]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched_fair.c
sched: clean up wakeup balancing, rename variables
[net-next-2.6.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c
AV
23#include <linux/latencytop.h>
24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
722aab0c 27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 28 *
21805085 29 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
bf0f6f24 33 *
d274a4ce
IM
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 36 */
19978ca6 37unsigned int sysctl_sched_latency = 20000000ULL;
2bd8e6d4
IM
38
39/*
b2be5e96 40 * Minimal preemption granularity for CPU-bound tasks:
722aab0c 41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 42 */
722aab0c 43unsigned int sysctl_sched_min_granularity = 4000000ULL;
21805085
PZ
44
45/*
b2be5e96
PZ
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
722aab0c 48static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
49
50/*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
21805085 53 */
b2be5e96 54const_debug unsigned int sysctl_sched_child_runs_first = 1;
bf0f6f24 55
1799e35d
IM
56/*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62unsigned int __read_mostly sysctl_sched_compat_yield;
63
bf0f6f24
IM
64/*
65 * SCHED_BATCH wake-up granularity.
722aab0c 66 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
19978ca6 72unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
bf0f6f24
IM
73
74/*
75 * SCHED_OTHER wake-up granularity.
722aab0c 76 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
77 *
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
81 */
19978ca6 82unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
bf0f6f24 83
da84d961
IM
84const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
85
bf0f6f24
IM
86/**************************************************************
87 * CFS operations on generic schedulable entities:
88 */
89
62160e3f 90#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 91
62160e3f 92/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
93static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
94{
62160e3f 95 return cfs_rq->rq;
bf0f6f24
IM
96}
97
62160e3f
IM
98/* An entity is a task if it doesn't "own" a runqueue */
99#define entity_is_task(se) (!se->my_q)
bf0f6f24 100
62160e3f 101#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 102
62160e3f
IM
103static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
104{
105 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
106}
107
108#define entity_is_task(se) 1
109
bf0f6f24
IM
110#endif /* CONFIG_FAIR_GROUP_SCHED */
111
112static inline struct task_struct *task_of(struct sched_entity *se)
113{
114 return container_of(se, struct task_struct, se);
115}
116
117
118/**************************************************************
119 * Scheduling class tree data structure manipulation methods:
120 */
121
0702e3eb 122static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 123{
368059a9
PZ
124 s64 delta = (s64)(vruntime - min_vruntime);
125 if (delta > 0)
02e0431a
PZ
126 min_vruntime = vruntime;
127
128 return min_vruntime;
129}
130
0702e3eb 131static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
132{
133 s64 delta = (s64)(vruntime - min_vruntime);
134 if (delta < 0)
135 min_vruntime = vruntime;
136
137 return min_vruntime;
138}
139
0702e3eb 140static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 141{
30cfdcfc 142 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
143}
144
bf0f6f24
IM
145/*
146 * Enqueue an entity into the rb-tree:
147 */
0702e3eb 148static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
149{
150 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
151 struct rb_node *parent = NULL;
152 struct sched_entity *entry;
9014623c 153 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
154 int leftmost = 1;
155
156 /*
157 * Find the right place in the rbtree:
158 */
159 while (*link) {
160 parent = *link;
161 entry = rb_entry(parent, struct sched_entity, run_node);
162 /*
163 * We dont care about collisions. Nodes with
164 * the same key stay together.
165 */
9014623c 166 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
167 link = &parent->rb_left;
168 } else {
169 link = &parent->rb_right;
170 leftmost = 0;
171 }
172 }
173
174 /*
175 * Maintain a cache of leftmost tree entries (it is frequently
176 * used):
177 */
3fe69747 178 if (leftmost) {
57cb499d 179 cfs_rq->rb_leftmost = &se->run_node;
3fe69747
PZ
180 /*
181 * maintain cfs_rq->min_vruntime to be a monotonic increasing
182 * value tracking the leftmost vruntime in the tree.
183 */
184 cfs_rq->min_vruntime =
185 max_vruntime(cfs_rq->min_vruntime, se->vruntime);
186 }
bf0f6f24
IM
187
188 rb_link_node(&se->run_node, parent, link);
189 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
190}
191
0702e3eb 192static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 193{
3fe69747
PZ
194 if (cfs_rq->rb_leftmost == &se->run_node) {
195 struct rb_node *next_node;
196 struct sched_entity *next;
197
198 next_node = rb_next(&se->run_node);
199 cfs_rq->rb_leftmost = next_node;
200
201 if (next_node) {
202 next = rb_entry(next_node,
203 struct sched_entity, run_node);
204 cfs_rq->min_vruntime =
205 max_vruntime(cfs_rq->min_vruntime,
206 next->vruntime);
207 }
208 }
e9acbff6 209
aa2ac252
PZ
210 if (cfs_rq->next == se)
211 cfs_rq->next = NULL;
212
bf0f6f24 213 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
214}
215
216static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
217{
218 return cfs_rq->rb_leftmost;
219}
220
221static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
222{
223 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
224}
225
aeb73b04
PZ
226static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
227{
7eee3e67 228 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 229
70eee74b
BS
230 if (!last)
231 return NULL;
7eee3e67
IM
232
233 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
234}
235
bf0f6f24
IM
236/**************************************************************
237 * Scheduling class statistics methods:
238 */
239
b2be5e96
PZ
240#ifdef CONFIG_SCHED_DEBUG
241int sched_nr_latency_handler(struct ctl_table *table, int write,
242 struct file *filp, void __user *buffer, size_t *lenp,
243 loff_t *ppos)
244{
245 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
246
247 if (ret || !write)
248 return ret;
249
250 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
251 sysctl_sched_min_granularity);
252
253 return 0;
254}
255#endif
647e7cac
IM
256
257/*
258 * The idea is to set a period in which each task runs once.
