is held, which protects generic_osync_inode() from
8459d86a 2195 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
1da177e4 2196 */
a969e903 2197out:
8459d86a
ZB
2198 if ((written >= 0 || written == -EIOCBQUEUED) &&
2199 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1e8a81c5
HH
2200 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2201 if (err < 0)
2202 written = err;
2203 }
1da177e4
LT
2204 return written;
2205}
2206EXPORT_SYMBOL(generic_file_direct_write);
2207
eb2be189
NP
2208/*
2209 * Find or create a page at the given pagecache position. Return the locked
2210 * page. This function is specifically for buffered writes.
2211 */
54566b2c
NP
2212struct page *grab_cache_page_write_begin(struct address_space *mapping,
2213 pgoff_t index, unsigned flags)
eb2be189
NP
2214{
2215 int status;
2216 struct page *page;
54566b2c
NP
2217 gfp_t gfp_notmask = 0;
2218 if (flags & AOP_FLAG_NOFS)
2219 gfp_notmask = __GFP_FS;
eb2be189
NP
2220repeat:
2221 page = find_lock_page(mapping, index);
2222 if (likely(page))
2223 return page;
2224
54566b2c 2225 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
eb2be189
NP
2226 if (!page)
2227 return NULL;
54566b2c
NP
2228 status = add_to_page_cache_lru(page, mapping, index,
2229 GFP_KERNEL & ~gfp_notmask);
eb2be189
NP
2230 if (unlikely(status)) {
2231 page_cache_release(page);
2232 if (status == -EEXIST)
2233 goto repeat;
2234 return NULL;
2235 }
2236 return page;
2237}
54566b2c 2238EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2239
afddba49
NP
2240static ssize_t generic_perform_write(struct file *file,
2241 struct iov_iter *i, loff_t pos)
2242{
2243 struct address_space *mapping = file->f_mapping;
2244 const struct address_space_operations *a_ops = mapping->a_ops;
2245 long status = 0;
2246 ssize_t written = 0;
674b892e
NP
2247 unsigned int flags = 0;
2248
2249 /*
2250 * Copies from kernel address space cannot fail (NFSD is a big user).
2251 */
2252 if (segment_eq(get_fs(), KERNEL_DS))
2253 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2254
2255 do {
2256 struct page *page;
2257 pgoff_t index; /* Pagecache index for current page */
2258 unsigned long offset; /* Offset into pagecache page */
2259 unsigned long bytes; /* Bytes to write to page */
2260 size_t copied; /* Bytes copied from user */
2261 void *fsdata;
2262
2263 offset = (pos & (PAGE_CACHE_SIZE - 1));
2264 index = pos >> PAGE_CACHE_SHIFT;
2265 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2266 iov_iter_count(i));
2267
2268again:
2269
2270 /*
2271 * Bring in the user page that we will copy from _first_.
2272 * Otherwise there's a nasty deadlock on copying from the
2273 * same page as we're writing to, without it being marked
2274 * up-to-date.
2275 *
2276 * Not only is this an optimisation, but it is also required
2277 * to check that the address is actually valid, when atomic
2278 * usercopies are used, below.
2279 */
2280 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2281 status = -EFAULT;
2282 break;
2283 }
2284
674b892e 2285 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49
NP
2286 &page, &fsdata);
2287 if (unlikely(status))
2288 break;
2289
2290 pagefault_disable();
2291 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2292 pagefault_enable();
2293 flush_dcache_page(page);
2294
c8236db9 2295 mark_page_accessed(page);
afddba49
NP
2296 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2297 page, fsdata);
2298 if (unlikely(status < 0))
2299 break;
2300 copied = status;
2301
2302 cond_resched();
2303
124d3b70 2304 iov_iter_advance(i, copied);
afddba49
NP
2305 if (unlikely(copied == 0)) {
2306 /*
2307 * If we were unable to copy any data at all, we must
2308 * fall back to a single segment length write.
2309 *
2310 * If we didn't fallback here, we could livelock
2311 * because not all segments in the iov can be copied at
2312 * once without a pagefault.
