]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/timer.c
timers: Introduce the concept of timer slack for legacy timers
[net-next-2.6.git] / kernel / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
8524070b 4 * Kernel internal timers, basic process system calls
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
b488893a 29#include <linux/pid_namespace.h>
1da177e4
LT
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
97a41e26 37#include <linux/delay.h>
79bf2bb3 38#include <linux/tick.h>
82f67cd9 39#include <linux/kallsyms.h>
cdd6c482 40#include <linux/perf_event.h>
eea08f32 41#include <linux/sched.h>
1da177e4
LT
42
43#include <asm/uaccess.h>
44#include <asm/unistd.h>
45#include <asm/div64.h>
46#include <asm/timex.h>
47#include <asm/io.h>
48
2b022e3d
XG
49#define CREATE_TRACE_POINTS
50#include <trace/events/timer.h>
51
ecea8d19
TG
52u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
53
54EXPORT_SYMBOL(jiffies_64);
55
1da177e4
LT
56/*
57 * per-CPU timer vector definitions:
58 */
1da177e4
LT
59#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
60#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
61#define TVN_SIZE (1 << TVN_BITS)
62#define TVR_SIZE (1 << TVR_BITS)
63#define TVN_MASK (TVN_SIZE - 1)
64#define TVR_MASK (TVR_SIZE - 1)
65
a6fa8e5a 66struct tvec {
1da177e4 67 struct list_head vec[TVN_SIZE];
a6fa8e5a 68};
1da177e4 69
a6fa8e5a 70struct tvec_root {
1da177e4 71 struct list_head vec[TVR_SIZE];
a6fa8e5a 72};
1da177e4 73
a6fa8e5a 74struct tvec_base {
3691c519
ON
75 spinlock_t lock;
76 struct timer_list *running_timer;
1da177e4 77 unsigned long timer_jiffies;
97fd9ed4 78 unsigned long next_timer;
a6fa8e5a
PM
79 struct tvec_root tv1;
80 struct tvec tv2;
81 struct tvec tv3;
82 struct tvec tv4;
83 struct tvec tv5;
6e453a67 84} ____cacheline_aligned;
1da177e4 85
a6fa8e5a 86struct tvec_base boot_tvec_bases;
3691c519 87EXPORT_SYMBOL(boot_tvec_bases);
a6fa8e5a 88static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
1da177e4 89
6e453a67 90/*
a6fa8e5a 91 * Note that all tvec_bases are 2 byte aligned and lower bit of
6e453a67
VP
92 * base in timer_list is guaranteed to be zero. Use the LSB for
93 * the new flag to indicate whether the timer is deferrable
94 */
95#define TBASE_DEFERRABLE_FLAG (0x1)
96
97/* Functions below help us manage 'deferrable' flag */
a6fa8e5a 98static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
6e453a67 99{
e9910846 100 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
6e453a67
VP
101}
102
a6fa8e5a 103static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
6e453a67 104{
a6fa8e5a 105 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
6e453a67
VP
106}
107
108static inline void timer_set_deferrable(struct timer_list *timer)
109{
a6fa8e5a 110 timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
6819457d 111 TBASE_DEFERRABLE_FLAG));
6e453a67
VP
112}
113
114static inline void
a6fa8e5a 115timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
6e453a67 116{
a6fa8e5a 117 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
6819457d 118 tbase_get_deferrable(timer->base));
6e453a67
VP
119}
120
9c133c46
AS
121static unsigned long round_jiffies_common(unsigned long j, int cpu,
122 bool force_up)
4c36a5de
AV
123{
124 int rem;
125 unsigned long original = j;
126
127 /*
128 * We don't want all cpus firing their timers at once hitting the
129 * same lock or cachelines, so we skew each extra cpu with an extra
130 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
131 * already did this.
132 * The skew is done by adding 3*cpunr, then round, then subtract this
133 * extra offset again.
134 */
135 j += cpu * 3;
136
137 rem = j % HZ;
138
139 /*
140 * If the target jiffie is just after a whole second (which can happen
141 * due to delays of the timer irq, long irq off times etc etc) then
142 * we should round down to the whole second, not up. Use 1/4th second
143 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 144 * But never round down if @force_up is set.
4c36a5de 145 */
9c133c46 146 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
147 j = j - rem;
148 else /* round up */
149 j = j - rem + HZ;
150
151 /* now that we have rounded, subtract the extra skew again */
152 j -= cpu * 3;
153
154 if (j <= jiffies) /* rounding ate our timeout entirely; */
155 return original;
156 return j;
157}
9c133c46
AS
158
159/**
160 * __round_jiffies - function to round jiffies to a full second
161 * @j: the time in (absolute) jiffies that should be rounded
162 * @cpu: the processor number on which the timeout will happen
163 *
164 * __round_jiffies() rounds an absolute time in the future (in jiffies)
165 * up or down to (approximately) full seconds. This is useful for timers
166 * for which the exact time they fire does not matter too much, as long as
167 * they fire approximately every X seconds.
168 *
169 * By rounding these timers to whole seconds, all such timers will fire
170 * at the same time, rather than at various times spread out. The goal
171 * of this is to have the CPU wake up less, which saves power.
172 *
173 * The exact rounding is skewed for each processor to avoid all
174 * processors firing at the exact same time, which could lead
175 * to lock contention or spurious cache line bouncing.
176 *
177 * The return value is the rounded version of the @j parameter.
178 */
179unsigned long __round_jiffies(unsigned long j, int cpu)
180{
181 return round_jiffies_common(j, cpu, false);
182}
4c36a5de
AV
183EXPORT_SYMBOL_GPL(__round_jiffies);
184
185/**
186 * __round_jiffies_relative - function to round jiffies to a full second
187 * @j: the time in (relative) jiffies that should be rounded
188 * @cpu: the processor number on which the timeout will happen
189 *
72fd4a35 190 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
191 * up or down to (approximately) full seconds. This is useful for timers
192 * for which the exact time they fire does not matter too much, as long as
193 * they fire approximately every X seconds.
194 *
195 * By rounding these timers to whole seconds, all such timers will fire
196 * at the same time, rather than at various times spread out. The goal
197 * of this is to have the CPU wake up less, which saves power.
198 *
199 * The exact rounding is skewed for each processor to avoid all
200 * processors firing at the exact same time, which could lead
201 * to lock contention or spurious cache line bouncing.
202 *
72fd4a35 203 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
204 */
205unsigned long __round_jiffies_relative(unsigned long j, int cpu)
206{
9c133c46
AS
207 unsigned long j0 = jiffies;
208
209 /* Use j0 because jiffies might change while we run */
210 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
211}
212EXPORT_SYMBOL_GPL(__round_jiffies_relative);
213
214/**
215 * round_jiffies - function to round jiffies to a full second
216 * @j: the time in (absolute) jiffies that should be rounded
217 *
72fd4a35 218 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
219 * up or down to (approximately) full seconds. This is useful for timers
220 * for which the exact time they fire does not matter too much, as long as
221 * they fire approximately every X seconds.
222 *
223 * By rounding these timers to whole seconds, all such timers will fire
224 * at the same time, rather than at various times spread out. The goal
225 * of this is to have the CPU wake up less, which saves power.
226 *
72fd4a35 227 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
228 */
229unsigned long round_jiffies(unsigned long j)
230{
9c133c46 231 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
232}
233EXPORT_SYMBOL_GPL(round_jiffies);
234
235/**
236 * round_jiffies_relative - function to round jiffies to a full second
237 * @j: the time in (relative) jiffies that should be rounded
238 *
72fd4a35 239 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
240 * up or down to (approximately) full seconds. This is useful for timers
241 * for which the exact time they fire does not matter too much, as long as
242 * they fire approximately every X seconds.
