]> bbs.cooldavid.org Git - net-next-2.6.git/blame - lib/swiotlb.c
edac: i5100 add 6 ranks per channel
[net-next-2.6.git] / lib / swiotlb.c
CommitLineData
1da177e4
LT
1/*
2 * Dynamic DMA mapping support.
3 *
563aaf06 4 * This implementation is a fallback for platforms that do not support
1da177e4
LT
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 *
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
569c8bf5
JL
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
fb05a379 17 * 08/12/11 beckyb Add highmem support
1da177e4
LT
18 */
19
20#include <linux/cache.h>
17e5ad6c 21#include <linux/dma-mapping.h>
1da177e4
LT
22#include <linux/mm.h>
23#include <linux/module.h>
1da177e4
LT
24#include <linux/spinlock.h>
25#include <linux/string.h>
0016fdee 26#include <linux/swiotlb.h>
fb05a379 27#include <linux/pfn.h>
1da177e4
LT
28#include <linux/types.h>
29#include <linux/ctype.h>
ef9b1893 30#include <linux/highmem.h>
1da177e4
LT
31
32#include <asm/io.h>
1da177e4 33#include <asm/dma.h>
17e5ad6c 34#include <asm/scatterlist.h>
1da177e4
LT
35
36#include <linux/init.h>
37#include <linux/bootmem.h>
a8522509 38#include <linux/iommu-helper.h>
1da177e4
LT
39
40#define OFFSET(val,align) ((unsigned long) \
41 ( (val) & ( (align) - 1)))
42
0b9afede
AW
43#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
44
45/*
46 * Minimum IO TLB size to bother booting with. Systems with mainly
47 * 64bit capable cards will only lightly use the swiotlb. If we can't
48 * allocate a contiguous 1MB, we're probably in trouble anyway.
49 */
50#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
51
de69e0f0
JL
52/*
53 * Enumeration for sync targets
54 */
55enum dma_sync_target {
56 SYNC_FOR_CPU = 0,
57 SYNC_FOR_DEVICE = 1,
58};
59
1da177e4
LT
60int swiotlb_force;
61
62/*
ceb5ac32
BB
63 * Used to do a quick range check in unmap_single and
64 * sync_single_*, to see if the memory was in fact allocated by this
1da177e4
LT
65 * API.
66 */
67static char *io_tlb_start, *io_tlb_end;
68
69/*
70 * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
71 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
72 */
73static unsigned long io_tlb_nslabs;
74
75/*
76 * When the IOMMU overflows we return a fallback buffer. This sets the size.
77 */
78static unsigned long io_tlb_overflow = 32*1024;
79
80void *io_tlb_overflow_buffer;
81
82/*
83 * This is a free list describing the number of free entries available from
84 * each index
85 */
86static unsigned int *io_tlb_list;
87static unsigned int io_tlb_index;
88
89/*
90 * We need to save away the original address corresponding to a mapped entry
91 * for the sync operations.
92 */
bc40ac66 93static phys_addr_t *io_tlb_orig_addr;
1da177e4
LT
94
95/*
96 * Protect the above data structures in the map and unmap calls
97 */
98static DEFINE_SPINLOCK(io_tlb_lock);
99
5740afdb
FT
100static int late_alloc;
101
1da177e4
LT
102static int __init
103setup_io_tlb_npages(char *str)
104{
105 if (isdigit(*str)) {
e8579e72 106 io_tlb_nslabs = simple_strtoul(str, &str, 0);
1da177e4
LT
107 /* avoid tail segment of size < IO_TLB_SEGSIZE */
108 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
109 }
110 if (*str == ',')
111 ++str;
b18485e7 112 if (!strcmp(str, "force"))
1da177e4 113 swiotlb_force = 1;
b18485e7 114
1da177e4
LT
115 return 1;
116}
117__setup("swiotlb=", setup_io_tlb_npages);
118/* make io_tlb_overflow tunable too? */
119
02ca646e 120/* Note that this doesn't work with highmem page */
70a7d3cc
JF
121static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
122 volatile void *address)
e08e1f7a 123{
862d196b 124 return phys_to_dma(hwdev, virt_to_phys(address));
e08e1f7a
IC
125}
126
ad32e8cb 127void swiotlb_print_info(void)
2e5b2b86 128{
ad32e8cb 129 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
2e5b2b86 130 phys_addr_t pstart, pend;
2e5b2b86
IC
131
132 pstart = virt_to_phys(io_tlb_start);
133 pend = virt_to_phys(io_tlb_end);
134
2e5b2b86
IC
135 printk(KERN_INFO "Placing %luMB software IO TLB between %p - %p\n",
136 bytes >> 20, io_tlb_start, io_tlb_end);
70a7d3cc
JF
137 printk(KERN_INFO "software IO TLB at phys %#llx - %#llx\n",
138 (unsigned long long)pstart,
139 (unsigned long long)pend);
2e5b2b86
IC
140}
141
1da177e4
LT
142/*
143 * Statically reserve bounce buffer space and initialize bounce buffer data
17e5ad6c 144 * structures for the software IO TLB used to implement the DMA API.
