]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched_fair.c
sched: fair-group: de-couple load-balancing from the rb-trees
[net-next-2.6.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c
AV
23#include <linux/latencytop.h>
24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
722aab0c 27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 28 *
21805085 29 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
bf0f6f24 33 *
d274a4ce
IM
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 36 */
19978ca6 37unsigned int sysctl_sched_latency = 20000000ULL;
2bd8e6d4
IM
38
39/*
b2be5e96 40 * Minimal preemption granularity for CPU-bound tasks:
722aab0c 41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 42 */
722aab0c 43unsigned int sysctl_sched_min_granularity = 4000000ULL;
21805085
PZ
44
45/*
b2be5e96
PZ
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
722aab0c 48static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
49
50/*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
21805085 53 */
b2be5e96 54const_debug unsigned int sysctl_sched_child_runs_first = 1;
bf0f6f24 55
1799e35d
IM
56/*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62unsigned int __read_mostly sysctl_sched_compat_yield;
63
bf0f6f24
IM
64/*
65 * SCHED_OTHER wake-up granularity.
0bbd3336 66 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
0bbd3336 72unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
bf0f6f24 73
da84d961
IM
74const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
bf0f6f24
IM
76/**************************************************************
77 * CFS operations on generic schedulable entities:
78 */
79
b758149c
PZ
80static inline struct task_struct *task_of(struct sched_entity *se)
81{
82 return container_of(se, struct task_struct, se);
83}
84
62160e3f 85#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 86
62160e3f 87/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
88static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
89{
62160e3f 90 return cfs_rq->rq;
bf0f6f24
IM
91}
92
62160e3f
IM
93/* An entity is a task if it doesn't "own" a runqueue */
94#define entity_is_task(se) (!se->my_q)
bf0f6f24 95
b758149c
PZ
96/* Walk up scheduling entities hierarchy */
97#define for_each_sched_entity(se) \
98 for (; se; se = se->parent)
99
100static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
101{
102 return p->se.cfs_rq;
103}
104
105/* runqueue on which this entity is (to be) queued */
106static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
107{
108 return se->cfs_rq;
109}
110
111/* runqueue "owned" by this group */
112static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
113{
114 return grp->my_q;
115}
116
117/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
118 * another cpu ('this_cpu')
119 */
120static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
121{
122 return cfs_rq->tg->cfs_rq[this_cpu];
123}
124
125/* Iterate thr' all leaf cfs_rq's on a runqueue */
126#define for_each_leaf_cfs_rq(rq, cfs_rq) \
127 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
128
129/* Do the two (enqueued) entities belong to the same group ? */
130static inline int
131is_same_group(struct sched_entity *se, struct sched_entity *pse)
132{
133 if (se->cfs_rq == pse->cfs_rq)
134 return 1;
135
136 return 0;
137}
138
139static inline struct sched_entity *parent_entity(struct sched_entity *se)
140{
141 return se->parent;
142}
143
62160e3f 144#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 145
62160e3f
IM
146static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
147{
148 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
149}
150
151#define entity_is_task(se) 1
152
b758149c
PZ
153#define for_each_sched_entity(se) \
154 for (; se; se = NULL)
bf0f6f24 155
b758149c 156static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 157{
b758149c 158 return &task_rq(p)->cfs;
bf0f6f24
IM
159}
160
b758149c
PZ
161static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
162{
163 struct task_struct *p = task_of(se);
164 struct rq *rq = task_rq(p);
165
166 return &rq->cfs;
167}
168
169/* runqueue "owned" by this group */
170static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
171{
172 return NULL;
173}
174
175static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
176{
177 return &cpu_rq(this_cpu)->cfs;
178}
179
180#define for_each_leaf_cfs_rq(rq, cfs_rq) \
181 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
182
183static inline int
184is_same_group(struct sched_entity *se, struct sched_entity *pse)
185{
186 return 1;
187}
188
189static inline struct sched_entity *parent_entity(struct sched_entity *se)
190{
191 return NULL;
192}
193
194#endif /* CONFIG_FAIR_GROUP_SCHED */
195
bf0f6f24
IM
196
197/**************************************************************
198 * Scheduling class tree data structure manipulation methods:
199 */
200
0702e3eb 201static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 202{
368059a9
PZ
203 s64 delta = (s64)(vruntime - min_vruntime);
204 if (delta > 0)
02e0431a
PZ
205 min_vruntime = vruntime;
206
207 return min_vruntime;
208}
209
0702e3eb 210static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
211{
212 s64 delta = (s64)(vruntime - min_vruntime);
213 if (delta < 0)
214 min_vruntime = vruntime;
215
216 return min_vruntime;
217}
218
0702e3eb 219static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 220{
30cfdcfc 221 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
222}
223
bf0f6f24
IM
224/*
225 * Enqueue an entity into the rb-tree:
226 */
0702e3eb 227static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
228{
229 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
230 struct rb_node *parent = NULL;
231 struct sched_entity *entry;
9014623c 232 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
233 int leftmost = 1;
234
235 /*
236 * Find the right place in the rbtree:
237 */
238 while (*link) {
239 parent = *link;
240 entry = rb_entry(parent, struct sched_entity, run_node);
241 /*
242 * We dont care about collisions. Nodes with
243 * the same key stay together.
244 */
9014623c 245 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
246 link = &parent->rb_left;
247 } else {
248 link = &parent->rb_right;
249 leftmost = 0;
250 }
251 }
252
253 /*
254 * Maintain a cache of leftmost tree entries (it is frequently
255 * used):
256 */
3fe69747 257 if (leftmost) {
57cb499d 258 cfs_rq->rb_leftmost = &se->run_node;
3fe69747
PZ
259 /*
260 * maintain cfs_rq->min_vruntime to be a monotonic increasing
261 * value tracking the leftmost vruntime in the tree.
