]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/cpuset.c
cpusets: restructure the function cpuset_update_task_memory_state()
[net-next-2.6.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
1da177e4
LT
40#include <linux/module.h>
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
58#include <asm/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca
CW
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
1da177e4 62
f90d4118
MX
63/*
64 * Workqueue for cpuset related tasks.
65 *
66 * Using kevent workqueue may cause deadlock when memory_migrate
67 * is set. So we create a separate workqueue thread for cpuset.
68 */
69static struct workqueue_struct *cpuset_wq;
70
202f72d5
PJ
71/*
72 * Tracks how many cpusets are currently defined in system.
73 * When there is only one cpuset (the root cpuset) we can
74 * short circuit some hooks.
75 */
7edc5962 76int number_of_cpusets __read_mostly;
202f72d5 77
2df167a3 78/* Forward declare cgroup structures */
8793d854
PM
79struct cgroup_subsys cpuset_subsys;
80struct cpuset;
81
3e0d98b9
PJ
82/* See "Frequency meter" comments, below. */
83
84struct fmeter {
85 int cnt; /* unprocessed events count */
86 int val; /* most recent output value */
87 time_t time; /* clock (secs) when val computed */
88 spinlock_t lock; /* guards read or write of above */
89};
90
1da177e4 91struct cpuset {
8793d854
PM
92 struct cgroup_subsys_state css;
93
1da177e4 94 unsigned long flags; /* "unsigned long" so bitops work */
300ed6cb 95 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
1da177e4
LT
96 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
97
1da177e4 98 struct cpuset *parent; /* my parent */
1da177e4
LT
99
100 /*
101 * Copy of global cpuset_mems_generation as of the most
102 * recent time this cpuset changed its mems_allowed.
103 */
3e0d98b9
PJ
104 int mems_generation;
105
106 struct fmeter fmeter; /* memory_pressure filter */
029190c5
PJ
107
108 /* partition number for rebuild_sched_domains() */
109 int pn;
956db3ca 110
1d3504fc
HS
111 /* for custom sched domain */
112 int relax_domain_level;
113
956db3ca
CW
114 /* used for walking a cpuset heirarchy */
115 struct list_head stack_list;
1da177e4
LT
116};
117
8793d854
PM
118/* Retrieve the cpuset for a cgroup */
119static inline struct cpuset *cgroup_cs(struct cgroup *cont)
120{
121 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
122 struct cpuset, css);
123}
124
125/* Retrieve the cpuset for a task */
126static inline struct cpuset *task_cs(struct task_struct *task)
127{
128 return container_of(task_subsys_state(task, cpuset_subsys_id),
129 struct cpuset, css);
130}
8793d854 131
1da177e4
LT
132/* bits in struct cpuset flags field */
133typedef enum {
134 CS_CPU_EXCLUSIVE,
135 CS_MEM_EXCLUSIVE,
78608366 136 CS_MEM_HARDWALL,
45b07ef3 137 CS_MEMORY_MIGRATE,
029190c5 138 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
139 CS_SPREAD_PAGE,
140 CS_SPREAD_SLAB,
1da177e4
LT
141} cpuset_flagbits_t;
142
143/* convenient tests for these bits */
144static inline int is_cpu_exclusive(const struct cpuset *cs)
145{
7b5b9ef0 146 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
147}
148
149static inline int is_mem_exclusive(const struct cpuset *cs)
150{
7b5b9ef0 151 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
152}
153
78608366
PM
154static inline int is_mem_hardwall(const struct cpuset *cs)
155{
156 return test_bit(CS_MEM_HARDWALL, &cs->flags);
157}
158
029190c5
PJ
159static inline int is_sched_load_balance(const struct cpuset *cs)
160{
161 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
162}
163
45b07ef3
PJ
164static inline int is_memory_migrate(const struct cpuset *cs)
165{
7b5b9ef0 166 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
167}
168
825a46af
PJ
169static inline int is_spread_page(const struct cpuset *cs)
170{
171 return test_bit(CS_SPREAD_PAGE, &cs->flags);
172}
173
174static inline int is_spread_slab(const struct cpuset *cs)
175{
176 return test_bit(CS_SPREAD_SLAB, &cs->flags);
177}
178
1da177e4 179/*
151a4420 180 * Increment this integer everytime any cpuset changes its
1da177e4
LT
181 * mems_allowed value. Users of cpusets can track this generation
182 * number, and avoid having to lock and reload mems_allowed unless
183 * the cpuset they're using changes generation.
184 *
2df167a3 185 * A single, global generation is needed because cpuset_attach_task() could
1da177e4
LT
186 * reattach a task to a different cpuset, which must not have its
187 * generation numbers aliased with those of that tasks previous cpuset.
188 *
189 * Generations are needed for mems_allowed because one task cannot
2df167a3 190 * modify another's memory placement. So we must enable every task,
1da177e4
LT
191 * on every visit to __alloc_pages(), to efficiently check whether
192 * its current->cpuset->mems_allowed has changed, requiring an update
193 * of its current->mems_allowed.
151a4420 194 *
2df167a3 195 * Since writes to cpuset_mems_generation are guarded by the cgroup lock
151a4420 196 * there is no need to mark it atomic.
1da177e4 197 */
151a4420 198static int cpuset_mems_generation;
1da177e4
LT
199
200static struct cpuset top_cpuset = {
201 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
202};
203
1da177e4 204/*
2df167a3
PM
205 * There are two global mutexes guarding cpuset structures. The first
206 * is the main control groups cgroup_mutex, accessed via
207 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
208 * callback_mutex, below. They can nest. It is ok to first take
209 * cgroup_mutex, then nest callback_mutex. We also require taking
210 * task_lock() when dereferencing a task's cpuset pointer. See "The
211 * task_lock() exception", at the end of this comment.
053199ed 212 *
3d3f26a7 213 * A task must hold both mutexes to modify cpusets. If a task
2df167a3 214 * holds cgroup_mutex, then it blocks others wanting that mutex,
3d3f26a7 215 * ensuring that it is the only task able to also acquire callback_mutex
053199ed
PJ
216 * and be able to modify cpusets. It can perform various checks on
217 * the cpuset structure first, knowing nothing will change. It can
2df167a3 218 * also allocate memory while just holding cgroup_mutex. While it is
053199ed 219 * performing these checks, various callback routines can briefly
3d3f26a7
IM
220 * acquire callback_mutex to query cpusets. Once it is ready to make
221 * the changes, it takes callback_mutex, blocking everyone else.
053199ed
PJ
222 *
223 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 224 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
225 * from one of the callbacks into the cpuset code from within
226 * __alloc_pages().
227 *
3d3f26a7 228 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
229 * access to cpusets.
230 *
231 * The task_struct fields mems_allowed and mems_generation may only
232 * be accessed in the context of that task, so require no locks.
233 *
3d3f26a7 234 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
235 * small pieces of code, such as when reading out possibly multi-word
236 * cpumasks and nodemasks.
237 *
2df167a3
PM
238 * Accessing a task's cpuset should be done in accordance with the
239 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
240 */
241
3d3f26a7 242static DEFINE_MUTEX(callback_mutex);
4247bdc6 243
75aa1994
DR
244/*
245 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
246 * buffers. They are statically allocated to prevent using excess stack
247 * when calling cpuset_print_task_mems_allowed().
248 */
249#define CPUSET_NAME_LEN (128)
250#define CPUSET_NODELIST_LEN (256)
251static char cpuset_name[CPUSET_NAME_LEN];
252static char cpuset_nodelist[CPUSET_NODELIST_LEN];
253static DEFINE_SPINLOCK(cpuset_buffer_lock);
254
cf417141
MK
255/*
256 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 257 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
258 * silently switch it to mount "cgroup" instead
259 */
454e2398
DH
260static int cpuset_get_sb(struct file_system_type *fs_type,
261 int flags, const char *unused_dev_name,
262 void *data, struct vfsmount *mnt)
1da177e4 263{
8793d854
PM
264 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
265 int ret = -ENODEV;
266 if (cgroup_fs) {
267 char mountopts[] =
268 "cpuset,noprefix,"
269 "release_agent=/sbin/cpuset_release_agent";
270 ret = cgroup_fs->get_sb(cgroup_fs, flags,
271 unused_dev_name, mountopts, mnt);
272 put_filesystem(cgroup_fs);
273 }
274 return ret;
1da177e4
LT
275}
276
277static struct file_system_type cpuset_fs_type = {
278 .name = "cpuset",
279 .get_sb = cpuset_get_sb,
1da177e4
LT
280};
281
1da177e4 282/*
300ed6cb 283 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4
LT
284 * are online. If none are online, walk up the cpuset hierarchy
285 * until we find one that does have some online cpus. If we get
286 * all the way to the top and still haven't found any online cpus,
287 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
288 * task, return cpu_online_map.
289 *
290 * One way or another, we guarantee to return some non-empty subset
291 * of cpu_online_map.
292 *
3d3f26a7 293 * Call with callback_mutex held.
1da177e4
LT
294 */
295
6af866af
LZ
296static void guarantee_online_cpus(const struct cpuset *cs,
297 struct cpumask *pmask)
1da177e4 298{
300ed6cb 299 while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
1da177e4
LT
300 cs = cs->parent;
301 if (cs)
300ed6cb 302 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
1da177e4 303 else
300ed6cb
LZ
304 cpumask_copy(pmask, cpu_online_mask);
305 BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
1da177e4
LT
306}
307
308/*
309 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
310 * are online, with memory. If none are online with memory, walk
311 * up the cpuset hierarchy until we find one that does have some
312 * online mems. If we get all the way to the top and still haven't
313 * found any online mems, return node_states[N_HIGH_MEMORY].
1da177e4
LT
314 *
315 * One way or another, we guarantee to return some non-empty subset
0e1e7c7a 316 * of node_states[N_HIGH_MEMORY].
1da177e4 317 *
3d3f26a7 318 * Call with callback_mutex held.
1da177e4
LT
319 */
320
321static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
322{
0e1e7c7a
CL
323 while (cs && !nodes_intersects(cs->mems_allowed,
324 node_states[N_HIGH_MEMORY]))
1da177e4
LT
325 cs = cs->parent;
326 if (cs)
0e1e7c7a
CL
327 nodes_and(*pmask, cs->mems_allowed,
328 node_states[N_HIGH_MEMORY]);
1da177e4 329 else
0e1e7c7a
CL
330 *pmask = node_states[N_HIGH_MEMORY];
331 BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
1da177e4
LT
332}
333
f3b39d47
MX
334/*
335 * update task's spread flag if cpuset's page/slab spread flag is set
336 *
337 * Called with callback_mutex/cgroup_mutex held
338 */
339static void cpuset_update_task_spread_flag(struct cpuset *cs,
340 struct task_struct *tsk)
341{
342 if (is_spread_page(cs))
343 tsk->flags |= PF_SPREAD_PAGE;
344 else
345 tsk->flags &= ~PF_SPREAD_PAGE;
346 if (is_spread_slab(cs))
347 tsk->flags |= PF_SPREAD_SLAB;
348 else
349 tsk->flags &= ~PF_SPREAD_SLAB;
350}
351
cf2a473c
PJ
352/**
353 * cpuset_update_task_memory_state - update task memory placement
354 *
355 * If the current tasks cpusets mems_allowed changed behind our
356 * backs, update current->mems_allowed, mems_generation and task NUMA
357 * mempolicy to the new value.
053199ed 358 *
cf2a473c
PJ
359 * Task mempolicy is updated by rebinding it relative to the
360 * current->cpuset if a task has its memory placement changed.
361 * Do not call this routine if in_interrupt().
