]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/timer.c
Revert "sky2: don't do GRO on second port"
[net-next-2.6.git] / kernel / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
8524070b 4 * Kernel internal timers, basic process system calls
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
b488893a 29#include <linux/pid_namespace.h>
1da177e4
LT
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
97a41e26 37#include <linux/delay.h>
79bf2bb3 38#include <linux/tick.h>
82f67cd9 39#include <linux/kallsyms.h>
cdd6c482 40#include <linux/perf_event.h>
eea08f32 41#include <linux/sched.h>
5a0e3ad6 42#include <linux/slab.h>
1da177e4
LT
43
44#include <asm/uaccess.h>
45#include <asm/unistd.h>
46#include <asm/div64.h>
47#include <asm/timex.h>
48#include <asm/io.h>
49
2b022e3d
XG
50#define CREATE_TRACE_POINTS
51#include <trace/events/timer.h>
52
ecea8d19
TG
53u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
54
55EXPORT_SYMBOL(jiffies_64);
56
1da177e4
LT
57/*
58 * per-CPU timer vector definitions:
59 */
1da177e4
LT
60#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62#define TVN_SIZE (1 << TVN_BITS)
63#define TVR_SIZE (1 << TVR_BITS)
64#define TVN_MASK (TVN_SIZE - 1)
65#define TVR_MASK (TVR_SIZE - 1)
66
a6fa8e5a 67struct tvec {
1da177e4 68 struct list_head vec[TVN_SIZE];
a6fa8e5a 69};
1da177e4 70
a6fa8e5a 71struct tvec_root {
1da177e4 72 struct list_head vec[TVR_SIZE];
a6fa8e5a 73};
1da177e4 74
a6fa8e5a 75struct tvec_base {
3691c519
ON
76 spinlock_t lock;
77 struct timer_list *running_timer;
1da177e4 78 unsigned long timer_jiffies;
97fd9ed4 79 unsigned long next_timer;
a6fa8e5a
PM
80 struct tvec_root tv1;
81 struct tvec tv2;
82 struct tvec tv3;
83 struct tvec tv4;
84 struct tvec tv5;
6e453a67 85} ____cacheline_aligned;
1da177e4 86
a6fa8e5a 87struct tvec_base boot_tvec_bases;
3691c519 88EXPORT_SYMBOL(boot_tvec_bases);
a6fa8e5a 89static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
1da177e4 90
6e453a67 91/*
a6fa8e5a 92 * Note that all tvec_bases are 2 byte aligned and lower bit of
6e453a67
VP
93 * base in timer_list is guaranteed to be zero. Use the LSB for
94 * the new flag to indicate whether the timer is deferrable
95 */
96#define TBASE_DEFERRABLE_FLAG (0x1)
97
98/* Functions below help us manage 'deferrable' flag */
a6fa8e5a 99static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
6e453a67 100{
e9910846 101 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
6e453a67
VP
102}
103
a6fa8e5a 104static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
6e453a67 105{
a6fa8e5a 106 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
6e453a67
VP
107}
108
109static inline void timer_set_deferrable(struct timer_list *timer)
110{
a6fa8e5a 111 timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
6819457d 112 TBASE_DEFERRABLE_FLAG));
6e453a67
VP
113}
114
115static inline void
a6fa8e5a 116timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
6e453a67 117{
a6fa8e5a 118 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
6819457d 119 tbase_get_deferrable(timer->base));
6e453a67
VP
120}
121
9c133c46
AS
122static unsigned long round_jiffies_common(unsigned long j, int cpu,
123 bool force_up)
4c36a5de
AV
124{
125 int rem;
126 unsigned long original = j;
127
128 /*
129 * We don't want all cpus firing their timers at once hitting the
130 * same lock or cachelines, so we skew each extra cpu with an extra
131 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
132 * already did this.
133 * The skew is done by adding 3*cpunr, then round, then subtract this
134 * extra offset again.
135 */
136 j += cpu * 3;
137
138 rem = j % HZ;
139
140 /*
141 * If the target jiffie is just after a whole second (which can happen
142 * due to delays of the timer irq, long irq off times etc etc) then
143 * we should round down to the whole second, not up. Use 1/4th second
144 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 145 * But never round down if @force_up is set.
4c36a5de 146 */
9c133c46 147 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
148 j = j - rem;
149 else /* round up */
150 j = j - rem + HZ;
151
152 /* now that we have rounded, subtract the extra skew again */
153 j -= cpu * 3;
154
155 if (j <= jiffies) /* rounding ate our timeout entirely; */
156 return original;
157 return j;
158}
9c133c46
AS
159
160/**
161 * __round_jiffies - function to round jiffies to a full second
162 * @j: the time in (absolute) jiffies that should be rounded
163 * @cpu: the processor number on which the timeout will happen
164 *
165 * __round_jiffies() rounds an absolute time in the future (in jiffies)
166 * up or down to (approximately) full seconds. This is useful for timers
167 * for which the exact time they fire does not matter too much, as long as
168 * they fire approximately every X seconds.
169 *
170 * By rounding these timers to whole seconds, all such timers will fire
171 * at the same time, rather than at various times spread out. The goal
172 * of this is to have the CPU wake up less, which saves power.
173 *
174 * The exact rounding is skewed for each processor to avoid all
175 * processors firing at the exact same time, which could lead
176 * to lock contention or spurious cache line bouncing.
177 *
178 * The return value is the rounded version of the @j parameter.
179 */
180unsigned long __round_jiffies(unsigned long j, int cpu)
181{
182 return round_jiffies_common(j, cpu, false);
183}
4c36a5de
AV
184EXPORT_SYMBOL_GPL(__round_jiffies);
185
186/**
187 * __round_jiffies_relative - function to round jiffies to a full second
188 * @j: the time in (relative) jiffies that should be rounded
189 * @cpu: the processor number on which the timeout will happen
190 *
72fd4a35 191 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
192 * up or down to (approximately) full seconds. This is useful for timers
193 * for which the exact time they fire does not matter too much, as long as
194 * they fire approximately every X seconds.
195 *
196 * By rounding these timers to whole seconds, all such timers will fire
197 * at the same time, rather than at various times spread out. The goal
198 * of this is to have the CPU wake up less, which saves power.
199 *
200 * The exact rounding is skewed for each processor to avoid all
201 * processors firing at the exact same time, which could lead
202 * to lock contention or spurious cache line bouncing.
203 *
72fd4a35 204 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
205 */
206unsigned long __round_jiffies_relative(unsigned long j, int cpu)
207{
9c133c46
AS
208 unsigned long j0 = jiffies;
209
210 /* Use j0 because jiffies might change while we run */
211 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
212}
213EXPORT_SYMBOL_GPL(__round_jiffies_relative);
214
215/**
216 * round_jiffies - function to round jiffies to a full second
217 * @j: the time in (absolute) jiffies that should be rounded
218 *
72fd4a35 219 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
220 * up or down to (approximately) full seconds. This is useful for timers
221 * for which the exact time they fire does not matter too much, as long as
222 * they fire approximately every X seconds.
223 *
224 * By rounding these timers to whole seconds, all such timers will fire
225 * at the same time, rather than at various times spread out. The goal
226 * of this is to have the CPU wake up less, which saves power.
227 *
72fd4a35 228 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
229 */
230unsigned long round_jiffies(unsigned long j)
231{
9c133c46 232 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
233}
234EXPORT_SYMBOL_GPL(round_jiffies);
235
236/**
237 * round_jiffies_relative - function to round jiffies to a full second
238 * @j: the time in (relative) jiffies that should be rounded
239 *
72fd4a35 240 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
241 * up or down to (approximately) full seconds. This is useful for timers
242 * for which the exact time they fire does not matter too much, as long as
243 * they fire approximately every X seconds.
244 *
245 * By rounding these timers to whole seconds, all such timers will fire
246 * at the same time, rather than at various times spread out. The goal
247 * of this is to have the CPU wake up less, which saves power.
