]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/filemap.c
mm/mmap.c: fix coding style
[net-next-2.6.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
1da177e4
LT
12#include <linux/module.h>
13#include <linux/slab.h>
14#include <linux/compiler.h>
15#include <linux/fs.h>
c22ce143 16#include <linux/uaccess.h>
1da177e4 17#include <linux/aio.h>
c59ede7b 18#include <linux/capability.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
32#include <linux/syscalls.h>
44110fe3 33#include <linux/cpuset.h>
2f718ffc 34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
8a9f3ccd 35#include <linux/memcontrol.h>
4f98a2fe 36#include <linux/mm_inline.h> /* for page_is_file_cache() */
0f8053a5
NP
37#include "internal.h"
38
1da177e4 39/*
1da177e4
LT
40 * FIXME: remove all knowledge of the buffer layer from the core VM
41 */
42#include <linux/buffer_head.h> /* for generic_osync_inode */
43
1da177e4
LT
44#include <asm/mman.h>
45
5ce7852c 46
1da177e4
LT
47/*
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
50 *
51 * Shared mappings now work. 15.8.1995 Bruno.
52 *
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 *
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57 */
58
59/*
60 * Lock ordering:
61 *
62 * ->i_mmap_lock (vmtruncate)
63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
1da177e4 66 *
1b1dcc1b 67 * ->i_mutex
1da177e4
LT
68 * ->i_mmap_lock (truncate->unmap_mapping_range)
69 *
70 * ->mmap_sem
71 * ->i_mmap_lock
b8072f09 72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
74 *
75 * ->mmap_sem
76 * ->lock_page (access_process_vm)
77 *
82591e6e
NP
78 * ->i_mutex (generic_file_buffered_write)
79 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 80 *
1b1dcc1b 81 * ->i_mutex
1da177e4
LT
82 * ->i_alloc_sem (various)
83 *
84 * ->inode_lock
85 * ->sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
88 * ->i_mmap_lock
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
b8072f09 92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 93 *
b8072f09 94 * ->page_table_lock or pte_lock
5d337b91 95 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (page_remove_rmap->set_page_dirty)
103 * ->inode_lock (zap_pte_range->set_page_dirty)
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
105 *
106 * ->task->proc_lock
107 * ->dcache_lock (proc_pid_lookup)
108 */
109
110/*
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
19fd6231 113 * is safe. The caller must hold the mapping's tree_lock.
1da177e4
LT
114 */
115void __remove_from_page_cache(struct page *page)
116{
117 struct address_space *mapping = page->mapping;
118
119 radix_tree_delete(&mapping->page_tree, page->index);
120 page->mapping = NULL;
121 mapping->nrpages--;
347ce434 122 __dec_zone_page_state(page, NR_FILE_PAGES);
45426812 123 BUG_ON(page_mapped(page));
b7abea96 124 mem_cgroup_uncharge_cache_page(page);
3a692790
LT
125
126 /*
127 * Some filesystems seem to re-dirty the page even after
128 * the VM has canceled the dirty bit (eg ext3 journaling).
129 *
130 * Fix it up by doing a final dirty accounting check after
131 * having removed the page entirely.
132 */
133 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
134 dec_zone_page_state(page, NR_FILE_DIRTY);
135 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
136 }
1da177e4
LT
137}
138
139void remove_from_page_cache(struct page *page)
140{
141 struct address_space *mapping = page->mapping;
142
cd7619d6 143 BUG_ON(!PageLocked(page));
1da177e4 144
19fd6231 145 spin_lock_irq(&mapping->tree_lock);
1da177e4 146 __remove_from_page_cache(page);
19fd6231 147 spin_unlock_irq(&mapping->tree_lock);
1da177e4
LT
148}
149
150static int sync_page(void *word)
151{
152 struct address_space *mapping;
153 struct page *page;
154
07808b74 155 page = container_of((unsigned long *)word, struct page, flags);
1da177e4
LT
156
157 /*
dd1d5afc
WLII
158 * page_mapping() is being called without PG_locked held.
159 * Some knowledge of the state and use of the page is used to
160 * reduce the requirements down to a memory barrier.
161 * The danger here is of a stale page_mapping() return value
162 * indicating a struct address_space different from the one it's
163 * associated with when it is associated with one.
164 * After smp_mb(), it's either the correct page_mapping() for
165 * the page, or an old page_mapping() and the page's own
166 * page_mapping() has gone NULL.
167 * The ->sync_page() address_space operation must tolerate
168 * page_mapping() going NULL. By an amazing coincidence,
169 * this comes about because none of the users of the page
170 * in the ->sync_page() methods make essential use of the
171 * page_mapping(), merely passing the page down to the backing
172 * device's unplug functions when it's non-NULL, which in turn
4c21e2f2 173 * ignore it for all cases but swap, where only page_private(page) is
dd1d5afc
WLII
174 * of interest. When page_mapping() does go NULL, the entire
175 * call stack gracefully ignores the page and returns.
176 * -- wli
1da177e4
LT
177 */
178 smp_mb();
179 mapping = page_mapping(page);
180 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
181 mapping->a_ops->sync_page(page);
182 io_schedule();
183 return 0;
184}
185
2687a356
MW
186static int sync_page_killable(void *word)
187{
188 sync_page(word);
189 return fatal_signal_pending(current) ? -EINTR : 0;
190}
191
1da177e4 192/**
485bb99b 193 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
194 * @mapping: address space structure to write
195 * @start: offset in bytes where the range starts
469eb4d0 196 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 197 * @sync_mode: enable synchronous operation
1da177e4 198 *
485bb99b
RD
199 * Start writeback against all of a mapping's dirty pages that lie
200 * within the byte offsets <start, end> inclusive.
201 *
1da177e4 202 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 203 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
204 * these two operations is that if a dirty page/buffer is encountered, it must
205 * be waited upon, and not just skipped over.
206 */
ebcf28e1
AM
207int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
208 loff_t end, int sync_mode)
1da177e4
LT
209{
210 int ret;
211 struct writeback_control wbc = {
212 .sync_mode = sync_mode,
05fe478d 213 .nr_to_write = LONG_MAX,
111ebb6e
OH
214 .range_start = start,
215 .range_end = end,
1da177e4
LT
216 };
217
218 if (!mapping_cap_writeback_dirty(mapping))
219 return 0;
220
221 ret = do_writepages(mapping, &wbc);
222 return ret;
223}
224
225static inline int __filemap_fdatawrite(struct address_space *mapping,
226 int sync_mode)
227{
111ebb6e 228 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
229}
230
231int filemap_fdatawrite(struct address_space *mapping)
232{
233 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
234}
235EXPORT_SYMBOL(filemap_fdatawrite);
236
f4c0a0fd 237int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 238 loff_t end)
1da177e4
LT
239{
240 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
241}
f4c0a0fd 242EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 243
485bb99b
RD
244/**
245 * filemap_flush - mostly a non-blocking flush
246 * @mapping: target address_space
247 *
1da177e4
LT
248 * This is a mostly non-blocking flush. Not suitable for data-integrity
249 * purposes - I/O may not be started against all dirty pages.
250 */
251int filemap_flush(struct address_space *mapping)
252{
253 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
254}
255EXPORT_SYMBOL(filemap_flush);
256
485bb99b
RD
257/**
258 * wait_on_page_writeback_range - wait for writeback to complete
259 * @mapping: target address_space
260 * @start: beginning page index
261 * @end: ending page index
262 *
1da177e4
LT
263 * Wait for writeback to complete against pages indexed by start->end
264 * inclusive
265 */
ebcf28e1 266int wait_on_page_writeback_range(struct address_space *mapping,
1da177e4
LT
267 pgoff_t start, pgoff_t end)
268{
269 struct pagevec pvec;
270 int nr_pages;
271 int ret = 0;
272 pgoff_t index;
273
274 if (end < start)
275 return 0;
276
277 pagevec_init(&pvec, 0);
278 index = start;
279 while ((index <= end) &&
280 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
281 PAGECACHE_TAG_WRITEBACK,
282 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
283 unsigned i;
284
285 for (i = 0; i < nr_pages; i++) {
286 struct page *page = pvec.pages[i];
287
288 /* until radix tree lookup accepts end_index */
289 if (page->index > end)
290 continue;
291
292 wait_on_page_writeback(page);
293 if (PageError(page))
294 ret = -EIO;
295 }
296 pagevec_release(&pvec);
297 cond_resched();
298 }
299
300 /* Check for outstanding write errors */
301 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
302 ret = -ENOSPC;
303 if (test_and_clear_bit(AS_EIO, &mapping->flags))
304 ret = -EIO;
305
306 return ret;
307}
308
485bb99b
RD
309/**
310 * sync_page_range - write and wait on all pages in the passed range
311 * @inode: target inode
312 * @mapping: target address_space
313 * @pos: beginning offset in pages to write
314 * @count: number of bytes to write
315 *
1da177e4
LT
316 * Write and wait upon all the pages in the passed range. This is a "data
317 * integrity" operation. It waits upon in-flight writeout before starting and
318 * waiting upon new writeout. If there was an IO error, return it.
319 *
1b1dcc1b 320 * We need to re-take i_mutex during the generic_osync_inode list walk because
1da177e4
LT
321 * it is otherwise livelockable.
322 */
323int sync_page_range(struct inode *inode, struct address_space *mapping,
268fc16e 324 loff_t pos, loff_t count)
1da177e4
LT
325{
326 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
327 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
328 int ret;
329
330 if (!mapping_cap_writeback_dirty(mapping) || !count)
331 return 0;
332 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
333 if (ret == 0) {
1b1dcc1b 334 mutex_lock(&inode->i_mutex);
1da177e4 335 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1b1dcc1b 336 mutex_unlock(&inode->i_mutex);
1da177e4
LT
337 }
338 if (ret == 0)
339 ret = wait_on_page_writeback_range(mapping, start, end);
340 return ret;
341}
342EXPORT_SYMBOL(sync_page_range);
343
485bb99b 344/**
7682486b 345 * sync_page_range_nolock - write & wait on all pages in the passed range without locking
485bb99b
RD
346 * @inode: target inode
347 * @mapping: target address_space
348 * @pos: beginning offset in pages to write
349 * @count: number of bytes to write
350 *
72fd4a35 351 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
1da177e4
LT
352 * as it forces O_SYNC writers to different parts of the same file
353 * to be serialised right until io completion.