243 *
244 * By rounding these timers to whole seconds, all such timers will fire
245 * at the same time, rather than at various times spread out. The goal
246 * of this is to have the CPU wake up less, which saves power.
247 *
72fd4a35 248 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
249 */
250unsigned long round_jiffies_relative(unsigned long j)
251{
252 return __round_jiffies_relative(j, raw_smp_processor_id());
253}
254EXPORT_SYMBOL_GPL(round_jiffies_relative);
255
9c133c46
AS
256/**
257 * __round_jiffies_up - function to round jiffies up to a full second
258 * @j: the time in (absolute) jiffies that should be rounded
259 * @cpu: the processor number on which the timeout will happen
260 *
261 * This is the same as __round_jiffies() except that it will never
262 * round down. This is useful for timeouts for which the exact time
263 * of firing does not matter too much, as long as they don't fire too
264 * early.
265 */
266unsigned long __round_jiffies_up(unsigned long j, int cpu)
267{
268 return round_jiffies_common(j, cpu, true);
269}
270EXPORT_SYMBOL_GPL(__round_jiffies_up);
271
272/**
273 * __round_jiffies_up_relative - function to round jiffies up to a full second
274 * @j: the time in (relative) jiffies that should be rounded
275 * @cpu: the processor number on which the timeout will happen
276 *
277 * This is the same as __round_jiffies_relative() except that it will never
278 * round down. This is useful for timeouts for which the exact time
279 * of firing does not matter too much, as long as they don't fire too
280 * early.
281 */
282unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
283{
284 unsigned long j0 = jiffies;
285
286 /* Use j0 because jiffies might change while we run */
287 return round_jiffies_common(j + j0, cpu, true) - j0;
288}
289EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
290
291/**
292 * round_jiffies_up - function to round jiffies up to a full second
293 * @j: the time in (absolute) jiffies that should be rounded
294 *
295 * This is the same as round_jiffies() except that it will never
296 * round down. This is useful for timeouts for which the exact time
297 * of firing does not matter too much, as long as they don't fire too
298 * early.
299 */
300unsigned long round_jiffies_up(unsigned long j)
301{
302 return round_jiffies_common(j, raw_smp_processor_id(), true);
303}
304EXPORT_SYMBOL_GPL(round_jiffies_up);
305
306/**
307 * round_jiffies_up_relative - function to round jiffies up to a full second
308 * @j: the time in (relative) jiffies that should be rounded
309 *
310 * This is the same as round_jiffies_relative() except that it will never
311 * round down. This is useful for timeouts for which the exact time
312 * of firing does not matter too much, as long as they don't fire too
313 * early.
314 */
315unsigned long round_jiffies_up_relative(unsigned long j)
316{
317 return __round_jiffies_up_relative(j, raw_smp_processor_id());
318}
319EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
320
3bbb9ec9
AV
321/**
322 * set_timer_slack - set the allowed slack for a timer
323 * @slack_hz: the amount of time (in jiffies) allowed for rounding
324 *
325 * Set the amount of time, in jiffies, that a certain timer has
326 * in terms of slack. By setting this value, the timer subsystem
327 * will schedule the actual timer somewhere between
328 * the time mod_timer() asks for, and that time plus the slack.
329 *
330 * By setting the slack to -1, a percentage of the delay is used
331 * instead.
332 */
333void set_timer_slack(struct timer_list *timer, int slack_hz)
334{
335 timer->slack = slack_hz;
336}
337EXPORT_SYMBOL_GPL(set_timer_slack);
338
4c36a5de 339
a6fa8e5a 340static inline void set_running_timer(struct tvec_base *base,
1da177e4
LT
341 struct timer_list *timer)
342{
343#ifdef CONFIG_SMP
3691c519 344 base->running_timer = timer;
1da177e4
LT
345#endif
346}
347
a6fa8e5a 348static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
1da177e4
LT
349{
350 unsigned long expires = timer->expires;
351 unsigned long idx = expires - base->timer_jiffies;
352 struct list_head *vec;
353
354 if (idx < TVR_SIZE) {
355 int i = expires & TVR_MASK;
356 vec = base->tv1.vec + i;
357 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
358 int i = (expires >> TVR_BITS) & TVN_MASK;
359 vec = base->tv2.vec + i;
360 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
361 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
362 vec = base->tv3.vec + i;
363 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
364 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
365 vec = base->tv4.vec + i;
366 } else if ((signed long) idx < 0) {
367 /*
368 * Can happen if you add a timer with expires == jiffies,
369 * or you set a timer to go off in the past
370 */
371 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
372 } else {
373 int i;
374 /* If the timeout is larger than 0xffffffff on 64-bit
375 * architectures then we use the maximum timeout:
376 */
377 if (idx > 0xffffffffUL) {
378 idx = 0xffffffffUL;
379 expires = idx + base->timer_jiffies;
380 }
381 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
382 vec = base->tv5.vec + i;
383 }
384 /*
385 * Timers are FIFO:
386 */
387 list_add_tail(&timer->entry, vec);
388}
389
82f67cd9
IM
390#ifdef CONFIG_TIMER_STATS
391void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
392{
393 if (timer->start_site)
394 return;
395
396 timer->start_site = addr;
397 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
398 timer->start_pid = current->pid;
399}
c5c061b8
VP
400
401static void timer_stats_account_timer(struct timer_list *timer)
402{
403 unsigned int flag = 0;
404
507e1231
HC
405 if (likely(!timer->start_site))
406 return;
c5c061b8
VP
407 if (unlikely(tbase_get_deferrable(timer->base)))
408 flag |= TIMER_STATS_FLAG_DEFERRABLE;
409
410 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
411 timer->function, timer->start_comm, flag);
412}
413
414#else
415static void timer_stats_account_timer(struct timer_list *timer) {}
82f67cd9
IM
416#endif
417
c6f3a97f
TG
418#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
419
420static struct debug_obj_descr timer_debug_descr;
421
422/*
423 * fixup_init is called when:
424 * - an active object is initialized
55c888d6 425 */
c6f3a97f
TG
426static int timer_fixup_init(void *addr, enum debug_obj_state state)
427{
428 struct timer_list *timer = addr;
429
430 switch (state) {
431 case ODEBUG_STATE_ACTIVE:
432 del_timer_sync(timer);
433 debug_object_init(timer, &timer_debug_descr);
434 return 1;
435 default:
436 return 0;
437 }
438}
439
440/*
441 * fixup_activate is called when:
442 * - an active object is activated
443 * - an unknown object is activated (might be a statically initialized object)
444 */
445static int timer_fixup_activate(void *addr, enum debug_obj_state state)
446{
447 struct timer_list *timer = addr;
448
449 switch (state) {
450
451 case ODEBUG_STATE_NOTAVAILABLE:
452 /*
453 * This is not really a fixup. The timer was
454 * statically initialized. We just make sure that it
455 * is tracked in the object tracker.
