]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched_fair.c
sched: fix calc_delta_asym, #2
[net-next-2.6.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c
AV
23#include <linux/latencytop.h>
24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
722aab0c 27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 28 *
21805085 29 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
bf0f6f24 33 *
d274a4ce
IM
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 36 */
19978ca6 37unsigned int sysctl_sched_latency = 20000000ULL;
2bd8e6d4
IM
38
39/*
b2be5e96 40 * Minimal preemption granularity for CPU-bound tasks:
722aab0c 41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 42 */
722aab0c 43unsigned int sysctl_sched_min_granularity = 4000000ULL;
21805085
PZ
44
45/*
b2be5e96
PZ
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
722aab0c 48static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
49
50/*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
21805085 53 */
b2be5e96 54const_debug unsigned int sysctl_sched_child_runs_first = 1;
bf0f6f24 55
1799e35d
IM
56/*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62unsigned int __read_mostly sysctl_sched_compat_yield;
63
bf0f6f24
IM
64/*
65 * SCHED_OTHER wake-up granularity.
0bbd3336 66 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
0bbd3336 72unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
bf0f6f24 73
da84d961
IM
74const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
bf0f6f24
IM
76/**************************************************************
77 * CFS operations on generic schedulable entities:
78 */
79
b758149c
PZ
80static inline struct task_struct *task_of(struct sched_entity *se)
81{
82 return container_of(se, struct task_struct, se);
83}
84
62160e3f 85#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 86
62160e3f 87/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
88static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
89{
62160e3f 90 return cfs_rq->rq;
bf0f6f24
IM
91}
92
62160e3f
IM
93/* An entity is a task if it doesn't "own" a runqueue */
94#define entity_is_task(se) (!se->my_q)
bf0f6f24 95
b758149c
PZ
96/* Walk up scheduling entities hierarchy */
97#define for_each_sched_entity(se) \
98 for (; se; se = se->parent)
99
100static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
101{
102 return p->se.cfs_rq;
103}
104
105/* runqueue on which this entity is (to be) queued */
106static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
107{
108 return se->cfs_rq;
109}
110
111/* runqueue "owned" by this group */
112static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
113{
114 return grp->my_q;
115}
116
117/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
118 * another cpu ('this_cpu')
119 */
120static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
121{
122 return cfs_rq->tg->cfs_rq[this_cpu];
123}
124
125/* Iterate thr' all leaf cfs_rq's on a runqueue */
126#define for_each_leaf_cfs_rq(rq, cfs_rq) \
127 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
128
129/* Do the two (enqueued) entities belong to the same group ? */
130static inline int
131is_same_group(struct sched_entity *se, struct sched_entity *pse)
132{
133 if (se->cfs_rq == pse->cfs_rq)
134 return 1;
135
136 return 0;
137}
138
139static inline struct sched_entity *parent_entity(struct sched_entity *se)
140{
141 return se->parent;
142}
143
62160e3f 144#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 145
62160e3f
IM
146static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
147{
148 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
149}
150
151#define entity_is_task(se) 1
152
b758149c
PZ
153#define for_each_sched_entity(se) \
154 for (; se; se = NULL)
bf0f6f24 155
b758149c 156static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 157{
b758149c 158 return &task_rq(p)->cfs;
bf0f6f24
IM
159}
160
b758149c
PZ
161static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
162{
163 struct task_struct *p = task_of(se);
164 struct rq *rq = task_rq(p);
165
166 return &rq->cfs;
167}
168
169/* runqueue "owned" by this group */
170static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
171{
172 return NULL;
173}
174
175static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
176{
177 return &cpu_rq(this_cpu)->cfs;
178}
179
180#define for_each_leaf_cfs_rq(rq, cfs_rq) \
181 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
182
183static inline int
184is_same_group(struct sched_entity *se, struct sched_entity *pse)
185{
186 return 1;
187}
188
189static inline struct sched_entity *parent_entity(struct sched_entity *se)
190{
191 return NULL;
192}
193
194#endif /* CONFIG_FAIR_GROUP_SCHED */
195
bf0f6f24
IM
196
197/**************************************************************
198 * Scheduling class tree data structure manipulation methods:
199 */
200
0702e3eb 201static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 202{
368059a9
PZ
203 s64 delta = (s64)(vruntime - min_vruntime);
204 if (delta > 0)
02e0431a
PZ
205 min_vruntime = vruntime;
206
207 return min_vruntime;
208}
209
0702e3eb 210static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
211{
212 s64 delta = (s64)(vruntime - min_vruntime);
213 if (delta < 0)
214 min_vruntime = vruntime;
215
216 return min_vruntime;
217}
218
0702e3eb 219static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 220{
30cfdcfc 221 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
222}
223
bf0f6f24
IM
224/*
225 * Enqueue an entity into the rb-tree:
226 */
0702e3eb 227static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
228{
229 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
230 struct rb_node *parent = NULL;
231 struct sched_entity *entry;
9014623c 232 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
233 int leftmost = 1;
234
235 /*
236 * Find the right place in the rbtree:
237 */
238 while (*link) {
239 parent = *link;
240 entry = rb_entry(parent, struct sched_entity, run_node);
241 /*
242 * We dont care about collisions. Nodes with
243 * the same key stay together.
244 */
9014623c 245 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
246 link = &parent->rb_left;
247 } else {
248 link = &parent->rb_right;
249 leftmost = 0;
250 }
251 }
252
253 /*
254 * Maintain a cache of leftmost tree entries (it is frequently
255 * used):
256 */
3fe69747 257 if (leftmost) {
57cb499d 258 cfs_rq->rb_leftmost = &se->run_node;
3fe69747
PZ
259 /*
260 * maintain cfs_rq->min_vruntime to be a monotonic increasing
261 * value tracking the leftmost vruntime in the tree.