1da177e4 145 */
563aaf06 146void __init
ad32e8cb 147swiotlb_init_with_default_size(size_t default_size, int verbose)
1da177e4 148{
563aaf06 149 unsigned long i, bytes;
1da177e4
LT
150
151 if (!io_tlb_nslabs) {
e8579e72 152 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
1da177e4
LT
153 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
154 }
155
563aaf06
JB
156 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
157
1da177e4
LT
158 /*
159 * Get IO TLB memory from the low pages
160 */
3885123d 161 io_tlb_start = alloc_bootmem_low_pages(bytes);
1da177e4
LT
162 if (!io_tlb_start)
163 panic("Cannot allocate SWIOTLB buffer");
563aaf06 164 io_tlb_end = io_tlb_start + bytes;
1da177e4
LT
165
166 /*
167 * Allocate and initialize the free list array. This array is used
168 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
169 * between io_tlb_start and io_tlb_end.
170 */
171 io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int));
25667d67 172 for (i = 0; i < io_tlb_nslabs; i++)
1da177e4
LT
173 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
174 io_tlb_index = 0;
bc40ac66 175 io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(phys_addr_t));
1da177e4
LT
176
177 /*
178 * Get the overflow emergency buffer
179 */
180 io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow);
563aaf06
JB
181 if (!io_tlb_overflow_buffer)
182 panic("Cannot allocate SWIOTLB overflow buffer!\n");
ad32e8cb
FT
183 if (verbose)
184 swiotlb_print_info();
1da177e4
LT
185}
186
563aaf06 187void __init
ad32e8cb 188swiotlb_init(int verbose)
1da177e4 189{
ad32e8cb 190 swiotlb_init_with_default_size(64 * (1<<20), verbose); /* default to 64MB */
1da177e4
LT
191}
192
0b9afede
AW
193/*
194 * Systems with larger DMA zones (those that don't support ISA) can
195 * initialize the swiotlb later using the slab allocator if needed.
196 * This should be just like above, but with some error catching.
197 */
198int
563aaf06 199swiotlb_late_init_with_default_size(size_t default_size)
0b9afede 200{
563aaf06 201 unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
0b9afede
AW
202 unsigned int order;
203
204 if (!io_tlb_nslabs) {
205 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
206 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
207 }
208
209 /*
210 * Get IO TLB memory from the low pages
211 */
563aaf06 212 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
0b9afede 213 io_tlb_nslabs = SLABS_PER_PAGE << order;
563aaf06 214 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
0b9afede
AW
215
216 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
bb52196b
FT
217 io_tlb_start = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
218 order);
0b9afede
AW
219 if (io_tlb_start)
220 break;
221 order--;
222 }
223
224 if (!io_tlb_start)
225 goto cleanup1;
226
563aaf06 227 if (order != get_order(bytes)) {
0b9afede
AW
228 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
229 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
230 io_tlb_nslabs = SLABS_PER_PAGE << order;
563aaf06 231 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
0b9afede 232 }
563aaf06
JB
233 io_tlb_end = io_tlb_start + bytes;
234 memset(io_tlb_start, 0, bytes);
0b9afede
AW
235
236 /*
237 * Allocate and initialize the free list array. This array is used
238 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
239 * between io_tlb_start and io_tlb_end.
