]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/cpuset.c
cpuset: convert cpuset_attach() to use cpumask_var_t
[net-next-2.6.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
1da177e4
LT
40#include <linux/module.h>
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
58#include <asm/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca
CW
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
1da177e4 62
202f72d5
PJ
63/*
64 * Tracks how many cpusets are currently defined in system.
65 * When there is only one cpuset (the root cpuset) we can
66 * short circuit some hooks.
67 */
7edc5962 68int number_of_cpusets __read_mostly;
202f72d5 69
2df167a3 70/* Forward declare cgroup structures */
8793d854
PM
71struct cgroup_subsys cpuset_subsys;
72struct cpuset;
73
3e0d98b9
PJ
74/* See "Frequency meter" comments, below. */
75
76struct fmeter {
77 int cnt; /* unprocessed events count */
78 int val; /* most recent output value */
79 time_t time; /* clock (secs) when val computed */
80 spinlock_t lock; /* guards read or write of above */
81};
82
1da177e4 83struct cpuset {
8793d854
PM
84 struct cgroup_subsys_state css;
85
1da177e4
LT
86 unsigned long flags; /* "unsigned long" so bitops work */
87 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
88 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
89
1da177e4 90 struct cpuset *parent; /* my parent */
1da177e4
LT
91
92 /*
93 * Copy of global cpuset_mems_generation as of the most
94 * recent time this cpuset changed its mems_allowed.
95 */
3e0d98b9
PJ
96 int mems_generation;
97
98 struct fmeter fmeter; /* memory_pressure filter */
029190c5
PJ
99
100 /* partition number for rebuild_sched_domains() */
101 int pn;
956db3ca 102
1d3504fc
HS
103 /* for custom sched domain */
104 int relax_domain_level;
105
956db3ca
CW
106 /* used for walking a cpuset heirarchy */
107 struct list_head stack_list;
1da177e4
LT
108};
109
8793d854
PM
110/* Retrieve the cpuset for a cgroup */
111static inline struct cpuset *cgroup_cs(struct cgroup *cont)
112{
113 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
114 struct cpuset, css);
115}
116
117/* Retrieve the cpuset for a task */
118static inline struct cpuset *task_cs(struct task_struct *task)
119{
120 return container_of(task_subsys_state(task, cpuset_subsys_id),
121 struct cpuset, css);
122}
956db3ca
CW
123struct cpuset_hotplug_scanner {
124 struct cgroup_scanner scan;
125 struct cgroup *to;
126};
8793d854 127
1da177e4
LT
128/* bits in struct cpuset flags field */
129typedef enum {
130 CS_CPU_EXCLUSIVE,
131 CS_MEM_EXCLUSIVE,
78608366 132 CS_MEM_HARDWALL,
45b07ef3 133 CS_MEMORY_MIGRATE,
029190c5 134 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
135 CS_SPREAD_PAGE,
136 CS_SPREAD_SLAB,
1da177e4
LT
137} cpuset_flagbits_t;
138
139/* convenient tests for these bits */
140static inline int is_cpu_exclusive(const struct cpuset *cs)
141{
7b5b9ef0 142 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
143}
144
145static inline int is_mem_exclusive(const struct cpuset *cs)
146{
7b5b9ef0 147 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
148}
149
78608366
PM
150static inline int is_mem_hardwall(const struct cpuset *cs)
151{
152 return test_bit(CS_MEM_HARDWALL, &cs->flags);
153}
154
029190c5
PJ
155static inline int is_sched_load_balance(const struct cpuset *cs)
156{
157 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
158}
159
45b07ef3
PJ
160static inline int is_memory_migrate(const struct cpuset *cs)
161{
7b5b9ef0 162 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
163}
164
825a46af
PJ
165static inline int is_spread_page(const struct cpuset *cs)
166{
167 return test_bit(CS_SPREAD_PAGE, &cs->flags);
168}
169
170static inline int is_spread_slab(const struct cpuset *cs)
171{
172 return test_bit(CS_SPREAD_SLAB, &cs->flags);
173}
174
1da177e4 175/*
151a4420 176 * Increment this integer everytime any cpuset changes its
1da177e4
LT
177 * mems_allowed value. Users of cpusets can track this generation
178 * number, and avoid having to lock and reload mems_allowed unless
179 * the cpuset they're using changes generation.
180 *
2df167a3 181 * A single, global generation is needed because cpuset_attach_task() could
1da177e4
LT
182 * reattach a task to a different cpuset, which must not have its
183 * generation numbers aliased with those of that tasks previous cpuset.
184 *
185 * Generations are needed for mems_allowed because one task cannot
2df167a3 186 * modify another's memory placement. So we must enable every task,
1da177e4
LT
187 * on every visit to __alloc_pages(), to efficiently check whether
188 * its current->cpuset->mems_allowed has changed, requiring an update
189 * of its current->mems_allowed.
151a4420 190 *
2df167a3 191 * Since writes to cpuset_mems_generation are guarded by the cgroup lock
151a4420 192 * there is no need to mark it atomic.
1da177e4 193 */
151a4420 194static int cpuset_mems_generation;
1da177e4
LT
195
196static struct cpuset top_cpuset = {
197 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
198 .cpus_allowed = CPU_MASK_ALL,
199 .mems_allowed = NODE_MASK_ALL,
1da177e4
LT
200};
201
1da177e4 202/*
2df167a3
PM
203 * There are two global mutexes guarding cpuset structures. The first
204 * is the main control groups cgroup_mutex, accessed via
205 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
206 * callback_mutex, below. They can nest. It is ok to first take
207 * cgroup_mutex, then nest callback_mutex. We also require taking
208 * task_lock() when dereferencing a task's cpuset pointer. See "The
209 * task_lock() exception", at the end of this comment.
053199ed 210 *
3d3f26a7 211 * A task must hold both mutexes to modify cpusets. If a task
2df167a3 212 * holds cgroup_mutex, then it blocks others wanting that mutex,
3d3f26a7 213 * ensuring that it is the only task able to also acquire callback_mutex
053199ed
PJ
214 * and be able to modify cpusets. It can perform various checks on
215 * the cpuset structure first, knowing nothing will change. It can
2df167a3 216 * also allocate memory while just holding cgroup_mutex. While it is
053199ed 217 * performing these checks, various callback routines can briefly
3d3f26a7
IM
218 * acquire callback_mutex to query cpusets. Once it is ready to make
219 * the changes, it takes callback_mutex, blocking everyone else.