262 */
263 cfs_rq->min_vruntime =
264 max_vruntime(cfs_rq->min_vruntime, se->vruntime);
265 }
bf0f6f24
IM
266
267 rb_link_node(&se->run_node, parent, link);
268 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
269}
270
0702e3eb 271static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 272{
3fe69747
PZ
273 if (cfs_rq->rb_leftmost == &se->run_node) {
274 struct rb_node *next_node;
275 struct sched_entity *next;
276
277 next_node = rb_next(&se->run_node);
278 cfs_rq->rb_leftmost = next_node;
279
280 if (next_node) {
281 next = rb_entry(next_node,
282 struct sched_entity, run_node);
283 cfs_rq->min_vruntime =
284 max_vruntime(cfs_rq->min_vruntime,
285 next->vruntime);
286 }
287 }
e9acbff6 288
aa2ac252
PZ
289 if (cfs_rq->next == se)
290 cfs_rq->next = NULL;
291
bf0f6f24 292 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
293}
294
295static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
296{
297 return cfs_rq->rb_leftmost;
298}
299
300static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
301{
302 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
303}
304
aeb73b04
PZ
305static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
306{
7eee3e67 307 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 308
70eee74b
BS
309 if (!last)
310 return NULL;
7eee3e67
IM
311
312 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
313}
314
bf0f6f24
IM
315/**************************************************************
316 * Scheduling class statistics methods:
317 */
318
b2be5e96
PZ
319#ifdef CONFIG_SCHED_DEBUG
320int sched_nr_latency_handler(struct ctl_table *table, int write,
321 struct file *filp, void __user *buffer, size_t *lenp,
322 loff_t *ppos)
323{
324 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
325
326 if (ret || !write)
327 return ret;
328
329 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
330 sysctl_sched_min_granularity);
331
332 return 0;
333}
334#endif
647e7cac 335
a7be37ac
PZ
336/*
337 * delta *= w / rw
338 */
339static inline unsigned long
340calc_delta_weight(unsigned long delta, struct sched_entity *se)
341{
342 for_each_sched_entity(se) {
343 delta = calc_delta_mine(delta,
344 se->load.weight, &cfs_rq_of(se)->load);
345 }
346
347 return delta;
348}
349
350/*
351 * delta *= rw / w
352 */
353static inline unsigned long
354calc_delta_fair(unsigned long delta, struct sched_entity *se)
355{
356 for_each_sched_entity(se) {
357 delta = calc_delta_mine(delta,
358 cfs_rq_of(se)->load.weight, &se->load);
359 }
360
361 return delta;
362}
363
647e7cac
IM
364/*
365 * The idea is to set a period in which each task runs once.
366 *
367 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
368 * this period because otherwise the slices get too small.
369 *
370 * p = (nr <= nl) ? l : l*nr/nl
371 */
4d78e7b6
PZ
372static u64 __sched_period(unsigned long nr_running)
373{
374 u64 period = sysctl_sched_latency;
b2be5e96 375 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
376
377 if (unlikely(nr_running > nr_latency)) {
4bf0b771 378 period = sysctl_sched_min_granularity;
4d78e7b6 379 period *= nr_running;
4d78e7b6
PZ
380 }
381
382 return period;
383}
384
647e7cac
IM
385/*
386 * We calculate the wall-time slice from the period by taking a part
387 * proportional to the weight.
388 *
389 * s = p*w/rw
390 */
6d0f0ebd 391static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 392{
a7be37ac 393 return calc_delta_weight(__sched_period(cfs_rq->nr_running), se);
bf0f6f24
IM
394}
395
647e7cac 396/*
ac884dec 397 * We calculate the vruntime slice of a to be inserted task
647e7cac 398 *
a7be37ac 399 * vs = s*rw/w = p
647e7cac 400 */
ac884dec 401static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 402{
ac884dec 403 unsigned long nr_running = cfs_rq->nr_running;
67e9fb2a 404
ac884dec
PZ
405 if (!se->on_rq)
406 nr_running++;
67e9fb2a 407
a7be37ac
PZ
408 return __sched_period(nr_running);
409}
410
411/*
412 * The goal of calc_delta_asym() is to be asymmetrically around NICE_0_LOAD, in
413 * that it favours >=0 over <0.
414 *
415 * -20 |
416 * |
417 * 0 --------+-------
418 * .'
419 * 19 .'
420 *
421 */
422static unsigned long
423calc_delta_asym(unsigned long delta, struct sched_entity *se)
424{
425 struct load_weight lw = {
426 .weight = NICE_0_LOAD,
427 .inv_weight = 1UL << (WMULT_SHIFT-NICE_0_SHIFT)
428 };
5f6d858e 429
ac884dec 430 for_each_sched_entity(se) {
a7be37ac 431 struct load_weight *se_lw = &se->load;
ced8aa16 432 unsigned long rw = cfs_rq_of(se)->load.weight;
ac884dec 433
c9c294a6
PZ
434#ifdef CONFIG_FAIR_SCHED_GROUP
435 struct cfs_rq *cfs_rq = se->my_q;
436 struct task_group *tg = NULL
437
438 if (cfs_rq)
439 tg = cfs_rq->tg;
440
441 if (tg && tg->shares < NICE_0_LOAD) {
442 /*
443 * scale shares to what it would have been had
444 * tg->weight been NICE_0_LOAD:
445 *
446 * weight = 1024 * shares / tg->weight
447 */
448 lw.weight *= se->load.weight;
449 lw.weight /= tg->shares;
450
451 lw.inv_weight = 0;
452
453 se_lw = &lw;
ced8aa16 454 rw += lw.weight - se->load.weight;
c9c294a6
PZ
455 } else
456#endif
457
ced8aa16 458 if (se->load.weight < NICE_0_LOAD) {
a7be37ac 459 se_lw = &lw;
ced8aa16
PZ
460 rw += NICE_0_LOAD - se->load.weight;
461 }
ac884dec 462
ced8aa16 463 delta = calc_delta_mine(delta, rw, se_lw);
ac884dec
PZ
464 }
465
a7be37ac 466 return delta;
67e9fb2a
PZ
467}
468
bf0f6f24
IM
469/*
470 * Update the current task's runtime statistics. Skip current tasks that
471 * are not in our scheduling class.
