]> bbs.cooldavid.org Git - net-next-2.6.git/blame - lib/swiotlb.c
swiotlb: remove unused swiotlb_alloc()
[net-next-2.6.git] / lib / swiotlb.c
CommitLineData
1da177e4
LT
1/*
2 * Dynamic DMA mapping support.
3 *
563aaf06 4 * This implementation is a fallback for platforms that do not support
1da177e4
LT
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 *
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
569c8bf5
JL
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
fb05a379 17 * 08/12/11 beckyb Add highmem support
1da177e4
LT
18 */
19
20#include <linux/cache.h>
17e5ad6c 21#include <linux/dma-mapping.h>
1da177e4
LT
22#include <linux/mm.h>
23#include <linux/module.h>
1da177e4
LT
24#include <linux/spinlock.h>
25#include <linux/string.h>
0016fdee 26#include <linux/swiotlb.h>
fb05a379 27#include <linux/pfn.h>
1da177e4
LT
28#include <linux/types.h>
29#include <linux/ctype.h>
ef9b1893 30#include <linux/highmem.h>
1da177e4
LT
31
32#include <asm/io.h>
1da177e4 33#include <asm/dma.h>
17e5ad6c 34#include <asm/scatterlist.h>
1da177e4
LT
35
36#include <linux/init.h>
37#include <linux/bootmem.h>
a8522509 38#include <linux/iommu-helper.h>
1da177e4
LT
39
40#define OFFSET(val,align) ((unsigned long) \
41 ( (val) & ( (align) - 1)))
42
0b9afede
AW
43#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
44
45/*
46 * Minimum IO TLB size to bother booting with. Systems with mainly
47 * 64bit capable cards will only lightly use the swiotlb. If we can't
48 * allocate a contiguous 1MB, we're probably in trouble anyway.
49 */
50#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
51
de69e0f0
JL
52/*
53 * Enumeration for sync targets
54 */
55enum dma_sync_target {
56 SYNC_FOR_CPU = 0,
57 SYNC_FOR_DEVICE = 1,
58};
59
1da177e4
LT
60int swiotlb_force;
61
62/*
ceb5ac32
BB
63 * Used to do a quick range check in unmap_single and
64 * sync_single_*, to see if the memory was in fact allocated by this
1da177e4
LT
65 * API.
66 */
67static char *io_tlb_start, *io_tlb_end;
68
69/*
70 * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
71 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
72 */
73static unsigned long io_tlb_nslabs;
74
75/*
76 * When the IOMMU overflows we return a fallback buffer. This sets the size.
77 */
78static unsigned long io_tlb_overflow = 32*1024;
79
80void *io_tlb_overflow_buffer;
81
82/*
83 * This is a free list describing the number of free entries available from
84 * each index
85 */
86static unsigned int *io_tlb_list;
87static unsigned int io_tlb_index;
88
89/*
90 * We need to save away the original address corresponding to a mapped entry
91 * for the sync operations.