248 *
72fd4a35 249 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
250 */
251unsigned long round_jiffies_relative(unsigned long j)
252{
253 return __round_jiffies_relative(j, raw_smp_processor_id());
254}
255EXPORT_SYMBOL_GPL(round_jiffies_relative);
256
9c133c46
AS
257/**
258 * __round_jiffies_up - function to round jiffies up to a full second
259 * @j: the time in (absolute) jiffies that should be rounded
260 * @cpu: the processor number on which the timeout will happen
261 *
262 * This is the same as __round_jiffies() except that it will never
263 * round down. This is useful for timeouts for which the exact time
264 * of firing does not matter too much, as long as they don't fire too
265 * early.
266 */
267unsigned long __round_jiffies_up(unsigned long j, int cpu)
268{
269 return round_jiffies_common(j, cpu, true);
270}
271EXPORT_SYMBOL_GPL(__round_jiffies_up);
272
273/**
274 * __round_jiffies_up_relative - function to round jiffies up to a full second
275 * @j: the time in (relative) jiffies that should be rounded
276 * @cpu: the processor number on which the timeout will happen
277 *
278 * This is the same as __round_jiffies_relative() except that it will never
279 * round down. This is useful for timeouts for which the exact time
280 * of firing does not matter too much, as long as they don't fire too
281 * early.
282 */
283unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
284{
285 unsigned long j0 = jiffies;
286
287 /* Use j0 because jiffies might change while we run */
288 return round_jiffies_common(j + j0, cpu, true) - j0;
289}
290EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
291
292/**
293 * round_jiffies_up - function to round jiffies up to a full second
294 * @j: the time in (absolute) jiffies that should be rounded
295 *
296 * This is the same as round_jiffies() except that it will never
297 * round down. This is useful for timeouts for which the exact time
298 * of firing does not matter too much, as long as they don't fire too
299 * early.
300 */
301unsigned long round_jiffies_up(unsigned long j)
302{
303 return round_jiffies_common(j, raw_smp_processor_id(), true);
304}
305EXPORT_SYMBOL_GPL(round_jiffies_up);
306
307/**
308 * round_jiffies_up_relative - function to round jiffies up to a full second
309 * @j: the time in (relative) jiffies that should be rounded
310 *
311 * This is the same as round_jiffies_relative() except that it will never
312 * round down. This is useful for timeouts for which the exact time
313 * of firing does not matter too much, as long as they don't fire too
314 * early.
315 */
316unsigned long round_jiffies_up_relative(unsigned long j)
317{
318 return __round_jiffies_up_relative(j, raw_smp_processor_id());
319}
320EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
321
3bbb9ec9
AV
322/**
323 * set_timer_slack - set the allowed slack for a timer
324 * @slack_hz: the amount of time (in jiffies) allowed for rounding
325 *
326 * Set the amount of time, in jiffies, that a certain timer has
327 * in terms of slack. By setting this value, the timer subsystem
328 * will schedule the actual timer somewhere between
329 * the time mod_timer() asks for, and that time plus the slack.
330 *
331 * By setting the slack to -1, a percentage of the delay is used
332 * instead.
333 */
334void set_timer_slack(struct timer_list *timer, int slack_hz)
335{
336 timer->slack = slack_hz;
337}
338EXPORT_SYMBOL_GPL(set_timer_slack);
339
4c36a5de 340
a6fa8e5a 341static inline void set_running_timer(struct tvec_base *base,
1da177e4
LT
342 struct timer_list *timer)
343{
344#ifdef CONFIG_SMP
3691c519 345 base->running_timer = timer;
1da177e4
LT
346#endif
347}
348
a6fa8e5a 349static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
1da177e4
LT
350{
351 unsigned long expires = timer->expires;
352 unsigned long idx = expires - base->timer_jiffies;
353 struct list_head *vec;
354
355 if (idx < TVR_SIZE) {
356 int i = expires & TVR_MASK;
357 vec = base->tv1.vec + i;
358 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
359 int i = (expires >> TVR_BITS) & TVN_MASK;
360 vec = base->tv2.vec + i;
361 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
362 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
363 vec = base->tv3.vec + i;
364 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
365 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
366 vec = base->tv4.vec + i;
367 } else if ((signed long) idx < 0) {
368 /*
369 * Can happen if you add a timer with expires == jiffies,
370 * or you set a timer to go off in the past
371 */
372 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
373 } else {
374 int i;
375 /* If the timeout is larger than 0xffffffff on 64-bit
376 * architectures then we use the maximum timeout:
377 */
378 if (idx > 0xffffffffUL) {
379 idx = 0xffffffffUL;
380 expires = idx + base->timer_jiffies;
381 }
382 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
383 vec = base->tv5.vec + i;
384 }
385 /*
386 * Timers are FIFO:
387 */
388 list_add_tail(&timer->entry, vec);
389}
390
82f67cd9
IM
391#ifdef CONFIG_TIMER_STATS
392void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
393{
394 if (timer->start_site)
395 return;
396
397 timer->start_site = addr;
398 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
399 timer->start_pid = current->pid;
400}
c5c061b8
VP
401
402static void timer_stats_account_timer(struct timer_list *timer)
403{
404 unsigned int flag = 0;
405
507e1231
HC
406 if (likely(!timer->start_site))
407 return;
c5c061b8
VP
408 if (unlikely(tbase_get_deferrable(timer->base)))
409 flag |= TIMER_STATS_FLAG_DEFERRABLE;
410
411 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
412 timer->function, timer->start_comm, flag);
413}
414
415#else
416static void timer_stats_account_timer(struct timer_list *timer) {}
82f67cd9
IM
417#endif
418
c6f3a97f
TG
419#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
420
421static struct debug_obj_descr timer_debug_descr;
422
423/*
424 * fixup_init is called when:
425 * - an active object is initialized
55c888d6 426 */
c6f3a97f
TG
427static int timer_fixup_init(void *addr, enum debug_obj_state state)
428{
429 struct timer_list *timer = addr;
430
431 switch (state) {
432 case ODEBUG_STATE_ACTIVE:
433 del_timer_sync(timer);
434 debug_object_init(timer, &timer_debug_descr);
435 return 1;
436 default:
437 return 0;
438 }
439}
440
441/*
442 * fixup_activate is called when:
443 * - an active object is activated
444 * - an unknown object is activated (might be a statically initialized object)
445 */
446static int timer_fixup_activate(void *addr, enum debug_obj_state state)
447{
448 struct timer_list *timer = addr;
449
450 switch (state) {
451
452 case ODEBUG_STATE_NOTAVAILABLE:
453 /*
454 * This is not really a fixup. The timer was
455 * statically initialized. We just make sure that it
456 * is tracked in the object tracker.