2313 */
2314 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2315 iov_iter_single_seg_count(i));
2316 goto again;
2317 }
afddba49
NP
2318 pos += copied;
2319 written += copied;
2320
2321 balance_dirty_pages_ratelimited(mapping);
2322
2323 } while (iov_iter_count(i));
2324
2325 return written ? written : status;
2326}
2327
2328ssize_t
2329generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2330 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2331 size_t count, ssize_t written)
2332{
2333 struct file *file = iocb->ki_filp;
2334 struct address_space *mapping = file->f_mapping;
2335 const struct address_space_operations *a_ops = mapping->a_ops;
2336 struct inode *inode = mapping->host;
2337 ssize_t status;
2338 struct iov_iter i;
2339
2340 iov_iter_init(&i, iov, nr_segs, count, written);
4e02ed4b 2341 status = generic_perform_write(file, &i, pos);
1da177e4 2342
1da177e4 2343 if (likely(status >= 0)) {
afddba49
NP
2344 written += status;
2345 *ppos = pos + status;
2346
2347 /*
2348 * For now, when the user asks for O_SYNC, we'll actually give
2349 * O_DSYNC
2350 */
1da177e4
LT
2351 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2352 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2353 status = generic_osync_inode(inode, mapping,
2354 OSYNC_METADATA|OSYNC_DATA);
2355 }
2356 }
2357
2358 /*
2359 * If we get here for O_DIRECT writes then we must have fallen through
2360 * to buffered writes (block instantiation inside i_size). So we sync
2361 * the file data here, to try to honour O_DIRECT expectations.
2362 */
2363 if (unlikely(file->f_flags & O_DIRECT) && written)
48b47c56
NP
2364 status = filemap_write_and_wait_range(mapping,
2365 pos, pos + written - 1);
1da177e4 2366
1da177e4
LT
2367 return written ? written : status;
2368}
2369EXPORT_SYMBOL(generic_file_buffered_write);
2370
e4dd9de3
JK
2371/**
2372 * __generic_file_aio_write - write data to a file
2373 * @iocb: IO state structure (file, offset, etc.)
2374 * @iov: vector with data to write
2375 * @nr_segs: number of segments in the vector
2376 * @ppos: position where to write
2377 *
2378 * This function does all the work needed for actually writing data to a
2379 * file. It does all basic checks, removes SUID from the file, updates
2380 * modification times and calls proper subroutines depending on whether we
2381 * do direct IO or a standard buffered write.
2382 *
2383 * It expects i_mutex to be grabbed unless we work on a block device or similar
2384 * object which does not need locking at all.
2385 *
2386 * This function does *not* take care of syncing data in case of O_SYNC write.
2387 * A caller has to handle it. This is mainly due to the fact that we want to
2388 * avoid syncing under i_mutex.
2389 */
2390ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2391 unsigned long nr_segs, loff_t *ppos)
1da177e4
LT
2392{
2393 struct file *file = iocb->ki_filp;
fb5527e6 2394 struct address_space * mapping = file->f_mapping;
1da177e4
LT
2395 size_t ocount; /* original count */
2396 size_t count; /* after file limit checks */
2397 struct inode *inode = mapping->host;
1da177e4
LT
2398 loff_t pos;
2399 ssize_t written;
2400 ssize_t err;
2401
2402 ocount = 0;
0ceb3314
DM
2403 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2404 if (err)
2405 return err;
1da177e4
LT
2406
2407 count = ocount;
2408 pos = *ppos;
2409
2410 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2411
2412 /* We can write back this queue in page reclaim */
2413 current->backing_dev_info = mapping->backing_dev_info;
2414 written = 0;
2415
2416 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2417 if (err)
2418 goto out;
2419
2420 if (count == 0)
2421 goto out;
2422
2f1936b8 2423 err = file_remove_suid(file);
1da177e4
LT
2424 if (err)
2425 goto out;
2426
870f4817 2427 file_update_time(file);
1da177e4
LT
2428
2429 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2430 if (unlikely(file->f_flags & O_DIRECT)) {
fb5527e6
JM
2431 loff_t endbyte;
2432 ssize_t written_buffered;
2433
2434 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2435 ppos, count, ocount);
1da177e4
LT
2436 if (written < 0 || written == count)
2437 goto out;
2438 /*
2439 * direct-io write to a hole: fall through to buffered I/O
2440 * for completing the rest of the request.
2441 */
2442 pos += written;
2443 count -= written;
fb5527e6
JM
2444 written_buffered = generic_file_buffered_write(iocb, iov,
2445 nr_segs, pos, ppos, count,
2446 written);
2447 /*
2448 * If generic_file_buffered_write() retuned a synchronous error
2449 * then we want to return the number of bytes which were
2450 * direct-written, or the error code if that was zero. Note
2451 * that this differs from normal direct-io semantics, which
2452 * will return -EFOO even if some bytes were written.
2453 */
2454 if (written_buffered < 0) {
2455 err = written_buffered;
2456 goto out;
2457 }
1da177e4 2458
fb5527e6
JM
2459 /*
2460 * We need to ensure that the page cache pages are written to
2461 * disk and invalidated to preserve the expected O_DIRECT
2462 * semantics.