92 */
bc40ac66 93static phys_addr_t *io_tlb_orig_addr;
1da177e4
LT
94
95/*
96 * Protect the above data structures in the map and unmap calls
97 */
98static DEFINE_SPINLOCK(io_tlb_lock);
99
100static int __init
101setup_io_tlb_npages(char *str)
102{
103 if (isdigit(*str)) {
e8579e72 104 io_tlb_nslabs = simple_strtoul(str, &str, 0);
1da177e4
LT
105 /* avoid tail segment of size < IO_TLB_SEGSIZE */
106 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
107 }
108 if (*str == ',')
109 ++str;
110 if (!strcmp(str, "force"))
111 swiotlb_force = 1;
112 return 1;
113}
114__setup("swiotlb=", setup_io_tlb_npages);
115/* make io_tlb_overflow tunable too? */
116
70a7d3cc 117dma_addr_t __weak swiotlb_phys_to_bus(struct device *hwdev, phys_addr_t paddr)
e08e1f7a
IC
118{
119 return paddr;
120}
121
42d7c5e3 122phys_addr_t __weak swiotlb_bus_to_phys(struct device *hwdev, dma_addr_t baddr)
e08e1f7a
IC
123{
124 return baddr;
125}
126
70a7d3cc
JF
127static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
128 volatile void *address)
e08e1f7a 129{
70a7d3cc 130 return swiotlb_phys_to_bus(hwdev, virt_to_phys(address));
e08e1f7a
IC
131}
132
42d7c5e3 133void * __weak swiotlb_bus_to_virt(struct device *hwdev, dma_addr_t address)
e08e1f7a 134{
42d7c5e3 135 return phys_to_virt(swiotlb_bus_to_phys(hwdev, address));
e08e1f7a
IC
136}
137
ef5722f6
BB
138int __weak swiotlb_arch_address_needs_mapping(struct device *hwdev,
139 dma_addr_t addr, size_t size)
140{
141 return !is_buffer_dma_capable(dma_get_mask(hwdev), addr, size);
142}
143
0b8698ab 144int __weak swiotlb_arch_range_needs_mapping(phys_addr_t paddr, size_t size)
b81ea27b
IC
145{
146 return 0;
147}
148
2e5b2b86
IC
149static void swiotlb_print_info(unsigned long bytes)
150{
151 phys_addr_t pstart, pend;
2e5b2b86
IC
152
153 pstart = virt_to_phys(io_tlb_start);
154 pend = virt_to_phys(io_tlb_end);
155
2e5b2b86
IC
156 printk(KERN_INFO "Placing %luMB software IO TLB between %p - %p\n",
157 bytes >> 20, io_tlb_start, io_tlb_end);
70a7d3cc
JF
158 printk(KERN_INFO "software IO TLB at phys %#llx - %#llx\n",
159 (unsigned long long)pstart,
160 (unsigned long long)pend);
2e5b2b86
IC
161}
162
1da177e4
LT
163/*
164 * Statically reserve bounce buffer space and initialize bounce buffer data
17e5ad6c 165 * structures for the software IO TLB used to implement the DMA API.
1da177e4 166 */
563aaf06
JB
167void __init
168swiotlb_init_with_default_size(size_t default_size)
1da177e4 169{
563aaf06 170 unsigned long i, bytes;
1da177e4
LT
171
172 if (!io_tlb_nslabs) {
e8579e72 173 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
1da177e4
LT
174 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
175 }
176
563aaf06
JB
177 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
178
1da177e4
LT
179 /*
180 * Get IO TLB memory from the low pages
181 */
3885123d 182 io_tlb_start = alloc_bootmem_low_pages(bytes);
1da177e4
LT
183 if (!io_tlb_start)
184 panic("Cannot allocate SWIOTLB buffer");
563aaf06 185 io_tlb_end = io_tlb_start + bytes;
1da177e4
LT
186
187 /*
188 * Allocate and initialize the free list array. This array is used
189 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
190 * between io_tlb_start and io_tlb_end.
191 */
192 io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int));
25667d67 193 for (i = 0; i < io_tlb_nslabs; i++)
1da177e4
LT
194 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
195 io_tlb_index = 0;
bc40ac66 196 io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(phys_addr_t));
1da177e4
LT
197
198 /*
199 * Get the overflow emergency buffer
200 */
201 io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow);
563aaf06
JB
202 if (!io_tlb_overflow_buffer)
203 panic("Cannot allocate SWIOTLB overflow buffer!\n");
204
2e5b2b86 205 swiotlb_print_info(bytes);
1da177e4
LT
206}
207
563aaf06
JB
208void __init
209swiotlb_init(void)
1da177e4 210{
25667d67 211 swiotlb_init_with_default_size(64 * (1<<20)); /* default to 64MB */
1da177e4
LT
212}
213
0b9afede
AW
214/*
215 * Systems with larger DMA zones (those that don't support ISA) can
216 * initialize the swiotlb later using the slab allocator if needed.
217 * This should be just like above, but with some error catching.