259 *
260 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
261 * this period because otherwise the slices get too small.
262 *
263 * p = (nr <= nl) ? l : l*nr/nl
264 */
4d78e7b6
PZ
265static u64 __sched_period(unsigned long nr_running)
266{
267 u64 period = sysctl_sched_latency;
b2be5e96 268 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
269
270 if (unlikely(nr_running > nr_latency)) {
4bf0b771 271 period = sysctl_sched_min_granularity;
4d78e7b6 272 period *= nr_running;
4d78e7b6
PZ
273 }
274
275 return period;
276}
277
647e7cac
IM
278/*
279 * We calculate the wall-time slice from the period by taking a part
280 * proportional to the weight.
281 *
282 * s = p*w/rw
283 */
6d0f0ebd 284static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 285{
6a6029b8
IM
286 return calc_delta_mine(__sched_period(cfs_rq->nr_running),
287 se->load.weight, &cfs_rq->load);
bf0f6f24
IM
288}
289
647e7cac
IM
290/*
291 * We calculate the vruntime slice.
292 *
293 * vs = s/w = p/rw
294 */
295static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
67e9fb2a 296{
647e7cac 297 u64 vslice = __sched_period(nr_running);
67e9fb2a 298
10b77724 299 vslice *= NICE_0_LOAD;
647e7cac 300 do_div(vslice, rq_weight);
67e9fb2a 301
647e7cac
IM
302 return vslice;
303}
5f6d858e 304
647e7cac
IM
305static u64 sched_vslice(struct cfs_rq *cfs_rq)
306{
307 return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
308}
309
310static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
311{
312 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
313 cfs_rq->nr_running + 1);
67e9fb2a
PZ
314}
315
bf0f6f24
IM
316/*
317 * Update the current task's runtime statistics. Skip current tasks that
318 * are not in our scheduling class.
319 */
320static inline void
8ebc91d9
IM
321__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
322 unsigned long delta_exec)
bf0f6f24 323{
bbdba7c0 324 unsigned long delta_exec_weighted;
bf0f6f24 325
8179ca23 326 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
327
328 curr->sum_exec_runtime += delta_exec;
7a62eabc 329 schedstat_add(cfs_rq, exec_clock, delta_exec);
e9acbff6
IM
330 delta_exec_weighted = delta_exec;
331 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
332 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
333 &curr->load);
334 }
335 curr->vruntime += delta_exec_weighted;
bf0f6f24
IM
336}
337
b7cc0896 338static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 339{
429d43bc 340 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 341 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
342 unsigned long delta_exec;
343
344 if (unlikely(!curr))
345 return;
346
347 /*
348 * Get the amount of time the current task was running
349 * since the last time we changed load (this cannot
350 * overflow on 32 bits):
351 */
8ebc91d9 352 delta_exec = (unsigned long)(now - curr->exec_start);
bf0f6f24 353
8ebc91d9
IM
354 __update_curr(cfs_rq, curr, delta_exec);
355 curr->exec_start = now;
d842de87
SV
356
357 if (entity_is_task(curr)) {
358 struct task_struct *curtask = task_of(curr);
359
360 cpuacct_charge(curtask, delta_exec);
361 }
bf0f6f24
IM
362}
363
364static inline void
5870db5b 365update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 366{
d281918d 367 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
368}
369
bf0f6f24
IM
370/*
371 * Task is being enqueued - update stats:
372 */
d2417e5a 373static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 374{
bf0f6f24
IM
375 /*
376 * Are we enqueueing a waiting task? (for current tasks
377 * a dequeue/enqueue event is a NOP)
378 */
429d43bc 379 if (se != cfs_rq->curr)
5870db5b 380 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
381}
382
bf0f6f24 383static void
9ef0a961 384update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 385{
bbdba7c0
IM
386 schedstat_set(se->wait_max, max(se->wait_max,
387 rq_of(cfs_rq)->clock - se->wait_start));
6d082592
AV
388 schedstat_set(se->wait_count, se->wait_count + 1);
389 schedstat_set(se->wait_sum, se->wait_sum +
390 rq_of(cfs_rq)->clock - se->wait_start);
6cfb0d5d 391 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
392}
393
394static inline void
19b6a2e3 395update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 396{
bf0f6f24
IM
397 /*
398 * Mark the end of the wait period if dequeueing a
399 * waiting task:
400 */
429d43bc 401 if (se != cfs_rq->curr)
9ef0a961 402 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
403}
404
405/*
406 * We are picking a new current task - update its stats:
407 */
408static inline void
79303e9e 409update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
410{
411 /*
412 * We are starting a new run period:
413 */
d281918d 414 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
415}
416
bf0f6f24
IM
417/**************************************************
418 * Scheduling class queueing methods:
419 */
420
30cfdcfc
DA
421static void
422account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
423{
424 update_load_add(&cfs_rq->load, se->load.weight);
425 cfs_rq->nr_running++;
426 se->on_rq = 1;
427}
428
429static void
430account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
431{
432 update_load_sub(&cfs_rq->load, se->load.weight);
433 cfs_rq->nr_running--;
434 se->on_rq = 0;
435}
436
2396af69 437static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 438{
