]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched_fair.c
sched: fix SMP migration latencies
[net-next-2.6.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
23/*
21805085
PZ
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
bf0f6f24 26 *
21805085
PZ
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length.
29 * (to see the precise effective timeslice length of your workload,
30 * run vmstat and monitor the context-switches field)
bf0f6f24
IM
31 *
32 * On SMP systems the value of this is multiplied by the log2 of the
33 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
34 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
21805085 35 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 36 */
2bd8e6d4
IM
37const_debug unsigned int sysctl_sched_latency = 20000000ULL;
38
39/*
40 * After fork, child runs first. (default) If set to 0 then
41 * parent will (try to) run first.
42 */
43const_debug unsigned int sysctl_sched_child_runs_first = 1;
21805085
PZ
44
45/*
46 * Minimal preemption granularity for CPU-bound tasks:
47 * (default: 2 msec, units: nanoseconds)
48 */
172ac3db 49unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
bf0f6f24 50
1799e35d
IM
51/*
52 * sys_sched_yield() compat mode
53 *
54 * This option switches the agressive yield implementation of the
55 * old scheduler back on.
56 */
57unsigned int __read_mostly sysctl_sched_compat_yield;
58
bf0f6f24
IM
59/*
60 * SCHED_BATCH wake-up granularity.
71fd3714 61 * (default: 25 msec, units: nanoseconds)
bf0f6f24
IM
62 *
63 * This option delays the preemption effects of decoupled workloads
64 * and reduces their over-scheduling. Synchronous workloads will still
65 * have immediate wakeup/sleep latencies.
66 */
2bd8e6d4 67const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
bf0f6f24
IM
68
69/*
70 * SCHED_OTHER wake-up granularity.
71 * (default: 1 msec, units: nanoseconds)
72 *
73 * This option delays the preemption effects of decoupled workloads
74 * and reduces their over-scheduling. Synchronous workloads will still
75 * have immediate wakeup/sleep latencies.
76 */
2e09bf55 77const_debug unsigned int sysctl_sched_wakeup_granularity = 2000000UL;
bf0f6f24 78
bf0f6f24
IM
79unsigned int sysctl_sched_runtime_limit __read_mostly;
80
bf0f6f24
IM
81extern struct sched_class fair_sched_class;
82
83/**************************************************************
84 * CFS operations on generic schedulable entities:
85 */
86
62160e3f 87#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 88
62160e3f 89/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
90static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
91{
62160e3f 92 return cfs_rq->rq;
bf0f6f24
IM
93}
94
62160e3f
IM
95/* An entity is a task if it doesn't "own" a runqueue */
96#define entity_is_task(se) (!se->my_q)
bf0f6f24 97
62160e3f 98#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 99
62160e3f
IM
100static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
101{
102 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
103}
104
105#define entity_is_task(se) 1
106
bf0f6f24
IM
107#endif /* CONFIG_FAIR_GROUP_SCHED */
108
109static inline struct task_struct *task_of(struct sched_entity *se)
110{
111 return container_of(se, struct task_struct, se);
112}
113
114
115/**************************************************************
116 * Scheduling class tree data structure manipulation methods:
117 */
118
02e0431a
PZ
119static inline u64
120max_vruntime(u64 min_vruntime, u64 vruntime)
121{
122 if ((vruntime > min_vruntime) ||
123 (min_vruntime > (1ULL << 61) && vruntime < (1ULL << 50)))
124 min_vruntime = vruntime;
125
126 return min_vruntime;
127}
128
e9acbff6
IM
129static inline void
130set_leftmost(struct cfs_rq *cfs_rq, struct rb_node *leftmost)
131{
132 struct sched_entity *se;
133
134 cfs_rq->rb_leftmost = leftmost;
02e0431a 135 if (leftmost)
e9acbff6 136 se = rb_entry(leftmost, struct sched_entity, run_node);
e9acbff6
IM
137}
138
02e0431a
PZ
139static inline s64
140entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c
PZ
141{
142 return se->fair_key - cfs_rq->min_vruntime;
143}
144
bf0f6f24
IM
145/*
146 * Enqueue an entity into the rb-tree:
147 */
19ccd97a 148static void
bf0f6f24
IM
149__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
150{
151 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
152 struct rb_node *parent = NULL;
153 struct sched_entity *entry;
9014623c 154 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
155 int leftmost = 1;
156
157 /*
158 * Find the right place in the rbtree:
159 */
160 while (*link) {
161 parent = *link;
162 entry = rb_entry(parent, struct sched_entity, run_node);
163 /*
164 * We dont care about collisions. Nodes with
165 * the same key stay together.
