]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched_fair.c
sched: fix race in schedule()
[net-next-2.6.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c
AV
23#include <linux/latencytop.h>
24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
722aab0c 27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 28 *
21805085 29 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
bf0f6f24 33 *
d274a4ce
IM
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 36 */
19978ca6 37unsigned int sysctl_sched_latency = 20000000ULL;
2bd8e6d4
IM
38
39/*
b2be5e96 40 * Minimal preemption granularity for CPU-bound tasks:
722aab0c 41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 42 */
722aab0c 43unsigned int sysctl_sched_min_granularity = 4000000ULL;
21805085
PZ
44
45/*
b2be5e96
PZ
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
722aab0c 48static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
49
50/*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
21805085 53 */
b2be5e96 54const_debug unsigned int sysctl_sched_child_runs_first = 1;
bf0f6f24 55
1799e35d
IM
56/*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62unsigned int __read_mostly sysctl_sched_compat_yield;
63
bf0f6f24
IM
64/*
65 * SCHED_BATCH wake-up granularity.
722aab0c 66 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
19978ca6 72unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
bf0f6f24
IM
73
74/*
75 * SCHED_OTHER wake-up granularity.
722aab0c 76 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
77 *
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
81 */
19978ca6 82unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
bf0f6f24 83
da84d961
IM
84const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
85
bf0f6f24
IM
86/**************************************************************
87 * CFS operations on generic schedulable entities:
88 */
89
62160e3f 90#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 91
62160e3f 92/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
93static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
94{
62160e3f 95 return cfs_rq->rq;
bf0f6f24
IM
96}
97
62160e3f
IM
98/* An entity is a task if it doesn't "own" a runqueue */
99#define entity_is_task(se) (!se->my_q)
bf0f6f24 100
62160e3f 101#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 102
62160e3f
IM
103static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
104{
105 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
106}
107
108#define entity_is_task(se) 1
109
bf0f6f24
IM
110#endif /* CONFIG_FAIR_GROUP_SCHED */
111
112static inline struct task_struct *task_of(struct sched_entity *se)
113{
114 return container_of(se, struct task_struct, se);
115}
116
117
118/**************************************************************
119 * Scheduling class tree data structure manipulation methods:
120 */
121
0702e3eb 122static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 123{
368059a9
PZ
124 s64 delta = (s64)(vruntime - min_vruntime);
125 if (delta > 0)
02e0431a
PZ
126 min_vruntime = vruntime;
127
128 return min_vruntime;
129}
130
0702e3eb 131static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
132{
133 s64 delta = (s64)(vruntime - min_vruntime);
134 if (delta < 0)
135 min_vruntime = vruntime;
136
137 return min_vruntime;
138}
139
0702e3eb 140static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 141{
30cfdcfc 142 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
143}
144
bf0f6f24
IM
145/*
146 * Enqueue an entity into the rb-tree:
147 */
0702e3eb 148static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
149{
150 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
151 struct rb_node *parent = NULL;
152 struct sched_entity *entry;
9014623c 153 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
154 int leftmost = 1;
155
156 /*
157 * Find the right place in the rbtree:
158 */
159 while (*link) {
160 parent = *link;
161 entry = rb_entry(parent, struct sched_entity, run_node);
162 /*
163 * We dont care about collisions. Nodes with
164 * the same key stay together.
165 */
9014623c 166 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
167 link = &parent->rb_left;
168 } else {
169 link = &parent->rb_right;
170 leftmost = 0;
171 }
172 }
173
174 /*
175 * Maintain a cache of leftmost tree entries (it is frequently
176 * used):
177 */
178 if (leftmost)
57cb499d 179 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
180
181 rb_link_node(&se->run_node, parent, link);
182 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
183}
184
0702e3eb 185static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
186{
187 if (cfs_rq->rb_leftmost == &se->run_node)
57cb499d 188 cfs_rq->rb_leftmost = rb_next(&se->run_node);
e9acbff6 189
bf0f6f24 190 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
191}
192
193static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
194{
195 return cfs_rq->rb_leftmost;
196}
197
198static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
199{
200 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
201}
202
aeb73b04
PZ
203static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
204{
7eee3e67 205 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 206
70eee74b
BS
207 if (!last)
208 return NULL;
7eee3e67
IM
209
210 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
211}
212
bf0f6f24
IM
213/**************************************************************
214 * Scheduling class statistics methods:
215 */
216
b2be5e96
PZ
217#ifdef CONFIG_SCHED_DEBUG
218int sched_nr_latency_handler(struct ctl_table *table, int write,
219 struct file *filp, void __user *buffer, size_t *lenp,
220 loff_t *ppos)
221{
222 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
223
224 if (ret || !write)
225 return ret;
226
227 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
228 sysctl_sched_min_granularity);
229
230 return 0;
231}
232#endif
647e7cac
IM
233
234/*
235 * The idea is to set a period in which each task runs once.
236 *
237 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
238 * this period because otherwise the slices get too small.
239 *
240 * p = (nr <= nl) ? l : l*nr/nl
241 */
4d78e7b6
PZ
242static u64 __sched_period(unsigned long nr_running)
243{
244 u64 period = sysctl_sched_latency;
b2be5e96 245 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
246
247 if (unlikely(nr_running > nr_latency)) {
4bf0b771 248 period = sysctl_sched_min_granularity;
4d78e7b6 249 period *= nr_running;
4d78e7b6
PZ
250 }
251
252 return period;
253}
254
647e7cac
IM
255/*
256 * We calculate the wall-time slice from the period by taking a part
257 * proportional to the weight.