053199ed
PJ
220 *
221 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 222 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
223 * from one of the callbacks into the cpuset code from within
224 * __alloc_pages().
225 *
3d3f26a7 226 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
227 * access to cpusets.
228 *
229 * The task_struct fields mems_allowed and mems_generation may only
230 * be accessed in the context of that task, so require no locks.
231 *
3d3f26a7 232 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
233 * small pieces of code, such as when reading out possibly multi-word
234 * cpumasks and nodemasks.
235 *
2df167a3
PM
236 * Accessing a task's cpuset should be done in accordance with the
237 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
238 */
239
3d3f26a7 240static DEFINE_MUTEX(callback_mutex);
4247bdc6 241
75aa1994
DR
242/*
243 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
244 * buffers. They are statically allocated to prevent using excess stack
245 * when calling cpuset_print_task_mems_allowed().
246 */
247#define CPUSET_NAME_LEN (128)
248#define CPUSET_NODELIST_LEN (256)
249static char cpuset_name[CPUSET_NAME_LEN];
250static char cpuset_nodelist[CPUSET_NODELIST_LEN];
251static DEFINE_SPINLOCK(cpuset_buffer_lock);
252
cf417141
MK
253/*
254 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 255 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
256 * silently switch it to mount "cgroup" instead
257 */
454e2398
DH
258static int cpuset_get_sb(struct file_system_type *fs_type,
259 int flags, const char *unused_dev_name,
260 void *data, struct vfsmount *mnt)
1da177e4 261{
8793d854
PM
262 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
263 int ret = -ENODEV;
264 if (cgroup_fs) {
265 char mountopts[] =
266 "cpuset,noprefix,"
267 "release_agent=/sbin/cpuset_release_agent";
268 ret = cgroup_fs->get_sb(cgroup_fs, flags,
269 unused_dev_name, mountopts, mnt);
270 put_filesystem(cgroup_fs);
271 }
272 return ret;
1da177e4
LT
273}
274
275static struct file_system_type cpuset_fs_type = {
276 .name = "cpuset",
277 .get_sb = cpuset_get_sb,
1da177e4
LT
278};
279
1da177e4
LT
280/*
281 * Return in *pmask the portion of a cpusets's cpus_allowed that
282 * are online. If none are online, walk up the cpuset hierarchy
283 * until we find one that does have some online cpus. If we get
284 * all the way to the top and still haven't found any online cpus,
285 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
286 * task, return cpu_online_map.
287 *
288 * One way or another, we guarantee to return some non-empty subset
289 * of cpu_online_map.
290 *
3d3f26a7 291 * Call with callback_mutex held.
1da177e4
LT
292 */
293
294static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
295{
296 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
297 cs = cs->parent;
298 if (cs)
299 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
300 else
301 *pmask = cpu_online_map;
302 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
303}
304
305/*
306 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
307 * are online, with memory. If none are online with memory, walk
308 * up the cpuset hierarchy until we find one that does have some
309 * online mems. If we get all the way to the top and still haven't
310 * found any online mems, return node_states[N_HIGH_MEMORY].
1da177e4
LT
311 *
312 * One way or another, we guarantee to return some non-empty subset
0e1e7c7a 313 * of node_states[N_HIGH_MEMORY].
1da177e4 314 *
3d3f26a7 315 * Call with callback_mutex held.
1da177e4
LT
316 */
317
318static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
319{
0e1e7c7a
CL
320 while (cs && !nodes_intersects(cs->mems_allowed,
321 node_states[N_HIGH_MEMORY]))
1da177e4
LT
322 cs = cs->parent;
323 if (cs)
0e1e7c7a
CL
324 nodes_and(*pmask, cs->mems_allowed,
325 node_states[N_HIGH_MEMORY]);
1da177e4 326 else
0e1e7c7a
CL
327 *pmask = node_states[N_HIGH_MEMORY];
328 BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
1da177e4
LT
329}
330
cf2a473c
PJ
331/**
332 * cpuset_update_task_memory_state - update task memory placement
333 *
334 * If the current tasks cpusets mems_allowed changed behind our
335 * backs, update current->mems_allowed, mems_generation and task NUMA
336 * mempolicy to the new value.
053199ed 337 *
cf2a473c
PJ
338 * Task mempolicy is updated by rebinding it relative to the
339 * current->cpuset if a task has its memory placement changed.
340 * Do not call this routine if in_interrupt().
341 *
4a01c8d5 342 * Call without callback_mutex or task_lock() held. May be
2df167a3
PM
343 * called with or without cgroup_mutex held. Thanks in part to
344 * 'the_top_cpuset_hack', the task's cpuset pointer will never
41f7f60d
DR
345 * be NULL. This routine also might acquire callback_mutex during
346 * call.
053199ed 347 *
6b9c2603
PJ
348 * Reading current->cpuset->mems_generation doesn't need task_lock
349 * to guard the current->cpuset derefence, because it is guarded
2df167a3 350 * from concurrent freeing of current->cpuset using RCU.
6b9c2603
PJ
351 *
352 * The rcu_dereference() is technically probably not needed,
353 * as I don't actually mind if I see a new cpuset pointer but
354 * an old value of mems_generation. However this really only
355 * matters on alpha systems using cpusets heavily. If I dropped
356 * that rcu_dereference(), it would save them a memory barrier.
357 * For all other arch's, rcu_dereference is a no-op anyway, and for
358 * alpha systems not using cpusets, another planned optimization,
359 * avoiding the rcu critical section for tasks in the root cpuset
360 * which is statically allocated, so can't vanish, will make this
361 * irrelevant. Better to use RCU as intended, than to engage in
362 * some cute trick to save a memory barrier that is impossible to
363 * test, for alpha systems using cpusets heavily, which might not
364 * even exist.
053199ed
PJ
365 *
366 * This routine is needed to update the per-task mems_allowed data,
367 * within the tasks context, when it is trying to allocate memory
368 * (in various mm/mempolicy.c routines) and notices that some other
369 * task has been modifying its cpuset.