218 */
219int
563aaf06 220swiotlb_late_init_with_default_size(size_t default_size)
0b9afede 221{
563aaf06 222 unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
0b9afede
AW
223 unsigned int order;
224
225 if (!io_tlb_nslabs) {
226 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
227 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
228 }
229
230 /*
231 * Get IO TLB memory from the low pages
232 */
563aaf06 233 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
0b9afede 234 io_tlb_nslabs = SLABS_PER_PAGE << order;
563aaf06 235 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
0b9afede
AW
236
237 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
bb52196b
FT
238 io_tlb_start = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
239 order);
0b9afede
AW
240 if (io_tlb_start)
241 break;
242 order--;
243 }
244
245 if (!io_tlb_start)
246 goto cleanup1;
247
563aaf06 248 if (order != get_order(bytes)) {
0b9afede
AW
249 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
250 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
251 io_tlb_nslabs = SLABS_PER_PAGE << order;
563aaf06 252 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
0b9afede 253 }
563aaf06
JB
254 io_tlb_end = io_tlb_start + bytes;
255 memset(io_tlb_start, 0, bytes);
0b9afede
AW
256
257 /*
258 * Allocate and initialize the free list array. This array is used
259 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
260 * between io_tlb_start and io_tlb_end.
261 */
262 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
263 get_order(io_tlb_nslabs * sizeof(int)));
264 if (!io_tlb_list)
265 goto cleanup2;
266
267 for (i = 0; i < io_tlb_nslabs; i++)
268 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
269 io_tlb_index = 0;
270
bc40ac66
BB
271 io_tlb_orig_addr = (phys_addr_t *)
272 __get_free_pages(GFP_KERNEL,
273 get_order(io_tlb_nslabs *
274 sizeof(phys_addr_t)));
0b9afede
AW
275 if (!io_tlb_orig_addr)
276 goto cleanup3;
277
bc40ac66 278 memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
0b9afede
AW
279
280 /*
281 * Get the overflow emergency buffer
282 */
283 io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
284 get_order(io_tlb_overflow));
285 if (!io_tlb_overflow_buffer)
286 goto cleanup4;
287
2e5b2b86 288 swiotlb_print_info(bytes);
0b9afede
AW
289
290 return 0;
291
292cleanup4:
bc40ac66
BB
293 free_pages((unsigned long)io_tlb_orig_addr,
294 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
0b9afede
AW
295 io_tlb_orig_addr = NULL;
296cleanup3:
25667d67
TL
297 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
298 sizeof(int)));
0b9afede 299 io_tlb_list = NULL;
0b9afede 300cleanup2:
563aaf06 301 io_tlb_end = NULL;
0b9afede
AW
302 free_pages((unsigned long)io_tlb_start, order);
303 io_tlb_start = NULL;
304cleanup1:
305 io_tlb_nslabs = req_nslabs;
306 return -ENOMEM;
307}
308
ef5722f6 309static inline int
2797982e 310address_needs_mapping(struct device *hwdev, dma_addr_t addr, size_t size)
1da177e4 311{
ef5722f6 312 return swiotlb_arch_address_needs_mapping(hwdev, addr, size);
1da177e4
LT
313}
314
0b8698ab 315static inline int range_needs_mapping(phys_addr_t paddr, size_t size)
b81ea27b 316{
0b8698ab 317 return swiotlb_force || swiotlb_arch_range_needs_mapping(paddr, size);
b81ea27b
IC
318}
319
640aebfe
FT
320static int is_swiotlb_buffer(char *addr)
321{
322 return addr >= io_tlb_start && addr < io_tlb_end;
323}
324
fb05a379
BB
325/*
326 * Bounce: copy the swiotlb buffer back to the original dma location
327 */
328static void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size,
329 enum dma_data_direction dir)
330{
331 unsigned long pfn = PFN_DOWN(phys);
332
333 if (PageHighMem(pfn_to_page(pfn))) {
334 /* The buffer does not have a mapping. Map it in and copy */
335 unsigned int offset = phys & ~PAGE_MASK;
336 char *buffer;
337 unsigned int sz = 0;
338 unsigned long flags;
339
340 while (size) {
67131ad0 341 sz = min_t(size_t, PAGE_SIZE - offset, size);
fb05a379
BB
342
343 local_irq_save(flags);
344 buffer = kmap_atomic(pfn_to_page(pfn),
345 KM_BOUNCE_READ);
346 if (dir == DMA_TO_DEVICE)
347 memcpy(dma_addr, buffer + offset, sz);
ef9b1893 348 else
fb05a379
BB
349 memcpy(buffer + offset, dma_addr, sz);
350 kunmap_atomic(buffer, KM_BOUNCE_READ);
ef9b1893 351 local_irq_restore(flags);
fb05a379
BB
352
353 size -= sz;
354 pfn++;
355 dma_addr += sz;
356 offset = 0;
ef9b1893
JF
357 }
358 } else {
ef9b1893 359 if (dir == DMA_TO_DEVICE)
fb05a379 360 memcpy(dma_addr, phys_to_virt(phys), size);
ef9b1893 361 else
fb05a379 362 memcpy(phys_to_virt(phys), dma_addr, size);
ef9b1893 363 }
1b548f66
JF
364}
365
1da177e4
LT
366/*
367 * Allocates bounce buffer and returns its kernel virtual address.