456 */
457 if (timer->entry.next == NULL &&
458 timer->entry.prev == TIMER_ENTRY_STATIC) {
459 debug_object_init(timer, &timer_debug_descr);
460 debug_object_activate(timer, &timer_debug_descr);
461 return 0;
462 } else {
463 WARN_ON_ONCE(1);
464 }
465 return 0;
466
467 case ODEBUG_STATE_ACTIVE:
468 WARN_ON(1);
469
470 default:
471 return 0;
472 }
473}
474
475/*
476 * fixup_free is called when:
477 * - an active object is freed
478 */
479static int timer_fixup_free(void *addr, enum debug_obj_state state)
480{
481 struct timer_list *timer = addr;
482
483 switch (state) {
484 case ODEBUG_STATE_ACTIVE:
485 del_timer_sync(timer);
486 debug_object_free(timer, &timer_debug_descr);
487 return 1;
488 default:
489 return 0;
490 }
491}
492
493static struct debug_obj_descr timer_debug_descr = {
494 .name = "timer_list",
495 .fixup_init = timer_fixup_init,
496 .fixup_activate = timer_fixup_activate,
497 .fixup_free = timer_fixup_free,
498};
499
500static inline void debug_timer_init(struct timer_list *timer)
501{
502 debug_object_init(timer, &timer_debug_descr);
503}
504
505static inline void debug_timer_activate(struct timer_list *timer)
506{
507 debug_object_activate(timer, &timer_debug_descr);
508}
509
510static inline void debug_timer_deactivate(struct timer_list *timer)
511{
512 debug_object_deactivate(timer, &timer_debug_descr);
513}
514
515static inline void debug_timer_free(struct timer_list *timer)
516{
517 debug_object_free(timer, &timer_debug_descr);
518}
519
6f2b9b9a
JB
520static void __init_timer(struct timer_list *timer,
521 const char *name,
522 struct lock_class_key *key);
c6f3a97f 523
6f2b9b9a
JB
524void init_timer_on_stack_key(struct timer_list *timer,
525 const char *name,
526 struct lock_class_key *key)
c6f3a97f
TG
527{
528 debug_object_init_on_stack(timer, &timer_debug_descr);
6f2b9b9a 529 __init_timer(timer, name, key);
c6f3a97f 530}
6f2b9b9a 531EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
c6f3a97f
TG
532
533void destroy_timer_on_stack(struct timer_list *timer)
534{
535 debug_object_free(timer, &timer_debug_descr);
536}
537EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
538
539#else
540static inline void debug_timer_init(struct timer_list *timer) { }
541static inline void debug_timer_activate(struct timer_list *timer) { }
542static inline void debug_timer_deactivate(struct timer_list *timer) { }
543#endif
544
2b022e3d
XG
545static inline void debug_init(struct timer_list *timer)
546{
547 debug_timer_init(timer);
548 trace_timer_init(timer);
549}
550
551static inline void
552debug_activate(struct timer_list *timer, unsigned long expires)
553{
554 debug_timer_activate(timer);
555 trace_timer_start(timer, expires);
556}
557
558static inline void debug_deactivate(struct timer_list *timer)
559{
560 debug_timer_deactivate(timer);
561 trace_timer_cancel(timer);
562}
563
6f2b9b9a
JB
564static void __init_timer(struct timer_list *timer,
565 const char *name,
566 struct lock_class_key *key)
55c888d6
ON
567{
568 timer->entry.next = NULL;
bfe5d834 569 timer->base = __raw_get_cpu_var(tvec_bases);
3bbb9ec9 570 timer->slack = -1;
82f67cd9
IM
571#ifdef CONFIG_TIMER_STATS
572 timer->start_site = NULL;
573 timer->start_pid = -1;
574 memset(timer->start_comm, 0, TASK_COMM_LEN);
575#endif
6f2b9b9a 576 lockdep_init_map(&timer->lockdep_map, name, key, 0);
55c888d6 577}
c6f3a97f
TG
578
579/**
633fe795 580 * init_timer_key - initialize a timer
c6f3a97f 581 * @timer: the timer to be initialized
633fe795
RD
582 * @name: name of the timer
583 * @key: lockdep class key of the fake lock used for tracking timer
584 * sync lock dependencies
c6f3a97f 585 *
633fe795 586 * init_timer_key() must be done to a timer prior calling *any* of the
c6f3a97f
TG
587 * other timer functions.
588 */
6f2b9b9a
JB
589void init_timer_key(struct timer_list *timer,
590 const char *name,
591 struct lock_class_key *key)
c6f3a97f 592{
2b022e3d 593 debug_init(timer);
6f2b9b9a 594 __init_timer(timer, name, key);
c6f3a97f 595}
6f2b9b9a 596EXPORT_SYMBOL(init_timer_key);
55c888d6 597
6f2b9b9a
JB
598void init_timer_deferrable_key(struct timer_list *timer,
599 const char *name,
600 struct lock_class_key *key)
6e453a67 601{
6f2b9b9a 602 init_timer_key(timer, name, key);
6e453a67
VP
603 timer_set_deferrable(timer);
604}
6f2b9b9a 605EXPORT_SYMBOL(init_timer_deferrable_key);
6e453a67 606
55c888d6 607static inline void detach_timer(struct timer_list *timer,
82f67cd9 608 int clear_pending)
55c888d6
ON
609{
610 struct list_head *entry = &timer->entry;
611
2b022e3d 612 debug_deactivate(timer);
c6f3a97f 613
55c888d6
ON
614 __list_del(entry->prev, entry->next);
615 if (clear_pending)
616 entry->next = NULL;
617 entry->prev = LIST_POISON2;
618}
619
620/*
3691c519 621 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
622 * means that all timers which are tied to this base via timer->base are
623 * locked, and the base itself is locked too.
624 *
625 * So __run_timers/migrate_timers can safely modify all timers which could
626 * be found on ->tvX lists.
627 *
628 * When the timer's base is locked, and the timer removed from list, it is
629 * possible to set timer->base = NULL and drop the lock: the timer remains
630 * locked.
631 */
a6fa8e5a 632static struct tvec_base *lock_timer_base(struct timer_list *timer,
55c888d6 633 unsigned long *flags)
89e7e374 634 __acquires(timer->base->lock)
55c888d6 635{
a6fa8e5a 636 struct tvec_base *base;
55c888d6
ON
637
638 for (;;) {
a6fa8e5a 639 struct tvec_base *prelock_base = timer->base;
6e453a67 640 base = tbase_get_base(prelock_base);
55c888d6
ON
641 if (likely(base != NULL)) {
642 spin_lock_irqsave(&base->lock, *flags);
6e453a67 643 if (likely(prelock_base == timer->base))
55c888d6
ON
644 return base;
645 /* The timer has migrated to another CPU */
646 spin_unlock_irqrestore(&base->lock, *flags);
647 }
648 cpu_relax();
649 }
650}
651
74019224 652static inline int
597d0275
AB
653__mod_timer(struct timer_list *timer, unsigned long expires,
654 bool pending_only, int pinned)
1da177e4 655{
a6fa8e5a 656 struct tvec_base *base, *new_base;
1da177e4 657 unsigned long flags;
eea08f32 658 int ret = 0 , cpu;
1da177e4 659
82f67cd9 660 timer_stats_timer_set_start_info(timer);
1da177e4 661 BUG_ON(!timer->function);
1da177e4 662
55c888d6
ON
663 base = lock_timer_base(timer, &flags);
664
665 if (timer_pending(timer)) {
666 detach_timer(timer, 0);
97fd9ed4
MS
667 if (timer->expires == base->next_timer &&
668 !tbase_get_deferrable(timer->base))
669 base->next_timer = base->timer_jiffies;
55c888d6 670 ret = 1;
74019224
IM
671 } else {
672 if (pending_only)
673 goto out_unlock;
55c888d6
ON
674 }
675
2b022e3d 676 debug_activate(timer, expires);
c6f3a97f 677
eea08f32
AB
678 cpu = smp_processor_id();
679
680#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
681 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu)) {
682 int preferred_cpu = get_nohz_load_balancer();
683
684 if (preferred_cpu >= 0)
685 cpu = preferred_cpu;
686 }
687#endif
688 new_base = per_cpu(tvec_bases, cpu);
689
3691c519 690 if (base != new_base) {
1da177e4 691 /*
55c888d6
ON
692 * We are trying to schedule the timer on the local CPU.
693 * However we can't change timer's base while it is running,
694 * otherwise del_timer_sync() can't detect that the timer's
695 * handler yet has not finished. This also guarantees that
696 * the timer is serialized wrt itself.