354 */
268fc16e
OH
355int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
356 loff_t pos, loff_t count)
1da177e4
LT
357{
358 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
359 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
360 int ret;
361
362 if (!mapping_cap_writeback_dirty(mapping) || !count)
363 return 0;
364 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
365 if (ret == 0)
366 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
367 if (ret == 0)
368 ret = wait_on_page_writeback_range(mapping, start, end);
369 return ret;
370}
268fc16e 371EXPORT_SYMBOL(sync_page_range_nolock);
1da177e4
LT
372
373/**
485bb99b 374 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 375 * @mapping: address space structure to wait for
485bb99b
RD
376 *
377 * Walk the list of under-writeback pages of the given address space
378 * and wait for all of them.
1da177e4
LT
379 */
380int filemap_fdatawait(struct address_space *mapping)
381{
382 loff_t i_size = i_size_read(mapping->host);
383
384 if (i_size == 0)
385 return 0;
386
387 return wait_on_page_writeback_range(mapping, 0,
388 (i_size - 1) >> PAGE_CACHE_SHIFT);
389}
390EXPORT_SYMBOL(filemap_fdatawait);
391
392int filemap_write_and_wait(struct address_space *mapping)
393{
28fd1298 394 int err = 0;
1da177e4
LT
395
396 if (mapping->nrpages) {
28fd1298
OH
397 err = filemap_fdatawrite(mapping);
398 /*
399 * Even if the above returned error, the pages may be
400 * written partially (e.g. -ENOSPC), so we wait for it.
401 * But the -EIO is special case, it may indicate the worst
402 * thing (e.g. bug) happened, so we avoid waiting for it.
403 */
404 if (err != -EIO) {
405 int err2 = filemap_fdatawait(mapping);
406 if (!err)
407 err = err2;
408 }
1da177e4 409 }
28fd1298 410 return err;
1da177e4 411}
28fd1298 412EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 413
485bb99b
RD
414/**
415 * filemap_write_and_wait_range - write out & wait on a file range
416 * @mapping: the address_space for the pages
417 * @lstart: offset in bytes where the range starts
418 * @lend: offset in bytes where the range ends (inclusive)
419 *
469eb4d0
AM
420 * Write out and wait upon file offsets lstart->lend, inclusive.
421 *
422 * Note that `lend' is inclusive (describes the last byte to be written) so
423 * that this function can be used to write to the very end-of-file (end = -1).
424 */
1da177e4
LT
425int filemap_write_and_wait_range(struct address_space *mapping,
426 loff_t lstart, loff_t lend)
427{
28fd1298 428 int err = 0;
1da177e4
LT
429
430 if (mapping->nrpages) {
28fd1298
OH
431 err = __filemap_fdatawrite_range(mapping, lstart, lend,
432 WB_SYNC_ALL);
433 /* See comment of filemap_write_and_wait() */
434 if (err != -EIO) {
435 int err2 = wait_on_page_writeback_range(mapping,
436 lstart >> PAGE_CACHE_SHIFT,
437 lend >> PAGE_CACHE_SHIFT);
438 if (!err)
439 err = err2;
440 }
1da177e4 441 }
28fd1298 442 return err;
1da177e4
LT
443}
444
485bb99b 445/**
e286781d 446 * add_to_page_cache_locked - add a locked page to the pagecache
485bb99b
RD
447 * @page: page to add
448 * @mapping: the page's address_space
449 * @offset: page index
450 * @gfp_mask: page allocation mode
451 *
e286781d 452 * This function is used to add a page to the pagecache. It must be locked.
1da177e4
LT
453 * This function does not add the page to the LRU. The caller must do that.
454 */
e286781d 455int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
6daa0e28 456 pgoff_t offset, gfp_t gfp_mask)
1da177e4 457{
e286781d
NP
458 int error;
459
460 VM_BUG_ON(!PageLocked(page));
461
462 error = mem_cgroup_cache_charge(page, current->mm,
4c6bc8dd 463 gfp_mask & ~__GFP_HIGHMEM);
35c754d7
BS
464 if (error)
465 goto out;
1da177e4 466
35c754d7 467 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
1da177e4 468 if (error == 0) {
e286781d
NP
469 page_cache_get(page);
470 page->mapping = mapping;
471 page->index = offset;
472
19fd6231 473 spin_lock_irq(&mapping->tree_lock);
1da177e4 474 error = radix_tree_insert(&mapping->page_tree, offset, page);
e286781d 475 if (likely(!error)) {
1da177e4 476 mapping->nrpages++;
347ce434 477 __inc_zone_page_state(page, NR_FILE_PAGES);
e286781d
NP
478 } else {
479 page->mapping = NULL;
69029cd5 480 mem_cgroup_uncharge_cache_page(page);
e286781d
NP
481 page_cache_release(page);
482 }
8a9f3ccd 483
19fd6231 484 spin_unlock_irq(&mapping->tree_lock);
1da177e4 485 radix_tree_preload_end();
35c754d7 486 } else
69029cd5 487 mem_cgroup_uncharge_cache_page(page);
8a9f3ccd 488out:
1da177e4
LT
489 return error;
490}
e286781d 491EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
492
493int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 494 pgoff_t offset, gfp_t gfp_mask)
1da177e4 495{
4f98a2fe
RR
496 int ret;
497
498 /*
499 * Splice_read and readahead add shmem/tmpfs pages into the page cache
500 * before shmem_readpage has a chance to mark them as SwapBacked: they
501 * need to go on the active_anon lru below, and mem_cgroup_cache_charge
502 * (called in add_to_page_cache) needs to know where they're going too.
503 */
504 if (mapping_cap_swap_backed(mapping))
505 SetPageSwapBacked(page);
506
507 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
508 if (ret == 0) {
509 if (page_is_file_cache(page))
510 lru_cache_add_file(page);
511 else
512 lru_cache_add_active_anon(page);
513 }
1da177e4
LT
514 return ret;
515}
516
44110fe3 517#ifdef CONFIG_NUMA
2ae88149 518struct page *__page_cache_alloc(gfp_t gfp)
44110fe3
PJ
519{
520 if (cpuset_do_page_mem_spread()) {
521 int n = cpuset_mem_spread_node();
2ae88149 522 return alloc_pages_node(n, gfp, 0);
44110fe3 523 }
2ae88149 524 return alloc_pages(gfp, 0);
44110fe3 525}
2ae88149 526EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
527#endif
528
db37648c
NP
529static int __sleep_on_page_lock(void *word)
530{
531 io_schedule();
532 return 0;
533}
534
1da177e4
LT
535/*
536 * In order to wait for pages to become available there must be
537 * waitqueues associated with pages. By using a hash table of
538 * waitqueues where the bucket discipline is to maintain all
539 * waiters on the same queue and wake all when any of the pages
540 * become available, and for the woken contexts to check to be
541 * sure the appropriate page became available, this saves space
542 * at a cost of "thundering herd" phenomena during rare hash
543 * collisions.
544 */
545static wait_queue_head_t *page_waitqueue(struct page *page)
546{
547 const struct zone *zone = page_zone(page);
548
549 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
550}
551
552static inline void wake_up_page(struct page *page, int bit)
553{
554 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
555}
556
920c7a5d 557void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
558{
559 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
560
561 if (test_bit(bit_nr, &page->flags))
562 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
563 TASK_UNINTERRUPTIBLE);
564}
565EXPORT_SYMBOL(wait_on_page_bit);
566
567/**
485bb99b 568 * unlock_page - unlock a locked page
1da177e4
LT
569 * @page: the page
570 *
571 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
572 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
573 * mechananism between PageLocked pages and PageWriteback pages is shared.
574 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
575 *
8413ac9d
NP
576 * The mb is necessary to enforce ordering between the clear_bit and the read
577 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 578 */
920c7a5d 579void unlock_page(struct page *page)
1da177e4 580{
8413ac9d
NP
581 VM_BUG_ON(!PageLocked(page));
582 clear_bit_unlock(PG_locked, &page->flags);
583 smp_mb__after_clear_bit();
1da177e4
LT
584 wake_up_page(page, PG_locked);
585}
586EXPORT_SYMBOL(unlock_page);
587
485bb99b
RD
588/**
589 * end_page_writeback - end writeback against a page
590 * @page: the page
1da177e4
LT
591 */
592void end_page_writeback(struct page *page)
593{
ac6aadb2
MS
594 if (TestClearPageReclaim(page))
595 rotate_reclaimable_page(page);
596
597 if (!test_clear_page_writeback(page))
598 BUG();
599
1da177e4
LT
600 smp_mb__after_clear_bit();
601 wake_up_page(page, PG_writeback);
602}
603EXPORT_SYMBOL(end_page_writeback);
604
485bb99b
RD
605/**
606 * __lock_page - get a lock on the page, assuming we need to sleep to get it
607 * @page: the page to lock
1da177e4 608 *
485bb99b 609 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
1da177e4
LT
610 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
611 * chances are that on the second loop, the block layer's plug list is empty,
612 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
613 */
920c7a5d 614void __lock_page(struct page *page)
1da177e4
LT
615{
616 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
617
618 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
619 TASK_UNINTERRUPTIBLE);
620}
621EXPORT_SYMBOL(__lock_page);
622
b5606c2d 623int __lock_page_killable(struct page *page)
2687a356
MW
624{
625 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
626
627 return __wait_on_bit_lock(page_waitqueue(page), &wait,
628 sync_page_killable, TASK_KILLABLE);
629}
630
7682486b
RD
631/**
632 * __lock_page_nosync - get a lock on the page, without calling sync_page()
633 * @page: the page to lock
634 *
db37648c
NP
635 * Variant of lock_page that does not require the caller to hold a reference
636 * on the page's mapping.
637 */
920c7a5d 638void __lock_page_nosync(struct page *page)
db37648c
NP
639{
640 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
641 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
642 TASK_UNINTERRUPTIBLE);
643}
644
485bb99b
RD
645/**
646 * find_get_page - find and get a page reference
647 * @mapping: the address_space to search
648 * @offset: the page index
649 *
da6052f7
NP
650 * Is there a pagecache struct page at the given (mapping, offset) tuple?
651 * If yes, increment its refcount and return it; if no, return NULL.