1da177e4
LT
370 */
371
fe85a998 372void cpuset_update_task_memory_state(void)
1da177e4 373{
053199ed 374 int my_cpusets_mem_gen;
cf2a473c 375 struct task_struct *tsk = current;
6b9c2603 376 struct cpuset *cs;
053199ed 377
13337714
LJ
378 rcu_read_lock();
379 my_cpusets_mem_gen = task_cs(tsk)->mems_generation;
380 rcu_read_unlock();
1da177e4 381
cf2a473c 382 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
3d3f26a7 383 mutex_lock(&callback_mutex);
cf2a473c 384 task_lock(tsk);
8793d854 385 cs = task_cs(tsk); /* Maybe changed when task not locked */
cf2a473c
PJ
386 guarantee_online_mems(cs, &tsk->mems_allowed);
387 tsk->cpuset_mems_generation = cs->mems_generation;
825a46af
PJ
388 if (is_spread_page(cs))
389 tsk->flags |= PF_SPREAD_PAGE;
390 else
391 tsk->flags &= ~PF_SPREAD_PAGE;
392 if (is_spread_slab(cs))
393 tsk->flags |= PF_SPREAD_SLAB;
394 else
395 tsk->flags &= ~PF_SPREAD_SLAB;
cf2a473c 396 task_unlock(tsk);
3d3f26a7 397 mutex_unlock(&callback_mutex);
74cb2155 398 mpol_rebind_task(tsk, &tsk->mems_allowed);
1da177e4
LT
399 }
400}
401
402/*
403 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
404 *
405 * One cpuset is a subset of another if all its allowed CPUs and
406 * Memory Nodes are a subset of the other, and its exclusive flags
2df167a3 407 * are only set if the other's are set. Call holding cgroup_mutex.
1da177e4
LT
408 */
409
410static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
411{
412 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
413 nodes_subset(p->mems_allowed, q->mems_allowed) &&
414 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
415 is_mem_exclusive(p) <= is_mem_exclusive(q);
416}
417
418/*
419 * validate_change() - Used to validate that any proposed cpuset change
420 * follows the structural rules for cpusets.
421 *
422 * If we replaced the flag and mask values of the current cpuset
423 * (cur) with those values in the trial cpuset (trial), would
424 * our various subset and exclusive rules still be valid? Presumes
2df167a3 425 * cgroup_mutex held.
1da177e4
LT
426 *
427 * 'cur' is the address of an actual, in-use cpuset. Operations
428 * such as list traversal that depend on the actual address of the
429 * cpuset in the list must use cur below, not trial.
430 *
431 * 'trial' is the address of bulk structure copy of cur, with
432 * perhaps one or more of the fields cpus_allowed, mems_allowed,
433 * or flags changed to new, trial values.
434 *
435 * Return 0 if valid, -errno if not.
436 */
437
438static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
439{
8793d854 440 struct cgroup *cont;
1da177e4
LT
441 struct cpuset *c, *par;
442
443 /* Each of our child cpusets must be a subset of us */
8793d854
PM
444 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
445 if (!is_cpuset_subset(cgroup_cs(cont), trial))
1da177e4
LT
446 return -EBUSY;
447 }
448
449 /* Remaining checks don't apply to root cpuset */
69604067 450 if (cur == &top_cpuset)
1da177e4
LT
451 return 0;
452
69604067
PJ
453 par = cur->parent;
454
1da177e4
LT
455 /* We must be a subset of our parent cpuset */
456 if (!is_cpuset_subset(trial, par))
457 return -EACCES;
458
2df167a3
PM
459 /*
460 * If either I or some sibling (!= me) is exclusive, we can't
461 * overlap
462 */
8793d854
PM
463 list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
464 c = cgroup_cs(cont);
1da177e4
LT
465 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
466 c != cur &&
467 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
468 return -EINVAL;
469 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
470 c != cur &&
471 nodes_intersects(trial->mems_allowed, c->mems_allowed))
472 return -EINVAL;
473 }
474
020958b6
PJ
475 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
476 if (cgroup_task_count(cur->css.cgroup)) {
477 if (cpus_empty(trial->cpus_allowed) ||
478 nodes_empty(trial->mems_allowed)) {
479 return -ENOSPC;
480 }
481 }
482
1da177e4
LT
483 return 0;
484}
485
029190c5 486/*
cf417141 487 * Helper routine for generate_sched_domains().
029190c5
PJ
488 * Do cpusets a, b have overlapping cpus_allowed masks?
489 */
029190c5
PJ
490static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
491{
492 return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
493}
494
1d3504fc
HS
495static void
496update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
497{
1d3504fc
HS
498 if (dattr->relax_domain_level < c->relax_domain_level)
499 dattr->relax_domain_level = c->relax_domain_level;
500 return;
501}
502
f5393693
LJ
503static void
504update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
505{
506 LIST_HEAD(q);
507
508 list_add(&c->stack_list, &q);
509 while (!list_empty(&q)) {
510 struct cpuset *cp;
511 struct cgroup *cont;
512 struct cpuset *child;
513
514 cp = list_first_entry(&q, struct cpuset, stack_list);
515 list_del(q.next);
516
517 if (cpus_empty(cp->cpus_allowed))
518 continue;
519
520 if (is_sched_load_balance(cp))
521 update_domain_attr(dattr, cp);
522
523 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
524 child = cgroup_cs(cont);
525 list_add_tail(&child->stack_list, &q);
526 }
527 }
528}
529
029190c5 530/*
cf417141
MK
531 * generate_sched_domains()
532 *
533 * This function builds a partial partition of the systems CPUs
534 * A 'partial partition' is a set of non-overlapping subsets whose
535 * union is a subset of that set.
536 * The output of this function needs to be passed to kernel/sched.c
537 * partition_sched_domains() routine, which will rebuild the scheduler's
538 * load balancing domains (sched domains) as specified by that partial
539 * partition.
029190c5
PJ
540 *
541 * See "What is sched_load_balance" in Documentation/cpusets.txt
542 * for a background explanation of this.
543 *
544 * Does not return errors, on the theory that the callers of this
545 * routine would rather not worry about failures to rebuild sched
546 * domains when operating in the severe memory shortage situations
547 * that could cause allocation failures below.
548 *
cf417141 549 * Must be called with cgroup_lock held.
029190c5
PJ
550 *
551 * The three key local variables below are:
aeed6824 552 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
553 * top-down scan of all cpusets. This scan loads a pointer
554 * to each cpuset marked is_sched_load_balance into the
555 * array 'csa'. For our purposes, rebuilding the schedulers
556 * sched domains, we can ignore !is_sched_load_balance cpusets.
557 * csa - (for CpuSet Array) Array of pointers to all the cpusets
558 * that need to be load balanced, for convenient iterative
559 * access by the subsequent code that finds the best partition,
560 * i.e the set of domains (subsets) of CPUs such that the
561 * cpus_allowed of every cpuset marked is_sched_load_balance
562 * is a subset of one of these domains, while there are as
563 * many such domains as possible, each as small as possible.