362 *
4a01c8d5 363 * Call without callback_mutex or task_lock() held. May be
2df167a3
PM
364 * called with or without cgroup_mutex held. Thanks in part to
365 * 'the_top_cpuset_hack', the task's cpuset pointer will never
41f7f60d
DR
366 * be NULL. This routine also might acquire callback_mutex during
367 * call.
053199ed 368 *
6b9c2603
PJ
369 * Reading current->cpuset->mems_generation doesn't need task_lock
370 * to guard the current->cpuset derefence, because it is guarded
2df167a3 371 * from concurrent freeing of current->cpuset using RCU.
6b9c2603
PJ
372 *
373 * The rcu_dereference() is technically probably not needed,
374 * as I don't actually mind if I see a new cpuset pointer but
375 * an old value of mems_generation. However this really only
376 * matters on alpha systems using cpusets heavily. If I dropped
377 * that rcu_dereference(), it would save them a memory barrier.
378 * For all other arch's, rcu_dereference is a no-op anyway, and for
379 * alpha systems not using cpusets, another planned optimization,
380 * avoiding the rcu critical section for tasks in the root cpuset
381 * which is statically allocated, so can't vanish, will make this
382 * irrelevant. Better to use RCU as intended, than to engage in
383 * some cute trick to save a memory barrier that is impossible to
384 * test, for alpha systems using cpusets heavily, which might not
385 * even exist.
053199ed
PJ
386 *
387 * This routine is needed to update the per-task mems_allowed data,
388 * within the tasks context, when it is trying to allocate memory
389 * (in various mm/mempolicy.c routines) and notices that some other
390 * task has been modifying its cpuset.
1da177e4
LT
391 */
392
fe85a998 393void cpuset_update_task_memory_state(void)
1da177e4 394{
053199ed 395 int my_cpusets_mem_gen;
cf2a473c 396 struct task_struct *tsk = current;
6b9c2603 397 struct cpuset *cs;
053199ed 398
13337714
LJ
399 rcu_read_lock();
400 my_cpusets_mem_gen = task_cs(tsk)->mems_generation;
401 rcu_read_unlock();
1da177e4 402
cf2a473c 403 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
3d3f26a7 404 mutex_lock(&callback_mutex);
cf2a473c 405 task_lock(tsk);
8793d854 406 cs = task_cs(tsk); /* Maybe changed when task not locked */
cf2a473c
PJ
407 guarantee_online_mems(cs, &tsk->mems_allowed);
408 tsk->cpuset_mems_generation = cs->mems_generation;
f3b39d47 409 cpuset_update_task_spread_flag(cs, tsk);
cf2a473c 410 task_unlock(tsk);
3d3f26a7 411 mutex_unlock(&callback_mutex);
74cb2155 412 mpol_rebind_task(tsk, &tsk->mems_allowed);
1da177e4
LT
413 }
414}
415
416/*
417 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
418 *
419 * One cpuset is a subset of another if all its allowed CPUs and
420 * Memory Nodes are a subset of the other, and its exclusive flags
2df167a3 421 * are only set if the other's are set. Call holding cgroup_mutex.
1da177e4
LT
422 */
423
424static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
425{
300ed6cb 426 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
427 nodes_subset(p->mems_allowed, q->mems_allowed) &&
428 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
429 is_mem_exclusive(p) <= is_mem_exclusive(q);
430}
431
645fcc9d
LZ
432/**
433 * alloc_trial_cpuset - allocate a trial cpuset
434 * @cs: the cpuset that the trial cpuset duplicates
435 */
436static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
437{
300ed6cb
LZ
438 struct cpuset *trial;
439
440 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
441 if (!trial)
442 return NULL;
443
444 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
445 kfree(trial);
446 return NULL;
447 }
448 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
449
450 return trial;
645fcc9d
LZ
451}
452
453/**
454 * free_trial_cpuset - free the trial cpuset
455 * @trial: the trial cpuset to be freed
456 */
457static void free_trial_cpuset(struct cpuset *trial)
458{
300ed6cb 459 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
460 kfree(trial);
461}
462
1da177e4
LT
463/*
464 * validate_change() - Used to validate that any proposed cpuset change
465 * follows the structural rules for cpusets.
466 *
467 * If we replaced the flag and mask values of the current cpuset
468 * (cur) with those values in the trial cpuset (trial), would
469 * our various subset and exclusive rules still be valid? Presumes
2df167a3 470 * cgroup_mutex held.
1da177e4
LT
471 *
472 * 'cur' is the address of an actual, in-use cpuset. Operations
473 * such as list traversal that depend on the actual address of the
474 * cpuset in the list must use cur below, not trial.
475 *
476 * 'trial' is the address of bulk structure copy of cur, with
477 * perhaps one or more of the fields cpus_allowed, mems_allowed,
478 * or flags changed to new, trial values.
479 *
480 * Return 0 if valid, -errno if not.
481 */
482
483static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
484{
8793d854 485 struct cgroup *cont;
1da177e4
LT
486 struct cpuset *c, *par;
487
488 /* Each of our child cpusets must be a subset of us */
8793d854
PM
489 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
490 if (!is_cpuset_subset(cgroup_cs(cont), trial))
1da177e4
LT
491 return -EBUSY;
492 }
493
494 /* Remaining checks don't apply to root cpuset */
69604067 495 if (cur == &top_cpuset)
1da177e4
LT
496 return 0;
497
69604067
PJ
498 par = cur->parent;
499
1da177e4
LT
500 /* We must be a subset of our parent cpuset */
501 if (!is_cpuset_subset(trial, par))
502 return -EACCES;
503
2df167a3
PM
504 /*
505 * If either I or some sibling (!= me) is exclusive, we can't
506 * overlap
507 */
8793d854
PM
508 list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
509 c = cgroup_cs(cont);
1da177e4
LT
510 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
511 c != cur &&
300ed6cb 512 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
1da177e4
LT
513 return -EINVAL;
514 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
515 c != cur &&
516 nodes_intersects(trial->mems_allowed, c->mems_allowed))
517 return -EINVAL;
518 }
519
020958b6
PJ
520 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
521 if (cgroup_task_count(cur->css.cgroup)) {
300ed6cb 522 if (cpumask_empty(trial->cpus_allowed) ||
020958b6
PJ
523 nodes_empty(trial->mems_allowed)) {
524 return -ENOSPC;
525 }
526 }
527
1da177e4
LT
528 return 0;
529}
530
db7f47cf 531#ifdef CONFIG_SMP
029190c5 532/*
cf417141 533 * Helper routine for generate_sched_domains().
029190c5
PJ
534 * Do cpusets a, b have overlapping cpus_allowed masks?
535 */
029190c5
PJ
536static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
537{
300ed6cb 538 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
029190c5
PJ
539}
540
1d3504fc
HS
541static void
542update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
543{
1d3504fc
HS
544 if (dattr->relax_domain_level < c->relax_domain_level)
545 dattr->relax_domain_level = c->relax_domain_level;
546 return;
547}
548
f5393693
LJ
549static void
550update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
551{
552 LIST_HEAD(q);
553
554 list_add(&c->stack_list, &q);
555 while (!list_empty(&q)) {
556 struct cpuset *cp;
557 struct cgroup *cont;
558 struct cpuset *child;
559
560 cp = list_first_entry(&q, struct cpuset, stack_list);
561 list_del(q.next);
562
300ed6cb 563 if (cpumask_empty(cp->cpus_allowed))
f5393693
LJ
564 continue;
565
566 if (is_sched_load_balance(cp))
567 update_domain_attr(dattr, cp);
568
569 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
570 child = cgroup_cs(cont);
571 list_add_tail(&child->stack_list, &q);
572 }
573 }
574}
575
029190c5 576/*
cf417141
MK
577 * generate_sched_domains()
578 *
579 * This function builds a partial partition of the systems CPUs
580 * A 'partial partition' is a set of non-overlapping subsets whose
581 * union is a subset of that set.
582 * The output of this function needs to be passed to kernel/sched.c
583 * partition_sched_domains() routine, which will rebuild the scheduler's
584 * load balancing domains (sched domains) as specified by that partial
585 * partition.
029190c5 586 *
45ce80fb 587 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
588 * for a background explanation of this.
589 *
590 * Does not return errors, on the theory that the callers of this
591 * routine would rather not worry about failures to rebuild sched
592 * domains when operating in the severe memory shortage situations
593 * that could cause allocation failures below.
594 *
cf417141 595 * Must be called with cgroup_lock held.
029190c5
PJ
596 *
597 * The three key local variables below are:
aeed6824 598 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
599 * top-down scan of all cpusets. This scan loads a pointer
600 * to each cpuset marked is_sched_load_balance into the
601 * array 'csa'. For our purposes, rebuilding the schedulers
602 * sched domains, we can ignore !is_sched_load_balance cpusets.
603 * csa - (for CpuSet Array) Array of pointers to all the cpusets
604 * that need to be load balanced, for convenient iterative
605 * access by the subsequent code that finds the best partition,
606 * i.e the set of domains (subsets) of CPUs such that the
607 * cpus_allowed of every cpuset marked is_sched_load_balance
608 * is a subset of one of these domains, while there are as
609 * many such domains as possible, each as small as possible.
610 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
611 * the kernel/sched.c routine partition_sched_domains() in a
612 * convenient format, that can be easily compared to the prior
613 * value to determine what partition elements (sched domains)
614 * were changed (added or removed.)
615 *
616 * Finding the best partition (set of domains):
617 * The triple nested loops below over i, j, k scan over the
618 * load balanced cpusets (using the array of cpuset pointers in
619 * csa[]) looking for pairs of cpusets that have overlapping
620 * cpus_allowed, but which don't have the same 'pn' partition
621 * number and gives them in the same partition number. It keeps
622 * looping on the 'restart' label until it can no longer find
623 * any such pairs.
624 *
625 * The union of the cpus_allowed masks from the set of
626 * all cpusets having the same 'pn' value then form the one
627 * element of the partition (one sched domain) to be passed to
628 * partition_sched_domains().
629 */
6af866af
LZ
630/* FIXME: see the FIXME in partition_sched_domains() */
631static int generate_sched_domains(struct cpumask **domains,
cf417141 632 struct sched_domain_attr **attributes)
029190c5 633{
cf417141 634 LIST_HEAD(q); /* queue of cpusets to be scanned */
029190c5
PJ
635 struct cpuset *cp; /* scans q */
636 struct cpuset **csa; /* array of all cpuset ptrs */
637 int csn; /* how many cpuset ptrs in csa so far */
638 int i, j, k; /* indices for partition finding loops */
6af866af 639 struct cpumask *doms; /* resulting partition; i.e. sched domains */
1d3504fc 640 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 641 int ndoms = 0; /* number of sched domains in result */
6af866af 642 int nslot; /* next empty doms[] struct cpumask slot */
029190c5 643
029190c5 644 doms = NULL;
1d3504fc 645 dattr = NULL;
cf417141 646 csa = NULL;
029190c5
PJ
647
648 /* Special case for the 99% of systems with one, full, sched domain */
649 if (is_sched_load_balance(&top_cpuset)) {
6af866af 650 doms = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 651 if (!doms)
cf417141
MK
652 goto done;
653
1d3504fc
HS
654 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
655 if (dattr) {
656 *dattr = SD_ATTR_INIT;
93a65575 657 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 658 }
300ed6cb 659 cpumask_copy(doms, top_cpuset.cpus_allowed);
cf417141
MK
660
661 ndoms = 1;
662 goto done;
029190c5
PJ
663 }
664
029190c5
PJ
665 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
666 if (!csa)
667 goto done;
668 csn = 0;
669
aeed6824
LZ
670 list_add(&top_cpuset.stack_list, &q);
671 while (!list_empty(&q)) {
029190c5
PJ
672 struct cgroup *cont;
673 struct cpuset *child; /* scans child cpusets of cp */
489a5393 674
aeed6824
LZ
675 cp = list_first_entry(&q, struct cpuset, stack_list);
676 list_del(q.next);
677
300ed6cb 678 if (cpumask_empty(cp->cpus_allowed))
489a5393
LJ
679 continue;
680
f5393693
LJ
681 /*
682 * All child cpusets contain a subset of the parent's cpus, so
683 * just skip them, and then we call update_domain_attr_tree()
684 * to calc relax_domain_level of the corresponding sched
685 * domain.
