]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/filemap.c
Staging: usb-ip: vhci_hdc:Fix the returned error value
[net-next-2.6.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
1da177e4
LT
12#include <linux/module.h>
13#include <linux/slab.h>
14#include <linux/compiler.h>
15#include <linux/fs.h>
c22ce143 16#include <linux/uaccess.h>
1da177e4 17#include <linux/aio.h>
c59ede7b 18#include <linux/capability.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
32#include <linux/syscalls.h>
44110fe3 33#include <linux/cpuset.h>
2f718ffc 34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
8a9f3ccd 35#include <linux/memcontrol.h>
4f98a2fe 36#include <linux/mm_inline.h> /* for page_is_file_cache() */
0f8053a5
NP
37#include "internal.h"
38
1da177e4 39/*
1da177e4
LT
40 * FIXME: remove all knowledge of the buffer layer from the core VM
41 */
148f948b 42#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 43
1da177e4
LT
44#include <asm/mman.h>
45
46/*
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
48 * though.
49 *
50 * Shared mappings now work. 15.8.1995 Bruno.
51 *
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54 *
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56 */
57
58/*
59 * Lock ordering:
60 *
61 * ->i_mmap_lock (vmtruncate)
62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
1da177e4 65 *
1b1dcc1b 66 * ->i_mutex
1da177e4
LT
67 * ->i_mmap_lock (truncate->unmap_mapping_range)
68 *
69 * ->mmap_sem
70 * ->i_mmap_lock
b8072f09 71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
73 *
74 * ->mmap_sem
75 * ->lock_page (access_process_vm)
76 *
82591e6e
NP
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 79 *
1b1dcc1b 80 * ->i_mutex
1da177e4
LT
81 * ->i_alloc_sem (various)
82 *
83 * ->inode_lock
84 * ->sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
86 *
87 * ->i_mmap_lock
88 * ->anon_vma.lock (vma_adjust)
89 *
90 * ->anon_vma.lock
b8072f09 91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 92 *
b8072f09 93 * ->page_table_lock or pte_lock
5d337b91 94 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * ->inode_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (zap_pte_range->set_page_dirty)
103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
104 *
105 * ->task->proc_lock
106 * ->dcache_lock (proc_pid_lookup)
107 */
108
109/*
110 * Remove a page from the page cache and free it. Caller has to make
111 * sure the page is locked and that nobody else uses it - or that usage
19fd6231 112 * is safe. The caller must hold the mapping's tree_lock.
1da177e4
LT
113 */
114void __remove_from_page_cache(struct page *page)
115{
116 struct address_space *mapping = page->mapping;
117
118 radix_tree_delete(&mapping->page_tree, page->index);
119 page->mapping = NULL;
120 mapping->nrpages--;
347ce434 121 __dec_zone_page_state(page, NR_FILE_PAGES);
45426812 122 BUG_ON(page_mapped(page));
3a692790
LT
123
124 /*
125 * Some filesystems seem to re-dirty the page even after
126 * the VM has canceled the dirty bit (eg ext3 journaling).
127 *
128 * Fix it up by doing a final dirty accounting check after
129 * having removed the page entirely.
130 */
131 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
132 dec_zone_page_state(page, NR_FILE_DIRTY);
133 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
134 }
1da177e4
LT
135}
136
137void remove_from_page_cache(struct page *page)
138{
139 struct address_space *mapping = page->mapping;
140
cd7619d6 141 BUG_ON(!PageLocked(page));
1da177e4 142
19fd6231 143 spin_lock_irq(&mapping->tree_lock);
1da177e4 144 __remove_from_page_cache(page);
19fd6231 145 spin_unlock_irq(&mapping->tree_lock);
e767e056 146 mem_cgroup_uncharge_cache_page(page);
1da177e4
LT
147}
148
149static int sync_page(void *word)
150{
151 struct address_space *mapping;
152 struct page *page;
153
07808b74 154 page = container_of((unsigned long *)word, struct page, flags);
1da177e4
LT
155
156 /*
dd1d5afc
WLII
157 * page_mapping() is being called without PG_locked held.
158 * Some knowledge of the state and use of the page is used to
159 * reduce the requirements down to a memory barrier.
160 * The danger here is of a stale page_mapping() return value
161 * indicating a struct address_space different from the one it's
162 * associated with when it is associated with one.
163 * After smp_mb(), it's either the correct page_mapping() for
164 * the page, or an old page_mapping() and the page's own
165 * page_mapping() has gone NULL.
166 * The ->sync_page() address_space operation must tolerate
167 * page_mapping() going NULL. By an amazing coincidence,
168 * this comes about because none of the users of the page
169 * in the ->sync_page() methods make essential use of the
170 * page_mapping(), merely passing the page down to the backing
171 * device's unplug functions when it's non-NULL, which in turn
4c21e2f2 172 * ignore it for all cases but swap, where only page_private(page) is
dd1d5afc
WLII
173 * of interest. When page_mapping() does go NULL, the entire
174 * call stack gracefully ignores the page and returns.
175 * -- wli
1da177e4
LT
176 */
177 smp_mb();
178 mapping = page_mapping(page);
179 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
180 mapping->a_ops->sync_page(page);
181 io_schedule();
182 return 0;
183}
184
2687a356
MW
185static int sync_page_killable(void *word)
186{
187 sync_page(word);
188 return fatal_signal_pending(current) ? -EINTR : 0;
189}
190
1da177e4 191/**
485bb99b 192 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
193 * @mapping: address space structure to write
194 * @start: offset in bytes where the range starts
469eb4d0 195 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 196 * @sync_mode: enable synchronous operation
1da177e4 197 *
485bb99b
RD
198 * Start writeback against all of a mapping's dirty pages that lie
199 * within the byte offsets <start, end> inclusive.
200 *
1da177e4 201 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 202 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
203 * these two operations is that if a dirty page/buffer is encountered, it must
204 * be waited upon, and not just skipped over.
205 */
ebcf28e1
AM
206int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
207 loff_t end, int sync_mode)
1da177e4
LT
208{
209 int ret;
210 struct writeback_control wbc = {
211 .sync_mode = sync_mode,
05fe478d 212 .nr_to_write = LONG_MAX,
111ebb6e
OH
213 .range_start = start,
214 .range_end = end,
1da177e4
LT
215 };
216
217 if (!mapping_cap_writeback_dirty(mapping))
218 return 0;
219
220 ret = do_writepages(mapping, &wbc);
221 return ret;
222}
223
224static inline int __filemap_fdatawrite(struct address_space *mapping,
225 int sync_mode)
226{
111ebb6e 227 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
228}
229
230int filemap_fdatawrite(struct address_space *mapping)
231{
232 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
233}
234EXPORT_SYMBOL(filemap_fdatawrite);
235
f4c0a0fd 236int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 237 loff_t end)
1da177e4
LT
238{
239 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
240}
f4c0a0fd 241EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 242
485bb99b
RD
243/**
244 * filemap_flush - mostly a non-blocking flush
245 * @mapping: target address_space
246 *
1da177e4
LT
247 * This is a mostly non-blocking flush. Not suitable for data-integrity
248 * purposes - I/O may not be started against all dirty pages.
249 */
250int filemap_flush(struct address_space *mapping)
251{
252 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
253}
254EXPORT_SYMBOL(filemap_flush);
255
485bb99b
RD
256/**
257 * wait_on_page_writeback_range - wait for writeback to complete
258 * @mapping: target address_space
259 * @start: beginning page index
260 * @end: ending page index
261 *
1da177e4
LT
262 * Wait for writeback to complete against pages indexed by start->end
263 * inclusive
264 */
ebcf28e1 265int wait_on_page_writeback_range(struct address_space *mapping,
1da177e4
LT
266 pgoff_t start, pgoff_t end)
267{
268 struct pagevec pvec;
269 int nr_pages;
270 int ret = 0;
271 pgoff_t index;
272
273 if (end < start)
274 return 0;
275
276 pagevec_init(&pvec, 0);
277 index = start;
278 while ((index <= end) &&
279 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
280 PAGECACHE_TAG_WRITEBACK,
281 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
282 unsigned i;
283
284 for (i = 0; i < nr_pages; i++) {
285 struct page *page = pvec.pages[i];
286
287 /* until radix tree lookup accepts end_index */
288 if (page->index > end)
289 continue;
290
291 wait_on_page_writeback(page);
292 if (PageError(page))
293 ret = -EIO;
294 }
295 pagevec_release(&pvec);
296 cond_resched();
297 }
298
299 /* Check for outstanding write errors */
300 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
301 ret = -ENOSPC;
302 if (test_and_clear_bit(AS_EIO, &mapping->flags))
303 ret = -EIO;
304
305 return ret;
306}
307
d3bccb6f
JK
308/**
309 * filemap_fdatawait_range - wait for all under-writeback pages to complete in a given range
310 * @mapping: address space structure to wait for
311 * @start: offset in bytes where the range starts
312 * @end: offset in bytes where the range ends (inclusive)
313 *
314 * Walk the list of under-writeback pages of the given address space
315 * in the given range and wait for all of them.
316 *
317 * This is just a simple wrapper so that callers don't have to convert offsets
318 * to page indexes themselves
319 */
320int filemap_fdatawait_range(struct address_space *mapping, loff_t start,
321 loff_t end)
322{
323 return wait_on_page_writeback_range(mapping, start >> PAGE_CACHE_SHIFT,
324 end >> PAGE_CACHE_SHIFT);
325}
326EXPORT_SYMBOL(filemap_fdatawait_range);
327
1da177e4 328/**
485bb99b 329 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 330 * @mapping: address space structure to wait for
485bb99b
RD
331 *
332 * Walk the list of under-writeback pages of the given address space
333 * and wait for all of them.
1da177e4
LT
334 */
335int filemap_fdatawait(struct address_space *mapping)
336{
337 loff_t i_size = i_size_read(mapping->host);
338
339 if (i_size == 0)
340 return 0;
341
342 return wait_on_page_writeback_range(mapping, 0,
343 (i_size - 1) >> PAGE_CACHE_SHIFT);
344}
345EXPORT_SYMBOL(filemap_fdatawait);
346
347int filemap_write_and_wait(struct address_space *mapping)
348{
28fd1298 349 int err = 0;
1da177e4
LT
350
351 if (mapping->nrpages) {
28fd1298
OH
352 err = filemap_fdatawrite(mapping);
353 /*
354 * Even if the above returned error, the pages may be
355 * written partially (e.g. -ENOSPC), so we wait for it.