564 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
565 * the kernel/sched.c routine partition_sched_domains() in a
566 * convenient format, that can be easily compared to the prior
567 * value to determine what partition elements (sched domains)
568 * were changed (added or removed.)
569 *
570 * Finding the best partition (set of domains):
571 * The triple nested loops below over i, j, k scan over the
572 * load balanced cpusets (using the array of cpuset pointers in
573 * csa[]) looking for pairs of cpusets that have overlapping
574 * cpus_allowed, but which don't have the same 'pn' partition
575 * number and gives them in the same partition number. It keeps
576 * looping on the 'restart' label until it can no longer find
577 * any such pairs.
578 *
579 * The union of the cpus_allowed masks from the set of
580 * all cpusets having the same 'pn' value then form the one
581 * element of the partition (one sched domain) to be passed to
582 * partition_sched_domains().
583 */
cf417141
MK
584static int generate_sched_domains(cpumask_t **domains,
585 struct sched_domain_attr **attributes)
029190c5 586{
cf417141 587 LIST_HEAD(q); /* queue of cpusets to be scanned */
029190c5
PJ
588 struct cpuset *cp; /* scans q */
589 struct cpuset **csa; /* array of all cpuset ptrs */
590 int csn; /* how many cpuset ptrs in csa so far */
591 int i, j, k; /* indices for partition finding loops */
592 cpumask_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 593 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 594 int ndoms = 0; /* number of sched domains in result */
029190c5
PJ
595 int nslot; /* next empty doms[] cpumask_t slot */
596
029190c5 597 doms = NULL;
1d3504fc 598 dattr = NULL;
cf417141 599 csa = NULL;
029190c5
PJ
600
601 /* Special case for the 99% of systems with one, full, sched domain */
602 if (is_sched_load_balance(&top_cpuset)) {
029190c5
PJ
603 doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
604 if (!doms)
cf417141
MK
605 goto done;
606
1d3504fc
HS
607 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
608 if (dattr) {
609 *dattr = SD_ATTR_INIT;
93a65575 610 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 611 }
029190c5 612 *doms = top_cpuset.cpus_allowed;
cf417141
MK
613
614 ndoms = 1;
615 goto done;
029190c5
PJ
616 }
617
029190c5
PJ
618 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
619 if (!csa)
620 goto done;
621 csn = 0;
622
aeed6824
LZ
623 list_add(&top_cpuset.stack_list, &q);
624 while (!list_empty(&q)) {
029190c5
PJ
625 struct cgroup *cont;
626 struct cpuset *child; /* scans child cpusets of cp */
489a5393 627
aeed6824
LZ
628 cp = list_first_entry(&q, struct cpuset, stack_list);
629 list_del(q.next);
630
489a5393
LJ
631 if (cpus_empty(cp->cpus_allowed))
632 continue;
633
f5393693
LJ
634 /*
635 * All child cpusets contain a subset of the parent's cpus, so
636 * just skip them, and then we call update_domain_attr_tree()
637 * to calc relax_domain_level of the corresponding sched
638 * domain.
639 */
640 if (is_sched_load_balance(cp)) {
029190c5 641 csa[csn++] = cp;
f5393693
LJ
642 continue;
643 }
489a5393 644
029190c5
PJ
645 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
646 child = cgroup_cs(cont);
aeed6824 647 list_add_tail(&child->stack_list, &q);
029190c5
PJ
648 }
649 }
650
651 for (i = 0; i < csn; i++)
652 csa[i]->pn = i;
653 ndoms = csn;
654
655restart:
656 /* Find the best partition (set of sched domains) */
657 for (i = 0; i < csn; i++) {
658 struct cpuset *a = csa[i];
659 int apn = a->pn;
660
661 for (j = 0; j < csn; j++) {
662 struct cpuset *b = csa[j];
663 int bpn = b->pn;
664
665 if (apn != bpn && cpusets_overlap(a, b)) {
666 for (k = 0; k < csn; k++) {
667 struct cpuset *c = csa[k];
668
669 if (c->pn == bpn)
670 c->pn = apn;
671 }
672 ndoms--; /* one less element */
673 goto restart;
674 }
675 }
676 }
677
cf417141
MK
678 /*
679 * Now we know how many domains to create.
680 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
681 */
029190c5 682 doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
700018e0 683 if (!doms)
cf417141 684 goto done;
cf417141
MK
685
686 /*
687 * The rest of the code, including the scheduler, can deal with
688 * dattr==NULL case. No need to abort if alloc fails.
689 */
1d3504fc 690 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
691
692 for (nslot = 0, i = 0; i < csn; i++) {
693 struct cpuset *a = csa[i];
cf417141 694 cpumask_t *dp;
029190c5
PJ
695 int apn = a->pn;
696
cf417141
MK
697 if (apn < 0) {
698 /* Skip completed partitions */
699 continue;
700 }
701
702 dp = doms + nslot;
703
704 if (nslot == ndoms) {
705 static int warnings = 10;
706 if (warnings) {
707 printk(KERN_WARNING
708 "rebuild_sched_domains confused:"
709 " nslot %d, ndoms %d, csn %d, i %d,"
710 " apn %d\n",
711 nslot, ndoms, csn, i, apn);
712 warnings--;
029190c5 713 }
cf417141
MK
714 continue;
715 }
029190c5 716
cf417141
MK
717 cpus_clear(*dp);
718 if (dattr)
719 *(dattr + nslot) = SD_ATTR_INIT;
720 for (j = i; j < csn; j++) {
721 struct cpuset *b = csa[j];
722
723 if (apn == b->pn) {
724 cpus_or(*dp, *dp, b->cpus_allowed);
725 if (dattr)
726 update_domain_attr_tree(dattr + nslot, b);
727
728 /* Done with this partition */
729 b->pn = -1;
029190c5 730 }
029190c5 731 }
cf417141 732 nslot++;
029190c5
PJ
733 }
734 BUG_ON(nslot != ndoms);
735
cf417141
MK
736done:
737 kfree(csa);
738
700018e0
LZ
739 /*
740 * Fallback to the default domain if kmalloc() failed.
741 * See comments in partition_sched_domains().
742 */
743 if (doms == NULL)
744 ndoms = 1;
745
cf417141
MK
746 *domains = doms;
747 *attributes = dattr;
748 return ndoms;
749}
750
751/*
752 * Rebuild scheduler domains.
753 *
754 * Call with neither cgroup_mutex held nor within get_online_cpus().
755 * Takes both cgroup_mutex and get_online_cpus().
756 *
757 * Cannot be directly called from cpuset code handling changes
758 * to the cpuset pseudo-filesystem, because it cannot be called
759 * from code that already holds cgroup_mutex.