686 */
687 if (is_sched_load_balance(cp)) {
029190c5 688 csa[csn++] = cp;
f5393693
LJ
689 continue;
690 }
489a5393 691
029190c5
PJ
692 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
693 child = cgroup_cs(cont);
aeed6824 694 list_add_tail(&child->stack_list, &q);
029190c5
PJ
695 }
696 }
697
698 for (i = 0; i < csn; i++)
699 csa[i]->pn = i;
700 ndoms = csn;
701
702restart:
703 /* Find the best partition (set of sched domains) */
704 for (i = 0; i < csn; i++) {
705 struct cpuset *a = csa[i];
706 int apn = a->pn;
707
708 for (j = 0; j < csn; j++) {
709 struct cpuset *b = csa[j];
710 int bpn = b->pn;
711
712 if (apn != bpn && cpusets_overlap(a, b)) {
713 for (k = 0; k < csn; k++) {
714 struct cpuset *c = csa[k];
715
716 if (c->pn == bpn)
717 c->pn = apn;
718 }
719 ndoms--; /* one less element */
720 goto restart;
721 }
722 }
723 }
724
cf417141
MK
725 /*
726 * Now we know how many domains to create.
727 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
728 */
6af866af 729 doms = kmalloc(ndoms * cpumask_size(), GFP_KERNEL);
700018e0 730 if (!doms)
cf417141 731 goto done;
cf417141
MK
732
733 /*
734 * The rest of the code, including the scheduler, can deal with
735 * dattr==NULL case. No need to abort if alloc fails.
736 */
1d3504fc 737 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
738
739 for (nslot = 0, i = 0; i < csn; i++) {
740 struct cpuset *a = csa[i];
6af866af 741 struct cpumask *dp;
029190c5
PJ
742 int apn = a->pn;
743
cf417141
MK
744 if (apn < 0) {
745 /* Skip completed partitions */
746 continue;
747 }
748
749 dp = doms + nslot;
750
751 if (nslot == ndoms) {
752 static int warnings = 10;
753 if (warnings) {
754 printk(KERN_WARNING
755 "rebuild_sched_domains confused:"
756 " nslot %d, ndoms %d, csn %d, i %d,"
757 " apn %d\n",
758 nslot, ndoms, csn, i, apn);
759 warnings--;
029190c5 760 }
cf417141
MK
761 continue;
762 }
029190c5 763
6af866af 764 cpumask_clear(dp);
cf417141
MK
765 if (dattr)
766 *(dattr + nslot) = SD_ATTR_INIT;
767 for (j = i; j < csn; j++) {
768 struct cpuset *b = csa[j];
769
770 if (apn == b->pn) {
300ed6cb 771 cpumask_or(dp, dp, b->cpus_allowed);
cf417141
MK
772 if (dattr)
773 update_domain_attr_tree(dattr + nslot, b);
774
775 /* Done with this partition */
776 b->pn = -1;
029190c5 777 }
029190c5 778 }
cf417141 779 nslot++;
029190c5
PJ
780 }
781 BUG_ON(nslot != ndoms);
782
cf417141
MK
783done:
784 kfree(csa);
785
700018e0
LZ
786 /*
787 * Fallback to the default domain if kmalloc() failed.
788 * See comments in partition_sched_domains().
789 */
790 if (doms == NULL)
791 ndoms = 1;
792
cf417141
MK
793 *domains = doms;
794 *attributes = dattr;
795 return ndoms;
796}
797
798/*
799 * Rebuild scheduler domains.
800 *
801 * Call with neither cgroup_mutex held nor within get_online_cpus().
802 * Takes both cgroup_mutex and get_online_cpus().
803 *
804 * Cannot be directly called from cpuset code handling changes
805 * to the cpuset pseudo-filesystem, because it cannot be called
806 * from code that already holds cgroup_mutex.
807 */
808static void do_rebuild_sched_domains(struct work_struct *unused)
809{
810 struct sched_domain_attr *attr;
6af866af 811 struct cpumask *doms;
cf417141
MK
812 int ndoms;
813
86ef5c9a 814 get_online_cpus();
cf417141
MK
815
816 /* Generate domain masks and attrs */
817 cgroup_lock();
818 ndoms = generate_sched_domains(&doms, &attr);
819 cgroup_unlock();
820
821 /* Have scheduler rebuild the domains */
822 partition_sched_domains(ndoms, doms, attr);
823
86ef5c9a 824 put_online_cpus();
cf417141 825}
db7f47cf
PM
826#else /* !CONFIG_SMP */
827static void do_rebuild_sched_domains(struct work_struct *unused)
828{
829}
830
831static int generate_sched_domains(struct cpumask **domains,
832 struct sched_domain_attr **attributes)
833{
834 *domains = NULL;
835 return 1;
836}
837#endif /* CONFIG_SMP */
029190c5 838
cf417141
MK
839static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
840
841/*
842 * Rebuild scheduler domains, asynchronously via workqueue.
843 *
844 * If the flag 'sched_load_balance' of any cpuset with non-empty
845 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
846 * which has that flag enabled, or if any cpuset with a non-empty
847 * 'cpus' is removed, then call this routine to rebuild the
848 * scheduler's dynamic sched domains.
849 *
850 * The rebuild_sched_domains() and partition_sched_domains()
851 * routines must nest cgroup_lock() inside get_online_cpus(),
852 * but such cpuset changes as these must nest that locking the
853 * other way, holding cgroup_lock() for much of the code.
854 *
855 * So in order to avoid an ABBA deadlock, the cpuset code handling
856 * these user changes delegates the actual sched domain rebuilding
857 * to a separate workqueue thread, which ends up processing the
858 * above do_rebuild_sched_domains() function.
859 */
860static void async_rebuild_sched_domains(void)
861{
f90d4118 862 queue_work(cpuset_wq, &rebuild_sched_domains_work);
cf417141
MK
863}
864
865/*
866 * Accomplishes the same scheduler domain rebuild as the above
867 * async_rebuild_sched_domains(), however it directly calls the
868 * rebuild routine synchronously rather than calling it via an
869 * asynchronous work thread.
870 *
871 * This can only be called from code that is not holding
872 * cgroup_mutex (not nested in a cgroup_lock() call.)
873 */
874void rebuild_sched_domains(void)
875{
876 do_rebuild_sched_domains(NULL);
029190c5
PJ
877}
878
58f4790b
CW
879/**
880 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
881 * @tsk: task to test
882 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
883 *
2df167a3 884 * Call with cgroup_mutex held. May take callback_mutex during call.
58f4790b
CW
885 * Called for each task in a cgroup by cgroup_scan_tasks().
886 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
887 * words, if its mask is not equal to its cpuset's mask).
053199ed 888 */
9e0c914c
AB
889static int cpuset_test_cpumask(struct task_struct *tsk,
890 struct cgroup_scanner *scan)
58f4790b 891{
300ed6cb 892 return !cpumask_equal(&tsk->cpus_allowed,
58f4790b
CW
893 (cgroup_cs(scan->cg))->cpus_allowed);
894}
053199ed 895
58f4790b
CW
896/**
897 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
898 * @tsk: task to test
899 * @scan: struct cgroup_scanner containing the cgroup of the task
900 *
901 * Called by cgroup_scan_tasks() for each task in a cgroup whose
902 * cpus_allowed mask needs to be changed.
903 *
904 * We don't need to re-check for the cgroup/cpuset membership, since we're
905 * holding cgroup_lock() at this point.
906 */
9e0c914c
AB
907static void cpuset_change_cpumask(struct task_struct *tsk,
908 struct cgroup_scanner *scan)
58f4790b 909{
300ed6cb 910 set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
58f4790b
CW
911}
912
0b2f630a
MX
913/**
914 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
915 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
4e74339a 916 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a
MX
917 *
918 * Called with cgroup_mutex held
919 *
920 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
921 * calling callback functions for each.
922 *
4e74339a
LZ
923 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
924 * if @heap != NULL.
0b2f630a 925 */
4e74339a 926static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
0b2f630a
MX
927{
928 struct cgroup_scanner scan;
0b2f630a
MX
929
930 scan.cg = cs->css.cgroup;
931 scan.test_task = cpuset_test_cpumask;
932 scan.process_task = cpuset_change_cpumask;
4e74339a
LZ
933 scan.heap = heap;
934 cgroup_scan_tasks(&scan);
0b2f630a
MX
935}
936
58f4790b
CW
937/**
938 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
939 * @cs: the cpuset to consider
940 * @buf: buffer of cpu numbers written to this cpuset
941 */
645fcc9d
LZ
942static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
943 const char *buf)
1da177e4 944{
4e74339a 945 struct ptr_heap heap;
58f4790b
CW
946 int retval;
947 int is_load_balanced;
1da177e4 948
4c4d50f7
PJ
949 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
950 if (cs == &top_cpuset)
951 return -EACCES;
952
6f7f02e7 953 /*
c8d9c90c 954 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
955 * Since cpulist_parse() fails on an empty mask, we special case
956 * that parsing. The validate_change() call ensures that cpusets
957 * with tasks have cpus.
6f7f02e7 958 */
020958b6 959 if (!*buf) {
300ed6cb 960 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 961 } else {
300ed6cb 962 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
963 if (retval < 0)
964 return retval;
37340746 965
300ed6cb 966 if (!cpumask_subset(trialcs->cpus_allowed, cpu_online_mask))
37340746 967 return -EINVAL;
6f7f02e7 968 }
645fcc9d 969 retval = validate_change(cs, trialcs);
85d7b949
DG
970 if (retval < 0)
971 return retval;
029190c5 972
8707d8b8 973 /* Nothing to do if the cpus didn't change */
300ed6cb 974 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 975 return 0;
58f4790b 976
4e74339a
LZ
977 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
978 if (retval)
979 return retval;
980
645fcc9d 981 is_load_balanced = is_sched_load_balance(trialcs);
029190c5 982
3d3f26a7 983 mutex_lock(&callback_mutex);
300ed6cb 984 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
3d3f26a7 985 mutex_unlock(&callback_mutex);
029190c5 986
8707d8b8
PM
987 /*
988 * Scan tasks in the cpuset, and update the cpumasks of any
58f4790b 989 * that need an update.
8707d8b8 990 */
4e74339a
LZ
991 update_tasks_cpumask(cs, &heap);
992
993 heap_free(&heap);
58f4790b 994
8707d8b8 995 if (is_load_balanced)
cf417141 996 async_rebuild_sched_domains();
85d7b949 997 return 0;
1da177e4
LT
998}
999
e4e364e8
PJ
1000/*
1001 * cpuset_migrate_mm
1002 *
1003 * Migrate memory region from one set of nodes to another.
1004 *
1005 * Temporarilly set tasks mems_allowed to target nodes of migration,
1006 * so that the migration code can allocate pages on these nodes.