166 */
9014623c 167 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
168 link = &parent->rb_left;
169 } else {
170 link = &parent->rb_right;
171 leftmost = 0;
172 }
173 }
174
175 /*
176 * Maintain a cache of leftmost tree entries (it is frequently
177 * used):
178 */
179 if (leftmost)
e9acbff6 180 set_leftmost(cfs_rq, &se->run_node);
bf0f6f24
IM
181
182 rb_link_node(&se->run_node, parent, link);
183 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
184 update_load_add(&cfs_rq->load, se->load.weight);
185 cfs_rq->nr_running++;
186 se->on_rq = 1;
187}
188
19ccd97a 189static void
bf0f6f24
IM
190__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
191{
192 if (cfs_rq->rb_leftmost == &se->run_node)
e9acbff6
IM
193 set_leftmost(cfs_rq, rb_next(&se->run_node));
194
bf0f6f24
IM
195 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
196 update_load_sub(&cfs_rq->load, se->load.weight);
197 cfs_rq->nr_running--;
198 se->on_rq = 0;
199}
200
201static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
202{
203 return cfs_rq->rb_leftmost;
204}
205
206static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
207{
208 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
209}
210
aeb73b04
PZ
211static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
212{
213 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
214 struct sched_entity *se = NULL;
215 struct rb_node *parent;
216
217 while (*link) {
218 parent = *link;
219 se = rb_entry(parent, struct sched_entity, run_node);
220 link = &parent->rb_right;
221 }
222
223 return se;
224}
225
bf0f6f24
IM
226/**************************************************************
227 * Scheduling class statistics methods:
228 */
229
4d78e7b6
PZ
230static u64 __sched_period(unsigned long nr_running)
231{
232 u64 period = sysctl_sched_latency;
233 unsigned long nr_latency =
234 sysctl_sched_latency / sysctl_sched_min_granularity;
235
236 if (unlikely(nr_running > nr_latency)) {
237 period *= nr_running;
238 do_div(period, nr_latency);
239 }
240
241 return period;
242}
243
6d0f0ebd 244static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 245{
6d0f0ebd 246 u64 period = __sched_period(cfs_rq->nr_running);
21805085 247
6d0f0ebd
PZ
248 period *= se->load.weight;
249 do_div(period, cfs_rq->load.weight);
21805085 250
6d0f0ebd 251 return period;
bf0f6f24
IM
252}
253
bf0f6f24
IM
254/*
255 * Update the current task's runtime statistics. Skip current tasks that
256 * are not in our scheduling class.
257 */
258static inline void
8ebc91d9
IM
259__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
260 unsigned long delta_exec)
bf0f6f24 261{
bbdba7c0 262 unsigned long delta_exec_weighted;
02e0431a 263 u64 next_vruntime, min_vruntime;
bf0f6f24 264
8179ca23 265 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
266
267 curr->sum_exec_runtime += delta_exec;
7a62eabc 268 schedstat_add(cfs_rq, exec_clock, delta_exec);
e9acbff6
IM
269 delta_exec_weighted = delta_exec;
270 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
271 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
272 &curr->load);
273 }
274 curr->vruntime += delta_exec_weighted;
02e0431a
PZ
275
276 /*
277 * maintain cfs_rq->min_vruntime to be a monotonic increasing
278 * value tracking the leftmost vruntime in the tree.