258 *
259 * s = p*w/rw
260 */
6d0f0ebd 261static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 262{
647e7cac 263 u64 slice = __sched_period(cfs_rq->nr_running);
21805085 264
647e7cac
IM
265 slice *= se->load.weight;
266 do_div(slice, cfs_rq->load.weight);
21805085 267
647e7cac 268 return slice;
bf0f6f24
IM
269}
270
647e7cac
IM
271/*
272 * We calculate the vruntime slice.
273 *
274 * vs = s/w = p/rw
275 */
276static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
67e9fb2a 277{
647e7cac 278 u64 vslice = __sched_period(nr_running);
67e9fb2a 279
10b77724 280 vslice *= NICE_0_LOAD;
647e7cac 281 do_div(vslice, rq_weight);
67e9fb2a 282
647e7cac
IM
283 return vslice;
284}
5f6d858e 285
647e7cac
IM
286static u64 sched_vslice(struct cfs_rq *cfs_rq)
287{
288 return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
289}
290
291static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
292{
293 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
294 cfs_rq->nr_running + 1);
67e9fb2a
PZ
295}
296
bf0f6f24
IM
297/*
298 * Update the current task's runtime statistics. Skip current tasks that
299 * are not in our scheduling class.
300 */
301static inline void
8ebc91d9
IM
302__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
303 unsigned long delta_exec)
bf0f6f24 304{
bbdba7c0 305 unsigned long delta_exec_weighted;
b0ffd246 306 u64 vruntime;
bf0f6f24 307
8179ca23 308 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
309
310 curr->sum_exec_runtime += delta_exec;
7a62eabc 311 schedstat_add(cfs_rq, exec_clock, delta_exec);
e9acbff6
IM
312 delta_exec_weighted = delta_exec;
313 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
314 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
315 &curr->load);
316 }
317 curr->vruntime += delta_exec_weighted;
02e0431a
PZ
318
319 /*
320 * maintain cfs_rq->min_vruntime to be a monotonic increasing
321 * value tracking the leftmost vruntime in the tree.
322 */
323 if (first_fair(cfs_rq)) {
b0ffd246
PZ
324 vruntime = min_vruntime(curr->vruntime,
325 __pick_next_entity(cfs_rq)->vruntime);
02e0431a 326 } else
b0ffd246 327 vruntime = curr->vruntime;
02e0431a
PZ
328
329 cfs_rq->min_vruntime =
b0ffd246 330 max_vruntime(cfs_rq->min_vruntime, vruntime);
bf0f6f24
IM
331}
332
b7cc0896 333static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 334{
429d43bc 335 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 336 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
337 unsigned long delta_exec;
338
339 if (unlikely(!curr))
340 return;
341
342 /*
343 * Get the amount of time the current task was running
344 * since the last time we changed load (this cannot
345 * overflow on 32 bits):
346 */
8ebc91d9 347 delta_exec = (unsigned long)(now - curr->exec_start);
bf0f6f24 348
8ebc91d9
IM
349 __update_curr(cfs_rq, curr, delta_exec);
350 curr->exec_start = now;
d842de87
SV
351
352 if (entity_is_task(curr)) {
353 struct task_struct *curtask = task_of(curr);
354
355 cpuacct_charge(curtask, delta_exec);
356 }
bf0f6f24
IM
357}
358
359static inline void
5870db5b 360update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 361{
d281918d 362 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
363}
364
bf0f6f24
IM
365/*
366 * Task is being enqueued - update stats:
367 */
d2417e5a 368static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 369{
bf0f6f24
IM
370 /*
371 * Are we enqueueing a waiting task? (for current tasks
372 * a dequeue/enqueue event is a NOP)
373 */
429d43bc 374 if (se != cfs_rq->curr)
5870db5b 375 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
376}
377
bf0f6f24 378static void
9ef0a961 379update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 380{
bbdba7c0
IM
381 schedstat_set(se->wait_max, max(se->wait_max,
382 rq_of(cfs_rq)->clock - se->wait_start));
6d082592
AV
383 schedstat_set(se->wait_count, se->wait_count + 1);
384 schedstat_set(se->wait_sum, se->wait_sum +
385 rq_of(cfs_rq)->clock - se->wait_start);
6cfb0d5d 386 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
387}
388
389static inline void
19b6a2e3 390update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 391{
bf0f6f24
IM
392 /*
393 * Mark the end of the wait period if dequeueing a
394 * waiting task:
395 */
429d43bc 396 if (se != cfs_rq->curr)
9ef0a961 397 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
398}
399
400/*
401 * We are picking a new current task - update its stats:
402 */
403static inline void
79303e9e 404update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
405{
406 /*
407 * We are starting a new run period:
408 */
d281918d 409 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
410}
411
bf0f6f24
IM
412/**************************************************
413 * Scheduling class queueing methods:
414 */
415
30cfdcfc
DA
416static void
417account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
418{
419 update_load_add(&cfs_rq->load, se->load.weight);
420 cfs_rq->nr_running++;
421 se->on_rq = 1;
422}
423
424static void
425account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
426{
427 update_load_sub(&cfs_rq->load, se->load.weight);
428 cfs_rq->nr_running--;
429 se->on_rq = 0;
430}
431