bf0f6f24
IM
439#ifdef CONFIG_SCHEDSTATS
440 if (se->sleep_start) {
d281918d 441 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
9745512c 442 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
443
444 if ((s64)delta < 0)
445 delta = 0;
446
447 if (unlikely(delta > se->sleep_max))
448 se->sleep_max = delta;
449
450 se->sleep_start = 0;
451 se->sum_sleep_runtime += delta;
9745512c
AV
452
453 account_scheduler_latency(tsk, delta >> 10, 1);
bf0f6f24
IM
454 }
455 if (se->block_start) {
d281918d 456 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
9745512c 457 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
458
459 if ((s64)delta < 0)
460 delta = 0;
461
462 if (unlikely(delta > se->block_max))
463 se->block_max = delta;
464
465 se->block_start = 0;
466 se->sum_sleep_runtime += delta;
30084fbd
IM
467
468 /*
469 * Blocking time is in units of nanosecs, so shift by 20 to
470 * get a milliseconds-range estimation of the amount of
471 * time that the task spent sleeping:
472 */
473 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf 474
30084fbd
IM
475 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
476 delta >> 20);
477 }
9745512c 478 account_scheduler_latency(tsk, delta >> 10, 0);
bf0f6f24
IM
479 }
480#endif
481}
482
ddc97297
PZ
483static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
484{
485#ifdef CONFIG_SCHED_DEBUG
486 s64 d = se->vruntime - cfs_rq->min_vruntime;
487
488 if (d < 0)
489 d = -d;
490
491 if (d > 3*sysctl_sched_latency)
492 schedstat_inc(cfs_rq, nr_spread_over);
493#endif
494}
495
aeb73b04
PZ
496static void
497place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
498{
67e9fb2a 499 u64 vruntime;
aeb73b04 500
3fe69747
PZ
501 if (first_fair(cfs_rq)) {
502 vruntime = min_vruntime(cfs_rq->min_vruntime,
503 __pick_next_entity(cfs_rq)->vruntime);
504 } else
505 vruntime = cfs_rq->min_vruntime;
94dfb5e7 506
06877c33 507 if (sched_feat(TREE_AVG)) {
94dfb5e7
PZ
508 struct sched_entity *last = __pick_last_entity(cfs_rq);
509 if (last) {
67e9fb2a
PZ
510 vruntime += last->vruntime;
511 vruntime >>= 1;
94dfb5e7 512 }
67e9fb2a 513 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
647e7cac 514 vruntime += sched_vslice(cfs_rq)/2;
94dfb5e7 515
2cb8600e
PZ
516 /*
517 * The 'current' period is already promised to the current tasks,
518 * however the extra weight of the new task will slow them down a
519 * little, place the new task so that it fits in the slot that
520 * stays open at the end.
521 */
94dfb5e7 522 if (initial && sched_feat(START_DEBIT))
647e7cac 523 vruntime += sched_vslice_add(cfs_rq, se);
aeb73b04 524
8465e792 525 if (!initial) {
2cb8600e 526 /* sleeps upto a single latency don't count. */
e22ecef1
IM
527 if (sched_feat(NEW_FAIR_SLEEPERS)) {
528 vruntime -= calc_delta_fair(sysctl_sched_latency,
529 &cfs_rq->load);
530 }
94359f05 531
2cb8600e
PZ
532 /* ensure we never gain time by being placed backwards. */
533 vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
534 }
535
67e9fb2a 536 se->vruntime = vruntime;
aeb73b04
PZ
537}
538
bf0f6f24 539static void
83b699ed 540enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
541{
542 /*
a2a2d680 543 * Update run-time statistics of the 'current'.
bf0f6f24 544 */
b7cc0896 545 update_curr(cfs_rq);
bf0f6f24 546
e9acbff6 547 if (wakeup) {
aeb73b04 548 place_entity(cfs_rq, se, 0);
2396af69 549 enqueue_sleeper(cfs_rq, se);
e9acbff6 550 }
bf0f6f24 551
d2417e5a 552 update_stats_enqueue(cfs_rq, se);
ddc97297 553 check_spread(cfs_rq, se);
83b699ed
SV
554 if (se != cfs_rq->curr)
555 __enqueue_entity(cfs_rq, se);
30cfdcfc 556 account_entity_enqueue(cfs_rq, se);
bf0f6f24
IM
557}
558
559static void
525c2716 560dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 561{
a2a2d680
DA
562 /*
563 * Update run-time statistics of the 'current'.
564 */
565 update_curr(cfs_rq);
566
19b6a2e3 567 update_stats_dequeue(cfs_rq, se);
db36cc7d 568 if (sleep) {
67e9fb2a 569#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
570 if (entity_is_task(se)) {
571 struct task_struct *tsk = task_of(se);
572
573 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 574 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 575 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 576 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 577 }
db36cc7d 578#endif
67e9fb2a
PZ
579 }
580
83b699ed 581 if (se != cfs_rq->curr)
30cfdcfc
DA
582 __dequeue_entity(cfs_rq, se);
583 account_entity_dequeue(cfs_rq, se);
bf0f6f24
IM
584}
585
586/*
587 * Preempt the current task with a newly woken task if needed:
588 */
7c92e54f 589static void
2e09bf55 590check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 591{
11697830
PZ
592 unsigned long ideal_runtime, delta_exec;
593
6d0f0ebd 594 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 595 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3e3e13f3 596 if (delta_exec > ideal_runtime)
bf0f6f24
IM
597 resched_task(rq_of(cfs_rq)->curr);
598}
599
83b699ed 600static void
8494f412 601set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 602{
83b699ed
SV
603 /* 'current' is not kept within the tree. */
604 if (se->on_rq) {
605 /*
606 * Any task has to be enqueued before it get to execute on
607 * a CPU. So account for the time it spent waiting on the
608 * runqueue.
