]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/timer.c
[PATCH] Time: Let user request precision from current_tick_length()
[net-next-2.6.git] / kernel / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers, kernel timekeeping, basic process system calls
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
29#include <linux/notifier.h>
30#include <linux/thread_info.h>
31#include <linux/time.h>
32#include <linux/jiffies.h>
33#include <linux/posix-timers.h>
34#include <linux/cpu.h>
35#include <linux/syscalls.h>
97a41e26 36#include <linux/delay.h>
1da177e4
LT
37
38#include <asm/uaccess.h>
39#include <asm/unistd.h>
40#include <asm/div64.h>
41#include <asm/timex.h>
42#include <asm/io.h>
43
44#ifdef CONFIG_TIME_INTERPOLATION
45static void time_interpolator_update(long delta_nsec);
46#else
47#define time_interpolator_update(x)
48#endif
49
ecea8d19
TG
50u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
51
52EXPORT_SYMBOL(jiffies_64);
53
1da177e4
LT
54/*
55 * per-CPU timer vector definitions:
56 */
1da177e4
LT
57#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
58#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
59#define TVN_SIZE (1 << TVN_BITS)
60#define TVR_SIZE (1 << TVR_BITS)
61#define TVN_MASK (TVN_SIZE - 1)
62#define TVR_MASK (TVR_SIZE - 1)
63
64typedef struct tvec_s {
65 struct list_head vec[TVN_SIZE];
66} tvec_t;
67
68typedef struct tvec_root_s {
69 struct list_head vec[TVR_SIZE];
70} tvec_root_t;
71
72struct tvec_t_base_s {
3691c519
ON
73 spinlock_t lock;
74 struct timer_list *running_timer;
1da177e4 75 unsigned long timer_jiffies;
1da177e4
LT
76 tvec_root_t tv1;
77 tvec_t tv2;
78 tvec_t tv3;
79 tvec_t tv4;
80 tvec_t tv5;
81} ____cacheline_aligned_in_smp;
82
83typedef struct tvec_t_base_s tvec_base_t;
ba6edfcd 84
3691c519
ON
85tvec_base_t boot_tvec_bases;
86EXPORT_SYMBOL(boot_tvec_bases);
ba6edfcd 87static DEFINE_PER_CPU(tvec_base_t *, tvec_bases) = { &boot_tvec_bases };
1da177e4
LT
88
89static inline void set_running_timer(tvec_base_t *base,
90 struct timer_list *timer)
91{
92#ifdef CONFIG_SMP
3691c519 93 base->running_timer = timer;
1da177e4
LT
94#endif
95}
96
1da177e4
LT
97static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
98{
99 unsigned long expires = timer->expires;
100 unsigned long idx = expires - base->timer_jiffies;
101 struct list_head *vec;
102
103 if (idx < TVR_SIZE) {
104 int i = expires & TVR_MASK;
105 vec = base->tv1.vec + i;
106 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
107 int i = (expires >> TVR_BITS) & TVN_MASK;
108 vec = base->tv2.vec + i;
109 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
110 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
111 vec = base->tv3.vec + i;
112 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
113 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
114 vec = base->tv4.vec + i;
115 } else if ((signed long) idx < 0) {
116 /*
117 * Can happen if you add a timer with expires == jiffies,
118 * or you set a timer to go off in the past
119 */
120 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
121 } else {
122 int i;
123 /* If the timeout is larger than 0xffffffff on 64-bit
124 * architectures then we use the maximum timeout:
125 */
126 if (idx > 0xffffffffUL) {
127 idx = 0xffffffffUL;
128 expires = idx + base->timer_jiffies;
129 }
130 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
131 vec = base->tv5.vec + i;
132 }
133 /*
134 * Timers are FIFO:
135 */
136 list_add_tail(&timer->entry, vec);
137}
138
55c888d6
ON
139/***
140 * init_timer - initialize a timer.
141 * @timer: the timer to be initialized
142 *
143 * init_timer() must be done to a timer prior calling *any* of the
144 * other timer functions.
145 */
146void fastcall init_timer(struct timer_list *timer)
147{
148 timer->entry.next = NULL;
bfe5d834 149 timer->base = __raw_get_cpu_var(tvec_bases);
55c888d6
ON
150}
151EXPORT_SYMBOL(init_timer);
152
153static inline void detach_timer(struct timer_list *timer,
154 int clear_pending)
155{
156 struct list_head *entry = &timer->entry;
157
158 __list_del(entry->prev, entry->next);
159 if (clear_pending)
160 entry->next = NULL;
161 entry->prev = LIST_POISON2;
162}
163
164/*
3691c519 165 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
166 * means that all timers which are tied to this base via timer->base are
167 * locked, and the base itself is locked too.
168 *
169 * So __run_timers/migrate_timers can safely modify all timers which could
170 * be found on ->tvX lists.
171 *
172 * When the timer's base is locked, and the timer removed from list, it is
173 * possible to set timer->base = NULL and drop the lock: the timer remains
174 * locked.
175 */
3691c519 176static tvec_base_t *lock_timer_base(struct timer_list *timer,
55c888d6
ON
177 unsigned long *flags)
178{
3691c519 179 tvec_base_t *base;
55c888d6
ON
180
181 for (;;) {
182 base = timer->base;
183 if (likely(base != NULL)) {
184 spin_lock_irqsave(&base->lock, *flags);
185 if (likely(base == timer->base))
186 return base;
187 /* The timer has migrated to another CPU */
188 spin_unlock_irqrestore(&base->lock, *flags);
189 }
190 cpu_relax();
191 }
192}
193
1da177e4
LT
194int __mod_timer(struct timer_list *timer, unsigned long expires)
195{
3691c519 196 tvec_base_t *base, *new_base;
1da177e4
LT
197 unsigned long flags;
198 int ret = 0;
199
200 BUG_ON(!timer->function);
1da177e4 201
55c888d6
ON
202 base = lock_timer_base(timer, &flags);
203
204 if (timer_pending(timer)) {
205 detach_timer(timer, 0);
206 ret = 1;
207 }
208
a4a6198b 209 new_base = __get_cpu_var(tvec_bases);
1da177e4 210
3691c519 211 if (base != new_base) {
1da177e4 212 /*
55c888d6
ON
213 * We are trying to schedule the timer on the local CPU.
214 * However we can't change timer's base while it is running,
215 * otherwise del_timer_sync() can't detect that the timer's
216 * handler yet has not finished. This also guarantees that
217 * the timer is serialized wrt itself.
1da177e4 218 */
a2c348fe 219 if (likely(base->running_timer != timer)) {
55c888d6
ON
220 /* See the comment in lock_timer_base() */
221 timer->base = NULL;
222 spin_unlock(&base->lock);
a2c348fe
ON
223 base = new_base;
224 spin_lock(&base->lock);
225 timer->base = base;
1da177e4
LT
226 }
227 }
228
1da177e4 229 timer->expires = expires;
a2c348fe
ON
230 internal_add_timer(base, timer);
231 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
232
233 return ret;
234}
235
236EXPORT_SYMBOL(__mod_timer);
237
238/***
239 * add_timer_on - start a timer on a particular CPU
240 * @timer: the timer to be added
241 * @cpu: the CPU to start it on
242 *
243 * This is not very scalable on SMP. Double adds are not possible.