1da177e4 652 */
a60637c8 653struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
1da177e4 654{
a60637c8 655 void **pagep;
1da177e4
LT
656 struct page *page;
657
a60637c8
NP
658 rcu_read_lock();
659repeat:
660 page = NULL;
661 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
662 if (pagep) {
663 page = radix_tree_deref_slot(pagep);
664 if (unlikely(!page || page == RADIX_TREE_RETRY))
665 goto repeat;
666
667 if (!page_cache_get_speculative(page))
668 goto repeat;
669
670 /*
671 * Has the page moved?
672 * This is part of the lockless pagecache protocol. See
673 * include/linux/pagemap.h for details.
674 */
675 if (unlikely(page != *pagep)) {
676 page_cache_release(page);
677 goto repeat;
678 }
679 }
680 rcu_read_unlock();
681
1da177e4
LT
682 return page;
683}
1da177e4
LT
684EXPORT_SYMBOL(find_get_page);
685
1da177e4
LT
686/**
687 * find_lock_page - locate, pin and lock a pagecache page
67be2dd1
MW
688 * @mapping: the address_space to search
689 * @offset: the page index
1da177e4
LT
690 *
691 * Locates the desired pagecache page, locks it, increments its reference
692 * count and returns its address.
693 *
694 * Returns zero if the page was not present. find_lock_page() may sleep.
695 */
a60637c8 696struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
697{
698 struct page *page;
699
1da177e4 700repeat:
a60637c8 701 page = find_get_page(mapping, offset);
1da177e4 702 if (page) {
a60637c8
NP
703 lock_page(page);
704 /* Has the page been truncated? */
705 if (unlikely(page->mapping != mapping)) {
706 unlock_page(page);
707 page_cache_release(page);
708 goto repeat;
1da177e4 709 }
a60637c8 710 VM_BUG_ON(page->index != offset);
1da177e4 711 }
1da177e4
LT
712 return page;
713}
1da177e4
LT
714EXPORT_SYMBOL(find_lock_page);
715
716/**
717 * find_or_create_page - locate or add a pagecache page
67be2dd1
MW
718 * @mapping: the page's address_space
719 * @index: the page's index into the mapping
720 * @gfp_mask: page allocation mode
1da177e4
LT
721 *
722 * Locates a page in the pagecache. If the page is not present, a new page
723 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
724 * LRU list. The returned page is locked and has its reference count
725 * incremented.
726 *
727 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
728 * allocation!
729 *
730 * find_or_create_page() returns the desired page's address, or zero on
731 * memory exhaustion.
732 */
733struct page *find_or_create_page(struct address_space *mapping,
57f6b96c 734 pgoff_t index, gfp_t gfp_mask)
1da177e4 735{
eb2be189 736 struct page *page;
1da177e4
LT
737 int err;
738repeat:
739 page = find_lock_page(mapping, index);
740 if (!page) {
eb2be189
NP
741 page = __page_cache_alloc(gfp_mask);
742 if (!page)
743 return NULL;
744 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
745 if (unlikely(err)) {
746 page_cache_release(page);
747 page = NULL;
748 if (err == -EEXIST)
749 goto repeat;
1da177e4 750 }
1da177e4 751 }
1da177e4
LT
752 return page;
753}
1da177e4
LT
754EXPORT_SYMBOL(find_or_create_page);
755
756/**
757 * find_get_pages - gang pagecache lookup
758 * @mapping: The address_space to search
759 * @start: The starting page index
760 * @nr_pages: The maximum number of pages
761 * @pages: Where the resulting pages are placed
762 *
763 * find_get_pages() will search for and return a group of up to
764 * @nr_pages pages in the mapping. The pages are placed at @pages.
765 * find_get_pages() takes a reference against the returned pages.
766 *
767 * The search returns a group of mapping-contiguous pages with ascending
768 * indexes. There may be holes in the indices due to not-present pages.
769 *
770 * find_get_pages() returns the number of pages which were found.
771 */
772unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
773 unsigned int nr_pages, struct page **pages)
774{
775 unsigned int i;
776 unsigned int ret;
a60637c8
NP
777 unsigned int nr_found;
778
779 rcu_read_lock();
780restart:
781 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
782 (void ***)pages, start, nr_pages);
783 ret = 0;
784 for (i = 0; i < nr_found; i++) {
785 struct page *page;
786repeat:
787 page = radix_tree_deref_slot((void **)pages[i]);
788 if (unlikely(!page))
789 continue;
790 /*
791 * this can only trigger if nr_found == 1, making livelock
792 * a non issue.
793 */
794 if (unlikely(page == RADIX_TREE_RETRY))
795 goto restart;
796
797 if (!page_cache_get_speculative(page))
798 goto repeat;
799
800 /* Has the page moved? */
801 if (unlikely(page != *((void **)pages[i]))) {
802 page_cache_release(page);
803 goto repeat;
804 }
1da177e4 805
a60637c8
NP
806 pages[ret] = page;
807 ret++;
808 }
809 rcu_read_unlock();
1da177e4
LT
810 return ret;
811}
812
ebf43500
JA
813/**
814 * find_get_pages_contig - gang contiguous pagecache lookup
815 * @mapping: The address_space to search
816 * @index: The starting page index
817 * @nr_pages: The maximum number of pages
818 * @pages: Where the resulting pages are placed
819 *
820 * find_get_pages_contig() works exactly like find_get_pages(), except
821 * that the returned number of pages are guaranteed to be contiguous.
822 *
823 * find_get_pages_contig() returns the number of pages which were found.
824 */
825unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
826 unsigned int nr_pages, struct page **pages)
827{
828 unsigned int i;
829 unsigned int ret;
a60637c8
NP
830 unsigned int nr_found;
831
832 rcu_read_lock();
833restart:
834 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
835 (void ***)pages, index, nr_pages);
836 ret = 0;
837 for (i = 0; i < nr_found; i++) {
838 struct page *page;
839repeat:
840 page = radix_tree_deref_slot((void **)pages[i]);
841 if (unlikely(!page))
842 continue;
843 /*
844 * this can only trigger if nr_found == 1, making livelock
845 * a non issue.
846 */
847 if (unlikely(page == RADIX_TREE_RETRY))
848 goto restart;
ebf43500 849
a60637c8 850 if (page->mapping == NULL || page->index != index)
ebf43500
JA
851 break;
852
a60637c8
NP
853 if (!page_cache_get_speculative(page))
854 goto repeat;
855
856 /* Has the page moved? */
857 if (unlikely(page != *((void **)pages[i]))) {
858 page_cache_release(page);
859 goto repeat;
860 }
861
862 pages[ret] = page;
863 ret++;
ebf43500
JA
864 index++;
865 }
a60637c8
NP
866 rcu_read_unlock();
867 return ret;
ebf43500 868}
ef71c15c 869EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 870
485bb99b
RD
871/**
872 * find_get_pages_tag - find and return pages that match @tag
873 * @mapping: the address_space to search
874 * @index: the starting page index
875 * @tag: the tag index
876 * @nr_pages: the maximum number of pages
877 * @pages: where the resulting pages are placed
878 *
1da177e4 879 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 880 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
881 */
882unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
883 int tag, unsigned int nr_pages, struct page **pages)
884{
885 unsigned int i;
886 unsigned int ret;
a60637c8
NP
887 unsigned int nr_found;
888
889 rcu_read_lock();
890restart:
891 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
892 (void ***)pages, *index, nr_pages, tag);
893 ret = 0;
894 for (i = 0; i < nr_found; i++) {
895 struct page *page;
896repeat:
897 page = radix_tree_deref_slot((void **)pages[i]);
898 if (unlikely(!page))
899 continue;
900 /*
901 * this can only trigger if nr_found == 1, making livelock
902 * a non issue.
903 */
904 if (unlikely(page == RADIX_TREE_RETRY))
905 goto restart;
906
907 if (!page_cache_get_speculative(page))
908 goto repeat;
909
910 /* Has the page moved? */
911 if (unlikely(page != *((void **)pages[i]))) {
912 page_cache_release(page);
913 goto repeat;
914 }
915
916 pages[ret] = page;
917 ret++;
918 }
919 rcu_read_unlock();
1da177e4 920
1da177e4
LT
921 if (ret)
922 *index = pages[ret - 1]->index + 1;
a60637c8 923
1da177e4
LT
924 return ret;
925}
ef71c15c 926EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 927
485bb99b
RD
928/**
929 * grab_cache_page_nowait - returns locked page at given index in given cache
930 * @mapping: target address_space
931 * @index: the page index
932 *
72fd4a35 933 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1da177e4
LT
934 * This is intended for speculative data generators, where the data can
935 * be regenerated if the page couldn't be grabbed. This routine should
936 * be safe to call while holding the lock for another page.
937 *
938 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
939 * and deadlock against the caller's locked page.
940 */
941struct page *
57f6b96c 942grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1da177e4
LT
943{
944 struct page *page = find_get_page(mapping, index);
1da177e4
LT
945
946 if (page) {
529ae9aa 947 if (trylock_page(page))
1da177e4
LT
948 return page;
949 page_cache_release(page);
950 return NULL;
951 }
2ae88149
NP
952 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
953 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
1da177e4
LT
954 page_cache_release(page);
955 page = NULL;
956 }
957 return page;
958}
1da177e4
LT
959EXPORT_SYMBOL(grab_cache_page_nowait);
960
76d42bd9
WF
961/*
962 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
963 * a _large_ part of the i/o request. Imagine the worst scenario:
964 *
965 * ---R__________________________________________B__________
966 * ^ reading here ^ bad block(assume 4k)
967 *
968 * read(R) => miss => readahead(R...B) => media error => frustrating retries
969 * => failing the whole request => read(R) => read(R+1) =>
970 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
971 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
972 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
973 *
974 * It is going insane. Fix it by quickly scaling down the readahead size.
975 */
976static void shrink_readahead_size_eio(struct file *filp,
977 struct file_ra_state *ra)
978{
979 if (!ra->ra_pages)
980 return;
981
982 ra->ra_pages /= 4;
76d42bd9
WF
983}
984
485bb99b 985/**
36e78914 986 * do_generic_file_read - generic file read routine
485bb99b
RD
987 * @filp: the file to read
988 * @ppos: current file position
989 * @desc: read_descriptor
990 * @actor: read method
991 *
1da177e4 992 * This is a generic file read routine, and uses the
485bb99b 993 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
994 *
995 * This is really ugly. But the goto's actually try to clarify some
996 * of the logic when it comes to error handling etc.