279 */
280 if (first_fair(cfs_rq)) {
281 next_vruntime = __pick_next_entity(cfs_rq)->vruntime;
282
283 /* min_vruntime() := !max_vruntime() */
284 min_vruntime = max_vruntime(curr->vruntime, next_vruntime);
285 if (min_vruntime == next_vruntime)
286 min_vruntime = curr->vruntime;
287 else
288 min_vruntime = next_vruntime;
289 } else
290 min_vruntime = curr->vruntime;
291
292 cfs_rq->min_vruntime =
293 max_vruntime(cfs_rq->min_vruntime, min_vruntime);
bf0f6f24
IM
294}
295
b7cc0896 296static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 297{
429d43bc 298 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 299 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
300 unsigned long delta_exec;
301
302 if (unlikely(!curr))
303 return;
304
305 /*
306 * Get the amount of time the current task was running
307 * since the last time we changed load (this cannot
308 * overflow on 32 bits):
309 */
8ebc91d9 310 delta_exec = (unsigned long)(now - curr->exec_start);
bf0f6f24 311
8ebc91d9
IM
312 __update_curr(cfs_rq, curr, delta_exec);
313 curr->exec_start = now;
bf0f6f24
IM
314}
315
316static inline void
5870db5b 317update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 318{
d281918d 319 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
320}
321
bf0f6f24 322static inline unsigned long
08e2388a 323calc_weighted(unsigned long delta, struct sched_entity *se)
bf0f6f24 324{
08e2388a 325 unsigned long weight = se->load.weight;
bf0f6f24 326
08e2388a
IM
327 if (unlikely(weight != NICE_0_LOAD))
328 return (u64)delta * se->load.weight >> NICE_0_SHIFT;
329 else
330 return delta;
bf0f6f24 331}
bf0f6f24
IM
332
333/*
334 * Task is being enqueued - update stats:
335 */
d2417e5a 336static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 337{
bf0f6f24
IM
338 /*
339 * Are we enqueueing a waiting task? (for current tasks
340 * a dequeue/enqueue event is a NOP)
341 */
429d43bc 342 if (se != cfs_rq->curr)
5870db5b 343 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
344 /*
345 * Update the key:
346 */
e9acbff6 347 se->fair_key = se->vruntime;
bf0f6f24
IM
348}
349
bf0f6f24 350static void
9ef0a961 351update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 352{
bbdba7c0
IM
353 schedstat_set(se->wait_max, max(se->wait_max,
354 rq_of(cfs_rq)->clock - se->wait_start));
6cfb0d5d 355 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
356}
357
358static inline void
19b6a2e3 359update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 360{
b7cc0896 361 update_curr(cfs_rq);
bf0f6f24
IM
362 /*
363 * Mark the end of the wait period if dequeueing a
364 * waiting task:
365 */
429d43bc 366 if (se != cfs_rq->curr)
9ef0a961 367 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
368}
369
370/*
371 * We are picking a new current task - update its stats:
372 */
373static inline void
79303e9e 374update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
375{
376 /*
377 * We are starting a new run period:
378 */
d281918d 379 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
380}
381
382/*
383 * We are descheduling a task - update its stats:
384 */
385static inline void
c7e9b5b2 386update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
387{
388 se->exec_start = 0;
389}
390
391/**************************************************
392 * Scheduling class queueing methods:
393 */
394
2396af69 395static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 396{
bf0f6f24
IM
397#ifdef CONFIG_SCHEDSTATS
398 if (se->sleep_start) {
d281918d 399 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
bf0f6f24
IM
400
401 if ((s64)delta < 0)
402 delta = 0;
403
404 if (unlikely(delta > se->sleep_max))
405 se->sleep_max = delta;
406
407 se->sleep_start = 0;
408 se->sum_sleep_runtime += delta;
409 }
410 if (se->block_start) {
d281918d 411 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
bf0f6f24
IM
412
413 if ((s64)delta < 0)
414 delta = 0;
415
416 if (unlikely(delta > se->block_max))
417 se->block_max = delta;
418
419 se->block_start = 0;
420 se->sum_sleep_runtime += delta;
30084fbd
IM
421
422 /*
423 * Blocking time is in units of nanosecs, so shift by 20 to
424 * get a milliseconds-range estimation of the amount of
425 * time that the task spent sleeping:
426 */
427 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf
IM
428 struct task_struct *tsk = task_of(se);
429
30084fbd
IM
430 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
431 delta >> 20);
432 }
bf0f6f24
IM
433 }
434#endif
435}
436
aeb73b04
PZ
437static void
438place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
439{
aeb73b04
PZ
440 u64 min_runtime, latency;
441
442 min_runtime = cfs_rq->min_vruntime;
94dfb5e7
PZ
443
444 if (sched_feat(USE_TREE_AVG)) {
445 struct sched_entity *last = __pick_last_entity(cfs_rq);
446 if (last) {
447 min_runtime = __pick_next_entity(cfs_rq)->vruntime;
448 min_runtime += last->vruntime;
449 min_runtime >>= 1;
450 }
451 } else if (sched_feat(APPROX_AVG))
452 min_runtime += sysctl_sched_latency/2;
453
454 if (initial && sched_feat(START_DEBIT))
455 min_runtime += sched_slice(cfs_rq, se);
aeb73b04
PZ
456
457 if (!initial && sched_feat(NEW_FAIR_SLEEPERS)) {
458 latency = sysctl_sched_latency;
459 if (min_runtime > latency)
460 min_runtime -= latency;
461 else
462 min_runtime = 0;
463 }
464
465 se->vruntime = max(se->vruntime, min_runtime);
466}
467
bf0f6f24 468static void
668031ca 469enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
470{
471 /*
472 * Update the fair clock.