244 */
245void add_timer_on(struct timer_list *timer, int cpu)
246{
a4a6198b 247 tvec_base_t *base = per_cpu(tvec_bases, cpu);
1da177e4 248 unsigned long flags;
55c888d6 249
1da177e4 250 BUG_ON(timer_pending(timer) || !timer->function);
3691c519
ON
251 spin_lock_irqsave(&base->lock, flags);
252 timer->base = base;
1da177e4 253 internal_add_timer(base, timer);
3691c519 254 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
255}
256
257
258/***
259 * mod_timer - modify a timer's timeout
260 * @timer: the timer to be modified
261 *
262 * mod_timer is a more efficient way to update the expire field of an
263 * active timer (if the timer is inactive it will be activated)
264 *
265 * mod_timer(timer, expires) is equivalent to:
266 *
267 * del_timer(timer); timer->expires = expires; add_timer(timer);
268 *
269 * Note that if there are multiple unserialized concurrent users of the
270 * same timer, then mod_timer() is the only safe way to modify the timeout,
271 * since add_timer() cannot modify an already running timer.
272 *
273 * The function returns whether it has modified a pending timer or not.
274 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
275 * active timer returns 1.)
276 */
277int mod_timer(struct timer_list *timer, unsigned long expires)
278{
279 BUG_ON(!timer->function);
280
1da177e4
LT
281 /*
282 * This is a common optimization triggered by the
283 * networking code - if the timer is re-modified
284 * to be the same thing then just return:
285 */
286 if (timer->expires == expires && timer_pending(timer))
287 return 1;
288
289 return __mod_timer(timer, expires);
290}
291
292EXPORT_SYMBOL(mod_timer);
293
294/***
295 * del_timer - deactive a timer.
296 * @timer: the timer to be deactivated
297 *
298 * del_timer() deactivates a timer - this works on both active and inactive
299 * timers.
300 *
301 * The function returns whether it has deactivated a pending timer or not.
302 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
303 * active timer returns 1.)
304 */
305int del_timer(struct timer_list *timer)
306{
3691c519 307 tvec_base_t *base;
1da177e4 308 unsigned long flags;
55c888d6 309 int ret = 0;
1da177e4 310
55c888d6
ON
311 if (timer_pending(timer)) {
312 base = lock_timer_base(timer, &flags);
313 if (timer_pending(timer)) {
314 detach_timer(timer, 1);
315 ret = 1;
316 }
1da177e4 317 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 318 }
1da177e4 319
55c888d6 320 return ret;
1da177e4
LT
321}
322
323EXPORT_SYMBOL(del_timer);
324
325#ifdef CONFIG_SMP
fd450b73
ON
326/*
327 * This function tries to deactivate a timer. Upon successful (ret >= 0)
328 * exit the timer is not queued and the handler is not running on any CPU.
329 *
330 * It must not be called from interrupt contexts.
331 */
332int try_to_del_timer_sync(struct timer_list *timer)
333{
3691c519 334 tvec_base_t *base;
fd450b73
ON
335 unsigned long flags;
336 int ret = -1;
337
338 base = lock_timer_base(timer, &flags);
339
340 if (base->running_timer == timer)
341 goto out;
342
343 ret = 0;
344 if (timer_pending(timer)) {
345 detach_timer(timer, 1);
346 ret = 1;
347 }
348out:
349 spin_unlock_irqrestore(&base->lock, flags);
350
351 return ret;
352}
353
1da177e4
LT
354/***
355 * del_timer_sync - deactivate a timer and wait for the handler to finish.
356 * @timer: the timer to be deactivated
357 *
358 * This function only differs from del_timer() on SMP: besides deactivating
359 * the timer it also makes sure the handler has finished executing on other
360 * CPUs.
361 *
362 * Synchronization rules: callers must prevent restarting of the timer,
363 * otherwise this function is meaningless. It must not be called from
364 * interrupt contexts. The caller must not hold locks which would prevent
55c888d6
ON
365 * completion of the timer's handler. The timer's handler must not call
366 * add_timer_on(). Upon exit the timer is not queued and the handler is
367 * not running on any CPU.
1da177e4
LT
368 *
369 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
370 */
371int del_timer_sync(struct timer_list *timer)
372{
fd450b73
ON
373 for (;;) {
374 int ret = try_to_del_timer_sync(timer);
375 if (ret >= 0)
376 return ret;
377 }
1da177e4 378}
1da177e4 379
55c888d6 380EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
381#endif
382
383static int cascade(tvec_base_t *base, tvec_t *tv, int index)
384{
385 /* cascade all the timers from tv up one level */
3439dd86
P
386 struct timer_list *timer, *tmp;
387 struct list_head tv_list;
388
389 list_replace_init(tv->vec + index, &tv_list);
1da177e4 390
1da177e4 391 /*
3439dd86
P
392 * We are removing _all_ timers from the list, so we
393 * don't have to detach them individually.
1da177e4 394 */
3439dd86
P
395 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
396 BUG_ON(timer->base != base);
397 internal_add_timer(base, timer);
1da177e4 398 }
1da177e4
LT
399
400 return index;
401}
402
403/***
404 * __run_timers - run all expired timers (if any) on this CPU.
405 * @base: the timer vector to be processed.
406 *
407 * This function cascades all vectors and executes all expired timer
408 * vectors.
409 */
410#define INDEX(N) (base->timer_jiffies >> (TVR_BITS + N * TVN_BITS)) & TVN_MASK
411
412static inline void __run_timers(tvec_base_t *base)
413{
414 struct timer_list *timer;
415
3691c519 416 spin_lock_irq(&base->lock);
1da177e4 417 while (time_after_eq(jiffies, base->timer_jiffies)) {
626ab0e6 418 struct list_head work_list;
1da177e4
LT
419 struct list_head *head = &work_list;
420 int index = base->timer_jiffies & TVR_MASK;
626ab0e6 421
1da177e4
LT
422 /*
423 * Cascade timers:
424 */
425 if (!index &&
426 (!cascade(base, &base->tv2, INDEX(0))) &&
427 (!cascade(base, &base->tv3, INDEX(1))) &&
428 !cascade(base, &base->tv4, INDEX(2)))
429 cascade(base, &base->tv5, INDEX(3));
626ab0e6
ON
430 ++base->timer_jiffies;
431 list_replace_init(base->tv1.vec + index, &work_list);
55c888d6 432 while (!list_empty(head)) {
1da177e4
LT
433 void (*fn)(unsigned long);
434 unsigned long data;
435
436 timer = list_entry(head->next,struct timer_list,entry);
437 fn = timer->function;
438 data = timer->data;
439
1da177e4 440 set_running_timer(base, timer);
55c888d6 441 detach_timer(timer, 1);
3691c519 442 spin_unlock_irq(&base->lock);
1da177e4 443 {
be5b4fbd 444 int preempt_count = preempt_count();
1da177e4
LT
445 fn(data);
446 if (preempt_count != preempt_count()) {
be5b4fbd
JJ
447 printk(KERN_WARNING "huh, entered %p "
448 "with preempt_count %08x, exited"
449 " with %08x?\n",
450 fn, preempt_count,
451 preempt_count());
1da177e4
LT
452 BUG();
453 }
454 }
3691c519 455 spin_lock_irq(&base->lock);
1da177e4
LT
456 }
457 }
458 set_running_timer(base, NULL);
3691c519 459 spin_unlock_irq(&base->lock);
1da177e4
LT
460}
461
462#ifdef CONFIG_NO_IDLE_HZ
463/*
464 * Find out when the next timer event is due to happen. This
465 * is used on S/390 to stop all activity when a cpus is idle.