1da177e4 997 */
36e78914
CH
998static void do_generic_file_read(struct file *filp, loff_t *ppos,
999 read_descriptor_t *desc, read_actor_t actor)
1da177e4 1000{
36e78914 1001 struct address_space *mapping = filp->f_mapping;
1da177e4 1002 struct inode *inode = mapping->host;
36e78914 1003 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1004 pgoff_t index;
1005 pgoff_t last_index;
1006 pgoff_t prev_index;
1007 unsigned long offset; /* offset into pagecache page */
ec0f1637 1008 unsigned int prev_offset;
1da177e4 1009 int error;
1da177e4 1010
1da177e4 1011 index = *ppos >> PAGE_CACHE_SHIFT;
7ff81078
FW
1012 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1013 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1da177e4
LT
1014 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1015 offset = *ppos & ~PAGE_CACHE_MASK;
1016
1da177e4
LT
1017 for (;;) {
1018 struct page *page;
57f6b96c 1019 pgoff_t end_index;
a32ea1e1 1020 loff_t isize;
1da177e4
LT
1021 unsigned long nr, ret;
1022
1da177e4 1023 cond_resched();
1da177e4
LT
1024find_page:
1025 page = find_get_page(mapping, index);
3ea89ee8 1026 if (!page) {
cf914a7d 1027 page_cache_sync_readahead(mapping,
7ff81078 1028 ra, filp,
3ea89ee8
FW
1029 index, last_index - index);
1030 page = find_get_page(mapping, index);
1031 if (unlikely(page == NULL))
1032 goto no_cached_page;
1033 }
1034 if (PageReadahead(page)) {
cf914a7d 1035 page_cache_async_readahead(mapping,
7ff81078 1036 ra, filp, page,
3ea89ee8 1037 index, last_index - index);
1da177e4 1038 }
8ab22b9a
HH
1039 if (!PageUptodate(page)) {
1040 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1041 !mapping->a_ops->is_partially_uptodate)
1042 goto page_not_up_to_date;
529ae9aa 1043 if (!trylock_page(page))
8ab22b9a
HH
1044 goto page_not_up_to_date;
1045 if (!mapping->a_ops->is_partially_uptodate(page,
1046 desc, offset))
1047 goto page_not_up_to_date_locked;
1048 unlock_page(page);
1049 }
1da177e4 1050page_ok:
a32ea1e1
N
1051 /*
1052 * i_size must be checked after we know the page is Uptodate.
1053 *
1054 * Checking i_size after the check allows us to calculate
1055 * the correct value for "nr", which means the zero-filled
1056 * part of the page is not copied back to userspace (unless
1057 * another truncate extends the file - this is desired though).
1058 */
1059
1060 isize = i_size_read(inode);
1061 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1062 if (unlikely(!isize || index > end_index)) {
1063 page_cache_release(page);
1064 goto out;
1065 }
1066
1067 /* nr is the maximum number of bytes to copy from this page */
1068 nr = PAGE_CACHE_SIZE;
1069 if (index == end_index) {
1070 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1071 if (nr <= offset) {
1072 page_cache_release(page);
1073 goto out;
1074 }
1075 }
1076 nr = nr - offset;
1da177e4
LT
1077
1078 /* If users can be writing to this page using arbitrary
1079 * virtual addresses, take care about potential aliasing
1080 * before reading the page on the kernel side.
1081 */
1082 if (mapping_writably_mapped(mapping))
1083 flush_dcache_page(page);
1084
1085 /*
ec0f1637
JK
1086 * When a sequential read accesses a page several times,
1087 * only mark it as accessed the first time.
1da177e4 1088 */
ec0f1637 1089 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1090 mark_page_accessed(page);
1091 prev_index = index;
1092
1093 /*
1094 * Ok, we have the page, and it's up-to-date, so
1095 * now we can copy it to user space...
1096 *
1097 * The actor routine returns how many bytes were actually used..
1098 * NOTE! This may not be the same as how much of a user buffer
1099 * we filled up (we may be padding etc), so we can only update
1100 * "pos" here (the actor routine has to update the user buffer
1101 * pointers and the remaining count).
1102 */
1103 ret = actor(desc, page, offset, nr);
1104 offset += ret;
1105 index += offset >> PAGE_CACHE_SHIFT;
1106 offset &= ~PAGE_CACHE_MASK;
6ce745ed 1107 prev_offset = offset;
1da177e4
LT
1108
1109 page_cache_release(page);
1110 if (ret == nr && desc->count)
1111 continue;
1112 goto out;
1113
1114page_not_up_to_date:
1115 /* Get exclusive access to the page ... */
85462323
ON
1116 error = lock_page_killable(page);
1117 if (unlikely(error))
1118 goto readpage_error;
1da177e4 1119
8ab22b9a 1120page_not_up_to_date_locked:
da6052f7 1121 /* Did it get truncated before we got the lock? */
1da177e4
LT
1122 if (!page->mapping) {
1123 unlock_page(page);
1124 page_cache_release(page);
1125 continue;
1126 }
1127
1128 /* Did somebody else fill it already? */
1129 if (PageUptodate(page)) {
1130 unlock_page(page);
1131 goto page_ok;
1132 }
1133
1134readpage:
1135 /* Start the actual read. The read will unlock the page. */
1136 error = mapping->a_ops->readpage(filp, page);
1137
994fc28c
ZB
1138 if (unlikely(error)) {
1139 if (error == AOP_TRUNCATED_PAGE) {
1140 page_cache_release(page);
1141 goto find_page;
1142 }
1da177e4 1143 goto readpage_error;
994fc28c 1144 }
1da177e4
LT
1145
1146 if (!PageUptodate(page)) {
85462323
ON
1147 error = lock_page_killable(page);
1148 if (unlikely(error))
1149 goto readpage_error;
1da177e4
LT
1150 if (!PageUptodate(page)) {
1151 if (page->mapping == NULL) {
1152 /*
1153 * invalidate_inode_pages got it
1154 */
1155 unlock_page(page);
1156 page_cache_release(page);
1157 goto find_page;
1158 }
1159 unlock_page(page);
7ff81078 1160 shrink_readahead_size_eio(filp, ra);
85462323
ON
1161 error = -EIO;
1162 goto readpage_error;
1da177e4
LT
1163 }
1164 unlock_page(page);
1165 }
1166
1da177e4
LT
1167 goto page_ok;
1168
1169readpage_error:
1170 /* UHHUH! A synchronous read error occurred. Report it */
1171 desc->error = error;
1172 page_cache_release(page);
1173 goto out;
1174
1175no_cached_page:
1176 /*
1177 * Ok, it wasn't cached, so we need to create a new
1178 * page..
1179 */
eb2be189
NP
1180 page = page_cache_alloc_cold(mapping);
1181 if (!page) {
1182 desc->error = -ENOMEM;
1183 goto out;
1da177e4 1184 }
eb2be189 1185 error = add_to_page_cache_lru(page, mapping,
1da177e4
LT
1186 index, GFP_KERNEL);
1187 if (error) {
eb2be189 1188 page_cache_release(page);
1da177e4
LT
1189 if (error == -EEXIST)
1190 goto find_page;
1191 desc->error = error;
1192 goto out;
1193 }
1da177e4
LT
1194 goto readpage;
1195 }
1196
1197out:
7ff81078
FW
1198 ra->prev_pos = prev_index;
1199 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1200 ra->prev_pos |= prev_offset;
1da177e4 1201
f4e6b498 1202 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
0c6aa263 1203 file_accessed(filp);
1da177e4 1204}
1da177e4
LT
1205
1206int file_read_actor(read_descriptor_t *desc, struct page *page,
1207 unsigned long offset, unsigned long size)
1208{
1209 char *kaddr;
1210 unsigned long left, count = desc->count;
1211
1212 if (size > count)
1213 size = count;
1214
1215 /*
1216 * Faults on the destination of a read are common, so do it before
1217 * taking the kmap.
1218 */
1219 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1220 kaddr = kmap_atomic(page, KM_USER0);
1221 left = __copy_to_user_inatomic(desc->arg.buf,
1222 kaddr + offset, size);
1223 kunmap_atomic(kaddr, KM_USER0);
1224 if (left == 0)
1225 goto success;
1226 }
1227
1228 /* Do it the slow way */
1229 kaddr = kmap(page);
1230 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1231 kunmap(page);
1232
1233 if (left) {
1234 size -= left;
1235 desc->error = -EFAULT;
1236 }
1237success:
1238 desc->count = count - size;
1239 desc->written += size;
1240 desc->arg.buf += size;
1241 return size;
1242}
1243
0ceb3314
DM
1244/*
1245 * Performs necessary checks before doing a write
1246 * @iov: io vector request
1247 * @nr_segs: number of segments in the iovec
1248 * @count: number of bytes to write
1249 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1250 *
1251 * Adjust number of segments and amount of bytes to write (nr_segs should be
1252 * properly initialized first). Returns appropriate error code that caller
1253 * should return or zero in case that write should be allowed.
1254 */
1255int generic_segment_checks(const struct iovec *iov,
1256 unsigned long *nr_segs, size_t *count, int access_flags)
1257{
1258 unsigned long seg;
1259 size_t cnt = 0;
1260 for (seg = 0; seg < *nr_segs; seg++) {
1261 const struct iovec *iv = &iov[seg];
1262
1263 /*
1264 * If any segment has a negative length, or the cumulative
1265 * length ever wraps negative then return -EINVAL.
1266 */
1267 cnt += iv->iov_len;
1268 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1269 return -EINVAL;
1270 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1271 continue;
1272 if (seg == 0)
1273 return -EFAULT;
1274 *nr_segs = seg;
1275 cnt -= iv->iov_len; /* This segment is no good */
1276 break;
1277 }
1278 *count = cnt;
1279 return 0;
1280}
1281EXPORT_SYMBOL(generic_segment_checks);
1282
485bb99b 1283/**
b2abacf3 1284 * generic_file_aio_read - generic filesystem read routine
485bb99b
RD
1285 * @iocb: kernel I/O control block
1286 * @iov: io vector request
1287 * @nr_segs: number of segments in the iovec
b2abacf3 1288 * @pos: current file position
485bb99b 1289 *
1da177e4
LT
1290 * This is the "read()" routine for all filesystems
1291 * that can use the page cache directly.