2396af69 432static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 433{
bf0f6f24
IM
434#ifdef CONFIG_SCHEDSTATS
435 if (se->sleep_start) {
d281918d 436 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
9745512c 437 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
438
439 if ((s64)delta < 0)
440 delta = 0;
441
442 if (unlikely(delta > se->sleep_max))
443 se->sleep_max = delta;
444
445 se->sleep_start = 0;
446 se->sum_sleep_runtime += delta;
9745512c
AV
447
448 account_scheduler_latency(tsk, delta >> 10, 1);
bf0f6f24
IM
449 }
450 if (se->block_start) {
d281918d 451 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
9745512c 452 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
453
454 if ((s64)delta < 0)
455 delta = 0;
456
457 if (unlikely(delta > se->block_max))
458 se->block_max = delta;
459
460 se->block_start = 0;
461 se->sum_sleep_runtime += delta;
30084fbd
IM
462
463 /*
464 * Blocking time is in units of nanosecs, so shift by 20 to
465 * get a milliseconds-range estimation of the amount of
466 * time that the task spent sleeping:
467 */
468 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf 469
30084fbd
IM
470 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
471 delta >> 20);
472 }
9745512c 473 account_scheduler_latency(tsk, delta >> 10, 0);
bf0f6f24
IM
474 }
475#endif
476}
477
ddc97297
PZ
478static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
479{
480#ifdef CONFIG_SCHED_DEBUG
481 s64 d = se->vruntime - cfs_rq->min_vruntime;
482
483 if (d < 0)
484 d = -d;
485
486 if (d > 3*sysctl_sched_latency)
487 schedstat_inc(cfs_rq, nr_spread_over);
488#endif
489}
490
aeb73b04
PZ
491static void
492place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
493{
67e9fb2a 494 u64 vruntime;
aeb73b04 495
67e9fb2a 496 vruntime = cfs_rq->min_vruntime;
94dfb5e7 497
06877c33 498 if (sched_feat(TREE_AVG)) {
94dfb5e7
PZ
499 struct sched_entity *last = __pick_last_entity(cfs_rq);
500 if (last) {
67e9fb2a
PZ
501 vruntime += last->vruntime;
502 vruntime >>= 1;
94dfb5e7 503 }
67e9fb2a 504 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
647e7cac 505 vruntime += sched_vslice(cfs_rq)/2;
94dfb5e7 506
2cb8600e
PZ
507 /*
508 * The 'current' period is already promised to the current tasks,
509 * however the extra weight of the new task will slow them down a
510 * little, place the new task so that it fits in the slot that
511 * stays open at the end.
512 */
94dfb5e7 513 if (initial && sched_feat(START_DEBIT))
647e7cac 514 vruntime += sched_vslice_add(cfs_rq, se);
aeb73b04 515
8465e792 516 if (!initial) {
2cb8600e 517 /* sleeps upto a single latency don't count. */
296825cb 518 if (sched_feat(NEW_FAIR_SLEEPERS))
94359f05
IM
519 vruntime -= sysctl_sched_latency;
520
2cb8600e
PZ
521 /* ensure we never gain time by being placed backwards. */
522 vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
523 }
524
67e9fb2a 525 se->vruntime = vruntime;
aeb73b04
PZ
526}
527
bf0f6f24 528static void
83b699ed 529enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
530{
531 /*
a2a2d680 532 * Update run-time statistics of the 'current'.
bf0f6f24 533 */
b7cc0896 534 update_curr(cfs_rq);
bf0f6f24 535
e9acbff6 536 if (wakeup) {
aeb73b04 537 place_entity(cfs_rq, se, 0);
2396af69 538 enqueue_sleeper(cfs_rq, se);
e9acbff6 539 }
bf0f6f24 540
d2417e5a 541 update_stats_enqueue(cfs_rq, se);
ddc97297 542 check_spread(cfs_rq, se);
83b699ed
SV
543 if (se != cfs_rq->curr)
544 __enqueue_entity(cfs_rq, se);
30cfdcfc 545 account_entity_enqueue(cfs_rq, se);
bf0f6f24
IM
546}
547
548static void
525c2716 549dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 550{
a2a2d680
DA
551 /*
552 * Update run-time statistics of the 'current'.
553 */
554 update_curr(cfs_rq);
555
19b6a2e3 556 update_stats_dequeue(cfs_rq, se);
db36cc7d 557 if (sleep) {
67e9fb2a 558#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
559 if (entity_is_task(se)) {
560 struct task_struct *tsk = task_of(se);
561
562 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 563 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 564 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 565 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 566 }
db36cc7d 567#endif
67e9fb2a
PZ
568 }
569
83b699ed 570 if (se != cfs_rq->curr)
30cfdcfc
DA
571 __dequeue_entity(cfs_rq, se);
572 account_entity_dequeue(cfs_rq, se);
bf0f6f24
IM
573}
574
575/*
576 * Preempt the current task with a newly woken task if needed:
577 */
7c92e54f 578static void
2e09bf55 579check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 580{
11697830
PZ
581 unsigned long ideal_runtime, delta_exec;
582
6d0f0ebd 583 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 584 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3e3e13f3 585 if (delta_exec > ideal_runtime)
bf0f6f24
IM
586 resched_task(rq_of(cfs_rq)->curr);
587}
588
83b699ed 589static void
8494f412 590set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 591{
83b699ed
SV
592 /* 'current' is not kept within the tree. */
593 if (se->on_rq) {
594 /*
595 * Any task has to be enqueued before it get to execute on
596 * a CPU. So account for the time it spent waiting on the
597 * runqueue.