760 */
761static void do_rebuild_sched_domains(struct work_struct *unused)
762{
763 struct sched_domain_attr *attr;
764 cpumask_t *doms;
765 int ndoms;
766
86ef5c9a 767 get_online_cpus();
cf417141
MK
768
769 /* Generate domain masks and attrs */
770 cgroup_lock();
771 ndoms = generate_sched_domains(&doms, &attr);
772 cgroup_unlock();
773
774 /* Have scheduler rebuild the domains */
775 partition_sched_domains(ndoms, doms, attr);
776
86ef5c9a 777 put_online_cpus();
cf417141 778}
029190c5 779
cf417141
MK
780static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
781
782/*
783 * Rebuild scheduler domains, asynchronously via workqueue.
784 *
785 * If the flag 'sched_load_balance' of any cpuset with non-empty
786 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
787 * which has that flag enabled, or if any cpuset with a non-empty
788 * 'cpus' is removed, then call this routine to rebuild the
789 * scheduler's dynamic sched domains.
790 *
791 * The rebuild_sched_domains() and partition_sched_domains()
792 * routines must nest cgroup_lock() inside get_online_cpus(),
793 * but such cpuset changes as these must nest that locking the
794 * other way, holding cgroup_lock() for much of the code.
795 *
796 * So in order to avoid an ABBA deadlock, the cpuset code handling
797 * these user changes delegates the actual sched domain rebuilding
798 * to a separate workqueue thread, which ends up processing the
799 * above do_rebuild_sched_domains() function.
800 */
801static void async_rebuild_sched_domains(void)
802{
803 schedule_work(&rebuild_sched_domains_work);
804}
805
806/*
807 * Accomplishes the same scheduler domain rebuild as the above
808 * async_rebuild_sched_domains(), however it directly calls the
809 * rebuild routine synchronously rather than calling it via an
810 * asynchronous work thread.
811 *
812 * This can only be called from code that is not holding
813 * cgroup_mutex (not nested in a cgroup_lock() call.)
814 */
815void rebuild_sched_domains(void)
816{
817 do_rebuild_sched_domains(NULL);
029190c5
PJ
818}
819
58f4790b
CW
820/**
821 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
822 * @tsk: task to test
823 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
824 *
2df167a3 825 * Call with cgroup_mutex held. May take callback_mutex during call.
58f4790b
CW
826 * Called for each task in a cgroup by cgroup_scan_tasks().
827 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
828 * words, if its mask is not equal to its cpuset's mask).
053199ed 829 */
9e0c914c
AB
830static int cpuset_test_cpumask(struct task_struct *tsk,
831 struct cgroup_scanner *scan)
58f4790b
CW
832{
833 return !cpus_equal(tsk->cpus_allowed,
834 (cgroup_cs(scan->cg))->cpus_allowed);
835}
053199ed 836
58f4790b
CW
837/**
838 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
839 * @tsk: task to test
840 * @scan: struct cgroup_scanner containing the cgroup of the task
841 *
842 * Called by cgroup_scan_tasks() for each task in a cgroup whose
843 * cpus_allowed mask needs to be changed.
844 *
845 * We don't need to re-check for the cgroup/cpuset membership, since we're
846 * holding cgroup_lock() at this point.
847 */
9e0c914c
AB
848static void cpuset_change_cpumask(struct task_struct *tsk,
849 struct cgroup_scanner *scan)
58f4790b 850{
f9a86fcb 851 set_cpus_allowed_ptr(tsk, &((cgroup_cs(scan->cg))->cpus_allowed));
58f4790b
CW
852}
853
0b2f630a
MX
854/**
855 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
856 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
4e74339a 857 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a
MX
858 *
859 * Called with cgroup_mutex held
860 *
861 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
862 * calling callback functions for each.
863 *
4e74339a
LZ
864 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
865 * if @heap != NULL.
0b2f630a 866 */
4e74339a 867static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
0b2f630a
MX
868{
869 struct cgroup_scanner scan;
0b2f630a
MX
870
871 scan.cg = cs->css.cgroup;
872 scan.test_task = cpuset_test_cpumask;
873 scan.process_task = cpuset_change_cpumask;
4e74339a
LZ
874 scan.heap = heap;
875 cgroup_scan_tasks(&scan);
0b2f630a
MX
876}
877
58f4790b
CW
878/**
879 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
880 * @cs: the cpuset to consider
881 * @buf: buffer of cpu numbers written to this cpuset
882 */
e3712395 883static int update_cpumask(struct cpuset *cs, const char *buf)
1da177e4 884{
4e74339a 885 struct ptr_heap heap;
1da177e4 886 struct cpuset trialcs;
58f4790b
CW
887 int retval;
888 int is_load_balanced;
1da177e4 889
4c4d50f7
PJ
890 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
891 if (cs == &top_cpuset)
892 return -EACCES;
893
1da177e4 894 trialcs = *cs;
6f7f02e7
DR
895
896 /*
c8d9c90c 897 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
898 * Since cpulist_parse() fails on an empty mask, we special case
899 * that parsing. The validate_change() call ensures that cpusets
900 * with tasks have cpus.
6f7f02e7 901 */
020958b6 902 if (!*buf) {
6f7f02e7
DR
903 cpus_clear(trialcs.cpus_allowed);
904 } else {
29c0177e 905 retval = cpulist_parse(buf, &trialcs.cpus_allowed);
6f7f02e7
DR
906 if (retval < 0)
907 return retval;
37340746
LJ
908
909 if (!cpus_subset(trialcs.cpus_allowed, cpu_online_map))
910 return -EINVAL;
6f7f02e7 911 }
1da177e4 912 retval = validate_change(cs, &trialcs);
85d7b949
DG
913 if (retval < 0)
914 return retval;
029190c5 915
8707d8b8
PM
916 /* Nothing to do if the cpus didn't change */
917 if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed))
918 return 0;
58f4790b 919
4e74339a
LZ
920 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
921 if (retval)
922 return retval;
923
029190c5
PJ
924 is_load_balanced = is_sched_load_balance(&trialcs);
925
3d3f26a7 926 mutex_lock(&callback_mutex);
85d7b949 927 cs->cpus_allowed = trialcs.cpus_allowed;
3d3f26a7 928 mutex_unlock(&callback_mutex);
029190c5 929
8707d8b8
PM
930 /*
931 * Scan tasks in the cpuset, and update the cpumasks of any
58f4790b 932 * that need an update.