1292 */
1293ssize_t
543ade1f
BP
1294generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1295 unsigned long nr_segs, loff_t pos)
1da177e4
LT
1296{
1297 struct file *filp = iocb->ki_filp;
1298 ssize_t retval;
1299 unsigned long seg;
1300 size_t count;
543ade1f 1301 loff_t *ppos = &iocb->ki_pos;
1da177e4
LT
1302
1303 count = 0;
0ceb3314
DM
1304 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1305 if (retval)
1306 return retval;
1da177e4
LT
1307
1308 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1309 if (filp->f_flags & O_DIRECT) {
543ade1f 1310 loff_t size;
1da177e4
LT
1311 struct address_space *mapping;
1312 struct inode *inode;
1313
1314 mapping = filp->f_mapping;
1315 inode = mapping->host;
1da177e4
LT
1316 if (!count)
1317 goto out; /* skip atime */
1318 size = i_size_read(inode);
1319 if (pos < size) {
a969e903
CH
1320 retval = filemap_write_and_wait(mapping);
1321 if (!retval) {
1322 retval = mapping->a_ops->direct_IO(READ, iocb,
1323 iov, pos, nr_segs);
1324 }
1da177e4
LT
1325 if (retval > 0)
1326 *ppos = pos + retval;
11fa977e
HD
1327 if (retval) {
1328 file_accessed(filp);
1329 goto out;
1330 }
0e0bcae3 1331 }
1da177e4
LT
1332 }
1333
11fa977e
HD
1334 for (seg = 0; seg < nr_segs; seg++) {
1335 read_descriptor_t desc;
1da177e4 1336
11fa977e
HD
1337 desc.written = 0;
1338 desc.arg.buf = iov[seg].iov_base;
1339 desc.count = iov[seg].iov_len;
1340 if (desc.count == 0)
1341 continue;
1342 desc.error = 0;
1343 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1344 retval += desc.written;
1345 if (desc.error) {
1346 retval = retval ?: desc.error;
1347 break;
1da177e4 1348 }
11fa977e
HD
1349 if (desc.count > 0)
1350 break;
1da177e4
LT
1351 }
1352out:
1353 return retval;
1354}
1da177e4
LT
1355EXPORT_SYMBOL(generic_file_aio_read);
1356
1da177e4
LT
1357static ssize_t
1358do_readahead(struct address_space *mapping, struct file *filp,
57f6b96c 1359 pgoff_t index, unsigned long nr)
1da177e4
LT
1360{
1361 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1362 return -EINVAL;
1363
1364 force_page_cache_readahead(mapping, filp, index,
1365 max_sane_readahead(nr));
1366 return 0;
1367}
1368
1369asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1370{
1371 ssize_t ret;
1372 struct file *file;
1373
1374 ret = -EBADF;
1375 file = fget(fd);
1376 if (file) {
1377 if (file->f_mode & FMODE_READ) {
1378 struct address_space *mapping = file->f_mapping;
57f6b96c
FW
1379 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1380 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1da177e4
LT
1381 unsigned long len = end - start + 1;
1382 ret = do_readahead(mapping, file, start, len);
1383 }
1384 fput(file);
1385 }
1386 return ret;
1387}
1388
1389#ifdef CONFIG_MMU
485bb99b
RD
1390/**
1391 * page_cache_read - adds requested page to the page cache if not already there
1392 * @file: file to read
1393 * @offset: page index
1394 *
1da177e4
LT
1395 * This adds the requested page to the page cache if it isn't already there,
1396 * and schedules an I/O to read in its contents from disk.
1397 */
920c7a5d 1398static int page_cache_read(struct file *file, pgoff_t offset)
1da177e4
LT
1399{
1400 struct address_space *mapping = file->f_mapping;
1401 struct page *page;
994fc28c 1402 int ret;
1da177e4 1403
994fc28c
ZB
1404 do {
1405 page = page_cache_alloc_cold(mapping);
1406 if (!page)
1407 return -ENOMEM;
1408
1409 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1410 if (ret == 0)
1411 ret = mapping->a_ops->readpage(file, page);
1412 else if (ret == -EEXIST)
1413 ret = 0; /* losing race to add is OK */
1da177e4 1414
1da177e4 1415 page_cache_release(page);
1da177e4 1416
994fc28c
ZB
1417 } while (ret == AOP_TRUNCATED_PAGE);
1418
1419 return ret;
1da177e4
LT
1420}
1421
1422#define MMAP_LOTSAMISS (100)
1423
485bb99b 1424/**
54cb8821 1425 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
1426 * @vma: vma in which the fault was taken
1427 * @vmf: struct vm_fault containing details of the fault
485bb99b 1428 *
54cb8821 1429 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
1430 * mapped memory region to read in file data during a page fault.
1431 *
1432 * The goto's are kind of ugly, but this streamlines the normal case of having
1433 * it in the page cache, and handles the special cases reasonably without
1434 * having a lot of duplicated code.
1435 */
d0217ac0 1436int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1437{
1438 int error;
54cb8821 1439 struct file *file = vma->vm_file;
1da177e4
LT
1440 struct address_space *mapping = file->f_mapping;
1441 struct file_ra_state *ra = &file->f_ra;
1442 struct inode *inode = mapping->host;
1443 struct page *page;
2004dc8e 1444 pgoff_t size;
54cb8821 1445 int did_readaround = 0;
83c54070 1446 int ret = 0;
1da177e4 1447
1da177e4 1448 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
d0217ac0 1449 if (vmf->pgoff >= size)
5307cc1a 1450 return VM_FAULT_SIGBUS;
1da177e4
LT
1451
1452 /* If we don't want any read-ahead, don't bother */
54cb8821 1453 if (VM_RandomReadHint(vma))
1da177e4
LT
1454 goto no_cached_page;
1455
1da177e4
LT
1456 /*
1457 * Do we have something in the page cache already?
1458 */
1459retry_find:
d0217ac0 1460 page = find_lock_page(mapping, vmf->pgoff);
3ea89ee8
FW
1461 /*
1462 * For sequential accesses, we use the generic readahead logic.
1463 */
1464 if (VM_SequentialReadHint(vma)) {
1465 if (!page) {
cf914a7d 1466 page_cache_sync_readahead(mapping, ra, file,
3ea89ee8
FW
1467 vmf->pgoff, 1);
1468 page = find_lock_page(mapping, vmf->pgoff);
1469 if (!page)
1470 goto no_cached_page;
1471 }
1472 if (PageReadahead(page)) {
cf914a7d 1473 page_cache_async_readahead(mapping, ra, file, page,
3ea89ee8
FW
1474 vmf->pgoff, 1);
1475 }
1476 }
1477
1da177e4
LT
1478 if (!page) {
1479 unsigned long ra_pages;
1480
1da177e4
LT
1481 ra->mmap_miss++;
1482
1483 /*
1484 * Do we miss much more than hit in this file? If so,
1485 * stop bothering with read-ahead. It will only hurt.
1486 */
0bb7ba6b 1487 if (ra->mmap_miss > MMAP_LOTSAMISS)
1da177e4
LT
1488 goto no_cached_page;
1489
1490 /*
1491 * To keep the pgmajfault counter straight, we need to
1492 * check did_readaround, as this is an inner loop.
1493 */
1494 if (!did_readaround) {
d0217ac0 1495 ret = VM_FAULT_MAJOR;
f8891e5e 1496 count_vm_event(PGMAJFAULT);
1da177e4
LT
1497 }
1498 did_readaround = 1;
1499 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1500 if (ra_pages) {
1501 pgoff_t start = 0;
1502
d0217ac0
NP
1503 if (vmf->pgoff > ra_pages / 2)
1504 start = vmf->pgoff - ra_pages / 2;
1da177e4
LT
1505 do_page_cache_readahead(mapping, file, start, ra_pages);
1506 }
d0217ac0 1507 page = find_lock_page(mapping, vmf->pgoff);
1da177e4
LT
1508 if (!page)
1509 goto no_cached_page;
1510 }
1511
1512 if (!did_readaround)
0bb7ba6b 1513 ra->mmap_miss--;
1da177e4
LT
1514
1515 /*
d00806b1
NP
1516 * We have a locked page in the page cache, now we need to check
1517 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 1518 */
d00806b1 1519 if (unlikely(!PageUptodate(page)))
1da177e4
LT
1520 goto page_not_uptodate;
1521
d00806b1
NP
1522 /* Must recheck i_size under page lock */
1523 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
d0217ac0 1524 if (unlikely(vmf->pgoff >= size)) {
d00806b1 1525 unlock_page(page);
745ad48e 1526 page_cache_release(page);
5307cc1a 1527 return VM_FAULT_SIGBUS;
d00806b1
NP
1528 }
1529
1da177e4
LT
1530 /*
1531 * Found the page and have a reference on it.
1532 */
f4e6b498 1533 ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
d0217ac0 1534 vmf->page = page;
83c54070 1535 return ret | VM_FAULT_LOCKED;
1da177e4 1536
1da177e4
LT
1537no_cached_page:
1538 /*
1539 * We're only likely to ever get here if MADV_RANDOM is in
1540 * effect.
1541 */
d0217ac0 1542 error = page_cache_read(file, vmf->pgoff);
1da177e4
LT
1543
1544 /*
1545 * The page we want has now been added to the page cache.
1546 * In the unlikely event that someone removed it in the
1547 * meantime, we'll just come back here and read it again.
1548 */
1549 if (error >= 0)
1550 goto retry_find;
1551
1552 /*
1553 * An error return from page_cache_read can result if the
1554 * system is low on memory, or a problem occurs while trying
1555 * to schedule I/O.
1556 */
1557 if (error == -ENOMEM)
d0217ac0
NP
1558 return VM_FAULT_OOM;
1559 return VM_FAULT_SIGBUS;
1da177e4
LT
1560
1561page_not_uptodate:
d00806b1 1562 /* IO error path */
1da177e4 1563 if (!did_readaround) {
d0217ac0 1564 ret = VM_FAULT_MAJOR;
f8891e5e 1565 count_vm_event(PGMAJFAULT);
1da177e4 1566 }
1da177e4
LT
1567
1568 /*
1569 * Umm, take care of errors if the page isn't up-to-date.
1570 * Try to re-read it _once_. We do this synchronously,
1571 * because there really aren't any performance issues here
1572 * and we need to check for errors.