609 */
610 update_stats_wait_end(cfs_rq, se);
611 __dequeue_entity(cfs_rq, se);
612 }
613
79303e9e 614 update_stats_curr_start(cfs_rq, se);
429d43bc 615 cfs_rq->curr = se;
eba1ed4b
IM
616#ifdef CONFIG_SCHEDSTATS
617 /*
618 * Track our maximum slice length, if the CPU's load is at
619 * least twice that of our own weight (i.e. dont track it
620 * when there are only lesser-weight tasks around):
621 */
495eca49 622 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
623 se->slice_max = max(se->slice_max,
624 se->sum_exec_runtime - se->prev_sum_exec_runtime);
625 }
626#endif
4a55b450 627 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
628}
629
aa2ac252
PZ
630static struct sched_entity *
631pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
632{
633 s64 diff, gran;
634
635 if (!cfs_rq->next)
636 return se;
637
638 diff = cfs_rq->next->vruntime - se->vruntime;
639 if (diff < 0)
640 return se;
641
642 gran = calc_delta_fair(sysctl_sched_wakeup_granularity, &cfs_rq->load);
643 if (diff > gran)
644 return se;
645
646 return cfs_rq->next;
647}
648
9948f4b2 649static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24 650{
08ec3df5 651 struct sched_entity *se = NULL;
bf0f6f24 652
08ec3df5
DA
653 if (first_fair(cfs_rq)) {
654 se = __pick_next_entity(cfs_rq);
aa2ac252 655 se = pick_next(cfs_rq, se);
08ec3df5
DA
656 set_next_entity(cfs_rq, se);
657 }
bf0f6f24
IM
658
659 return se;
660}
661
ab6cde26 662static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
663{
664 /*
665 * If still on the runqueue then deactivate_task()
666 * was not called and update_curr() has to be done:
667 */
668 if (prev->on_rq)
b7cc0896 669 update_curr(cfs_rq);
bf0f6f24 670
ddc97297 671 check_spread(cfs_rq, prev);
30cfdcfc 672 if (prev->on_rq) {
5870db5b 673 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
674 /* Put 'current' back into the tree. */
675 __enqueue_entity(cfs_rq, prev);
676 }
429d43bc 677 cfs_rq->curr = NULL;
bf0f6f24
IM
678}
679
8f4d37ec
PZ
680static void
681entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 682{
bf0f6f24 683 /*
30cfdcfc 684 * Update run-time statistics of the 'current'.
bf0f6f24 685 */
30cfdcfc 686 update_curr(cfs_rq);
bf0f6f24 687
8f4d37ec
PZ
688#ifdef CONFIG_SCHED_HRTICK
689 /*
690 * queued ticks are scheduled to match the slice, so don't bother
691 * validating it and just reschedule.
692 */
693 if (queued)
694 return resched_task(rq_of(cfs_rq)->curr);
695 /*
696 * don't let the period tick interfere with the hrtick preemption
697 */
698 if (!sched_feat(DOUBLE_TICK) &&
699 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
700 return;
701#endif
702
ce6c1311 703 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 704 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
705}
706
707/**************************************************
708 * CFS operations on tasks:
709 */
710
711#ifdef CONFIG_FAIR_GROUP_SCHED
712
713/* Walk up scheduling entities hierarchy */
714#define for_each_sched_entity(se) \
715 for (; se; se = se->parent)
716
717static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
718{
719 return p->se.cfs_rq;
720}
721
722/* runqueue on which this entity is (to be) queued */
723static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
724{
725 return se->cfs_rq;
726}
727
728/* runqueue "owned" by this group */
729static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
730{
731 return grp->my_q;
732}
733
734/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
735 * another cpu ('this_cpu')
736 */
737static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
738{
29f59db3 739 return cfs_rq->tg->cfs_rq[this_cpu];
bf0f6f24
IM
740}
741
742/* Iterate thr' all leaf cfs_rq's on a runqueue */
743#define for_each_leaf_cfs_rq(rq, cfs_rq) \
ec2c507f 744 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
bf0f6f24 745
fad095a7
SV
746/* Do the two (enqueued) entities belong to the same group ? */
747static inline int
748is_same_group(struct sched_entity *se, struct sched_entity *pse)
bf0f6f24 749{
fad095a7 750 if (se->cfs_rq == pse->cfs_rq)
bf0f6f24
IM
751 return 1;
752
753 return 0;
754}
755
fad095a7
SV
756static inline struct sched_entity *parent_entity(struct sched_entity *se)
757{
758 return se->parent;
759}
760
bf0f6f24
IM
761#else /* CONFIG_FAIR_GROUP_SCHED */
762
763#define for_each_sched_entity(se) \
764 for (; se; se = NULL)
765
766static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
767{
768 return &task_rq(p)->cfs;
769}
770
771static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
772{
773 struct task_struct *p = task_of(se);
774 struct rq *rq = task_rq(p);
775
776 return &rq->cfs;
777}
778
779/* runqueue "owned" by this group */
780static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
781{
782 return NULL;
783}
784
785static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
786{
787 return &cpu_rq(this_cpu)->cfs;
788}
789
790#define for_each_leaf_cfs_rq(rq, cfs_rq) \
791 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
792
fad095a7
SV
793static inline int
794is_same_group(struct sched_entity *se, struct sched_entity *pse)
bf0f6f24
IM
795{
796 return 1;
797}
798
fad095a7
SV
799static inline struct sched_entity *parent_entity(struct sched_entity *se)
800{
801 return NULL;
802}
803
bf0f6f24
IM
804#endif /* CONFIG_FAIR_GROUP_SCHED */
805
8f4d37ec
PZ
806#ifdef CONFIG_SCHED_HRTICK
807static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
808{
809 int requeue = rq->curr == p;
810 struct sched_entity *se = &p->se;
811 struct cfs_rq *cfs_rq = cfs_rq_of(se);
812
813 WARN_ON(task_rq(p) != rq);
814
815 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
816 u64 slice = sched_slice(cfs_rq, se);
817 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
818 s64 delta = slice - ran;
819
820 if (delta < 0) {
821 if (rq->curr == p)
822 resched_task(p);
823 return;
824 }
825
826 /*
827 * Don't schedule slices shorter than 10000ns, that just
828 * doesn't make sense. Rely on vruntime for fairness.