368 */
369static void *
bc40ac66 370map_single(struct device *hwdev, phys_addr_t phys, size_t size, int dir)
1da177e4
LT
371{
372 unsigned long flags;
373 char *dma_addr;
374 unsigned int nslots, stride, index, wrap;
375 int i;
681cc5cd
FT
376 unsigned long start_dma_addr;
377 unsigned long mask;
378 unsigned long offset_slots;
379 unsigned long max_slots;
380
381 mask = dma_get_seg_boundary(hwdev);
70a7d3cc 382 start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start) & mask;
681cc5cd
FT
383
384 offset_slots = ALIGN(start_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
a5ddde4a
IC
385
386 /*
387 * Carefully handle integer overflow which can occur when mask == ~0UL.
388 */
b15a3891
JB
389 max_slots = mask + 1
390 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
391 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
1da177e4
LT
392
393 /*
394 * For mappings greater than a page, we limit the stride (and
395 * hence alignment) to a page size.
396 */
397 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
398 if (size > PAGE_SIZE)
399 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
400 else
401 stride = 1;
402
34814545 403 BUG_ON(!nslots);
1da177e4
LT
404
405 /*
406 * Find suitable number of IO TLB entries size that will fit this
407 * request and allocate a buffer from that IO TLB pool.
408 */
409 spin_lock_irqsave(&io_tlb_lock, flags);
a7133a15
AM
410 index = ALIGN(io_tlb_index, stride);
411 if (index >= io_tlb_nslabs)
412 index = 0;
413 wrap = index;
414
415 do {
a8522509
FT
416 while (iommu_is_span_boundary(index, nslots, offset_slots,
417 max_slots)) {
b15a3891
JB
418 index += stride;
419 if (index >= io_tlb_nslabs)
420 index = 0;
a7133a15
AM
421 if (index == wrap)
422 goto not_found;
423 }
424
425 /*
426 * If we find a slot that indicates we have 'nslots' number of
427 * contiguous buffers, we allocate the buffers from that slot
428 * and mark the entries as '0' indicating unavailable.
429 */
430 if (io_tlb_list[index] >= nslots) {
431 int count = 0;
432
433 for (i = index; i < (int) (index + nslots); i++)
434 io_tlb_list[i] = 0;
435 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
436 io_tlb_list[i] = ++count;
437 dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
1da177e4 438
a7133a15
AM
439 /*
440 * Update the indices to avoid searching in the next
441 * round.
442 */
443 io_tlb_index = ((index + nslots) < io_tlb_nslabs
444 ? (index + nslots) : 0);
445
446 goto found;
447 }
448 index += stride;
449 if (index >= io_tlb_nslabs)
450 index = 0;
451 } while (index != wrap);
452
453not_found:
454 spin_unlock_irqrestore(&io_tlb_lock, flags);
455 return NULL;
456found:
1da177e4
LT
457 spin_unlock_irqrestore(&io_tlb_lock, flags);
458
459 /*
460 * Save away the mapping from the original address to the DMA address.
461 * This is needed when we sync the memory. Then we sync the buffer if
462 * needed.