356 * But the -EIO is special case, it may indicate the worst
357 * thing (e.g. bug) happened, so we avoid waiting for it.
358 */
359 if (err != -EIO) {
360 int err2 = filemap_fdatawait(mapping);
361 if (!err)
362 err = err2;
363 }
1da177e4 364 }
28fd1298 365 return err;
1da177e4 366}
28fd1298 367EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 368
485bb99b
RD
369/**
370 * filemap_write_and_wait_range - write out & wait on a file range
371 * @mapping: the address_space for the pages
372 * @lstart: offset in bytes where the range starts
373 * @lend: offset in bytes where the range ends (inclusive)
374 *
469eb4d0
AM
375 * Write out and wait upon file offsets lstart->lend, inclusive.
376 *
377 * Note that `lend' is inclusive (describes the last byte to be written) so
378 * that this function can be used to write to the very end-of-file (end = -1).
379 */
1da177e4
LT
380int filemap_write_and_wait_range(struct address_space *mapping,
381 loff_t lstart, loff_t lend)
382{
28fd1298 383 int err = 0;
1da177e4
LT
384
385 if (mapping->nrpages) {
28fd1298
OH
386 err = __filemap_fdatawrite_range(mapping, lstart, lend,
387 WB_SYNC_ALL);
388 /* See comment of filemap_write_and_wait() */
389 if (err != -EIO) {
390 int err2 = wait_on_page_writeback_range(mapping,
391 lstart >> PAGE_CACHE_SHIFT,
392 lend >> PAGE_CACHE_SHIFT);
393 if (!err)
394 err = err2;
395 }
1da177e4 396 }
28fd1298 397 return err;
1da177e4 398}
f6995585 399EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 400
485bb99b 401/**
e286781d 402 * add_to_page_cache_locked - add a locked page to the pagecache
485bb99b
RD
403 * @page: page to add
404 * @mapping: the page's address_space
405 * @offset: page index
406 * @gfp_mask: page allocation mode
407 *
e286781d 408 * This function is used to add a page to the pagecache. It must be locked.
1da177e4
LT
409 * This function does not add the page to the LRU. The caller must do that.
410 */
e286781d 411int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
6daa0e28 412 pgoff_t offset, gfp_t gfp_mask)
1da177e4 413{
e286781d
NP
414 int error;
415
416 VM_BUG_ON(!PageLocked(page));
417
418 error = mem_cgroup_cache_charge(page, current->mm,
2c26fdd7 419 gfp_mask & GFP_RECLAIM_MASK);
35c754d7
BS
420 if (error)
421 goto out;
1da177e4 422
35c754d7 423 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
1da177e4 424 if (error == 0) {
e286781d
NP
425 page_cache_get(page);
426 page->mapping = mapping;
427 page->index = offset;
428
19fd6231 429 spin_lock_irq(&mapping->tree_lock);
1da177e4 430 error = radix_tree_insert(&mapping->page_tree, offset, page);
e286781d 431 if (likely(!error)) {
1da177e4 432 mapping->nrpages++;
347ce434 433 __inc_zone_page_state(page, NR_FILE_PAGES);
e767e056 434 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
435 } else {
436 page->mapping = NULL;
e767e056 437 spin_unlock_irq(&mapping->tree_lock);
69029cd5 438 mem_cgroup_uncharge_cache_page(page);
e286781d
NP
439 page_cache_release(page);
440 }
1da177e4 441 radix_tree_preload_end();
35c754d7 442 } else
69029cd5 443 mem_cgroup_uncharge_cache_page(page);
8a9f3ccd 444out:
1da177e4
LT
445 return error;
446}
e286781d 447EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
448
449int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 450 pgoff_t offset, gfp_t gfp_mask)
1da177e4 451{
4f98a2fe
RR
452 int ret;
453
454 /*
455 * Splice_read and readahead add shmem/tmpfs pages into the page cache
456 * before shmem_readpage has a chance to mark them as SwapBacked: they
457 * need to go on the active_anon lru below, and mem_cgroup_cache_charge
458 * (called in add_to_page_cache) needs to know where they're going too.
459 */
460 if (mapping_cap_swap_backed(mapping))
461 SetPageSwapBacked(page);
462
463 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
464 if (ret == 0) {
465 if (page_is_file_cache(page))
466 lru_cache_add_file(page);
467 else
468 lru_cache_add_active_anon(page);
469 }
1da177e4
LT
470 return ret;
471}
18bc0bbd 472EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 473
44110fe3 474#ifdef CONFIG_NUMA
2ae88149 475struct page *__page_cache_alloc(gfp_t gfp)
44110fe3
PJ
476{
477 if (cpuset_do_page_mem_spread()) {
478 int n = cpuset_mem_spread_node();
6484eb3e 479 return alloc_pages_exact_node(n, gfp, 0);
44110fe3 480 }
2ae88149 481 return alloc_pages(gfp, 0);
44110fe3 482}
2ae88149 483EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
484#endif
485
db37648c
NP
486static int __sleep_on_page_lock(void *word)
487{
488 io_schedule();
489 return 0;
490}
491
1da177e4
LT
492/*
493 * In order to wait for pages to become available there must be
494 * waitqueues associated with pages. By using a hash table of
495 * waitqueues where the bucket discipline is to maintain all
496 * waiters on the same queue and wake all when any of the pages
497 * become available, and for the woken contexts to check to be
498 * sure the appropriate page became available, this saves space
499 * at a cost of "thundering herd" phenomena during rare hash
500 * collisions.
501 */
502static wait_queue_head_t *page_waitqueue(struct page *page)
503{
504 const struct zone *zone = page_zone(page);
505
506 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
507}
508
509static inline void wake_up_page(struct page *page, int bit)
510{
511 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
512}
513
920c7a5d 514void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
515{
516 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
517
518 if (test_bit(bit_nr, &page->flags))
519 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
520 TASK_UNINTERRUPTIBLE);
521}
522EXPORT_SYMBOL(wait_on_page_bit);
523
385e1ca5
DH
524/**
525 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
526 * @page: Page defining the wait queue of interest
527 * @waiter: Waiter to add to the queue
385e1ca5
DH
528 *
529 * Add an arbitrary @waiter to the wait queue for the nominated @page.
530 */
531void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
532{
533 wait_queue_head_t *q = page_waitqueue(page);
534 unsigned long flags;
535
536 spin_lock_irqsave(&q->lock, flags);
537 __add_wait_queue(q, waiter);
538 spin_unlock_irqrestore(&q->lock, flags);
539}
540EXPORT_SYMBOL_GPL(add_page_wait_queue);
541
1da177e4 542/**
485bb99b 543 * unlock_page - unlock a locked page
1da177e4
LT
544 * @page: the page
545 *
546 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
547 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
548 * mechananism between PageLocked pages and PageWriteback pages is shared.
549 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
550 *
8413ac9d
NP
551 * The mb is necessary to enforce ordering between the clear_bit and the read
552 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 553 */
920c7a5d 554void unlock_page(struct page *page)
1da177e4 555{
8413ac9d
NP
556 VM_BUG_ON(!PageLocked(page));
557 clear_bit_unlock(PG_locked, &page->flags);
558 smp_mb__after_clear_bit();
1da177e4
LT
559 wake_up_page(page, PG_locked);
560}
561EXPORT_SYMBOL(unlock_page);
562
485bb99b
RD
563/**
564 * end_page_writeback - end writeback against a page
565 * @page: the page
1da177e4
LT
566 */
567void end_page_writeback(struct page *page)
568{
ac6aadb2
MS
569 if (TestClearPageReclaim(page))
570 rotate_reclaimable_page(page);
571
572 if (!test_clear_page_writeback(page))
573 BUG();
574
1da177e4
LT
575 smp_mb__after_clear_bit();
576 wake_up_page(page, PG_writeback);
577}
578EXPORT_SYMBOL(end_page_writeback);
579
485bb99b
RD
580/**
581 * __lock_page - get a lock on the page, assuming we need to sleep to get it
582 * @page: the page to lock
1da177e4 583 *
485bb99b 584 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
1da177e4
LT
585 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
586 * chances are that on the second loop, the block layer's plug list is empty,
587 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
588 */
920c7a5d 589void __lock_page(struct page *page)
1da177e4
LT
590{
591 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
592
593 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
594 TASK_UNINTERRUPTIBLE);
595}
596EXPORT_SYMBOL(__lock_page);
597
b5606c2d 598int __lock_page_killable(struct page *page)
2687a356
MW
599{
600 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
601
602 return __wait_on_bit_lock(page_waitqueue(page), &wait,
603 sync_page_killable, TASK_KILLABLE);
604}
18bc0bbd 605EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 606
7682486b
RD
607/**
608 * __lock_page_nosync - get a lock on the page, without calling sync_page()
609 * @page: the page to lock
610 *
db37648c
NP
611 * Variant of lock_page that does not require the caller to hold a reference
612 * on the page's mapping.
613 */
920c7a5d 614void __lock_page_nosync(struct page *page)
db37648c
NP
615{
616 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
617 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
618 TASK_UNINTERRUPTIBLE);
619}
620
485bb99b
RD
621/**
622 * find_get_page - find and get a page reference
623 * @mapping: the address_space to search
624 * @offset: the page index
625 *
da6052f7
NP
626 * Is there a pagecache struct page at the given (mapping, offset) tuple?
627 * If yes, increment its refcount and return it; if no, return NULL.
1da177e4 628 */
a60637c8 629struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
1da177e4 630{
a60637c8 631 void **pagep;
1da177e4
LT
632 struct page *page;
633
a60637c8
NP
634 rcu_read_lock();
635repeat:
636 page = NULL;
637 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
638 if (pagep) {
639 page = radix_tree_deref_slot(pagep);
640 if (unlikely(!page || page == RADIX_TREE_RETRY))
641 goto repeat;
642
643 if (!page_cache_get_speculative(page))
644 goto repeat;
645
646 /*
647 * Has the page moved?
648 * This is part of the lockless pagecache protocol. See
649 * include/linux/pagemap.h for details.