1007 *
2df167a3 1008 * Call holding cgroup_mutex, so current's cpuset won't change
c8d9c90c 1009 * during this call, as manage_mutex holds off any cpuset_attach()
e4e364e8
PJ
1010 * calls. Therefore we don't need to take task_lock around the
1011 * call to guarantee_online_mems(), as we know no one is changing
2df167a3 1012 * our task's cpuset.
e4e364e8
PJ
1013 *
1014 * Hold callback_mutex around the two modifications of our tasks
1015 * mems_allowed to synchronize with cpuset_mems_allowed().
1016 *
1017 * While the mm_struct we are migrating is typically from some
1018 * other task, the task_struct mems_allowed that we are hacking
1019 * is for our current task, which must allocate new pages for that
1020 * migrating memory region.
1021 *
1022 * We call cpuset_update_task_memory_state() before hacking
1023 * our tasks mems_allowed, so that we are assured of being in
1024 * sync with our tasks cpuset, and in particular, callbacks to
1025 * cpuset_update_task_memory_state() from nested page allocations
1026 * won't see any mismatch of our cpuset and task mems_generation
1027 * values, so won't overwrite our hacked tasks mems_allowed
1028 * nodemask.
1029 */
1030
1031static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1032 const nodemask_t *to)
1033{
1034 struct task_struct *tsk = current;
1035
1036 cpuset_update_task_memory_state();
1037
1038 mutex_lock(&callback_mutex);
1039 tsk->mems_allowed = *to;
1040 mutex_unlock(&callback_mutex);
1041
1042 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
1043
1044 mutex_lock(&callback_mutex);
8793d854 1045 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
e4e364e8
PJ
1046 mutex_unlock(&callback_mutex);
1047}
1048
3b6766fe
LZ
1049/*
1050 * Rebind task's vmas to cpuset's new mems_allowed, and migrate pages to new
1051 * nodes if memory_migrate flag is set. Called with cgroup_mutex held.
1052 */
1053static void cpuset_change_nodemask(struct task_struct *p,
1054 struct cgroup_scanner *scan)
1055{
1056 struct mm_struct *mm;
1057 struct cpuset *cs;
1058 int migrate;
1059 const nodemask_t *oldmem = scan->data;
1060
1061 mm = get_task_mm(p);
1062 if (!mm)
1063 return;
1064
1065 cs = cgroup_cs(scan->cg);
1066 migrate = is_memory_migrate(cs);
1067
1068 mpol_rebind_mm(mm, &cs->mems_allowed);
1069 if (migrate)
1070 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
1071 mmput(mm);
1072}
1073
8793d854
PM
1074static void *cpuset_being_rebound;
1075
0b2f630a
MX
1076/**
1077 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1078 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1079 * @oldmem: old mems_allowed of cpuset cs
010cfac4 1080 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a
MX
1081 *
1082 * Called with cgroup_mutex held
010cfac4
LZ
1083 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1084 * if @heap != NULL.
0b2f630a 1085 */
010cfac4
LZ
1086static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
1087 struct ptr_heap *heap)
1da177e4 1088{
3b6766fe 1089 struct cgroup_scanner scan;
59dac16f 1090
846a16bf 1091 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1092
3b6766fe
LZ
1093 scan.cg = cs->css.cgroup;
1094 scan.test_task = NULL;
1095 scan.process_task = cpuset_change_nodemask;
010cfac4 1096 scan.heap = heap;
3b6766fe 1097 scan.data = (nodemask_t *)oldmem;
4225399a
PJ
1098
1099 /*
3b6766fe
LZ
1100 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1101 * take while holding tasklist_lock. Forks can happen - the
1102 * mpol_dup() cpuset_being_rebound check will catch such forks,
1103 * and rebind their vma mempolicies too. Because we still hold
1104 * the global cgroup_mutex, we know that no other rebind effort
1105 * will be contending for the global variable cpuset_being_rebound.
4225399a 1106 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1107 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1108 */
010cfac4 1109 cgroup_scan_tasks(&scan);
4225399a 1110
2df167a3 1111 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1112 cpuset_being_rebound = NULL;
1da177e4
LT
1113}
1114
0b2f630a
MX
1115/*
1116 * Handle user request to change the 'mems' memory placement
1117 * of a cpuset. Needs to validate the request, update the
1118 * cpusets mems_allowed and mems_generation, and for each
1119 * task in the cpuset, rebind any vma mempolicies and if
1120 * the cpuset is marked 'memory_migrate', migrate the tasks
1121 * pages to the new memory.
1122 *
1123 * Call with cgroup_mutex held. May take callback_mutex during call.
1124 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1125 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1126 * their mempolicies to the cpusets new mems_allowed.
1127 */
645fcc9d
LZ
1128static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1129 const char *buf)
0b2f630a 1130{
0b2f630a
MX
1131 nodemask_t oldmem;
1132 int retval;
010cfac4 1133 struct ptr_heap heap;
0b2f630a
MX
1134
1135 /*
1136 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
1137 * it's read-only
1138 */
1139 if (cs == &top_cpuset)
1140 return -EACCES;
1141
0b2f630a
MX
1142 /*
1143 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1144 * Since nodelist_parse() fails on an empty mask, we special case
1145 * that parsing. The validate_change() call ensures that cpusets
1146 * with tasks have memory.
1147 */
1148 if (!*buf) {
645fcc9d 1149 nodes_clear(trialcs->mems_allowed);
0b2f630a 1150 } else {
645fcc9d 1151 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1152 if (retval < 0)
1153 goto done;
1154
645fcc9d 1155 if (!nodes_subset(trialcs->mems_allowed,
0b2f630a
MX
1156 node_states[N_HIGH_MEMORY]))
1157 return -EINVAL;
1158 }
1159 oldmem = cs->mems_allowed;
645fcc9d 1160 if (nodes_equal(oldmem, trialcs->mems_allowed)) {
0b2f630a
MX
1161 retval = 0; /* Too easy - nothing to do */
1162 goto done;
1163 }
645fcc9d 1164 retval = validate_change(cs, trialcs);
0b2f630a
MX
1165 if (retval < 0)
1166 goto done;
1167
010cfac4
LZ
1168 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1169 if (retval < 0)
1170 goto done;
1171
0b2f630a 1172 mutex_lock(&callback_mutex);
645fcc9d 1173 cs->mems_allowed = trialcs->mems_allowed;
0b2f630a
MX
1174 cs->mems_generation = cpuset_mems_generation++;
1175 mutex_unlock(&callback_mutex);
1176
010cfac4
LZ
1177 update_tasks_nodemask(cs, &oldmem, &heap);
1178
1179 heap_free(&heap);
0b2f630a
MX
1180done:
1181 return retval;
1182}
1183
8793d854
PM
1184int current_cpuset_is_being_rebound(void)
1185{
1186 return task_cs(current) == cpuset_being_rebound;
1187}
1188
5be7a479 1189static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1190{
db7f47cf 1191#ifdef CONFIG_SMP
30e0e178
LZ
1192 if (val < -1 || val >= SD_LV_MAX)
1193 return -EINVAL;
db7f47cf 1194#endif
1d3504fc
HS
1195
1196 if (val != cs->relax_domain_level) {
1197 cs->relax_domain_level = val;
300ed6cb
LZ
1198 if (!cpumask_empty(cs->cpus_allowed) &&
1199 is_sched_load_balance(cs))
cf417141 1200 async_rebuild_sched_domains();
1d3504fc
HS
1201 }
1202
1203 return 0;
1204}
1205
1da177e4
LT
1206/*
1207 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1208 * bit: the bit to update (see cpuset_flagbits_t)
1209 * cs: the cpuset to update
1210 * turning_on: whether the flag is being set or cleared
053199ed 1211 *
2df167a3 1212 * Call with cgroup_mutex held.
1da177e4
LT
1213 */
1214
700fe1ab
PM
1215static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1216 int turning_on)
1da177e4 1217{
645fcc9d 1218 struct cpuset *trialcs;
607717a6 1219 int err;
40b6a762 1220 int balance_flag_changed;
1da177e4 1221
645fcc9d
LZ
1222 trialcs = alloc_trial_cpuset(cs);
1223 if (!trialcs)
1224 return -ENOMEM;
1225
1da177e4 1226 if (turning_on)
645fcc9d 1227 set_bit(bit, &trialcs->flags);
1da177e4 1228 else
645fcc9d 1229 clear_bit(bit, &trialcs->flags);
1da177e4 1230
645fcc9d 1231 err = validate_change(cs, trialcs);
85d7b949 1232 if (err < 0)
645fcc9d 1233 goto out;
029190c5 1234
029190c5 1235 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1236 is_sched_load_balance(trialcs));
029190c5 1237
3d3f26a7 1238 mutex_lock(&callback_mutex);
645fcc9d 1239 cs->flags = trialcs->flags;
3d3f26a7 1240 mutex_unlock(&callback_mutex);
85d7b949 1241
300ed6cb 1242 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
cf417141 1243 async_rebuild_sched_domains();
029190c5 1244
645fcc9d
LZ
1245out:
1246 free_trial_cpuset(trialcs);
1247 return err;
1da177e4
LT
1248}
1249
3e0d98b9 1250/*
80f7228b 1251 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1252 *
1253 * These routines manage a digitally filtered, constant time based,
1254 * event frequency meter. There are four routines:
1255 * fmeter_init() - initialize a frequency meter.
1256 * fmeter_markevent() - called each time the event happens.
1257 * fmeter_getrate() - returns the recent rate of such events.
1258 * fmeter_update() - internal routine used to update fmeter.
1259 *
1260 * A common data structure is passed to each of these routines,
1261 * which is used to keep track of the state required to manage the
1262 * frequency meter and its digital filter.
1263 *
1264 * The filter works on the number of events marked per unit time.
1265 * The filter is single-pole low-pass recursive (IIR). The time unit
1266 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1267 * simulate 3 decimal digits of precision (multiplied by 1000).
1268 *
1269 * With an FM_COEF of 933, and a time base of 1 second, the filter
1270 * has a half-life of 10 seconds, meaning that if the events quit
1271 * happening, then the rate returned from the fmeter_getrate()
1272 * will be cut in half each 10 seconds, until it converges to zero.
1273 *
1274 * It is not worth doing a real infinitely recursive filter. If more
1275 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1276 * just compute FM_MAXTICKS ticks worth, by which point the level
1277 * will be stable.
1278 *
1279 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1280 * arithmetic overflow in the fmeter_update() routine.
1281 *
1282 * Given the simple 32 bit integer arithmetic used, this meter works
1283 * best for reporting rates between one per millisecond (msec) and
1284 * one per 32 (approx) seconds. At constant rates faster than one
1285 * per msec it maxes out at values just under 1,000,000. At constant
1286 * rates between one per msec, and one per second it will stabilize
1287 * to a value N*1000, where N is the rate of events per second.
1288 * At constant rates between one per second and one per 32 seconds,
1289 * it will be choppy, moving up on the seconds that have an event,
1290 * and then decaying until the next event. At rates slower than
1291 * about one in 32 seconds, it decays all the way back to zero between
1292 * each event.