472 */
473static inline void
8ebc91d9
IM
474__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
475 unsigned long delta_exec)
bf0f6f24 476{
bbdba7c0 477 unsigned long delta_exec_weighted;
bf0f6f24 478
8179ca23 479 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
480
481 curr->sum_exec_runtime += delta_exec;
7a62eabc 482 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 483 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
e9acbff6 484 curr->vruntime += delta_exec_weighted;
bf0f6f24
IM
485}
486
b7cc0896 487static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 488{
429d43bc 489 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 490 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
491 unsigned long delta_exec;
492
493 if (unlikely(!curr))
494 return;
495
496 /*
497 * Get the amount of time the current task was running
498 * since the last time we changed load (this cannot
499 * overflow on 32 bits):
500 */
8ebc91d9 501 delta_exec = (unsigned long)(now - curr->exec_start);
bf0f6f24 502
8ebc91d9
IM
503 __update_curr(cfs_rq, curr, delta_exec);
504 curr->exec_start = now;
d842de87
SV
505
506 if (entity_is_task(curr)) {
507 struct task_struct *curtask = task_of(curr);
508
509 cpuacct_charge(curtask, delta_exec);
510 }
bf0f6f24
IM
511}
512
513static inline void
5870db5b 514update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 515{
d281918d 516 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
517}
518
bf0f6f24
IM
519/*
520 * Task is being enqueued - update stats:
521 */
d2417e5a 522static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
bf0f6f24
IM
524 /*
525 * Are we enqueueing a waiting task? (for current tasks
526 * a dequeue/enqueue event is a NOP)
527 */
429d43bc 528 if (se != cfs_rq->curr)
5870db5b 529 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
530}
531
bf0f6f24 532static void
9ef0a961 533update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 534{
bbdba7c0
IM
535 schedstat_set(se->wait_max, max(se->wait_max,
536 rq_of(cfs_rq)->clock - se->wait_start));
6d082592
AV
537 schedstat_set(se->wait_count, se->wait_count + 1);
538 schedstat_set(se->wait_sum, se->wait_sum +
539 rq_of(cfs_rq)->clock - se->wait_start);
6cfb0d5d 540 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
541}
542
543static inline void
19b6a2e3 544update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 545{
bf0f6f24
IM
546 /*
547 * Mark the end of the wait period if dequeueing a
548 * waiting task:
549 */
429d43bc 550 if (se != cfs_rq->curr)
9ef0a961 551 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
552}
553
554/*
555 * We are picking a new current task - update its stats:
556 */
557static inline void
79303e9e 558update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
559{
560 /*
561 * We are starting a new run period:
562 */
d281918d 563 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
564}
565
bf0f6f24
IM
566/**************************************************
567 * Scheduling class queueing methods:
568 */
569
30cfdcfc
DA
570static void
571account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
572{
573 update_load_add(&cfs_rq->load, se->load.weight);
574 cfs_rq->nr_running++;
575 se->on_rq = 1;
4a55bd5e 576 list_add(&se->group_node, &cfs_rq->tasks);
30cfdcfc
DA
577}
578
579static void
580account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
581{
582 update_load_sub(&cfs_rq->load, se->load.weight);
583 cfs_rq->nr_running--;
584 se->on_rq = 0;
4a55bd5e 585 list_del_init(&se->group_node);
30cfdcfc
DA
586}
587
2396af69 588static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 589{
bf0f6f24
IM
590#ifdef CONFIG_SCHEDSTATS
591 if (se->sleep_start) {
d281918d 592 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
9745512c 593 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
594
595 if ((s64)delta < 0)
596 delta = 0;
597
598 if (unlikely(delta > se->sleep_max))
599 se->sleep_max = delta;
600
601 se->sleep_start = 0;
602 se->sum_sleep_runtime += delta;
9745512c
AV
603
604 account_scheduler_latency(tsk, delta >> 10, 1);
bf0f6f24
IM
605 }
606 if (se->block_start) {
d281918d 607 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
9745512c 608 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
609
610 if ((s64)delta < 0)
611 delta = 0;
612
613 if (unlikely(delta > se->block_max))
614 se->block_max = delta;
615
616 se->block_start = 0;
617 se->sum_sleep_runtime += delta;
30084fbd
IM
618
619 /*
620 * Blocking time is in units of nanosecs, so shift by 20 to
621 * get a milliseconds-range estimation of the amount of
622 * time that the task spent sleeping:
623 */
624 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf 625
30084fbd
IM
626 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
627 delta >> 20);
628 }
9745512c 629 account_scheduler_latency(tsk, delta >> 10, 0);
bf0f6f24
IM
630 }
631#endif
632}
633
ddc97297
PZ
634static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
635{
636#ifdef CONFIG_SCHED_DEBUG
637 s64 d = se->vruntime - cfs_rq->min_vruntime;
638
639 if (d < 0)
640 d = -d;
641
642 if (d > 3*sysctl_sched_latency)
643 schedstat_inc(cfs_rq, nr_spread_over);
644#endif
645}
646
aeb73b04
PZ
647static void
648place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
649{
67e9fb2a 650 u64 vruntime;
aeb73b04 651
3fe69747
PZ
652 if (first_fair(cfs_rq)) {
653 vruntime = min_vruntime(cfs_rq->min_vruntime,
654 __pick_next_entity(cfs_rq)->vruntime);
655 } else
656 vruntime = cfs_rq->min_vruntime;
94dfb5e7 657
2cb8600e
PZ
658 /*
659 * The 'current' period is already promised to the current tasks,
660 * however the extra weight of the new task will slow them down a
661 * little, place the new task so that it fits in the slot that
662 * stays open at the end.
663 */
94dfb5e7 664 if (initial && sched_feat(START_DEBIT))
647e7cac 665 vruntime += sched_vslice_add(cfs_rq, se);
aeb73b04 666
8465e792 667 if (!initial) {
2cb8600e 668 /* sleeps upto a single latency don't count. */
a7be37ac
PZ
669 if (sched_feat(NEW_FAIR_SLEEPERS)) {
670 unsigned long thresh = sysctl_sched_latency;
671
672 /*
673 * convert the sleeper threshold into virtual time
674 */
675 if (sched_feat(NORMALIZED_SLEEPER))
676 thresh = calc_delta_fair(thresh, se);
677
678 vruntime -= thresh;
679 }
94359f05 680
2cb8600e
PZ
681 /* ensure we never gain time by being placed backwards. */
682 vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
683 }
684
67e9fb2a 685 se->vruntime = vruntime;
aeb73b04
PZ
686}
687
bf0f6f24 688static void
83b699ed 689enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
690{
691 /*
a2a2d680 692 * Update run-time statistics of the 'current'.