650 */
651 if (unlikely(page != *pagep)) {
652 page_cache_release(page);
653 goto repeat;
654 }
655 }
656 rcu_read_unlock();
657
1da177e4
LT
658 return page;
659}
1da177e4
LT
660EXPORT_SYMBOL(find_get_page);
661
1da177e4
LT
662/**
663 * find_lock_page - locate, pin and lock a pagecache page
67be2dd1
MW
664 * @mapping: the address_space to search
665 * @offset: the page index
1da177e4
LT
666 *
667 * Locates the desired pagecache page, locks it, increments its reference
668 * count and returns its address.
669 *
670 * Returns zero if the page was not present. find_lock_page() may sleep.
671 */
a60637c8 672struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
673{
674 struct page *page;
675
1da177e4 676repeat:
a60637c8 677 page = find_get_page(mapping, offset);
1da177e4 678 if (page) {
a60637c8
NP
679 lock_page(page);
680 /* Has the page been truncated? */
681 if (unlikely(page->mapping != mapping)) {
682 unlock_page(page);
683 page_cache_release(page);
684 goto repeat;
1da177e4 685 }
a60637c8 686 VM_BUG_ON(page->index != offset);
1da177e4 687 }
1da177e4
LT
688 return page;
689}
1da177e4
LT
690EXPORT_SYMBOL(find_lock_page);
691
692/**
693 * find_or_create_page - locate or add a pagecache page
67be2dd1
MW
694 * @mapping: the page's address_space
695 * @index: the page's index into the mapping
696 * @gfp_mask: page allocation mode
1da177e4
LT
697 *
698 * Locates a page in the pagecache. If the page is not present, a new page
699 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
700 * LRU list. The returned page is locked and has its reference count
701 * incremented.
702 *
703 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
704 * allocation!
705 *
706 * find_or_create_page() returns the desired page's address, or zero on
707 * memory exhaustion.
708 */
709struct page *find_or_create_page(struct address_space *mapping,
57f6b96c 710 pgoff_t index, gfp_t gfp_mask)
1da177e4 711{
eb2be189 712 struct page *page;
1da177e4
LT
713 int err;
714repeat:
715 page = find_lock_page(mapping, index);
716 if (!page) {
eb2be189
NP
717 page = __page_cache_alloc(gfp_mask);
718 if (!page)
719 return NULL;
67d58ac4
NP
720 /*
721 * We want a regular kernel memory (not highmem or DMA etc)
722 * allocation for the radix tree nodes, but we need to honour
723 * the context-specific requirements the caller has asked for.
724 * GFP_RECLAIM_MASK collects those requirements.
725 */
726 err = add_to_page_cache_lru(page, mapping, index,
727 (gfp_mask & GFP_RECLAIM_MASK));
eb2be189
NP
728 if (unlikely(err)) {
729 page_cache_release(page);
730 page = NULL;
731 if (err == -EEXIST)
732 goto repeat;
1da177e4 733 }
1da177e4 734 }
1da177e4
LT
735 return page;
736}
1da177e4
LT
737EXPORT_SYMBOL(find_or_create_page);
738
739/**
740 * find_get_pages - gang pagecache lookup
741 * @mapping: The address_space to search
742 * @start: The starting page index
743 * @nr_pages: The maximum number of pages
744 * @pages: Where the resulting pages are placed
745 *
746 * find_get_pages() will search for and return a group of up to
747 * @nr_pages pages in the mapping. The pages are placed at @pages.
748 * find_get_pages() takes a reference against the returned pages.
749 *
750 * The search returns a group of mapping-contiguous pages with ascending
751 * indexes. There may be holes in the indices due to not-present pages.
752 *
753 * find_get_pages() returns the number of pages which were found.
754 */
755unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
756 unsigned int nr_pages, struct page **pages)
757{
758 unsigned int i;
759 unsigned int ret;
a60637c8
NP
760 unsigned int nr_found;
761
762 rcu_read_lock();
763restart:
764 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
765 (void ***)pages, start, nr_pages);
766 ret = 0;
767 for (i = 0; i < nr_found; i++) {
768 struct page *page;
769repeat:
770 page = radix_tree_deref_slot((void **)pages[i]);
771 if (unlikely(!page))
772 continue;
773 /*
774 * this can only trigger if nr_found == 1, making livelock
775 * a non issue.
776 */
777 if (unlikely(page == RADIX_TREE_RETRY))
778 goto restart;
779
780 if (!page_cache_get_speculative(page))
781 goto repeat;
782
783 /* Has the page moved? */
784 if (unlikely(page != *((void **)pages[i]))) {
785 page_cache_release(page);
786 goto repeat;
787 }
1da177e4 788
a60637c8
NP
789 pages[ret] = page;
790 ret++;
791 }
792 rcu_read_unlock();
1da177e4
LT
793 return ret;
794}
795
ebf43500
JA
796/**
797 * find_get_pages_contig - gang contiguous pagecache lookup
798 * @mapping: The address_space to search
799 * @index: The starting page index
800 * @nr_pages: The maximum number of pages
801 * @pages: Where the resulting pages are placed
802 *
803 * find_get_pages_contig() works exactly like find_get_pages(), except
804 * that the returned number of pages are guaranteed to be contiguous.
805 *
806 * find_get_pages_contig() returns the number of pages which were found.
807 */
808unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
809 unsigned int nr_pages, struct page **pages)
810{
811 unsigned int i;
812 unsigned int ret;
a60637c8
NP
813 unsigned int nr_found;
814
815 rcu_read_lock();
816restart:
817 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
818 (void ***)pages, index, nr_pages);
819 ret = 0;
820 for (i = 0; i < nr_found; i++) {
821 struct page *page;
822repeat:
823 page = radix_tree_deref_slot((void **)pages[i]);
824 if (unlikely(!page))
825 continue;
826 /*
827 * this can only trigger if nr_found == 1, making livelock
828 * a non issue.
829 */
830 if (unlikely(page == RADIX_TREE_RETRY))
831 goto restart;
ebf43500 832
a60637c8 833 if (page->mapping == NULL || page->index != index)
ebf43500
JA
834 break;
835
a60637c8
NP
836 if (!page_cache_get_speculative(page))
837 goto repeat;
838
839 /* Has the page moved? */
840 if (unlikely(page != *((void **)pages[i]))) {
841 page_cache_release(page);
842 goto repeat;
843 }
844
845 pages[ret] = page;
846 ret++;
ebf43500
JA
847 index++;
848 }
a60637c8
NP
849 rcu_read_unlock();
850 return ret;
ebf43500 851}
ef71c15c 852EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 853
485bb99b
RD
854/**
855 * find_get_pages_tag - find and return pages that match @tag
856 * @mapping: the address_space to search
857 * @index: the starting page index
858 * @tag: the tag index
859 * @nr_pages: the maximum number of pages
860 * @pages: where the resulting pages are placed
861 *
1da177e4 862 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 863 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
864 */
865unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
866 int tag, unsigned int nr_pages, struct page **pages)
867{
868 unsigned int i;
869 unsigned int ret;
a60637c8
NP
870 unsigned int nr_found;
871
872 rcu_read_lock();
873restart:
874 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
875 (void ***)pages, *index, nr_pages, tag);
876 ret = 0;
877 for (i = 0; i < nr_found; i++) {
878 struct page *page;
879repeat:
880 page = radix_tree_deref_slot((void **)pages[i]);
881 if (unlikely(!page))
882 continue;
883 /*
884 * this can only trigger if nr_found == 1, making livelock
885 * a non issue.
886 */
887 if (unlikely(page == RADIX_TREE_RETRY))
888 goto restart;
889
890 if (!page_cache_get_speculative(page))
891 goto repeat;
892
893 /* Has the page moved? */
894 if (unlikely(page != *((void **)pages[i]))) {
895 page_cache_release(page);
896 goto repeat;
897 }
898
899 pages[ret] = page;
900 ret++;
901 }
902 rcu_read_unlock();
1da177e4 903
1da177e4
LT
904 if (ret)
905 *index = pages[ret - 1]->index + 1;
a60637c8 906
1da177e4
LT
907 return ret;
908}
ef71c15c 909EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 910
485bb99b
RD
911/**
912 * grab_cache_page_nowait - returns locked page at given index in given cache
913 * @mapping: target address_space
914 * @index: the page index
915 *
72fd4a35 916 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1da177e4
LT
917 * This is intended for speculative data generators, where the data can
918 * be regenerated if the page couldn't be grabbed. This routine should
919 * be safe to call while holding the lock for another page.
920 *
921 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
922 * and deadlock against the caller's locked page.
923 */
924struct page *
57f6b96c 925grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1da177e4
LT
926{
927 struct page *page = find_get_page(mapping, index);
1da177e4
LT
928
929 if (page) {
529ae9aa 930 if (trylock_page(page))
1da177e4
LT
931 return page;
932 page_cache_release(page);
933 return NULL;
934 }
2ae88149 935 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
67d58ac4 936 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1da177e4
LT
937 page_cache_release(page);
938 page = NULL;
939 }
940 return page;
941}
1da177e4
LT
942EXPORT_SYMBOL(grab_cache_page_nowait);
943
76d42bd9
WF
944/*
945 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
946 * a _large_ part of the i/o request. Imagine the worst scenario:
947 *
948 * ---R__________________________________________B__________
949 * ^ reading here ^ bad block(assume 4k)
950 *
951 * read(R) => miss => readahead(R...B) => media error => frustrating retries
952 * => failing the whole request => read(R) => read(R+1) =>
953 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
954 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
955 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
956 *
957 * It is going insane. Fix it by quickly scaling down the readahead size.
958 */
959static void shrink_readahead_size_eio(struct file *filp,
960 struct file_ra_state *ra)
961{
76d42bd9 962 ra->ra_pages /= 4;
76d42bd9
WF
963}
964
485bb99b 965/**
36e78914 966 * do_generic_file_read - generic file read routine
485bb99b
RD
967 * @filp: the file to read
968 * @ppos: current file position
969 * @desc: read_descriptor
970 * @actor: read method
971 *
1da177e4 972 * This is a generic file read routine, and uses the
485bb99b 973 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
974 *
975 * This is really ugly. But the goto's actually try to clarify some
976 * of the logic when it comes to error handling etc.