240 */
241 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
242 get_order(io_tlb_nslabs * sizeof(int)));
243 if (!io_tlb_list)
244 goto cleanup2;
245
246 for (i = 0; i < io_tlb_nslabs; i++)
247 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
248 io_tlb_index = 0;
249
bc40ac66
BB
250 io_tlb_orig_addr = (phys_addr_t *)
251 __get_free_pages(GFP_KERNEL,
252 get_order(io_tlb_nslabs *
253 sizeof(phys_addr_t)));
0b9afede
AW
254 if (!io_tlb_orig_addr)
255 goto cleanup3;
256
bc40ac66 257 memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
0b9afede
AW
258
259 /*
260 * Get the overflow emergency buffer
261 */
262 io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
263 get_order(io_tlb_overflow));
264 if (!io_tlb_overflow_buffer)
265 goto cleanup4;
266
ad32e8cb 267 swiotlb_print_info();
0b9afede 268
5740afdb
FT
269 late_alloc = 1;
270
0b9afede
AW
271 return 0;
272
273cleanup4:
bc40ac66
BB
274 free_pages((unsigned long)io_tlb_orig_addr,
275 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
0b9afede
AW
276 io_tlb_orig_addr = NULL;
277cleanup3:
25667d67
TL
278 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
279 sizeof(int)));
0b9afede 280 io_tlb_list = NULL;
0b9afede 281cleanup2:
563aaf06 282 io_tlb_end = NULL;
0b9afede
AW
283 free_pages((unsigned long)io_tlb_start, order);
284 io_tlb_start = NULL;
285cleanup1:
286 io_tlb_nslabs = req_nslabs;
287 return -ENOMEM;
288}
289
5740afdb
FT
290void __init swiotlb_free(void)
291{
292 if (!io_tlb_overflow_buffer)
293 return;
294
295 if (late_alloc) {
296 free_pages((unsigned long)io_tlb_overflow_buffer,
297 get_order(io_tlb_overflow));
298 free_pages((unsigned long)io_tlb_orig_addr,
299 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
300 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
301 sizeof(int)));
302 free_pages((unsigned long)io_tlb_start,
303 get_order(io_tlb_nslabs << IO_TLB_SHIFT));
304 } else {
305 free_bootmem_late(__pa(io_tlb_overflow_buffer),
306 io_tlb_overflow);
307 free_bootmem_late(__pa(io_tlb_orig_addr),
308 io_tlb_nslabs * sizeof(phys_addr_t));
309 free_bootmem_late(__pa(io_tlb_list),
310 io_tlb_nslabs * sizeof(int));
311 free_bootmem_late(__pa(io_tlb_start),
312 io_tlb_nslabs << IO_TLB_SHIFT);
313 }
314}
315
02ca646e 316static int is_swiotlb_buffer(phys_addr_t paddr)
640aebfe 317{
02ca646e
FT
318 return paddr >= virt_to_phys(io_tlb_start) &&
319 paddr < virt_to_phys(io_tlb_end);
640aebfe
FT
320}
321
fb05a379
BB
322/*
323 * Bounce: copy the swiotlb buffer back to the original dma location
324 */
325static void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size,
326 enum dma_data_direction dir)
327{
328 unsigned long pfn = PFN_DOWN(phys);
329
330 if (PageHighMem(pfn_to_page(pfn))) {
331 /* The buffer does not have a mapping. Map it in and copy */
332 unsigned int offset = phys & ~PAGE_MASK;
333 char *buffer;
334 unsigned int sz = 0;
335 unsigned long flags;
336
337 while (size) {
67131ad0 338 sz = min_t(size_t, PAGE_SIZE - offset, size);
fb05a379
BB
339
340 local_irq_save(flags);
341 buffer = kmap_atomic(pfn_to_page(pfn),
342 KM_BOUNCE_READ);
343 if (dir == DMA_TO_DEVICE)
344 memcpy(dma_addr, buffer + offset, sz);
ef9b1893 345 else
fb05a379
BB
346 memcpy(buffer + offset, dma_addr, sz);
347 kunmap_atomic(buffer, KM_BOUNCE_READ);
ef9b1893 348 local_irq_restore(flags);
fb05a379
BB
349
350 size -= sz;
351 pfn++;
352 dma_addr += sz;
353 offset = 0;
ef9b1893
JF
354 }
355 } else {
ef9b1893 356 if (dir == DMA_TO_DEVICE)
fb05a379 357 memcpy(dma_addr, phys_to_virt(phys), size);
ef9b1893 358 else
fb05a379 359 memcpy(phys_to_virt(phys), dma_addr, size);
ef9b1893 360 }
1b548f66
JF
361}
362
1da177e4
LT
363/*
364 * Allocates bounce buffer and returns its kernel virtual address.