457 */
458 if (timer->entry.next == NULL &&
459 timer->entry.prev == TIMER_ENTRY_STATIC) {
460 debug_object_init(timer, &timer_debug_descr);
461 debug_object_activate(timer, &timer_debug_descr);
462 return 0;
463 } else {
464 WARN_ON_ONCE(1);
465 }
466 return 0;
467
468 case ODEBUG_STATE_ACTIVE:
469 WARN_ON(1);
470
471 default:
472 return 0;
473 }
474}
475
476/*
477 * fixup_free is called when:
478 * - an active object is freed
479 */
480static int timer_fixup_free(void *addr, enum debug_obj_state state)
481{
482 struct timer_list *timer = addr;
483
484 switch (state) {
485 case ODEBUG_STATE_ACTIVE:
486 del_timer_sync(timer);
487 debug_object_free(timer, &timer_debug_descr);
488 return 1;
489 default:
490 return 0;
491 }
492}
493
494static struct debug_obj_descr timer_debug_descr = {
495 .name = "timer_list",
496 .fixup_init = timer_fixup_init,
497 .fixup_activate = timer_fixup_activate,
498 .fixup_free = timer_fixup_free,
499};
500
501static inline void debug_timer_init(struct timer_list *timer)
502{
503 debug_object_init(timer, &timer_debug_descr);
504}
505
506static inline void debug_timer_activate(struct timer_list *timer)
507{
508 debug_object_activate(timer, &timer_debug_descr);
509}
510
511static inline void debug_timer_deactivate(struct timer_list *timer)
512{
513 debug_object_deactivate(timer, &timer_debug_descr);
514}
515
516static inline void debug_timer_free(struct timer_list *timer)
517{
518 debug_object_free(timer, &timer_debug_descr);
519}
520
6f2b9b9a
JB
521static void __init_timer(struct timer_list *timer,
522 const char *name,
523 struct lock_class_key *key);
c6f3a97f 524
6f2b9b9a
JB
525void init_timer_on_stack_key(struct timer_list *timer,
526 const char *name,
527 struct lock_class_key *key)
c6f3a97f
TG
528{
529 debug_object_init_on_stack(timer, &timer_debug_descr);
6f2b9b9a 530 __init_timer(timer, name, key);
c6f3a97f 531}
6f2b9b9a 532EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
c6f3a97f
TG
533
534void destroy_timer_on_stack(struct timer_list *timer)
535{
536 debug_object_free(timer, &timer_debug_descr);
537}
538EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
539
540#else
541static inline void debug_timer_init(struct timer_list *timer) { }
542static inline void debug_timer_activate(struct timer_list *timer) { }
543static inline void debug_timer_deactivate(struct timer_list *timer) { }
544#endif
545
2b022e3d
XG
546static inline void debug_init(struct timer_list *timer)
547{
548 debug_timer_init(timer);
549 trace_timer_init(timer);
550}
551
552static inline void
553debug_activate(struct timer_list *timer, unsigned long expires)
554{
555 debug_timer_activate(timer);
556 trace_timer_start(timer, expires);
557}
558
559static inline void debug_deactivate(struct timer_list *timer)
560{
561 debug_timer_deactivate(timer);
562 trace_timer_cancel(timer);
563}
564
6f2b9b9a
JB
565static void __init_timer(struct timer_list *timer,
566 const char *name,
567 struct lock_class_key *key)
55c888d6
ON
568{
569 timer->entry.next = NULL;
bfe5d834 570 timer->base = __raw_get_cpu_var(tvec_bases);
3bbb9ec9 571 timer->slack = -1;
82f67cd9
IM
572#ifdef CONFIG_TIMER_STATS
573 timer->start_site = NULL;
574 timer->start_pid = -1;
575 memset(timer->start_comm, 0, TASK_COMM_LEN);
576#endif
6f2b9b9a 577 lockdep_init_map(&timer->lockdep_map, name, key, 0);
55c888d6 578}
c6f3a97f 579
8cadd283
JB
580void setup_deferrable_timer_on_stack_key(struct timer_list *timer,
581 const char *name,
582 struct lock_class_key *key,
583 void (*function)(unsigned long),
584 unsigned long data)
585{
586 timer->function = function;
587 timer->data = data;
588 init_timer_on_stack_key(timer, name, key);
589 timer_set_deferrable(timer);
590}
591EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key);
592
c6f3a97f 593/**
633fe795 594 * init_timer_key - initialize a timer
c6f3a97f 595 * @timer: the timer to be initialized
633fe795
RD
596 * @name: name of the timer
597 * @key: lockdep class key of the fake lock used for tracking timer
598 * sync lock dependencies
c6f3a97f 599 *
633fe795 600 * init_timer_key() must be done to a timer prior calling *any* of the
c6f3a97f
TG
601 * other timer functions.
602 */
6f2b9b9a
JB
603void init_timer_key(struct timer_list *timer,
604 const char *name,
605 struct lock_class_key *key)
c6f3a97f 606{
2b022e3d 607 debug_init(timer);
6f2b9b9a 608 __init_timer(timer, name, key);
c6f3a97f 609}
6f2b9b9a 610EXPORT_SYMBOL(init_timer_key);
55c888d6 611
6f2b9b9a
JB
612void init_timer_deferrable_key(struct timer_list *timer,
613 const char *name,
614 struct lock_class_key *key)
6e453a67 615{
6f2b9b9a 616 init_timer_key(timer, name, key);
6e453a67
VP
617 timer_set_deferrable(timer);
618}
6f2b9b9a 619EXPORT_SYMBOL(init_timer_deferrable_key);
6e453a67 620
55c888d6 621static inline void detach_timer(struct timer_list *timer,
82f67cd9 622 int clear_pending)
55c888d6
ON
623{
624 struct list_head *entry = &timer->entry;
625
2b022e3d 626 debug_deactivate(timer);
c6f3a97f 627
55c888d6
ON
628 __list_del(entry->prev, entry->next);
629 if (clear_pending)
630 entry->next = NULL;
631 entry->prev = LIST_POISON2;
632}
633
634/*
3691c519 635 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
636 * means that all timers which are tied to this base via timer->base are
637 * locked, and the base itself is locked too.
638 *
639 * So __run_timers/migrate_timers can safely modify all timers which could
640 * be found on ->tvX lists.
641 *
642 * When the timer's base is locked, and the timer removed from list, it is
643 * possible to set timer->base = NULL and drop the lock: the timer remains
644 * locked.
645 */
a6fa8e5a 646static struct tvec_base *lock_timer_base(struct timer_list *timer,
55c888d6 647 unsigned long *flags)
89e7e374 648 __acquires(timer->base->lock)
55c888d6 649{
a6fa8e5a 650 struct tvec_base *base;
55c888d6
ON
651
652 for (;;) {
a6fa8e5a 653 struct tvec_base *prelock_base = timer->base;
6e453a67 654 base = tbase_get_base(prelock_base);
55c888d6
ON
655 if (likely(base != NULL)) {
656 spin_lock_irqsave(&base->lock, *flags);
6e453a67 657 if (likely(prelock_base == timer->base))
55c888d6
ON
658 return base;
659 /* The timer has migrated to another CPU */
660 spin_unlock_irqrestore(&base->lock, *flags);
661 }
662 cpu_relax();
663 }
664}
665
74019224 666static inline int
597d0275
AB
667__mod_timer(struct timer_list *timer, unsigned long expires,
668 bool pending_only, int pinned)
1da177e4 669{
a6fa8e5a 670 struct tvec_base *base, *new_base;
1da177e4 671 unsigned long flags;
eea08f32 672 int ret = 0 , cpu;
1da177e4 673
82f67cd9 674 timer_stats_timer_set_start_info(timer);
1da177e4 675 BUG_ON(!timer->function);
1da177e4 676
55c888d6
ON
677 base = lock_timer_base(timer, &flags);
678
679 if (timer_pending(timer)) {
680 detach_timer(timer, 0);
97fd9ed4
MS
681 if (timer->expires == base->next_timer &&
682 !tbase_get_deferrable(timer->base))
683 base->next_timer = base->timer_jiffies;
55c888d6 684 ret = 1;
74019224
IM
685 } else {
686 if (pending_only)
687 goto out_unlock;
55c888d6
ON
688 }
689
2b022e3d 690 debug_activate(timer, expires);
c6f3a97f 691
eea08f32
AB
692 cpu = smp_processor_id();
693
694#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
695 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu)) {
696 int preferred_cpu = get_nohz_load_balancer();
697
698 if (preferred_cpu >= 0)
699 cpu = preferred_cpu;
700 }
701#endif
702 new_base = per_cpu(tvec_bases, cpu);
703
3691c519 704 if (base != new_base) {
1da177e4 705 /*
55c888d6
ON
706 * We are trying to schedule the timer on the local CPU.
707 * However we can't change timer's base while it is running,
708 * otherwise del_timer_sync() can't detect that the timer's
709 * handler yet has not finished. This also guarantees that
710 * the timer is serialized wrt itself.