bf0f6f24 693 */
b7cc0896 694 update_curr(cfs_rq);
a992241d 695 account_entity_enqueue(cfs_rq, se);
bf0f6f24 696
e9acbff6 697 if (wakeup) {
aeb73b04 698 place_entity(cfs_rq, se, 0);
2396af69 699 enqueue_sleeper(cfs_rq, se);
e9acbff6 700 }
bf0f6f24 701
d2417e5a 702 update_stats_enqueue(cfs_rq, se);
ddc97297 703 check_spread(cfs_rq, se);
83b699ed
SV
704 if (se != cfs_rq->curr)
705 __enqueue_entity(cfs_rq, se);
bf0f6f24
IM
706}
707
4ae7d5ce
IM
708static void update_avg(u64 *avg, u64 sample)
709{
710 s64 diff = sample - *avg;
711 *avg += diff >> 3;
712}
713
714static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
715{
716 if (!se->last_wakeup)
717 return;
718
719 update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
720 se->last_wakeup = 0;
721}
722
bf0f6f24 723static void
525c2716 724dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 725{
a2a2d680
DA
726 /*
727 * Update run-time statistics of the 'current'.
728 */
729 update_curr(cfs_rq);
730
19b6a2e3 731 update_stats_dequeue(cfs_rq, se);
db36cc7d 732 if (sleep) {
4ae7d5ce 733 update_avg_stats(cfs_rq, se);
67e9fb2a 734#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
735 if (entity_is_task(se)) {
736 struct task_struct *tsk = task_of(se);
737
738 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 739 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 740 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 741 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 742 }
db36cc7d 743#endif
67e9fb2a
PZ
744 }
745
83b699ed 746 if (se != cfs_rq->curr)
30cfdcfc
DA
747 __dequeue_entity(cfs_rq, se);
748 account_entity_dequeue(cfs_rq, se);
bf0f6f24
IM
749}
750
751/*
752 * Preempt the current task with a newly woken task if needed:
753 */
7c92e54f 754static void
2e09bf55 755check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 756{
11697830
PZ
757 unsigned long ideal_runtime, delta_exec;
758
6d0f0ebd 759 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 760 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3e3e13f3 761 if (delta_exec > ideal_runtime)
bf0f6f24
IM
762 resched_task(rq_of(cfs_rq)->curr);
763}
764
83b699ed 765static void
8494f412 766set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 767{
83b699ed
SV
768 /* 'current' is not kept within the tree. */
769 if (se->on_rq) {
770 /*
771 * Any task has to be enqueued before it get to execute on
772 * a CPU. So account for the time it spent waiting on the
773 * runqueue.
774 */
775 update_stats_wait_end(cfs_rq, se);
776 __dequeue_entity(cfs_rq, se);
777 }
778
79303e9e 779 update_stats_curr_start(cfs_rq, se);
429d43bc 780 cfs_rq->curr = se;
eba1ed4b
IM
781#ifdef CONFIG_SCHEDSTATS
782 /*
783 * Track our maximum slice length, if the CPU's load is at
784 * least twice that of our own weight (i.e. dont track it
785 * when there are only lesser-weight tasks around):
786 */
495eca49 787 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
788 se->slice_max = max(se->slice_max,
789 se->sum_exec_runtime - se->prev_sum_exec_runtime);
790 }
791#endif
4a55b450 792 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
793}
794
0bbd3336
PZ
795static int
796wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
797
aa2ac252
PZ
798static struct sched_entity *
799pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
800{
aa2ac252
PZ
801 if (!cfs_rq->next)
802 return se;
803
0bbd3336 804 if (wakeup_preempt_entity(cfs_rq->next, se) != 0)
aa2ac252
PZ
805 return se;
806
807 return cfs_rq->next;
808}
809
9948f4b2 810static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24 811{
08ec3df5 812 struct sched_entity *se = NULL;
bf0f6f24 813
08ec3df5
DA
814 if (first_fair(cfs_rq)) {
815 se = __pick_next_entity(cfs_rq);
aa2ac252 816 se = pick_next(cfs_rq, se);
08ec3df5
DA
817 set_next_entity(cfs_rq, se);
818 }
bf0f6f24
IM
819
820 return se;
821}
822
ab6cde26 823static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
824{
825 /*
826 * If still on the runqueue then deactivate_task()
827 * was not called and update_curr() has to be done:
828 */
829 if (prev->on_rq)
b7cc0896 830 update_curr(cfs_rq);
bf0f6f24 831
ddc97297 832 check_spread(cfs_rq, prev);
30cfdcfc 833 if (prev->on_rq) {
5870db5b 834 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
835 /* Put 'current' back into the tree. */
836 __enqueue_entity(cfs_rq, prev);
837 }
429d43bc 838 cfs_rq->curr = NULL;
bf0f6f24
IM
839}
840
8f4d37ec
PZ
841static void
842entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 843{
bf0f6f24 844 /*
30cfdcfc 845 * Update run-time statistics of the 'current'.
bf0f6f24 846 */
30cfdcfc 847 update_curr(cfs_rq);
bf0f6f24 848
8f4d37ec
PZ
849#ifdef CONFIG_SCHED_HRTICK
850 /*
851 * queued ticks are scheduled to match the slice, so don't bother
852 * validating it and just reschedule.
853 */
983ed7a6
HH
854 if (queued) {
855 resched_task(rq_of(cfs_rq)->curr);
856 return;
857 }
8f4d37ec
PZ
858 /*
859 * don't let the period tick interfere with the hrtick preemption
860 */
861 if (!sched_feat(DOUBLE_TICK) &&
862 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
863 return;
864#endif
865
ce6c1311 866 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 867 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
868}
869
870/**************************************************
871 * CFS operations on tasks:
872 */
873
8f4d37ec
PZ
874#ifdef CONFIG_SCHED_HRTICK
875static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
876{
877 int requeue = rq->curr == p;
878 struct sched_entity *se = &p->se;
879 struct cfs_rq *cfs_rq = cfs_rq_of(se);
880
881 WARN_ON(task_rq(p) != rq);
882
883 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
884 u64 slice = sched_slice(cfs_rq, se);
885 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
886 s64 delta = slice - ran;
887
888 if (delta < 0) {
889 if (rq->curr == p)
890 resched_task(p);
891 return;
892 }
893
894 /*
895 * Don't schedule slices shorter than 10000ns, that just
896 * doesn't make sense. Rely on vruntime for fairness.