365 */
366static void *
bc40ac66 367map_single(struct device *hwdev, phys_addr_t phys, size_t size, int dir)
1da177e4
LT
368{
369 unsigned long flags;
370 char *dma_addr;
371 unsigned int nslots, stride, index, wrap;
372 int i;
681cc5cd
FT
373 unsigned long start_dma_addr;
374 unsigned long mask;
375 unsigned long offset_slots;
376 unsigned long max_slots;
377
378 mask = dma_get_seg_boundary(hwdev);
70a7d3cc 379 start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start) & mask;
681cc5cd
FT
380
381 offset_slots = ALIGN(start_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
a5ddde4a
IC
382
383 /*
384 * Carefully handle integer overflow which can occur when mask == ~0UL.
385 */
b15a3891
JB
386 max_slots = mask + 1
387 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
388 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
1da177e4
LT
389
390 /*
391 * For mappings greater than a page, we limit the stride (and
392 * hence alignment) to a page size.
393 */
394 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
395 if (size > PAGE_SIZE)
396 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
397 else
398 stride = 1;
399
34814545 400 BUG_ON(!nslots);
1da177e4
LT
401
402 /*
403 * Find suitable number of IO TLB entries size that will fit this
404 * request and allocate a buffer from that IO TLB pool.
405 */
406 spin_lock_irqsave(&io_tlb_lock, flags);
a7133a15
AM
407 index = ALIGN(io_tlb_index, stride);
408 if (index >= io_tlb_nslabs)
409 index = 0;
410 wrap = index;
411
412 do {
a8522509
FT
413 while (iommu_is_span_boundary(index, nslots, offset_slots,
414 max_slots)) {
b15a3891
JB
415 index += stride;
416 if (index >= io_tlb_nslabs)
417 index = 0;
a7133a15
AM
418 if (index == wrap)
419 goto not_found;
420 }
421
422 /*
423 * If we find a slot that indicates we have 'nslots' number of
424 * contiguous buffers, we allocate the buffers from that slot
425 * and mark the entries as '0' indicating unavailable.
426 */
427 if (io_tlb_list[index] >= nslots) {
428 int count = 0;
429
430 for (i = index; i < (int) (index + nslots); i++)
431 io_tlb_list[i] = 0;
432 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
433 io_tlb_list[i] = ++count;
434 dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
1da177e4 435
a7133a15
AM
436 /*
437 * Update the indices to avoid searching in the next
438 * round.
439 */
440 io_tlb_index = ((index + nslots) < io_tlb_nslabs
441 ? (index + nslots) : 0);
442
443 goto found;
444 }
445 index += stride;
446 if (index >= io_tlb_nslabs)
447 index = 0;
448 } while (index != wrap);
449
450not_found:
451 spin_unlock_irqrestore(&io_tlb_lock, flags);
452 return NULL;
453found:
1da177e4
LT
454 spin_unlock_irqrestore(&io_tlb_lock, flags);
455
456 /*
457 * Save away the mapping from the original address to the DMA address.
458 * This is needed when we sync the memory. Then we sync the buffer if
459 * needed.
460 */
bc40ac66
BB
461 for (i = 0; i < nslots; i++)
462 io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT);
1da177e4 463 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
fb05a379 464 swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
1da177e4
LT
465
466 return dma_addr;
467}
468
469/*
470 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
471 */
472static void
7fcebbd2 473do_unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir)
1da177e4
LT
474{
475 unsigned long flags;
476 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
477 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
bc40ac66 478 phys_addr_t phys = io_tlb_orig_addr[index];
1da177e4
LT
479
480 /*
481 * First, sync the memory before unmapping the entry
482 */
bc40ac66 483 if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
fb05a379 484 swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
1da177e4
LT
485
486 /*
487 * Return the buffer to the free list by setting the corresponding
af901ca1 488 * entries to indicate the number of contiguous entries available.