262 */
263 cfs_rq->min_vruntime =
264 max_vruntime(cfs_rq->min_vruntime, se->vruntime);
265 }
bf0f6f24
IM
266
267 rb_link_node(&se->run_node, parent, link);
268 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
269}
270
0702e3eb 271static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 272{
3fe69747
PZ
273 if (cfs_rq->rb_leftmost == &se->run_node) {
274 struct rb_node *next_node;
275 struct sched_entity *next;
276
277 next_node = rb_next(&se->run_node);
278 cfs_rq->rb_leftmost = next_node;
279
280 if (next_node) {
281 next = rb_entry(next_node,
282 struct sched_entity, run_node);
283 cfs_rq->min_vruntime =
284 max_vruntime(cfs_rq->min_vruntime,
285 next->vruntime);
286 }
287 }
e9acbff6 288
aa2ac252
PZ
289 if (cfs_rq->next == se)
290 cfs_rq->next = NULL;
291
bf0f6f24 292 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
293}
294
295static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
296{
297 return cfs_rq->rb_leftmost;
298}
299
300static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
301{
302 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
303}
304
aeb73b04
PZ
305static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
306{
7eee3e67 307 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 308
70eee74b
BS
309 if (!last)
310 return NULL;
7eee3e67
IM
311
312 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
313}
314
bf0f6f24
IM
315/**************************************************************
316 * Scheduling class statistics methods:
317 */
318
b2be5e96
PZ
319#ifdef CONFIG_SCHED_DEBUG
320int sched_nr_latency_handler(struct ctl_table *table, int write,
321 struct file *filp, void __user *buffer, size_t *lenp,
322 loff_t *ppos)
323{
324 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
325
326 if (ret || !write)
327 return ret;
328
329 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
330 sysctl_sched_min_granularity);
331
332 return 0;
333}
334#endif
647e7cac
IM
335
336/*
337 * The idea is to set a period in which each task runs once.
338 *
339 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
340 * this period because otherwise the slices get too small.
341 *
342 * p = (nr <= nl) ? l : l*nr/nl
343 */
4d78e7b6
PZ
344static u64 __sched_period(unsigned long nr_running)
345{
346 u64 period = sysctl_sched_latency;
b2be5e96 347 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
348
349 if (unlikely(nr_running > nr_latency)) {
4bf0b771 350 period = sysctl_sched_min_granularity;
4d78e7b6 351 period *= nr_running;
4d78e7b6
PZ
352 }
353
354 return period;
355}
356
647e7cac
IM
357/*
358 * We calculate the wall-time slice from the period by taking a part
359 * proportional to the weight.
360 *
361 * s = p*w/rw
362 */
6d0f0ebd 363static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 364{
ac884dec
PZ
365 u64 slice = __sched_period(cfs_rq->nr_running);
366
367 for_each_sched_entity(se) {
368 cfs_rq = cfs_rq_of(se);
369
370 slice *= se->load.weight;
371 do_div(slice, cfs_rq->load.weight);
372 }
373
374
375 return slice;
bf0f6f24
IM
376}
377
647e7cac 378/*
ac884dec 379 * We calculate the vruntime slice of a to be inserted task
647e7cac
IM
380 *
381 * vs = s/w = p/rw
382 */
ac884dec 383static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 384{
ac884dec
PZ
385 unsigned long nr_running = cfs_rq->nr_running;
386 unsigned long weight;
387 u64 vslice;
67e9fb2a 388
ac884dec
PZ
389 if (!se->on_rq)
390 nr_running++;
67e9fb2a 391
ac884dec 392 vslice = __sched_period(nr_running);
5f6d858e 393
ac884dec
PZ
394 for_each_sched_entity(se) {
395 cfs_rq = cfs_rq_of(se);
396
397 weight = cfs_rq->load.weight;
398 if (!se->on_rq)
399 weight += se->load.weight;
400
401 vslice *= NICE_0_LOAD;
402 do_div(vslice, weight);
403 }
404
405 return vslice;
67e9fb2a
PZ
406}
407
bf0f6f24
IM
408/*
409 * Update the current task's runtime statistics. Skip current tasks that
410 * are not in our scheduling class.
411 */
412static inline void
8ebc91d9
IM
413__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
414 unsigned long delta_exec)
bf0f6f24 415{
bbdba7c0 416 unsigned long delta_exec_weighted;
bf0f6f24 417
8179ca23 418 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
419
420 curr->sum_exec_runtime += delta_exec;
7a62eabc 421 schedstat_add(cfs_rq, exec_clock, delta_exec);
e9acbff6
IM
422 delta_exec_weighted = delta_exec;
423 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
424 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
425 &curr->load);
426 }
427 curr->vruntime += delta_exec_weighted;
bf0f6f24
IM
428}
429
b7cc0896 430static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 431{
429d43bc 432 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 433 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
434 unsigned long delta_exec;
435
436 if (unlikely(!curr))
437 return;
438
439 /*
440 * Get the amount of time the current task was running
441 * since the last time we changed load (this cannot
442 * overflow on 32 bits):
443 */
8ebc91d9 444 delta_exec = (unsigned long)(now - curr->exec_start);
bf0f6f24 445
8ebc91d9
IM
446 __update_curr(cfs_rq, curr, delta_exec);
447 curr->exec_start = now;
d842de87
SV
448
449 if (entity_is_task(curr)) {
450 struct task_struct *curtask = task_of(curr);
451
452 cpuacct_charge(curtask, delta_exec);
453 }
bf0f6f24
IM
454}
455
456static inline void
5870db5b 457update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 458{
d281918d 459 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
460}
461
bf0f6f24
IM
462/*
463 * Task is being enqueued - update stats:
464 */
d2417e5a 465static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 466{
bf0f6f24
IM
467 /*
468 * Are we enqueueing a waiting task? (for current tasks
469 * a dequeue/enqueue event is a NOP)
470 */
429d43bc 471 if (se != cfs_rq->curr)
5870db5b 472 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
473}
474
bf0f6f24 475static void
9ef0a961 476update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 477{
bbdba7c0
IM
478 schedstat_set(se->wait_max, max(se->wait_max,
479 rq_of(cfs_rq)->clock - se->wait_start));
6d082592
AV
480 schedstat_set(se->wait_count, se->wait_count + 1);