466 * This functions needs to be called disabled.
467 */
468unsigned long next_timer_interrupt(void)
469{
470 tvec_base_t *base;
471 struct list_head *list;
472 struct timer_list *nte;
473 unsigned long expires;
69239749
TL
474 unsigned long hr_expires = MAX_JIFFY_OFFSET;
475 ktime_t hr_delta;
1da177e4
LT
476 tvec_t *varray[4];
477 int i, j;
478
69239749
TL
479 hr_delta = hrtimer_get_next_event();
480 if (hr_delta.tv64 != KTIME_MAX) {
481 struct timespec tsdelta;
482 tsdelta = ktime_to_timespec(hr_delta);
483 hr_expires = timespec_to_jiffies(&tsdelta);
484 if (hr_expires < 3)
485 return hr_expires + jiffies;
486 }
487 hr_expires += jiffies;
488
a4a6198b 489 base = __get_cpu_var(tvec_bases);
3691c519 490 spin_lock(&base->lock);
1da177e4 491 expires = base->timer_jiffies + (LONG_MAX >> 1);
53f087fe 492 list = NULL;
1da177e4
LT
493
494 /* Look for timer events in tv1. */
495 j = base->timer_jiffies & TVR_MASK;
496 do {
497 list_for_each_entry(nte, base->tv1.vec + j, entry) {
498 expires = nte->expires;
499 if (j < (base->timer_jiffies & TVR_MASK))
500 list = base->tv2.vec + (INDEX(0));
501 goto found;
502 }
503 j = (j + 1) & TVR_MASK;
504 } while (j != (base->timer_jiffies & TVR_MASK));
505
506 /* Check tv2-tv5. */
507 varray[0] = &base->tv2;
508 varray[1] = &base->tv3;
509 varray[2] = &base->tv4;
510 varray[3] = &base->tv5;
511 for (i = 0; i < 4; i++) {
512 j = INDEX(i);
513 do {
514 if (list_empty(varray[i]->vec + j)) {
515 j = (j + 1) & TVN_MASK;
516 continue;
517 }
518 list_for_each_entry(nte, varray[i]->vec + j, entry)
519 if (time_before(nte->expires, expires))
520 expires = nte->expires;
521 if (j < (INDEX(i)) && i < 3)
522 list = varray[i + 1]->vec + (INDEX(i + 1));
523 goto found;
524 } while (j != (INDEX(i)));
525 }
526found:
527 if (list) {
528 /*
529 * The search wrapped. We need to look at the next list
530 * from next tv element that would cascade into tv element
531 * where we found the timer element.
532 */
533 list_for_each_entry(nte, list, entry) {
534 if (time_before(nte->expires, expires))
535 expires = nte->expires;
536 }
537 }
3691c519 538 spin_unlock(&base->lock);
69239749 539
0662b713
ZA
540 /*
541 * It can happen that other CPUs service timer IRQs and increment
542 * jiffies, but we have not yet got a local timer tick to process
543 * the timer wheels. In that case, the expiry time can be before
544 * jiffies, but since the high-resolution timer here is relative to
545 * jiffies, the default expression when high-resolution timers are
546 * not active,
547 *
548 * time_before(MAX_JIFFY_OFFSET + jiffies, expires)
549 *
550 * would falsely evaluate to true. If that is the case, just
551 * return jiffies so that we can immediately fire the local timer
552 */
553 if (time_before(expires, jiffies))
554 return jiffies;
555
69239749
TL
556 if (time_before(hr_expires, expires))
557 return hr_expires;
558
1da177e4
LT
559 return expires;
560}
561#endif
562
563/******************************************************************/
564
565/*
566 * Timekeeping variables
567 */
568unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */
569unsigned long tick_nsec = TICK_NSEC; /* ACTHZ period (nsec) */
570
571/*
572 * The current time
573 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
574 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
575 * at zero at system boot time, so wall_to_monotonic will be negative,
576 * however, we will ALWAYS keep the tv_nsec part positive so we can use
577 * the usual normalization.
578 */
579struct timespec xtime __attribute__ ((aligned (16)));
580struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
581
582EXPORT_SYMBOL(xtime);
583
584/* Don't completely fail for HZ > 500. */
585int tickadj = 500/HZ ? : 1; /* microsecs */
586
587
588/*
589 * phase-lock loop variables
590 */
591/* TIME_ERROR prevents overwriting the CMOS clock */
592int time_state = TIME_OK; /* clock synchronization status */
593int time_status = STA_UNSYNC; /* clock status bits */
594long time_offset; /* time adjustment (us) */
595long time_constant = 2; /* pll time constant */
596long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */
597long time_precision = 1; /* clock precision (us) */
598long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */
599long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */
600static long time_phase; /* phase offset (scaled us) */
601long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC;
602 /* frequency offset (scaled ppm)*/
603static long time_adj; /* tick adjust (scaled 1 / HZ) */
604long time_reftime; /* time at last adjustment (s) */
605long time_adjust;
606long time_next_adjust;
607
608/*
609 * this routine handles the overflow of the microsecond field
610 *
611 * The tricky bits of code to handle the accurate clock support
612 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
613 * They were originally developed for SUN and DEC kernels.
614 * All the kudos should go to Dave for this stuff.
615 *
616 */
617static void second_overflow(void)
618{
a5a0d52c
AM
619 long ltemp;
620
621 /* Bump the maxerror field */
622 time_maxerror += time_tolerance >> SHIFT_USEC;
623 if (time_maxerror > NTP_PHASE_LIMIT) {
624 time_maxerror = NTP_PHASE_LIMIT;
625 time_status |= STA_UNSYNC;
1da177e4 626 }
a5a0d52c
AM
627
628 /*
629 * Leap second processing. If in leap-insert state at the end of the
630 * day, the system clock is set back one second; if in leap-delete
631 * state, the system clock is set ahead one second. The microtime()
632 * routine or external clock driver will insure that reported time is
633 * always monotonic. The ugly divides should be replaced.