598 */
599 update_stats_wait_end(cfs_rq, se);
600 __dequeue_entity(cfs_rq, se);
601 }
602
79303e9e 603 update_stats_curr_start(cfs_rq, se);
429d43bc 604 cfs_rq->curr = se;
eba1ed4b
IM
605#ifdef CONFIG_SCHEDSTATS
606 /*
607 * Track our maximum slice length, if the CPU's load is at
608 * least twice that of our own weight (i.e. dont track it
609 * when there are only lesser-weight tasks around):
610 */
495eca49 611 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
612 se->slice_max = max(se->slice_max,
613 se->sum_exec_runtime - se->prev_sum_exec_runtime);
614 }
615#endif
4a55b450 616 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
617}
618
9948f4b2 619static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24 620{
08ec3df5 621 struct sched_entity *se = NULL;
bf0f6f24 622
08ec3df5
DA
623 if (first_fair(cfs_rq)) {
624 se = __pick_next_entity(cfs_rq);
625 set_next_entity(cfs_rq, se);
626 }
bf0f6f24
IM
627
628 return se;
629}
630
ab6cde26 631static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
632{
633 /*
634 * If still on the runqueue then deactivate_task()
635 * was not called and update_curr() has to be done:
636 */
637 if (prev->on_rq)
b7cc0896 638 update_curr(cfs_rq);
bf0f6f24 639
ddc97297 640 check_spread(cfs_rq, prev);
30cfdcfc 641 if (prev->on_rq) {
5870db5b 642 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
643 /* Put 'current' back into the tree. */
644 __enqueue_entity(cfs_rq, prev);
645 }
429d43bc 646 cfs_rq->curr = NULL;
bf0f6f24
IM
647}
648
8f4d37ec
PZ
649static void
650entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 651{
bf0f6f24 652 /*
30cfdcfc 653 * Update run-time statistics of the 'current'.
bf0f6f24 654 */
30cfdcfc 655 update_curr(cfs_rq);
bf0f6f24 656
8f4d37ec
PZ
657#ifdef CONFIG_SCHED_HRTICK
658 /*
659 * queued ticks are scheduled to match the slice, so don't bother
660 * validating it and just reschedule.
661 */
662 if (queued)
663 return resched_task(rq_of(cfs_rq)->curr);
664 /*
665 * don't let the period tick interfere with the hrtick preemption
666 */
667 if (!sched_feat(DOUBLE_TICK) &&
668 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
669 return;
670#endif
671
ce6c1311 672 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 673 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
674}
675
676/**************************************************
677 * CFS operations on tasks:
678 */
679
680#ifdef CONFIG_FAIR_GROUP_SCHED
681
682/* Walk up scheduling entities hierarchy */
683#define for_each_sched_entity(se) \
684 for (; se; se = se->parent)
685
686static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
687{
688 return p->se.cfs_rq;
689}
690
691/* runqueue on which this entity is (to be) queued */
692static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
693{
694 return se->cfs_rq;
695}
696
697/* runqueue "owned" by this group */
698static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
699{
700 return grp->my_q;
701}
702
703/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
704 * another cpu ('this_cpu')
705 */
706static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
707{
29f59db3 708 return cfs_rq->tg->cfs_rq[this_cpu];
bf0f6f24
IM
709}
710
711/* Iterate thr' all leaf cfs_rq's on a runqueue */
712#define for_each_leaf_cfs_rq(rq, cfs_rq) \
ec2c507f 713 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
bf0f6f24 714
fad095a7
SV
715/* Do the two (enqueued) entities belong to the same group ? */
716static inline int
717is_same_group(struct sched_entity *se, struct sched_entity *pse)
bf0f6f24 718{
fad095a7 719 if (se->cfs_rq == pse->cfs_rq)
bf0f6f24
IM
720 return 1;
721
722 return 0;
723}
724
fad095a7
SV
725static inline struct sched_entity *parent_entity(struct sched_entity *se)
726{
727 return se->parent;
728}
729
bf0f6f24
IM
730#else /* CONFIG_FAIR_GROUP_SCHED */
731
732#define for_each_sched_entity(se) \
733 for (; se; se = NULL)
734
735static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
736{
737 return &task_rq(p)->cfs;
738}
739
740static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
741{
742 struct task_struct *p = task_of(se);
743 struct rq *rq = task_rq(p);
744
745 return &rq->cfs;
746}
747
748/* runqueue "owned" by this group */
749static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
750{
751 return NULL;
752}
753
754static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
755{
756 return &cpu_rq(this_cpu)->cfs;
757}
758
759#define for_each_leaf_cfs_rq(rq, cfs_rq) \
760 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
761
fad095a7
SV
762static inline int
763is_same_group(struct sched_entity *se, struct sched_entity *pse)
bf0f6f24
IM
764{
765 return 1;
766}
767
fad095a7
SV
768static inline struct sched_entity *parent_entity(struct sched_entity *se)
769{
770 return NULL;
771}
772
bf0f6f24
IM
773#endif /* CONFIG_FAIR_GROUP_SCHED */
774
8f4d37ec
PZ
775#ifdef CONFIG_SCHED_HRTICK
776static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
777{
778 int requeue = rq->curr == p;
779 struct sched_entity *se = &p->se;
780 struct cfs_rq *cfs_rq = cfs_rq_of(se);
781
782 WARN_ON(task_rq(p) != rq);
783
784 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
785 u64 slice = sched_slice(cfs_rq, se);
786 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
787 s64 delta = slice - ran;
788
789 if (delta < 0) {
790 if (rq->curr == p)
791 resched_task(p);
792 return;
793 }
794
795 /*
796 * Don't schedule slices shorter than 10000ns, that just
797 * doesn't make sense. Rely on vruntime for fairness.