481 schedstat_set(se->wait_sum, se->wait_sum +
482 rq_of(cfs_rq)->clock - se->wait_start);
6cfb0d5d 483 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
484}
485
486static inline void
19b6a2e3 487update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 488{
bf0f6f24
IM
489 /*
490 * Mark the end of the wait period if dequeueing a
491 * waiting task:
492 */
429d43bc 493 if (se != cfs_rq->curr)
9ef0a961 494 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
495}
496
497/*
498 * We are picking a new current task - update its stats:
499 */
500static inline void
79303e9e 501update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
502{
503 /*
504 * We are starting a new run period:
505 */
d281918d 506 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
507}
508
bf0f6f24
IM
509/**************************************************
510 * Scheduling class queueing methods:
511 */
512
18d95a28
PZ
513#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
514static void
515add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
516{
517 cfs_rq->task_weight += weight;
518}
519#else
520static inline void
521add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
522{
523}
524#endif
525
30cfdcfc
DA
526static void
527account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
528{
529 update_load_add(&cfs_rq->load, se->load.weight);
18d95a28
PZ
530 if (!parent_entity(se))
531 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
532 if (entity_is_task(se))
533 add_cfs_task_weight(cfs_rq, se->load.weight);
30cfdcfc
DA
534 cfs_rq->nr_running++;
535 se->on_rq = 1;
4a55bd5e 536 list_add(&se->group_node, &cfs_rq->tasks);
30cfdcfc
DA
537}
538
539static void
540account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
541{
542 update_load_sub(&cfs_rq->load, se->load.weight);
18d95a28
PZ
543 if (!parent_entity(se))
544 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
545 if (entity_is_task(se))
546 add_cfs_task_weight(cfs_rq, -se->load.weight);
30cfdcfc
DA
547 cfs_rq->nr_running--;
548 se->on_rq = 0;
4a55bd5e 549 list_del_init(&se->group_node);
30cfdcfc
DA
550}
551
2396af69 552static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 553{
bf0f6f24
IM
554#ifdef CONFIG_SCHEDSTATS
555 if (se->sleep_start) {
d281918d 556 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
9745512c 557 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
558
559 if ((s64)delta < 0)
560 delta = 0;
561
562 if (unlikely(delta > se->sleep_max))
563 se->sleep_max = delta;
564
565 se->sleep_start = 0;
566 se->sum_sleep_runtime += delta;
9745512c
AV
567
568 account_scheduler_latency(tsk, delta >> 10, 1);
bf0f6f24
IM
569 }
570 if (se->block_start) {
d281918d 571 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
9745512c 572 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
573
574 if ((s64)delta < 0)
575 delta = 0;
576
577 if (unlikely(delta > se->block_max))
578 se->block_max = delta;
579
580 se->block_start = 0;
581 se->sum_sleep_runtime += delta;
30084fbd
IM
582
583 /*
584 * Blocking time is in units of nanosecs, so shift by 20 to
585 * get a milliseconds-range estimation of the amount of
586 * time that the task spent sleeping:
587 */
588 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf 589
30084fbd
IM
590 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
591 delta >> 20);
592 }
9745512c 593 account_scheduler_latency(tsk, delta >> 10, 0);
bf0f6f24
IM
594 }
595#endif
596}
597
ddc97297
PZ
598static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
599{
600#ifdef CONFIG_SCHED_DEBUG
601 s64 d = se->vruntime - cfs_rq->min_vruntime;
602
603 if (d < 0)
604 d = -d;
605
606 if (d > 3*sysctl_sched_latency)
607 schedstat_inc(cfs_rq, nr_spread_over);
608#endif
609}
610
aeb73b04
PZ
611static void
612place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
613{
67e9fb2a 614 u64 vruntime;
aeb73b04 615
3fe69747
PZ
616 if (first_fair(cfs_rq)) {
617 vruntime = min_vruntime(cfs_rq->min_vruntime,
618 __pick_next_entity(cfs_rq)->vruntime);
619 } else
620 vruntime = cfs_rq->min_vruntime;
94dfb5e7 621
2cb8600e
PZ
622 /*
623 * The 'current' period is already promised to the current tasks,
624 * however the extra weight of the new task will slow them down a
625 * little, place the new task so that it fits in the slot that
626 * stays open at the end.
627 */
94dfb5e7 628 if (initial && sched_feat(START_DEBIT))
647e7cac 629 vruntime += sched_vslice_add(cfs_rq, se);
aeb73b04 630
8465e792 631 if (!initial) {
2cb8600e 632 /* sleeps upto a single latency don't count. */
018d6db4 633 if (sched_feat(NEW_FAIR_SLEEPERS)) {
112f53f5
PZ
634 if (sched_feat(NORMALIZED_SLEEPER))
635 vruntime -= calc_delta_fair(sysctl_sched_latency,
636 &cfs_rq->load);
637 else
638 vruntime -= sysctl_sched_latency;
018d6db4 639 }
94359f05 640
2cb8600e
PZ
641 /* ensure we never gain time by being placed backwards. */
642 vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
643 }
644
67e9fb2a 645 se->vruntime = vruntime;
aeb73b04
PZ
646}
647
bf0f6f24 648static void
83b699ed 649enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
650{
651 /*
a2a2d680 652 * Update run-time statistics of the 'current'.
bf0f6f24 653 */
b7cc0896 654 update_curr(cfs_rq);
bf0f6f24 655
e9acbff6 656 if (wakeup) {
aeb73b04 657 place_entity(cfs_rq, se, 0);
2396af69 658 enqueue_sleeper(cfs_rq, se);
e9acbff6 659 }
bf0f6f24 660
d2417e5a 661 update_stats_enqueue(cfs_rq, se);
ddc97297 662 check_spread(cfs_rq, se);
83b699ed
SV
663 if (se != cfs_rq->curr)
664 __enqueue_entity(cfs_rq, se);
30cfdcfc 665 account_entity_enqueue(cfs_rq, se);
bf0f6f24
IM
666}
667
4ae7d5ce
IM
668static void update_avg(u64 *avg, u64 sample)
669{
670 s64 diff = sample - *avg;
671 *avg += diff >> 3;
672}
673
674static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
675{
676 if (!se->last_wakeup)
677 return;
678
679 update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
680 se->last_wakeup = 0;
681}
682
bf0f6f24 683static void
525c2716 684dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 685{
a2a2d680
DA
686 /*
687 * Update run-time statistics of the 'current'.