1da177e4 977 */
36e78914
CH
978static void do_generic_file_read(struct file *filp, loff_t *ppos,
979 read_descriptor_t *desc, read_actor_t actor)
1da177e4 980{
36e78914 981 struct address_space *mapping = filp->f_mapping;
1da177e4 982 struct inode *inode = mapping->host;
36e78914 983 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
984 pgoff_t index;
985 pgoff_t last_index;
986 pgoff_t prev_index;
987 unsigned long offset; /* offset into pagecache page */
ec0f1637 988 unsigned int prev_offset;
1da177e4 989 int error;
1da177e4 990
1da177e4 991 index = *ppos >> PAGE_CACHE_SHIFT;
7ff81078
FW
992 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
993 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1da177e4
LT
994 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
995 offset = *ppos & ~PAGE_CACHE_MASK;
996
1da177e4
LT
997 for (;;) {
998 struct page *page;
57f6b96c 999 pgoff_t end_index;
a32ea1e1 1000 loff_t isize;
1da177e4
LT
1001 unsigned long nr, ret;
1002
1da177e4 1003 cond_resched();
1da177e4
LT
1004find_page:
1005 page = find_get_page(mapping, index);
3ea89ee8 1006 if (!page) {
cf914a7d 1007 page_cache_sync_readahead(mapping,
7ff81078 1008 ra, filp,
3ea89ee8
FW
1009 index, last_index - index);
1010 page = find_get_page(mapping, index);
1011 if (unlikely(page == NULL))
1012 goto no_cached_page;
1013 }
1014 if (PageReadahead(page)) {
cf914a7d 1015 page_cache_async_readahead(mapping,
7ff81078 1016 ra, filp, page,
3ea89ee8 1017 index, last_index - index);
1da177e4 1018 }
8ab22b9a
HH
1019 if (!PageUptodate(page)) {
1020 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1021 !mapping->a_ops->is_partially_uptodate)
1022 goto page_not_up_to_date;
529ae9aa 1023 if (!trylock_page(page))
8ab22b9a
HH
1024 goto page_not_up_to_date;
1025 if (!mapping->a_ops->is_partially_uptodate(page,
1026 desc, offset))
1027 goto page_not_up_to_date_locked;
1028 unlock_page(page);
1029 }
1da177e4 1030page_ok:
a32ea1e1
N
1031 /*
1032 * i_size must be checked after we know the page is Uptodate.
1033 *
1034 * Checking i_size after the check allows us to calculate
1035 * the correct value for "nr", which means the zero-filled
1036 * part of the page is not copied back to userspace (unless
1037 * another truncate extends the file - this is desired though).
1038 */
1039
1040 isize = i_size_read(inode);
1041 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1042 if (unlikely(!isize || index > end_index)) {
1043 page_cache_release(page);
1044 goto out;
1045 }
1046
1047 /* nr is the maximum number of bytes to copy from this page */
1048 nr = PAGE_CACHE_SIZE;
1049 if (index == end_index) {
1050 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1051 if (nr <= offset) {
1052 page_cache_release(page);
1053 goto out;
1054 }
1055 }
1056 nr = nr - offset;
1da177e4
LT
1057
1058 /* If users can be writing to this page using arbitrary
1059 * virtual addresses, take care about potential aliasing
1060 * before reading the page on the kernel side.
1061 */
1062 if (mapping_writably_mapped(mapping))
1063 flush_dcache_page(page);
1064
1065 /*
ec0f1637
JK
1066 * When a sequential read accesses a page several times,
1067 * only mark it as accessed the first time.
1da177e4 1068 */
ec0f1637 1069 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1070 mark_page_accessed(page);
1071 prev_index = index;
1072
1073 /*
1074 * Ok, we have the page, and it's up-to-date, so
1075 * now we can copy it to user space...
1076 *
1077 * The actor routine returns how many bytes were actually used..
1078 * NOTE! This may not be the same as how much of a user buffer
1079 * we filled up (we may be padding etc), so we can only update
1080 * "pos" here (the actor routine has to update the user buffer
1081 * pointers and the remaining count).
1082 */
1083 ret = actor(desc, page, offset, nr);
1084 offset += ret;
1085 index += offset >> PAGE_CACHE_SHIFT;
1086 offset &= ~PAGE_CACHE_MASK;
6ce745ed 1087 prev_offset = offset;
1da177e4
LT
1088
1089 page_cache_release(page);
1090 if (ret == nr && desc->count)
1091 continue;
1092 goto out;
1093
1094page_not_up_to_date:
1095 /* Get exclusive access to the page ... */
85462323
ON
1096 error = lock_page_killable(page);
1097 if (unlikely(error))
1098 goto readpage_error;
1da177e4 1099
8ab22b9a 1100page_not_up_to_date_locked:
da6052f7 1101 /* Did it get truncated before we got the lock? */
1da177e4
LT
1102 if (!page->mapping) {
1103 unlock_page(page);
1104 page_cache_release(page);
1105 continue;
1106 }
1107
1108 /* Did somebody else fill it already? */
1109 if (PageUptodate(page)) {
1110 unlock_page(page);
1111 goto page_ok;
1112 }
1113
1114readpage:
1115 /* Start the actual read. The read will unlock the page. */
1116 error = mapping->a_ops->readpage(filp, page);
1117
994fc28c
ZB
1118 if (unlikely(error)) {
1119 if (error == AOP_TRUNCATED_PAGE) {
1120 page_cache_release(page);
1121 goto find_page;
1122 }
1da177e4 1123 goto readpage_error;
994fc28c 1124 }
1da177e4
LT
1125
1126 if (!PageUptodate(page)) {
85462323
ON
1127 error = lock_page_killable(page);
1128 if (unlikely(error))
1129 goto readpage_error;
1da177e4
LT
1130 if (!PageUptodate(page)) {
1131 if (page->mapping == NULL) {
1132 /*
1133 * invalidate_inode_pages got it
1134 */
1135 unlock_page(page);
1136 page_cache_release(page);
1137 goto find_page;
1138 }
1139 unlock_page(page);
7ff81078 1140 shrink_readahead_size_eio(filp, ra);
85462323
ON
1141 error = -EIO;
1142 goto readpage_error;
1da177e4
LT
1143 }
1144 unlock_page(page);
1145 }
1146
1da177e4
LT
1147 goto page_ok;
1148
1149readpage_error:
1150 /* UHHUH! A synchronous read error occurred. Report it */
1151 desc->error = error;
1152 page_cache_release(page);
1153 goto out;
1154
1155no_cached_page:
1156 /*
1157 * Ok, it wasn't cached, so we need to create a new
1158 * page..
1159 */
eb2be189
NP
1160 page = page_cache_alloc_cold(mapping);
1161 if (!page) {
1162 desc->error = -ENOMEM;
1163 goto out;
1da177e4 1164 }
eb2be189 1165 error = add_to_page_cache_lru(page, mapping,
1da177e4
LT
1166 index, GFP_KERNEL);
1167 if (error) {
eb2be189 1168 page_cache_release(page);
1da177e4
LT
1169 if (error == -EEXIST)
1170 goto find_page;
1171 desc->error = error;
1172 goto out;
1173 }
1da177e4
LT
1174 goto readpage;
1175 }
1176
1177out:
7ff81078
FW
1178 ra->prev_pos = prev_index;
1179 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1180 ra->prev_pos |= prev_offset;
1da177e4 1181
f4e6b498 1182 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
0c6aa263 1183 file_accessed(filp);
1da177e4 1184}
1da177e4
LT
1185
1186int file_read_actor(read_descriptor_t *desc, struct page *page,
1187 unsigned long offset, unsigned long size)
1188{
1189 char *kaddr;
1190 unsigned long left, count = desc->count;
1191
1192 if (size > count)
1193 size = count;
1194
1195 /*
1196 * Faults on the destination of a read are common, so do it before
1197 * taking the kmap.
1198 */
1199 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1200 kaddr = kmap_atomic(page, KM_USER0);
1201 left = __copy_to_user_inatomic(desc->arg.buf,
1202 kaddr + offset, size);
1203 kunmap_atomic(kaddr, KM_USER0);
1204 if (left == 0)
1205 goto success;
1206 }
1207
1208 /* Do it the slow way */
1209 kaddr = kmap(page);
1210 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1211 kunmap(page);
1212
1213 if (left) {
1214 size -= left;
1215 desc->error = -EFAULT;
1216 }
1217success:
1218 desc->count = count - size;
1219 desc->written += size;
1220 desc->arg.buf += size;
1221 return size;
1222}
1223
0ceb3314
DM
1224/*
1225 * Performs necessary checks before doing a write
1226 * @iov: io vector request
1227 * @nr_segs: number of segments in the iovec
1228 * @count: number of bytes to write
1229 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1230 *
1231 * Adjust number of segments and amount of bytes to write (nr_segs should be
1232 * properly initialized first). Returns appropriate error code that caller
1233 * should return or zero in case that write should be allowed.
1234 */
1235int generic_segment_checks(const struct iovec *iov,
1236 unsigned long *nr_segs, size_t *count, int access_flags)
1237{
1238 unsigned long seg;
1239 size_t cnt = 0;
1240 for (seg = 0; seg < *nr_segs; seg++) {
1241 const struct iovec *iv = &iov[seg];
1242
1243 /*
1244 * If any segment has a negative length, or the cumulative
1245 * length ever wraps negative then return -EINVAL.
1246 */
1247 cnt += iv->iov_len;
1248 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1249 return -EINVAL;
1250 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1251 continue;
1252 if (seg == 0)
1253 return -EFAULT;
1254 *nr_segs = seg;
1255 cnt -= iv->iov_len; /* This segment is no good */
1256 break;
1257 }
1258 *count = cnt;
1259 return 0;
1260}
1261EXPORT_SYMBOL(generic_segment_checks);
1262
485bb99b 1263/**
b2abacf3 1264 * generic_file_aio_read - generic filesystem read routine
485bb99b
RD
1265 * @iocb: kernel I/O control block
1266 * @iov: io vector request
1267 * @nr_segs: number of segments in the iovec
b2abacf3 1268 * @pos: current file position
485bb99b 1269 *
1da177e4
LT
1270 * This is the "read()" routine for all filesystems
1271 * that can use the page cache directly.