1293 */
1294
1295#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1296#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1297#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1298#define FM_SCALE 1000 /* faux fixed point scale */
1299
1300/* Initialize a frequency meter */
1301static void fmeter_init(struct fmeter *fmp)
1302{
1303 fmp->cnt = 0;
1304 fmp->val = 0;
1305 fmp->time = 0;
1306 spin_lock_init(&fmp->lock);
1307}
1308
1309/* Internal meter update - process cnt events and update value */
1310static void fmeter_update(struct fmeter *fmp)
1311{
1312 time_t now = get_seconds();
1313 time_t ticks = now - fmp->time;
1314
1315 if (ticks == 0)
1316 return;
1317
1318 ticks = min(FM_MAXTICKS, ticks);
1319 while (ticks-- > 0)
1320 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1321 fmp->time = now;
1322
1323 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1324 fmp->cnt = 0;
1325}
1326
1327/* Process any previous ticks, then bump cnt by one (times scale). */
1328static void fmeter_markevent(struct fmeter *fmp)
1329{
1330 spin_lock(&fmp->lock);
1331 fmeter_update(fmp);
1332 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1333 spin_unlock(&fmp->lock);
1334}
1335
1336/* Process any previous ticks, then return current value. */
1337static int fmeter_getrate(struct fmeter *fmp)
1338{
1339 int val;
1340
1341 spin_lock(&fmp->lock);
1342 fmeter_update(fmp);
1343 val = fmp->val;
1344 spin_unlock(&fmp->lock);
1345 return val;
1346}
1347
2341d1b6
LZ
1348/* Protected by cgroup_lock */
1349static cpumask_var_t cpus_attach;
1350
2df167a3 1351/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
8793d854
PM
1352static int cpuset_can_attach(struct cgroup_subsys *ss,
1353 struct cgroup *cont, struct task_struct *tsk)
1da177e4 1354{
8793d854 1355 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1356
300ed6cb 1357 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1da177e4 1358 return -ENOSPC;
9985b0ba 1359
6d7b2f5f
DR
1360 /*
1361 * Kthreads bound to specific cpus cannot be moved to a new cpuset; we
1362 * cannot change their cpu affinity and isolating such threads by their
1363 * set of allowed nodes is unnecessary. Thus, cpusets are not
1364 * applicable for such threads. This prevents checking for success of
1365 * set_cpus_allowed_ptr() on all attached tasks before cpus_allowed may
1366 * be changed.
1367 */
1368 if (tsk->flags & PF_THREAD_BOUND)
1369 return -EINVAL;
1da177e4 1370
6d7b2f5f 1371 return security_task_setscheduler(tsk, 0, NULL);
8793d854 1372}
1da177e4 1373
8793d854
PM
1374static void cpuset_attach(struct cgroup_subsys *ss,
1375 struct cgroup *cont, struct cgroup *oldcont,
1376 struct task_struct *tsk)
1377{
8793d854
PM
1378 nodemask_t from, to;
1379 struct mm_struct *mm;
1380 struct cpuset *cs = cgroup_cs(cont);
1381 struct cpuset *oldcs = cgroup_cs(oldcont);
9985b0ba 1382 int err;
22fb52dd 1383
f5813d94 1384 if (cs == &top_cpuset) {
2341d1b6 1385 cpumask_copy(cpus_attach, cpu_possible_mask);
f5813d94
MX
1386 } else {
1387 mutex_lock(&callback_mutex);
2341d1b6 1388 guarantee_online_cpus(cs, cpus_attach);
f5813d94
MX
1389 mutex_unlock(&callback_mutex);
1390 }
2341d1b6 1391 err = set_cpus_allowed_ptr(tsk, cpus_attach);
9985b0ba
DR
1392 if (err)
1393 return;
1da177e4 1394
45b07ef3
PJ
1395 from = oldcs->mems_allowed;
1396 to = cs->mems_allowed;
4225399a
PJ
1397 mm = get_task_mm(tsk);
1398 if (mm) {
1399 mpol_rebind_mm(mm, &to);
2741a559 1400 if (is_memory_migrate(cs))
e4e364e8 1401 cpuset_migrate_mm(mm, &from, &to);
4225399a
PJ
1402 mmput(mm);
1403 }
1da177e4
LT
1404}
1405
1406/* The various types of files and directories in a cpuset file system */
1407
1408typedef enum {
45b07ef3 1409 FILE_MEMORY_MIGRATE,
1da177e4
LT
1410 FILE_CPULIST,
1411 FILE_MEMLIST,
1412 FILE_CPU_EXCLUSIVE,
1413 FILE_MEM_EXCLUSIVE,
78608366 1414 FILE_MEM_HARDWALL,
029190c5 1415 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1416 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1417 FILE_MEMORY_PRESSURE_ENABLED,
1418 FILE_MEMORY_PRESSURE,
825a46af
PJ
1419 FILE_SPREAD_PAGE,
1420 FILE_SPREAD_SLAB,
1da177e4
LT
1421} cpuset_filetype_t;
1422
700fe1ab
PM
1423static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1424{
1425 int retval = 0;
1426 struct cpuset *cs = cgroup_cs(cgrp);
1427 cpuset_filetype_t type = cft->private;
1428
e3712395 1429 if (!cgroup_lock_live_group(cgrp))
700fe1ab 1430 return -ENODEV;
700fe1ab
PM
1431
1432 switch (type) {
1da177e4 1433 case FILE_CPU_EXCLUSIVE:
700fe1ab 1434 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1435 break;
1436 case FILE_MEM_EXCLUSIVE:
700fe1ab 1437 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1438 break;
78608366
PM
1439 case FILE_MEM_HARDWALL:
1440 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1441 break;
029190c5 1442 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1443 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1444 break;
45b07ef3 1445 case FILE_MEMORY_MIGRATE:
700fe1ab 1446 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1447 break;
3e0d98b9 1448 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1449 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1450 break;
1451 case FILE_MEMORY_PRESSURE:
1452 retval = -EACCES;
1453 break;
825a46af 1454 case FILE_SPREAD_PAGE:
700fe1ab 1455 retval = update_flag(CS_SPREAD_PAGE, cs, val);
151a4420 1456 cs->mems_generation = cpuset_mems_generation++;
825a46af
PJ
1457 break;
1458 case FILE_SPREAD_SLAB:
700fe1ab 1459 retval = update_flag(CS_SPREAD_SLAB, cs, val);
151a4420 1460 cs->mems_generation = cpuset_mems_generation++;
825a46af 1461 break;
1da177e4
LT
1462 default:
1463 retval = -EINVAL;
700fe1ab 1464 break;
1da177e4 1465 }
8793d854 1466 cgroup_unlock();
1da177e4
LT
1467 return retval;
1468}
1469
5be7a479
PM
1470static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1471{
1472 int retval = 0;
1473 struct cpuset *cs = cgroup_cs(cgrp);
1474 cpuset_filetype_t type = cft->private;
1475
e3712395 1476 if (!cgroup_lock_live_group(cgrp))
5be7a479 1477 return -ENODEV;
e3712395 1478
5be7a479
PM
1479 switch (type) {
1480 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1481 retval = update_relax_domain_level(cs, val);
1482 break;
1483 default:
1484 retval = -EINVAL;
1485 break;
1486 }
1487 cgroup_unlock();
1488 return retval;
1489}
1490
e3712395
PM
1491/*
1492 * Common handling for a write to a "cpus" or "mems" file.
1493 */
1494static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1495 const char *buf)
1496{
1497 int retval = 0;
645fcc9d
LZ
1498 struct cpuset *cs = cgroup_cs(cgrp);
1499 struct cpuset *trialcs;
e3712395
PM
1500
1501 if (!cgroup_lock_live_group(cgrp))
1502 return -ENODEV;
1503
645fcc9d
LZ
1504 trialcs = alloc_trial_cpuset(cs);
1505 if (!trialcs)
1506 return -ENOMEM;
1507
e3712395
PM
1508 switch (cft->private) {
1509 case FILE_CPULIST:
645fcc9d 1510 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1511 break;
1512 case FILE_MEMLIST:
645fcc9d 1513 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1514 break;
1515 default:
1516 retval = -EINVAL;
1517 break;
1518 }
645fcc9d
LZ
1519
1520 free_trial_cpuset(trialcs);
e3712395
PM
1521 cgroup_unlock();
1522 return retval;
1523}
1524
1da177e4
LT
1525/*
1526 * These ascii lists should be read in a single call, by using a user
1527 * buffer large enough to hold the entire map. If read in smaller
1528 * chunks, there is no guarantee of atomicity. Since the display format
1529 * used, list of ranges of sequential numbers, is variable length,
1530 * and since these maps can change value dynamically, one could read
1531 * gibberish by doing partial reads while a list was changing.
1532 * A single large read to a buffer that crosses a page boundary is
1533 * ok, because the result being copied to user land is not recomputed
1534 * across a page fault.