1da177e4 711 */
a2c348fe 712 if (likely(base->running_timer != timer)) {
55c888d6 713 /* See the comment in lock_timer_base() */
6e453a67 714 timer_set_base(timer, NULL);
55c888d6 715 spin_unlock(&base->lock);
a2c348fe
ON
716 base = new_base;
717 spin_lock(&base->lock);
6e453a67 718 timer_set_base(timer, base);
1da177e4
LT
719 }
720 }
721
1da177e4 722 timer->expires = expires;
97fd9ed4
MS
723 if (time_before(timer->expires, base->next_timer) &&
724 !tbase_get_deferrable(timer->base))
725 base->next_timer = timer->expires;
a2c348fe 726 internal_add_timer(base, timer);
74019224
IM
727
728out_unlock:
a2c348fe 729 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
730
731 return ret;
732}
733
2aae4a10 734/**
74019224
IM
735 * mod_timer_pending - modify a pending timer's timeout
736 * @timer: the pending timer to be modified
737 * @expires: new timeout in jiffies
1da177e4 738 *
74019224
IM
739 * mod_timer_pending() is the same for pending timers as mod_timer(),
740 * but will not re-activate and modify already deleted timers.
741 *
742 * It is useful for unserialized use of timers.
1da177e4 743 */
74019224 744int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1da177e4 745{
597d0275 746 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
1da177e4 747}
74019224 748EXPORT_SYMBOL(mod_timer_pending);
1da177e4 749
3bbb9ec9
AV
750/*
751 * Decide where to put the timer while taking the slack into account
752 *
753 * Algorithm:
754 * 1) calculate the maximum (absolute) time
755 * 2) calculate the highest bit where the expires and new max are different
756 * 3) use this bit to make a mask
757 * 4) use the bitmask to round down the maximum time, so that all last
758 * bits are zeros
759 */
760static inline
761unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
762{
763 unsigned long expires_limit, mask;
764 int bit;
765
f00e047e 766 expires_limit = expires;
3bbb9ec9 767
8e63d779 768 if (timer->slack >= 0) {
f00e047e 769 expires_limit = expires + timer->slack;
8e63d779 770 } else {
2abfb9e1 771 unsigned long now = jiffies;
3bbb9ec9 772
8e63d779
TG
773 /* No slack, if already expired else auto slack 0.4% */
774 if (time_after(expires, now))
775 expires_limit = expires + (expires - now)/256;
776 }
3bbb9ec9 777 mask = expires ^ expires_limit;
3bbb9ec9
AV
778 if (mask == 0)
779 return expires;
780
781 bit = find_last_bit(&mask, BITS_PER_LONG);
782
783 mask = (1 << bit) - 1;
784
785 expires_limit = expires_limit & ~(mask);
786
787 return expires_limit;
788}
789
2aae4a10 790/**
1da177e4
LT
791 * mod_timer - modify a timer's timeout
792 * @timer: the timer to be modified
2aae4a10 793 * @expires: new timeout in jiffies
1da177e4 794 *
72fd4a35 795 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
796 * active timer (if the timer is inactive it will be activated)
797 *
798 * mod_timer(timer, expires) is equivalent to:
799 *
800 * del_timer(timer); timer->expires = expires; add_timer(timer);
801 *
802 * Note that if there are multiple unserialized concurrent users of the
803 * same timer, then mod_timer() is the only safe way to modify the timeout,
804 * since add_timer() cannot modify an already running timer.
805 *
806 * The function returns whether it has modified a pending timer or not.
807 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
808 * active timer returns 1.)
809 */
810int mod_timer(struct timer_list *timer, unsigned long expires)
811{
1da177e4
LT
812 /*
813 * This is a common optimization triggered by the
814 * networking code - if the timer is re-modified
815 * to be the same thing then just return:
816 */
4841158b 817 if (timer_pending(timer) && timer->expires == expires)
1da177e4
LT
818 return 1;
819
3bbb9ec9
AV
820 expires = apply_slack(timer, expires);
821
597d0275 822 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
1da177e4 823}
1da177e4
LT
824EXPORT_SYMBOL(mod_timer);
825
597d0275
AB
826/**
827 * mod_timer_pinned - modify a timer's timeout
828 * @timer: the timer to be modified
829 * @expires: new timeout in jiffies
830 *
831 * mod_timer_pinned() is a way to update the expire field of an
832 * active timer (if the timer is inactive it will be activated)
833 * and not allow the timer to be migrated to a different CPU.
834 *
835 * mod_timer_pinned(timer, expires) is equivalent to:
836 *
837 * del_timer(timer); timer->expires = expires; add_timer(timer);
838 */
839int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
840{
841 if (timer->expires == expires && timer_pending(timer))
842 return 1;
843
844 return __mod_timer(timer, expires, false, TIMER_PINNED);
845}
846EXPORT_SYMBOL(mod_timer_pinned);
847
74019224
IM
848/**
849 * add_timer - start a timer
850 * @timer: the timer to be added
851 *
852 * The kernel will do a ->function(->data) callback from the
853 * timer interrupt at the ->expires point in the future. The
854 * current time is 'jiffies'.
855 *
856 * The timer's ->expires, ->function (and if the handler uses it, ->data)
857 * fields must be set prior calling this function.
858 *
859 * Timers with an ->expires field in the past will be executed in the next
860 * timer tick.
861 */
862void add_timer(struct timer_list *timer)
863{
864 BUG_ON(timer_pending(timer));
865 mod_timer(timer, timer->expires);
866}
867EXPORT_SYMBOL(add_timer);
868
869/**
870 * add_timer_on - start a timer on a particular CPU
871 * @timer: the timer to be added
872 * @cpu: the CPU to start it on
873 *
874 * This is not very scalable on SMP. Double adds are not possible.
875 */
876void add_timer_on(struct timer_list *timer, int cpu)
877{
878 struct tvec_base *base = per_cpu(tvec_bases, cpu);
879 unsigned long flags;
880
881 timer_stats_timer_set_start_info(timer);
882 BUG_ON(timer_pending(timer) || !timer->function);
883 spin_lock_irqsave(&base->lock, flags);
884 timer_set_base(timer, base);
2b022e3d 885 debug_activate(timer, timer->expires);
97fd9ed4
MS
886 if (time_before(timer->expires, base->next_timer) &&
887 !tbase_get_deferrable(timer->base))
888 base->next_timer = timer->expires;
74019224
IM
889 internal_add_timer(base, timer);
890 /*
891 * Check whether the other CPU is idle and needs to be
892 * triggered to reevaluate the timer wheel when nohz is
893 * active. We are protected against the other CPU fiddling
894 * with the timer by holding the timer base lock. This also
895 * makes sure that a CPU on the way to idle can not evaluate
896 * the timer wheel.
897 */
898 wake_up_idle_cpu(cpu);
899 spin_unlock_irqrestore(&base->lock, flags);
900}
a9862e05 901EXPORT_SYMBOL_GPL(add_timer_on);
74019224 902
2aae4a10 903/**
1da177e4
LT
904 * del_timer - deactive a timer.
905 * @timer: the timer to be deactivated
906 *
907 * del_timer() deactivates a timer - this works on both active and inactive
908 * timers.
909 *
910 * The function returns whether it has deactivated a pending timer or not.
911 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
912 * active timer returns 1.)
913 */
914int del_timer(struct timer_list *timer)
915{
a6fa8e5a 916 struct tvec_base *base;
1da177e4 917 unsigned long flags;
55c888d6 918 int ret = 0;
1da177e4 919
82f67cd9 920 timer_stats_timer_clear_start_info(timer);
55c888d6
ON
921 if (timer_pending(timer)) {
922 base = lock_timer_base(timer, &flags);
923 if (timer_pending(timer)) {
924 detach_timer(timer, 1);
97fd9ed4
MS
925 if (timer->expires == base->next_timer &&
926 !tbase_get_deferrable(timer->base))
927 base->next_timer = base->timer_jiffies;
55c888d6
ON
928 ret = 1;
929 }
1da177e4 930 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 931 }
1da177e4 932
55c888d6 933 return ret;
1da177e4 934}
1da177e4
LT
935EXPORT_SYMBOL(del_timer);
936
937#ifdef CONFIG_SMP
2aae4a10
REB
938/**
939 * try_to_del_timer_sync - Try to deactivate a timer
940 * @timer: timer do del
941 *
fd450b73
ON
942 * This function tries to deactivate a timer. Upon successful (ret >= 0)
943 * exit the timer is not queued and the handler is not running on any CPU.