473 */
b7cc0896 474 update_curr(cfs_rq);
bf0f6f24 475
e9acbff6 476 if (wakeup) {
aeb73b04 477 place_entity(cfs_rq, se, 0);
2396af69 478 enqueue_sleeper(cfs_rq, se);
e9acbff6 479 }
bf0f6f24 480
d2417e5a 481 update_stats_enqueue(cfs_rq, se);
bf0f6f24
IM
482 __enqueue_entity(cfs_rq, se);
483}
484
485static void
525c2716 486dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 487{
19b6a2e3 488 update_stats_dequeue(cfs_rq, se);
bf0f6f24 489#ifdef CONFIG_SCHEDSTATS
db36cc7d 490 if (sleep) {
bf0f6f24
IM
491 if (entity_is_task(se)) {
492 struct task_struct *tsk = task_of(se);
493
494 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 495 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 496 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 497 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 498 }
bf0f6f24 499 }
db36cc7d 500#endif
bf0f6f24
IM
501 __dequeue_entity(cfs_rq, se);
502}
503
504/*
505 * Preempt the current task with a newly woken task if needed:
506 */
7c92e54f 507static void
2e09bf55 508check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 509{
11697830
PZ
510 unsigned long ideal_runtime, delta_exec;
511
6d0f0ebd 512 ideal_runtime = sched_slice(cfs_rq, curr);
11697830
PZ
513 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
514 if (delta_exec > ideal_runtime)
bf0f6f24
IM
515 resched_task(rq_of(cfs_rq)->curr);
516}
517
518static inline void
8494f412 519set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
520{
521 /*
522 * Any task has to be enqueued before it get to execute on
523 * a CPU. So account for the time it spent waiting on the
bbdba7c0 524 * runqueue.
bf0f6f24 525 */
9ef0a961 526 update_stats_wait_end(cfs_rq, se);
79303e9e 527 update_stats_curr_start(cfs_rq, se);
429d43bc 528 cfs_rq->curr = se;
eba1ed4b
IM
529#ifdef CONFIG_SCHEDSTATS
530 /*
531 * Track our maximum slice length, if the CPU's load is at
532 * least twice that of our own weight (i.e. dont track it
533 * when there are only lesser-weight tasks around):
534 */
495eca49 535 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
536 se->slice_max = max(se->slice_max,
537 se->sum_exec_runtime - se->prev_sum_exec_runtime);
538 }
539#endif
4a55b450 540 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
541}
542
9948f4b2 543static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24
IM
544{
545 struct sched_entity *se = __pick_next_entity(cfs_rq);
546
8494f412 547 set_next_entity(cfs_rq, se);
bf0f6f24
IM
548
549 return se;
550}
551
ab6cde26 552static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
553{
554 /*
555 * If still on the runqueue then deactivate_task()
556 * was not called and update_curr() has to be done:
557 */
558 if (prev->on_rq)
b7cc0896 559 update_curr(cfs_rq);
bf0f6f24 560
c7e9b5b2 561 update_stats_curr_end(cfs_rq, prev);
bf0f6f24
IM
562
563 if (prev->on_rq)
5870db5b 564 update_stats_wait_start(cfs_rq, prev);
429d43bc 565 cfs_rq->curr = NULL;
bf0f6f24
IM
566}
567
568static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
569{
bf0f6f24
IM
570 /*
571 * Dequeue and enqueue the task to update its
572 * position within the tree:
573 */
525c2716 574 dequeue_entity(cfs_rq, curr, 0);
668031ca 575 enqueue_entity(cfs_rq, curr, 0);
bf0f6f24 576
2e09bf55
IM
577 if (cfs_rq->nr_running > 1)
578 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
579}
580
581/**************************************************
582 * CFS operations on tasks:
583 */
584
585#ifdef CONFIG_FAIR_GROUP_SCHED
586
587/* Walk up scheduling entities hierarchy */
588#define for_each_sched_entity(se) \
589 for (; se; se = se->parent)
590
591static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
592{
593 return p->se.cfs_rq;
594}
595
596/* runqueue on which this entity is (to be) queued */
597static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
598{
599 return se->cfs_rq;
600}
601