829 */
830 if (!requeue)
831 delta = max(10000LL, delta);
832
833 hrtick_start(rq, delta, requeue);
834 }
835}
836#else
837static inline void
838hrtick_start_fair(struct rq *rq, struct task_struct *p)
839{
840}
841#endif
842
bf0f6f24
IM
843/*
844 * The enqueue_task method is called before nr_running is
845 * increased. Here we update the fair scheduling stats and
846 * then put the task into the rbtree:
847 */
fd390f6a 848static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
849{
850 struct cfs_rq *cfs_rq;
62fb1851 851 struct sched_entity *se = &p->se;
bf0f6f24
IM
852
853 for_each_sched_entity(se) {
62fb1851 854 if (se->on_rq)
bf0f6f24
IM
855 break;
856 cfs_rq = cfs_rq_of(se);
83b699ed 857 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 858 wakeup = 1;
bf0f6f24 859 }
8f4d37ec
PZ
860
861 hrtick_start_fair(rq, rq->curr);
bf0f6f24
IM
862}
863
864/*
865 * The dequeue_task method is called before nr_running is
866 * decreased. We remove the task from the rbtree and
867 * update the fair scheduling stats:
868 */
f02231e5 869static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
870{
871 struct cfs_rq *cfs_rq;
62fb1851 872 struct sched_entity *se = &p->se;
bf0f6f24
IM
873
874 for_each_sched_entity(se) {
875 cfs_rq = cfs_rq_of(se);
525c2716 876 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 877 /* Don't dequeue parent if it has other entities besides us */
62fb1851 878 if (cfs_rq->load.weight)
bf0f6f24 879 break;
b9fa3df3 880 sleep = 1;
bf0f6f24 881 }
8f4d37ec
PZ
882
883 hrtick_start_fair(rq, rq->curr);
bf0f6f24
IM
884}
885
886/*
1799e35d
IM
887 * sched_yield() support is very simple - we dequeue and enqueue.
888 *
889 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 890 */
4530d7ab 891static void yield_task_fair(struct rq *rq)
bf0f6f24 892{
db292ca3
IM
893 struct task_struct *curr = rq->curr;
894 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
895 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
896
897 /*
1799e35d
IM
898 * Are we the only task in the tree?
899 */
900 if (unlikely(cfs_rq->nr_running == 1))
901 return;
902
db292ca3 903 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1799e35d
IM
904 __update_rq_clock(rq);
905 /*
a2a2d680 906 * Update run-time statistics of the 'current'.
1799e35d 907 */
2b1e315d 908 update_curr(cfs_rq);
1799e35d
IM
909
910 return;
911 }
912 /*
913 * Find the rightmost entry in the rbtree:
bf0f6f24 914 */
2b1e315d 915 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
916 /*
917 * Already in the rightmost position?
918 */
2b1e315d 919 if (unlikely(rightmost->vruntime < se->vruntime))
1799e35d
IM
920 return;
921
922 /*
923 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
924 * Upon rescheduling, sched_class::put_prev_task() will place
925 * 'current' within the tree based on its new key value.
1799e35d 926 */
30cfdcfc 927 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
928}
929
e7693a36
GH
930/*
931 * wake_idle() will wake a task on an idle cpu if task->cpu is
932 * not idle and an idle cpu is available. The span of cpus to
933 * search starts with cpus closest then further out as needed,
934 * so we always favor a closer, idle cpu.
935 *
936 * Returns the CPU we should wake onto.
937 */
938#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
939static int wake_idle(int cpu, struct task_struct *p)
940{
941 cpumask_t tmp;
942 struct sched_domain *sd;
943 int i;
944
945 /*
946 * If it is idle, then it is the best cpu to run this task.
947 *
948 * This cpu is also the best, if it has more than one task already.
949 * Siblings must be also busy(in most cases) as they didn't already
950 * pickup the extra load from this cpu and hence we need not check
951 * sibling runqueue info. This will avoid the checks and cache miss
952 * penalities associated with that.
953 */
954 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
955 return cpu;
956
957 for_each_domain(cpu, sd) {
958 if (sd->flags & SD_WAKE_IDLE) {
959 cpus_and(tmp, sd->span, p->cpus_allowed);
960 for_each_cpu_mask(i, tmp) {
961 if (idle_cpu(i)) {
962 if (i != task_cpu(p)) {
963 schedstat_inc(p,
964 se.nr_wakeups_idle);
965 }
966 return i;
967 }
968 }
969 } else {
970 break;
971 }
972 }
973 return cpu;
974}
975#else
976static inline int wake_idle(int cpu, struct task_struct *p)
977{
978 return cpu;
979}
980#endif
981
982#ifdef CONFIG_SMP
098fb9db
IM
983
984static int
985wake_affine(struct rq *rq, struct sched_domain *this_sd, struct task_struct *p,
ac192d39 986 int prev_cpu, int this_cpu, int sync, int idx,
098fb9db
IM
987 unsigned long load, unsigned long this_load,
988 unsigned int imbalance)
989{
990 unsigned long tl = this_load;
991 unsigned long tl_per_task;
992
993 if (!(this_sd->flags & SD_WAKE_AFFINE))
994 return 0;
995
996 /*
997 * Attract cache-cold tasks on sync wakeups:
998 */
999 if (sync && !task_hot(p, rq->clock, this_sd))
1000 return 1;
1001
1002 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1003 tl_per_task = cpu_avg_load_per_task(this_cpu);
1004
1005 /*
1006 * If sync wakeup then subtract the (maximum possible)
1007 * effect of the currently running task from the load
1008 * of the current CPU:
1009 */
1010 if (sync)
1011 tl -= current->se.load.weight;
1012
ac192d39 1013 if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
098fb9db
IM
1014 100*(tl + p->se.load.weight) <= imbalance*load) {
1015 /*
1016 * This domain has SD_WAKE_AFFINE and
1017 * p is cache cold in this domain, and
1018 * there is no bad imbalance.