1272 */
1273ssize_t
543ade1f
BP
1274generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1275 unsigned long nr_segs, loff_t pos)
1da177e4
LT
1276{
1277 struct file *filp = iocb->ki_filp;
1278 ssize_t retval;
1279 unsigned long seg;
1280 size_t count;
543ade1f 1281 loff_t *ppos = &iocb->ki_pos;
1da177e4
LT
1282
1283 count = 0;
0ceb3314
DM
1284 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1285 if (retval)
1286 return retval;
1da177e4
LT
1287
1288 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1289 if (filp->f_flags & O_DIRECT) {
543ade1f 1290 loff_t size;
1da177e4
LT
1291 struct address_space *mapping;
1292 struct inode *inode;
1293
1294 mapping = filp->f_mapping;
1295 inode = mapping->host;
1da177e4
LT
1296 if (!count)
1297 goto out; /* skip atime */
1298 size = i_size_read(inode);
1299 if (pos < size) {
48b47c56
NP
1300 retval = filemap_write_and_wait_range(mapping, pos,
1301 pos + iov_length(iov, nr_segs) - 1);
a969e903
CH
1302 if (!retval) {
1303 retval = mapping->a_ops->direct_IO(READ, iocb,
1304 iov, pos, nr_segs);
1305 }
1da177e4
LT
1306 if (retval > 0)
1307 *ppos = pos + retval;
11fa977e
HD
1308 if (retval) {
1309 file_accessed(filp);
1310 goto out;
1311 }
0e0bcae3 1312 }
1da177e4
LT
1313 }
1314
11fa977e
HD
1315 for (seg = 0; seg < nr_segs; seg++) {
1316 read_descriptor_t desc;
1da177e4 1317
11fa977e
HD
1318 desc.written = 0;
1319 desc.arg.buf = iov[seg].iov_base;
1320 desc.count = iov[seg].iov_len;
1321 if (desc.count == 0)
1322 continue;
1323 desc.error = 0;
1324 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1325 retval += desc.written;
1326 if (desc.error) {
1327 retval = retval ?: desc.error;
1328 break;
1da177e4 1329 }
11fa977e
HD
1330 if (desc.count > 0)
1331 break;
1da177e4
LT
1332 }
1333out:
1334 return retval;
1335}
1da177e4
LT
1336EXPORT_SYMBOL(generic_file_aio_read);
1337
1da177e4
LT
1338static ssize_t
1339do_readahead(struct address_space *mapping, struct file *filp,
57f6b96c 1340 pgoff_t index, unsigned long nr)
1da177e4
LT
1341{
1342 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1343 return -EINVAL;
1344
f7e839dd 1345 force_page_cache_readahead(mapping, filp, index, nr);
1da177e4
LT
1346 return 0;
1347}
1348
6673e0c3 1349SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1da177e4
LT
1350{
1351 ssize_t ret;
1352 struct file *file;
1353
1354 ret = -EBADF;
1355 file = fget(fd);
1356 if (file) {
1357 if (file->f_mode & FMODE_READ) {
1358 struct address_space *mapping = file->f_mapping;
57f6b96c
FW
1359 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1360 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1da177e4
LT
1361 unsigned long len = end - start + 1;
1362 ret = do_readahead(mapping, file, start, len);
1363 }
1364 fput(file);
1365 }
1366 return ret;
1367}
6673e0c3
HC
1368#ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1369asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1370{
1371 return SYSC_readahead((int) fd, offset, (size_t) count);
1372}
1373SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1374#endif
1da177e4
LT
1375
1376#ifdef CONFIG_MMU
485bb99b
RD
1377/**
1378 * page_cache_read - adds requested page to the page cache if not already there
1379 * @file: file to read
1380 * @offset: page index
1381 *
1da177e4
LT
1382 * This adds the requested page to the page cache if it isn't already there,
1383 * and schedules an I/O to read in its contents from disk.
1384 */
920c7a5d 1385static int page_cache_read(struct file *file, pgoff_t offset)
1da177e4
LT
1386{
1387 struct address_space *mapping = file->f_mapping;
1388 struct page *page;
994fc28c 1389 int ret;
1da177e4 1390
994fc28c
ZB
1391 do {
1392 page = page_cache_alloc_cold(mapping);
1393 if (!page)
1394 return -ENOMEM;
1395
1396 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1397 if (ret == 0)
1398 ret = mapping->a_ops->readpage(file, page);
1399 else if (ret == -EEXIST)
1400 ret = 0; /* losing race to add is OK */
1da177e4 1401
1da177e4 1402 page_cache_release(page);
1da177e4 1403
994fc28c
ZB
1404 } while (ret == AOP_TRUNCATED_PAGE);
1405
1406 return ret;
1da177e4
LT
1407}
1408
1409#define MMAP_LOTSAMISS (100)
1410
ef00e08e
LT
1411/*
1412 * Synchronous readahead happens when we don't even find
1413 * a page in the page cache at all.
1414 */
1415static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1416 struct file_ra_state *ra,
1417 struct file *file,
1418 pgoff_t offset)
1419{
1420 unsigned long ra_pages;
1421 struct address_space *mapping = file->f_mapping;
1422
1423 /* If we don't want any read-ahead, don't bother */
1424 if (VM_RandomReadHint(vma))
1425 return;
1426
70ac23cf
WF
1427 if (VM_SequentialReadHint(vma) ||
1428 offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
7ffc59b4
WF
1429 page_cache_sync_readahead(mapping, ra, file, offset,
1430 ra->ra_pages);
ef00e08e
LT
1431 return;
1432 }
1433
1434 if (ra->mmap_miss < INT_MAX)
1435 ra->mmap_miss++;
1436
1437 /*
1438 * Do we miss much more than hit in this file? If so,
1439 * stop bothering with read-ahead. It will only hurt.
1440 */
1441 if (ra->mmap_miss > MMAP_LOTSAMISS)
1442 return;
1443
d30a1100
WF
1444 /*
1445 * mmap read-around
1446 */
ef00e08e
LT
1447 ra_pages = max_sane_readahead(ra->ra_pages);
1448 if (ra_pages) {
d30a1100
WF
1449 ra->start = max_t(long, 0, offset - ra_pages/2);
1450 ra->size = ra_pages;
1451 ra->async_size = 0;
1452 ra_submit(ra, mapping, file);
ef00e08e
LT
1453 }
1454}
1455
1456/*
1457 * Asynchronous readahead happens when we find the page and PG_readahead,
1458 * so we want to possibly extend the readahead further..
1459 */
1460static void do_async_mmap_readahead(struct vm_area_struct *vma,
1461 struct file_ra_state *ra,
1462 struct file *file,
1463 struct page *page,
1464 pgoff_t offset)
1465{
1466 struct address_space *mapping = file->f_mapping;
1467
1468 /* If we don't want any read-ahead, don't bother */
1469 if (VM_RandomReadHint(vma))
1470 return;
1471 if (ra->mmap_miss > 0)
1472 ra->mmap_miss--;
1473 if (PageReadahead(page))
2fad6f5d
WF
1474 page_cache_async_readahead(mapping, ra, file,
1475 page, offset, ra->ra_pages);
ef00e08e
LT
1476}
1477
485bb99b 1478/**
54cb8821 1479 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
1480 * @vma: vma in which the fault was taken
1481 * @vmf: struct vm_fault containing details of the fault
485bb99b 1482 *
54cb8821 1483 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
1484 * mapped memory region to read in file data during a page fault.
1485 *
1486 * The goto's are kind of ugly, but this streamlines the normal case of having
1487 * it in the page cache, and handles the special cases reasonably without
1488 * having a lot of duplicated code.
1489 */
d0217ac0 1490int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1491{
1492 int error;
54cb8821 1493 struct file *file = vma->vm_file;
1da177e4
LT
1494 struct address_space *mapping = file->f_mapping;
1495 struct file_ra_state *ra = &file->f_ra;
1496 struct inode *inode = mapping->host;
ef00e08e 1497 pgoff_t offset = vmf->pgoff;
1da177e4 1498 struct page *page;
2004dc8e 1499 pgoff_t size;
83c54070 1500 int ret = 0;
1da177e4 1501
1da177e4 1502 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1503 if (offset >= size)
5307cc1a 1504 return VM_FAULT_SIGBUS;
1da177e4 1505
1da177e4
LT
1506 /*
1507 * Do we have something in the page cache already?
1508 */
ef00e08e
LT
1509 page = find_get_page(mapping, offset);
1510 if (likely(page)) {
1da177e4 1511 /*
ef00e08e
LT
1512 * We found the page, so try async readahead before
1513 * waiting for the lock.
1da177e4 1514 */
ef00e08e
LT
1515 do_async_mmap_readahead(vma, ra, file, page, offset);
1516 lock_page(page);
1da177e4 1517
ef00e08e
LT
1518 /* Did it get truncated? */
1519 if (unlikely(page->mapping != mapping)) {
1520 unlock_page(page);
1521 put_page(page);
1522 goto no_cached_page;
1da177e4 1523 }
ef00e08e
LT
1524 } else {
1525 /* No page in the page cache at all */
1526 do_sync_mmap_readahead(vma, ra, file, offset);
1527 count_vm_event(PGMAJFAULT);
1528 ret = VM_FAULT_MAJOR;
1529retry_find:
1530 page = find_lock_page(mapping, offset);
1da177e4
LT
1531 if (!page)
1532 goto no_cached_page;
1533 }
1534
1da177e4 1535 /*
d00806b1
NP
1536 * We have a locked page in the page cache, now we need to check
1537 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 1538 */
d00806b1 1539 if (unlikely(!PageUptodate(page)))
1da177e4
LT
1540 goto page_not_uptodate;
1541
ef00e08e
LT
1542 /*
1543 * Found the page and have a reference on it.
1544 * We must recheck i_size under page lock.
1545 */
d00806b1 1546 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1547 if (unlikely(offset >= size)) {
d00806b1 1548 unlock_page(page);
745ad48e 1549 page_cache_release(page);
5307cc1a 1550 return VM_FAULT_SIGBUS;
d00806b1
NP
1551 }
1552
ef00e08e 1553 ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
d0217ac0 1554 vmf->page = page;
83c54070 1555 return ret | VM_FAULT_LOCKED;
1da177e4 1556
1da177e4
LT
1557no_cached_page:
1558 /*
1559 * We're only likely to ever get here if MADV_RANDOM is in
1560 * effect.
1561 */
ef00e08e 1562 error = page_cache_read(file, offset);
1da177e4
LT
1563
1564 /*
1565 * The page we want has now been added to the page cache.
1566 * In the unlikely event that someone removed it in the
1567 * meantime, we'll just come back here and read it again.
1568 */
1569 if (error >= 0)
1570 goto retry_find;
1571
1572 /*
1573 * An error return from page_cache_read can result if the
1574 * system is low on memory, or a problem occurs while trying
1575 * to schedule I/O.