463 */
bc40ac66
BB
464 for (i = 0; i < nslots; i++)
465 io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT);
1da177e4 466 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
fb05a379 467 swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
1da177e4
LT
468
469 return dma_addr;
470}
471
472/*
473 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
474 */
475static void
7fcebbd2 476do_unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir)
1da177e4
LT
477{
478 unsigned long flags;
479 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
480 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
bc40ac66 481 phys_addr_t phys = io_tlb_orig_addr[index];
1da177e4
LT
482
483 /*
484 * First, sync the memory before unmapping the entry
485 */
bc40ac66 486 if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
fb05a379 487 swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
1da177e4
LT
488
489 /*
490 * Return the buffer to the free list by setting the corresponding
491 * entries to indicate the number of contigous entries available.
492 * While returning the entries to the free list, we merge the entries
493 * with slots below and above the pool being returned.
494 */
495 spin_lock_irqsave(&io_tlb_lock, flags);
496 {
497 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
498 io_tlb_list[index + nslots] : 0);
499 /*
500 * Step 1: return the slots to the free list, merging the
501 * slots with superceeding slots
502 */
503 for (i = index + nslots - 1; i >= index; i--)
504 io_tlb_list[i] = ++count;
505 /*
506 * Step 2: merge the returned slots with the preceding slots,
507 * if available (non zero)
508 */
509 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
510 io_tlb_list[i] = ++count;
511 }
512 spin_unlock_irqrestore(&io_tlb_lock, flags);
513}
514
515static void
de69e0f0
JL
516sync_single(struct device *hwdev, char *dma_addr, size_t size,
517 int dir, int target)
1da177e4 518{
bc40ac66
BB
519 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
520 phys_addr_t phys = io_tlb_orig_addr[index];
521
522 phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
df336d1c 523
de69e0f0
JL
524 switch (target) {
525 case SYNC_FOR_CPU:
526 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
fb05a379 527 swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
34814545
ES
528 else
529 BUG_ON(dir != DMA_TO_DEVICE);
de69e0f0
JL
530 break;
531 case SYNC_FOR_DEVICE:
532 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
fb05a379 533 swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
34814545
ES
534 else
535 BUG_ON(dir != DMA_FROM_DEVICE);
de69e0f0
JL
536 break;
537 default:
1da177e4 538 BUG();
de69e0f0 539 }
1da177e4
LT
540}
541
542void *
543swiotlb_alloc_coherent(struct device *hwdev, size_t size,
06a54497 544 dma_addr_t *dma_handle, gfp_t flags)
1da177e4 545{
563aaf06 546 dma_addr_t dev_addr;
1da177e4
LT
547 void *ret;
548 int order = get_order(size);
284901a9 549 u64 dma_mask = DMA_BIT_MASK(32);
1e74f300
FT
550
551 if (hwdev && hwdev->coherent_dma_mask)
552 dma_mask = hwdev->coherent_dma_mask;
1da177e4 553
25667d67 554 ret = (void *)__get_free_pages(flags, order);
70a7d3cc
JF
555 if (ret &&
556 !is_buffer_dma_capable(dma_mask, swiotlb_virt_to_bus(hwdev, ret),
557 size)) {
1da177e4
LT
558 /*
559 * The allocated memory isn't reachable by the device.
1da177e4
LT
560 */
561 free_pages((unsigned long) ret, order);
562 ret = NULL;
563 }
564 if (!ret) {
565 /*
566 * We are either out of memory or the device can't DMA
ceb5ac32
BB
567 * to GFP_DMA memory; fall back on map_single(), which
568 * will grab memory from the lowest available address range.
1da177e4 569 */
bc40ac66 570 ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
9dfda12b 571 if (!ret)
1da177e4 572 return NULL;
1da177e4
LT
573 }
574
575 memset(ret, 0, size);
70a7d3cc 576 dev_addr = swiotlb_virt_to_bus(hwdev, ret);
1da177e4
LT
577
578 /* Confirm address can be DMA'd by device */
1e74f300 579 if (!is_buffer_dma_capable(dma_mask, dev_addr, size)) {
563aaf06 580 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
1e74f300 581 (unsigned long long)dma_mask,
563aaf06 582 (unsigned long long)dev_addr);
a2b89b59
FT
583
584 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
7fcebbd2 585 do_unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
a2b89b59 586 return NULL;
1da177e4
LT
587 }
588 *dma_handle = dev_addr;
589 return ret;
590}
874d6a95 591EXPORT_SYMBOL(swiotlb_alloc_coherent);
1da177e4
LT
592
593void
594swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
595 dma_addr_t dma_handle)
596{
aa24886e 597 WARN_ON(irqs_disabled());
640aebfe 598 if (!is_swiotlb_buffer(vaddr))
1da177e4
LT
599 free_pages((unsigned long) vaddr, get_order(size));
600 else
601 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
7fcebbd2 602 do_unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
1da177e4 603}
874d6a95 604EXPORT_SYMBOL(swiotlb_free_coherent);
1da177e4
LT
605
606static void
607swiotlb_full(struct device *dev, size_t size, int dir, int do_panic)
608{
609 /*
610 * Ran out of IOMMU space for this operation. This is very bad.