1535 */
1536
1537static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1538{
5a7625df 1539 int ret;
1da177e4 1540
3d3f26a7 1541 mutex_lock(&callback_mutex);
300ed6cb 1542 ret = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
3d3f26a7 1543 mutex_unlock(&callback_mutex);
1da177e4 1544
5a7625df 1545 return ret;
1da177e4
LT
1546}
1547
1548static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1549{
1550 nodemask_t mask;
1551
3d3f26a7 1552 mutex_lock(&callback_mutex);
1da177e4 1553 mask = cs->mems_allowed;
3d3f26a7 1554 mutex_unlock(&callback_mutex);
1da177e4
LT
1555
1556 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1557}
1558
8793d854
PM
1559static ssize_t cpuset_common_file_read(struct cgroup *cont,
1560 struct cftype *cft,
1561 struct file *file,
1562 char __user *buf,
1563 size_t nbytes, loff_t *ppos)
1da177e4 1564{
8793d854 1565 struct cpuset *cs = cgroup_cs(cont);
1da177e4
LT
1566 cpuset_filetype_t type = cft->private;
1567 char *page;
1568 ssize_t retval = 0;
1569 char *s;
1da177e4 1570
e12ba74d 1571 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1da177e4
LT
1572 return -ENOMEM;
1573
1574 s = page;
1575
1576 switch (type) {
1577 case FILE_CPULIST:
1578 s += cpuset_sprintf_cpulist(s, cs);
1579 break;
1580 case FILE_MEMLIST:
1581 s += cpuset_sprintf_memlist(s, cs);
1582 break;
1da177e4
LT
1583 default:
1584 retval = -EINVAL;
1585 goto out;
1586 }
1587 *s++ = '\n';
1da177e4 1588
eacaa1f5 1589 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1590out:
1591 free_page((unsigned long)page);
1592 return retval;
1593}
1594
700fe1ab
PM
1595static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1596{
1597 struct cpuset *cs = cgroup_cs(cont);
1598 cpuset_filetype_t type = cft->private;
1599 switch (type) {
1600 case FILE_CPU_EXCLUSIVE:
1601 return is_cpu_exclusive(cs);
1602 case FILE_MEM_EXCLUSIVE:
1603 return is_mem_exclusive(cs);
78608366
PM
1604 case FILE_MEM_HARDWALL:
1605 return is_mem_hardwall(cs);
700fe1ab
PM
1606 case FILE_SCHED_LOAD_BALANCE:
1607 return is_sched_load_balance(cs);
1608 case FILE_MEMORY_MIGRATE:
1609 return is_memory_migrate(cs);
1610 case FILE_MEMORY_PRESSURE_ENABLED:
1611 return cpuset_memory_pressure_enabled;
1612 case FILE_MEMORY_PRESSURE:
1613 return fmeter_getrate(&cs->fmeter);
1614 case FILE_SPREAD_PAGE:
1615 return is_spread_page(cs);
1616 case FILE_SPREAD_SLAB:
1617 return is_spread_slab(cs);
1618 default:
1619 BUG();
1620 }
cf417141
MK
1621
1622 /* Unreachable but makes gcc happy */
1623 return 0;
700fe1ab 1624}
1da177e4 1625
5be7a479
PM
1626static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1627{
1628 struct cpuset *cs = cgroup_cs(cont);
1629 cpuset_filetype_t type = cft->private;
1630 switch (type) {
1631 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1632 return cs->relax_domain_level;
1633 default:
1634 BUG();
1635 }
cf417141
MK
1636
1637 /* Unrechable but makes gcc happy */
1638 return 0;
5be7a479
PM
1639}
1640
1da177e4
LT
1641
1642/*
1643 * for the common functions, 'private' gives the type of file
1644 */
1645
addf2c73
PM
1646static struct cftype files[] = {
1647 {
1648 .name = "cpus",
1649 .read = cpuset_common_file_read,
e3712395
PM
1650 .write_string = cpuset_write_resmask,
1651 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1652 .private = FILE_CPULIST,
1653 },
1654
1655 {
1656 .name = "mems",
1657 .read = cpuset_common_file_read,
e3712395
PM
1658 .write_string = cpuset_write_resmask,
1659 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1660 .private = FILE_MEMLIST,
1661 },
1662
1663 {
1664 .name = "cpu_exclusive",
1665 .read_u64 = cpuset_read_u64,
1666 .write_u64 = cpuset_write_u64,
1667 .private = FILE_CPU_EXCLUSIVE,
1668 },
1669
1670 {
1671 .name = "mem_exclusive",
1672 .read_u64 = cpuset_read_u64,
1673 .write_u64 = cpuset_write_u64,
1674 .private = FILE_MEM_EXCLUSIVE,
1675 },
1676
78608366
PM
1677 {
1678 .name = "mem_hardwall",
1679 .read_u64 = cpuset_read_u64,
1680 .write_u64 = cpuset_write_u64,
1681 .private = FILE_MEM_HARDWALL,
1682 },
1683
addf2c73
PM
1684 {
1685 .name = "sched_load_balance",
1686 .read_u64 = cpuset_read_u64,
1687 .write_u64 = cpuset_write_u64,
1688 .private = FILE_SCHED_LOAD_BALANCE,
1689 },
1690
1691 {
1692 .name = "sched_relax_domain_level",
5be7a479
PM
1693 .read_s64 = cpuset_read_s64,
1694 .write_s64 = cpuset_write_s64,
addf2c73
PM
1695 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1696 },
1697
1698 {
1699 .name = "memory_migrate",
1700 .read_u64 = cpuset_read_u64,
1701 .write_u64 = cpuset_write_u64,
1702 .private = FILE_MEMORY_MIGRATE,
1703 },
1704
1705 {
1706 .name = "memory_pressure",
1707 .read_u64 = cpuset_read_u64,
1708 .write_u64 = cpuset_write_u64,
1709 .private = FILE_MEMORY_PRESSURE,
099fca32 1710 .mode = S_IRUGO,
addf2c73
PM
1711 },
1712
1713 {
1714 .name = "memory_spread_page",
1715 .read_u64 = cpuset_read_u64,
1716 .write_u64 = cpuset_write_u64,
1717 .private = FILE_SPREAD_PAGE,
1718 },
1719
1720 {
1721 .name = "memory_spread_slab",
1722 .read_u64 = cpuset_read_u64,
1723 .write_u64 = cpuset_write_u64,
1724 .private = FILE_SPREAD_SLAB,
1725 },
45b07ef3
PJ
1726};
1727
3e0d98b9
PJ
1728static struct cftype cft_memory_pressure_enabled = {
1729 .name = "memory_pressure_enabled",
700fe1ab
PM
1730 .read_u64 = cpuset_read_u64,
1731 .write_u64 = cpuset_write_u64,
3e0d98b9
PJ
1732 .private = FILE_MEMORY_PRESSURE_ENABLED,
1733};
1734
8793d854 1735static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4
LT
1736{
1737 int err;
1738
addf2c73
PM
1739 err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
1740 if (err)
1da177e4 1741 return err;
8793d854 1742 /* memory_pressure_enabled is in root cpuset only */
addf2c73 1743 if (!cont->parent)
8793d854 1744 err = cgroup_add_file(cont, ss,
addf2c73
PM
1745 &cft_memory_pressure_enabled);
1746 return err;
1da177e4
LT
1747}
1748
8793d854
PM
1749/*
1750 * post_clone() is called at the end of cgroup_clone().
1751 * 'cgroup' was just created automatically as a result of
1752 * a cgroup_clone(), and the current task is about to
1753 * be moved into 'cgroup'.
1754 *
1755 * Currently we refuse to set up the cgroup - thereby
1756 * refusing the task to be entered, and as a result refusing
1757 * the sys_unshare() or clone() which initiated it - if any
1758 * sibling cpusets have exclusive cpus or mem.
1759 *
1760 * If this becomes a problem for some users who wish to
1761 * allow that scenario, then cpuset_post_clone() could be
1762 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2df167a3
PM
1763 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1764 * held.
8793d854
PM
1765 */
1766static void cpuset_post_clone(struct cgroup_subsys *ss,
1767 struct cgroup *cgroup)
1768{
1769 struct cgroup *parent, *child;
1770 struct cpuset *cs, *parent_cs;
1771
1772 parent = cgroup->parent;
1773 list_for_each_entry(child, &parent->children, sibling) {
1774 cs = cgroup_cs(child);
1775 if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1776 return;
1777 }
1778 cs = cgroup_cs(cgroup);
1779 parent_cs = cgroup_cs(parent);
1780
1781 cs->mems_allowed = parent_cs->mems_allowed;
300ed6cb 1782 cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed);
8793d854
PM
1783 return;
1784}
1785
1da177e4
LT
1786/*
1787 * cpuset_create - create a cpuset
2df167a3
PM
1788 * ss: cpuset cgroup subsystem
1789 * cont: control group that the new cpuset will be part of
1da177e4
LT
1790 */
1791
8793d854
PM
1792static struct cgroup_subsys_state *cpuset_create(
1793 struct cgroup_subsys *ss,
1794 struct cgroup *cont)
1da177e4
LT
1795{
1796 struct cpuset *cs;
8793d854 1797 struct cpuset *parent;
1da177e4 1798
8793d854
PM
1799 if (!cont->parent) {
1800 /* This is early initialization for the top cgroup */
1801 top_cpuset.mems_generation = cpuset_mems_generation++;
1802 return &top_cpuset.css;
1803 }
1804 parent = cgroup_cs(cont->parent);
1da177e4
LT
1805 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1806 if (!cs)
8793d854 1807 return ERR_PTR(-ENOMEM);
300ed6cb
LZ
1808 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1809 kfree(cs);
1810 return ERR_PTR(-ENOMEM);
1811 }
1da177e4 1812
cf2a473c 1813 cpuset_update_task_memory_state();
1da177e4 1814 cs->flags = 0;
825a46af
PJ
1815 if (is_spread_page(parent))
1816 set_bit(CS_SPREAD_PAGE, &cs->flags);
1817 if (is_spread_slab(parent))
1818 set_bit(CS_SPREAD_SLAB, &cs->flags);
029190c5 1819 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1820 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1821 nodes_clear(cs->mems_allowed);
151a4420 1822 cs->mems_generation = cpuset_mems_generation++;
3e0d98b9 1823 fmeter_init(&cs->fmeter);
1d3504fc 1824 cs->relax_domain_level = -1;
1da177e4
LT
1825
1826 cs->parent = parent;
202f72d5 1827 number_of_cpusets++;
8793d854 1828 return &cs->css ;
1da177e4
LT
1829}
1830
029190c5 1831/*
029190c5
PJ
1832 * If the cpuset being removed has its flag 'sched_load_balance'
1833 * enabled, then simulate turning sched_load_balance off, which
cf417141 1834 * will call async_rebuild_sched_domains().
029190c5
PJ
1835 */
1836
8793d854 1837static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4 1838{
8793d854 1839 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1840
cf2a473c 1841 cpuset_update_task_memory_state();
029190c5
PJ
1842
1843 if (is_sched_load_balance(cs))
700fe1ab 1844 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
029190c5 1845
202f72d5 1846 number_of_cpusets--;
300ed6cb 1847 free_cpumask_var(cs->cpus_allowed);
8793d854 1848 kfree(cs);
1da177e4
LT
1849}
1850
8793d854
PM
1851struct cgroup_subsys cpuset_subsys = {
1852 .name = "cpuset",
1853 .create = cpuset_create,
cf417141 1854 .destroy = cpuset_destroy,
8793d854
PM
1855 .can_attach = cpuset_can_attach,
1856 .attach = cpuset_attach,
1857 .populate = cpuset_populate,
1858 .post_clone = cpuset_post_clone,
1859 .subsys_id = cpuset_subsys_id,
1860 .early_init = 1,
1861};
1862
c417f024
PJ
1863/*
1864 * cpuset_init_early - just enough so that the calls to
1865 * cpuset_update_task_memory_state() in early init code
1866 * are harmless.
1867 */
1868
1869int __init cpuset_init_early(void)
1870{
38c7fed2 1871 alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_NOWAIT);
300ed6cb 1872
8793d854 1873 top_cpuset.mems_generation = cpuset_mems_generation++;
c417f024
PJ
1874 return 0;
1875}
1876
8793d854 1877
1da177e4
LT
1878/**
1879 * cpuset_init - initialize cpusets at system boot
1880 *
1881 * Description: Initialize top_cpuset and the cpuset internal file system,
1882 **/
1883
1884int __init cpuset_init(void)
1885{
8793d854 1886 int err = 0;
1da177e4 1887
300ed6cb 1888 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 1889 nodes_setall(top_cpuset.mems_allowed);
1da177e4 1890
3e0d98b9 1891 fmeter_init(&top_cpuset.fmeter);
151a4420 1892 top_cpuset.mems_generation = cpuset_mems_generation++;
029190c5 1893 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 1894 top_cpuset.relax_domain_level = -1;
1da177e4 1895
1da177e4
LT
1896 err = register_filesystem(&cpuset_fs_type);
1897 if (err < 0)
8793d854
PM
1898 return err;
1899
2341d1b6
LZ
1900 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1901 BUG();
1902
202f72d5 1903 number_of_cpusets = 1;
8793d854 1904 return 0;
1da177e4
LT
1905}
1906
956db3ca
CW
1907/**
1908 * cpuset_do_move_task - move a given task to another cpuset
1909 * @tsk: pointer to task_struct the task to move
1910 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1911 *
1912 * Called by cgroup_scan_tasks() for each task in a cgroup.
1913 * Return nonzero to stop the walk through the tasks.
1914 */
9e0c914c
AB
1915static void cpuset_do_move_task(struct task_struct *tsk,
1916 struct cgroup_scanner *scan)
956db3ca 1917{
7f81b1ae 1918 struct cgroup *new_cgroup = scan->data;
956db3ca 1919
7f81b1ae 1920 cgroup_attach_task(new_cgroup, tsk);
956db3ca
CW
1921}
1922
1923/**
1924 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1925 * @from: cpuset in which the tasks currently reside
1926 * @to: cpuset to which the tasks will be moved
1927 *
c8d9c90c
PJ
1928 * Called with cgroup_mutex held
1929 * callback_mutex must not be held, as cpuset_attach() will take it.
956db3ca
CW
1930 *
1931 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1932 * calling callback functions for each.