1da177e4
LT
489 * While returning the entries to the free list, we merge the entries
490 * with slots below and above the pool being returned.
491 */
492 spin_lock_irqsave(&io_tlb_lock, flags);
493 {
494 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
495 io_tlb_list[index + nslots] : 0);
496 /*
497 * Step 1: return the slots to the free list, merging the
498 * slots with superceeding slots
499 */
500 for (i = index + nslots - 1; i >= index; i--)
501 io_tlb_list[i] = ++count;
502 /*
503 * Step 2: merge the returned slots with the preceding slots,
504 * if available (non zero)
505 */
506 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
507 io_tlb_list[i] = ++count;
508 }
509 spin_unlock_irqrestore(&io_tlb_lock, flags);
510}
511
512static void
de69e0f0
JL
513sync_single(struct device *hwdev, char *dma_addr, size_t size,
514 int dir, int target)
1da177e4 515{
bc40ac66
BB
516 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
517 phys_addr_t phys = io_tlb_orig_addr[index];
518
519 phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
df336d1c 520
de69e0f0
JL
521 switch (target) {
522 case SYNC_FOR_CPU:
523 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
fb05a379 524 swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
34814545
ES
525 else
526 BUG_ON(dir != DMA_TO_DEVICE);
de69e0f0
JL
527 break;
528 case SYNC_FOR_DEVICE:
529 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
fb05a379 530 swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
34814545
ES
531 else
532 BUG_ON(dir != DMA_FROM_DEVICE);
de69e0f0
JL
533 break;
534 default:
1da177e4 535 BUG();
de69e0f0 536 }
1da177e4
LT
537}
538
539void *
540swiotlb_alloc_coherent(struct device *hwdev, size_t size,
06a54497 541 dma_addr_t *dma_handle, gfp_t flags)
1da177e4 542{
563aaf06 543 dma_addr_t dev_addr;
1da177e4
LT
544 void *ret;
545 int order = get_order(size);
284901a9 546 u64 dma_mask = DMA_BIT_MASK(32);
1e74f300
FT
547
548 if (hwdev && hwdev->coherent_dma_mask)
549 dma_mask = hwdev->coherent_dma_mask;
1da177e4 550
25667d67 551 ret = (void *)__get_free_pages(flags, order);
b9394647 552 if (ret && swiotlb_virt_to_bus(hwdev, ret) + size > dma_mask) {
1da177e4
LT
553 /*
554 * The allocated memory isn't reachable by the device.
1da177e4
LT
555 */
556 free_pages((unsigned long) ret, order);
557 ret = NULL;
558 }
559 if (!ret) {
560 /*
561 * We are either out of memory or the device can't DMA
ceb5ac32
BB
562 * to GFP_DMA memory; fall back on map_single(), which
563 * will grab memory from the lowest available address range.
1da177e4 564 */
bc40ac66 565 ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
9dfda12b 566 if (!ret)
1da177e4 567 return NULL;
1da177e4
LT
568 }
569
570 memset(ret, 0, size);
70a7d3cc 571 dev_addr = swiotlb_virt_to_bus(hwdev, ret);
1da177e4
LT
572
573 /* Confirm address can be DMA'd by device */
b9394647 574 if (dev_addr + size > dma_mask) {
563aaf06 575 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
1e74f300 576 (unsigned long long)dma_mask,
563aaf06 577 (unsigned long long)dev_addr);
a2b89b59
FT
578
579 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
7fcebbd2 580 do_unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
a2b89b59 581 return NULL;
1da177e4
LT
582 }
583 *dma_handle = dev_addr;
584 return ret;
585}
874d6a95 586EXPORT_SYMBOL(swiotlb_alloc_coherent);
1da177e4
LT
587
588void
589swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
02ca646e 590 dma_addr_t dev_addr)
1da177e4 591{
862d196b 592 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
02ca646e 593
aa24886e 594 WARN_ON(irqs_disabled());
02ca646e
FT
595 if (!is_swiotlb_buffer(paddr))
596 free_pages((unsigned long)vaddr, get_order(size));
1da177e4
LT
597 else
598 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
7fcebbd2 599 do_unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
1da177e4 600}
874d6a95 601EXPORT_SYMBOL(swiotlb_free_coherent);
1da177e4
LT
602
603static void
604swiotlb_full(struct device *dev, size_t size, int dir, int do_panic)
605{
606 /*
607 * Ran out of IOMMU space for this operation. This is very bad.