798 */
799 if (!requeue)
800 delta = max(10000LL, delta);
801
802 hrtick_start(rq, delta, requeue);
803 }
804}
805#else
806static inline void
807hrtick_start_fair(struct rq *rq, struct task_struct *p)
808{
809}
810#endif
811
bf0f6f24
IM
812/*
813 * The enqueue_task method is called before nr_running is
814 * increased. Here we update the fair scheduling stats and
815 * then put the task into the rbtree:
816 */
fd390f6a 817static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
818{
819 struct cfs_rq *cfs_rq;
62fb1851 820 struct sched_entity *se = &p->se;
bf0f6f24
IM
821
822 for_each_sched_entity(se) {
62fb1851 823 if (se->on_rq)
bf0f6f24
IM
824 break;
825 cfs_rq = cfs_rq_of(se);
83b699ed 826 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 827 wakeup = 1;
bf0f6f24 828 }
8f4d37ec
PZ
829
830 hrtick_start_fair(rq, rq->curr);
bf0f6f24
IM
831}
832
833/*
834 * The dequeue_task method is called before nr_running is
835 * decreased. We remove the task from the rbtree and
836 * update the fair scheduling stats:
837 */
f02231e5 838static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
839{
840 struct cfs_rq *cfs_rq;
62fb1851 841 struct sched_entity *se = &p->se;
bf0f6f24
IM
842
843 for_each_sched_entity(se) {
844 cfs_rq = cfs_rq_of(se);
525c2716 845 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 846 /* Don't dequeue parent if it has other entities besides us */
62fb1851 847 if (cfs_rq->load.weight)
bf0f6f24 848 break;
b9fa3df3 849 sleep = 1;
bf0f6f24 850 }
8f4d37ec
PZ
851
852 hrtick_start_fair(rq, rq->curr);
bf0f6f24
IM
853}
854
855/*
1799e35d
IM
856 * sched_yield() support is very simple - we dequeue and enqueue.
857 *
858 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 859 */
4530d7ab 860static void yield_task_fair(struct rq *rq)
bf0f6f24 861{
db292ca3
IM
862 struct task_struct *curr = rq->curr;
863 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
864 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
865
866 /*
1799e35d
IM
867 * Are we the only task in the tree?
868 */
869 if (unlikely(cfs_rq->nr_running == 1))
870 return;
871
db292ca3 872 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1799e35d
IM
873 __update_rq_clock(rq);
874 /*
a2a2d680 875 * Update run-time statistics of the 'current'.
1799e35d 876 */
2b1e315d 877 update_curr(cfs_rq);
1799e35d
IM
878
879 return;
880 }
881 /*
882 * Find the rightmost entry in the rbtree:
bf0f6f24 883 */
2b1e315d 884 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
885 /*
886 * Already in the rightmost position?
887 */
2b1e315d 888 if (unlikely(rightmost->vruntime < se->vruntime))
1799e35d
IM
889 return;
890
891 /*
892 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
893 * Upon rescheduling, sched_class::put_prev_task() will place
894 * 'current' within the tree based on its new key value.
1799e35d 895 */
30cfdcfc 896 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
897}
898
e7693a36
GH
899/*
900 * wake_idle() will wake a task on an idle cpu if task->cpu is
901 * not idle and an idle cpu is available. The span of cpus to
902 * search starts with cpus closest then further out as needed,
903 * so we always favor a closer, idle cpu.
904 *
905 * Returns the CPU we should wake onto.
906 */
907#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
908static int wake_idle(int cpu, struct task_struct *p)
909{
910 cpumask_t tmp;
911 struct sched_domain *sd;
912 int i;
913
914 /*
915 * If it is idle, then it is the best cpu to run this task.
916 *
917 * This cpu is also the best, if it has more than one task already.
918 * Siblings must be also busy(in most cases) as they didn't already
919 * pickup the extra load from this cpu and hence we need not check
920 * sibling runqueue info. This will avoid the checks and cache miss
921 * penalities associated with that.