1573 */
1da177e4 1574 ClearPageError(page);
994fc28c 1575 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
1576 if (!error) {
1577 wait_on_page_locked(page);
1578 if (!PageUptodate(page))
1579 error = -EIO;
1580 }
d00806b1
NP
1581 page_cache_release(page);
1582
1583 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 1584 goto retry_find;
1da177e4 1585
d00806b1 1586 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 1587 shrink_readahead_size_eio(file, ra);
d0217ac0 1588 return VM_FAULT_SIGBUS;
54cb8821
NP
1589}
1590EXPORT_SYMBOL(filemap_fault);
1591
1da177e4 1592struct vm_operations_struct generic_file_vm_ops = {
54cb8821 1593 .fault = filemap_fault,
1da177e4
LT
1594};
1595
1596/* This is used for a general mmap of a disk file */
1597
1598int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1599{
1600 struct address_space *mapping = file->f_mapping;
1601
1602 if (!mapping->a_ops->readpage)
1603 return -ENOEXEC;
1604 file_accessed(file);
1605 vma->vm_ops = &generic_file_vm_ops;
d0217ac0 1606 vma->vm_flags |= VM_CAN_NONLINEAR;
1da177e4
LT
1607 return 0;
1608}
1da177e4
LT
1609
1610/*
1611 * This is for filesystems which do not implement ->writepage.
1612 */
1613int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1614{
1615 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1616 return -EINVAL;
1617 return generic_file_mmap(file, vma);
1618}
1619#else
1620int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1621{
1622 return -ENOSYS;
1623}
1624int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1625{
1626 return -ENOSYS;
1627}
1628#endif /* CONFIG_MMU */
1629
1630EXPORT_SYMBOL(generic_file_mmap);
1631EXPORT_SYMBOL(generic_file_readonly_mmap);
1632
6fe6900e 1633static struct page *__read_cache_page(struct address_space *mapping,
57f6b96c 1634 pgoff_t index,
1da177e4
LT
1635 int (*filler)(void *,struct page*),
1636 void *data)
1637{
eb2be189 1638 struct page *page;
1da177e4
LT
1639 int err;
1640repeat:
1641 page = find_get_page(mapping, index);
1642 if (!page) {
eb2be189
NP
1643 page = page_cache_alloc_cold(mapping);
1644 if (!page)
1645 return ERR_PTR(-ENOMEM);
1646 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1647 if (unlikely(err)) {
1648 page_cache_release(page);
1649 if (err == -EEXIST)
1650 goto repeat;
1da177e4 1651 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
1652 return ERR_PTR(err);
1653 }
1da177e4
LT
1654 err = filler(data, page);
1655 if (err < 0) {
1656 page_cache_release(page);
1657 page = ERR_PTR(err);
1658 }
1659 }
1da177e4
LT
1660 return page;
1661}
1662
7682486b
RD
1663/**
1664 * read_cache_page_async - read into page cache, fill it if needed
1665 * @mapping: the page's address_space
1666 * @index: the page index
1667 * @filler: function to perform the read
1668 * @data: destination for read data
1669 *
6fe6900e
NP
1670 * Same as read_cache_page, but don't wait for page to become unlocked
1671 * after submitting it to the filler.
7682486b
RD
1672 *
1673 * Read into the page cache. If a page already exists, and PageUptodate() is
1674 * not set, try to fill the page but don't wait for it to become unlocked.
1675 *
1676 * If the page does not get brought uptodate, return -EIO.
1da177e4 1677 */
6fe6900e 1678struct page *read_cache_page_async(struct address_space *mapping,
57f6b96c 1679 pgoff_t index,
1da177e4
LT
1680 int (*filler)(void *,struct page*),
1681 void *data)
1682{
1683 struct page *page;
1684 int err;
1685
1686retry:
1687 page = __read_cache_page(mapping, index, filler, data);
1688 if (IS_ERR(page))
c855ff37 1689 return page;
1da177e4
LT
1690 if (PageUptodate(page))
1691 goto out;
1692
1693 lock_page(page);
1694 if (!page->mapping) {
1695 unlock_page(page);
1696 page_cache_release(page);
1697 goto retry;
1698 }
1699 if (PageUptodate(page)) {
1700 unlock_page(page);
1701 goto out;
1702 }
1703 err = filler(data, page);
1704 if (err < 0) {
1705 page_cache_release(page);
c855ff37 1706 return ERR_PTR(err);
1da177e4 1707 }
c855ff37 1708out:
6fe6900e
NP
1709 mark_page_accessed(page);
1710 return page;
1711}
1712EXPORT_SYMBOL(read_cache_page_async);
1713
1714/**
1715 * read_cache_page - read into page cache, fill it if needed
1716 * @mapping: the page's address_space
1717 * @index: the page index
1718 * @filler: function to perform the read
1719 * @data: destination for read data
1720 *
1721 * Read into the page cache. If a page already exists, and PageUptodate() is
1722 * not set, try to fill the page then wait for it to become unlocked.
1723 *
1724 * If the page does not get brought uptodate, return -EIO.
1725 */
1726struct page *read_cache_page(struct address_space *mapping,
57f6b96c 1727 pgoff_t index,
6fe6900e
NP
1728 int (*filler)(void *,struct page*),
1729 void *data)
1730{
1731 struct page *page;
1732
1733 page = read_cache_page_async(mapping, index, filler, data);
1734 if (IS_ERR(page))
1735 goto out;
1736 wait_on_page_locked(page);
1737 if (!PageUptodate(page)) {
1738 page_cache_release(page);
1739 page = ERR_PTR(-EIO);
1740 }
1da177e4
LT
1741 out:
1742 return page;
1743}
1da177e4
LT
1744EXPORT_SYMBOL(read_cache_page);
1745
1da177e4
LT
1746/*
1747 * The logic we want is
1748 *
1749 * if suid or (sgid and xgrp)
1750 * remove privs
1751 */
01de85e0 1752int should_remove_suid(struct dentry *dentry)
1da177e4
LT
1753{
1754 mode_t mode = dentry->d_inode->i_mode;
1755 int kill = 0;
1da177e4
LT
1756
1757 /* suid always must be killed */
1758 if (unlikely(mode & S_ISUID))
1759 kill = ATTR_KILL_SUID;
1760
1761 /*
1762 * sgid without any exec bits is just a mandatory locking mark; leave
1763 * it alone. If some exec bits are set, it's a real sgid; kill it.
1764 */
1765 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1766 kill |= ATTR_KILL_SGID;
1767
7f5ff766 1768 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
01de85e0 1769 return kill;
1da177e4 1770
01de85e0
JA
1771 return 0;
1772}
d23a147b 1773EXPORT_SYMBOL(should_remove_suid);
01de85e0 1774
7f3d4ee1 1775static int __remove_suid(struct dentry *dentry, int kill)
01de85e0
JA
1776{
1777 struct iattr newattrs;
1778
1779 newattrs.ia_valid = ATTR_FORCE | kill;
1780 return notify_change(dentry, &newattrs);
1781}
1782
2f1936b8 1783int file_remove_suid(struct file *file)
01de85e0 1784{
2f1936b8 1785 struct dentry *dentry = file->f_path.dentry;
b5376771
SH
1786 int killsuid = should_remove_suid(dentry);
1787 int killpriv = security_inode_need_killpriv(dentry);
1788 int error = 0;
01de85e0 1789
b5376771
SH
1790 if (killpriv < 0)
1791 return killpriv;
1792 if (killpriv)
1793 error = security_inode_killpriv(dentry);
1794 if (!error && killsuid)
1795 error = __remove_suid(dentry, killsuid);
01de85e0 1796
b5376771 1797 return error;
1da177e4 1798}
2f1936b8 1799EXPORT_SYMBOL(file_remove_suid);
1da177e4 1800
2f718ffc 1801static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1da177e4
LT
1802 const struct iovec *iov, size_t base, size_t bytes)
1803{
1804 size_t copied = 0, left = 0;
1805
1806 while (bytes) {
1807 char __user *buf = iov->iov_base + base;
1808 int copy = min(bytes, iov->iov_len - base);
1809
1810 base = 0;
c22ce143 1811 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1da177e4
LT
1812 copied += copy;
1813 bytes -= copy;
1814 vaddr += copy;
1815 iov++;
1816
01408c49 1817 if (unlikely(left))
1da177e4 1818 break;
1da177e4
LT
1819 }
1820 return copied - left;
1821}
1822
2f718ffc
NP
1823/*
1824 * Copy as much as we can into the page and return the number of bytes which
1825 * were sucessfully copied. If a fault is encountered then return the number of
1826 * bytes which were copied.
1827 */
1828size_t iov_iter_copy_from_user_atomic(struct page *page,
1829 struct iov_iter *i, unsigned long offset, size_t bytes)
1830{
1831 char *kaddr;
1832 size_t copied;
1833
1834 BUG_ON(!in_atomic());
1835 kaddr = kmap_atomic(page, KM_USER0);
1836 if (likely(i->nr_segs == 1)) {
1837 int left;
1838 char __user *buf = i->iov->iov_base + i->iov_offset;
1839 left = __copy_from_user_inatomic_nocache(kaddr + offset,
1840 buf, bytes);
1841 copied = bytes - left;
1842 } else {
1843 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1844 i->iov, i->iov_offset, bytes);
1845 }
1846 kunmap_atomic(kaddr, KM_USER0);
1847
1848 return copied;
1849}
89e10787 1850EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2f718ffc
NP
1851
1852/*
1853 * This has the same sideeffects and return value as
1854 * iov_iter_copy_from_user_atomic().
1855 * The difference is that it attempts to resolve faults.
1856 * Page must not be locked.