1576 */
1577 if (error == -ENOMEM)
d0217ac0
NP
1578 return VM_FAULT_OOM;
1579 return VM_FAULT_SIGBUS;
1da177e4
LT
1580
1581page_not_uptodate:
1da177e4
LT
1582 /*
1583 * Umm, take care of errors if the page isn't up-to-date.
1584 * Try to re-read it _once_. We do this synchronously,
1585 * because there really aren't any performance issues here
1586 * and we need to check for errors.
1587 */
1da177e4 1588 ClearPageError(page);
994fc28c 1589 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
1590 if (!error) {
1591 wait_on_page_locked(page);
1592 if (!PageUptodate(page))
1593 error = -EIO;
1594 }
d00806b1
NP
1595 page_cache_release(page);
1596
1597 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 1598 goto retry_find;
1da177e4 1599
d00806b1 1600 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 1601 shrink_readahead_size_eio(file, ra);
d0217ac0 1602 return VM_FAULT_SIGBUS;
54cb8821
NP
1603}
1604EXPORT_SYMBOL(filemap_fault);
1605
1da177e4 1606struct vm_operations_struct generic_file_vm_ops = {
54cb8821 1607 .fault = filemap_fault,
1da177e4
LT
1608};
1609
1610/* This is used for a general mmap of a disk file */
1611
1612int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1613{
1614 struct address_space *mapping = file->f_mapping;
1615
1616 if (!mapping->a_ops->readpage)
1617 return -ENOEXEC;
1618 file_accessed(file);
1619 vma->vm_ops = &generic_file_vm_ops;
d0217ac0 1620 vma->vm_flags |= VM_CAN_NONLINEAR;
1da177e4
LT
1621 return 0;
1622}
1da177e4
LT
1623
1624/*
1625 * This is for filesystems which do not implement ->writepage.
1626 */
1627int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1628{
1629 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1630 return -EINVAL;
1631 return generic_file_mmap(file, vma);
1632}
1633#else
1634int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1635{
1636 return -ENOSYS;
1637}
1638int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1639{
1640 return -ENOSYS;
1641}
1642#endif /* CONFIG_MMU */
1643
1644EXPORT_SYMBOL(generic_file_mmap);
1645EXPORT_SYMBOL(generic_file_readonly_mmap);
1646
6fe6900e 1647static struct page *__read_cache_page(struct address_space *mapping,
57f6b96c 1648 pgoff_t index,
1da177e4
LT
1649 int (*filler)(void *,struct page*),
1650 void *data)
1651{
eb2be189 1652 struct page *page;
1da177e4
LT
1653 int err;
1654repeat:
1655 page = find_get_page(mapping, index);
1656 if (!page) {
eb2be189
NP
1657 page = page_cache_alloc_cold(mapping);
1658 if (!page)
1659 return ERR_PTR(-ENOMEM);
1660 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1661 if (unlikely(err)) {
1662 page_cache_release(page);
1663 if (err == -EEXIST)
1664 goto repeat;
1da177e4 1665 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
1666 return ERR_PTR(err);
1667 }
1da177e4
LT
1668 err = filler(data, page);
1669 if (err < 0) {
1670 page_cache_release(page);
1671 page = ERR_PTR(err);
1672 }
1673 }
1da177e4
LT
1674 return page;
1675}
1676
7682486b
RD
1677/**
1678 * read_cache_page_async - read into page cache, fill it if needed
1679 * @mapping: the page's address_space
1680 * @index: the page index
1681 * @filler: function to perform the read
1682 * @data: destination for read data
1683 *
6fe6900e
NP
1684 * Same as read_cache_page, but don't wait for page to become unlocked
1685 * after submitting it to the filler.
7682486b
RD
1686 *
1687 * Read into the page cache. If a page already exists, and PageUptodate() is
1688 * not set, try to fill the page but don't wait for it to become unlocked.
1689 *
1690 * If the page does not get brought uptodate, return -EIO.
1da177e4 1691 */
6fe6900e 1692struct page *read_cache_page_async(struct address_space *mapping,
57f6b96c 1693 pgoff_t index,
1da177e4
LT
1694 int (*filler)(void *,struct page*),
1695 void *data)
1696{
1697 struct page *page;
1698 int err;
1699
1700retry:
1701 page = __read_cache_page(mapping, index, filler, data);
1702 if (IS_ERR(page))
c855ff37 1703 return page;
1da177e4
LT
1704 if (PageUptodate(page))
1705 goto out;
1706
1707 lock_page(page);
1708 if (!page->mapping) {
1709 unlock_page(page);
1710 page_cache_release(page);
1711 goto retry;
1712 }
1713 if (PageUptodate(page)) {
1714 unlock_page(page);
1715 goto out;
1716 }
1717 err = filler(data, page);
1718 if (err < 0) {
1719 page_cache_release(page);
c855ff37 1720 return ERR_PTR(err);
1da177e4 1721 }
c855ff37 1722out:
6fe6900e
NP
1723 mark_page_accessed(page);
1724 return page;
1725}
1726EXPORT_SYMBOL(read_cache_page_async);
1727
1728/**
1729 * read_cache_page - read into page cache, fill it if needed
1730 * @mapping: the page's address_space
1731 * @index: the page index
1732 * @filler: function to perform the read
1733 * @data: destination for read data
1734 *
1735 * Read into the page cache. If a page already exists, and PageUptodate() is
1736 * not set, try to fill the page then wait for it to become unlocked.
1737 *
1738 * If the page does not get brought uptodate, return -EIO.
1739 */
1740struct page *read_cache_page(struct address_space *mapping,
57f6b96c 1741 pgoff_t index,
6fe6900e
NP
1742 int (*filler)(void *,struct page*),
1743 void *data)
1744{
1745 struct page *page;
1746
1747 page = read_cache_page_async(mapping, index, filler, data);
1748 if (IS_ERR(page))
1749 goto out;
1750 wait_on_page_locked(page);
1751 if (!PageUptodate(page)) {
1752 page_cache_release(page);
1753 page = ERR_PTR(-EIO);
1754 }
1da177e4
LT
1755 out:
1756 return page;
1757}
1da177e4
LT
1758EXPORT_SYMBOL(read_cache_page);
1759
1da177e4
LT
1760/*
1761 * The logic we want is
1762 *
1763 * if suid or (sgid and xgrp)
1764 * remove privs
1765 */
01de85e0 1766int should_remove_suid(struct dentry *dentry)
1da177e4
LT
1767{
1768 mode_t mode = dentry->d_inode->i_mode;
1769 int kill = 0;
1da177e4
LT
1770
1771 /* suid always must be killed */
1772 if (unlikely(mode & S_ISUID))
1773 kill = ATTR_KILL_SUID;
1774
1775 /*
1776 * sgid without any exec bits is just a mandatory locking mark; leave
1777 * it alone. If some exec bits are set, it's a real sgid; kill it.
1778 */
1779 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1780 kill |= ATTR_KILL_SGID;
1781
7f5ff766 1782 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
01de85e0 1783 return kill;
1da177e4 1784
01de85e0
JA
1785 return 0;
1786}
d23a147b 1787EXPORT_SYMBOL(should_remove_suid);
01de85e0 1788
7f3d4ee1 1789static int __remove_suid(struct dentry *dentry, int kill)
01de85e0
JA
1790{
1791 struct iattr newattrs;
1792
1793 newattrs.ia_valid = ATTR_FORCE | kill;
1794 return notify_change(dentry, &newattrs);
1795}
1796
2f1936b8 1797int file_remove_suid(struct file *file)
01de85e0 1798{
2f1936b8 1799 struct dentry *dentry = file->f_path.dentry;
b5376771
SH
1800 int killsuid = should_remove_suid(dentry);
1801 int killpriv = security_inode_need_killpriv(dentry);
1802 int error = 0;
01de85e0 1803
b5376771
SH
1804 if (killpriv < 0)
1805 return killpriv;
1806 if (killpriv)
1807 error = security_inode_killpriv(dentry);
1808 if (!error && killsuid)
1809 error = __remove_suid(dentry, killsuid);
01de85e0 1810
b5376771 1811 return error;
1da177e4 1812}
2f1936b8 1813EXPORT_SYMBOL(file_remove_suid);
1da177e4 1814
2f718ffc 1815static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1da177e4
LT
1816 const struct iovec *iov, size_t base, size_t bytes)
1817{
f1800536 1818 size_t copied = 0, left = 0;
1da177e4
LT
1819
1820 while (bytes) {
1821 char __user *buf = iov->iov_base + base;
1822 int copy = min(bytes, iov->iov_len - base);
1823
1824 base = 0;
f1800536 1825 left = __copy_from_user_inatomic(vaddr, buf, copy);
1da177e4
LT
1826 copied += copy;
1827 bytes -= copy;
1828 vaddr += copy;
1829 iov++;
1830
01408c49 1831 if (unlikely(left))
1da177e4 1832 break;
1da177e4
LT
1833 }
1834 return copied - left;
1835}
1836
2f718ffc
NP
1837/*
1838 * Copy as much as we can into the page and return the number of bytes which
1839 * were sucessfully copied. If a fault is encountered then return the number of
1840 * bytes which were copied.
1841 */
1842size_t iov_iter_copy_from_user_atomic(struct page *page,
1843 struct iov_iter *i, unsigned long offset, size_t bytes)
1844{
1845 char *kaddr;
1846 size_t copied;
1847
1848 BUG_ON(!in_atomic());
1849 kaddr = kmap_atomic(page, KM_USER0);
1850 if (likely(i->nr_segs == 1)) {
1851 int left;
1852 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 1853 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2f718ffc
NP
1854 copied = bytes - left;
1855 } else {
1856 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1857 i->iov, i->iov_offset, bytes);
1858 }
1859 kunmap_atomic(kaddr, KM_USER0);
1860
1861 return copied;
1862}
89e10787 1863EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2f718ffc
NP
1864
1865/*
1866 * This has the same sideeffects and return value as
1867 * iov_iter_copy_from_user_atomic().
1868 * The difference is that it attempts to resolve faults.
1869 * Page must not be locked.