8707d8b8 933 */
4e74339a
LZ
934 update_tasks_cpumask(cs, &heap);
935
936 heap_free(&heap);
58f4790b 937
8707d8b8 938 if (is_load_balanced)
cf417141 939 async_rebuild_sched_domains();
85d7b949 940 return 0;
1da177e4
LT
941}
942
e4e364e8
PJ
943/*
944 * cpuset_migrate_mm
945 *
946 * Migrate memory region from one set of nodes to another.
947 *
948 * Temporarilly set tasks mems_allowed to target nodes of migration,
949 * so that the migration code can allocate pages on these nodes.
950 *
2df167a3 951 * Call holding cgroup_mutex, so current's cpuset won't change
c8d9c90c 952 * during this call, as manage_mutex holds off any cpuset_attach()
e4e364e8
PJ
953 * calls. Therefore we don't need to take task_lock around the
954 * call to guarantee_online_mems(), as we know no one is changing
2df167a3 955 * our task's cpuset.
e4e364e8
PJ
956 *
957 * Hold callback_mutex around the two modifications of our tasks
958 * mems_allowed to synchronize with cpuset_mems_allowed().
959 *
960 * While the mm_struct we are migrating is typically from some
961 * other task, the task_struct mems_allowed that we are hacking
962 * is for our current task, which must allocate new pages for that
963 * migrating memory region.
964 *
965 * We call cpuset_update_task_memory_state() before hacking
966 * our tasks mems_allowed, so that we are assured of being in
967 * sync with our tasks cpuset, and in particular, callbacks to
968 * cpuset_update_task_memory_state() from nested page allocations
969 * won't see any mismatch of our cpuset and task mems_generation
970 * values, so won't overwrite our hacked tasks mems_allowed
971 * nodemask.
972 */
973
974static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
975 const nodemask_t *to)
976{
977 struct task_struct *tsk = current;
978
979 cpuset_update_task_memory_state();
980
981 mutex_lock(&callback_mutex);
982 tsk->mems_allowed = *to;
983 mutex_unlock(&callback_mutex);
984
985 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
986
987 mutex_lock(&callback_mutex);
8793d854 988 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
e4e364e8
PJ
989 mutex_unlock(&callback_mutex);
990}
991
8793d854
PM
992static void *cpuset_being_rebound;
993
0b2f630a
MX
994/**
995 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
996 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
997 * @oldmem: old mems_allowed of cpuset cs
998 *
999 * Called with cgroup_mutex held
1000 * Return 0 if successful, -errno if not.
1001 */
1002static int update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem)
1da177e4 1003{
8793d854 1004 struct task_struct *p;
4225399a
PJ
1005 struct mm_struct **mmarray;
1006 int i, n, ntasks;
04c19fa6 1007 int migrate;
4225399a 1008 int fudge;
8793d854 1009 struct cgroup_iter it;
0b2f630a 1010 int retval;
59dac16f 1011
846a16bf 1012 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a
PJ
1013
1014 fudge = 10; /* spare mmarray[] slots */
1015 fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
1016 retval = -ENOMEM;
1017
1018 /*
1019 * Allocate mmarray[] to hold mm reference for each task
1020 * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
1021 * tasklist_lock. We could use GFP_ATOMIC, but with a
1022 * few more lines of code, we can retry until we get a big
1023 * enough mmarray[] w/o using GFP_ATOMIC.
1024 */
1025 while (1) {
8793d854 1026 ntasks = cgroup_task_count(cs->css.cgroup); /* guess */
4225399a
PJ
1027 ntasks += fudge;
1028 mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
1029 if (!mmarray)
1030 goto done;
c2aef333 1031 read_lock(&tasklist_lock); /* block fork */
8793d854 1032 if (cgroup_task_count(cs->css.cgroup) <= ntasks)
4225399a 1033 break; /* got enough */
c2aef333 1034 read_unlock(&tasklist_lock); /* try again */
4225399a
PJ
1035 kfree(mmarray);
1036 }
1037
1038 n = 0;
1039
1040 /* Load up mmarray[] with mm reference for each task in cpuset. */
8793d854
PM
1041 cgroup_iter_start(cs->css.cgroup, &it);
1042 while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
4225399a
PJ
1043 struct mm_struct *mm;
1044
1045 if (n >= ntasks) {
1046 printk(KERN_WARNING
1047 "Cpuset mempolicy rebind incomplete.\n");
8793d854 1048 break;
4225399a 1049 }
4225399a
PJ
1050 mm = get_task_mm(p);
1051 if (!mm)
1052 continue;
1053 mmarray[n++] = mm;
8793d854
PM
1054 }
1055 cgroup_iter_end(cs->css.cgroup, &it);
c2aef333 1056 read_unlock(&tasklist_lock);
4225399a
PJ
1057
1058 /*
1059 * Now that we've dropped the tasklist spinlock, we can
1060 * rebind the vma mempolicies of each mm in mmarray[] to their
1061 * new cpuset, and release that mm. The mpol_rebind_mm()
1062 * call takes mmap_sem, which we couldn't take while holding
846a16bf 1063 * tasklist_lock. Forks can happen again now - the mpol_dup()
4225399a
PJ
1064 * cpuset_being_rebound check will catch such forks, and rebind
1065 * their vma mempolicies too. Because we still hold the global
2df167a3 1066 * cgroup_mutex, we know that no other rebind effort will
4225399a
PJ
1067 * be contending for the global variable cpuset_being_rebound.
1068 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1069 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1070 */
04c19fa6 1071 migrate = is_memory_migrate(cs);
4225399a
PJ
1072 for (i = 0; i < n; i++) {
1073 struct mm_struct *mm = mmarray[i];
1074
1075 mpol_rebind_mm(mm, &cs->mems_allowed);
e4e364e8 1076 if (migrate)
0b2f630a 1077 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
4225399a
PJ
1078 mmput(mm);
1079 }
1080
2df167a3 1081 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
4225399a 1082 kfree(mmarray);
8793d854 1083 cpuset_being_rebound = NULL;
4225399a 1084 retval = 0;
59dac16f 1085done:
1da177e4
LT
1086 return retval;
1087}
1088
0b2f630a
MX
1089/*
1090 * Handle user request to change the 'mems' memory placement
1091 * of a cpuset. Needs to validate the request, update the
1092 * cpusets mems_allowed and mems_generation, and for each
1093 * task in the cpuset, rebind any vma mempolicies and if
1094 * the cpuset is marked 'memory_migrate', migrate the tasks
1095 * pages to the new memory.