1da177e4 697 */
a2c348fe 698 if (likely(base->running_timer != timer)) {
55c888d6 699 /* See the comment in lock_timer_base() */
6e453a67 700 timer_set_base(timer, NULL);
55c888d6 701 spin_unlock(&base->lock);
a2c348fe
ON
702 base = new_base;
703 spin_lock(&base->lock);
6e453a67 704 timer_set_base(timer, base);
1da177e4
LT
705 }
706 }
707
1da177e4 708 timer->expires = expires;
97fd9ed4
MS
709 if (time_before(timer->expires, base->next_timer) &&
710 !tbase_get_deferrable(timer->base))
711 base->next_timer = timer->expires;
a2c348fe 712 internal_add_timer(base, timer);
74019224
IM
713
714out_unlock:
a2c348fe 715 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
716
717 return ret;
718}
719
2aae4a10 720/**
74019224
IM
721 * mod_timer_pending - modify a pending timer's timeout
722 * @timer: the pending timer to be modified
723 * @expires: new timeout in jiffies
1da177e4 724 *
74019224
IM
725 * mod_timer_pending() is the same for pending timers as mod_timer(),
726 * but will not re-activate and modify already deleted timers.
727 *
728 * It is useful for unserialized use of timers.
1da177e4 729 */
74019224 730int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1da177e4 731{
597d0275 732 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
1da177e4 733}
74019224 734EXPORT_SYMBOL(mod_timer_pending);
1da177e4 735
3bbb9ec9
AV
736/*
737 * Decide where to put the timer while taking the slack into account
738 *
739 * Algorithm:
740 * 1) calculate the maximum (absolute) time
741 * 2) calculate the highest bit where the expires and new max are different
742 * 3) use this bit to make a mask
743 * 4) use the bitmask to round down the maximum time, so that all last
744 * bits are zeros
745 */
746static inline
747unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
748{
749 unsigned long expires_limit, mask;
750 int bit;
751
752 expires_limit = expires + timer->slack;
753
754 if (timer->slack < 0) /* auto slack: use 0.4% */
755 expires_limit = expires + (expires - jiffies)/256;
756
757 mask = expires ^ expires_limit;
758
759 if (mask == 0)
760 return expires;
761
762 bit = find_last_bit(&mask, BITS_PER_LONG);
763
764 mask = (1 << bit) - 1;
765
766 expires_limit = expires_limit & ~(mask);
767
768 return expires_limit;
769}
770
2aae4a10 771/**
1da177e4
LT
772 * mod_timer - modify a timer's timeout
773 * @timer: the timer to be modified
2aae4a10 774 * @expires: new timeout in jiffies
1da177e4 775 *
72fd4a35 776 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
777 * active timer (if the timer is inactive it will be activated)
778 *
779 * mod_timer(timer, expires) is equivalent to:
780 *
781 * del_timer(timer); timer->expires = expires; add_timer(timer);
782 *
783 * Note that if there are multiple unserialized concurrent users of the
784 * same timer, then mod_timer() is the only safe way to modify the timeout,
785 * since add_timer() cannot modify an already running timer.
786 *
787 * The function returns whether it has modified a pending timer or not.
788 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
789 * active timer returns 1.)
790 */
791int mod_timer(struct timer_list *timer, unsigned long expires)
792{
1da177e4
LT
793 /*
794 * This is a common optimization triggered by the
795 * networking code - if the timer is re-modified
796 * to be the same thing then just return:
797 */
4841158b 798 if (timer_pending(timer) && timer->expires == expires)
1da177e4
LT
799 return 1;
800
3bbb9ec9
AV
801 expires = apply_slack(timer, expires);
802
597d0275 803 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
1da177e4 804}
1da177e4
LT
805EXPORT_SYMBOL(mod_timer);
806
597d0275
AB
807/**
808 * mod_timer_pinned - modify a timer's timeout
809 * @timer: the timer to be modified
810 * @expires: new timeout in jiffies
811 *
812 * mod_timer_pinned() is a way to update the expire field of an
813 * active timer (if the timer is inactive it will be activated)
814 * and not allow the timer to be migrated to a different CPU.
815 *
816 * mod_timer_pinned(timer, expires) is equivalent to:
817 *
818 * del_timer(timer); timer->expires = expires; add_timer(timer);
819 */
820int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
821{
822 if (timer->expires == expires && timer_pending(timer))
823 return 1;
824
825 return __mod_timer(timer, expires, false, TIMER_PINNED);
826}
827EXPORT_SYMBOL(mod_timer_pinned);
828
74019224
IM
829/**
830 * add_timer - start a timer
831 * @timer: the timer to be added
832 *
833 * The kernel will do a ->function(->data) callback from the
834 * timer interrupt at the ->expires point in the future. The
835 * current time is 'jiffies'.
836 *
837 * The timer's ->expires, ->function (and if the handler uses it, ->data)
838 * fields must be set prior calling this function.
839 *
840 * Timers with an ->expires field in the past will be executed in the next
841 * timer tick.
842 */
843void add_timer(struct timer_list *timer)
844{
845 BUG_ON(timer_pending(timer));
846 mod_timer(timer, timer->expires);
847}
848EXPORT_SYMBOL(add_timer);
849
850/**
851 * add_timer_on - start a timer on a particular CPU
852 * @timer: the timer to be added
853 * @cpu: the CPU to start it on
854 *
855 * This is not very scalable on SMP. Double adds are not possible.
856 */
857void add_timer_on(struct timer_list *timer, int cpu)
858{
859 struct tvec_base *base = per_cpu(tvec_bases, cpu);
860 unsigned long flags;
861
862 timer_stats_timer_set_start_info(timer);
863 BUG_ON(timer_pending(timer) || !timer->function);
864 spin_lock_irqsave(&base->lock, flags);
865 timer_set_base(timer, base);
2b022e3d 866 debug_activate(timer, timer->expires);
97fd9ed4
MS
867 if (time_before(timer->expires, base->next_timer) &&
868 !tbase_get_deferrable(timer->base))
869 base->next_timer = timer->expires;
74019224
IM
870 internal_add_timer(base, timer);
871 /*
872 * Check whether the other CPU is idle and needs to be
873 * triggered to reevaluate the timer wheel when nohz is
874 * active. We are protected against the other CPU fiddling
875 * with the timer by holding the timer base lock. This also
876 * makes sure that a CPU on the way to idle can not evaluate
877 * the timer wheel.
878 */
879 wake_up_idle_cpu(cpu);
880 spin_unlock_irqrestore(&base->lock, flags);
881}
a9862e05 882EXPORT_SYMBOL_GPL(add_timer_on);
74019224 883
2aae4a10 884/**
1da177e4
LT
885 * del_timer - deactive a timer.
886 * @timer: the timer to be deactivated
887 *
888 * del_timer() deactivates a timer - this works on both active and inactive
889 * timers.
890 *
891 * The function returns whether it has deactivated a pending timer or not.
892 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
893 * active timer returns 1.)
894 */
895int del_timer(struct timer_list *timer)
896{
a6fa8e5a 897 struct tvec_base *base;
1da177e4 898 unsigned long flags;
55c888d6 899 int ret = 0;
1da177e4 900
82f67cd9 901 timer_stats_timer_clear_start_info(timer);
55c888d6
ON
902 if (timer_pending(timer)) {
903 base = lock_timer_base(timer, &flags);
904 if (timer_pending(timer)) {
905 detach_timer(timer, 1);
97fd9ed4
MS
906 if (timer->expires == base->next_timer &&
907 !tbase_get_deferrable(timer->base))
908 base->next_timer = base->timer_jiffies;
55c888d6
ON
909 ret = 1;
910 }
1da177e4 911 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 912 }
1da177e4 913
55c888d6 914 return ret;
1da177e4 915}
1da177e4
LT
916EXPORT_SYMBOL(del_timer);
917
918#ifdef CONFIG_SMP
2aae4a10
REB
919/**
920 * try_to_del_timer_sync - Try to deactivate a timer
921 * @timer: timer do del
922 *
fd450b73
ON
923 * This function tries to deactivate a timer. Upon successful (ret >= 0)
924 * exit the timer is not queued and the handler is not running on any CPU.