1870 */
1871size_t iov_iter_copy_from_user(struct page *page,
1872 struct iov_iter *i, unsigned long offset, size_t bytes)
1873{
1874 char *kaddr;
1875 size_t copied;
1876
1877 kaddr = kmap(page);
1878 if (likely(i->nr_segs == 1)) {
1879 int left;
1880 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 1881 left = __copy_from_user(kaddr + offset, buf, bytes);
2f718ffc
NP
1882 copied = bytes - left;
1883 } else {
1884 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1885 i->iov, i->iov_offset, bytes);
1886 }
1887 kunmap(page);
1888 return copied;
1889}
89e10787 1890EXPORT_SYMBOL(iov_iter_copy_from_user);
2f718ffc 1891
f7009264 1892void iov_iter_advance(struct iov_iter *i, size_t bytes)
2f718ffc 1893{
f7009264
NP
1894 BUG_ON(i->count < bytes);
1895
2f718ffc
NP
1896 if (likely(i->nr_segs == 1)) {
1897 i->iov_offset += bytes;
f7009264 1898 i->count -= bytes;
2f718ffc
NP
1899 } else {
1900 const struct iovec *iov = i->iov;
1901 size_t base = i->iov_offset;
1902
124d3b70
NP
1903 /*
1904 * The !iov->iov_len check ensures we skip over unlikely
f7009264 1905 * zero-length segments (without overruning the iovec).
124d3b70 1906 */
94ad374a 1907 while (bytes || unlikely(i->count && !iov->iov_len)) {
f7009264 1908 int copy;
2f718ffc 1909
f7009264
NP
1910 copy = min(bytes, iov->iov_len - base);
1911 BUG_ON(!i->count || i->count < copy);
1912 i->count -= copy;
2f718ffc
NP
1913 bytes -= copy;
1914 base += copy;
1915 if (iov->iov_len == base) {
1916 iov++;
1917 base = 0;
1918 }
1919 }
1920 i->iov = iov;
1921 i->iov_offset = base;
1922 }
1923}
89e10787 1924EXPORT_SYMBOL(iov_iter_advance);
2f718ffc 1925
afddba49
NP
1926/*
1927 * Fault in the first iovec of the given iov_iter, to a maximum length
1928 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1929 * accessed (ie. because it is an invalid address).
1930 *
1931 * writev-intensive code may want this to prefault several iovecs -- that
1932 * would be possible (callers must not rely on the fact that _only_ the
1933 * first iovec will be faulted with the current implementation).
1934 */
1935int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2f718ffc 1936{
2f718ffc 1937 char __user *buf = i->iov->iov_base + i->iov_offset;
afddba49
NP
1938 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1939 return fault_in_pages_readable(buf, bytes);
2f718ffc 1940}
89e10787 1941EXPORT_SYMBOL(iov_iter_fault_in_readable);
2f718ffc
NP
1942
1943/*
1944 * Return the count of just the current iov_iter segment.
1945 */
1946size_t iov_iter_single_seg_count(struct iov_iter *i)
1947{
1948 const struct iovec *iov = i->iov;
1949 if (i->nr_segs == 1)
1950 return i->count;
1951 else
1952 return min(i->count, iov->iov_len - i->iov_offset);
1953}
89e10787 1954EXPORT_SYMBOL(iov_iter_single_seg_count);
2f718ffc 1955
1da177e4
LT
1956/*
1957 * Performs necessary checks before doing a write
1958 *
485bb99b 1959 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
1960 * Returns appropriate error code that caller should return or
1961 * zero in case that write should be allowed.
1962 */
1963inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1964{
1965 struct inode *inode = file->f_mapping->host;
1966 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1967
1968 if (unlikely(*pos < 0))
1969 return -EINVAL;
1970
1da177e4
LT
1971 if (!isblk) {
1972 /* FIXME: this is for backwards compatibility with 2.4 */
1973 if (file->f_flags & O_APPEND)
1974 *pos = i_size_read(inode);
1975
1976 if (limit != RLIM_INFINITY) {
1977 if (*pos >= limit) {
1978 send_sig(SIGXFSZ, current, 0);
1979 return -EFBIG;
1980 }
1981 if (*count > limit - (typeof(limit))*pos) {
1982 *count = limit - (typeof(limit))*pos;
1983 }
1984 }
1985 }
1986
1987 /*
1988 * LFS rule
1989 */
1990 if (unlikely(*pos + *count > MAX_NON_LFS &&
1991 !(file->f_flags & O_LARGEFILE))) {
1992 if (*pos >= MAX_NON_LFS) {
1da177e4
LT
1993 return -EFBIG;
1994 }
1995 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1996 *count = MAX_NON_LFS - (unsigned long)*pos;
1997 }
1998 }
1999
2000 /*
2001 * Are we about to exceed the fs block limit ?
2002 *
2003 * If we have written data it becomes a short write. If we have
2004 * exceeded without writing data we send a signal and return EFBIG.
2005 * Linus frestrict idea will clean these up nicely..
2006 */
2007 if (likely(!isblk)) {
2008 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2009 if (*count || *pos > inode->i_sb->s_maxbytes) {
1da177e4
LT
2010 return -EFBIG;
2011 }
2012 /* zero-length writes at ->s_maxbytes are OK */
2013 }
2014
2015 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2016 *count = inode->i_sb->s_maxbytes - *pos;
2017 } else {
9361401e 2018#ifdef CONFIG_BLOCK
1da177e4
LT
2019 loff_t isize;
2020 if (bdev_read_only(I_BDEV(inode)))
2021 return -EPERM;
2022 isize = i_size_read(inode);
2023 if (*pos >= isize) {
2024 if (*count || *pos > isize)
2025 return -ENOSPC;
2026 }
2027
2028 if (*pos + *count > isize)
2029 *count = isize - *pos;
9361401e
DH
2030#else
2031 return -EPERM;
2032#endif
1da177e4
LT
2033 }
2034 return 0;
2035}
2036EXPORT_SYMBOL(generic_write_checks);
2037
afddba49
NP
2038int pagecache_write_begin(struct file *file, struct address_space *mapping,
2039 loff_t pos, unsigned len, unsigned flags,
2040 struct page **pagep, void **fsdata)
2041{
2042 const struct address_space_operations *aops = mapping->a_ops;
2043
4e02ed4b 2044 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2045 pagep, fsdata);
afddba49
NP
2046}
2047EXPORT_SYMBOL(pagecache_write_begin);
2048
2049int pagecache_write_end(struct file *file, struct address_space *mapping,
2050 loff_t pos, unsigned len, unsigned copied,
2051 struct page *page, void *fsdata)
2052{
2053 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2054
4e02ed4b
NP
2055 mark_page_accessed(page);
2056 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2057}
2058EXPORT_SYMBOL(pagecache_write_end);
2059
1da177e4
LT
2060ssize_t
2061generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2062 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2063 size_t count, size_t ocount)
2064{
2065 struct file *file = iocb->ki_filp;
2066 struct address_space *mapping = file->f_mapping;
2067 struct inode *inode = mapping->host;
2068 ssize_t written;
a969e903
CH
2069 size_t write_len;
2070 pgoff_t end;
1da177e4
LT
2071
2072 if (count != ocount)
2073 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2074
a969e903
CH
2075 write_len = iov_length(iov, *nr_segs);
2076 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
a969e903 2077
48b47c56 2078 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2079 if (written)
2080 goto out;
2081
2082 /*
2083 * After a write we want buffered reads to be sure to go to disk to get
2084 * the new data. We invalidate clean cached page from the region we're
2085 * about to write. We do this *before* the write so that we can return
6ccfa806 2086 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2087 */
2088 if (mapping->nrpages) {
2089 written = invalidate_inode_pages2_range(mapping,
2090 pos >> PAGE_CACHE_SHIFT, end);
6ccfa806
HH
2091 /*
2092 * If a page can not be invalidated, return 0 to fall back
2093 * to buffered write.
2094 */
2095 if (written) {
2096 if (written == -EBUSY)
2097 return 0;
a969e903 2098 goto out;
6ccfa806 2099 }
a969e903
CH
2100 }
2101
2102 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2103
2104 /*
2105 * Finally, try again to invalidate clean pages which might have been
2106 * cached by non-direct readahead, or faulted in by get_user_pages()
2107 * if the source of the write was an mmap'ed region of the file
2108 * we're writing. Either one is a pretty crazy thing to do,
2109 * so we don't support it 100%. If this invalidation
2110 * fails, tough, the write still worked...
2111 */
2112 if (mapping->nrpages) {
2113 invalidate_inode_pages2_range(mapping,
2114 pos >> PAGE_CACHE_SHIFT, end);
2115 }
2116
1da177e4
LT
2117 if (written > 0) {
2118 loff_t end = pos + written;
2119 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2120 i_size_write(inode, end);
2121 mark_inode_dirty(inode);
2122 }
2123 *ppos = end;
2124 }
a969e903 2125out:
1da177e4
LT
2126 return written;
2127}
2128EXPORT_SYMBOL(generic_file_direct_write);
2129
eb2be189
NP
2130/*
2131 * Find or create a page at the given pagecache position. Return the locked
2132 * page. This function is specifically for buffered writes.
2133 */
54566b2c
NP
2134struct page *grab_cache_page_write_begin(struct address_space *mapping,
2135 pgoff_t index, unsigned flags)
eb2be189
NP
2136{
2137 int status;
2138 struct page *page;
54566b2c
NP
2139 gfp_t gfp_notmask = 0;
2140 if (flags & AOP_FLAG_NOFS)
2141 gfp_notmask = __GFP_FS;
eb2be189
NP
2142repeat:
2143 page = find_lock_page(mapping, index);
2144 if (likely(page))
2145 return page;
2146
54566b2c 2147 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
eb2be189
NP
2148 if (!page)
2149 return NULL;
54566b2c
NP
2150 status = add_to_page_cache_lru(page, mapping, index,
2151 GFP_KERNEL & ~gfp_notmask);
eb2be189
NP
2152 if (unlikely(status)) {
2153 page_cache_release(page);
2154 if (status == -EEXIST)
2155 goto repeat;
2156 return NULL;
2157 }
2158 return page;
2159}
54566b2c 2160EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2161
afddba49
NP
2162static ssize_t generic_perform_write(struct file *file,
2163 struct iov_iter *i, loff_t pos)
2164{
2165 struct address_space *mapping = file->f_mapping;
2166 const struct address_space_operations *a_ops = mapping->a_ops;
2167 long status = 0;
2168 ssize_t written = 0;
674b892e
NP
2169 unsigned int flags = 0;
2170
2171 /*
2172 * Copies from kernel address space cannot fail (NFSD is a big user).