608 * Unfortunately the drivers cannot handle this operation properly.
17e5ad6c 609 * unless they check for dma_mapping_error (most don't)
1da177e4
LT
610 * When the mapping is small enough return a static buffer to limit
611 * the damage, or panic when the transfer is too big.
612 */
563aaf06 613 printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
94b32486 614 "device %s\n", size, dev ? dev_name(dev) : "?");
1da177e4 615
c7084b35
CD
616 if (size <= io_tlb_overflow || !do_panic)
617 return;
618
619 if (dir == DMA_BIDIRECTIONAL)
620 panic("DMA: Random memory could be DMA accessed\n");
621 if (dir == DMA_FROM_DEVICE)
622 panic("DMA: Random memory could be DMA written\n");
623 if (dir == DMA_TO_DEVICE)
624 panic("DMA: Random memory could be DMA read\n");
1da177e4
LT
625}
626
627/*
628 * Map a single buffer of the indicated size for DMA in streaming mode. The
17e5ad6c 629 * physical address to use is returned.
1da177e4
LT
630 *
631 * Once the device is given the dma address, the device owns this memory until
ceb5ac32 632 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
1da177e4 633 */
f98eee8e
FT
634dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
635 unsigned long offset, size_t size,
636 enum dma_data_direction dir,
637 struct dma_attrs *attrs)
1da177e4 638{
f98eee8e 639 phys_addr_t phys = page_to_phys(page) + offset;
862d196b 640 dma_addr_t dev_addr = phys_to_dma(dev, phys);
1da177e4
LT
641 void *map;
642
34814545 643 BUG_ON(dir == DMA_NONE);
1da177e4 644 /*
ceb5ac32 645 * If the address happens to be in the device's DMA window,
1da177e4
LT
646 * we can safely return the device addr and not worry about bounce
647 * buffering it.
648 */
b9394647 649 if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
1da177e4
LT
650 return dev_addr;
651
652 /*
653 * Oh well, have to allocate and map a bounce buffer.
654 */
f98eee8e 655 map = map_single(dev, phys, size, dir);
1da177e4 656 if (!map) {
f98eee8e 657 swiotlb_full(dev, size, dir, 1);
1da177e4
LT
658 map = io_tlb_overflow_buffer;
659 }
660
f98eee8e 661 dev_addr = swiotlb_virt_to_bus(dev, map);
1da177e4
LT
662
663 /*
664 * Ensure that the address returned is DMA'ble
665 */
b9394647 666 if (!dma_capable(dev, dev_addr, size))
1da177e4
LT
667 panic("map_single: bounce buffer is not DMA'ble");
668
669 return dev_addr;
670}
f98eee8e 671EXPORT_SYMBOL_GPL(swiotlb_map_page);
1da177e4 672
1da177e4
LT
673/*
674 * Unmap a single streaming mode DMA translation. The dma_addr and size must
ceb5ac32 675 * match what was provided for in a previous swiotlb_map_page call. All
1da177e4
LT
676 * other usages are undefined.
677 *
678 * After this call, reads by the cpu to the buffer are guaranteed to see
679 * whatever the device wrote there.
680 */
7fcebbd2
BB
681static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
682 size_t size, int dir)
1da177e4 683{
862d196b 684 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
1da177e4 685
34814545 686 BUG_ON(dir == DMA_NONE);
7fcebbd2 687
02ca646e
FT
688 if (is_swiotlb_buffer(paddr)) {
689 do_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
7fcebbd2
BB
690 return;
691 }
692
693 if (dir != DMA_FROM_DEVICE)
694 return;
695
02ca646e
FT
696 /*
697 * phys_to_virt doesn't work with hihgmem page but we could
698 * call dma_mark_clean() with hihgmem page here. However, we
699 * are fine since dma_mark_clean() is null on POWERPC. We can
700 * make dma_mark_clean() take a physical address if necessary.