634 */
635 switch (time_state) {
636 case TIME_OK:
637 if (time_status & STA_INS)
638 time_state = TIME_INS;
639 else if (time_status & STA_DEL)
640 time_state = TIME_DEL;
641 break;
642 case TIME_INS:
643 if (xtime.tv_sec % 86400 == 0) {
644 xtime.tv_sec--;
645 wall_to_monotonic.tv_sec++;
646 /*
647 * The timer interpolator will make time change
648 * gradually instead of an immediate jump by one second
649 */
650 time_interpolator_update(-NSEC_PER_SEC);
651 time_state = TIME_OOP;
652 clock_was_set();
653 printk(KERN_NOTICE "Clock: inserting leap second "
654 "23:59:60 UTC\n");
655 }
656 break;
657 case TIME_DEL:
658 if ((xtime.tv_sec + 1) % 86400 == 0) {
659 xtime.tv_sec++;
660 wall_to_monotonic.tv_sec--;
661 /*
662 * Use of time interpolator for a gradual change of
663 * time
664 */
665 time_interpolator_update(NSEC_PER_SEC);
666 time_state = TIME_WAIT;
667 clock_was_set();
668 printk(KERN_NOTICE "Clock: deleting leap second "
669 "23:59:59 UTC\n");
670 }
671 break;
672 case TIME_OOP:
673 time_state = TIME_WAIT;
674 break;
675 case TIME_WAIT:
676 if (!(time_status & (STA_INS | STA_DEL)))
677 time_state = TIME_OK;
1da177e4 678 }
a5a0d52c
AM
679
680 /*
681 * Compute the phase adjustment for the next second. In PLL mode, the
682 * offset is reduced by a fixed factor times the time constant. In FLL
683 * mode the offset is used directly. In either mode, the maximum phase
684 * adjustment for each second is clamped so as to spread the adjustment
685 * over not more than the number of seconds between updates.
686 */
1da177e4
LT
687 ltemp = time_offset;
688 if (!(time_status & STA_FLL))
1bb34a41
JS
689 ltemp = shift_right(ltemp, SHIFT_KG + time_constant);
690 ltemp = min(ltemp, (MAXPHASE / MINSEC) << SHIFT_UPDATE);
691 ltemp = max(ltemp, -(MAXPHASE / MINSEC) << SHIFT_UPDATE);
1da177e4
LT
692 time_offset -= ltemp;
693 time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
1da177e4 694
a5a0d52c
AM
695 /*
696 * Compute the frequency estimate and additional phase adjustment due
5ddcfa87 697 * to frequency error for the next second.
a5a0d52c 698 */
5ddcfa87 699 ltemp = time_freq;
a5a0d52c 700 time_adj += shift_right(ltemp,(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE));
1da177e4
LT
701
702#if HZ == 100
a5a0d52c
AM
703 /*
704 * Compensate for (HZ==100) != (1 << SHIFT_HZ). Add 25% and 3.125% to
705 * get 128.125; => only 0.125% error (p. 14)
706 */
707 time_adj += shift_right(time_adj, 2) + shift_right(time_adj, 5);
1da177e4 708#endif
4b8f573b 709#if HZ == 250
a5a0d52c
AM
710 /*
711 * Compensate for (HZ==250) != (1 << SHIFT_HZ). Add 1.5625% and
712 * 0.78125% to get 255.85938; => only 0.05% error (p. 14)
713 */
714 time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
4b8f573b 715#endif
1da177e4 716#if HZ == 1000
a5a0d52c
AM
717 /*
718 * Compensate for (HZ==1000) != (1 << SHIFT_HZ). Add 1.5625% and
719 * 0.78125% to get 1023.4375; => only 0.05% error (p. 14)
720 */
721 time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
1da177e4
LT
722#endif
723}
724
726c14bf
PM
725/*
726 * Returns how many microseconds we need to add to xtime this tick
727 * in doing an adjustment requested with adjtime.
728 */
729static long adjtime_adjustment(void)
1da177e4 730{
726c14bf 731 long time_adjust_step;
1da177e4 732
726c14bf
PM
733 time_adjust_step = time_adjust;
734 if (time_adjust_step) {
a5a0d52c
AM
735 /*
736 * We are doing an adjtime thing. Prepare time_adjust_step to
737 * be within bounds. Note that a positive time_adjust means we
738 * want the clock to run faster.
739 *
740 * Limit the amount of the step to be in the range
741 * -tickadj .. +tickadj
742 */
743 time_adjust_step = min(time_adjust_step, (long)tickadj);
744 time_adjust_step = max(time_adjust_step, (long)-tickadj);
726c14bf
PM
745 }
746 return time_adjust_step;
747}
a5a0d52c 748
726c14bf
PM
749/* in the NTP reference this is called "hardclock()" */
750static void update_wall_time_one_tick(void)
751{
752 long time_adjust_step, delta_nsec;
753
754 time_adjust_step = adjtime_adjustment();
755 if (time_adjust_step)
a5a0d52c
AM
756 /* Reduce by this step the amount of time left */
757 time_adjust -= time_adjust_step;
1da177e4
LT
758 delta_nsec = tick_nsec + time_adjust_step * 1000;
759 /*
760 * Advance the phase, once it gets to one microsecond, then
761 * advance the tick more.
762 */
763 time_phase += time_adj;
1bb34a41
JS
764 if ((time_phase >= FINENSEC) || (time_phase <= -FINENSEC)) {
765 long ltemp = shift_right(time_phase, (SHIFT_SCALE - 10));
1da177e4
LT
766 time_phase -= ltemp << (SHIFT_SCALE - 10);
767 delta_nsec += ltemp;
768 }
769 xtime.tv_nsec += delta_nsec;
770 time_interpolator_update(delta_nsec);
771
772 /* Changes by adjtime() do not take effect till next tick. */
773 if (time_next_adjust != 0) {
774 time_adjust = time_next_adjust;
775 time_next_adjust = 0;
776 }
777}
778
726c14bf
PM
779/*
780 * Return how long ticks are at the moment, that is, how much time
781 * update_wall_time_one_tick will add to xtime next time we call it
782 * (assuming no calls to do_adjtimex in the meantime).
260a4230
JS
783 * The return value is in fixed-point nanoseconds shifted by the
784 * specified number of bits to the right of the binary point.
726c14bf
PM
785 * This function has no side-effects.
786 */
260a4230 787u64 current_tick_length(long shift)
726c14bf
PM
788{
789 long delta_nsec;
260a4230 790 u64 ret;
726c14bf 791
260a4230
JS
792 /* calculate the finest interval NTP will allow.
793 * ie: nanosecond value shifted by (SHIFT_SCALE - 10)
794 */
726c14bf 795 delta_nsec = tick_nsec + adjtime_adjustment() * 1000;
260a4230
JS
796 ret = ((u64) delta_nsec << (SHIFT_SCALE - 10)) + time_adj;
797
798 /* convert from (SHIFT_SCALE - 10) to specified shift scale: */
799 shift = shift - (SHIFT_SCALE - 10);
800 if (shift < 0)
801 ret >>= -shift;
802 else
803 ret <<= shift;
804
805 return ret;
726c14bf
PM
806}
807
ad596171
JS
808/* XXX - all of this timekeeping code should be later moved to time.c */
809#include <linux/clocksource.h>
810static struct clocksource *clock; /* pointer to current clocksource */
811static cycle_t last_clock_cycle; /* cycle value at last update_wall_time */
1da177e4 812/*
ad596171 813 * timekeeping_init - Initializes the clocksource and common timekeeping values
1da177e4 814 */
ad596171 815void __init timekeeping_init(void)
1da177e4 816{
ad596171
JS
817 unsigned long flags;
818
819 write_seqlock_irqsave(&xtime_lock, flags);
820 clock = get_next_clocksource();
821 calculate_clocksource_interval(clock, tick_nsec);
822 last_clock_cycle = read_clocksource(clock);
823 ntp_clear();
824 write_sequnlock_irqrestore(&xtime_lock, flags);
825}
826
827
828/*
829 * timekeeping_resume - Resumes the generic timekeeping subsystem.