944 *
945 * It must not be called from interrupt contexts.
946 */
947int try_to_del_timer_sync(struct timer_list *timer)
948{
a6fa8e5a 949 struct tvec_base *base;
fd450b73
ON
950 unsigned long flags;
951 int ret = -1;
952
953 base = lock_timer_base(timer, &flags);
954
955 if (base->running_timer == timer)
956 goto out;
957
829b6c1e 958 timer_stats_timer_clear_start_info(timer);
fd450b73
ON
959 ret = 0;
960 if (timer_pending(timer)) {
961 detach_timer(timer, 1);
97fd9ed4
MS
962 if (timer->expires == base->next_timer &&
963 !tbase_get_deferrable(timer->base))
964 base->next_timer = base->timer_jiffies;
fd450b73
ON
965 ret = 1;
966 }
967out:
968 spin_unlock_irqrestore(&base->lock, flags);
969
970 return ret;
971}
e19dff1f
DH
972EXPORT_SYMBOL(try_to_del_timer_sync);
973
2aae4a10 974/**
1da177e4
LT
975 * del_timer_sync - deactivate a timer and wait for the handler to finish.
976 * @timer: the timer to be deactivated
977 *
978 * This function only differs from del_timer() on SMP: besides deactivating
979 * the timer it also makes sure the handler has finished executing on other
980 * CPUs.
981 *
72fd4a35 982 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4
LT
983 * otherwise this function is meaningless. It must not be called from
984 * interrupt contexts. The caller must not hold locks which would prevent
55c888d6
ON
985 * completion of the timer's handler. The timer's handler must not call
986 * add_timer_on(). Upon exit the timer is not queued and the handler is
987 * not running on any CPU.
1da177e4
LT
988 *
989 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
990 */
991int del_timer_sync(struct timer_list *timer)
992{
6f2b9b9a
JB
993#ifdef CONFIG_LOCKDEP
994 unsigned long flags;
995
996 local_irq_save(flags);
997 lock_map_acquire(&timer->lockdep_map);
998 lock_map_release(&timer->lockdep_map);
999 local_irq_restore(flags);
1000#endif
1001
fd450b73
ON
1002 for (;;) {
1003 int ret = try_to_del_timer_sync(timer);
1004 if (ret >= 0)
1005 return ret;
a0009652 1006 cpu_relax();
fd450b73 1007 }
1da177e4 1008}
55c888d6 1009EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
1010#endif
1011
a6fa8e5a 1012static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1da177e4
LT
1013{
1014 /* cascade all the timers from tv up one level */
3439dd86
P
1015 struct timer_list *timer, *tmp;
1016 struct list_head tv_list;
1017
1018 list_replace_init(tv->vec + index, &tv_list);
1da177e4 1019
1da177e4 1020 /*
3439dd86
P
1021 * We are removing _all_ timers from the list, so we
1022 * don't have to detach them individually.
1da177e4 1023 */
3439dd86 1024 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
6e453a67 1025 BUG_ON(tbase_get_base(timer->base) != base);
3439dd86 1026 internal_add_timer(base, timer);
1da177e4 1027 }
1da177e4
LT
1028
1029 return index;
1030}
1031
576da126
TG
1032static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1033 unsigned long data)
1034{
1035 int preempt_count = preempt_count();
1036
1037#ifdef CONFIG_LOCKDEP
1038 /*
1039 * It is permissible to free the timer from inside the
1040 * function that is called from it, this we need to take into
1041 * account for lockdep too. To avoid bogus "held lock freed"
1042 * warnings as well as problems when looking into
1043 * timer->lockdep_map, make a copy and use that here.
1044 */
1045 struct lockdep_map lockdep_map = timer->lockdep_map;
1046#endif
1047 /*
1048 * Couple the lock chain with the lock chain at
1049 * del_timer_sync() by acquiring the lock_map around the fn()
1050 * call here and in del_timer_sync().
1051 */
1052 lock_map_acquire(&lockdep_map);
1053
1054 trace_timer_expire_entry(timer);
1055 fn(data);
1056 trace_timer_expire_exit(timer);
1057
1058 lock_map_release(&lockdep_map);
1059
1060 if (preempt_count != preempt_count()) {
802702e0
TG
1061 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1062 fn, preempt_count, preempt_count());
1063 /*
1064 * Restore the preempt count. That gives us a decent
1065 * chance to survive and extract information. If the
1066 * callback kept a lock held, bad luck, but not worse
1067 * than the BUG() we had.
1068 */
1069 preempt_count() = preempt_count;
576da126
TG
1070 }
1071}
1072
2aae4a10
REB
1073#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1074
1075/**
1da177e4
LT
1076 * __run_timers - run all expired timers (if any) on this CPU.
1077 * @base: the timer vector to be processed.
1078 *
1079 * This function cascades all vectors and executes all expired timer
1080 * vectors.
1081 */
a6fa8e5a 1082static inline void __run_timers(struct tvec_base *base)
1da177e4
LT
1083{
1084 struct timer_list *timer;
1085
3691c519 1086 spin_lock_irq(&base->lock);
1da177e4 1087 while (time_after_eq(jiffies, base->timer_jiffies)) {
626ab0e6 1088 struct list_head work_list;
1da177e4 1089 struct list_head *head = &work_list;
6819457d 1090 int index = base->timer_jiffies & TVR_MASK;
626ab0e6 1091
1da177e4
LT
1092 /*
1093 * Cascade timers:
1094 */
1095 if (!index &&
1096 (!cascade(base, &base->tv2, INDEX(0))) &&
1097 (!cascade(base, &base->tv3, INDEX(1))) &&
1098 !cascade(base, &base->tv4, INDEX(2)))
1099 cascade(base, &base->tv5, INDEX(3));
626ab0e6
ON
1100 ++base->timer_jiffies;
1101 list_replace_init(base->tv1.vec + index, &work_list);
55c888d6 1102 while (!list_empty(head)) {
1da177e4
LT
1103 void (*fn)(unsigned long);
1104 unsigned long data;
1105
b5e61818 1106 timer = list_first_entry(head, struct timer_list,entry);
6819457d
TG
1107 fn = timer->function;
1108 data = timer->data;
1da177e4 1109
82f67cd9
IM
1110 timer_stats_account_timer(timer);
1111
1da177e4 1112 set_running_timer(base, timer);
55c888d6 1113 detach_timer(timer, 1);
6f2b9b9a 1114
3691c519 1115 spin_unlock_irq(&base->lock);
576da126 1116 call_timer_fn(timer, fn, data);
3691c519 1117 spin_lock_irq(&base->lock);
1da177e4
LT
1118 }
1119 }
1120 set_running_timer(base, NULL);
3691c519 1121 spin_unlock_irq(&base->lock);
1da177e4
LT
1122}
1123
ee9c5785 1124#ifdef CONFIG_NO_HZ
1da177e4
LT
1125/*
1126 * Find out when the next timer event is due to happen. This
90cba64a
RD
1127 * is used on S/390 to stop all activity when a CPU is idle.
1128 * This function needs to be called with interrupts disabled.