922 */
923 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
924 return cpu;
925
926 for_each_domain(cpu, sd) {
927 if (sd->flags & SD_WAKE_IDLE) {
928 cpus_and(tmp, sd->span, p->cpus_allowed);
929 for_each_cpu_mask(i, tmp) {
930 if (idle_cpu(i)) {
931 if (i != task_cpu(p)) {
932 schedstat_inc(p,
933 se.nr_wakeups_idle);
934 }
935 return i;
936 }
937 }
938 } else {
939 break;
940 }
941 }
942 return cpu;
943}
944#else
945static inline int wake_idle(int cpu, struct task_struct *p)
946{
947 return cpu;
948}
949#endif
950
951#ifdef CONFIG_SMP
952static int select_task_rq_fair(struct task_struct *p, int sync)
953{
954 int cpu, this_cpu;
955 struct rq *rq;
956 struct sched_domain *sd, *this_sd = NULL;
957 int new_cpu;
958
959 cpu = task_cpu(p);
960 rq = task_rq(p);
961 this_cpu = smp_processor_id();
962 new_cpu = cpu;
963
9ec3b77e
DA
964 if (cpu == this_cpu)
965 goto out_set_cpu;
966
e7693a36
GH
967 for_each_domain(this_cpu, sd) {
968 if (cpu_isset(cpu, sd->span)) {
969 this_sd = sd;
970 break;
971 }
972 }
973
974 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
975 goto out_set_cpu;
976
977 /*
978 * Check for affine wakeup and passive balancing possibilities.
979 */
980 if (this_sd) {
981 int idx = this_sd->wake_idx;
982 unsigned int imbalance;
983 unsigned long load, this_load;
984
985 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
986
987 load = source_load(cpu, idx);
988 this_load = target_load(this_cpu, idx);
989
990 new_cpu = this_cpu; /* Wake to this CPU if we can */
991
992 if (this_sd->flags & SD_WAKE_AFFINE) {
993 unsigned long tl = this_load;
994 unsigned long tl_per_task;
995
996 /*
997 * Attract cache-cold tasks on sync wakeups:
998 */
999 if (sync && !task_hot(p, rq->clock, this_sd))
1000 goto out_set_cpu;
1001
1002 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1003 tl_per_task = cpu_avg_load_per_task(this_cpu);
1004
1005 /*
1006 * If sync wakeup then subtract the (maximum possible)
1007 * effect of the currently running task from the load
1008 * of the current CPU:
1009 */
1010 if (sync)
1011 tl -= current->se.load.weight;
1012
1013 if ((tl <= load &&
1014 tl + target_load(cpu, idx) <= tl_per_task) ||
1015 100*(tl + p->se.load.weight) <= imbalance*load) {
1016 /*
1017 * This domain has SD_WAKE_AFFINE and
1018 * p is cache cold in this domain, and
1019 * there is no bad imbalance.
1020 */
1021 schedstat_inc(this_sd, ttwu_move_affine);
1022 schedstat_inc(p, se.nr_wakeups_affine);
1023 goto out_set_cpu;
1024 }
1025 }
1026
1027 /*
1028 * Start passive balancing when half the imbalance_pct
1029 * limit is reached.
1030 */
1031 if (this_sd->flags & SD_WAKE_BALANCE) {
1032 if (imbalance*this_load <= 100*load) {
1033 schedstat_inc(this_sd, ttwu_move_balance);
1034 schedstat_inc(p, se.nr_wakeups_passive);
1035 goto out_set_cpu;
1036 }
1037 }
1038 }
1039
1040 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1041out_set_cpu:
1042 return wake_idle(new_cpu, p);
1043}
1044#endif /* CONFIG_SMP */
1045
1046
bf0f6f24
IM
1047/*
1048 * Preempt the current task with a newly woken task if needed:
1049 */
2e09bf55 1050static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1051{
1052 struct task_struct *curr = rq->curr;
fad095a7 1053 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8651a86c 1054 struct sched_entity *se = &curr->se, *pse = &p->se;
502d26b5 1055 unsigned long gran;
bf0f6f24
IM
1056
1057 if (unlikely(rt_prio(p->prio))) {
a8e504d2 1058 update_rq_clock(rq);
b7cc0896 1059 update_curr(cfs_rq);
bf0f6f24
IM
1060 resched_task(curr);
1061 return;
1062 }
91c234b4
IM
1063 /*
1064 * Batch tasks do not preempt (their preemption is driven by
1065 * the tick):
1066 */
1067 if (unlikely(p->policy == SCHED_BATCH))
1068 return;
bf0f6f24 1069
77d9cc44
IM
1070 if (!sched_feat(WAKEUP_PREEMPT))
1071 return;
8651a86c 1072
77d9cc44
IM
1073 while (!is_same_group(se, pse)) {
1074 se = parent_entity(se);
1075 pse = parent_entity(pse);
ce6c1311 1076 }
77d9cc44 1077
77d9cc44 1078 gran = sysctl_sched_wakeup_granularity;
ef9884e6
PZ
1079 /*
1080 * More easily preempt - nice tasks, while not making
1081 * it harder for + nice tasks.