830 * @dev: unused
831 *
832 * This is for the generic clocksource timekeeping.
833 * xtime/wall_to_monotonic/jiffies/wall_jiffies/etc are
834 * still managed by arch specific suspend/resume code.
835 */
836static int timekeeping_resume(struct sys_device *dev)
837{
838 unsigned long flags;
839
840 write_seqlock_irqsave(&xtime_lock, flags);
841 /* restart the last cycle value */
842 last_clock_cycle = read_clocksource(clock);
843 write_sequnlock_irqrestore(&xtime_lock, flags);
844 return 0;
845}
846
847/* sysfs resume/suspend bits for timekeeping */
848static struct sysdev_class timekeeping_sysclass = {
849 .resume = timekeeping_resume,
850 set_kset_name("timekeeping"),
851};
852
853static struct sys_device device_timer = {
854 .id = 0,
855 .cls = &timekeeping_sysclass,
856};
857
858static int __init timekeeping_init_device(void)
859{
860 int error = sysdev_class_register(&timekeeping_sysclass);
861 if (!error)
862 error = sysdev_register(&device_timer);
863 return error;
864}
865
866device_initcall(timekeeping_init_device);
867
868/*
869 * update_wall_time - Uses the current clocksource to increment the wall time
870 *
871 * Called from the timer interrupt, must hold a write on xtime_lock.
872 */
873static void update_wall_time(void)
874{
875 cycle_t now, offset;
876
877 now = read_clocksource(clock);
878 offset = (now - last_clock_cycle)&clock->mask;
879
880 /* normally this loop will run just once, however in the
881 * case of lost or late ticks, it will accumulate correctly.
882 */
883 while (offset > clock->interval_cycles) {
884 /* accumulate one interval */
885 last_clock_cycle += clock->interval_cycles;
886 offset -= clock->interval_cycles;
887
1da177e4
LT
888 update_wall_time_one_tick();
889 if (xtime.tv_nsec >= 1000000000) {
890 xtime.tv_nsec -= 1000000000;
891 xtime.tv_sec++;
892 second_overflow();
893 }
ad596171 894 }
1da177e4
LT
895}
896
897/*
898 * Called from the timer interrupt handler to charge one tick to the current
899 * process. user_tick is 1 if the tick is user time, 0 for system.
900 */
901void update_process_times(int user_tick)
902{
903 struct task_struct *p = current;
904 int cpu = smp_processor_id();
905
906 /* Note: this timer irq context must be accounted for as well. */
907 if (user_tick)
908 account_user_time(p, jiffies_to_cputime(1));
909 else
910 account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
911 run_local_timers();
912 if (rcu_pending(cpu))
913 rcu_check_callbacks(cpu, user_tick);
914 scheduler_tick();
915 run_posix_cpu_timers(p);
916}
917
918/*
919 * Nr of active tasks - counted in fixed-point numbers
920 */
921static unsigned long count_active_tasks(void)
922{
db1b1fef 923 return nr_active() * FIXED_1;
1da177e4
LT
924}
925
926/*
927 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
928 * imply that avenrun[] is the standard name for this kind of thing.
929 * Nothing else seems to be standardized: the fractional size etc
930 * all seem to differ on different machines.
931 *
932 * Requires xtime_lock to access.
933 */
934unsigned long avenrun[3];
935
936EXPORT_SYMBOL(avenrun);
937
938/*
939 * calc_load - given tick count, update the avenrun load estimates.
940 * This is called while holding a write_lock on xtime_lock.
941 */
942static inline void calc_load(unsigned long ticks)
943{
944 unsigned long active_tasks; /* fixed-point */
945 static int count = LOAD_FREQ;
946
947 count -= ticks;
948 if (count < 0) {
949 count += LOAD_FREQ;
950 active_tasks = count_active_tasks();
951 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
952 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
953 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
954 }
955}
956
957/* jiffies at the most recent update of wall time */
958unsigned long wall_jiffies = INITIAL_JIFFIES;
959
960/*
961 * This read-write spinlock protects us from races in SMP while
962 * playing with xtime and avenrun.
963 */
964#ifndef ARCH_HAVE_XTIME_LOCK
965seqlock_t xtime_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED;
966
967EXPORT_SYMBOL(xtime_lock);
968#endif
969
970/*
971 * This function runs timers and the timer-tq in bottom half context.
972 */
973static void run_timer_softirq(struct softirq_action *h)
974{
a4a6198b 975 tvec_base_t *base = __get_cpu_var(tvec_bases);
1da177e4 976
c0a31329 977 hrtimer_run_queues();
1da177e4
LT
978 if (time_after_eq(jiffies, base->timer_jiffies))
979 __run_timers(base);
980}
981
982/*
983 * Called by the local, per-CPU timer interrupt on SMP.
984 */
985void run_local_timers(void)
986{
987 raise_softirq(TIMER_SOFTIRQ);
6687a97d 988 softlockup_tick();
1da177e4
LT
989}
990
991/*
992 * Called by the timer interrupt. xtime_lock must already be taken
993 * by the timer IRQ!
994 */
995static inline void update_times(void)
996{
997 unsigned long ticks;
998
999 ticks = jiffies - wall_jiffies;
ad596171
JS
1000 wall_jiffies += ticks;
1001 update_wall_time();
1da177e4
LT
1002 calc_load(ticks);
1003}
1004
1005/*
1006 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1007 * without sampling the sequence number in xtime_lock.
1008 * jiffies is defined in the linker script...
1009 */
1010
1011void do_timer(struct pt_regs *regs)
1012{
1013 jiffies_64++;
5aee405c
AN
1014 /* prevent loading jiffies before storing new jiffies_64 value. */
1015 barrier();
1da177e4
LT
1016 update_times();
1017}
1018
1019#ifdef __ARCH_WANT_SYS_ALARM
1020
1021/*
1022 * For backwards compatibility? This can be done in libc so Alpha
1023 * and all newer ports shouldn't need it.
1024 */
1025asmlinkage unsigned long sys_alarm(unsigned int seconds)
1026{
c08b8a49 1027 return alarm_setitimer(seconds);
1da177e4
LT
1028}
1029
1030#endif
1031
1032#ifndef __alpha__
1033
1034/*
1035 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1036 * should be moved into arch/i386 instead?
1037 */
1038
1039/**
1040 * sys_getpid - return the thread group id of the current process
1041 *
1042 * Note, despite the name, this returns the tgid not the pid. The tgid and
1043 * the pid are identical unless CLONE_THREAD was specified on clone() in
1044 * which case the tgid is the same in all threads of the same group.