1da177e4 1129 */
a6fa8e5a 1130static unsigned long __next_timer_interrupt(struct tvec_base *base)
1da177e4 1131{
1cfd6849 1132 unsigned long timer_jiffies = base->timer_jiffies;
eaad084b 1133 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1cfd6849 1134 int index, slot, array, found = 0;
1da177e4 1135 struct timer_list *nte;
a6fa8e5a 1136 struct tvec *varray[4];
1da177e4
LT
1137
1138 /* Look for timer events in tv1. */
1cfd6849 1139 index = slot = timer_jiffies & TVR_MASK;
1da177e4 1140 do {
1cfd6849 1141 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
6819457d
TG
1142 if (tbase_get_deferrable(nte->base))
1143 continue;
6e453a67 1144
1cfd6849 1145 found = 1;
1da177e4 1146 expires = nte->expires;
1cfd6849
TG
1147 /* Look at the cascade bucket(s)? */
1148 if (!index || slot < index)
1149 goto cascade;
1150 return expires;
1da177e4 1151 }
1cfd6849
TG
1152 slot = (slot + 1) & TVR_MASK;
1153 } while (slot != index);
1154
1155cascade:
1156 /* Calculate the next cascade event */
1157 if (index)
1158 timer_jiffies += TVR_SIZE - index;
1159 timer_jiffies >>= TVR_BITS;
1da177e4
LT
1160
1161 /* Check tv2-tv5. */
1162 varray[0] = &base->tv2;
1163 varray[1] = &base->tv3;
1164 varray[2] = &base->tv4;
1165 varray[3] = &base->tv5;
1cfd6849
TG
1166
1167 for (array = 0; array < 4; array++) {
a6fa8e5a 1168 struct tvec *varp = varray[array];
1cfd6849
TG
1169
1170 index = slot = timer_jiffies & TVN_MASK;
1da177e4 1171 do {
1cfd6849 1172 list_for_each_entry(nte, varp->vec + slot, entry) {
a0419888
JH
1173 if (tbase_get_deferrable(nte->base))
1174 continue;
1175
1cfd6849 1176 found = 1;
1da177e4
LT
1177 if (time_before(nte->expires, expires))
1178 expires = nte->expires;
1cfd6849
TG
1179 }
1180 /*
1181 * Do we still search for the first timer or are
1182 * we looking up the cascade buckets ?
1183 */
1184 if (found) {
1185 /* Look at the cascade bucket(s)? */
1186 if (!index || slot < index)
1187 break;
1188 return expires;
1189 }
1190 slot = (slot + 1) & TVN_MASK;
1191 } while (slot != index);
1192
1193 if (index)
1194 timer_jiffies += TVN_SIZE - index;
1195 timer_jiffies >>= TVN_BITS;
1da177e4 1196 }
1cfd6849
TG
1197 return expires;
1198}
69239749 1199
1cfd6849
TG
1200/*
1201 * Check, if the next hrtimer event is before the next timer wheel
1202 * event:
1203 */
1204static unsigned long cmp_next_hrtimer_event(unsigned long now,
1205 unsigned long expires)
1206{
1207 ktime_t hr_delta = hrtimer_get_next_event();
1208 struct timespec tsdelta;
9501b6cf 1209 unsigned long delta;
1cfd6849
TG
1210
1211 if (hr_delta.tv64 == KTIME_MAX)
1212 return expires;
0662b713 1213
9501b6cf
TG
1214 /*
1215 * Expired timer available, let it expire in the next tick
1216 */
1217 if (hr_delta.tv64 <= 0)
1218 return now + 1;
69239749 1219
1cfd6849 1220 tsdelta = ktime_to_timespec(hr_delta);
9501b6cf 1221 delta = timespec_to_jiffies(&tsdelta);
eaad084b
TG
1222
1223 /*
1224 * Limit the delta to the max value, which is checked in
1225 * tick_nohz_stop_sched_tick():
1226 */
1227 if (delta > NEXT_TIMER_MAX_DELTA)
1228 delta = NEXT_TIMER_MAX_DELTA;
1229
9501b6cf
TG
1230 /*
1231 * Take rounding errors in to account and make sure, that it
1232 * expires in the next tick. Otherwise we go into an endless
1233 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1234 * the timer softirq
1235 */
1236 if (delta < 1)
1237 delta = 1;
1238 now += delta;
1cfd6849
TG
1239 if (time_before(now, expires))
1240 return now;
1da177e4
LT
1241 return expires;
1242}
1cfd6849
TG
1243
1244/**
8dce39c2 1245 * get_next_timer_interrupt - return the jiffy of the next pending timer
05fb6bf0 1246 * @now: current time (in jiffies)
1cfd6849 1247 */
fd064b9b 1248unsigned long get_next_timer_interrupt(unsigned long now)
1cfd6849 1249{
a6fa8e5a 1250 struct tvec_base *base = __get_cpu_var(tvec_bases);
fd064b9b 1251 unsigned long expires;
1cfd6849
TG
1252
1253 spin_lock(&base->lock);
97fd9ed4
MS
1254 if (time_before_eq(base->next_timer, base->timer_jiffies))
1255 base->next_timer = __next_timer_interrupt(base);
1256 expires = base->next_timer;
1cfd6849
TG
1257 spin_unlock(&base->lock);
1258
1259 if (time_before_eq(expires, now))
1260 return now;
1261
1262 return cmp_next_hrtimer_event(now, expires);
1263}
1da177e4
LT
1264#endif
1265
1da177e4 1266/*
5b4db0c2 1267 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
1268 * process. user_tick is 1 if the tick is user time, 0 for system.
1269 */
1270void update_process_times(int user_tick)
1271{
1272 struct task_struct *p = current;
1273 int cpu = smp_processor_id();
1274
1275 /* Note: this timer irq context must be accounted for as well. */
fa13a5a1 1276 account_process_tick(p, user_tick);
1da177e4 1277 run_local_timers();
a157229c 1278 rcu_check_callbacks(cpu, user_tick);
b845b517 1279 printk_tick();
fe432200 1280 perf_event_do_pending();
1da177e4 1281 scheduler_tick();
6819457d 1282 run_posix_cpu_timers(p);
1da177e4
LT
1283}
1284
1da177e4
LT
1285/*
1286 * This function runs timers and the timer-tq in bottom half context.
1287 */
1288static void run_timer_softirq(struct softirq_action *h)
1289{
a6fa8e5a 1290 struct tvec_base *base = __get_cpu_var(tvec_bases);
1da177e4 1291
d3d74453 1292 hrtimer_run_pending();
82f67cd9 1293
1da177e4
LT
1294 if (time_after_eq(jiffies, base->timer_jiffies))
1295 __run_timers(base);
1296}
1297
1298/*
1299 * Called by the local, per-CPU timer interrupt on SMP.
1300 */
1301void run_local_timers(void)
1302{
d3d74453 1303 hrtimer_run_queues();
1da177e4 1304 raise_softirq(TIMER_SOFTIRQ);
6687a97d 1305 softlockup_tick();
1da177e4
LT
1306}
1307
1da177e4
LT
1308/*
1309 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1310 * without sampling the sequence number in xtime_lock.
1311 * jiffies is defined in the linker script...
1312 */
1313
3171a030 1314void do_timer(unsigned long ticks)
1da177e4 1315{
3171a030 1316 jiffies_64 += ticks;
dce48a84
TG
1317 update_wall_time();
1318 calc_global_load();
1da177e4
LT
1319}
1320
1321#ifdef __ARCH_WANT_SYS_ALARM
1322
1323/*
1324 * For backwards compatibility? This can be done in libc so Alpha
1325 * and all newer ports shouldn't need it.
1326 */
58fd3aa2 1327SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1da177e4 1328{
c08b8a49 1329 return alarm_setitimer(seconds);
1da177e4
LT
1330}
1331
1332#endif
1333
1334#ifndef __alpha__
1335
1336/*
1337 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1338 * should be moved into arch/i386 instead?
1339 */
1340
1341/**
1342 * sys_getpid - return the thread group id of the current process
1343 *
1344 * Note, despite the name, this returns the tgid not the pid. The tgid and
1345 * the pid are identical unless CLONE_THREAD was specified on clone() in
1346 * which case the tgid is the same in all threads of the same group.