1082 */
1083 if (unlikely(se->load.weight > NICE_0_LOAD))
77d9cc44
IM
1084 gran = calc_delta_fair(gran, &se->load);
1085
502d26b5 1086 if (pse->vruntime + gran < se->vruntime)
77d9cc44 1087 resched_task(curr);
bf0f6f24
IM
1088}
1089
fb8d4724 1090static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1091{
8f4d37ec 1092 struct task_struct *p;
bf0f6f24
IM
1093 struct cfs_rq *cfs_rq = &rq->cfs;
1094 struct sched_entity *se;
1095
1096 if (unlikely(!cfs_rq->nr_running))
1097 return NULL;
1098
1099 do {
9948f4b2 1100 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
1101 cfs_rq = group_cfs_rq(se);
1102 } while (cfs_rq);
1103
8f4d37ec
PZ
1104 p = task_of(se);
1105 hrtick_start_fair(rq, p);
1106
1107 return p;
bf0f6f24
IM
1108}
1109
1110/*
1111 * Account for a descheduled task:
1112 */
31ee529c 1113static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1114{
1115 struct sched_entity *se = &prev->se;
1116 struct cfs_rq *cfs_rq;
1117
1118 for_each_sched_entity(se) {
1119 cfs_rq = cfs_rq_of(se);
ab6cde26 1120 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1121 }
1122}
1123
681f3e68 1124#ifdef CONFIG_SMP
bf0f6f24
IM
1125/**************************************************
1126 * Fair scheduling class load-balancing methods:
1127 */
1128
1129/*
1130 * Load-balancing iterator. Note: while the runqueue stays locked
1131 * during the whole iteration, the current task might be
1132 * dequeued so the iterator has to be dequeue-safe. Here we
1133 * achieve that by always pre-iterating before returning
1134 * the current task:
1135 */
a9957449 1136static struct task_struct *
bf0f6f24
IM
1137__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
1138{
1139 struct task_struct *p;
1140
1141 if (!curr)
1142 return NULL;
1143
1144 p = rb_entry(curr, struct task_struct, se.run_node);
1145 cfs_rq->rb_load_balance_curr = rb_next(curr);
1146
1147 return p;
1148}
1149
1150static struct task_struct *load_balance_start_fair(void *arg)
1151{
1152 struct cfs_rq *cfs_rq = arg;
1153
1154 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
1155}
1156
1157static struct task_struct *load_balance_next_fair(void *arg)
1158{
1159 struct cfs_rq *cfs_rq = arg;
1160
1161 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
1162}
1163
62fb1851
PZ
1164#ifdef CONFIG_FAIR_GROUP_SCHED
1165static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
1166{
1167 struct sched_entity *curr;
1168 struct task_struct *p;
1169
1170 if (!cfs_rq->nr_running || !first_fair(cfs_rq))
1171 return MAX_PRIO;
1172
1173 curr = cfs_rq->curr;
1174 if (!curr)
1175 curr = __pick_next_entity(cfs_rq);
1176
1177 p = task_of(curr);
1178
1179 return p->prio;
1180}
1181#endif
1182
43010659 1183static unsigned long
bf0f6f24 1184load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 1185 unsigned long max_load_move,
a4ac01c3
PW
1186 struct sched_domain *sd, enum cpu_idle_type idle,
1187 int *all_pinned, int *this_best_prio)
bf0f6f24
IM
1188{
1189 struct cfs_rq *busy_cfs_rq;
bf0f6f24
IM
1190 long rem_load_move = max_load_move;
1191 struct rq_iterator cfs_rq_iterator;
1192
1193 cfs_rq_iterator.start = load_balance_start_fair;
1194 cfs_rq_iterator.next = load_balance_next_fair;
1195
1196 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
a4ac01c3 1197#ifdef CONFIG_FAIR_GROUP_SCHED
62fb1851
PZ
1198 struct cfs_rq *this_cfs_rq;
1199 long imbalance;
1200 unsigned long maxload;
bf0f6f24 1201
62fb1851 1202 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
6b2d7700 1203
62fb1851
PZ
1204 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
1205 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
1206 if (imbalance <= 0)
bf0f6f24
IM
1207 continue;
1208
62fb1851
PZ
1209 /* Don't pull more than imbalance/2 */
1210 imbalance /= 2;
1211 maxload = min(rem_load_move, imbalance);
bf0f6f24 1212
62fb1851 1213 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
a4ac01c3 1214#else
e56f31aa 1215# define maxload rem_load_move
a4ac01c3 1216#endif
e1d1484f
PW
1217 /*
1218 * pass busy_cfs_rq argument into
bf0f6f24
IM
1219 * load_balance_[start|next]_fair iterators
1220 */
1221 cfs_rq_iterator.arg = busy_cfs_rq;
62fb1851 1222 rem_load_move -= balance_tasks(this_rq, this_cpu, busiest,
e1d1484f
PW
1223 maxload, sd, idle, all_pinned,
1224 this_best_prio,
1225 &cfs_rq_iterator);
bf0f6f24 1226
e1d1484f 1227 if (rem_load_move <= 0)
bf0f6f24
IM
1228 break;
1229 }
1230
43010659 1231 return max_load_move - rem_load_move;
bf0f6f24
IM
1232}
1233
e1d1484f
PW
1234static int
1235move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1236 struct sched_domain *sd, enum cpu_idle_type idle)
1237{
1238 struct cfs_rq *busy_cfs_rq;
1239 struct rq_iterator cfs_rq_iterator;
1240
1241 cfs_rq_iterator.start = load_balance_start_fair;
1242 cfs_rq_iterator.next = load_balance_next_fair;
1243
1244 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1245 /*
1246 * pass busy_cfs_rq argument into
1247 * load_balance_[start|next]_fair iterators
1248 */
1249 cfs_rq_iterator.arg = busy_cfs_rq;
1250 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1251 &cfs_rq_iterator))
1252 return 1;
1253 }
1254
1255 return 0;
1256}
681f3e68 1257#endif
e1d1484f 1258
bf0f6f24
IM
1259/*
1260 * scheduler tick hitting a task of our scheduling class:
1261 */
8f4d37ec 1262static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
1263{
1264 struct cfs_rq *cfs_rq;
1265 struct sched_entity *se = &curr->se;
1266
1267 for_each_sched_entity(se) {
1268 cfs_rq = cfs_rq_of(se);
8f4d37ec 1269 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
1270 }
1271}
1272
8eb172d9 1273#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
4d78e7b6 1274
bf0f6f24
IM
1275/*
1276 * Share the fairness runtime between parent and child, thus the
1277 * total amount of pressure for CPU stays equal - new tasks
1278 * get a chance to run but frequent forkers are not allowed to
1279 * monopolize the CPU. Note: the parent runqueue is locked,
1280 * the child is not running yet.