2173 */
2174 if (segment_eq(get_fs(), KERNEL_DS))
2175 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2176
2177 do {
2178 struct page *page;
2179 pgoff_t index; /* Pagecache index for current page */
2180 unsigned long offset; /* Offset into pagecache page */
2181 unsigned long bytes; /* Bytes to write to page */
2182 size_t copied; /* Bytes copied from user */
2183 void *fsdata;
2184
2185 offset = (pos & (PAGE_CACHE_SIZE - 1));
2186 index = pos >> PAGE_CACHE_SHIFT;
2187 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2188 iov_iter_count(i));
2189
2190again:
2191
2192 /*
2193 * Bring in the user page that we will copy from _first_.
2194 * Otherwise there's a nasty deadlock on copying from the
2195 * same page as we're writing to, without it being marked
2196 * up-to-date.
2197 *
2198 * Not only is this an optimisation, but it is also required
2199 * to check that the address is actually valid, when atomic
2200 * usercopies are used, below.
2201 */
2202 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2203 status = -EFAULT;
2204 break;
2205 }
2206
674b892e 2207 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49
NP
2208 &page, &fsdata);
2209 if (unlikely(status))
2210 break;
2211
2212 pagefault_disable();
2213 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2214 pagefault_enable();
2215 flush_dcache_page(page);
2216
c8236db9 2217 mark_page_accessed(page);
afddba49
NP
2218 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2219 page, fsdata);
2220 if (unlikely(status < 0))
2221 break;
2222 copied = status;
2223
2224 cond_resched();
2225
124d3b70 2226 iov_iter_advance(i, copied);
afddba49
NP
2227 if (unlikely(copied == 0)) {
2228 /*
2229 * If we were unable to copy any data at all, we must
2230 * fall back to a single segment length write.
2231 *
2232 * If we didn't fallback here, we could livelock
2233 * because not all segments in the iov can be copied at
2234 * once without a pagefault.
2235 */
2236 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2237 iov_iter_single_seg_count(i));
2238 goto again;
2239 }
afddba49
NP
2240 pos += copied;
2241 written += copied;
2242
2243 balance_dirty_pages_ratelimited(mapping);
2244
2245 } while (iov_iter_count(i));
2246
2247 return written ? written : status;
2248}
2249
2250ssize_t
2251generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2252 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2253 size_t count, ssize_t written)
2254{
2255 struct file *file = iocb->ki_filp;
2256 struct address_space *mapping = file->f_mapping;
afddba49
NP
2257 ssize_t status;
2258 struct iov_iter i;
2259
2260 iov_iter_init(&i, iov, nr_segs, count, written);
4e02ed4b 2261 status = generic_perform_write(file, &i, pos);
1da177e4 2262
1da177e4 2263 if (likely(status >= 0)) {
afddba49
NP
2264 written += status;
2265 *ppos = pos + status;
1da177e4
LT
2266 }
2267
2268 /*
2269 * If we get here for O_DIRECT writes then we must have fallen through
2270 * to buffered writes (block instantiation inside i_size). So we sync
2271 * the file data here, to try to honour O_DIRECT expectations.
2272 */
2273 if (unlikely(file->f_flags & O_DIRECT) && written)
48b47c56
NP
2274 status = filemap_write_and_wait_range(mapping,
2275 pos, pos + written - 1);
1da177e4 2276
1da177e4
LT
2277 return written ? written : status;
2278}
2279EXPORT_SYMBOL(generic_file_buffered_write);
2280
e4dd9de3
JK
2281/**
2282 * __generic_file_aio_write - write data to a file
2283 * @iocb: IO state structure (file, offset, etc.)
2284 * @iov: vector with data to write
2285 * @nr_segs: number of segments in the vector
2286 * @ppos: position where to write
2287 *
2288 * This function does all the work needed for actually writing data to a
2289 * file. It does all basic checks, removes SUID from the file, updates
2290 * modification times and calls proper subroutines depending on whether we
2291 * do direct IO or a standard buffered write.
2292 *
2293 * It expects i_mutex to be grabbed unless we work on a block device or similar
2294 * object which does not need locking at all.
2295 *
2296 * This function does *not* take care of syncing data in case of O_SYNC write.
2297 * A caller has to handle it. This is mainly due to the fact that we want to
2298 * avoid syncing under i_mutex.
2299 */
2300ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2301 unsigned long nr_segs, loff_t *ppos)
1da177e4
LT
2302{
2303 struct file *file = iocb->ki_filp;
fb5527e6 2304 struct address_space * mapping = file->f_mapping;
1da177e4
LT
2305 size_t ocount; /* original count */
2306 size_t count; /* after file limit checks */
2307 struct inode *inode = mapping->host;
1da177e4
LT
2308 loff_t pos;
2309 ssize_t written;
2310 ssize_t err;
2311
2312 ocount = 0;
0ceb3314
DM
2313 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2314 if (err)
2315 return err;
1da177e4
LT
2316
2317 count = ocount;
2318 pos = *ppos;
2319
2320 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2321
2322 /* We can write back this queue in page reclaim */
2323 current->backing_dev_info = mapping->backing_dev_info;
2324 written = 0;
2325
2326 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2327 if (err)
2328 goto out;
2329
2330 if (count == 0)
2331 goto out;
2332
2f1936b8 2333 err = file_remove_suid(file);
1da177e4
LT
2334 if (err)
2335 goto out;
2336
870f4817 2337 file_update_time(file);
1da177e4
LT
2338
2339 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2340 if (unlikely(file->f_flags & O_DIRECT)) {
fb5527e6
JM
2341 loff_t endbyte;
2342 ssize_t written_buffered;
2343
2344 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2345 ppos, count, ocount);
1da177e4
LT
2346 if (written < 0 || written == count)
2347 goto out;
2348 /*
2349 * direct-io write to a hole: fall through to buffered I/O
2350 * for completing the rest of the request.
2351 */
2352 pos += written;
2353 count -= written;
fb5527e6
JM
2354 written_buffered = generic_file_buffered_write(iocb, iov,
2355 nr_segs, pos, ppos, count,
2356 written);
2357 /*
2358 * If generic_file_buffered_write() retuned a synchronous error
2359 * then we want to return the number of bytes which were
2360 * direct-written, or the error code if that was zero. Note
2361 * that this differs from normal direct-io semantics, which
2362 * will return -EFOO even if some bytes were written.
2363 */
2364 if (written_buffered < 0) {
2365 err = written_buffered;
2366 goto out;
2367 }
1da177e4 2368
fb5527e6
JM
2369 /*
2370 * We need to ensure that the page cache pages are written to
2371 * disk and invalidated to preserve the expected O_DIRECT
2372 * semantics.
2373 */
2374 endbyte = pos + written_buffered - written - 1;
ef51c976
MF
2375 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2376 SYNC_FILE_RANGE_WAIT_BEFORE|
2377 SYNC_FILE_RANGE_WRITE|
2378 SYNC_FILE_RANGE_WAIT_AFTER);
fb5527e6
JM
2379 if (err == 0) {
2380 written = written_buffered;
2381 invalidate_mapping_pages(mapping,
2382 pos >> PAGE_CACHE_SHIFT,
2383 endbyte >> PAGE_CACHE_SHIFT);
2384 } else {
2385 /*
2386 * We don't know how much we wrote, so just return
2387 * the number of bytes which were direct-written
2388 */
2389 }
2390 } else {
2391 written = generic_file_buffered_write(iocb, iov, nr_segs,
2392 pos, ppos, count, written);
2393 }
1da177e4
LT
2394out:
2395 current->backing_dev_info = NULL;
2396 return written ? written : err;
2397}
e4dd9de3
JK
2398EXPORT_SYMBOL(__generic_file_aio_write);
2399
e4dd9de3
JK
2400/**
2401 * generic_file_aio_write - write data to a file
2402 * @iocb: IO state structure
2403 * @iov: vector with data to write
2404 * @nr_segs: number of segments in the vector
2405 * @pos: position in file where to write
2406 *
2407 * This is a wrapper around __generic_file_aio_write() to be used by most
2408 * filesystems. It takes care of syncing the file in case of O_SYNC file
2409 * and acquires i_mutex as needed.
2410 */
027445c3
BP
2411ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2412 unsigned long nr_segs, loff_t pos)
1da177e4
LT
2413{
2414 struct file *file = iocb->ki_filp;
148f948b 2415 struct inode *inode = file->f_mapping->host;
1da177e4 2416 ssize_t ret;
1da177e4
LT
2417
2418 BUG_ON(iocb->ki_pos != pos);
2419
1b1dcc1b 2420 mutex_lock(&inode->i_mutex);
e4dd9de3 2421 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
1b1dcc1b 2422 mutex_unlock(&inode->i_mutex);
1da177e4 2423
148f948b 2424 if (ret > 0 || ret == -EIOCBQUEUED) {
1da177e4
LT
2425 ssize_t err;
2426
148f948b 2427 err = generic_write_sync(file, pos, ret);
c7b50db2 2428 if (err < 0 && ret > 0)
1da177e4
LT
2429 ret = err;
2430 }
2431 return ret;
2432}
2433EXPORT_SYMBOL(generic_file_aio_write);
2434
cf9a2ae8
DH
2435/**
2436 * try_to_release_page() - release old fs-specific metadata on a page
2437 *
2438 * @page: the page which the kernel is trying to free
2439 * @gfp_mask: memory allocation flags (and I/O mode)
2440 *
2441 * The address_space is to try to release any data against the page
2442 * (presumably at page->private). If the release was successful, return `1'.
2443 * Otherwise return zero.
2444 *
266cf658
DH
2445 * This may also be called if PG_fscache is set on a page, indicating that the
2446 * page is known to the local caching routines.
2447 *
cf9a2ae8 2448 * The @gfp_mask argument specifies whether I/O may be performed to release
3f31fddf 2449 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
cf9a2ae8 2450 *
cf9a2ae8
DH
2451 */
2452int try_to_release_page(struct page *page, gfp_t gfp_mask)
2453{
2454 struct address_space * const mapping = page->mapping;
2455
2456 BUG_ON(!PageLocked(page));
2457 if (PageWriteback(page))
2458 return 0;
2459
2460 if (mapping && mapping->a_ops->releasepage)
2461 return mapping->a_ops->releasepage(page, gfp_mask);
2462 return try_to_free_buffers(page);
2463}
2464
2465EXPORT_SYMBOL(try_to_release_page);