1045 *
1046 * This is SMP safe as current->tgid does not change.
1047 */
1048asmlinkage long sys_getpid(void)
1049{
1050 return current->tgid;
1051}
1052
1053/*
1054 * Accessing ->group_leader->real_parent is not SMP-safe, it could
1055 * change from under us. However, rather than getting any lock
1056 * we can use an optimistic algorithm: get the parent
1057 * pid, and go back and check that the parent is still
1058 * the same. If it has changed (which is extremely unlikely
1059 * indeed), we just try again..
1060 *
1061 * NOTE! This depends on the fact that even if we _do_
1062 * get an old value of "parent", we can happily dereference
1063 * the pointer (it was and remains a dereferencable kernel pointer
1064 * no matter what): we just can't necessarily trust the result
1065 * until we know that the parent pointer is valid.
1066 *
1067 * NOTE2: ->group_leader never changes from under us.
1068 */
1069asmlinkage long sys_getppid(void)
1070{
1071 int pid;
1072 struct task_struct *me = current;
1073 struct task_struct *parent;
1074
1075 parent = me->group_leader->real_parent;
1076 for (;;) {
1077 pid = parent->tgid;
4c5640cb 1078#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1da177e4
LT
1079{
1080 struct task_struct *old = parent;
1081
1082 /*
1083 * Make sure we read the pid before re-reading the
1084 * parent pointer:
1085 */
d59dd462 1086 smp_rmb();
1da177e4
LT
1087 parent = me->group_leader->real_parent;
1088 if (old != parent)
1089 continue;
1090}
1091#endif
1092 break;
1093 }
1094 return pid;
1095}
1096
1097asmlinkage long sys_getuid(void)
1098{
1099 /* Only we change this so SMP safe */
1100 return current->uid;
1101}
1102
1103asmlinkage long sys_geteuid(void)
1104{
1105 /* Only we change this so SMP safe */
1106 return current->euid;
1107}
1108
1109asmlinkage long sys_getgid(void)
1110{
1111 /* Only we change this so SMP safe */
1112 return current->gid;
1113}
1114
1115asmlinkage long sys_getegid(void)
1116{
1117 /* Only we change this so SMP safe */
1118 return current->egid;
1119}
1120
1121#endif
1122
1123static void process_timeout(unsigned long __data)
1124{
1125 wake_up_process((task_t *)__data);
1126}
1127
1128/**
1129 * schedule_timeout - sleep until timeout
1130 * @timeout: timeout value in jiffies
1131 *
1132 * Make the current task sleep until @timeout jiffies have
1133 * elapsed. The routine will return immediately unless
1134 * the current task state has been set (see set_current_state()).
1135 *
1136 * You can set the task state as follows -
1137 *
1138 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1139 * pass before the routine returns. The routine will return 0
1140 *
1141 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1142 * delivered to the current task. In this case the remaining time
1143 * in jiffies will be returned, or 0 if the timer expired in time
1144 *
1145 * The current task state is guaranteed to be TASK_RUNNING when this
1146 * routine returns.
1147 *
1148 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1149 * the CPU away without a bound on the timeout. In this case the return
1150 * value will be %MAX_SCHEDULE_TIMEOUT.
1151 *
1152 * In all cases the return value is guaranteed to be non-negative.
1153 */
1154fastcall signed long __sched schedule_timeout(signed long timeout)
1155{
1156 struct timer_list timer;
1157 unsigned long expire;
1158
1159 switch (timeout)
1160 {
1161 case MAX_SCHEDULE_TIMEOUT:
1162 /*
1163 * These two special cases are useful to be comfortable
1164 * in the caller. Nothing more. We could take
1165 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1166 * but I' d like to return a valid offset (>=0) to allow
1167 * the caller to do everything it want with the retval.
1168 */
1169 schedule();
1170 goto out;
1171 default:
1172 /*
1173 * Another bit of PARANOID. Note that the retval will be
1174 * 0 since no piece of kernel is supposed to do a check
1175 * for a negative retval of schedule_timeout() (since it
1176 * should never happens anyway). You just have the printk()
1177 * that will tell you if something is gone wrong and where.
1178 */
1179 if (timeout < 0)
1180 {
1181 printk(KERN_ERR "schedule_timeout: wrong timeout "
a5a0d52c
AM
1182 "value %lx from %p\n", timeout,
1183 __builtin_return_address(0));
1da177e4
LT
1184 current->state = TASK_RUNNING;
1185 goto out;
1186 }
1187 }
1188
1189 expire = timeout + jiffies;
1190
a8db2db1
ON
1191 setup_timer(&timer, process_timeout, (unsigned long)current);
1192 __mod_timer(&timer, expire);
1da177e4
LT
1193 schedule();
1194 del_singleshot_timer_sync(&timer);
1195
1196 timeout = expire - jiffies;
1197
1198 out:
1199 return timeout < 0 ? 0 : timeout;
1200}
1da177e4
LT
1201EXPORT_SYMBOL(schedule_timeout);
1202
8a1c1757
AM
1203/*
1204 * We can use __set_current_state() here because schedule_timeout() calls
1205 * schedule() unconditionally.
1206 */
64ed93a2
NA
1207signed long __sched schedule_timeout_interruptible(signed long timeout)
1208{
a5a0d52c
AM
1209 __set_current_state(TASK_INTERRUPTIBLE);
1210 return schedule_timeout(timeout);
64ed93a2
NA
1211}
1212EXPORT_SYMBOL(schedule_timeout_interruptible);
1213
1214signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1215{
a5a0d52c
AM
1216 __set_current_state(TASK_UNINTERRUPTIBLE);
1217 return schedule_timeout(timeout);
64ed93a2
NA
1218}
1219EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1220
1da177e4
LT
1221/* Thread ID - the internal kernel "pid" */
1222asmlinkage long sys_gettid(void)
1223{
1224 return current->pid;
1225}
1226
1da177e4
LT
1227/*
1228 * sys_sysinfo - fill in sysinfo struct
1229 */
1230asmlinkage long sys_sysinfo(struct sysinfo __user *info)
1231{
1232 struct sysinfo val;
1233 unsigned long mem_total, sav_total;
1234 unsigned int mem_unit, bitcount;
1235 unsigned long seq;
1236
1237 memset((char *)&val, 0, sizeof(struct sysinfo));
1238
1239 do {
1240 struct timespec tp;
1241 seq = read_seqbegin(&xtime_lock);
1242
1243 /*
1244 * This is annoying. The below is the same thing
1245 * posix_get_clock_monotonic() does, but it wants to
1246 * take the lock which we want to cover the loads stuff
1247 * too.
1248 */
1249
1250 getnstimeofday(&tp);
1251 tp.tv_sec += wall_to_monotonic.tv_sec;
1252 tp.tv_nsec += wall_to_monotonic.tv_nsec;
1253 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1254 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1255 tp.tv_sec++;
1256 }
1257 val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1258
1259 val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1260 val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1261 val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1262
1263 val.procs = nr_threads;
1264 } while (read_seqretry(&xtime_lock, seq));
1265
1266 si_meminfo(&val);
1267 si_swapinfo(&val);
1268
1269 /*
1270 * If the sum of all the available memory (i.e. ram + swap)
1271 * is less than can be stored in a 32 bit unsigned long then
1272 * we can be binary compatible with 2.2.x kernels. If not,
1273 * well, in that case 2.2.x was broken anyways...