1096 *
1097 * Call with cgroup_mutex held. May take callback_mutex during call.
1098 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1099 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1100 * their mempolicies to the cpusets new mems_allowed.
1101 */
1102static int update_nodemask(struct cpuset *cs, const char *buf)
1103{
1104 struct cpuset trialcs;
1105 nodemask_t oldmem;
1106 int retval;
1107
1108 /*
1109 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
1110 * it's read-only
1111 */
1112 if (cs == &top_cpuset)
1113 return -EACCES;
1114
1115 trialcs = *cs;
1116
1117 /*
1118 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1119 * Since nodelist_parse() fails on an empty mask, we special case
1120 * that parsing. The validate_change() call ensures that cpusets
1121 * with tasks have memory.
1122 */
1123 if (!*buf) {
1124 nodes_clear(trialcs.mems_allowed);
1125 } else {
1126 retval = nodelist_parse(buf, trialcs.mems_allowed);
1127 if (retval < 0)
1128 goto done;
1129
1130 if (!nodes_subset(trialcs.mems_allowed,
1131 node_states[N_HIGH_MEMORY]))
1132 return -EINVAL;
1133 }
1134 oldmem = cs->mems_allowed;
1135 if (nodes_equal(oldmem, trialcs.mems_allowed)) {
1136 retval = 0; /* Too easy - nothing to do */
1137 goto done;
1138 }
1139 retval = validate_change(cs, &trialcs);
1140 if (retval < 0)
1141 goto done;
1142
1143 mutex_lock(&callback_mutex);
1144 cs->mems_allowed = trialcs.mems_allowed;
1145 cs->mems_generation = cpuset_mems_generation++;
1146 mutex_unlock(&callback_mutex);
1147
1148 retval = update_tasks_nodemask(cs, &oldmem);
1149done:
1150 return retval;
1151}
1152
8793d854
PM
1153int current_cpuset_is_being_rebound(void)
1154{
1155 return task_cs(current) == cpuset_being_rebound;
1156}
1157
5be7a479 1158static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1159{
30e0e178
LZ
1160 if (val < -1 || val >= SD_LV_MAX)
1161 return -EINVAL;
1d3504fc
HS
1162
1163 if (val != cs->relax_domain_level) {
1164 cs->relax_domain_level = val;
c372e817 1165 if (!cpus_empty(cs->cpus_allowed) && is_sched_load_balance(cs))
cf417141 1166 async_rebuild_sched_domains();
1d3504fc
HS
1167 }
1168
1169 return 0;
1170}
1171
1da177e4
LT
1172/*
1173 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1174 * bit: the bit to update (see cpuset_flagbits_t)
1175 * cs: the cpuset to update
1176 * turning_on: whether the flag is being set or cleared
053199ed 1177 *
2df167a3 1178 * Call with cgroup_mutex held.
1da177e4
LT
1179 */
1180
700fe1ab
PM
1181static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1182 int turning_on)
1da177e4 1183{
1da177e4 1184 struct cpuset trialcs;
607717a6 1185 int err;
40b6a762 1186 int balance_flag_changed;
1da177e4 1187
1da177e4
LT
1188 trialcs = *cs;
1189 if (turning_on)
1190 set_bit(bit, &trialcs.flags);
1191 else
1192 clear_bit(bit, &trialcs.flags);
1193
1194 err = validate_change(cs, &trialcs);
85d7b949
DG
1195 if (err < 0)
1196 return err;
029190c5 1197
029190c5
PJ
1198 balance_flag_changed = (is_sched_load_balance(cs) !=
1199 is_sched_load_balance(&trialcs));
1200
3d3f26a7 1201 mutex_lock(&callback_mutex);
69604067 1202 cs->flags = trialcs.flags;
3d3f26a7 1203 mutex_unlock(&callback_mutex);
85d7b949 1204
40b6a762 1205 if (!cpus_empty(trialcs.cpus_allowed) && balance_flag_changed)
cf417141 1206 async_rebuild_sched_domains();
029190c5 1207
85d7b949 1208 return 0;
1da177e4
LT
1209}
1210
3e0d98b9 1211/*
80f7228b 1212 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1213 *
1214 * These routines manage a digitally filtered, constant time based,
1215 * event frequency meter. There are four routines:
1216 * fmeter_init() - initialize a frequency meter.
1217 * fmeter_markevent() - called each time the event happens.
1218 * fmeter_getrate() - returns the recent rate of such events.
1219 * fmeter_update() - internal routine used to update fmeter.
1220 *
1221 * A common data structure is passed to each of these routines,
1222 * which is used to keep track of the state required to manage the
1223 * frequency meter and its digital filter.
1224 *
1225 * The filter works on the number of events marked per unit time.
1226 * The filter is single-pole low-pass recursive (IIR). The time unit
1227 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1228 * simulate 3 decimal digits of precision (multiplied by 1000).
1229 *
1230 * With an FM_COEF of 933, and a time base of 1 second, the filter
1231 * has a half-life of 10 seconds, meaning that if the events quit
1232 * happening, then the rate returned from the fmeter_getrate()
1233 * will be cut in half each 10 seconds, until it converges to zero.
1234 *
1235 * It is not worth doing a real infinitely recursive filter. If more
1236 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1237 * just compute FM_MAXTICKS ticks worth, by which point the level
1238 * will be stable.
1239 *
1240 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1241 * arithmetic overflow in the fmeter_update() routine.
1242 *
1243 * Given the simple 32 bit integer arithmetic used, this meter works
1244 * best for reporting rates between one per millisecond (msec) and
1245 * one per 32 (approx) seconds. At constant rates faster than one
1246 * per msec it maxes out at values just under 1,000,000. At constant
1247 * rates between one per msec, and one per second it will stabilize
1248 * to a value N*1000, where N is the rate of events per second.
1249 * At constant rates between one per second and one per 32 seconds,
1250 * it will be choppy, moving up on the seconds that have an event,
1251 * and then decaying until the next event. At rates slower than
1252 * about one in 32 seconds, it decays all the way back to zero between
1253 * each event.