925 *
926 * It must not be called from interrupt contexts.
927 */
928int try_to_del_timer_sync(struct timer_list *timer)
929{
a6fa8e5a 930 struct tvec_base *base;
fd450b73
ON
931 unsigned long flags;
932 int ret = -1;
933
934 base = lock_timer_base(timer, &flags);
935
936 if (base->running_timer == timer)
937 goto out;
938
939 ret = 0;
940 if (timer_pending(timer)) {
941 detach_timer(timer, 1);
97fd9ed4
MS
942 if (timer->expires == base->next_timer &&
943 !tbase_get_deferrable(timer->base))
944 base->next_timer = base->timer_jiffies;
fd450b73
ON
945 ret = 1;
946 }
947out:
948 spin_unlock_irqrestore(&base->lock, flags);
949
950 return ret;
951}
e19dff1f
DH
952EXPORT_SYMBOL(try_to_del_timer_sync);
953
2aae4a10 954/**
1da177e4
LT
955 * del_timer_sync - deactivate a timer and wait for the handler to finish.
956 * @timer: the timer to be deactivated
957 *
958 * This function only differs from del_timer() on SMP: besides deactivating
959 * the timer it also makes sure the handler has finished executing on other
960 * CPUs.
961 *
72fd4a35 962 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4
LT
963 * otherwise this function is meaningless. It must not be called from
964 * interrupt contexts. The caller must not hold locks which would prevent
55c888d6
ON
965 * completion of the timer's handler. The timer's handler must not call
966 * add_timer_on(). Upon exit the timer is not queued and the handler is
967 * not running on any CPU.
1da177e4
LT
968 *
969 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
970 */
971int del_timer_sync(struct timer_list *timer)
972{
6f2b9b9a
JB
973#ifdef CONFIG_LOCKDEP
974 unsigned long flags;
975
976 local_irq_save(flags);
977 lock_map_acquire(&timer->lockdep_map);
978 lock_map_release(&timer->lockdep_map);
979 local_irq_restore(flags);
980#endif
981
fd450b73
ON
982 for (;;) {
983 int ret = try_to_del_timer_sync(timer);
984 if (ret >= 0)
985 return ret;
a0009652 986 cpu_relax();
fd450b73 987 }
1da177e4 988}
55c888d6 989EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
990#endif
991
a6fa8e5a 992static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1da177e4
LT
993{
994 /* cascade all the timers from tv up one level */
3439dd86
P
995 struct timer_list *timer, *tmp;
996 struct list_head tv_list;
997
998 list_replace_init(tv->vec + index, &tv_list);
1da177e4 999
1da177e4 1000 /*
3439dd86
P
1001 * We are removing _all_ timers from the list, so we
1002 * don't have to detach them individually.
1da177e4 1003 */
3439dd86 1004 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
6e453a67 1005 BUG_ON(tbase_get_base(timer->base) != base);
3439dd86 1006 internal_add_timer(base, timer);
1da177e4 1007 }
1da177e4
LT
1008
1009 return index;
1010}
1011
576da126
TG
1012static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1013 unsigned long data)
1014{
1015 int preempt_count = preempt_count();
1016
1017#ifdef CONFIG_LOCKDEP
1018 /*
1019 * It is permissible to free the timer from inside the
1020 * function that is called from it, this we need to take into
1021 * account for lockdep too. To avoid bogus "held lock freed"
1022 * warnings as well as problems when looking into
1023 * timer->lockdep_map, make a copy and use that here.
1024 */
1025 struct lockdep_map lockdep_map = timer->lockdep_map;
1026#endif
1027 /*
1028 * Couple the lock chain with the lock chain at
1029 * del_timer_sync() by acquiring the lock_map around the fn()
1030 * call here and in del_timer_sync().
1031 */
1032 lock_map_acquire(&lockdep_map);
1033
1034 trace_timer_expire_entry(timer);
1035 fn(data);
1036 trace_timer_expire_exit(timer);
1037
1038 lock_map_release(&lockdep_map);
1039
1040 if (preempt_count != preempt_count()) {
802702e0
TG
1041 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1042 fn, preempt_count, preempt_count());
1043 /*
1044 * Restore the preempt count. That gives us a decent
1045 * chance to survive and extract information. If the
1046 * callback kept a lock held, bad luck, but not worse
1047 * than the BUG() we had.
1048 */
1049 preempt_count() = preempt_count;
576da126
TG
1050 }
1051}
1052
2aae4a10
REB
1053#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1054
1055/**
1da177e4
LT
1056 * __run_timers - run all expired timers (if any) on this CPU.
1057 * @base: the timer vector to be processed.
1058 *
1059 * This function cascades all vectors and executes all expired timer
1060 * vectors.
1061 */
a6fa8e5a 1062static inline void __run_timers(struct tvec_base *base)
1da177e4
LT
1063{
1064 struct timer_list *timer;
1065
3691c519 1066 spin_lock_irq(&base->lock);
1da177e4 1067 while (time_after_eq(jiffies, base->timer_jiffies)) {
626ab0e6 1068 struct list_head work_list;
1da177e4 1069 struct list_head *head = &work_list;
6819457d 1070 int index = base->timer_jiffies & TVR_MASK;
626ab0e6 1071
1da177e4
LT
1072 /*
1073 * Cascade timers:
1074 */
1075 if (!index &&
1076 (!cascade(base, &base->tv2, INDEX(0))) &&
1077 (!cascade(base, &base->tv3, INDEX(1))) &&
1078 !cascade(base, &base->tv4, INDEX(2)))
1079 cascade(base, &base->tv5, INDEX(3));
626ab0e6
ON
1080 ++base->timer_jiffies;
1081 list_replace_init(base->tv1.vec + index, &work_list);
55c888d6 1082 while (!list_empty(head)) {
1da177e4
LT
1083 void (*fn)(unsigned long);
1084 unsigned long data;
1085
b5e61818 1086 timer = list_first_entry(head, struct timer_list,entry);
6819457d
TG
1087 fn = timer->function;
1088 data = timer->data;
1da177e4 1089
82f67cd9
IM
1090 timer_stats_account_timer(timer);
1091
1da177e4 1092 set_running_timer(base, timer);
55c888d6 1093 detach_timer(timer, 1);
6f2b9b9a 1094
3691c519 1095 spin_unlock_irq(&base->lock);
576da126 1096 call_timer_fn(timer, fn, data);
3691c519 1097 spin_lock_irq(&base->lock);
1da177e4
LT
1098 }
1099 }
1100 set_running_timer(base, NULL);
3691c519 1101 spin_unlock_irq(&base->lock);
1da177e4
LT
1102}
1103
ee9c5785 1104#ifdef CONFIG_NO_HZ
1da177e4
LT
1105/*
1106 * Find out when the next timer event is due to happen. This
90cba64a
RD
1107 * is used on S/390 to stop all activity when a CPU is idle.
1108 * This function needs to be called with interrupts disabled.