1857 */
1858size_t iov_iter_copy_from_user(struct page *page,
1859 struct iov_iter *i, unsigned long offset, size_t bytes)
1860{
1861 char *kaddr;
1862 size_t copied;
1863
1864 kaddr = kmap(page);
1865 if (likely(i->nr_segs == 1)) {
1866 int left;
1867 char __user *buf = i->iov->iov_base + i->iov_offset;
1868 left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1869 copied = bytes - left;
1870 } else {
1871 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1872 i->iov, i->iov_offset, bytes);
1873 }
1874 kunmap(page);
1875 return copied;
1876}
89e10787 1877EXPORT_SYMBOL(iov_iter_copy_from_user);
2f718ffc 1878
f7009264 1879void iov_iter_advance(struct iov_iter *i, size_t bytes)
2f718ffc 1880{
f7009264
NP
1881 BUG_ON(i->count < bytes);
1882
2f718ffc
NP
1883 if (likely(i->nr_segs == 1)) {
1884 i->iov_offset += bytes;
f7009264 1885 i->count -= bytes;
2f718ffc
NP
1886 } else {
1887 const struct iovec *iov = i->iov;
1888 size_t base = i->iov_offset;
1889
124d3b70
NP
1890 /*
1891 * The !iov->iov_len check ensures we skip over unlikely
f7009264 1892 * zero-length segments (without overruning the iovec).
124d3b70 1893 */
94ad374a 1894 while (bytes || unlikely(i->count && !iov->iov_len)) {
f7009264 1895 int copy;
2f718ffc 1896
f7009264
NP
1897 copy = min(bytes, iov->iov_len - base);
1898 BUG_ON(!i->count || i->count < copy);
1899 i->count -= copy;
2f718ffc
NP
1900 bytes -= copy;
1901 base += copy;
1902 if (iov->iov_len == base) {
1903 iov++;
1904 base = 0;
1905 }
1906 }
1907 i->iov = iov;
1908 i->iov_offset = base;
1909 }
1910}
89e10787 1911EXPORT_SYMBOL(iov_iter_advance);
2f718ffc 1912
afddba49
NP
1913/*
1914 * Fault in the first iovec of the given iov_iter, to a maximum length
1915 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1916 * accessed (ie. because it is an invalid address).
1917 *
1918 * writev-intensive code may want this to prefault several iovecs -- that
1919 * would be possible (callers must not rely on the fact that _only_ the
1920 * first iovec will be faulted with the current implementation).
1921 */
1922int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2f718ffc 1923{
2f718ffc 1924 char __user *buf = i->iov->iov_base + i->iov_offset;
afddba49
NP
1925 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1926 return fault_in_pages_readable(buf, bytes);
2f718ffc 1927}
89e10787 1928EXPORT_SYMBOL(iov_iter_fault_in_readable);
2f718ffc
NP
1929
1930/*
1931 * Return the count of just the current iov_iter segment.
1932 */
1933size_t iov_iter_single_seg_count(struct iov_iter *i)
1934{
1935 const struct iovec *iov = i->iov;
1936 if (i->nr_segs == 1)
1937 return i->count;
1938 else
1939 return min(i->count, iov->iov_len - i->iov_offset);
1940}
89e10787 1941EXPORT_SYMBOL(iov_iter_single_seg_count);
2f718ffc 1942
1da177e4
LT
1943/*
1944 * Performs necessary checks before doing a write
1945 *
485bb99b 1946 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
1947 * Returns appropriate error code that caller should return or
1948 * zero in case that write should be allowed.
1949 */
1950inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1951{
1952 struct inode *inode = file->f_mapping->host;
1953 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1954
1955 if (unlikely(*pos < 0))
1956 return -EINVAL;
1957
1da177e4
LT
1958 if (!isblk) {
1959 /* FIXME: this is for backwards compatibility with 2.4 */
1960 if (file->f_flags & O_APPEND)
1961 *pos = i_size_read(inode);
1962
1963 if (limit != RLIM_INFINITY) {
1964 if (*pos >= limit) {
1965 send_sig(SIGXFSZ, current, 0);
1966 return -EFBIG;
1967 }
1968 if (*count > limit - (typeof(limit))*pos) {
1969 *count = limit - (typeof(limit))*pos;
1970 }
1971 }
1972 }
1973
1974 /*
1975 * LFS rule
1976 */
1977 if (unlikely(*pos + *count > MAX_NON_LFS &&
1978 !(file->f_flags & O_LARGEFILE))) {
1979 if (*pos >= MAX_NON_LFS) {
1da177e4
LT
1980 return -EFBIG;
1981 }
1982 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1983 *count = MAX_NON_LFS - (unsigned long)*pos;
1984 }
1985 }
1986
1987 /*
1988 * Are we about to exceed the fs block limit ?
1989 *
1990 * If we have written data it becomes a short write. If we have
1991 * exceeded without writing data we send a signal and return EFBIG.
1992 * Linus frestrict idea will clean these up nicely..
1993 */
1994 if (likely(!isblk)) {
1995 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1996 if (*count || *pos > inode->i_sb->s_maxbytes) {
1da177e4
LT
1997 return -EFBIG;
1998 }
1999 /* zero-length writes at ->s_maxbytes are OK */
2000 }
2001
2002 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2003 *count = inode->i_sb->s_maxbytes - *pos;
2004 } else {
9361401e 2005#ifdef CONFIG_BLOCK
1da177e4
LT
2006 loff_t isize;
2007 if (bdev_read_only(I_BDEV(inode)))
2008 return -EPERM;
2009 isize = i_size_read(inode);
2010 if (*pos >= isize) {
2011 if (*count || *pos > isize)
2012 return -ENOSPC;
2013 }
2014
2015 if (*pos + *count > isize)
2016 *count = isize - *pos;
9361401e
DH
2017#else
2018 return -EPERM;
2019#endif
1da177e4
LT
2020 }
2021 return 0;
2022}
2023EXPORT_SYMBOL(generic_write_checks);
2024
afddba49
NP
2025int pagecache_write_begin(struct file *file, struct address_space *mapping,
2026 loff_t pos, unsigned len, unsigned flags,
2027 struct page **pagep, void **fsdata)
2028{
2029 const struct address_space_operations *aops = mapping->a_ops;
2030
4e02ed4b 2031 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2032 pagep, fsdata);
afddba49
NP
2033}
2034EXPORT_SYMBOL(pagecache_write_begin);
2035
2036int pagecache_write_end(struct file *file, struct address_space *mapping,
2037 loff_t pos, unsigned len, unsigned copied,
2038 struct page *page, void *fsdata)
2039{
2040 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2041
4e02ed4b
NP
2042 mark_page_accessed(page);
2043 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2044}
2045EXPORT_SYMBOL(pagecache_write_end);
2046
1da177e4
LT
2047ssize_t
2048generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2049 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2050 size_t count, size_t ocount)
2051{
2052 struct file *file = iocb->ki_filp;
2053 struct address_space *mapping = file->f_mapping;
2054 struct inode *inode = mapping->host;
2055 ssize_t written;
a969e903
CH
2056 size_t write_len;
2057 pgoff_t end;
1da177e4
LT
2058
2059 if (count != ocount)
2060 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2061
a969e903
CH
2062 /*
2063 * Unmap all mmappings of the file up-front.
2064 *
2065 * This will cause any pte dirty bits to be propagated into the
2066 * pageframes for the subsequent filemap_write_and_wait().
2067 */
2068 write_len = iov_length(iov, *nr_segs);
2069 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2070 if (mapping_mapped(mapping))
2071 unmap_mapping_range(mapping, pos, write_len, 0);
2072
2073 written = filemap_write_and_wait(mapping);
2074 if (written)
2075 goto out;
2076
2077 /*
2078 * After a write we want buffered reads to be sure to go to disk to get
2079 * the new data. We invalidate clean cached page from the region we're
2080 * about to write. We do this *before* the write so that we can return
6ccfa806 2081 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2082 */
2083 if (mapping->nrpages) {
2084 written = invalidate_inode_pages2_range(mapping,
2085 pos >> PAGE_CACHE_SHIFT, end);
6ccfa806
HH
2086 /*
2087 * If a page can not be invalidated, return 0 to fall back
2088 * to buffered write.
2089 */
2090 if (written) {
2091 if (written == -EBUSY)
2092 return 0;
a969e903 2093 goto out;
6ccfa806 2094 }
a969e903
CH
2095 }
2096
2097 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2098
2099 /*
2100 * Finally, try again to invalidate clean pages which might have been
2101 * cached by non-direct readahead, or faulted in by get_user_pages()
2102 * if the source of the write was an mmap'ed region of the file
2103 * we're writing. Either one is a pretty crazy thing to do,
2104 * so we don't support it 100%. If this invalidation
2105 * fails, tough, the write still worked...
2106 */
2107 if (mapping->nrpages) {
2108 invalidate_inode_pages2_range(mapping,
2109 pos >> PAGE_CACHE_SHIFT, end);
2110 }
2111
1da177e4
LT
2112 if (written > 0) {
2113 loff_t end = pos + written;
2114 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2115 i_size_write(inode, end);
2116 mark_inode_dirty(inode);
2117 }
2118 *ppos = end;
2119 }
2120
2121 /*
2122 * Sync the fs metadata but not the minor inode changes and
2123 * of course not the data as we did direct DMA for the IO.
1b1dcc1b 2124 * i_mutex is held, which protects generic_osync_inode() from
8459d86a 2125 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
1da177e4 2126 */
a969e903 2127out:
8459d86a
ZB
2128 if ((written >= 0 || written == -EIOCBQUEUED) &&
2129 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1e8a81c5
HH
2130 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2131 if (err < 0)
2132 written = err;
2133 }
1da177e4
LT
2134 return written;
2135}
2136EXPORT_SYMBOL(generic_file_direct_write);
2137
eb2be189
NP
2138/*
2139 * Find or create a page at the given pagecache position. Return the locked
2140 * page. This function is specifically for buffered writes.
2141 */
54566b2c
NP
2142struct page *grab_cache_page_write_begin(struct address_space *mapping,
2143 pgoff_t index, unsigned flags)
eb2be189
NP
2144{
2145 int status;
2146 struct page *page;
54566b2c
NP
2147 gfp_t gfp_notmask = 0;
2148 if (flags & AOP_FLAG_NOFS)
2149 gfp_notmask = __GFP_FS;
eb2be189
NP
2150repeat:
2151 page = find_lock_page(mapping, index);
2152 if (likely(page))
2153 return page;
2154
54566b2c 2155 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
eb2be189
NP
2156 if (!page)
2157 return NULL;
54566b2c
NP
2158 status = add_to_page_cache_lru(page, mapping, index,
2159 GFP_KERNEL & ~gfp_notmask);
eb2be189
NP
2160 if (unlikely(status)) {
2161 page_cache_release(page);
2162 if (status == -EEXIST)
2163 goto repeat;
2164 return NULL;
2165 }
2166 return page;
2167}
54566b2c 2168EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2169
afddba49
NP
2170static ssize_t generic_perform_write(struct file *file,
2171 struct iov_iter *i, loff_t pos)
2172{
2173 struct address_space *mapping = file->f_mapping;
2174 const struct address_space_operations *a_ops = mapping->a_ops;
2175 long status = 0;
2176 ssize_t written = 0;
674b892e
NP
2177 unsigned int flags = 0;
2178
2179 /*
2180 * Copies from kernel address space cannot fail (NFSD is a big user).