688 */
689 update_curr(cfs_rq);
690
19b6a2e3 691 update_stats_dequeue(cfs_rq, se);
db36cc7d 692 if (sleep) {
4ae7d5ce 693 update_avg_stats(cfs_rq, se);
67e9fb2a 694#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
695 if (entity_is_task(se)) {
696 struct task_struct *tsk = task_of(se);
697
698 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 699 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 700 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 701 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 702 }
db36cc7d 703#endif
67e9fb2a
PZ
704 }
705
83b699ed 706 if (se != cfs_rq->curr)
30cfdcfc
DA
707 __dequeue_entity(cfs_rq, se);
708 account_entity_dequeue(cfs_rq, se);
bf0f6f24
IM
709}
710
711/*
712 * Preempt the current task with a newly woken task if needed:
713 */
7c92e54f 714static void
2e09bf55 715check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 716{
11697830
PZ
717 unsigned long ideal_runtime, delta_exec;
718
6d0f0ebd 719 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 720 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3e3e13f3 721 if (delta_exec > ideal_runtime)
bf0f6f24
IM
722 resched_task(rq_of(cfs_rq)->curr);
723}
724
83b699ed 725static void
8494f412 726set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 727{
83b699ed
SV
728 /* 'current' is not kept within the tree. */
729 if (se->on_rq) {
730 /*
731 * Any task has to be enqueued before it get to execute on
732 * a CPU. So account for the time it spent waiting on the
733 * runqueue.
734 */
735 update_stats_wait_end(cfs_rq, se);
736 __dequeue_entity(cfs_rq, se);
737 }
738
79303e9e 739 update_stats_curr_start(cfs_rq, se);
429d43bc 740 cfs_rq->curr = se;
eba1ed4b
IM
741#ifdef CONFIG_SCHEDSTATS
742 /*
743 * Track our maximum slice length, if the CPU's load is at
744 * least twice that of our own weight (i.e. dont track it
745 * when there are only lesser-weight tasks around):
746 */
495eca49 747 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
748 se->slice_max = max(se->slice_max,
749 se->sum_exec_runtime - se->prev_sum_exec_runtime);
750 }
751#endif
4a55b450 752 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
753}
754
0bbd3336
PZ
755static int
756wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
757
aa2ac252
PZ
758static struct sched_entity *
759pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
760{
aa2ac252
PZ
761 if (!cfs_rq->next)
762 return se;
763
0bbd3336 764 if (wakeup_preempt_entity(cfs_rq->next, se) != 0)
aa2ac252
PZ
765 return se;
766
767 return cfs_rq->next;
768}
769
9948f4b2 770static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24 771{
08ec3df5 772 struct sched_entity *se = NULL;
bf0f6f24 773
08ec3df5
DA
774 if (first_fair(cfs_rq)) {
775 se = __pick_next_entity(cfs_rq);
aa2ac252 776 se = pick_next(cfs_rq, se);
08ec3df5
DA
777 set_next_entity(cfs_rq, se);
778 }
bf0f6f24
IM
779
780 return se;
781}
782
ab6cde26 783static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
784{
785 /*
786 * If still on the runqueue then deactivate_task()
787 * was not called and update_curr() has to be done:
788 */
789 if (prev->on_rq)
b7cc0896 790 update_curr(cfs_rq);
bf0f6f24 791
ddc97297 792 check_spread(cfs_rq, prev);
30cfdcfc 793 if (prev->on_rq) {
5870db5b 794 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
795 /* Put 'current' back into the tree. */
796 __enqueue_entity(cfs_rq, prev);
797 }
429d43bc 798 cfs_rq->curr = NULL;
bf0f6f24
IM
799}
800
8f4d37ec
PZ
801static void
802entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 803{
bf0f6f24 804 /*
30cfdcfc 805 * Update run-time statistics of the 'current'.
bf0f6f24 806 */
30cfdcfc 807 update_curr(cfs_rq);
bf0f6f24 808
8f4d37ec
PZ
809#ifdef CONFIG_SCHED_HRTICK
810 /*
811 * queued ticks are scheduled to match the slice, so don't bother
812 * validating it and just reschedule.
813 */
814 if (queued)
815 return resched_task(rq_of(cfs_rq)->curr);
816 /*
817 * don't let the period tick interfere with the hrtick preemption
818 */
819 if (!sched_feat(DOUBLE_TICK) &&
820 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
821 return;
822#endif
823
ce6c1311 824 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 825 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
826}
827
828/**************************************************
829 * CFS operations on tasks:
830 */
831
8f4d37ec
PZ
832#ifdef CONFIG_SCHED_HRTICK
833static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
834{
835 int requeue = rq->curr == p;
836 struct sched_entity *se = &p->se;
837 struct cfs_rq *cfs_rq = cfs_rq_of(se);
838
839 WARN_ON(task_rq(p) != rq);
840
841 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
842 u64 slice = sched_slice(cfs_rq, se);
843 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
844 s64 delta = slice - ran;
845
846 if (delta < 0) {
847 if (rq->curr == p)
848 resched_task(p);
849 return;
850 }
851
852 /*
853 * Don't schedule slices shorter than 10000ns, that just
854 * doesn't make sense. Rely on vruntime for fairness.
855 */
856 if (!requeue)
857 delta = max(10000LL, delta);
858
859 hrtick_start(rq, delta, requeue);
860 }
861}
862#else
863static inline void
864hrtick_start_fair(struct rq *rq, struct task_struct *p)
865{
866}
867#endif
868
bf0f6f24
IM
869/*
870 * The enqueue_task method is called before nr_running is
871 * increased. Here we update the fair scheduling stats and
872 * then put the task into the rbtree:
873 */
fd390f6a 874static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
875{
876 struct cfs_rq *cfs_rq;
62fb1851 877 struct sched_entity *se = &p->se;
bf0f6f24
IM
878
879 for_each_sched_entity(se) {
62fb1851 880 if (se->on_rq)
bf0f6f24
IM
881 break;
882 cfs_rq = cfs_rq_of(se);
83b699ed 883 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 884 wakeup = 1;
bf0f6f24 885 }
8f4d37ec
PZ
886
887 hrtick_start_fair(rq, rq->curr);
bf0f6f24
IM
888}
889
890/*
891 * The dequeue_task method is called before nr_running is
892 * decreased. We remove the task from the rbtree and
893 * update the fair scheduling stats:
894 */
f02231e5 895static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
896{
897 struct cfs_rq *cfs_rq;
62fb1851 898 struct sched_entity *se = &p->se;
bf0f6f24
IM
899
900 for_each_sched_entity(se) {
901 cfs_rq = cfs_rq_of(se);
525c2716 902 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 903 /* Don't dequeue parent if it has other entities besides us */
62fb1851 904 if (cfs_rq->load.weight)
bf0f6f24 905 break;
b9fa3df3 906 sleep = 1;
bf0f6f24 907 }
8f4d37ec
PZ
908
909 hrtick_start_fair(rq, rq->curr);
bf0f6f24
IM
910}
911
912/*
1799e35d
IM
913 * sched_yield() support is very simple - we dequeue and enqueue.