1da177e4 1109 */
a6fa8e5a 1110static unsigned long __next_timer_interrupt(struct tvec_base *base)
1da177e4 1111{
1cfd6849 1112 unsigned long timer_jiffies = base->timer_jiffies;
eaad084b 1113 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1cfd6849 1114 int index, slot, array, found = 0;
1da177e4 1115 struct timer_list *nte;
a6fa8e5a 1116 struct tvec *varray[4];
1da177e4
LT
1117
1118 /* Look for timer events in tv1. */
1cfd6849 1119 index = slot = timer_jiffies & TVR_MASK;
1da177e4 1120 do {
1cfd6849 1121 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
6819457d
TG
1122 if (tbase_get_deferrable(nte->base))
1123 continue;
6e453a67 1124
1cfd6849 1125 found = 1;
1da177e4 1126 expires = nte->expires;
1cfd6849
TG
1127 /* Look at the cascade bucket(s)? */
1128 if (!index || slot < index)
1129 goto cascade;
1130 return expires;
1da177e4 1131 }
1cfd6849
TG
1132 slot = (slot + 1) & TVR_MASK;
1133 } while (slot != index);
1134
1135cascade:
1136 /* Calculate the next cascade event */
1137 if (index)
1138 timer_jiffies += TVR_SIZE - index;
1139 timer_jiffies >>= TVR_BITS;
1da177e4
LT
1140
1141 /* Check tv2-tv5. */
1142 varray[0] = &base->tv2;
1143 varray[1] = &base->tv3;
1144 varray[2] = &base->tv4;
1145 varray[3] = &base->tv5;
1cfd6849
TG
1146
1147 for (array = 0; array < 4; array++) {
a6fa8e5a 1148 struct tvec *varp = varray[array];
1cfd6849
TG
1149
1150 index = slot = timer_jiffies & TVN_MASK;
1da177e4 1151 do {
1cfd6849 1152 list_for_each_entry(nte, varp->vec + slot, entry) {
a0419888
JH
1153 if (tbase_get_deferrable(nte->base))
1154 continue;
1155
1cfd6849 1156 found = 1;
1da177e4
LT
1157 if (time_before(nte->expires, expires))
1158 expires = nte->expires;
1cfd6849
TG
1159 }
1160 /*
1161 * Do we still search for the first timer or are
1162 * we looking up the cascade buckets ?
1163 */
1164 if (found) {
1165 /* Look at the cascade bucket(s)? */
1166 if (!index || slot < index)
1167 break;
1168 return expires;
1169 }
1170 slot = (slot + 1) & TVN_MASK;
1171 } while (slot != index);
1172
1173 if (index)
1174 timer_jiffies += TVN_SIZE - index;
1175 timer_jiffies >>= TVN_BITS;
1da177e4 1176 }
1cfd6849
TG
1177 return expires;
1178}
69239749 1179
1cfd6849
TG
1180/*
1181 * Check, if the next hrtimer event is before the next timer wheel
1182 * event:
1183 */
1184static unsigned long cmp_next_hrtimer_event(unsigned long now,
1185 unsigned long expires)
1186{
1187 ktime_t hr_delta = hrtimer_get_next_event();
1188 struct timespec tsdelta;
9501b6cf 1189 unsigned long delta;
1cfd6849
TG
1190
1191 if (hr_delta.tv64 == KTIME_MAX)
1192 return expires;
0662b713 1193
9501b6cf
TG
1194 /*
1195 * Expired timer available, let it expire in the next tick
1196 */
1197 if (hr_delta.tv64 <= 0)
1198 return now + 1;
69239749 1199
1cfd6849 1200 tsdelta = ktime_to_timespec(hr_delta);
9501b6cf 1201 delta = timespec_to_jiffies(&tsdelta);
eaad084b
TG
1202
1203 /*
1204 * Limit the delta to the max value, which is checked in
1205 * tick_nohz_stop_sched_tick():
1206 */
1207 if (delta > NEXT_TIMER_MAX_DELTA)
1208 delta = NEXT_TIMER_MAX_DELTA;
1209
9501b6cf
TG
1210 /*
1211 * Take rounding errors in to account and make sure, that it
1212 * expires in the next tick. Otherwise we go into an endless
1213 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1214 * the timer softirq
1215 */
1216 if (delta < 1)
1217 delta = 1;
1218 now += delta;
1cfd6849
TG
1219 if (time_before(now, expires))
1220 return now;
1da177e4
LT
1221 return expires;
1222}
1cfd6849
TG
1223
1224/**
8dce39c2 1225 * get_next_timer_interrupt - return the jiffy of the next pending timer
05fb6bf0 1226 * @now: current time (in jiffies)
1cfd6849 1227 */
fd064b9b 1228unsigned long get_next_timer_interrupt(unsigned long now)
1cfd6849 1229{
a6fa8e5a 1230 struct tvec_base *base = __get_cpu_var(tvec_bases);
fd064b9b 1231 unsigned long expires;
1cfd6849
TG
1232
1233 spin_lock(&base->lock);
97fd9ed4
MS
1234 if (time_before_eq(base->next_timer, base->timer_jiffies))
1235 base->next_timer = __next_timer_interrupt(base);
1236 expires = base->next_timer;
1cfd6849
TG
1237 spin_unlock(&base->lock);
1238
1239 if (time_before_eq(expires, now))
1240 return now;
1241
1242 return cmp_next_hrtimer_event(now, expires);
1243}
1da177e4
LT
1244#endif
1245
1da177e4 1246/*
5b4db0c2 1247 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
1248 * process. user_tick is 1 if the tick is user time, 0 for system.
1249 */
1250void update_process_times(int user_tick)
1251{
1252 struct task_struct *p = current;
1253 int cpu = smp_processor_id();
1254
1255 /* Note: this timer irq context must be accounted for as well. */
fa13a5a1 1256 account_process_tick(p, user_tick);
1da177e4 1257 run_local_timers();
a157229c 1258 rcu_check_callbacks(cpu, user_tick);
b845b517 1259 printk_tick();
fe432200 1260 perf_event_do_pending();
1da177e4 1261 scheduler_tick();
6819457d 1262 run_posix_cpu_timers(p);
1da177e4
LT
1263}
1264
1da177e4
LT
1265/*
1266 * This function runs timers and the timer-tq in bottom half context.
1267 */
1268static void run_timer_softirq(struct softirq_action *h)
1269{
a6fa8e5a 1270 struct tvec_base *base = __get_cpu_var(tvec_bases);
1da177e4 1271
d3d74453 1272 hrtimer_run_pending();
82f67cd9 1273
1da177e4
LT
1274 if (time_after_eq(jiffies, base->timer_jiffies))
1275 __run_timers(base);
1276}
1277
1278/*
1279 * Called by the local, per-CPU timer interrupt on SMP.
1280 */
1281void run_local_timers(void)
1282{
d3d74453 1283 hrtimer_run_queues();
1da177e4 1284 raise_softirq(TIMER_SOFTIRQ);
6687a97d 1285 softlockup_tick();
1da177e4
LT
1286}
1287
1da177e4
LT
1288/*
1289 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1290 * without sampling the sequence number in xtime_lock.
1291 * jiffies is defined in the linker script...
1292 */
1293
3171a030 1294void do_timer(unsigned long ticks)
1da177e4 1295{
3171a030 1296 jiffies_64 += ticks;
dce48a84
TG
1297 update_wall_time();
1298 calc_global_load();
1da177e4
LT
1299}
1300
1301#ifdef __ARCH_WANT_SYS_ALARM
1302
1303/*
1304 * For backwards compatibility? This can be done in libc so Alpha
1305 * and all newer ports shouldn't need it.
1306 */
58fd3aa2 1307SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1da177e4 1308{
c08b8a49 1309 return alarm_setitimer(seconds);
1da177e4
LT
1310}
1311
1312#endif
1313
1314#ifndef __alpha__
1315
1316/*
1317 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1318 * should be moved into arch/i386 instead?
1319 */
1320
1321/**
1322 * sys_getpid - return the thread group id of the current process
1323 *
1324 * Note, despite the name, this returns the tgid not the pid. The tgid and
1325 * the pid are identical unless CLONE_THREAD was specified on clone() in
1326 * which case the tgid is the same in all threads of the same group.
1327 *
1328 * This is SMP safe as current->tgid does not change.