602/* runqueue "owned" by this group */
603static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
604{
605 return grp->my_q;
606}
607
608/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
609 * another cpu ('this_cpu')
610 */
611static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
612{
613 /* A later patch will take group into account */
614 return &cpu_rq(this_cpu)->cfs;
615}
616
617/* Iterate thr' all leaf cfs_rq's on a runqueue */
618#define for_each_leaf_cfs_rq(rq, cfs_rq) \
619 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
620
621/* Do the two (enqueued) tasks belong to the same group ? */
622static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
623{
624 if (curr->se.cfs_rq == p->se.cfs_rq)
625 return 1;
626
627 return 0;
628}
629
630#else /* CONFIG_FAIR_GROUP_SCHED */
631
632#define for_each_sched_entity(se) \
633 for (; se; se = NULL)
634
635static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
636{
637 return &task_rq(p)->cfs;
638}
639
640static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
641{
642 struct task_struct *p = task_of(se);
643 struct rq *rq = task_rq(p);
644
645 return &rq->cfs;
646}
647
648/* runqueue "owned" by this group */
649static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
650{
651 return NULL;
652}
653
654static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
655{
656 return &cpu_rq(this_cpu)->cfs;
657}
658
659#define for_each_leaf_cfs_rq(rq, cfs_rq) \
660 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
661
662static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
663{
664 return 1;
665}
666
667#endif /* CONFIG_FAIR_GROUP_SCHED */
668
669/*
670 * The enqueue_task method is called before nr_running is
671 * increased. Here we update the fair scheduling stats and
672 * then put the task into the rbtree:
673 */
fd390f6a 674static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
675{
676 struct cfs_rq *cfs_rq;
677 struct sched_entity *se = &p->se;
678
679 for_each_sched_entity(se) {
680 if (se->on_rq)
681 break;
682 cfs_rq = cfs_rq_of(se);
668031ca 683 enqueue_entity(cfs_rq, se, wakeup);
bf0f6f24
IM
684 }
685}
686
687/*
688 * The dequeue_task method is called before nr_running is
689 * decreased. We remove the task from the rbtree and
690 * update the fair scheduling stats:
691 */
f02231e5 692static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
693{
694 struct cfs_rq *cfs_rq;
695 struct sched_entity *se = &p->se;
696
697 for_each_sched_entity(se) {
698 cfs_rq = cfs_rq_of(se);
525c2716 699 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24
IM
700 /* Don't dequeue parent if it has other entities besides us */
701 if (cfs_rq->load.weight)
702 break;
703 }
704}
705
706/*
1799e35d
IM
707 * sched_yield() support is very simple - we dequeue and enqueue.
708 *
709 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24
IM
710 */
711static void yield_task_fair(struct rq *rq, struct task_struct *p)
712{
713 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1799e35d
IM
714 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
715 struct sched_entity *rightmost, *se = &p->se;
716 struct rb_node *parent;
bf0f6f24
IM
717
718 /*
1799e35d
IM
719 * Are we the only task in the tree?
720 */
721 if (unlikely(cfs_rq->nr_running == 1))
722 return;
723
724 if (likely(!sysctl_sched_compat_yield)) {
725 __update_rq_clock(rq);
726 /*
727 * Dequeue and enqueue the task to update its
728 * position within the tree:
729 */
730 dequeue_entity(cfs_rq, &p->se, 0);
731 enqueue_entity(cfs_rq, &p->se, 0);
732
733 return;
734 }
735 /*
736 * Find the rightmost entry in the rbtree:
bf0f6f24 737 */
1799e35d
IM
738 do {
739 parent = *link;
740 link = &parent->rb_right;
741 } while (*link);
742
743 rightmost = rb_entry(parent, struct sched_entity, run_node);
744 /*
745 * Already in the rightmost position?