897 */
898 if (!requeue)
899 delta = max(10000LL, delta);
900
901 hrtick_start(rq, delta, requeue);
902 }
903}
904#else
905static inline void
906hrtick_start_fair(struct rq *rq, struct task_struct *p)
907{
908}
909#endif
910
bf0f6f24
IM
911/*
912 * The enqueue_task method is called before nr_running is
913 * increased. Here we update the fair scheduling stats and
914 * then put the task into the rbtree:
915 */
fd390f6a 916static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
917{
918 struct cfs_rq *cfs_rq;
62fb1851 919 struct sched_entity *se = &p->se;
bf0f6f24
IM
920
921 for_each_sched_entity(se) {
62fb1851 922 if (se->on_rq)
bf0f6f24
IM
923 break;
924 cfs_rq = cfs_rq_of(se);
83b699ed 925 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 926 wakeup = 1;
bf0f6f24 927 }
8f4d37ec
PZ
928
929 hrtick_start_fair(rq, rq->curr);
bf0f6f24
IM
930}
931
932/*
933 * The dequeue_task method is called before nr_running is
934 * decreased. We remove the task from the rbtree and
935 * update the fair scheduling stats:
936 */
f02231e5 937static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
938{
939 struct cfs_rq *cfs_rq;
62fb1851 940 struct sched_entity *se = &p->se;
bf0f6f24
IM
941
942 for_each_sched_entity(se) {
943 cfs_rq = cfs_rq_of(se);
525c2716 944 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 945 /* Don't dequeue parent if it has other entities besides us */
62fb1851 946 if (cfs_rq->load.weight)
bf0f6f24 947 break;
b9fa3df3 948 sleep = 1;
bf0f6f24 949 }
8f4d37ec
PZ
950
951 hrtick_start_fair(rq, rq->curr);
bf0f6f24
IM
952}
953
954/*
1799e35d
IM
955 * sched_yield() support is very simple - we dequeue and enqueue.
956 *
957 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 958 */
4530d7ab 959static void yield_task_fair(struct rq *rq)
bf0f6f24 960{
db292ca3
IM
961 struct task_struct *curr = rq->curr;
962 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
963 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
964
965 /*
1799e35d
IM
966 * Are we the only task in the tree?
967 */
968 if (unlikely(cfs_rq->nr_running == 1))
969 return;
970
db292ca3 971 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
3e51f33f 972 update_rq_clock(rq);
1799e35d 973 /*
a2a2d680 974 * Update run-time statistics of the 'current'.
1799e35d 975 */
2b1e315d 976 update_curr(cfs_rq);
1799e35d
IM
977
978 return;
979 }
980 /*
981 * Find the rightmost entry in the rbtree:
bf0f6f24 982 */
2b1e315d 983 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
984 /*
985 * Already in the rightmost position?
986 */
79b3feff 987 if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
1799e35d
IM
988 return;
989
990 /*
991 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
992 * Upon rescheduling, sched_class::put_prev_task() will place
993 * 'current' within the tree based on its new key value.
1799e35d 994 */
30cfdcfc 995 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
996}
997
e7693a36
GH
998/*
999 * wake_idle() will wake a task on an idle cpu if task->cpu is
1000 * not idle and an idle cpu is available. The span of cpus to
1001 * search starts with cpus closest then further out as needed,
1002 * so we always favor a closer, idle cpu.
1003 *
1004 * Returns the CPU we should wake onto.
1005 */
1006#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1007static int wake_idle(int cpu, struct task_struct *p)
1008{
1009 cpumask_t tmp;
1010 struct sched_domain *sd;
1011 int i;
1012
1013 /*
1014 * If it is idle, then it is the best cpu to run this task.
1015 *
1016 * This cpu is also the best, if it has more than one task already.
1017 * Siblings must be also busy(in most cases) as they didn't already
1018 * pickup the extra load from this cpu and hence we need not check
1019 * sibling runqueue info. This will avoid the checks and cache miss
1020 * penalities associated with that.
1021 */
104f6454 1022 if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
e7693a36
GH
1023 return cpu;
1024
1025 for_each_domain(cpu, sd) {
1d3504fc
HS
1026 if ((sd->flags & SD_WAKE_IDLE)
1027 || ((sd->flags & SD_WAKE_IDLE_FAR)
1028 && !task_hot(p, task_rq(p)->clock, sd))) {
e7693a36
GH
1029 cpus_and(tmp, sd->span, p->cpus_allowed);
1030 for_each_cpu_mask(i, tmp) {
1031 if (idle_cpu(i)) {
1032 if (i != task_cpu(p)) {
1033 schedstat_inc(p,
1034 se.nr_wakeups_idle);
1035 }
1036 return i;
1037 }
1038 }
1039 } else {
1040 break;
1041 }
1042 }
1043 return cpu;
1044}
1045#else
1046static inline int wake_idle(int cpu, struct task_struct *p)
1047{
1048 return cpu;
1049}
1050#endif
1051
1052#ifdef CONFIG_SMP
098fb9db 1053
4ae7d5ce
IM
1054static const struct sched_class fair_sched_class;
1055
098fb9db 1056static int
4ae7d5ce
IM
1057wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
1058 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1059 int idx, unsigned long load, unsigned long this_load,
098fb9db
IM
1060 unsigned int imbalance)
1061{
4ae7d5ce 1062 struct task_struct *curr = this_rq->curr;
098fb9db
IM
1063 unsigned long tl = this_load;
1064 unsigned long tl_per_task;
b3137bc8 1065 int balanced;
098fb9db 1066
b3137bc8 1067 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
098fb9db
IM
1068 return 0;
1069
b3137bc8
MG
1070 /*
1071 * If sync wakeup then subtract the (maximum possible)
1072 * effect of the currently running task from the load
1073 * of the current CPU:
1074 */
1075 if (sync)
1076 tl -= current->se.load.weight;
1077
1078 balanced = 100*(tl + p->se.load.weight) <= imbalance*load;
1079
098fb9db 1080 /*
4ae7d5ce
IM
1081 * If the currently running task will sleep within
1082 * a reasonable amount of time then attract this newly
1083 * woken task:
098fb9db 1084 */
b3137bc8 1085 if (sync && balanced && curr->sched_class == &fair_sched_class) {
4ae7d5ce
IM
1086 if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1087 p->se.avg_overlap < sysctl_sched_migration_cost)
1088 return 1;
1089 }
098fb9db
IM
1090
1091 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1092 tl_per_task = cpu_avg_load_per_task(this_cpu);
1093
ac192d39 1094 if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
b3137bc8 1095 balanced) {
098fb9db
IM
1096 /*
1097 * This domain has SD_WAKE_AFFINE and
1098 * p is cache cold in this domain, and
1099 * there is no bad imbalance.