1281 */
ee0827d8 1282static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1283{
1284 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1285 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1286 int this_cpu = smp_processor_id();
bf0f6f24
IM
1287
1288 sched_info_queued(p);
1289
7109c442 1290 update_curr(cfs_rq);
aeb73b04 1291 place_entity(cfs_rq, se, 1);
4d78e7b6 1292
3c90e6e9 1293 /* 'curr' will be NULL if the child belongs to a different group */
00bf7bfc 1294 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
3c90e6e9 1295 curr && curr->vruntime < se->vruntime) {
87fefa38 1296 /*
edcb60a3
IM
1297 * Upon rescheduling, sched_class::put_prev_task() will place
1298 * 'current' within the tree based on its new key value.
1299 */
4d78e7b6 1300 swap(curr->vruntime, se->vruntime);
4d78e7b6 1301 }
bf0f6f24 1302
b9dca1e0 1303 enqueue_task_fair(rq, p, 0);
bb61c210 1304 resched_task(rq->curr);
bf0f6f24
IM
1305}
1306
cb469845
SR
1307/*
1308 * Priority of the task has changed. Check to see if we preempt
1309 * the current task.
1310 */
1311static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1312 int oldprio, int running)
1313{
1314 /*
1315 * Reschedule if we are currently running on this runqueue and
1316 * our priority decreased, or if we are not currently running on
1317 * this runqueue and our priority is higher than the current's
1318 */
1319 if (running) {
1320 if (p->prio > oldprio)
1321 resched_task(rq->curr);
1322 } else
1323 check_preempt_curr(rq, p);
1324}
1325
1326/*
1327 * We switched to the sched_fair class.
1328 */
1329static void switched_to_fair(struct rq *rq, struct task_struct *p,
1330 int running)
1331{
1332 /*
1333 * We were most likely switched from sched_rt, so
1334 * kick off the schedule if running, otherwise just see
1335 * if we can still preempt the current task.
1336 */
1337 if (running)
1338 resched_task(rq->curr);
1339 else
1340 check_preempt_curr(rq, p);
1341}
1342
83b699ed
SV
1343/* Account for a task changing its policy or group.
1344 *
1345 * This routine is mostly called to set cfs_rq->curr field when a task
1346 * migrates between groups/classes.
1347 */
1348static void set_curr_task_fair(struct rq *rq)
1349{
1350 struct sched_entity *se = &rq->curr->se;
1351
1352 for_each_sched_entity(se)
1353 set_next_entity(cfs_rq_of(se), se);
1354}
1355
810b3817
PZ
1356#ifdef CONFIG_FAIR_GROUP_SCHED
1357static void moved_group_fair(struct task_struct *p)
1358{
1359 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1360
1361 update_curr(cfs_rq);
1362 place_entity(cfs_rq, &p->se, 1);
1363}
1364#endif
1365
bf0f6f24
IM
1366/*
1367 * All the scheduling class methods:
1368 */
5522d5d5
IM
1369static const struct sched_class fair_sched_class = {
1370 .next = &idle_sched_class,
bf0f6f24
IM
1371 .enqueue_task = enqueue_task_fair,
1372 .dequeue_task = dequeue_task_fair,
1373 .yield_task = yield_task_fair,
e7693a36
GH
1374#ifdef CONFIG_SMP
1375 .select_task_rq = select_task_rq_fair,
1376#endif /* CONFIG_SMP */
bf0f6f24 1377
2e09bf55 1378 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1379
1380 .pick_next_task = pick_next_task_fair,
1381 .put_prev_task = put_prev_task_fair,
1382
681f3e68 1383#ifdef CONFIG_SMP
bf0f6f24 1384 .load_balance = load_balance_fair,
e1d1484f 1385 .move_one_task = move_one_task_fair,
681f3e68 1386#endif
bf0f6f24 1387
83b699ed 1388 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1389 .task_tick = task_tick_fair,
1390 .task_new = task_new_fair,
cb469845
SR
1391
1392 .prio_changed = prio_changed_fair,
1393 .switched_to = switched_to_fair,
810b3817
PZ
1394
1395#ifdef CONFIG_FAIR_GROUP_SCHED
1396 .moved_group = moved_group_fair,
1397#endif
bf0f6f24
IM
1398};
1399
1400#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1401static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1402{
bf0f6f24
IM
1403 struct cfs_rq *cfs_rq;
1404
75c28ace
SV
1405#ifdef CONFIG_FAIR_GROUP_SCHED
1406 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1407#endif
5973e5b9 1408 rcu_read_lock();
c3b64f1e 1409 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1410 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 1411 rcu_read_unlock();
bf0f6f24
IM
1412}
1413#endif