914 *
915 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 916 */
4530d7ab 917static void yield_task_fair(struct rq *rq)
bf0f6f24 918{
db292ca3
IM
919 struct task_struct *curr = rq->curr;
920 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
921 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
922
923 /*
1799e35d
IM
924 * Are we the only task in the tree?
925 */
926 if (unlikely(cfs_rq->nr_running == 1))
927 return;
928
db292ca3 929 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1799e35d
IM
930 __update_rq_clock(rq);
931 /*
a2a2d680 932 * Update run-time statistics of the 'current'.
1799e35d 933 */
2b1e315d 934 update_curr(cfs_rq);
1799e35d
IM
935
936 return;
937 }
938 /*
939 * Find the rightmost entry in the rbtree:
bf0f6f24 940 */
2b1e315d 941 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
942 /*
943 * Already in the rightmost position?
944 */
79b3feff 945 if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
1799e35d
IM
946 return;
947
948 /*
949 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
950 * Upon rescheduling, sched_class::put_prev_task() will place
951 * 'current' within the tree based on its new key value.
1799e35d 952 */
30cfdcfc 953 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
954}
955
e7693a36
GH
956/*
957 * wake_idle() will wake a task on an idle cpu if task->cpu is
958 * not idle and an idle cpu is available. The span of cpus to
959 * search starts with cpus closest then further out as needed,
960 * so we always favor a closer, idle cpu.
961 *
962 * Returns the CPU we should wake onto.
963 */
964#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
965static int wake_idle(int cpu, struct task_struct *p)
966{
967 cpumask_t tmp;
968 struct sched_domain *sd;
969 int i;
970
971 /*
972 * If it is idle, then it is the best cpu to run this task.
973 *
974 * This cpu is also the best, if it has more than one task already.
975 * Siblings must be also busy(in most cases) as they didn't already
976 * pickup the extra load from this cpu and hence we need not check
977 * sibling runqueue info. This will avoid the checks and cache miss
978 * penalities associated with that.
979 */
980 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
981 return cpu;
982
983 for_each_domain(cpu, sd) {
1d3504fc
HS
984 if ((sd->flags & SD_WAKE_IDLE)
985 || ((sd->flags & SD_WAKE_IDLE_FAR)
986 && !task_hot(p, task_rq(p)->clock, sd))) {
e7693a36
GH
987 cpus_and(tmp, sd->span, p->cpus_allowed);
988 for_each_cpu_mask(i, tmp) {
989 if (idle_cpu(i)) {
990 if (i != task_cpu(p)) {
991 schedstat_inc(p,
992 se.nr_wakeups_idle);
993 }
994 return i;
995 }
996 }
997 } else {
998 break;
999 }
1000 }
1001 return cpu;
1002}
1003#else
1004static inline int wake_idle(int cpu, struct task_struct *p)
1005{
1006 return cpu;
1007}
1008#endif
1009
1010#ifdef CONFIG_SMP
098fb9db 1011
4ae7d5ce
IM
1012static const struct sched_class fair_sched_class;
1013
098fb9db 1014static int
4ae7d5ce
IM
1015wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
1016 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1017 int idx, unsigned long load, unsigned long this_load,
098fb9db
IM
1018 unsigned int imbalance)
1019{
4ae7d5ce 1020 struct task_struct *curr = this_rq->curr;
098fb9db
IM
1021 unsigned long tl = this_load;
1022 unsigned long tl_per_task;
1023
1024 if (!(this_sd->flags & SD_WAKE_AFFINE))
1025 return 0;
1026
1027 /*
4ae7d5ce
IM
1028 * If the currently running task will sleep within
1029 * a reasonable amount of time then attract this newly
1030 * woken task:
098fb9db 1031 */
4ae7d5ce
IM
1032 if (sync && curr->sched_class == &fair_sched_class) {
1033 if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1034 p->se.avg_overlap < sysctl_sched_migration_cost)
1035 return 1;
1036 }
098fb9db
IM
1037
1038 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1039 tl_per_task = cpu_avg_load_per_task(this_cpu);
1040
1041 /*
1042 * If sync wakeup then subtract the (maximum possible)
1043 * effect of the currently running task from the load
1044 * of the current CPU:
1045 */
1046 if (sync)
1047 tl -= current->se.load.weight;
1048
ac192d39 1049 if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
098fb9db
IM
1050 100*(tl + p->se.load.weight) <= imbalance*load) {
1051 /*
1052 * This domain has SD_WAKE_AFFINE and
1053 * p is cache cold in this domain, and
1054 * there is no bad imbalance.