1100 */
1101 schedstat_inc(this_sd, ttwu_move_affine);
1102 schedstat_inc(p, se.nr_wakeups_affine);
1103
1104 return 1;
1105 }
1106 return 0;
1107}
1108
e7693a36
GH
1109static int select_task_rq_fair(struct task_struct *p, int sync)
1110{
e7693a36 1111 struct sched_domain *sd, *this_sd = NULL;
ac192d39 1112 int prev_cpu, this_cpu, new_cpu;
098fb9db 1113 unsigned long load, this_load;
4ae7d5ce 1114 struct rq *rq, *this_rq;
098fb9db 1115 unsigned int imbalance;
098fb9db 1116 int idx;
e7693a36 1117
ac192d39
IM
1118 prev_cpu = task_cpu(p);
1119 rq = task_rq(p);
1120 this_cpu = smp_processor_id();
4ae7d5ce 1121 this_rq = cpu_rq(this_cpu);
ac192d39 1122 new_cpu = prev_cpu;
e7693a36 1123
ac192d39
IM
1124 /*
1125 * 'this_sd' is the first domain that both
1126 * this_cpu and prev_cpu are present in:
1127 */
e7693a36 1128 for_each_domain(this_cpu, sd) {
ac192d39 1129 if (cpu_isset(prev_cpu, sd->span)) {
e7693a36
GH
1130 this_sd = sd;
1131 break;
1132 }
1133 }
1134
1135 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
f4827386 1136 goto out;
e7693a36
GH
1137
1138 /*
1139 * Check for affine wakeup and passive balancing possibilities.
1140 */
098fb9db 1141 if (!this_sd)
f4827386 1142 goto out;
e7693a36 1143
098fb9db
IM
1144 idx = this_sd->wake_idx;
1145
1146 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1147
ac192d39 1148 load = source_load(prev_cpu, idx);
098fb9db
IM
1149 this_load = target_load(this_cpu, idx);
1150
4ae7d5ce
IM
1151 if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1152 load, this_load, imbalance))
1153 return this_cpu;
1154
1155 if (prev_cpu == this_cpu)
f4827386 1156 goto out;
098fb9db
IM
1157
1158 /*
1159 * Start passive balancing when half the imbalance_pct
1160 * limit is reached.
1161 */
1162 if (this_sd->flags & SD_WAKE_BALANCE) {
1163 if (imbalance*this_load <= 100*load) {
1164 schedstat_inc(this_sd, ttwu_move_balance);
1165 schedstat_inc(p, se.nr_wakeups_passive);
4ae7d5ce 1166 return this_cpu;
e7693a36
GH
1167 }
1168 }
1169
f4827386 1170out:
e7693a36
GH
1171 return wake_idle(new_cpu, p);
1172}
1173#endif /* CONFIG_SMP */
1174
0bbd3336
PZ
1175static unsigned long wakeup_gran(struct sched_entity *se)
1176{
1177 unsigned long gran = sysctl_sched_wakeup_granularity;
1178
1179 /*
a7be37ac
PZ
1180 * More easily preempt - nice tasks, while not making it harder for
1181 * + nice tasks.
0bbd3336 1182 */
c9c294a6
PZ
1183 if (sched_feat(ASYM_GRAN))
1184 gran = calc_delta_asym(sysctl_sched_wakeup_granularity, se);
1185 else
1186 gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se);
0bbd3336
PZ
1187
1188 return gran;
1189}
1190
1191/*
1192 * Should 'se' preempt 'curr'.
1193 *
1194 * |s1
1195 * |s2
1196 * |s3
1197 * g
1198 * |<--->|c
1199 *
1200 * w(c, s1) = -1
1201 * w(c, s2) = 0
1202 * w(c, s3) = 1
1203 *
1204 */
1205static int
1206wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1207{
1208 s64 gran, vdiff = curr->vruntime - se->vruntime;
1209
1210 if (vdiff < 0)
1211 return -1;
1212
1213 gran = wakeup_gran(curr);
1214 if (vdiff > gran)
1215 return 1;
1216
1217 return 0;
1218}
e7693a36 1219
354d60c2
DG
1220/* return depth at which a sched entity is present in the hierarchy */
1221static inline int depth_se(struct sched_entity *se)
1222{
1223 int depth = 0;
1224
1225 for_each_sched_entity(se)
1226 depth++;
1227
1228 return depth;
1229}
1230
bf0f6f24
IM
1231/*
1232 * Preempt the current task with a newly woken task if needed:
1233 */
2e09bf55 1234static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1235{
1236 struct task_struct *curr = rq->curr;
fad095a7 1237 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8651a86c 1238 struct sched_entity *se = &curr->se, *pse = &p->se;
354d60c2 1239 int se_depth, pse_depth;
bf0f6f24
IM
1240
1241 if (unlikely(rt_prio(p->prio))) {
a8e504d2 1242 update_rq_clock(rq);
b7cc0896 1243 update_curr(cfs_rq);
bf0f6f24
IM
1244 resched_task(curr);
1245 return;
1246 }
aa2ac252 1247
4ae7d5ce
IM
1248 se->last_wakeup = se->sum_exec_runtime;
1249 if (unlikely(se == pse))
1250 return;
1251
aa2ac252
PZ
1252 cfs_rq_of(pse)->next = pse;
1253
91c234b4
IM
1254 /*
1255 * Batch tasks do not preempt (their preemption is driven by
1256 * the tick):
1257 */
1258 if (unlikely(p->policy == SCHED_BATCH))
1259 return;
bf0f6f24 1260
77d9cc44
IM
1261 if (!sched_feat(WAKEUP_PREEMPT))
1262 return;
8651a86c 1263
354d60c2
DG
1264 /*
1265 * preemption test can be made between sibling entities who are in the
1266 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
1267 * both tasks until we find their ancestors who are siblings of common
1268 * parent.