1019 */
1020 schedstat_inc(this_sd, ttwu_move_affine);
1021 schedstat_inc(p, se.nr_wakeups_affine);
1022
1023 return 1;
1024 }
1025 return 0;
1026}
1027
e7693a36
GH
1028static int select_task_rq_fair(struct task_struct *p, int sync)
1029{
e7693a36 1030 struct sched_domain *sd, *this_sd = NULL;
ac192d39 1031 int prev_cpu, this_cpu, new_cpu;
098fb9db 1032 unsigned long load, this_load;
098fb9db
IM
1033 unsigned int imbalance;
1034 struct rq *rq;
1035 int idx;
e7693a36 1036
ac192d39
IM
1037 prev_cpu = task_cpu(p);
1038 rq = task_rq(p);
1039 this_cpu = smp_processor_id();
1040 new_cpu = prev_cpu;
e7693a36 1041
ac192d39 1042 if (prev_cpu == this_cpu)
9ec3b77e
DA
1043 goto out_set_cpu;
1044
ac192d39
IM
1045 /*
1046 * 'this_sd' is the first domain that both
1047 * this_cpu and prev_cpu are present in:
1048 */
e7693a36 1049 for_each_domain(this_cpu, sd) {
ac192d39 1050 if (cpu_isset(prev_cpu, sd->span)) {
e7693a36
GH
1051 this_sd = sd;
1052 break;
1053 }
1054 }
1055
1056 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1057 goto out_set_cpu;
1058
1059 /*
1060 * Check for affine wakeup and passive balancing possibilities.
1061 */
098fb9db
IM
1062 if (!this_sd)
1063 goto out_keep_cpu;
e7693a36 1064
098fb9db
IM
1065 idx = this_sd->wake_idx;
1066
1067 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1068
ac192d39 1069 load = source_load(prev_cpu, idx);
098fb9db
IM
1070 this_load = target_load(this_cpu, idx);
1071
1072 new_cpu = this_cpu; /* Wake to this CPU if we can */
1073
ac192d39 1074 if (wake_affine(rq, this_sd, p, prev_cpu, this_cpu, sync, idx,
098fb9db
IM
1075 load, this_load, imbalance))
1076 goto out_set_cpu;
1077
1078 /*
1079 * Start passive balancing when half the imbalance_pct
1080 * limit is reached.
1081 */
1082 if (this_sd->flags & SD_WAKE_BALANCE) {
1083 if (imbalance*this_load <= 100*load) {
1084 schedstat_inc(this_sd, ttwu_move_balance);
1085 schedstat_inc(p, se.nr_wakeups_passive);
1086 goto out_set_cpu;
e7693a36
GH
1087 }
1088 }
1089
098fb9db 1090out_keep_cpu:
ac192d39
IM
1091 /*
1092 * Could not wake to this_cpu.
1093 * Wake to the previous cpu instead:
1094 */
1095 new_cpu = prev_cpu;
e7693a36
GH
1096out_set_cpu:
1097 return wake_idle(new_cpu, p);
1098}
1099#endif /* CONFIG_SMP */
1100
1101
bf0f6f24
IM
1102/*
1103 * Preempt the current task with a newly woken task if needed:
1104 */
2e09bf55 1105static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1106{
1107 struct task_struct *curr = rq->curr;
fad095a7 1108 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8651a86c 1109 struct sched_entity *se = &curr->se, *pse = &p->se;
502d26b5 1110 unsigned long gran;
bf0f6f24
IM
1111
1112 if (unlikely(rt_prio(p->prio))) {
a8e504d2 1113 update_rq_clock(rq);
b7cc0896 1114 update_curr(cfs_rq);
bf0f6f24
IM
1115 resched_task(curr);
1116 return;
1117 }
aa2ac252
PZ
1118
1119 cfs_rq_of(pse)->next = pse;
1120
91c234b4
IM
1121 /*
1122 * Batch tasks do not preempt (their preemption is driven by
1123 * the tick):
1124 */
1125 if (unlikely(p->policy == SCHED_BATCH))
1126 return;
bf0f6f24 1127
77d9cc44
IM
1128 if (!sched_feat(WAKEUP_PREEMPT))
1129 return;
8651a86c 1130
77d9cc44
IM
1131 while (!is_same_group(se, pse)) {
1132 se = parent_entity(se);
1133 pse = parent_entity(pse);
ce6c1311 1134 }
77d9cc44 1135
77d9cc44 1136 gran = sysctl_sched_wakeup_granularity;
ef9884e6
PZ
1137 /*
1138 * More easily preempt - nice tasks, while not making
1139 * it harder for + nice tasks.