2181 */
2182 if (segment_eq(get_fs(), KERNEL_DS))
2183 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2184
2185 do {
2186 struct page *page;
2187 pgoff_t index; /* Pagecache index for current page */
2188 unsigned long offset; /* Offset into pagecache page */
2189 unsigned long bytes; /* Bytes to write to page */
2190 size_t copied; /* Bytes copied from user */
2191 void *fsdata;
2192
2193 offset = (pos & (PAGE_CACHE_SIZE - 1));
2194 index = pos >> PAGE_CACHE_SHIFT;
2195 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2196 iov_iter_count(i));
2197
2198again:
2199
2200 /*
2201 * Bring in the user page that we will copy from _first_.
2202 * Otherwise there's a nasty deadlock on copying from the
2203 * same page as we're writing to, without it being marked
2204 * up-to-date.
2205 *
2206 * Not only is this an optimisation, but it is also required
2207 * to check that the address is actually valid, when atomic
2208 * usercopies are used, below.
2209 */
2210 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2211 status = -EFAULT;
2212 break;
2213 }
2214
674b892e 2215 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49
NP
2216 &page, &fsdata);
2217 if (unlikely(status))
2218 break;
2219
2220 pagefault_disable();
2221 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2222 pagefault_enable();
2223 flush_dcache_page(page);
2224
2225 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2226 page, fsdata);
2227 if (unlikely(status < 0))
2228 break;
2229 copied = status;
2230
2231 cond_resched();
2232
124d3b70 2233 iov_iter_advance(i, copied);
afddba49
NP
2234 if (unlikely(copied == 0)) {
2235 /*
2236 * If we were unable to copy any data at all, we must
2237 * fall back to a single segment length write.
2238 *
2239 * If we didn't fallback here, we could livelock
2240 * because not all segments in the iov can be copied at
2241 * once without a pagefault.
2242 */
2243 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2244 iov_iter_single_seg_count(i));
2245 goto again;
2246 }
afddba49
NP
2247 pos += copied;
2248 written += copied;
2249
2250 balance_dirty_pages_ratelimited(mapping);
2251
2252 } while (iov_iter_count(i));
2253
2254 return written ? written : status;
2255}
2256
2257ssize_t
2258generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2259 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2260 size_t count, ssize_t written)
2261{
2262 struct file *file = iocb->ki_filp;
2263 struct address_space *mapping = file->f_mapping;
2264 const struct address_space_operations *a_ops = mapping->a_ops;
2265 struct inode *inode = mapping->host;
2266 ssize_t status;
2267 struct iov_iter i;
2268
2269 iov_iter_init(&i, iov, nr_segs, count, written);
4e02ed4b 2270 status = generic_perform_write(file, &i, pos);
1da177e4 2271
1da177e4 2272 if (likely(status >= 0)) {
afddba49
NP
2273 written += status;
2274 *ppos = pos + status;
2275
2276 /*
2277 * For now, when the user asks for O_SYNC, we'll actually give
2278 * O_DSYNC
2279 */
1da177e4
LT
2280 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2281 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2282 status = generic_osync_inode(inode, mapping,
2283 OSYNC_METADATA|OSYNC_DATA);
2284 }
2285 }
2286
2287 /*
2288 * If we get here for O_DIRECT writes then we must have fallen through
2289 * to buffered writes (block instantiation inside i_size). So we sync
2290 * the file data here, to try to honour O_DIRECT expectations.
2291 */
2292 if (unlikely(file->f_flags & O_DIRECT) && written)
2293 status = filemap_write_and_wait(mapping);
2294
1da177e4
LT
2295 return written ? written : status;
2296}
2297EXPORT_SYMBOL(generic_file_buffered_write);
2298
5ce7852c 2299static ssize_t
1da177e4
LT
2300__generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2301 unsigned long nr_segs, loff_t *ppos)
2302{
2303 struct file *file = iocb->ki_filp;
fb5527e6 2304 struct address_space * mapping = file->f_mapping;
1da177e4
LT
2305 size_t ocount; /* original count */
2306 size_t count; /* after file limit checks */
2307 struct inode *inode = mapping->host;
1da177e4
LT
2308 loff_t pos;
2309 ssize_t written;
2310 ssize_t err;
2311
2312 ocount = 0;
0ceb3314
DM
2313 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2314 if (err)
2315 return err;
1da177e4
LT
2316
2317 count = ocount;
2318 pos = *ppos;
2319
2320 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2321
2322 /* We can write back this queue in page reclaim */
2323 current->backing_dev_info = mapping->backing_dev_info;
2324 written = 0;
2325
2326 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2327 if (err)
2328 goto out;
2329
2330 if (count == 0)
2331 goto out;
2332
2f1936b8 2333 err = file_remove_suid(file);
1da177e4
LT
2334 if (err)
2335 goto out;
2336
870f4817 2337 file_update_time(file);
1da177e4
LT
2338
2339 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2340 if (unlikely(file->f_flags & O_DIRECT)) {
fb5527e6
JM
2341 loff_t endbyte;
2342 ssize_t written_buffered;
2343
2344 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2345 ppos, count, ocount);
1da177e4
LT
2346 if (written < 0 || written == count)
2347 goto out;
2348 /*
2349 * direct-io write to a hole: fall through to buffered I/O
2350 * for completing the rest of the request.
2351 */
2352 pos += written;
2353 count -= written;
fb5527e6
JM
2354 written_buffered = generic_file_buffered_write(iocb, iov,
2355 nr_segs, pos, ppos, count,
2356 written);
2357 /*
2358 * If generic_file_buffered_write() retuned a synchronous error
2359 * then we want to return the number of bytes which were
2360 * direct-written, or the error code if that was zero. Note
2361 * that this differs from normal direct-io semantics, which
2362 * will return -EFOO even if some bytes were written.
2363 */
2364 if (written_buffered < 0) {
2365 err = written_buffered;
2366 goto out;
2367 }
1da177e4 2368
fb5527e6
JM
2369 /*
2370 * We need to ensure that the page cache pages are written to
2371 * disk and invalidated to preserve the expected O_DIRECT
2372 * semantics.
2373 */
2374 endbyte = pos + written_buffered - written - 1;
ef51c976
MF
2375 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2376 SYNC_FILE_RANGE_WAIT_BEFORE|
2377 SYNC_FILE_RANGE_WRITE|
2378 SYNC_FILE_RANGE_WAIT_AFTER);
fb5527e6
JM
2379 if (err == 0) {
2380 written = written_buffered;
2381 invalidate_mapping_pages(mapping,
2382 pos >> PAGE_CACHE_SHIFT,
2383 endbyte >> PAGE_CACHE_SHIFT);
2384 } else {
2385 /*
2386 * We don't know how much we wrote, so just return
2387 * the number of bytes which were direct-written
2388 */
2389 }
2390 } else {
2391 written = generic_file_buffered_write(iocb, iov, nr_segs,
2392 pos, ppos, count, written);
2393 }
1da177e4
LT
2394out:
2395 current->backing_dev_info = NULL;
2396 return written ? written : err;
2397}
1da177e4 2398
027445c3
BP
2399ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2400 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1da177e4
LT
2401{
2402 struct file *file = iocb->ki_filp;
2403 struct address_space *mapping = file->f_mapping;
2404 struct inode *inode = mapping->host;
2405 ssize_t ret;
1da177e4 2406
027445c3
BP
2407 BUG_ON(iocb->ki_pos != pos);
2408
2409 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2410 &iocb->ki_pos);
1da177e4
LT
2411
2412 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
027445c3 2413 ssize_t err;
1da177e4
LT
2414
2415 err = sync_page_range_nolock(inode, mapping, pos, ret);
2416 if (err < 0)
2417 ret = err;
2418 }
2419 return ret;
2420}
027445c3 2421EXPORT_SYMBOL(generic_file_aio_write_nolock);
1da177e4 2422
027445c3
BP
2423ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2424 unsigned long nr_segs, loff_t pos)
1da177e4
LT
2425{
2426 struct file *file = iocb->ki_filp;
2427 struct address_space *mapping = file->f_mapping;
2428 struct inode *inode = mapping->host;
2429 ssize_t ret;
1da177e4
LT
2430
2431 BUG_ON(iocb->ki_pos != pos);
2432
1b1dcc1b 2433 mutex_lock(&inode->i_mutex);
027445c3
BP
2434 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2435 &iocb->ki_pos);
1b1dcc1b 2436 mutex_unlock(&inode->i_mutex);
1da177e4
LT
2437
2438 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2439 ssize_t err;
2440
2441 err = sync_page_range(inode, mapping, pos, ret);
2442 if (err < 0)
2443 ret = err;
2444 }
2445 return ret;
2446}
2447EXPORT_SYMBOL(generic_file_aio_write);
2448
cf9a2ae8
DH
2449/**
2450 * try_to_release_page() - release old fs-specific metadata on a page
2451 *
2452 * @page: the page which the kernel is trying to free
2453 * @gfp_mask: memory allocation flags (and I/O mode)
2454 *
2455 * The address_space is to try to release any data against the page
2456 * (presumably at page->private). If the release was successful, return `1'.
2457 * Otherwise return zero.
2458 *
2459 * The @gfp_mask argument specifies whether I/O may be performed to release
3f31fddf 2460 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
cf9a2ae8 2461 *
cf9a2ae8
DH
2462 */
2463int try_to_release_page(struct page *page, gfp_t gfp_mask)
2464{
2465 struct address_space * const mapping = page->mapping;
2466
2467 BUG_ON(!PageLocked(page));
2468 if (PageWriteback(page))
2469 return 0;
2470
2471 if (mapping && mapping->a_ops->releasepage)
2472 return mapping->a_ops->releasepage(page, gfp_mask);
2473 return try_to_free_buffers(page);
2474}
2475
2476EXPORT_SYMBOL(try_to_release_page);