1269 */
1270
1271 /* First walk up until both entities are at same depth */
1272 se_depth = depth_se(se);
1273 pse_depth = depth_se(pse);
1274
1275 while (se_depth > pse_depth) {
1276 se_depth--;
1277 se = parent_entity(se);
1278 }
1279
1280 while (pse_depth > se_depth) {
1281 pse_depth--;
1282 pse = parent_entity(pse);
1283 }
1284
77d9cc44
IM
1285 while (!is_same_group(se, pse)) {
1286 se = parent_entity(se);
1287 pse = parent_entity(pse);
ce6c1311 1288 }
77d9cc44 1289
0bbd3336 1290 if (wakeup_preempt_entity(se, pse) == 1)
77d9cc44 1291 resched_task(curr);
bf0f6f24
IM
1292}
1293
fb8d4724 1294static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1295{
8f4d37ec 1296 struct task_struct *p;
bf0f6f24
IM
1297 struct cfs_rq *cfs_rq = &rq->cfs;
1298 struct sched_entity *se;
1299
1300 if (unlikely(!cfs_rq->nr_running))
1301 return NULL;
1302
1303 do {
9948f4b2 1304 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
1305 cfs_rq = group_cfs_rq(se);
1306 } while (cfs_rq);
1307
8f4d37ec
PZ
1308 p = task_of(se);
1309 hrtick_start_fair(rq, p);
1310
1311 return p;
bf0f6f24
IM
1312}
1313
1314/*
1315 * Account for a descheduled task:
1316 */
31ee529c 1317static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1318{
1319 struct sched_entity *se = &prev->se;
1320 struct cfs_rq *cfs_rq;
1321
1322 for_each_sched_entity(se) {
1323 cfs_rq = cfs_rq_of(se);
ab6cde26 1324 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1325 }
1326}
1327
681f3e68 1328#ifdef CONFIG_SMP
bf0f6f24
IM
1329/**************************************************
1330 * Fair scheduling class load-balancing methods:
1331 */
1332
1333/*
1334 * Load-balancing iterator. Note: while the runqueue stays locked
1335 * during the whole iteration, the current task might be
1336 * dequeued so the iterator has to be dequeue-safe. Here we
1337 * achieve that by always pre-iterating before returning
1338 * the current task:
1339 */
a9957449 1340static struct task_struct *
4a55bd5e 1341__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
bf0f6f24 1342{
354d60c2
DG
1343 struct task_struct *p = NULL;
1344 struct sched_entity *se;
bf0f6f24 1345
6d299f1b 1346 while (next != &cfs_rq->tasks) {
4a55bd5e
PZ
1347 se = list_entry(next, struct sched_entity, group_node);
1348 next = next->next;
354d60c2 1349
6d299f1b
GH
1350 /* Skip over entities that are not tasks */
1351 if (entity_is_task(se)) {
1352 p = task_of(se);
1353 break;
1354 }
1355 }
4a55bd5e
PZ
1356
1357 cfs_rq->balance_iterator = next;
bf0f6f24
IM
1358 return p;
1359}
1360
1361static struct task_struct *load_balance_start_fair(void *arg)
1362{
1363 struct cfs_rq *cfs_rq = arg;
1364
4a55bd5e 1365 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
bf0f6f24
IM
1366}
1367
1368static struct task_struct *load_balance_next_fair(void *arg)
1369{
1370 struct cfs_rq *cfs_rq = arg;
1371
4a55bd5e 1372 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
bf0f6f24
IM
1373}
1374
6363ca57
IM
1375#ifdef CONFIG_FAIR_GROUP_SCHED
1376static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
62fb1851 1377{
6363ca57
IM
1378 struct sched_entity *curr;
1379 struct task_struct *p;
62fb1851 1380
6363ca57
IM
1381 if (!cfs_rq->nr_running || !first_fair(cfs_rq))
1382 return MAX_PRIO;
1383
1384 curr = cfs_rq->curr;
1385 if (!curr)
1386 curr = __pick_next_entity(cfs_rq);
1387
1388 p = task_of(curr);
62fb1851 1389
6363ca57 1390 return p->prio;
62fb1851 1391}
6363ca57 1392#endif
62fb1851 1393
43010659 1394static unsigned long
bf0f6f24 1395load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 1396 unsigned long max_load_move,
a4ac01c3
PW
1397 struct sched_domain *sd, enum cpu_idle_type idle,
1398 int *all_pinned, int *this_best_prio)
bf0f6f24 1399{
6363ca57 1400 struct cfs_rq *busy_cfs_rq;
bf0f6f24 1401 long rem_load_move = max_load_move;
6363ca57 1402 struct rq_iterator cfs_rq_iterator;
18d95a28 1403
6363ca57
IM
1404 cfs_rq_iterator.start = load_balance_start_fair;
1405 cfs_rq_iterator.next = load_balance_next_fair;
18d95a28 1406
6363ca57
IM
1407 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1408#ifdef CONFIG_FAIR_GROUP_SCHED
1409 struct cfs_rq *this_cfs_rq;
1410 long imbalance;
1411 unsigned long maxload;
18d95a28 1412
6363ca57 1413 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
18d95a28 1414
6363ca57
IM
1415 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
1416 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
1417 if (imbalance <= 0)
bf0f6f24
IM
1418 continue;
1419
6363ca57
IM
1420 /* Don't pull more than imbalance/2 */
1421 imbalance /= 2;
1422 maxload = min(rem_load_move, imbalance);
bf0f6f24 1423
6363ca57
IM
1424 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
1425#else
1426# define maxload rem_load_move
1427#endif
1428 /*
1429 * pass busy_cfs_rq argument into
1430 * load_balance_[start|next]_fair iterators
1431 */
1432 cfs_rq_iterator.arg = busy_cfs_rq;
1433 rem_load_move -= balance_tasks(this_rq, this_cpu, busiest,
1434 maxload, sd, idle, all_pinned,
1435 this_best_prio,
1436 &cfs_rq_iterator);
bf0f6f24 1437
6363ca57 1438 if (rem_load_move <= 0)
bf0f6f24
IM
1439 break;
1440 }
1441
43010659 1442 return max_load_move - rem_load_move;
bf0f6f24
IM
1443}
1444
e1d1484f
PW
1445static int
1446move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1447 struct sched_domain *sd, enum cpu_idle_type idle)
1448{
1449 struct cfs_rq *busy_cfs_rq;
1450 struct rq_iterator cfs_rq_iterator;
1451
1452 cfs_rq_iterator.start = load_balance_start_fair;
1453 cfs_rq_iterator.next = load_balance_next_fair;
1454
1455 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1456 /*
1457 * pass busy_cfs_rq argument into
1458 * load_balance_[start|next]_fair iterators
1459 */
1460 cfs_rq_iterator.arg = busy_cfs_rq;
1461 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1462 &cfs_rq_iterator))
1463 return 1;
1464 }
1465
1466 return 0;
1467}
681f3e68 1468#endif
e1d1484f 1469
bf0f6f24
IM
1470/*
1471 * scheduler tick hitting a task of our scheduling class:
1472 */
8f4d37ec 1473static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
1474{
1475 struct cfs_rq *cfs_rq;
1476 struct sched_entity *se = &curr->se;
1477
1478 for_each_sched_entity(se) {
1479 cfs_rq = cfs_rq_of(se);
8f4d37ec 1480 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
1481 }
1482}
1483
8eb172d9 1484#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
4d78e7b6 1485
bf0f6f24
IM
1486/*
1487 * Share the fairness runtime between parent and child, thus the
1488 * total amount of pressure for CPU stays equal - new tasks
1489 * get a chance to run but frequent forkers are not allowed to
1490 * monopolize the CPU. Note: the parent runqueue is locked,
1491 * the child is not running yet.