1140 */
1141 if (unlikely(se->load.weight > NICE_0_LOAD))
77d9cc44
IM
1142 gran = calc_delta_fair(gran, &se->load);
1143
502d26b5 1144 if (pse->vruntime + gran < se->vruntime)
77d9cc44 1145 resched_task(curr);
bf0f6f24
IM
1146}
1147
fb8d4724 1148static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1149{
8f4d37ec 1150 struct task_struct *p;
bf0f6f24
IM
1151 struct cfs_rq *cfs_rq = &rq->cfs;
1152 struct sched_entity *se;
1153
1154 if (unlikely(!cfs_rq->nr_running))
1155 return NULL;
1156
1157 do {
9948f4b2 1158 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
1159 cfs_rq = group_cfs_rq(se);
1160 } while (cfs_rq);
1161
8f4d37ec
PZ
1162 p = task_of(se);
1163 hrtick_start_fair(rq, p);
1164
1165 return p;
bf0f6f24
IM
1166}
1167
1168/*
1169 * Account for a descheduled task:
1170 */
31ee529c 1171static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1172{
1173 struct sched_entity *se = &prev->se;
1174 struct cfs_rq *cfs_rq;
1175
1176 for_each_sched_entity(se) {
1177 cfs_rq = cfs_rq_of(se);
ab6cde26 1178 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1179 }
1180}
1181
681f3e68 1182#ifdef CONFIG_SMP
bf0f6f24
IM
1183/**************************************************
1184 * Fair scheduling class load-balancing methods:
1185 */
1186
1187/*
1188 * Load-balancing iterator. Note: while the runqueue stays locked
1189 * during the whole iteration, the current task might be
1190 * dequeued so the iterator has to be dequeue-safe. Here we
1191 * achieve that by always pre-iterating before returning
1192 * the current task:
1193 */
a9957449 1194static struct task_struct *
bf0f6f24
IM
1195__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
1196{
1197 struct task_struct *p;
1198
1199 if (!curr)
1200 return NULL;
1201
1202 p = rb_entry(curr, struct task_struct, se.run_node);
1203 cfs_rq->rb_load_balance_curr = rb_next(curr);
1204
1205 return p;
1206}
1207
1208static struct task_struct *load_balance_start_fair(void *arg)
1209{
1210 struct cfs_rq *cfs_rq = arg;
1211
1212 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
1213}
1214
1215static struct task_struct *load_balance_next_fair(void *arg)
1216{
1217 struct cfs_rq *cfs_rq = arg;
1218
1219 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
1220}
1221
62fb1851
PZ
1222#ifdef CONFIG_FAIR_GROUP_SCHED
1223static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
1224{
1225 struct sched_entity *curr;
1226 struct task_struct *p;
1227
1228 if (!cfs_rq->nr_running || !first_fair(cfs_rq))
1229 return MAX_PRIO;
1230
1231 curr = cfs_rq->curr;
1232 if (!curr)
1233 curr = __pick_next_entity(cfs_rq);
1234
1235 p = task_of(curr);
1236
1237 return p->prio;
1238}
1239#endif
1240
43010659 1241static unsigned long
bf0f6f24 1242load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 1243 unsigned long max_load_move,
a4ac01c3
PW
1244 struct sched_domain *sd, enum cpu_idle_type idle,
1245 int *all_pinned, int *this_best_prio)
bf0f6f24
IM
1246{
1247 struct cfs_rq *busy_cfs_rq;
bf0f6f24
IM
1248 long rem_load_move = max_load_move;
1249 struct rq_iterator cfs_rq_iterator;
1250
1251 cfs_rq_iterator.start = load_balance_start_fair;
1252 cfs_rq_iterator.next = load_balance_next_fair;
1253
1254 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
a4ac01c3 1255#ifdef CONFIG_FAIR_GROUP_SCHED
62fb1851
PZ
1256 struct cfs_rq *this_cfs_rq;
1257 long imbalance;
1258 unsigned long maxload;
bf0f6f24 1259
62fb1851 1260 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
6b2d7700 1261
62fb1851
PZ
1262 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
1263 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
1264 if (imbalance <= 0)
bf0f6f24
IM
1265 continue;
1266
62fb1851
PZ
1267 /* Don't pull more than imbalance/2 */
1268 imbalance /= 2;
1269 maxload = min(rem_load_move, imbalance);
bf0f6f24 1270
62fb1851 1271 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
a4ac01c3 1272#else
e56f31aa 1273# define maxload rem_load_move
a4ac01c3 1274#endif
e1d1484f
PW
1275 /*
1276 * pass busy_cfs_rq argument into
bf0f6f24
IM
1277 * load_balance_[start|next]_fair iterators
1278 */
1279 cfs_rq_iterator.arg = busy_cfs_rq;
62fb1851 1280 rem_load_move -= balance_tasks(this_rq, this_cpu, busiest,
e1d1484f
PW
1281 maxload, sd, idle, all_pinned,
1282 this_best_prio,
1283 &cfs_rq_iterator);
bf0f6f24 1284
e1d1484f 1285 if (rem_load_move <= 0)
bf0f6f24
IM
1286 break;
1287 }
1288
43010659 1289 return max_load_move - rem_load_move;
bf0f6f24
IM
1290}
1291
e1d1484f
PW
1292static int
1293move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1294 struct sched_domain *sd, enum cpu_idle_type idle)
1295{
1296 struct cfs_rq *busy_cfs_rq;
1297 struct rq_iterator cfs_rq_iterator;
1298
1299 cfs_rq_iterator.start = load_balance_start_fair;
1300 cfs_rq_iterator.next = load_balance_next_fair;
1301
1302 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1303 /*
1304 * pass busy_cfs_rq argument into
1305 * load_balance_[start|next]_fair iterators
1306 */
1307 cfs_rq_iterator.arg = busy_cfs_rq;
1308 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1309 &cfs_rq_iterator))
1310 return 1;
1311 }
1312
1313 return 0;
1314}
681f3e68 1315#endif
e1d1484f 1316
bf0f6f24
IM
1317/*
1318 * scheduler tick hitting a task of our scheduling class:
1319 */
8f4d37ec 1320static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
1321{
1322 struct cfs_rq *cfs_rq;
1323 struct sched_entity *se = &curr->se;
1324
1325 for_each_sched_entity(se) {
1326 cfs_rq = cfs_rq_of(se);
8f4d37ec 1327 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
1328 }
1329}
1330
8eb172d9 1331#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
4d78e7b6 1332
bf0f6f24
IM
1333/*
1334 * Share the fairness runtime between parent and child, thus the
1335 * total amount of pressure for CPU stays equal - new tasks
1336 * get a chance to run but frequent forkers are not allowed to
1337 * monopolize the CPU. Note: the parent runqueue is locked,
1338 * the child is not running yet.