1933 */
1934static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1935{
7f81b1ae 1936 struct cgroup_scanner scan;
956db3ca 1937
7f81b1ae
LZ
1938 scan.cg = from->css.cgroup;
1939 scan.test_task = NULL; /* select all tasks in cgroup */
1940 scan.process_task = cpuset_do_move_task;
1941 scan.heap = NULL;
1942 scan.data = to->css.cgroup;
956db3ca 1943
7f81b1ae 1944 if (cgroup_scan_tasks(&scan))
956db3ca
CW
1945 printk(KERN_ERR "move_member_tasks_to_cpuset: "
1946 "cgroup_scan_tasks failed\n");
1947}
1948
b1aac8bb 1949/*
cf417141 1950 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
1951 * or memory nodes, we need to walk over the cpuset hierarchy,
1952 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
1953 * last CPU or node from a cpuset, then move the tasks in the empty
1954 * cpuset to its next-highest non-empty parent.
b1aac8bb 1955 *
c8d9c90c
PJ
1956 * Called with cgroup_mutex held
1957 * callback_mutex must not be held, as cpuset_attach() will take it.
b1aac8bb 1958 */
956db3ca
CW
1959static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1960{
1961 struct cpuset *parent;
1962
c8d9c90c
PJ
1963 /*
1964 * The cgroup's css_sets list is in use if there are tasks
1965 * in the cpuset; the list is empty if there are none;
1966 * the cs->css.refcnt seems always 0.
1967 */
956db3ca
CW
1968 if (list_empty(&cs->css.cgroup->css_sets))
1969 return;
b1aac8bb 1970
956db3ca
CW
1971 /*
1972 * Find its next-highest non-empty parent, (top cpuset
1973 * has online cpus, so can't be empty).
1974 */
1975 parent = cs->parent;
300ed6cb 1976 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 1977 nodes_empty(parent->mems_allowed))
956db3ca 1978 parent = parent->parent;
956db3ca
CW
1979
1980 move_member_tasks_to_cpuset(cs, parent);
1981}
1982
1983/*
1984 * Walk the specified cpuset subtree and look for empty cpusets.
1985 * The tasks of such cpuset must be moved to a parent cpuset.
1986 *
2df167a3 1987 * Called with cgroup_mutex held. We take callback_mutex to modify
956db3ca
CW
1988 * cpus_allowed and mems_allowed.
1989 *
1990 * This walk processes the tree from top to bottom, completing one layer
1991 * before dropping down to the next. It always processes a node before
1992 * any of its children.
1993 *
1994 * For now, since we lack memory hot unplug, we'll never see a cpuset
1995 * that has tasks along with an empty 'mems'. But if we did see such
1996 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
1997 */
d294eb83 1998static void scan_for_empty_cpusets(struct cpuset *root)
b1aac8bb 1999{
8d1e6266 2000 LIST_HEAD(queue);
956db3ca
CW
2001 struct cpuset *cp; /* scans cpusets being updated */
2002 struct cpuset *child; /* scans child cpusets of cp */
8793d854 2003 struct cgroup *cont;
f9b4fb8d 2004 nodemask_t oldmems;
b1aac8bb 2005
956db3ca
CW
2006 list_add_tail((struct list_head *)&root->stack_list, &queue);
2007
956db3ca 2008 while (!list_empty(&queue)) {
8d1e6266 2009 cp = list_first_entry(&queue, struct cpuset, stack_list);
956db3ca
CW
2010 list_del(queue.next);
2011 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
2012 child = cgroup_cs(cont);
2013 list_add_tail(&child->stack_list, &queue);
2014 }
b4501295
PJ
2015
2016 /* Continue past cpusets with all cpus, mems online */
300ed6cb 2017 if (cpumask_subset(cp->cpus_allowed, cpu_online_mask) &&
b4501295
PJ
2018 nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
2019 continue;
2020
f9b4fb8d
MX
2021 oldmems = cp->mems_allowed;
2022
956db3ca 2023 /* Remove offline cpus and mems from this cpuset. */
b4501295 2024 mutex_lock(&callback_mutex);
300ed6cb
LZ
2025 cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
2026 cpu_online_mask);
956db3ca
CW
2027 nodes_and(cp->mems_allowed, cp->mems_allowed,
2028 node_states[N_HIGH_MEMORY]);
b4501295
PJ
2029 mutex_unlock(&callback_mutex);
2030
2031 /* Move tasks from the empty cpuset to a parent */
300ed6cb 2032 if (cpumask_empty(cp->cpus_allowed) ||
b4501295 2033 nodes_empty(cp->mems_allowed))
956db3ca 2034 remove_tasks_in_empty_cpuset(cp);
f9b4fb8d 2035 else {
4e74339a 2036 update_tasks_cpumask(cp, NULL);
010cfac4 2037 update_tasks_nodemask(cp, &oldmems, NULL);
f9b4fb8d 2038 }
b1aac8bb
PJ
2039 }
2040}
2041
4c4d50f7
PJ
2042/*
2043 * The top_cpuset tracks what CPUs and Memory Nodes are online,
2044 * period. This is necessary in order to make cpusets transparent
2045 * (of no affect) on systems that are actively using CPU hotplug
2046 * but making no active use of cpusets.
2047 *
38837fc7
PJ
2048 * This routine ensures that top_cpuset.cpus_allowed tracks
2049 * cpu_online_map on each CPU hotplug (cpuhp) event.
cf417141
MK
2050 *
2051 * Called within get_online_cpus(). Needs to call cgroup_lock()
2052 * before calling generate_sched_domains().
4c4d50f7 2053 */
cf417141 2054static int cpuset_track_online_cpus(struct notifier_block *unused_nb,
029190c5 2055 unsigned long phase, void *unused_cpu)
4c4d50f7 2056{
cf417141 2057 struct sched_domain_attr *attr;
6af866af 2058 struct cpumask *doms;
cf417141
MK
2059 int ndoms;
2060
3e84050c 2061 switch (phase) {
3e84050c
DA
2062 case CPU_ONLINE:
2063 case CPU_ONLINE_FROZEN:
2064 case CPU_DEAD:
2065 case CPU_DEAD_FROZEN:
3e84050c 2066 break;
cf417141 2067
3e84050c 2068 default:
ac076758 2069 return NOTIFY_DONE;
3e84050c 2070 }
ac076758 2071
cf417141 2072 cgroup_lock();
0b4217b3 2073 mutex_lock(&callback_mutex);
300ed6cb 2074 cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask);
0b4217b3 2075 mutex_unlock(&callback_mutex);
cf417141
MK
2076 scan_for_empty_cpusets(&top_cpuset);
2077 ndoms = generate_sched_domains(&doms, &attr);
2078 cgroup_unlock();
2079
2080 /* Have scheduler rebuild the domains */
2081 partition_sched_domains(ndoms, doms, attr);
2082
3e84050c 2083 return NOTIFY_OK;
4c4d50f7 2084}
4c4d50f7 2085
b1aac8bb 2086#ifdef CONFIG_MEMORY_HOTPLUG
38837fc7 2087/*
0e1e7c7a 2088 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
cf417141
MK
2089 * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
2090 * See also the previous routine cpuset_track_online_cpus().
38837fc7 2091 */
f481891f
MX
2092static int cpuset_track_online_nodes(struct notifier_block *self,
2093 unsigned long action, void *arg)
38837fc7 2094{
cf417141 2095 cgroup_lock();
f481891f
MX
2096 switch (action) {
2097 case MEM_ONLINE:
f481891f 2098 case MEM_OFFLINE:
0b4217b3 2099 mutex_lock(&callback_mutex);
f481891f 2100 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
0b4217b3
LZ
2101 mutex_unlock(&callback_mutex);
2102 if (action == MEM_OFFLINE)
2103 scan_for_empty_cpusets(&top_cpuset);
f481891f
MX
2104 break;
2105 default:
2106 break;
2107 }
cf417141 2108 cgroup_unlock();
f481891f 2109 return NOTIFY_OK;
38837fc7
PJ
2110}
2111#endif
2112
1da177e4
LT
2113/**
2114 * cpuset_init_smp - initialize cpus_allowed
2115 *
2116 * Description: Finish top cpuset after cpu, node maps are initialized
2117 **/
2118
2119void __init cpuset_init_smp(void)
2120{
300ed6cb 2121 cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask);
0e1e7c7a 2122 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
4c4d50f7 2123
cf417141 2124 hotcpu_notifier(cpuset_track_online_cpus, 0);
f481891f 2125 hotplug_memory_notifier(cpuset_track_online_nodes, 10);
f90d4118
MX
2126
2127 cpuset_wq = create_singlethread_workqueue("cpuset");
2128 BUG_ON(!cpuset_wq);
1da177e4
LT
2129}
2130
2131/**
1da177e4
LT
2132 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2133 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2134 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2135 *
300ed6cb 2136 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4
LT
2137 * attached to the specified @tsk. Guaranteed to return some non-empty
2138 * subset of cpu_online_map, even if this means going outside the
2139 * tasks cpuset.
2140 **/
2141
6af866af 2142void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2143{
3d3f26a7 2144 mutex_lock(&callback_mutex);
f9a86fcb 2145 cpuset_cpus_allowed_locked(tsk, pmask);
470fd646 2146 mutex_unlock(&callback_mutex);
470fd646
CW
2147}
2148
2149/**
2150 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
2df167a3 2151 * Must be called with callback_mutex held.
470fd646 2152 **/
6af866af 2153void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask)
470fd646 2154{
909d75a3 2155 task_lock(tsk);
f9a86fcb 2156 guarantee_online_cpus(task_cs(tsk), pmask);
909d75a3 2157 task_unlock(tsk);
1da177e4
LT
2158}
2159
2160void cpuset_init_current_mems_allowed(void)
2161{
f9a86fcb 2162 nodes_setall(current->mems_allowed);
1da177e4
LT
2163}
2164
909d75a3
PJ
2165/**
2166 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2167 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2168 *
2169 * Description: Returns the nodemask_t mems_allowed of the cpuset
2170 * attached to the specified @tsk. Guaranteed to return some non-empty
0e1e7c7a 2171 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
909d75a3
PJ
2172 * tasks cpuset.
2173 **/
2174
2175nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2176{
2177 nodemask_t mask;
2178
3d3f26a7 2179 mutex_lock(&callback_mutex);
909d75a3 2180 task_lock(tsk);
8793d854 2181 guarantee_online_mems(task_cs(tsk), &mask);
909d75a3 2182 task_unlock(tsk);
3d3f26a7 2183 mutex_unlock(&callback_mutex);
909d75a3
PJ
2184
2185 return mask;
2186}
2187
d9fd8a6d 2188/**
19770b32
MG
2189 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2190 * @nodemask: the nodemask to be checked
d9fd8a6d 2191 *
19770b32 2192 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2193 */
19770b32 2194int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2195{
19770b32 2196 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2197}
2198
9bf2229f 2199/*
78608366
PM
2200 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2201 * mem_hardwall ancestor to the specified cpuset. Call holding
2202 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2203 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2204 */
78608366 2205static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
9bf2229f 2206{
78608366 2207 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
9bf2229f
PJ
2208 cs = cs->parent;
2209 return cs;
2210}
2211
d9fd8a6d 2212/**
a1bc5a4e
DR
2213 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2214 * @node: is this an allowed node?
02a0e53d 2215 * @gfp_mask: memory allocation flags
d9fd8a6d 2216 *
a1bc5a4e
DR
2217 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2218 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2219 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2220 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2221 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2222 * flag, yes.
9bf2229f
PJ
2223 * Otherwise, no.
2224 *
a1bc5a4e
DR
2225 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2226 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2227 * might sleep, and might allow a node from an enclosing cpuset.
02a0e53d 2228 *
a1bc5a4e
DR
2229 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2230 * cpusets, and never sleeps.
02a0e53d
PJ
2231 *
2232 * The __GFP_THISNODE placement logic is really handled elsewhere,
2233 * by forcibly using a zonelist starting at a specified node, and by
2234 * (in get_page_from_freelist()) refusing to consider the zones for
2235 * any node on the zonelist except the first. By the time any such
2236 * calls get to this routine, we should just shut up and say 'yes'.