1492 */
ee0827d8 1493static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1494{
1495 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1496 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1497 int this_cpu = smp_processor_id();
bf0f6f24
IM
1498
1499 sched_info_queued(p);
1500
7109c442 1501 update_curr(cfs_rq);
aeb73b04 1502 place_entity(cfs_rq, se, 1);
4d78e7b6 1503
3c90e6e9 1504 /* 'curr' will be NULL if the child belongs to a different group */
00bf7bfc 1505 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
3c90e6e9 1506 curr && curr->vruntime < se->vruntime) {
87fefa38 1507 /*
edcb60a3
IM
1508 * Upon rescheduling, sched_class::put_prev_task() will place
1509 * 'current' within the tree based on its new key value.
1510 */
4d78e7b6 1511 swap(curr->vruntime, se->vruntime);
4d78e7b6 1512 }
bf0f6f24 1513
b9dca1e0 1514 enqueue_task_fair(rq, p, 0);
bb61c210 1515 resched_task(rq->curr);
bf0f6f24
IM
1516}
1517
cb469845
SR
1518/*
1519 * Priority of the task has changed. Check to see if we preempt
1520 * the current task.
1521 */
1522static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1523 int oldprio, int running)
1524{
1525 /*
1526 * Reschedule if we are currently running on this runqueue and
1527 * our priority decreased, or if we are not currently running on
1528 * this runqueue and our priority is higher than the current's
1529 */
1530 if (running) {
1531 if (p->prio > oldprio)
1532 resched_task(rq->curr);
1533 } else
1534 check_preempt_curr(rq, p);
1535}
1536
1537/*
1538 * We switched to the sched_fair class.
1539 */
1540static void switched_to_fair(struct rq *rq, struct task_struct *p,
1541 int running)
1542{
1543 /*
1544 * We were most likely switched from sched_rt, so
1545 * kick off the schedule if running, otherwise just see
1546 * if we can still preempt the current task.
1547 */
1548 if (running)
1549 resched_task(rq->curr);
1550 else
1551 check_preempt_curr(rq, p);
1552}
1553
83b699ed
SV
1554/* Account for a task changing its policy or group.
1555 *
1556 * This routine is mostly called to set cfs_rq->curr field when a task
1557 * migrates between groups/classes.
1558 */
1559static void set_curr_task_fair(struct rq *rq)
1560{
1561 struct sched_entity *se = &rq->curr->se;
1562
1563 for_each_sched_entity(se)
1564 set_next_entity(cfs_rq_of(se), se);
1565}
1566
810b3817
PZ
1567#ifdef CONFIG_FAIR_GROUP_SCHED
1568static void moved_group_fair(struct task_struct *p)
1569{
1570 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1571
1572 update_curr(cfs_rq);
1573 place_entity(cfs_rq, &p->se, 1);
1574}
1575#endif
1576
bf0f6f24
IM
1577/*
1578 * All the scheduling class methods:
1579 */
5522d5d5
IM
1580static const struct sched_class fair_sched_class = {
1581 .next = &idle_sched_class,
bf0f6f24
IM
1582 .enqueue_task = enqueue_task_fair,
1583 .dequeue_task = dequeue_task_fair,
1584 .yield_task = yield_task_fair,
e7693a36
GH
1585#ifdef CONFIG_SMP
1586 .select_task_rq = select_task_rq_fair,
1587#endif /* CONFIG_SMP */
bf0f6f24 1588
2e09bf55 1589 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1590
1591 .pick_next_task = pick_next_task_fair,
1592 .put_prev_task = put_prev_task_fair,
1593
681f3e68 1594#ifdef CONFIG_SMP
bf0f6f24 1595 .load_balance = load_balance_fair,
e1d1484f 1596 .move_one_task = move_one_task_fair,
681f3e68 1597#endif
bf0f6f24 1598
83b699ed 1599 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1600 .task_tick = task_tick_fair,
1601 .task_new = task_new_fair,
cb469845
SR
1602
1603 .prio_changed = prio_changed_fair,
1604 .switched_to = switched_to_fair,
810b3817
PZ
1605
1606#ifdef CONFIG_FAIR_GROUP_SCHED
1607 .moved_group = moved_group_fair,
1608#endif
bf0f6f24
IM
1609};
1610
1611#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1612static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1613{
bf0f6f24
IM
1614 struct cfs_rq *cfs_rq;
1615
5973e5b9 1616 rcu_read_lock();
c3b64f1e 1617 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1618 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 1619 rcu_read_unlock();
bf0f6f24
IM
1620}
1621#endif