611 * Unfortunately the drivers cannot handle this operation properly.
17e5ad6c 612 * unless they check for dma_mapping_error (most don't)
1da177e4
LT
613 * When the mapping is small enough return a static buffer to limit
614 * the damage, or panic when the transfer is too big.
615 */
563aaf06 616 printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
94b32486 617 "device %s\n", size, dev ? dev_name(dev) : "?");
1da177e4
LT
618
619 if (size > io_tlb_overflow && do_panic) {
17e5ad6c
TL
620 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
621 panic("DMA: Memory would be corrupted\n");
622 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
623 panic("DMA: Random memory would be DMAed\n");
1da177e4
LT
624 }
625}
626
627/*
628 * Map a single buffer of the indicated size for DMA in streaming mode. The
17e5ad6c 629 * physical address to use is returned.
1da177e4
LT
630 *
631 * Once the device is given the dma address, the device owns this memory until
ceb5ac32 632 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
1da177e4 633 */
f98eee8e
FT
634dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
635 unsigned long offset, size_t size,
636 enum dma_data_direction dir,
637 struct dma_attrs *attrs)
1da177e4 638{
f98eee8e 639 phys_addr_t phys = page_to_phys(page) + offset;
f98eee8e 640 dma_addr_t dev_addr = swiotlb_phys_to_bus(dev, phys);
1da177e4
LT
641 void *map;
642
34814545 643 BUG_ON(dir == DMA_NONE);
1da177e4 644 /*
ceb5ac32 645 * If the address happens to be in the device's DMA window,
1da177e4
LT
646 * we can safely return the device addr and not worry about bounce
647 * buffering it.
648 */
f98eee8e 649 if (!address_needs_mapping(dev, dev_addr, size) &&
dd6b02fe 650 !range_needs_mapping(phys, size))
1da177e4
LT
651 return dev_addr;
652
653 /*
654 * Oh well, have to allocate and map a bounce buffer.
655 */
f98eee8e 656 map = map_single(dev, phys, size, dir);
1da177e4 657 if (!map) {
f98eee8e 658 swiotlb_full(dev, size, dir, 1);
1da177e4
LT
659 map = io_tlb_overflow_buffer;
660 }
661
f98eee8e 662 dev_addr = swiotlb_virt_to_bus(dev, map);
1da177e4
LT
663
664 /*
665 * Ensure that the address returned is DMA'ble
666 */
f98eee8e 667 if (address_needs_mapping(dev, dev_addr, size))
1da177e4
LT
668 panic("map_single: bounce buffer is not DMA'ble");
669
670 return dev_addr;
671}
f98eee8e 672EXPORT_SYMBOL_GPL(swiotlb_map_page);
1da177e4 673
1da177e4
LT
674/*
675 * Unmap a single streaming mode DMA translation. The dma_addr and size must
ceb5ac32 676 * match what was provided for in a previous swiotlb_map_page call. All
1da177e4
LT
677 * other usages are undefined.
678 *
679 * After this call, reads by the cpu to the buffer are guaranteed to see
680 * whatever the device wrote there.