2237 *
9bf2229f 2238 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2239 * and do not allow allocations outside the current tasks cpuset
2240 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2241 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2242 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2243 *
02a0e53d
PJ
2244 * Scanning up parent cpusets requires callback_mutex. The
2245 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2246 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2247 * current tasks mems_allowed came up empty on the first pass over
2248 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2249 * cpuset are short of memory, might require taking the callback_mutex
2250 * mutex.
9bf2229f 2251 *
36be57ff 2252 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2253 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2254 * so no allocation on a node outside the cpuset is allowed (unless
2255 * in interrupt, of course).
36be57ff
PJ
2256 *
2257 * The second pass through get_page_from_freelist() doesn't even call
2258 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2259 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2260 * in alloc_flags. That logic and the checks below have the combined
2261 * affect that:
9bf2229f
PJ
2262 * in_interrupt - any node ok (current task context irrelevant)
2263 * GFP_ATOMIC - any node ok
c596d9f3 2264 * TIF_MEMDIE - any node ok
78608366 2265 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2266 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2267 *
2268 * Rule:
a1bc5a4e 2269 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2270 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2271 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2272 */
a1bc5a4e 2273int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
1da177e4 2274{
9bf2229f 2275 const struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2276 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2277
9b819d20 2278 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2279 return 1;
92d1dbd2 2280 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2281 if (node_isset(node, current->mems_allowed))
2282 return 1;
c596d9f3
DR
2283 /*
2284 * Allow tasks that have access to memory reserves because they have
2285 * been OOM killed to get memory anywhere.
2286 */
2287 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2288 return 1;
9bf2229f
PJ
2289 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2290 return 0;
2291
5563e770
BP
2292 if (current->flags & PF_EXITING) /* Let dying task have memory */
2293 return 1;
2294
9bf2229f 2295 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2296 mutex_lock(&callback_mutex);
053199ed 2297
053199ed 2298 task_lock(current);
78608366 2299 cs = nearest_hardwall_ancestor(task_cs(current));
053199ed
PJ
2300 task_unlock(current);
2301
9bf2229f 2302 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 2303 mutex_unlock(&callback_mutex);
9bf2229f 2304 return allowed;
1da177e4
LT
2305}
2306
02a0e53d 2307/*
a1bc5a4e
DR
2308 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2309 * @node: is this an allowed node?
02a0e53d
PJ
2310 * @gfp_mask: memory allocation flags
2311 *
a1bc5a4e
DR
2312 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2313 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2314 * yes. If the task has been OOM killed and has access to memory reserves as
2315 * specified by the TIF_MEMDIE flag, yes.
2316 * Otherwise, no.
02a0e53d
PJ
2317 *
2318 * The __GFP_THISNODE placement logic is really handled elsewhere,
2319 * by forcibly using a zonelist starting at a specified node, and by
2320 * (in get_page_from_freelist()) refusing to consider the zones for
2321 * any node on the zonelist except the first. By the time any such
2322 * calls get to this routine, we should just shut up and say 'yes'.
2323 *
a1bc5a4e
DR
2324 * Unlike the cpuset_node_allowed_softwall() variant, above,
2325 * this variant requires that the node be in the current task's
02a0e53d
PJ
2326 * mems_allowed or that we're in interrupt. It does not scan up the
2327 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2328 * It never sleeps.
2329 */
a1bc5a4e 2330int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
02a0e53d 2331{
02a0e53d
PJ
2332 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2333 return 1;
02a0e53d
PJ
2334 if (node_isset(node, current->mems_allowed))
2335 return 1;
dedf8b79
DW
2336 /*
2337 * Allow tasks that have access to memory reserves because they have
2338 * been OOM killed to get memory anywhere.
2339 */
2340 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2341 return 1;
02a0e53d
PJ
2342 return 0;
2343}
2344
505970b9
PJ
2345/**
2346 * cpuset_lock - lock out any changes to cpuset structures
2347 *
3d3f26a7 2348 * The out of memory (oom) code needs to mutex_lock cpusets
505970b9 2349 * from being changed while it scans the tasklist looking for a
3d3f26a7 2350 * task in an overlapping cpuset. Expose callback_mutex via this
505970b9
PJ
2351 * cpuset_lock() routine, so the oom code can lock it, before
2352 * locking the task list. The tasklist_lock is a spinlock, so
3d3f26a7 2353 * must be taken inside callback_mutex.
505970b9
PJ
2354 */
2355
2356void cpuset_lock(void)
2357{
3d3f26a7 2358 mutex_lock(&callback_mutex);
505970b9
PJ
2359}
2360
2361/**
2362 * cpuset_unlock - release lock on cpuset changes
2363 *
2364 * Undo the lock taken in a previous cpuset_lock() call.
2365 */
2366
2367void cpuset_unlock(void)
2368{
3d3f26a7 2369 mutex_unlock(&callback_mutex);
505970b9
PJ
2370}
2371
825a46af
PJ
2372/**
2373 * cpuset_mem_spread_node() - On which node to begin search for a page
2374 *
2375 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2376 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2377 * and if the memory allocation used cpuset_mem_spread_node()
2378 * to determine on which node to start looking, as it will for
2379 * certain page cache or slab cache pages such as used for file
2380 * system buffers and inode caches, then instead of starting on the
2381 * local node to look for a free page, rather spread the starting
2382 * node around the tasks mems_allowed nodes.
2383 *
2384 * We don't have to worry about the returned node being offline
2385 * because "it can't happen", and even if it did, it would be ok.
2386 *
2387 * The routines calling guarantee_online_mems() are careful to
2388 * only set nodes in task->mems_allowed that are online. So it
2389 * should not be possible for the following code to return an
2390 * offline node. But if it did, that would be ok, as this routine
2391 * is not returning the node where the allocation must be, only
2392 * the node where the search should start. The zonelist passed to
2393 * __alloc_pages() will include all nodes. If the slab allocator
2394 * is passed an offline node, it will fall back to the local node.
2395 * See kmem_cache_alloc_node().
2396 */
2397
2398int cpuset_mem_spread_node(void)
2399{
2400 int node;
2401
2402 node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
2403 if (node == MAX_NUMNODES)
2404 node = first_node(current->mems_allowed);
2405 current->cpuset_mem_spread_rotor = node;
2406 return node;
2407}
2408EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2409
ef08e3b4 2410/**
bbe373f2
DR
2411 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2412 * @tsk1: pointer to task_struct of some task.
2413 * @tsk2: pointer to task_struct of some other task.
2414 *
2415 * Description: Return true if @tsk1's mems_allowed intersects the
2416 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2417 * one of the task's memory usage might impact the memory available
2418 * to the other.
ef08e3b4
PJ
2419 **/
2420
bbe373f2
DR
2421int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2422 const struct task_struct *tsk2)
ef08e3b4 2423{
bbe373f2 2424 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2425}
2426
75aa1994
DR
2427/**
2428 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2429 * @task: pointer to task_struct of some task.
2430 *
2431 * Description: Prints @task's name, cpuset name, and cached copy of its
2432 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2433 * dereferencing task_cs(task).
2434 */
2435void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2436{
2437 struct dentry *dentry;
2438
2439 dentry = task_cs(tsk)->css.cgroup->dentry;
2440 spin_lock(&cpuset_buffer_lock);
2441 snprintf(cpuset_name, CPUSET_NAME_LEN,
2442 dentry ? (const char *)dentry->d_name.name : "/");
2443 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2444 tsk->mems_allowed);
2445 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2446 tsk->comm, cpuset_name, cpuset_nodelist);
2447 spin_unlock(&cpuset_buffer_lock);
2448}
2449
3e0d98b9
PJ
2450/*
2451 * Collection of memory_pressure is suppressed unless
2452 * this flag is enabled by writing "1" to the special
2453 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2454 */
2455
c5b2aff8 2456int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2457
2458/**
2459 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2460 *
2461 * Keep a running average of the rate of synchronous (direct)
2462 * page reclaim efforts initiated by tasks in each cpuset.
2463 *
2464 * This represents the rate at which some task in the cpuset
2465 * ran low on memory on all nodes it was allowed to use, and
2466 * had to enter the kernels page reclaim code in an effort to
2467 * create more free memory by tossing clean pages or swapping
2468 * or writing dirty pages.
2469 *
2470 * Display to user space in the per-cpuset read-only file
2471 * "memory_pressure". Value displayed is an integer
2472 * representing the recent rate of entry into the synchronous
2473 * (direct) page reclaim by any task attached to the cpuset.
2474 **/
2475
2476void __cpuset_memory_pressure_bump(void)
2477{
3e0d98b9 2478 task_lock(current);
8793d854 2479 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2480 task_unlock(current);
2481}
2482
8793d854 2483#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2484/*
2485 * proc_cpuset_show()
2486 * - Print tasks cpuset path into seq_file.
2487 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2488 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2489 * doesn't really matter if tsk->cpuset changes after we read it,
c8d9c90c 2490 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2df167a3 2491 * anyway.
1da177e4 2492 */
029190c5 2493static int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2494{
13b41b09 2495 struct pid *pid;
1da177e4
LT
2496 struct task_struct *tsk;
2497 char *buf;
8793d854 2498 struct cgroup_subsys_state *css;
99f89551 2499 int retval;
1da177e4 2500
99f89551 2501 retval = -ENOMEM;
1da177e4
LT
2502 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2503 if (!buf)
99f89551
EB
2504 goto out;
2505
2506 retval = -ESRCH;
13b41b09
EB
2507 pid = m->private;
2508 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2509 if (!tsk)
2510 goto out_free;
1da177e4 2511
99f89551 2512 retval = -EINVAL;
8793d854
PM
2513 cgroup_lock();
2514 css = task_subsys_state(tsk, cpuset_subsys_id);
2515 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
1da177e4 2516 if (retval < 0)
99f89551 2517 goto out_unlock;
1da177e4
LT
2518 seq_puts(m, buf);
2519 seq_putc(m, '\n');
99f89551 2520out_unlock:
8793d854 2521 cgroup_unlock();
99f89551
EB
2522 put_task_struct(tsk);
2523out_free:
1da177e4 2524 kfree(buf);
99f89551 2525out:
1da177e4
LT
2526 return retval;
2527}
2528
2529static int cpuset_open(struct inode *inode, struct file *file)
2530{
13b41b09
EB
2531 struct pid *pid = PROC_I(inode)->pid;
2532 return single_open(file, proc_cpuset_show, pid);
1da177e4
LT
2533}
2534
9a32144e 2535const struct file_operations proc_cpuset_operations = {
1da177e4
LT
2536 .open = cpuset_open,
2537 .read = seq_read,
2538 .llseek = seq_lseek,
2539 .release = single_release,
2540};
8793d854 2541#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4
LT
2542
2543/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2544void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2545{
2546 seq_printf(m, "Cpus_allowed:\t");
30e8e136 2547 seq_cpumask(m, &task->cpus_allowed);
df5f8314 2548 seq_printf(m, "\n");
39106dcf 2549 seq_printf(m, "Cpus_allowed_list:\t");
30e8e136 2550 seq_cpumask_list(m, &task->cpus_allowed);
39106dcf 2551 seq_printf(m, "\n");
df5f8314 2552 seq_printf(m, "Mems_allowed:\t");
30e8e136 2553 seq_nodemask(m, &task->mems_allowed);
df5f8314 2554 seq_printf(m, "\n");
39106dcf 2555 seq_printf(m, "Mems_allowed_list:\t");
30e8e136 2556 seq_nodemask_list(m, &task->mems_allowed);
39106dcf 2557 seq_printf(m, "\n");
1da177e4 2558}