1274 *
1275 * -Erik Andersen <andersee@debian.org>
1276 */
1277
1278 mem_total = val.totalram + val.totalswap;
1279 if (mem_total < val.totalram || mem_total < val.totalswap)
1280 goto out;
1281 bitcount = 0;
1282 mem_unit = val.mem_unit;
1283 while (mem_unit > 1) {
1284 bitcount++;
1285 mem_unit >>= 1;
1286 sav_total = mem_total;
1287 mem_total <<= 1;
1288 if (mem_total < sav_total)
1289 goto out;
1290 }
1291
1292 /*
1293 * If mem_total did not overflow, multiply all memory values by
1294 * val.mem_unit and set it to 1. This leaves things compatible
1295 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1296 * kernels...
1297 */
1298
1299 val.mem_unit = 1;
1300 val.totalram <<= bitcount;
1301 val.freeram <<= bitcount;
1302 val.sharedram <<= bitcount;
1303 val.bufferram <<= bitcount;
1304 val.totalswap <<= bitcount;
1305 val.freeswap <<= bitcount;
1306 val.totalhigh <<= bitcount;
1307 val.freehigh <<= bitcount;
1308
1309 out:
1310 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1311 return -EFAULT;
1312
1313 return 0;
1314}
1315
a4a6198b 1316static int __devinit init_timers_cpu(int cpu)
1da177e4
LT
1317{
1318 int j;
1319 tvec_base_t *base;
ba6edfcd 1320 static char __devinitdata tvec_base_done[NR_CPUS];
55c888d6 1321
ba6edfcd 1322 if (!tvec_base_done[cpu]) {
a4a6198b
JB
1323 static char boot_done;
1324
a4a6198b 1325 if (boot_done) {
ba6edfcd
AM
1326 /*
1327 * The APs use this path later in boot
1328 */
a4a6198b
JB
1329 base = kmalloc_node(sizeof(*base), GFP_KERNEL,
1330 cpu_to_node(cpu));
1331 if (!base)
1332 return -ENOMEM;
1333 memset(base, 0, sizeof(*base));
ba6edfcd 1334 per_cpu(tvec_bases, cpu) = base;
a4a6198b 1335 } else {
ba6edfcd
AM
1336 /*
1337 * This is for the boot CPU - we use compile-time
1338 * static initialisation because per-cpu memory isn't
1339 * ready yet and because the memory allocators are not
1340 * initialised either.
1341 */
a4a6198b 1342 boot_done = 1;
ba6edfcd 1343 base = &boot_tvec_bases;
a4a6198b 1344 }
ba6edfcd
AM
1345 tvec_base_done[cpu] = 1;
1346 } else {
1347 base = per_cpu(tvec_bases, cpu);
a4a6198b 1348 }
ba6edfcd 1349
3691c519 1350 spin_lock_init(&base->lock);
1da177e4
LT
1351 for (j = 0; j < TVN_SIZE; j++) {
1352 INIT_LIST_HEAD(base->tv5.vec + j);
1353 INIT_LIST_HEAD(base->tv4.vec + j);
1354 INIT_LIST_HEAD(base->tv3.vec + j);
1355 INIT_LIST_HEAD(base->tv2.vec + j);
1356 }
1357 for (j = 0; j < TVR_SIZE; j++)
1358 INIT_LIST_HEAD(base->tv1.vec + j);
1359
1360 base->timer_jiffies = jiffies;
a4a6198b 1361 return 0;
1da177e4
LT
1362}
1363
1364#ifdef CONFIG_HOTPLUG_CPU
55c888d6 1365static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
1da177e4
LT
1366{
1367 struct timer_list *timer;
1368
1369 while (!list_empty(head)) {
1370 timer = list_entry(head->next, struct timer_list, entry);
55c888d6 1371 detach_timer(timer, 0);
3691c519 1372 timer->base = new_base;
1da177e4 1373 internal_add_timer(new_base, timer);
1da177e4 1374 }
1da177e4
LT
1375}
1376
1377static void __devinit migrate_timers(int cpu)
1378{
1379 tvec_base_t *old_base;
1380 tvec_base_t *new_base;
1381 int i;
1382
1383 BUG_ON(cpu_online(cpu));
a4a6198b
JB
1384 old_base = per_cpu(tvec_bases, cpu);
1385 new_base = get_cpu_var(tvec_bases);
1da177e4
LT
1386
1387 local_irq_disable();
3691c519
ON
1388 spin_lock(&new_base->lock);
1389 spin_lock(&old_base->lock);
1390
1391 BUG_ON(old_base->running_timer);
1da177e4 1392
1da177e4 1393 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1394 migrate_timer_list(new_base, old_base->tv1.vec + i);
1395 for (i = 0; i < TVN_SIZE; i++) {
1396 migrate_timer_list(new_base, old_base->tv2.vec + i);
1397 migrate_timer_list(new_base, old_base->tv3.vec + i);
1398 migrate_timer_list(new_base, old_base->tv4.vec + i);
1399 migrate_timer_list(new_base, old_base->tv5.vec + i);
1400 }
1401
3691c519
ON
1402 spin_unlock(&old_base->lock);
1403 spin_unlock(&new_base->lock);
1da177e4
LT
1404 local_irq_enable();
1405 put_cpu_var(tvec_bases);
1da177e4
LT
1406}
1407#endif /* CONFIG_HOTPLUG_CPU */
1408
83d722f7 1409static int timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1410 unsigned long action, void *hcpu)
1411{
1412 long cpu = (long)hcpu;
1413 switch(action) {
1414 case CPU_UP_PREPARE:
a4a6198b
JB
1415 if (init_timers_cpu(cpu) < 0)
1416 return NOTIFY_BAD;
1da177e4
LT
1417 break;
1418#ifdef CONFIG_HOTPLUG_CPU
1419 case CPU_DEAD:
1420 migrate_timers(cpu);
1421 break;
1422#endif
1423 default:
1424 break;
1425 }
1426 return NOTIFY_OK;
1427}
1428
649bbaa4 1429static struct notifier_block timers_nb = {
1da177e4
LT
1430 .notifier_call = timer_cpu_notify,
1431};
1432
1433
1434void __init init_timers(void)
1435{
1436 timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1437 (void *)(long)smp_processor_id());
1438 register_cpu_notifier(&timers_nb);
1439 open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
1440}
1441
1442#ifdef CONFIG_TIME_INTERPOLATION
1443
67890d70
CL
1444struct time_interpolator *time_interpolator __read_mostly;
1445static struct time_interpolator *time_interpolator_list __read_mostly;
1da177e4
LT
1446static DEFINE_SPINLOCK(time_interpolator_lock);
1447
1448static inline u64 time_interpolator_get_cycles(unsigned int src)
1449{
1450 unsigned long (*x)(void);
1451
1452 switch (src)
1453 {
1454 case TIME_SOURCE_FUNCTION:
1455 x = time_interpolator->addr;
1456 return x();
1457
1458 case TIME_SOURCE_MMIO64 :
685db65e 1459 return readq_relaxed((void __iomem *)time_interpolator->addr);
1da177e4
LT
1460
1461 case TIME_SOURCE_MMIO32 :
685db65e 1462 return readl_relaxed((void __iomem *)time_interpolator->addr);
1da177e4
LT
1463
1464 default: return get_cycles();
1465 }
1466}
1467
486d46ae 1468static inline u64 time_interpolator_get_counter(int writelock)
1da177e4
LT
1469{
1470 unsigned int src = time_interpolator->source;
1471
1472 if (time_interpolator->jitter)
1473 {
1474 u64 lcycle;
1475 u64 now;
1476
1477 do {
1478 lcycle = time_interpolator->last_cycle;
1479 now = time_interpolator_get_cycles(src);
1480 if (lcycle && time_after(lcycle, now))
1481 return lcycle;
486d46ae
AW
1482
1483 /* When holding the xtime write lock, there's no need
1484 * to add the overhead of the cmpxchg. Readers are
1485 * force to retry until the write lock is released.