681 */
7fcebbd2
BB
682static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
683 size_t size, int dir)
1da177e4 684{
42d7c5e3 685 char *dma_addr = swiotlb_bus_to_virt(hwdev, dev_addr);
1da177e4 686
34814545 687 BUG_ON(dir == DMA_NONE);
7fcebbd2
BB
688
689 if (is_swiotlb_buffer(dma_addr)) {
690 do_unmap_single(hwdev, dma_addr, size, dir);
691 return;
692 }
693
694 if (dir != DMA_FROM_DEVICE)
695 return;
696
697 dma_mark_clean(dma_addr, size);
698}
699
700void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
701 size_t size, enum dma_data_direction dir,
702 struct dma_attrs *attrs)
703{
704 unmap_single(hwdev, dev_addr, size, dir);
1da177e4 705}
f98eee8e 706EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
874d6a95 707
1da177e4
LT
708/*
709 * Make physical memory consistent for a single streaming mode DMA translation
710 * after a transfer.
711 *
ceb5ac32 712 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
17e5ad6c
TL
713 * using the cpu, yet do not wish to teardown the dma mapping, you must
714 * call this function before doing so. At the next point you give the dma
1da177e4
LT
715 * address back to the card, you must first perform a
716 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
717 */
be6b0267 718static void
8270f3f1 719swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
de69e0f0 720 size_t size, int dir, int target)
1da177e4 721{
42d7c5e3 722 char *dma_addr = swiotlb_bus_to_virt(hwdev, dev_addr);
1da177e4 723
34814545 724 BUG_ON(dir == DMA_NONE);
380d6878
BB
725
726 if (is_swiotlb_buffer(dma_addr)) {
de69e0f0 727 sync_single(hwdev, dma_addr, size, dir, target);
380d6878
BB
728 return;
729 }
730
731 if (dir != DMA_FROM_DEVICE)
732 return;
733
734 dma_mark_clean(dma_addr, size);
1da177e4
LT
735}
736
8270f3f1
JL
737void
738swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e 739 size_t size, enum dma_data_direction dir)
8270f3f1 740{
de69e0f0 741 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
8270f3f1 742}
874d6a95 743EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
8270f3f1 744
1da177e4
LT
745void
746swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e 747 size_t size, enum dma_data_direction dir)
1da177e4 748{
de69e0f0 749 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
1da177e4 750}
874d6a95 751EXPORT_SYMBOL(swiotlb_sync_single_for_device);
1da177e4 752
878a97cf
JL
753/*
754 * Same as above, but for a sub-range of the mapping.
755 */
be6b0267 756static void
878a97cf 757swiotlb_sync_single_range(struct device *hwdev, dma_addr_t dev_addr,
de69e0f0
JL
758 unsigned long offset, size_t size,
759 int dir, int target)
878a97cf 760{
380d6878 761 swiotlb_sync_single(hwdev, dev_addr + offset, size, dir, target);
878a97cf
JL
762}
763
764void
765swiotlb_sync_single_range_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e
FT
766 unsigned long offset, size_t size,
767 enum dma_data_direction dir)
878a97cf 768{
de69e0f0
JL
769 swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
770 SYNC_FOR_CPU);
878a97cf 771}
874d6a95 772EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu);
878a97cf
JL
773
774void
775swiotlb_sync_single_range_for_device(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e
FT
776 unsigned long offset, size_t size,
777 enum dma_data_direction dir)
878a97cf 778{
de69e0f0
JL
779 swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
780 SYNC_FOR_DEVICE);
878a97cf 781}
874d6a95 782EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device);
878a97cf 783
1da177e4
LT
784/*
785 * Map a set of buffers described by scatterlist in streaming mode for DMA.
ceb5ac32 786 * This is the scatter-gather version of the above swiotlb_map_page
1da177e4
LT
787 * interface. Here the scatter gather list elements are each tagged with the
788 * appropriate dma address and length. They are obtained via
789 * sg_dma_{address,length}(SG).
790 *
791 * NOTE: An implementation may be able to use a smaller number of
792 * DMA address/length pairs than there are SG table elements.
793 * (for example via virtual mapping capabilities)
794 * The routine returns the number of addr/length pairs actually
795 * used, at most nents.
796 *
ceb5ac32 797 * Device ownership issues as mentioned above for swiotlb_map_page are the
1da177e4
LT
798 * same here.