746 */
747 if (unlikely(rightmost == se))
748 return;
749
750 /*
751 * Minimally necessary key value to be last in the tree:
752 */
753 se->fair_key = rightmost->fair_key + 1;
754
755 if (cfs_rq->rb_leftmost == &se->run_node)
756 cfs_rq->rb_leftmost = rb_next(&se->run_node);
757 /*
758 * Relink the task to the rightmost position:
759 */
760 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
761 rb_link_node(&se->run_node, parent, link);
762 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
763}
764
765/*
766 * Preempt the current task with a newly woken task if needed:
767 */
2e09bf55 768static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
769{
770 struct task_struct *curr = rq->curr;
771 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
bf0f6f24
IM
772
773 if (unlikely(rt_prio(p->prio))) {
a8e504d2 774 update_rq_clock(rq);
b7cc0896 775 update_curr(cfs_rq);
bf0f6f24
IM
776 resched_task(curr);
777 return;
778 }
2e09bf55
IM
779 if (is_same_group(curr, p)) {
780 s64 delta = curr->se.vruntime - p->se.vruntime;
bf0f6f24 781
2e09bf55
IM
782 if (delta > (s64)sysctl_sched_wakeup_granularity)
783 resched_task(curr);
784 }
bf0f6f24
IM
785}
786
fb8d4724 787static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24
IM
788{
789 struct cfs_rq *cfs_rq = &rq->cfs;
790 struct sched_entity *se;
791
792 if (unlikely(!cfs_rq->nr_running))
793 return NULL;
794
795 do {
9948f4b2 796 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
797 cfs_rq = group_cfs_rq(se);
798 } while (cfs_rq);
799
800 return task_of(se);
801}
802
803/*
804 * Account for a descheduled task:
805 */
31ee529c 806static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
807{
808 struct sched_entity *se = &prev->se;
809 struct cfs_rq *cfs_rq;
810
811 for_each_sched_entity(se) {
812 cfs_rq = cfs_rq_of(se);
ab6cde26 813 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
814 }
815}
816
817/**************************************************
818 * Fair scheduling class load-balancing methods:
819 */
820
821/*
822 * Load-balancing iterator. Note: while the runqueue stays locked
823 * during the whole iteration, the current task might be
824 * dequeued so the iterator has to be dequeue-safe. Here we
825 * achieve that by always pre-iterating before returning
826 * the current task:
827 */
828static inline struct task_struct *
829__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
830{
831 struct task_struct *p;
832
833 if (!curr)
834 return NULL;
835
836 p = rb_entry(curr, struct task_struct, se.run_node);
837 cfs_rq->rb_load_balance_curr = rb_next(curr);
838
839 return p;
840}
841
842static struct task_struct *load_balance_start_fair(void *arg)
843{
844 struct cfs_rq *cfs_rq = arg;
845
846 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
847}
848
849static struct task_struct *load_balance_next_fair(void *arg)
850{
851 struct cfs_rq *cfs_rq = arg;
852
853 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
854}
855
a4ac01c3 856#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24
IM
857static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
858{
859 struct sched_entity *curr;
860 struct task_struct *p;
861
862 if (!cfs_rq->nr_running)
863 return MAX_PRIO;
864
865 curr = __pick_next_entity(cfs_rq);
866 p = task_of(curr);
867
868 return p->prio;
869}
a4ac01c3 870#endif
bf0f6f24 871
43010659 872static unsigned long
bf0f6f24 873load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
a4ac01c3
PW
874 unsigned long max_nr_move, unsigned long max_load_move,
875 struct sched_domain *sd, enum cpu_idle_type idle,
876 int *all_pinned, int *this_best_prio)
bf0f6f24
IM
877{
878 struct cfs_rq *busy_cfs_rq;
879 unsigned long load_moved, total_nr_moved = 0, nr_moved;
880 long rem_load_move = max_load_move;
881 struct rq_iterator cfs_rq_iterator;
882
883 cfs_rq_iterator.start = load_balance_start_fair;
884 cfs_rq_iterator.next = load_balance_next_fair;
885
886 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