1347 *
1348 * This is SMP safe as current->tgid does not change.
1349 */
58fd3aa2 1350SYSCALL_DEFINE0(getpid)
1da177e4 1351{
b488893a 1352 return task_tgid_vnr(current);
1da177e4
LT
1353}
1354
1355/*
6997a6fa
KK
1356 * Accessing ->real_parent is not SMP-safe, it could
1357 * change from under us. However, we can use a stale
1358 * value of ->real_parent under rcu_read_lock(), see
1359 * release_task()->call_rcu(delayed_put_task_struct).
1da177e4 1360 */
dbf040d9 1361SYSCALL_DEFINE0(getppid)
1da177e4
LT
1362{
1363 int pid;
1da177e4 1364
6997a6fa 1365 rcu_read_lock();
6c5f3e7b 1366 pid = task_tgid_vnr(current->real_parent);
6997a6fa 1367 rcu_read_unlock();
1da177e4 1368
1da177e4
LT
1369 return pid;
1370}
1371
dbf040d9 1372SYSCALL_DEFINE0(getuid)
1da177e4
LT
1373{
1374 /* Only we change this so SMP safe */
76aac0e9 1375 return current_uid();
1da177e4
LT
1376}
1377
dbf040d9 1378SYSCALL_DEFINE0(geteuid)
1da177e4
LT
1379{
1380 /* Only we change this so SMP safe */
76aac0e9 1381 return current_euid();
1da177e4
LT
1382}
1383
dbf040d9 1384SYSCALL_DEFINE0(getgid)
1da177e4
LT
1385{
1386 /* Only we change this so SMP safe */
76aac0e9 1387 return current_gid();
1da177e4
LT
1388}
1389
dbf040d9 1390SYSCALL_DEFINE0(getegid)
1da177e4
LT
1391{
1392 /* Only we change this so SMP safe */
76aac0e9 1393 return current_egid();
1da177e4
LT
1394}
1395
1396#endif
1397
1398static void process_timeout(unsigned long __data)
1399{
36c8b586 1400 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1401}
1402
1403/**
1404 * schedule_timeout - sleep until timeout
1405 * @timeout: timeout value in jiffies
1406 *
1407 * Make the current task sleep until @timeout jiffies have
1408 * elapsed. The routine will return immediately unless
1409 * the current task state has been set (see set_current_state()).
1410 *
1411 * You can set the task state as follows -
1412 *
1413 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1414 * pass before the routine returns. The routine will return 0
1415 *
1416 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1417 * delivered to the current task. In this case the remaining time
1418 * in jiffies will be returned, or 0 if the timer expired in time
1419 *
1420 * The current task state is guaranteed to be TASK_RUNNING when this
1421 * routine returns.
1422 *
1423 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1424 * the CPU away without a bound on the timeout. In this case the return
1425 * value will be %MAX_SCHEDULE_TIMEOUT.
1426 *
1427 * In all cases the return value is guaranteed to be non-negative.
1428 */
7ad5b3a5 1429signed long __sched schedule_timeout(signed long timeout)
1da177e4
LT
1430{
1431 struct timer_list timer;
1432 unsigned long expire;
1433
1434 switch (timeout)
1435 {
1436 case MAX_SCHEDULE_TIMEOUT:
1437 /*
1438 * These two special cases are useful to be comfortable
1439 * in the caller. Nothing more. We could take
1440 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1441 * but I' d like to return a valid offset (>=0) to allow
1442 * the caller to do everything it want with the retval.
1443 */
1444 schedule();
1445 goto out;
1446 default:
1447 /*
1448 * Another bit of PARANOID. Note that the retval will be
1449 * 0 since no piece of kernel is supposed to do a check
1450 * for a negative retval of schedule_timeout() (since it
1451 * should never happens anyway). You just have the printk()
1452 * that will tell you if something is gone wrong and where.
1453 */
5b149bcc 1454 if (timeout < 0) {
1da177e4 1455 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1456 "value %lx\n", timeout);
1457 dump_stack();
1da177e4
LT
1458 current->state = TASK_RUNNING;
1459 goto out;
1460 }
1461 }
1462
1463 expire = timeout + jiffies;
1464
c6f3a97f 1465 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
597d0275 1466 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1da177e4
LT
1467 schedule();
1468 del_singleshot_timer_sync(&timer);
1469
c6f3a97f
TG
1470 /* Remove the timer from the object tracker */
1471 destroy_timer_on_stack(&timer);
1472
1da177e4
LT
1473 timeout = expire - jiffies;
1474
1475 out:
1476 return timeout < 0 ? 0 : timeout;
1477}
1da177e4
LT
1478EXPORT_SYMBOL(schedule_timeout);
1479
8a1c1757
AM
1480/*
1481 * We can use __set_current_state() here because schedule_timeout() calls
1482 * schedule() unconditionally.
1483 */
64ed93a2
NA
1484signed long __sched schedule_timeout_interruptible(signed long timeout)
1485{
a5a0d52c
AM
1486 __set_current_state(TASK_INTERRUPTIBLE);
1487 return schedule_timeout(timeout);
64ed93a2
NA
1488}
1489EXPORT_SYMBOL(schedule_timeout_interruptible);
1490
294d5cc2
MW
1491signed long __sched schedule_timeout_killable(signed long timeout)
1492{
1493 __set_current_state(TASK_KILLABLE);
1494 return schedule_timeout(timeout);
1495}
1496EXPORT_SYMBOL(schedule_timeout_killable);
1497
64ed93a2
NA
1498signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1499{
a5a0d52c
AM
1500 __set_current_state(TASK_UNINTERRUPTIBLE);
1501 return schedule_timeout(timeout);
64ed93a2
NA
1502}
1503EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1504
1da177e4 1505/* Thread ID - the internal kernel "pid" */
58fd3aa2 1506SYSCALL_DEFINE0(gettid)
1da177e4 1507{
b488893a 1508 return task_pid_vnr(current);
1da177e4
LT
1509}
1510
2aae4a10 1511/**
d4d23add 1512 * do_sysinfo - fill in sysinfo struct
2aae4a10 1513 * @info: pointer to buffer to fill
6819457d 1514 */
d4d23add 1515int do_sysinfo(struct sysinfo *info)
1da177e4 1516{
1da177e4
LT
1517 unsigned long mem_total, sav_total;
1518 unsigned int mem_unit, bitcount;
2d02494f 1519 struct timespec tp;
1da177e4 1520
d4d23add 1521 memset(info, 0, sizeof(struct sysinfo));
1da177e4 1522
2d02494f
TG
1523 ktime_get_ts(&tp);
1524 monotonic_to_bootbased(&tp);
1525 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1da177e4 1526
2d02494f 1527 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1da177e4 1528
2d02494f 1529 info->procs = nr_threads;
1da177e4 1530
d4d23add
KM
1531 si_meminfo(info);
1532 si_swapinfo(info);
1da177e4
LT
1533
1534 /*
1535 * If the sum of all the available memory (i.e. ram + swap)
1536 * is less than can be stored in a 32 bit unsigned long then
1537 * we can be binary compatible with 2.2.x kernels. If not,
1538 * well, in that case 2.2.x was broken anyways...
1539 *
1540 * -Erik Andersen <andersee@debian.org>
1541 */
1542
d4d23add
KM
1543 mem_total = info->totalram + info->totalswap;
1544 if (mem_total < info->totalram || mem_total < info->totalswap)
1da177e4
LT
1545 goto out;
1546 bitcount = 0;
d4d23add 1547 mem_unit = info->mem_unit;
1da177e4
LT
1548 while (mem_unit > 1) {
1549 bitcount++;
1550 mem_unit >>= 1;
1551 sav_total = mem_total;
1552 mem_total <<= 1;
1553 if (mem_total < sav_total)
1554 goto out;
1555 }
1556
1557 /*
1558 * If mem_total did not overflow, multiply all memory values by
d4d23add 1559 * info->mem_unit and set it to 1. This leaves things compatible
1da177e4
LT
1560 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1561 * kernels...