799 */
800int
309df0c5 801swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
160c1d8e 802 enum dma_data_direction dir, struct dma_attrs *attrs)
1da177e4 803{
dbfd49fe 804 struct scatterlist *sg;
1da177e4
LT
805 int i;
806
34814545 807 BUG_ON(dir == DMA_NONE);
1da177e4 808
dbfd49fe 809 for_each_sg(sgl, sg, nelems, i) {
961d7d0e
IC
810 phys_addr_t paddr = sg_phys(sg);
811 dma_addr_t dev_addr = swiotlb_phys_to_bus(hwdev, paddr);
bc40ac66 812
961d7d0e 813 if (range_needs_mapping(paddr, sg->length) ||
2797982e 814 address_needs_mapping(hwdev, dev_addr, sg->length)) {
bc40ac66
BB
815 void *map = map_single(hwdev, sg_phys(sg),
816 sg->length, dir);
7e870233 817 if (!map) {
1da177e4
LT
818 /* Don't panic here, we expect map_sg users
819 to do proper error handling. */
820 swiotlb_full(hwdev, sg->length, dir, 0);
309df0c5
AK
821 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
822 attrs);
dbfd49fe 823 sgl[0].dma_length = 0;
1da177e4
LT
824 return 0;
825 }
70a7d3cc 826 sg->dma_address = swiotlb_virt_to_bus(hwdev, map);
1da177e4
LT
827 } else
828 sg->dma_address = dev_addr;
829 sg->dma_length = sg->length;
830 }
831 return nelems;
832}
309df0c5
AK
833EXPORT_SYMBOL(swiotlb_map_sg_attrs);
834
835int
836swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
837 int dir)
838{
839 return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
840}
874d6a95 841EXPORT_SYMBOL(swiotlb_map_sg);
1da177e4
LT
842
843/*
844 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
ceb5ac32 845 * concerning calls here are the same as for swiotlb_unmap_page() above.
1da177e4
LT
846 */
847void
309df0c5 848swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
160c1d8e 849 int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
1da177e4 850{
dbfd49fe 851 struct scatterlist *sg;
1da177e4
LT
852 int i;
853
34814545 854 BUG_ON(dir == DMA_NONE);
1da177e4 855
7fcebbd2
BB
856 for_each_sg(sgl, sg, nelems, i)
857 unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
858
1da177e4 859}
309df0c5
AK
860EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
861
862void
863swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
864 int dir)
865{
866 return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
867}
874d6a95 868EXPORT_SYMBOL(swiotlb_unmap_sg);
1da177e4
LT
869
870/*
871 * Make physical memory consistent for a set of streaming mode DMA translations
872 * after a transfer.
873 *
874 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
875 * and usage.
876 */
be6b0267 877static void
dbfd49fe 878swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
de69e0f0 879 int nelems, int dir, int target)
1da177e4 880{
dbfd49fe 881 struct scatterlist *sg;
1da177e4
LT
882 int i;
883
380d6878
BB
884 for_each_sg(sgl, sg, nelems, i)
885 swiotlb_sync_single(hwdev, sg->dma_address,
de69e0f0 886 sg->dma_length, dir, target);
1da177e4
LT
887}
888
8270f3f1
JL
889void
890swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
160c1d8e 891 int nelems, enum dma_data_direction dir)
8270f3f1 892{
de69e0f0 893 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
8270f3f1 894}
874d6a95 895EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
8270f3f1 896
1da177e4
LT
897void
898swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
160c1d8e 899 int nelems, enum dma_data_direction dir)
1da177e4 900{
de69e0f0 901 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
1da177e4 902}
874d6a95 903EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
1da177e4
LT
904
905int
8d8bb39b 906swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
1da177e4 907{
70a7d3cc 908 return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer));
1da177e4 909}
874d6a95 910EXPORT_SYMBOL(swiotlb_dma_mapping_error);
1da177e4
LT
911
912/*
17e5ad6c 913 * Return whether the given device DMA address mask can be supported
1da177e4 914 * properly. For example, if your device can only drive the low 24-bits
17e5ad6c 915 * during bus mastering, then you would pass 0x00ffffff as the mask to
1da177e4
LT
916 * this function.
917 */
918int
563aaf06 919swiotlb_dma_supported(struct device *hwdev, u64 mask)
1da177e4 920{
70a7d3cc 921 return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask;
1da177e4 922}
1da177e4 923EXPORT_SYMBOL(swiotlb_dma_supported);