1055 */
1056 schedstat_inc(this_sd, ttwu_move_affine);
1057 schedstat_inc(p, se.nr_wakeups_affine);
1058
1059 return 1;
1060 }
1061 return 0;
1062}
1063
e7693a36
GH
1064static int select_task_rq_fair(struct task_struct *p, int sync)
1065{
e7693a36 1066 struct sched_domain *sd, *this_sd = NULL;
ac192d39 1067 int prev_cpu, this_cpu, new_cpu;
098fb9db 1068 unsigned long load, this_load;
4ae7d5ce 1069 struct rq *rq, *this_rq;
098fb9db 1070 unsigned int imbalance;
098fb9db 1071 int idx;
e7693a36 1072
ac192d39
IM
1073 prev_cpu = task_cpu(p);
1074 rq = task_rq(p);
1075 this_cpu = smp_processor_id();
4ae7d5ce 1076 this_rq = cpu_rq(this_cpu);
ac192d39 1077 new_cpu = prev_cpu;
e7693a36 1078
ac192d39
IM
1079 /*
1080 * 'this_sd' is the first domain that both
1081 * this_cpu and prev_cpu are present in:
1082 */
e7693a36 1083 for_each_domain(this_cpu, sd) {
ac192d39 1084 if (cpu_isset(prev_cpu, sd->span)) {
e7693a36
GH
1085 this_sd = sd;
1086 break;
1087 }
1088 }
1089
1090 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
f4827386 1091 goto out;
e7693a36
GH
1092
1093 /*
1094 * Check for affine wakeup and passive balancing possibilities.
1095 */
098fb9db 1096 if (!this_sd)
f4827386 1097 goto out;
e7693a36 1098
098fb9db
IM
1099 idx = this_sd->wake_idx;
1100
1101 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1102
ac192d39 1103 load = source_load(prev_cpu, idx);
098fb9db
IM
1104 this_load = target_load(this_cpu, idx);
1105
4ae7d5ce
IM
1106 if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1107 load, this_load, imbalance))
1108 return this_cpu;
1109
1110 if (prev_cpu == this_cpu)
f4827386 1111 goto out;
098fb9db
IM
1112
1113 /*
1114 * Start passive balancing when half the imbalance_pct
1115 * limit is reached.
1116 */
1117 if (this_sd->flags & SD_WAKE_BALANCE) {
1118 if (imbalance*this_load <= 100*load) {
1119 schedstat_inc(this_sd, ttwu_move_balance);
1120 schedstat_inc(p, se.nr_wakeups_passive);
4ae7d5ce 1121 return this_cpu;
e7693a36
GH
1122 }
1123 }
1124
f4827386 1125out:
e7693a36
GH
1126 return wake_idle(new_cpu, p);
1127}
1128#endif /* CONFIG_SMP */
1129
0bbd3336
PZ
1130static unsigned long wakeup_gran(struct sched_entity *se)
1131{
1132 unsigned long gran = sysctl_sched_wakeup_granularity;
1133
1134 /*
1135 * More easily preempt - nice tasks, while not making
1136 * it harder for + nice tasks.
1137 */
1138 if (unlikely(se->load.weight > NICE_0_LOAD))
1139 gran = calc_delta_fair(gran, &se->load);
1140
1141 return gran;
1142}
1143
1144/*
1145 * Should 'se' preempt 'curr'.
1146 *
1147 * |s1
1148 * |s2
1149 * |s3
1150 * g
1151 * |<--->|c
1152 *
1153 * w(c, s1) = -1
1154 * w(c, s2) = 0
1155 * w(c, s3) = 1
1156 *
1157 */
1158static int
1159wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1160{
1161 s64 gran, vdiff = curr->vruntime - se->vruntime;
1162
1163 if (vdiff < 0)
1164 return -1;
1165
1166 gran = wakeup_gran(curr);
1167 if (vdiff > gran)
1168 return 1;
1169
1170 return 0;
1171}
e7693a36 1172
354d60c2
DG
1173/* return depth at which a sched entity is present in the hierarchy */
1174static inline int depth_se(struct sched_entity *se)
1175{
1176 int depth = 0;
1177
1178 for_each_sched_entity(se)
1179 depth++;
1180
1181 return depth;
1182}
1183
bf0f6f24
IM
1184/*
1185 * Preempt the current task with a newly woken task if needed:
1186 */
2e09bf55 1187static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1188{
1189 struct task_struct *curr = rq->curr;
fad095a7 1190 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8651a86c 1191 struct sched_entity *se = &curr->se, *pse = &p->se;
354d60c2 1192 int se_depth, pse_depth;
bf0f6f24
IM
1193
1194 if (unlikely(rt_prio(p->prio))) {
a8e504d2 1195 update_rq_clock(rq);
b7cc0896 1196 update_curr(cfs_rq);
bf0f6f24
IM
1197 resched_task(curr);
1198 return;
1199 }
aa2ac252 1200
4ae7d5ce
IM
1201 se->last_wakeup = se->sum_exec_runtime;
1202 if (unlikely(se == pse))
1203 return;
1204
aa2ac252
PZ
1205 cfs_rq_of(pse)->next = pse;
1206
91c234b4
IM
1207 /*
1208 * Batch tasks do not preempt (their preemption is driven by
1209 * the tick):
1210 */
1211 if (unlikely(p->policy == SCHED_BATCH))
1212 return;
bf0f6f24 1213
77d9cc44
IM
1214 if (!sched_feat(WAKEUP_PREEMPT))
1215 return;
8651a86c 1216
354d60c2
DG
1217 /*
1218 * preemption test can be made between sibling entities who are in the
1219 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
1220 * both tasks until we find their ancestors who are siblings of common
1221 * parent.