1339 */
ee0827d8 1340static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1341{
1342 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1343 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1344 int this_cpu = smp_processor_id();
bf0f6f24
IM
1345
1346 sched_info_queued(p);
1347
7109c442 1348 update_curr(cfs_rq);
aeb73b04 1349 place_entity(cfs_rq, se, 1);
4d78e7b6 1350
3c90e6e9 1351 /* 'curr' will be NULL if the child belongs to a different group */
00bf7bfc 1352 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
3c90e6e9 1353 curr && curr->vruntime < se->vruntime) {
87fefa38 1354 /*
edcb60a3
IM
1355 * Upon rescheduling, sched_class::put_prev_task() will place
1356 * 'current' within the tree based on its new key value.
1357 */
4d78e7b6 1358 swap(curr->vruntime, se->vruntime);
4d78e7b6 1359 }
bf0f6f24 1360
b9dca1e0 1361 enqueue_task_fair(rq, p, 0);
bb61c210 1362 resched_task(rq->curr);
bf0f6f24
IM
1363}
1364
cb469845
SR
1365/*
1366 * Priority of the task has changed. Check to see if we preempt
1367 * the current task.
1368 */
1369static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1370 int oldprio, int running)
1371{
1372 /*
1373 * Reschedule if we are currently running on this runqueue and
1374 * our priority decreased, or if we are not currently running on
1375 * this runqueue and our priority is higher than the current's
1376 */
1377 if (running) {
1378 if (p->prio > oldprio)
1379 resched_task(rq->curr);
1380 } else
1381 check_preempt_curr(rq, p);
1382}
1383
1384/*
1385 * We switched to the sched_fair class.
1386 */
1387static void switched_to_fair(struct rq *rq, struct task_struct *p,
1388 int running)
1389{
1390 /*
1391 * We were most likely switched from sched_rt, so
1392 * kick off the schedule if running, otherwise just see
1393 * if we can still preempt the current task.
1394 */
1395 if (running)
1396 resched_task(rq->curr);
1397 else
1398 check_preempt_curr(rq, p);
1399}
1400
83b699ed
SV
1401/* Account for a task changing its policy or group.
1402 *
1403 * This routine is mostly called to set cfs_rq->curr field when a task
1404 * migrates between groups/classes.
1405 */
1406static void set_curr_task_fair(struct rq *rq)
1407{
1408 struct sched_entity *se = &rq->curr->se;
1409
1410 for_each_sched_entity(se)
1411 set_next_entity(cfs_rq_of(se), se);
1412}
1413
810b3817
PZ
1414#ifdef CONFIG_FAIR_GROUP_SCHED
1415static void moved_group_fair(struct task_struct *p)
1416{
1417 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1418
1419 update_curr(cfs_rq);
1420 place_entity(cfs_rq, &p->se, 1);
1421}
1422#endif
1423
bf0f6f24
IM
1424/*
1425 * All the scheduling class methods:
1426 */
5522d5d5
IM
1427static const struct sched_class fair_sched_class = {
1428 .next = &idle_sched_class,
bf0f6f24
IM
1429 .enqueue_task = enqueue_task_fair,
1430 .dequeue_task = dequeue_task_fair,
1431 .yield_task = yield_task_fair,
e7693a36
GH
1432#ifdef CONFIG_SMP
1433 .select_task_rq = select_task_rq_fair,
1434#endif /* CONFIG_SMP */
bf0f6f24 1435
2e09bf55 1436 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1437
1438 .pick_next_task = pick_next_task_fair,
1439 .put_prev_task = put_prev_task_fair,
1440
681f3e68 1441#ifdef CONFIG_SMP
bf0f6f24 1442 .load_balance = load_balance_fair,
e1d1484f 1443 .move_one_task = move_one_task_fair,
681f3e68 1444#endif
bf0f6f24 1445
83b699ed 1446 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1447 .task_tick = task_tick_fair,
1448 .task_new = task_new_fair,
cb469845
SR
1449
1450 .prio_changed = prio_changed_fair,
1451 .switched_to = switched_to_fair,
810b3817
PZ
1452
1453#ifdef CONFIG_FAIR_GROUP_SCHED
1454 .moved_group = moved_group_fair,
1455#endif
bf0f6f24
IM
1456};
1457
1458#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1459static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1460{
bf0f6f24
IM
1461 struct cfs_rq *cfs_rq;
1462
75c28ace
SV
1463#ifdef CONFIG_FAIR_GROUP_SCHED
1464 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1465#endif
5973e5b9 1466 rcu_read_lock();
c3b64f1e 1467 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1468 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 1469 rcu_read_unlock();
bf0f6f24
IM
1470}
1471#endif