a4ac01c3 887#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 888 struct cfs_rq *this_cfs_rq;
e56f31aa 889 long imbalance;
bf0f6f24 890 unsigned long maxload;
bf0f6f24
IM
891
892 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
893
e56f31aa 894 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
bf0f6f24
IM
895 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
896 if (imbalance <= 0)
897 continue;
898
899 /* Don't pull more than imbalance/2 */
900 imbalance /= 2;
901 maxload = min(rem_load_move, imbalance);
902
a4ac01c3
PW
903 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
904#else
e56f31aa 905# define maxload rem_load_move
a4ac01c3 906#endif
bf0f6f24
IM
907 /* pass busy_cfs_rq argument into
908 * load_balance_[start|next]_fair iterators
909 */
910 cfs_rq_iterator.arg = busy_cfs_rq;
911 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
912 max_nr_move, maxload, sd, idle, all_pinned,
a4ac01c3 913 &load_moved, this_best_prio, &cfs_rq_iterator);
bf0f6f24
IM
914
915 total_nr_moved += nr_moved;
916 max_nr_move -= nr_moved;
917 rem_load_move -= load_moved;
918
919 if (max_nr_move <= 0 || rem_load_move <= 0)
920 break;
921 }
922
43010659 923 return max_load_move - rem_load_move;
bf0f6f24
IM
924}
925
926/*
927 * scheduler tick hitting a task of our scheduling class:
928 */
929static void task_tick_fair(struct rq *rq, struct task_struct *curr)
930{
931 struct cfs_rq *cfs_rq;
932 struct sched_entity *se = &curr->se;
933
934 for_each_sched_entity(se) {
935 cfs_rq = cfs_rq_of(se);
936 entity_tick(cfs_rq, se);
937 }
938}
939
4d78e7b6
PZ
940#define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
941
bf0f6f24
IM
942/*
943 * Share the fairness runtime between parent and child, thus the
944 * total amount of pressure for CPU stays equal - new tasks
945 * get a chance to run but frequent forkers are not allowed to
946 * monopolize the CPU. Note: the parent runqueue is locked,
947 * the child is not running yet.
948 */
ee0827d8 949static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
950{
951 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 952 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
bf0f6f24
IM
953
954 sched_info_queued(p);
955
7109c442 956 update_curr(cfs_rq);
aeb73b04 957 place_entity(cfs_rq, se, 1);
4d78e7b6 958
4d78e7b6
PZ
959 if (sysctl_sched_child_runs_first &&
960 curr->vruntime < se->vruntime) {
961
962 dequeue_entity(cfs_rq, curr, 0);
963 swap(curr->vruntime, se->vruntime);
964 enqueue_entity(cfs_rq, curr, 0);
965 }
bf0f6f24 966
e9acbff6 967 update_stats_enqueue(cfs_rq, se);
bf0f6f24 968 __enqueue_entity(cfs_rq, se);
bb61c210 969 resched_task(rq->curr);
bf0f6f24
IM
970}
971
972#ifdef CONFIG_FAIR_GROUP_SCHED
973/* Account for a task changing its policy or group.
974 *
975 * This routine is mostly called to set cfs_rq->curr field when a task
976 * migrates between groups/classes.
977 */
978static void set_curr_task_fair(struct rq *rq)
979{
7c6c16f3 980 struct sched_entity *se = &rq->curr->se;
a8e504d2 981
c3b64f1e
IM
982 for_each_sched_entity(se)
983 set_next_entity(cfs_rq_of(se), se);
bf0f6f24
IM
984}
985#else
986static void set_curr_task_fair(struct rq *rq)
987{
988}
989#endif
990
991/*
992 * All the scheduling class methods:
993 */
994struct sched_class fair_sched_class __read_mostly = {
995 .enqueue_task = enqueue_task_fair,
996 .dequeue_task = dequeue_task_fair,
997 .yield_task = yield_task_fair,
998
2e09bf55 999 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1000
1001 .pick_next_task = pick_next_task_fair,
1002 .put_prev_task = put_prev_task_fair,
1003
1004 .load_balance = load_balance_fair,
1005
1006 .set_curr_task = set_curr_task_fair,
1007 .task_tick = task_tick_fair,
1008 .task_new = task_new_fair,
1009};
1010
1011#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1012static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1013{
bf0f6f24
IM
1014 struct cfs_rq *cfs_rq;
1015
c3b64f1e 1016 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1017 print_cfs_rq(m, cpu, cfs_rq);
bf0f6f24
IM
1018}
1019#endif