1222 */
1223
1224 /* First walk up until both entities are at same depth */
1225 se_depth = depth_se(se);
1226 pse_depth = depth_se(pse);
1227
1228 while (se_depth > pse_depth) {
1229 se_depth--;
1230 se = parent_entity(se);
1231 }
1232
1233 while (pse_depth > se_depth) {
1234 pse_depth--;
1235 pse = parent_entity(pse);
1236 }
1237
77d9cc44
IM
1238 while (!is_same_group(se, pse)) {
1239 se = parent_entity(se);
1240 pse = parent_entity(pse);
ce6c1311 1241 }
77d9cc44 1242
0bbd3336 1243 if (wakeup_preempt_entity(se, pse) == 1)
77d9cc44 1244 resched_task(curr);
bf0f6f24
IM
1245}
1246
fb8d4724 1247static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1248{
8f4d37ec 1249 struct task_struct *p;
bf0f6f24
IM
1250 struct cfs_rq *cfs_rq = &rq->cfs;
1251 struct sched_entity *se;
1252
1253 if (unlikely(!cfs_rq->nr_running))
1254 return NULL;
1255
1256 do {
9948f4b2 1257 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
1258 cfs_rq = group_cfs_rq(se);
1259 } while (cfs_rq);
1260
8f4d37ec
PZ
1261 p = task_of(se);
1262 hrtick_start_fair(rq, p);
1263
1264 return p;
bf0f6f24
IM
1265}
1266
1267/*
1268 * Account for a descheduled task:
1269 */
31ee529c 1270static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1271{
1272 struct sched_entity *se = &prev->se;
1273 struct cfs_rq *cfs_rq;
1274
1275 for_each_sched_entity(se) {
1276 cfs_rq = cfs_rq_of(se);
ab6cde26 1277 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1278 }
1279}
1280
681f3e68 1281#ifdef CONFIG_SMP
bf0f6f24
IM
1282/**************************************************
1283 * Fair scheduling class load-balancing methods:
1284 */
1285
1286/*
1287 * Load-balancing iterator. Note: while the runqueue stays locked
1288 * during the whole iteration, the current task might be
1289 * dequeued so the iterator has to be dequeue-safe. Here we
1290 * achieve that by always pre-iterating before returning
1291 * the current task:
1292 */
a9957449 1293static struct task_struct *
4a55bd5e 1294__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
bf0f6f24 1295{
354d60c2
DG
1296 struct task_struct *p = NULL;
1297 struct sched_entity *se;
bf0f6f24 1298
4a55bd5e 1299 if (next == &cfs_rq->tasks)
bf0f6f24
IM
1300 return NULL;
1301
354d60c2
DG
1302 /* Skip over entities that are not tasks */
1303 do {
4a55bd5e
PZ
1304 se = list_entry(next, struct sched_entity, group_node);
1305 next = next->next;
1306 } while (next != &cfs_rq->tasks && !entity_is_task(se));
354d60c2 1307
4a55bd5e
PZ
1308 if (next == &cfs_rq->tasks)
1309 return NULL;
1310
1311 cfs_rq->balance_iterator = next;
354d60c2
DG
1312
1313 if (entity_is_task(se))
1314 p = task_of(se);
bf0f6f24
IM
1315
1316 return p;
1317}
1318
1319static struct task_struct *load_balance_start_fair(void *arg)
1320{
1321 struct cfs_rq *cfs_rq = arg;
1322
4a55bd5e 1323 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
bf0f6f24
IM
1324}
1325
1326static struct task_struct *load_balance_next_fair(void *arg)
1327{
1328 struct cfs_rq *cfs_rq = arg;
1329
4a55bd5e 1330 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
bf0f6f24
IM
1331}
1332
18d95a28
PZ
1333static unsigned long
1334__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1335 unsigned long max_load_move, struct sched_domain *sd,
1336 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1337 struct cfs_rq *cfs_rq)
62fb1851 1338{
18d95a28 1339 struct rq_iterator cfs_rq_iterator;
62fb1851 1340
18d95a28
PZ
1341 cfs_rq_iterator.start = load_balance_start_fair;
1342 cfs_rq_iterator.next = load_balance_next_fair;
1343 cfs_rq_iterator.arg = cfs_rq;
62fb1851 1344
18d95a28
PZ
1345 return balance_tasks(this_rq, this_cpu, busiest,
1346 max_load_move, sd, idle, all_pinned,
1347 this_best_prio, &cfs_rq_iterator);
62fb1851 1348}
62fb1851 1349
18d95a28 1350#ifdef CONFIG_FAIR_GROUP_SCHED
43010659 1351static unsigned long
bf0f6f24 1352load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 1353 unsigned long max_load_move,
a4ac01c3
PW
1354 struct sched_domain *sd, enum cpu_idle_type idle,
1355 int *all_pinned, int *this_best_prio)
bf0f6f24 1356{
bf0f6f24 1357 long rem_load_move = max_load_move;
18d95a28
PZ
1358 int busiest_cpu = cpu_of(busiest);
1359 struct task_group *tg;
bf0f6f24 1360
18d95a28
PZ
1361 rcu_read_lock();
1362 list_for_each_entry(tg, &task_groups, list) {
62fb1851 1363 long imbalance;
18d95a28
PZ
1364 unsigned long this_weight, busiest_weight;
1365 long rem_load, max_load, moved_load;
bf0f6f24 1366
18d95a28
PZ
1367 /*
1368 * empty group
1369 */
1370 if (!aggregate(tg, sd)->task_weight)
1371 continue;
6b2d7700 1372
18d95a28
PZ
1373 rem_load = rem_load_move * aggregate(tg, sd)->rq_weight;
1374 rem_load /= aggregate(tg, sd)->load + 1;
1375
1376 this_weight = tg->cfs_rq[this_cpu]->task_weight;
1377 busiest_weight = tg->cfs_rq[busiest_cpu]->task_weight;
1378
1379 imbalance = (busiest_weight - this_weight) / 2;
1380
1381 if (imbalance < 0)
1382 imbalance = busiest_weight;
1383
1384 max_load = max(rem_load, imbalance);
1385 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1386 max_load, sd, idle, all_pinned, this_best_prio,
1387 tg->cfs_rq[busiest_cpu]);
1388
1389 if (!moved_load)
bf0f6f24
IM
1390 continue;
1391
18d95a28 1392 move_group_shares(tg, sd, busiest_cpu, this_cpu);
bf0f6f24 1393
18d95a28
PZ
1394 moved_load *= aggregate(tg, sd)->load;
1395 moved_load /= aggregate(tg, sd)->rq_weight + 1;
bf0f6f24 1396
18d95a28
PZ
1397 rem_load_move -= moved_load;
1398 if (rem_load_move < 0)
bf0f6f24
IM
1399 break;
1400 }
18d95a28 1401 rcu_read_unlock();
bf0f6f24 1402
43010659 1403 return max_load_move - rem_load_move;
bf0f6f24 1404}
18d95a28
PZ
1405#else
1406static unsigned long
1407load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1408 unsigned long max_load_move,
1409 struct sched_domain *sd, enum cpu_idle_type idle,
1410 int *all_pinned, int *this_best_prio)
1411{
1412 return __load_balance_fair(this_rq, this_cpu, busiest,
1413 max_load_move, sd, idle, all_pinned,
1414 this_best_prio, &busiest->cfs);
1415}
1416#endif
bf0f6f24 1417
e1d1484f
PW
1418static int
1419move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1420 struct sched_domain *sd, enum cpu_idle_type idle)
1421{
1422 struct cfs_rq *busy_cfs_rq;
1423 struct rq_iterator cfs_rq_iterator;
1424
1425 cfs_rq_iterator.start = load_balance_start_fair;
1426 cfs_rq_iterator.next = load_balance_next_fair;
1427
1428 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1429 /*
1430 * pass busy_cfs_rq argument into
1431 * load_balance_[start|next]_fair iterators
1432 */
1433 cfs_rq_iterator.arg = busy_cfs_rq;
1434 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1435 &cfs_rq_iterator))
1436 return 1;
1437 }
1438
1439 return 0;
1440}
681f3e68 1441#endif
e1d1484f 1442
bf0f6f24
IM
1443/*
1444 * scheduler tick hitting a task of our scheduling class:
1445 */
8f4d37ec 1446static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
1447{
1448 struct cfs_rq *cfs_rq;
1449 struct sched_entity *se = &curr->se;
1450
1451 for_each_sched_entity(se) {
1452 cfs_rq = cfs_rq_of(se);
8f4d37ec 1453 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
1454 }
1455}
1456
8eb172d9 1457#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
4d78e7b6 1458
bf0f6f24
IM
1459/*
1460 * Share the fairness runtime between parent and child, thus the
1461 * total amount of pressure for CPU stays equal - new tasks
1462 * get a chance to run but frequent forkers are not allowed to
1463 * monopolize the CPU. Note: the parent runqueue is locked,
1464 * the child is not running yet.