1562 */
1563
d4d23add
KM
1564 info->mem_unit = 1;
1565 info->totalram <<= bitcount;
1566 info->freeram <<= bitcount;
1567 info->sharedram <<= bitcount;
1568 info->bufferram <<= bitcount;
1569 info->totalswap <<= bitcount;
1570 info->freeswap <<= bitcount;
1571 info->totalhigh <<= bitcount;
1572 info->freehigh <<= bitcount;
1573
1574out:
1575 return 0;
1576}
1577
1e7bfb21 1578SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
d4d23add
KM
1579{
1580 struct sysinfo val;
1581
1582 do_sysinfo(&val);
1da177e4 1583
1da177e4
LT
1584 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1585 return -EFAULT;
1586
1587 return 0;
1588}
1589
b4be6258 1590static int __cpuinit init_timers_cpu(int cpu)
1da177e4
LT
1591{
1592 int j;
a6fa8e5a 1593 struct tvec_base *base;
b4be6258 1594 static char __cpuinitdata tvec_base_done[NR_CPUS];
55c888d6 1595
ba6edfcd 1596 if (!tvec_base_done[cpu]) {
a4a6198b
JB
1597 static char boot_done;
1598
a4a6198b 1599 if (boot_done) {
ba6edfcd
AM
1600 /*
1601 * The APs use this path later in boot
1602 */
94f6030c
CL
1603 base = kmalloc_node(sizeof(*base),
1604 GFP_KERNEL | __GFP_ZERO,
a4a6198b
JB
1605 cpu_to_node(cpu));
1606 if (!base)
1607 return -ENOMEM;
6e453a67
VP
1608
1609 /* Make sure that tvec_base is 2 byte aligned */
1610 if (tbase_get_deferrable(base)) {
1611 WARN_ON(1);
1612 kfree(base);
1613 return -ENOMEM;
1614 }
ba6edfcd 1615 per_cpu(tvec_bases, cpu) = base;
a4a6198b 1616 } else {
ba6edfcd
AM
1617 /*
1618 * This is for the boot CPU - we use compile-time
1619 * static initialisation because per-cpu memory isn't
1620 * ready yet and because the memory allocators are not
1621 * initialised either.
1622 */
a4a6198b 1623 boot_done = 1;
ba6edfcd 1624 base = &boot_tvec_bases;
a4a6198b 1625 }
ba6edfcd
AM
1626 tvec_base_done[cpu] = 1;
1627 } else {
1628 base = per_cpu(tvec_bases, cpu);
a4a6198b 1629 }
ba6edfcd 1630
3691c519 1631 spin_lock_init(&base->lock);
d730e882 1632
1da177e4
LT
1633 for (j = 0; j < TVN_SIZE; j++) {
1634 INIT_LIST_HEAD(base->tv5.vec + j);
1635 INIT_LIST_HEAD(base->tv4.vec + j);
1636 INIT_LIST_HEAD(base->tv3.vec + j);
1637 INIT_LIST_HEAD(base->tv2.vec + j);
1638 }
1639 for (j = 0; j < TVR_SIZE; j++)
1640 INIT_LIST_HEAD(base->tv1.vec + j);
1641
1642 base->timer_jiffies = jiffies;
97fd9ed4 1643 base->next_timer = base->timer_jiffies;
a4a6198b 1644 return 0;
1da177e4
LT
1645}
1646
1647#ifdef CONFIG_HOTPLUG_CPU
a6fa8e5a 1648static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1da177e4
LT
1649{
1650 struct timer_list *timer;
1651
1652 while (!list_empty(head)) {
b5e61818 1653 timer = list_first_entry(head, struct timer_list, entry);
55c888d6 1654 detach_timer(timer, 0);
6e453a67 1655 timer_set_base(timer, new_base);
97fd9ed4
MS
1656 if (time_before(timer->expires, new_base->next_timer) &&
1657 !tbase_get_deferrable(timer->base))
1658 new_base->next_timer = timer->expires;
1da177e4 1659 internal_add_timer(new_base, timer);
1da177e4 1660 }
1da177e4
LT
1661}
1662
48ccf3da 1663static void __cpuinit migrate_timers(int cpu)
1da177e4 1664{
a6fa8e5a
PM
1665 struct tvec_base *old_base;
1666 struct tvec_base *new_base;
1da177e4
LT
1667 int i;
1668
1669 BUG_ON(cpu_online(cpu));
a4a6198b
JB
1670 old_base = per_cpu(tvec_bases, cpu);
1671 new_base = get_cpu_var(tvec_bases);
d82f0b0f
ON
1672 /*
1673 * The caller is globally serialized and nobody else
1674 * takes two locks at once, deadlock is not possible.
1675 */
1676 spin_lock_irq(&new_base->lock);
0d180406 1677 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
3691c519
ON
1678
1679 BUG_ON(old_base->running_timer);
1da177e4 1680
1da177e4 1681 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1682 migrate_timer_list(new_base, old_base->tv1.vec + i);
1683 for (i = 0; i < TVN_SIZE; i++) {
1684 migrate_timer_list(new_base, old_base->tv2.vec + i);
1685 migrate_timer_list(new_base, old_base->tv3.vec + i);
1686 migrate_timer_list(new_base, old_base->tv4.vec + i);
1687 migrate_timer_list(new_base, old_base->tv5.vec + i);
1688 }
1689
0d180406 1690 spin_unlock(&old_base->lock);
d82f0b0f 1691 spin_unlock_irq(&new_base->lock);
1da177e4 1692 put_cpu_var(tvec_bases);
1da177e4
LT
1693}
1694#endif /* CONFIG_HOTPLUG_CPU */
1695
8c78f307 1696static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1697 unsigned long action, void *hcpu)
1698{
1699 long cpu = (long)hcpu;
80b5184c
AM
1700 int err;
1701
1da177e4
LT
1702 switch(action) {
1703 case CPU_UP_PREPARE:
8bb78442 1704 case CPU_UP_PREPARE_FROZEN:
80b5184c
AM
1705 err = init_timers_cpu(cpu);
1706 if (err < 0)
1707 return notifier_from_errno(err);
1da177e4
LT
1708 break;
1709#ifdef CONFIG_HOTPLUG_CPU
1710 case CPU_DEAD:
8bb78442 1711 case CPU_DEAD_FROZEN:
1da177e4
LT
1712 migrate_timers(cpu);
1713 break;
1714#endif
1715 default:
1716 break;
1717 }
1718 return NOTIFY_OK;
1719}
1720
8c78f307 1721static struct notifier_block __cpuinitdata timers_nb = {
1da177e4
LT
1722 .notifier_call = timer_cpu_notify,
1723};
1724
1725
1726void __init init_timers(void)
1727{
07dccf33 1728 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1da177e4 1729 (void *)(long)smp_processor_id());
07dccf33 1730
82f67cd9
IM
1731 init_timer_stats();
1732
9e506f7a 1733 BUG_ON(err != NOTIFY_OK);
1da177e4 1734 register_cpu_notifier(&timers_nb);
962cf36c 1735 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
1736}
1737
1da177e4
LT
1738/**
1739 * msleep - sleep safely even with waitqueue interruptions
1740 * @msecs: Time in milliseconds to sleep for
1741 */
1742void msleep(unsigned int msecs)
1743{
1744 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1745
75bcc8c5
NA
1746 while (timeout)
1747 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1748}
1749
1750EXPORT_SYMBOL(msleep);
1751
1752/**
96ec3efd 1753 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1754 * @msecs: Time in milliseconds to sleep for
1755 */
1756unsigned long msleep_interruptible(unsigned int msecs)
1757{
1758 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1759
75bcc8c5
NA
1760 while (timeout && !signal_pending(current))
1761 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1762 return jiffies_to_msecs(timeout);
1763}
1764
1765EXPORT_SYMBOL(msleep_interruptible);