701 */
702 dma_mark_clean(phys_to_virt(paddr), size);
7fcebbd2
BB
703}
704
705void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
706 size_t size, enum dma_data_direction dir,
707 struct dma_attrs *attrs)
708{
709 unmap_single(hwdev, dev_addr, size, dir);
1da177e4 710}
f98eee8e 711EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
874d6a95 712
1da177e4
LT
713/*
714 * Make physical memory consistent for a single streaming mode DMA translation
715 * after a transfer.
716 *
ceb5ac32 717 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
17e5ad6c
TL
718 * using the cpu, yet do not wish to teardown the dma mapping, you must
719 * call this function before doing so. At the next point you give the dma
1da177e4
LT
720 * address back to the card, you must first perform a
721 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
722 */
be6b0267 723static void
8270f3f1 724swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
de69e0f0 725 size_t size, int dir, int target)
1da177e4 726{
862d196b 727 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
1da177e4 728
34814545 729 BUG_ON(dir == DMA_NONE);
380d6878 730
02ca646e
FT
731 if (is_swiotlb_buffer(paddr)) {
732 sync_single(hwdev, phys_to_virt(paddr), size, dir, target);
380d6878
BB
733 return;
734 }
735
736 if (dir != DMA_FROM_DEVICE)
737 return;
738
02ca646e 739 dma_mark_clean(phys_to_virt(paddr), size);
1da177e4
LT
740}
741
8270f3f1
JL
742void
743swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e 744 size_t size, enum dma_data_direction dir)
8270f3f1 745{
de69e0f0 746 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
8270f3f1 747}
874d6a95 748EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
8270f3f1 749
1da177e4
LT
750void
751swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e 752 size_t size, enum dma_data_direction dir)
1da177e4 753{
de69e0f0 754 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
1da177e4 755}
874d6a95 756EXPORT_SYMBOL(swiotlb_sync_single_for_device);
1da177e4 757
878a97cf
JL
758/*
759 * Same as above, but for a sub-range of the mapping.
760 */
be6b0267 761static void
878a97cf 762swiotlb_sync_single_range(struct device *hwdev, dma_addr_t dev_addr,
de69e0f0
JL
763 unsigned long offset, size_t size,
764 int dir, int target)
878a97cf 765{
380d6878 766 swiotlb_sync_single(hwdev, dev_addr + offset, size, dir, target);
878a97cf
JL
767}
768
769void
770swiotlb_sync_single_range_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e
FT
771 unsigned long offset, size_t size,
772 enum dma_data_direction dir)
878a97cf 773{
de69e0f0
JL
774 swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
775 SYNC_FOR_CPU);
878a97cf 776}
874d6a95 777EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu);
878a97cf
JL
778
779void
780swiotlb_sync_single_range_for_device(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e
FT
781 unsigned long offset, size_t size,
782 enum dma_data_direction dir)
878a97cf 783{
de69e0f0
JL
784 swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
785 SYNC_FOR_DEVICE);
878a97cf 786}
874d6a95 787EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device);
878a97cf 788
1da177e4
LT
789/*
790 * Map a set of buffers described by scatterlist in streaming mode for DMA.
ceb5ac32 791 * This is the scatter-gather version of the above swiotlb_map_page
1da177e4
LT
792 * interface. Here the scatter gather list elements are each tagged with the
793 * appropriate dma address and length. They are obtained via
794 * sg_dma_{address,length}(SG).
795 *
796 * NOTE: An implementation may be able to use a smaller number of
797 * DMA address/length pairs than there are SG table elements.
798 * (for example via virtual mapping capabilities)
799 * The routine returns the number of addr/length pairs actually
800 * used, at most nents.
801 *
ceb5ac32 802 * Device ownership issues as mentioned above for swiotlb_map_page are the
1da177e4
LT
803 * same here.