1465 */
ee0827d8 1466static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1467{
1468 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1469 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1470 int this_cpu = smp_processor_id();
bf0f6f24
IM
1471
1472 sched_info_queued(p);
1473
7109c442 1474 update_curr(cfs_rq);
aeb73b04 1475 place_entity(cfs_rq, se, 1);
4d78e7b6 1476
3c90e6e9 1477 /* 'curr' will be NULL if the child belongs to a different group */
00bf7bfc 1478 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
3c90e6e9 1479 curr && curr->vruntime < se->vruntime) {
87fefa38 1480 /*
edcb60a3
IM
1481 * Upon rescheduling, sched_class::put_prev_task() will place
1482 * 'current' within the tree based on its new key value.
1483 */
4d78e7b6 1484 swap(curr->vruntime, se->vruntime);
4d78e7b6 1485 }
bf0f6f24 1486
b9dca1e0 1487 enqueue_task_fair(rq, p, 0);
bb61c210 1488 resched_task(rq->curr);
bf0f6f24
IM
1489}
1490
cb469845
SR
1491/*
1492 * Priority of the task has changed. Check to see if we preempt
1493 * the current task.
1494 */
1495static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1496 int oldprio, int running)
1497{
1498 /*
1499 * Reschedule if we are currently running on this runqueue and
1500 * our priority decreased, or if we are not currently running on
1501 * this runqueue and our priority is higher than the current's
1502 */
1503 if (running) {
1504 if (p->prio > oldprio)
1505 resched_task(rq->curr);
1506 } else
1507 check_preempt_curr(rq, p);
1508}
1509
1510/*
1511 * We switched to the sched_fair class.
1512 */
1513static void switched_to_fair(struct rq *rq, struct task_struct *p,
1514 int running)
1515{
1516 /*
1517 * We were most likely switched from sched_rt, so
1518 * kick off the schedule if running, otherwise just see
1519 * if we can still preempt the current task.
1520 */
1521 if (running)
1522 resched_task(rq->curr);
1523 else
1524 check_preempt_curr(rq, p);
1525}
1526
83b699ed
SV
1527/* Account for a task changing its policy or group.
1528 *
1529 * This routine is mostly called to set cfs_rq->curr field when a task
1530 * migrates between groups/classes.
1531 */
1532static void set_curr_task_fair(struct rq *rq)
1533{
1534 struct sched_entity *se = &rq->curr->se;
1535
1536 for_each_sched_entity(se)
1537 set_next_entity(cfs_rq_of(se), se);
1538}
1539
810b3817
PZ
1540#ifdef CONFIG_FAIR_GROUP_SCHED
1541static void moved_group_fair(struct task_struct *p)
1542{
1543 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1544
1545 update_curr(cfs_rq);
1546 place_entity(cfs_rq, &p->se, 1);
1547}
1548#endif
1549
bf0f6f24
IM
1550/*
1551 * All the scheduling class methods:
1552 */
5522d5d5
IM
1553static const struct sched_class fair_sched_class = {
1554 .next = &idle_sched_class,
bf0f6f24
IM
1555 .enqueue_task = enqueue_task_fair,
1556 .dequeue_task = dequeue_task_fair,
1557 .yield_task = yield_task_fair,
e7693a36
GH
1558#ifdef CONFIG_SMP
1559 .select_task_rq = select_task_rq_fair,
1560#endif /* CONFIG_SMP */
bf0f6f24 1561
2e09bf55 1562 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1563
1564 .pick_next_task = pick_next_task_fair,
1565 .put_prev_task = put_prev_task_fair,
1566
681f3e68 1567#ifdef CONFIG_SMP
bf0f6f24 1568 .load_balance = load_balance_fair,
e1d1484f 1569 .move_one_task = move_one_task_fair,
681f3e68 1570#endif
bf0f6f24 1571
83b699ed 1572 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1573 .task_tick = task_tick_fair,
1574 .task_new = task_new_fair,
cb469845
SR
1575
1576 .prio_changed = prio_changed_fair,
1577 .switched_to = switched_to_fair,
810b3817
PZ
1578
1579#ifdef CONFIG_FAIR_GROUP_SCHED
1580 .moved_group = moved_group_fair,
1581#endif
bf0f6f24
IM
1582};
1583
1584#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1585static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1586{
bf0f6f24
IM
1587 struct cfs_rq *cfs_rq;
1588
5973e5b9 1589 rcu_read_lock();
c3b64f1e 1590 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1591 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 1592 rcu_read_unlock();
bf0f6f24
IM
1593}
1594#endif