1329 */
58fd3aa2 1330SYSCALL_DEFINE0(getpid)
1da177e4 1331{
b488893a 1332 return task_tgid_vnr(current);
1da177e4
LT
1333}
1334
1335/*
6997a6fa
KK
1336 * Accessing ->real_parent is not SMP-safe, it could
1337 * change from under us. However, we can use a stale
1338 * value of ->real_parent under rcu_read_lock(), see
1339 * release_task()->call_rcu(delayed_put_task_struct).
1da177e4 1340 */
dbf040d9 1341SYSCALL_DEFINE0(getppid)
1da177e4
LT
1342{
1343 int pid;
1da177e4 1344
6997a6fa 1345 rcu_read_lock();
6c5f3e7b 1346 pid = task_tgid_vnr(current->real_parent);
6997a6fa 1347 rcu_read_unlock();
1da177e4 1348
1da177e4
LT
1349 return pid;
1350}
1351
dbf040d9 1352SYSCALL_DEFINE0(getuid)
1da177e4
LT
1353{
1354 /* Only we change this so SMP safe */
76aac0e9 1355 return current_uid();
1da177e4
LT
1356}
1357
dbf040d9 1358SYSCALL_DEFINE0(geteuid)
1da177e4
LT
1359{
1360 /* Only we change this so SMP safe */
76aac0e9 1361 return current_euid();
1da177e4
LT
1362}
1363
dbf040d9 1364SYSCALL_DEFINE0(getgid)
1da177e4
LT
1365{
1366 /* Only we change this so SMP safe */
76aac0e9 1367 return current_gid();
1da177e4
LT
1368}
1369
dbf040d9 1370SYSCALL_DEFINE0(getegid)
1da177e4
LT
1371{
1372 /* Only we change this so SMP safe */
76aac0e9 1373 return current_egid();
1da177e4
LT
1374}
1375
1376#endif
1377
1378static void process_timeout(unsigned long __data)
1379{
36c8b586 1380 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1381}
1382
1383/**
1384 * schedule_timeout - sleep until timeout
1385 * @timeout: timeout value in jiffies
1386 *
1387 * Make the current task sleep until @timeout jiffies have
1388 * elapsed. The routine will return immediately unless
1389 * the current task state has been set (see set_current_state()).
1390 *
1391 * You can set the task state as follows -
1392 *
1393 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1394 * pass before the routine returns. The routine will return 0
1395 *
1396 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1397 * delivered to the current task. In this case the remaining time
1398 * in jiffies will be returned, or 0 if the timer expired in time
1399 *
1400 * The current task state is guaranteed to be TASK_RUNNING when this
1401 * routine returns.
1402 *
1403 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1404 * the CPU away without a bound on the timeout. In this case the return
1405 * value will be %MAX_SCHEDULE_TIMEOUT.
1406 *
1407 * In all cases the return value is guaranteed to be non-negative.
1408 */
7ad5b3a5 1409signed long __sched schedule_timeout(signed long timeout)
1da177e4
LT
1410{
1411 struct timer_list timer;
1412 unsigned long expire;
1413
1414 switch (timeout)
1415 {
1416 case MAX_SCHEDULE_TIMEOUT:
1417 /*
1418 * These two special cases are useful to be comfortable
1419 * in the caller. Nothing more. We could take
1420 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1421 * but I' d like to return a valid offset (>=0) to allow
1422 * the caller to do everything it want with the retval.
1423 */
1424 schedule();
1425 goto out;
1426 default:
1427 /*
1428 * Another bit of PARANOID. Note that the retval will be
1429 * 0 since no piece of kernel is supposed to do a check
1430 * for a negative retval of schedule_timeout() (since it
1431 * should never happens anyway). You just have the printk()
1432 * that will tell you if something is gone wrong and where.
1433 */
5b149bcc 1434 if (timeout < 0) {
1da177e4 1435 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1436 "value %lx\n", timeout);
1437 dump_stack();
1da177e4
LT
1438 current->state = TASK_RUNNING;
1439 goto out;
1440 }
1441 }
1442
1443 expire = timeout + jiffies;
1444
c6f3a97f 1445 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
597d0275 1446 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1da177e4
LT
1447 schedule();
1448 del_singleshot_timer_sync(&timer);
1449
c6f3a97f
TG
1450 /* Remove the timer from the object tracker */
1451 destroy_timer_on_stack(&timer);
1452
1da177e4
LT
1453 timeout = expire - jiffies;
1454
1455 out:
1456 return timeout < 0 ? 0 : timeout;
1457}
1da177e4
LT
1458EXPORT_SYMBOL(schedule_timeout);
1459
8a1c1757
AM
1460/*
1461 * We can use __set_current_state() here because schedule_timeout() calls
1462 * schedule() unconditionally.
1463 */
64ed93a2
NA
1464signed long __sched schedule_timeout_interruptible(signed long timeout)
1465{
a5a0d52c
AM
1466 __set_current_state(TASK_INTERRUPTIBLE);
1467 return schedule_timeout(timeout);
64ed93a2
NA
1468}
1469EXPORT_SYMBOL(schedule_timeout_interruptible);
1470
294d5cc2
MW
1471signed long __sched schedule_timeout_killable(signed long timeout)
1472{
1473 __set_current_state(TASK_KILLABLE);
1474 return schedule_timeout(timeout);
1475}
1476EXPORT_SYMBOL(schedule_timeout_killable);
1477
64ed93a2
NA
1478signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1479{
a5a0d52c
AM
1480 __set_current_state(TASK_UNINTERRUPTIBLE);
1481 return schedule_timeout(timeout);
64ed93a2
NA
1482}
1483EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1484
1da177e4 1485/* Thread ID - the internal kernel "pid" */
58fd3aa2 1486SYSCALL_DEFINE0(gettid)
1da177e4 1487{
b488893a 1488 return task_pid_vnr(current);
1da177e4
LT
1489}
1490
2aae4a10 1491/**
d4d23add 1492 * do_sysinfo - fill in sysinfo struct
2aae4a10 1493 * @info: pointer to buffer to fill
6819457d 1494 */
d4d23add 1495int do_sysinfo(struct sysinfo *info)
1da177e4 1496{
1da177e4
LT
1497 unsigned long mem_total, sav_total;
1498 unsigned int mem_unit, bitcount;
2d02494f 1499 struct timespec tp;
1da177e4 1500
d4d23add 1501 memset(info, 0, sizeof(struct sysinfo));
1da177e4 1502
2d02494f
TG
1503 ktime_get_ts(&tp);
1504 monotonic_to_bootbased(&tp);
1505 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1da177e4 1506
2d02494f 1507 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1da177e4 1508
2d02494f 1509 info->procs = nr_threads;
1da177e4 1510
d4d23add
KM
1511 si_meminfo(info);
1512 si_swapinfo(info);
1da177e4
LT
1513
1514 /*
1515 * If the sum of all the available memory (i.e. ram + swap)
1516 * is less than can be stored in a 32 bit unsigned long then
1517 * we can be binary compatible with 2.2.x kernels. If not,
1518 * well, in that case 2.2.x was broken anyways...
1519 *
1520 * -Erik Andersen <andersee@debian.org>
1521 */
1522
d4d23add
KM
1523 mem_total = info->totalram + info->totalswap;
1524 if (mem_total < info->totalram || mem_total < info->totalswap)
1da177e4
LT
1525 goto out;
1526 bitcount = 0;
d4d23add 1527 mem_unit = info->mem_unit;
1da177e4
LT
1528 while (mem_unit > 1) {
1529 bitcount++;
1530 mem_unit >>= 1;
1531 sav_total = mem_total;
1532 mem_total <<= 1;
1533 if (mem_total < sav_total)
1534 goto out;
1535 }
1536
1537 /*
1538 * If mem_total did not overflow, multiply all memory values by
d4d23add 1539 * info->mem_unit and set it to 1. This leaves things compatible
1da177e4
LT
1540 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1541 * kernels...