804 */
805int
309df0c5 806swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
160c1d8e 807 enum dma_data_direction dir, struct dma_attrs *attrs)
1da177e4 808{
dbfd49fe 809 struct scatterlist *sg;
1da177e4
LT
810 int i;
811
34814545 812 BUG_ON(dir == DMA_NONE);
1da177e4 813
dbfd49fe 814 for_each_sg(sgl, sg, nelems, i) {
961d7d0e 815 phys_addr_t paddr = sg_phys(sg);
862d196b 816 dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
bc40ac66 817
cf56e3f2 818 if (swiotlb_force ||
b9394647 819 !dma_capable(hwdev, dev_addr, sg->length)) {
bc40ac66
BB
820 void *map = map_single(hwdev, sg_phys(sg),
821 sg->length, dir);
7e870233 822 if (!map) {
1da177e4
LT
823 /* Don't panic here, we expect map_sg users
824 to do proper error handling. */
825 swiotlb_full(hwdev, sg->length, dir, 0);
309df0c5
AK
826 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
827 attrs);
dbfd49fe 828 sgl[0].dma_length = 0;
1da177e4
LT
829 return 0;
830 }
70a7d3cc 831 sg->dma_address = swiotlb_virt_to_bus(hwdev, map);
1da177e4
LT
832 } else
833 sg->dma_address = dev_addr;
834 sg->dma_length = sg->length;
835 }
836 return nelems;
837}
309df0c5
AK
838EXPORT_SYMBOL(swiotlb_map_sg_attrs);
839
840int
841swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
842 int dir)
843{
844 return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
845}
874d6a95 846EXPORT_SYMBOL(swiotlb_map_sg);
1da177e4
LT
847
848/*
849 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
ceb5ac32 850 * concerning calls here are the same as for swiotlb_unmap_page() above.
1da177e4
LT
851 */
852void
309df0c5 853swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
160c1d8e 854 int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
1da177e4 855{
dbfd49fe 856 struct scatterlist *sg;
1da177e4
LT
857 int i;
858
34814545 859 BUG_ON(dir == DMA_NONE);
1da177e4 860
7fcebbd2
BB
861 for_each_sg(sgl, sg, nelems, i)
862 unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
863
1da177e4 864}
309df0c5
AK
865EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
866
867void
868swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
869 int dir)
870{
871 return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
872}
874d6a95 873EXPORT_SYMBOL(swiotlb_unmap_sg);
1da177e4
LT
874
875/*
876 * Make physical memory consistent for a set of streaming mode DMA translations
877 * after a transfer.
878 *
879 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
880 * and usage.
881 */
be6b0267 882static void
dbfd49fe 883swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
de69e0f0 884 int nelems, int dir, int target)
1da177e4 885{
dbfd49fe 886 struct scatterlist *sg;
1da177e4
LT
887 int i;
888
380d6878
BB
889 for_each_sg(sgl, sg, nelems, i)
890 swiotlb_sync_single(hwdev, sg->dma_address,
de69e0f0 891 sg->dma_length, dir, target);
1da177e4
LT
892}
893
8270f3f1
JL
894void
895swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
160c1d8e 896 int nelems, enum dma_data_direction dir)
8270f3f1 897{
de69e0f0 898 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
8270f3f1 899}
874d6a95 900EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
8270f3f1 901
1da177e4
LT
902void
903swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
160c1d8e 904 int nelems, enum dma_data_direction dir)
1da177e4 905{
de69e0f0 906 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
1da177e4 907}
874d6a95 908EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
1da177e4
LT
909
910int
8d8bb39b 911swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
1da177e4 912{
70a7d3cc 913 return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer));
1da177e4 914}
874d6a95 915EXPORT_SYMBOL(swiotlb_dma_mapping_error);
1da177e4
LT
916
917/*
17e5ad6c 918 * Return whether the given device DMA address mask can be supported
1da177e4 919 * properly. For example, if your device can only drive the low 24-bits
17e5ad6c 920 * during bus mastering, then you would pass 0x00ffffff as the mask to
1da177e4
LT
921 * this function.
922 */
923int
563aaf06 924swiotlb_dma_supported(struct device *hwdev, u64 mask)
1da177e4 925{
70a7d3cc 926 return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask;
1da177e4 927}
1da177e4 928EXPORT_SYMBOL(swiotlb_dma_supported);