1486 */
1487 if (writelock) {
1488 time_interpolator->last_cycle = now;
1489 return now;
1490 }
1da177e4
LT
1491 /* Keep track of the last timer value returned. The use of cmpxchg here
1492 * will cause contention in an SMP environment.
1493 */
1494 } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle));
1495 return now;
1496 }
1497 else
1498 return time_interpolator_get_cycles(src);
1499}
1500
1501void time_interpolator_reset(void)
1502{
1503 time_interpolator->offset = 0;
486d46ae 1504 time_interpolator->last_counter = time_interpolator_get_counter(1);
1da177e4
LT
1505}
1506
1507#define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)
1508
1509unsigned long time_interpolator_get_offset(void)
1510{
1511 /* If we do not have a time interpolator set up then just return zero */
1512 if (!time_interpolator)
1513 return 0;
1514
1515 return time_interpolator->offset +
486d46ae 1516 GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator);
1da177e4
LT
1517}
1518
1519#define INTERPOLATOR_ADJUST 65536
1520#define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
1521
1522static void time_interpolator_update(long delta_nsec)
1523{
1524 u64 counter;
1525 unsigned long offset;
1526
1527 /* If there is no time interpolator set up then do nothing */
1528 if (!time_interpolator)
1529 return;
1530
a5a0d52c
AM
1531 /*
1532 * The interpolator compensates for late ticks by accumulating the late
1533 * time in time_interpolator->offset. A tick earlier than expected will
1534 * lead to a reset of the offset and a corresponding jump of the clock
1535 * forward. Again this only works if the interpolator clock is running
1536 * slightly slower than the regular clock and the tuning logic insures
1537 * that.
1538 */
1da177e4 1539
486d46ae 1540 counter = time_interpolator_get_counter(1);
a5a0d52c
AM
1541 offset = time_interpolator->offset +
1542 GET_TI_NSECS(counter, time_interpolator);
1da177e4
LT
1543
1544 if (delta_nsec < 0 || (unsigned long) delta_nsec < offset)
1545 time_interpolator->offset = offset - delta_nsec;
1546 else {
1547 time_interpolator->skips++;
1548 time_interpolator->ns_skipped += delta_nsec - offset;
1549 time_interpolator->offset = 0;
1550 }
1551 time_interpolator->last_counter = counter;
1552
1553 /* Tuning logic for time interpolator invoked every minute or so.
1554 * Decrease interpolator clock speed if no skips occurred and an offset is carried.
1555 * Increase interpolator clock speed if we skip too much time.
1556 */
1557 if (jiffies % INTERPOLATOR_ADJUST == 0)
1558 {
b20367a6 1559 if (time_interpolator->skips == 0 && time_interpolator->offset > tick_nsec)
1da177e4
LT
1560 time_interpolator->nsec_per_cyc--;
1561 if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0)
1562 time_interpolator->nsec_per_cyc++;
1563 time_interpolator->skips = 0;
1564 time_interpolator->ns_skipped = 0;
1565 }
1566}
1567
1568static inline int
1569is_better_time_interpolator(struct time_interpolator *new)
1570{
1571 if (!time_interpolator)
1572 return 1;
1573 return new->frequency > 2*time_interpolator->frequency ||
1574 (unsigned long)new->drift < (unsigned long)time_interpolator->drift;
1575}
1576
1577void
1578register_time_interpolator(struct time_interpolator *ti)
1579{
1580 unsigned long flags;
1581
1582 /* Sanity check */
9f31252c 1583 BUG_ON(ti->frequency == 0 || ti->mask == 0);
1da177e4
LT
1584
1585 ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
1586 spin_lock(&time_interpolator_lock);
1587 write_seqlock_irqsave(&xtime_lock, flags);
1588 if (is_better_time_interpolator(ti)) {
1589 time_interpolator = ti;
1590 time_interpolator_reset();
1591 }
1592 write_sequnlock_irqrestore(&xtime_lock, flags);
1593
1594 ti->next = time_interpolator_list;
1595 time_interpolator_list = ti;
1596 spin_unlock(&time_interpolator_lock);
1597}
1598
1599void
1600unregister_time_interpolator(struct time_interpolator *ti)
1601{
1602 struct time_interpolator *curr, **prev;
1603 unsigned long flags;
1604
1605 spin_lock(&time_interpolator_lock);
1606 prev = &time_interpolator_list;
1607 for (curr = *prev; curr; curr = curr->next) {
1608 if (curr == ti) {
1609 *prev = curr->next;
1610 break;
1611 }
1612 prev = &curr->next;
1613 }
1614
1615 write_seqlock_irqsave(&xtime_lock, flags);
1616 if (ti == time_interpolator) {
1617 /* we lost the best time-interpolator: */
1618 time_interpolator = NULL;
1619 /* find the next-best interpolator */
1620 for (curr = time_interpolator_list; curr; curr = curr->next)
1621 if (is_better_time_interpolator(curr))
1622 time_interpolator = curr;
1623 time_interpolator_reset();
1624 }
1625 write_sequnlock_irqrestore(&xtime_lock, flags);
1626 spin_unlock(&time_interpolator_lock);
1627}
1628#endif /* CONFIG_TIME_INTERPOLATION */
1629
1630/**
1631 * msleep - sleep safely even with waitqueue interruptions
1632 * @msecs: Time in milliseconds to sleep for
1633 */
1634void msleep(unsigned int msecs)
1635{
1636 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1637
75bcc8c5
NA
1638 while (timeout)
1639 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1640}
1641
1642EXPORT_SYMBOL(msleep);
1643
1644/**
96ec3efd 1645 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1646 * @msecs: Time in milliseconds to sleep for
1647 */
1648unsigned long msleep_interruptible(unsigned int msecs)
1649{
1650 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1651
75bcc8c5
NA
1652 while (timeout && !signal_pending(current))
1653 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1654 return jiffies_to_msecs(timeout);
1655}
1656
1657EXPORT_SYMBOL(msleep_interruptible);