1542 */
1543
d4d23add
KM
1544 info->mem_unit = 1;
1545 info->totalram <<= bitcount;
1546 info->freeram <<= bitcount;
1547 info->sharedram <<= bitcount;
1548 info->bufferram <<= bitcount;
1549 info->totalswap <<= bitcount;
1550 info->freeswap <<= bitcount;
1551 info->totalhigh <<= bitcount;
1552 info->freehigh <<= bitcount;
1553
1554out:
1555 return 0;
1556}
1557
1e7bfb21 1558SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
d4d23add
KM
1559{
1560 struct sysinfo val;
1561
1562 do_sysinfo(&val);
1da177e4 1563
1da177e4
LT
1564 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1565 return -EFAULT;
1566
1567 return 0;
1568}
1569
b4be6258 1570static int __cpuinit init_timers_cpu(int cpu)
1da177e4
LT
1571{
1572 int j;
a6fa8e5a 1573 struct tvec_base *base;
b4be6258 1574 static char __cpuinitdata tvec_base_done[NR_CPUS];
55c888d6 1575
ba6edfcd 1576 if (!tvec_base_done[cpu]) {
a4a6198b
JB
1577 static char boot_done;
1578
a4a6198b 1579 if (boot_done) {
ba6edfcd
AM
1580 /*
1581 * The APs use this path later in boot
1582 */
94f6030c
CL
1583 base = kmalloc_node(sizeof(*base),
1584 GFP_KERNEL | __GFP_ZERO,
a4a6198b
JB
1585 cpu_to_node(cpu));
1586 if (!base)
1587 return -ENOMEM;
6e453a67
VP
1588
1589 /* Make sure that tvec_base is 2 byte aligned */
1590 if (tbase_get_deferrable(base)) {
1591 WARN_ON(1);
1592 kfree(base);
1593 return -ENOMEM;
1594 }
ba6edfcd 1595 per_cpu(tvec_bases, cpu) = base;
a4a6198b 1596 } else {
ba6edfcd
AM
1597 /*
1598 * This is for the boot CPU - we use compile-time
1599 * static initialisation because per-cpu memory isn't
1600 * ready yet and because the memory allocators are not
1601 * initialised either.
1602 */
a4a6198b 1603 boot_done = 1;
ba6edfcd 1604 base = &boot_tvec_bases;
a4a6198b 1605 }
ba6edfcd
AM
1606 tvec_base_done[cpu] = 1;
1607 } else {
1608 base = per_cpu(tvec_bases, cpu);
a4a6198b 1609 }
ba6edfcd 1610
3691c519 1611 spin_lock_init(&base->lock);
d730e882 1612
1da177e4
LT
1613 for (j = 0; j < TVN_SIZE; j++) {
1614 INIT_LIST_HEAD(base->tv5.vec + j);
1615 INIT_LIST_HEAD(base->tv4.vec + j);
1616 INIT_LIST_HEAD(base->tv3.vec + j);
1617 INIT_LIST_HEAD(base->tv2.vec + j);
1618 }
1619 for (j = 0; j < TVR_SIZE; j++)
1620 INIT_LIST_HEAD(base->tv1.vec + j);
1621
1622 base->timer_jiffies = jiffies;
97fd9ed4 1623 base->next_timer = base->timer_jiffies;
a4a6198b 1624 return 0;
1da177e4
LT
1625}
1626
1627#ifdef CONFIG_HOTPLUG_CPU
a6fa8e5a 1628static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1da177e4
LT
1629{
1630 struct timer_list *timer;
1631
1632 while (!list_empty(head)) {
b5e61818 1633 timer = list_first_entry(head, struct timer_list, entry);
55c888d6 1634 detach_timer(timer, 0);
6e453a67 1635 timer_set_base(timer, new_base);
97fd9ed4
MS
1636 if (time_before(timer->expires, new_base->next_timer) &&
1637 !tbase_get_deferrable(timer->base))
1638 new_base->next_timer = timer->expires;
1da177e4 1639 internal_add_timer(new_base, timer);
1da177e4 1640 }
1da177e4
LT
1641}
1642
48ccf3da 1643static void __cpuinit migrate_timers(int cpu)
1da177e4 1644{
a6fa8e5a
PM
1645 struct tvec_base *old_base;
1646 struct tvec_base *new_base;
1da177e4
LT
1647 int i;
1648
1649 BUG_ON(cpu_online(cpu));
a4a6198b
JB
1650 old_base = per_cpu(tvec_bases, cpu);
1651 new_base = get_cpu_var(tvec_bases);
d82f0b0f
ON
1652 /*
1653 * The caller is globally serialized and nobody else
1654 * takes two locks at once, deadlock is not possible.
1655 */
1656 spin_lock_irq(&new_base->lock);
0d180406 1657 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
3691c519
ON
1658
1659 BUG_ON(old_base->running_timer);
1da177e4 1660
1da177e4 1661 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1662 migrate_timer_list(new_base, old_base->tv1.vec + i);
1663 for (i = 0; i < TVN_SIZE; i++) {
1664 migrate_timer_list(new_base, old_base->tv2.vec + i);
1665 migrate_timer_list(new_base, old_base->tv3.vec + i);
1666 migrate_timer_list(new_base, old_base->tv4.vec + i);
1667 migrate_timer_list(new_base, old_base->tv5.vec + i);
1668 }
1669
0d180406 1670 spin_unlock(&old_base->lock);
d82f0b0f 1671 spin_unlock_irq(&new_base->lock);
1da177e4 1672 put_cpu_var(tvec_bases);
1da177e4
LT
1673}
1674#endif /* CONFIG_HOTPLUG_CPU */
1675
8c78f307 1676static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1677 unsigned long action, void *hcpu)
1678{
1679 long cpu = (long)hcpu;
1680 switch(action) {
1681 case CPU_UP_PREPARE:
8bb78442 1682 case CPU_UP_PREPARE_FROZEN:
a4a6198b
JB
1683 if (init_timers_cpu(cpu) < 0)
1684 return NOTIFY_BAD;
1da177e4
LT
1685 break;
1686#ifdef CONFIG_HOTPLUG_CPU
1687 case CPU_DEAD:
8bb78442 1688 case CPU_DEAD_FROZEN:
1da177e4
LT
1689 migrate_timers(cpu);
1690 break;
1691#endif
1692 default:
1693 break;
1694 }
1695 return NOTIFY_OK;
1696}
1697
8c78f307 1698static struct notifier_block __cpuinitdata timers_nb = {
1da177e4
LT
1699 .notifier_call = timer_cpu_notify,
1700};
1701
1702
1703void __init init_timers(void)
1704{
07dccf33 1705 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1da177e4 1706 (void *)(long)smp_processor_id());
07dccf33 1707
82f67cd9
IM
1708 init_timer_stats();
1709
07dccf33 1710 BUG_ON(err == NOTIFY_BAD);
1da177e4 1711 register_cpu_notifier(&timers_nb);
962cf36c 1712 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
1713}
1714
1da177e4
LT
1715/**
1716 * msleep - sleep safely even with waitqueue interruptions
1717 * @msecs: Time in milliseconds to sleep for
1718 */
1719void msleep(unsigned int msecs)
1720{
1721 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1722
75bcc8c5
NA
1723 while (timeout)
1724 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1725}
1726
1727EXPORT_SYMBOL(msleep);
1728
1729/**
96ec3efd 1730 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1731 * @msecs: Time in milliseconds to sleep for
1732 */
1733unsigned long msleep_interruptible(unsigned int msecs)
1734{
1735 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1736
75bcc8c5
NA
1737 while (timeout && !signal_pending(current))
1738 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1739 return jiffies_to_msecs(timeout);
1740}
1741
1742EXPORT_SYMBOL(msleep_interruptible);