2463 */
2464 endbyte = pos + written_buffered - written - 1;
ef51c976
MF
2465 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2466 SYNC_FILE_RANGE_WAIT_BEFORE|
2467 SYNC_FILE_RANGE_WRITE|
2468 SYNC_FILE_RANGE_WAIT_AFTER);
fb5527e6
JM
2469 if (err == 0) {
2470 written = written_buffered;
2471 invalidate_mapping_pages(mapping,
2472 pos >> PAGE_CACHE_SHIFT,
2473 endbyte >> PAGE_CACHE_SHIFT);
2474 } else {
2475 /*
2476 * We don't know how much we wrote, so just return
2477 * the number of bytes which were direct-written
2478 */
2479 }
2480 } else {
2481 written = generic_file_buffered_write(iocb, iov, nr_segs,
2482 pos, ppos, count, written);
2483 }
1da177e4
LT
2484out:
2485 current->backing_dev_info = NULL;
2486 return written ? written : err;
2487}
e4dd9de3
JK
2488EXPORT_SYMBOL(__generic_file_aio_write);
2489
1da177e4 2490
e4dd9de3
JK
2491/**
2492 * generic_file_aio_write_nolock - write data, usually to a device
2493 * @iocb: IO state structure
2494 * @iov: vector with data to write
2495 * @nr_segs: number of segments in the vector
2496 * @pos: position in file where to write
2497 *
2498 * This is a wrapper around __generic_file_aio_write() which takes care of
2499 * syncing the file in case of O_SYNC file. It does not take i_mutex for the
2500 * write itself but may do so during syncing. It is meant for users like block
2501 * devices which do not need i_mutex during write. If your filesystem needs to
2502 * do a write but already holds i_mutex, use __generic_file_aio_write()
2503 * directly and then sync the file like generic_file_aio_write().
2504 */
027445c3
BP
2505ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2506 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1da177e4
LT
2507{
2508 struct file *file = iocb->ki_filp;
2509 struct address_space *mapping = file->f_mapping;
2510 struct inode *inode = mapping->host;
2511 ssize_t ret;
1da177e4 2512
027445c3
BP
2513 BUG_ON(iocb->ki_pos != pos);
2514
e4dd9de3 2515 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
1da177e4
LT
2516
2517 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
027445c3 2518 ssize_t err;
1da177e4
LT
2519
2520 err = sync_page_range_nolock(inode, mapping, pos, ret);
2521 if (err < 0)
2522 ret = err;
2523 }
2524 return ret;
2525}
027445c3 2526EXPORT_SYMBOL(generic_file_aio_write_nolock);
1da177e4 2527
e4dd9de3
JK
2528/**
2529 * generic_file_aio_write - write data to a file
2530 * @iocb: IO state structure
2531 * @iov: vector with data to write
2532 * @nr_segs: number of segments in the vector
2533 * @pos: position in file where to write
2534 *
2535 * This is a wrapper around __generic_file_aio_write() to be used by most
2536 * filesystems. It takes care of syncing the file in case of O_SYNC file
2537 * and acquires i_mutex as needed.
2538 */
027445c3
BP
2539ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2540 unsigned long nr_segs, loff_t pos)
1da177e4
LT
2541{
2542 struct file *file = iocb->ki_filp;
2543 struct address_space *mapping = file->f_mapping;
2544 struct inode *inode = mapping->host;
2545 ssize_t ret;
1da177e4
LT
2546
2547 BUG_ON(iocb->ki_pos != pos);
2548
1b1dcc1b 2549 mutex_lock(&inode->i_mutex);
e4dd9de3 2550 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
1b1dcc1b 2551 mutex_unlock(&inode->i_mutex);
1da177e4
LT
2552
2553 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2554 ssize_t err;
2555
2556 err = sync_page_range(inode, mapping, pos, ret);
2557 if (err < 0)
2558 ret = err;
2559 }
2560 return ret;
2561}
2562EXPORT_SYMBOL(generic_file_aio_write);
2563
cf9a2ae8
DH
2564/**
2565 * try_to_release_page() - release old fs-specific metadata on a page
2566 *
2567 * @page: the page which the kernel is trying to free
2568 * @gfp_mask: memory allocation flags (and I/O mode)
2569 *
2570 * The address_space is to try to release any data against the page
2571 * (presumably at page->private). If the release was successful, return `1'.
2572 * Otherwise return zero.
2573 *
266cf658
DH
2574 * This may also be called if PG_fscache is set on a page, indicating that the
2575 * page is known to the local caching routines.
2576 *
cf9a2ae8 2577 * The @gfp_mask argument specifies whether I/O may be performed to release
3f31fddf 2578 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
cf9a2ae8 2579 *
cf9a2ae8
DH
2580 */
2581int try_to_release_page(struct page *page, gfp_t gfp_mask)
2582{
2583 struct address_space * const mapping = page->mapping;
2584
2585 BUG_ON(!PageLocked(page));
2586 if (PageWriteback(page))
2587 return 0;
2588
2589 if (mapping && mapping->a_ops->releasepage)
2590 return mapping->a_ops->releasepage(page, gfp_mask);
2591 return try_to_free_buffers(page);
2592}
2593
2594EXPORT_SYMBOL(try_to_release_page);