1254 */
1255
1256#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1257#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1258#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1259#define FM_SCALE 1000 /* faux fixed point scale */
1260
1261/* Initialize a frequency meter */
1262static void fmeter_init(struct fmeter *fmp)
1263{
1264 fmp->cnt = 0;
1265 fmp->val = 0;
1266 fmp->time = 0;
1267 spin_lock_init(&fmp->lock);
1268}
1269
1270/* Internal meter update - process cnt events and update value */
1271static void fmeter_update(struct fmeter *fmp)
1272{
1273 time_t now = get_seconds();
1274 time_t ticks = now - fmp->time;
1275
1276 if (ticks == 0)
1277 return;
1278
1279 ticks = min(FM_MAXTICKS, ticks);
1280 while (ticks-- > 0)
1281 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1282 fmp->time = now;
1283
1284 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1285 fmp->cnt = 0;
1286}
1287
1288/* Process any previous ticks, then bump cnt by one (times scale). */
1289static void fmeter_markevent(struct fmeter *fmp)
1290{
1291 spin_lock(&fmp->lock);
1292 fmeter_update(fmp);
1293 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1294 spin_unlock(&fmp->lock);
1295}
1296
1297/* Process any previous ticks, then return current value. */
1298static int fmeter_getrate(struct fmeter *fmp)
1299{
1300 int val;
1301
1302 spin_lock(&fmp->lock);
1303 fmeter_update(fmp);
1304 val = fmp->val;
1305 spin_unlock(&fmp->lock);
1306 return val;
1307}
1308
2341d1b6
LZ
1309/* Protected by cgroup_lock */
1310static cpumask_var_t cpus_attach;
1311
2df167a3 1312/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
8793d854
PM
1313static int cpuset_can_attach(struct cgroup_subsys *ss,
1314 struct cgroup *cont, struct task_struct *tsk)
1da177e4 1315{
8793d854 1316 struct cpuset *cs = cgroup_cs(cont);
5771f0a2 1317 int ret = 0;
1da177e4 1318
1da177e4
LT
1319 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1320 return -ENOSPC;
9985b0ba 1321
5771f0a2 1322 if (tsk->flags & PF_THREAD_BOUND) {
9985b0ba 1323 mutex_lock(&callback_mutex);
5771f0a2
LZ
1324 if (!cpus_equal(tsk->cpus_allowed, cs->cpus_allowed))
1325 ret = -EINVAL;
9985b0ba 1326 mutex_unlock(&callback_mutex);
9985b0ba 1327 }
1da177e4 1328
5771f0a2 1329 return ret < 0 ? ret : security_task_setscheduler(tsk, 0, NULL);
8793d854 1330}
1da177e4 1331
8793d854
PM
1332static void cpuset_attach(struct cgroup_subsys *ss,
1333 struct cgroup *cont, struct cgroup *oldcont,
1334 struct task_struct *tsk)
1335{
8793d854
PM
1336 nodemask_t from, to;
1337 struct mm_struct *mm;
1338 struct cpuset *cs = cgroup_cs(cont);
1339 struct cpuset *oldcs = cgroup_cs(oldcont);
9985b0ba 1340 int err;
22fb52dd 1341
f5813d94 1342 if (cs == &top_cpuset) {
2341d1b6 1343 cpumask_copy(cpus_attach, cpu_possible_mask);
f5813d94
MX
1344 } else {
1345 mutex_lock(&callback_mutex);
2341d1b6 1346 guarantee_online_cpus(cs, cpus_attach);
f5813d94
MX
1347 mutex_unlock(&callback_mutex);
1348 }
2341d1b6 1349 err = set_cpus_allowed_ptr(tsk, cpus_attach);
9985b0ba
DR
1350 if (err)
1351 return;
1da177e4 1352
45b07ef3
PJ
1353 from = oldcs->mems_allowed;
1354 to = cs->mems_allowed;
4225399a
PJ
1355 mm = get_task_mm(tsk);
1356 if (mm) {
1357 mpol_rebind_mm(mm, &to);
2741a559 1358 if (is_memory_migrate(cs))
e4e364e8 1359 cpuset_migrate_mm(mm, &from, &to);
4225399a
PJ
1360 mmput(mm);
1361 }
1da177e4
LT
1362}
1363
1364/* The various types of files and directories in a cpuset file system */
1365
1366typedef enum {
45b07ef3 1367 FILE_MEMORY_MIGRATE,
1da177e4
LT
1368 FILE_CPULIST,
1369 FILE_MEMLIST,
1370 FILE_CPU_EXCLUSIVE,
1371 FILE_MEM_EXCLUSIVE,
78608366 1372 FILE_MEM_HARDWALL,
029190c5 1373 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1374 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1375 FILE_MEMORY_PRESSURE_ENABLED,
1376 FILE_MEMORY_PRESSURE,
825a46af
PJ
1377 FILE_SPREAD_PAGE,
1378 FILE_SPREAD_SLAB,
1da177e4
LT
1379} cpuset_filetype_t;
1380
700fe1ab
PM
1381static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1382{
1383 int retval = 0;
1384 struct cpuset *cs = cgroup_cs(cgrp);
1385 cpuset_filetype_t type = cft->private;
1386
e3712395 1387 if (!cgroup_lock_live_group(cgrp))
700fe1ab 1388 return -ENODEV;
700fe1ab
PM
1389
1390 switch (type) {
1da177e4 1391 case FILE_CPU_EXCLUSIVE:
700fe1ab 1392 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1393 break;
1394 case FILE_MEM_EXCLUSIVE:
700fe1ab 1395 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1396 break;
78608366
PM
1397 case FILE_MEM_HARDWALL:
1398 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1399 break;
029190c5 1400 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1401 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1402 break;
45b07ef3 1403 case FILE_MEMORY_MIGRATE:
700fe1ab 1404 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1405 break;
3e0d98b9 1406 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1407 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1408 break;
1409 case FILE_MEMORY_PRESSURE:
1410 retval = -EACCES;
1411 break;
825a46af 1412 case FILE_SPREAD_PAGE:
700fe1ab 1413 retval = update_flag(CS_SPREAD_PAGE, cs, val);
151a4420 1414 cs->mems_generation = cpuset_mems_generation++;
825a46af
PJ
1415 break;
1416 case FILE_SPREAD_SLAB:
700fe1ab 1417 retval = update_flag(CS_SPREAD_SLAB, cs, val);
151a4420 1418 cs->mems_generation = cpuset_mems_generation++;
825a46af 1419 break;
1da177e4
LT
1420 default:
1421 retval = -EINVAL;
700fe1ab 1422 break;
1da177e4 1423 }
8793d854 1424 cgroup_unlock();
1da177e4
LT
1425 return retval;
1426}
1427
5be7a479
PM
1428static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1429{
1430 int retval = 0;
1431 struct cpuset *cs = cgroup_cs(cgrp);
1432 cpuset_filetype_t type = cft->private;
1433
e3712395 1434 if (!cgroup_lock_live_group(cgrp))
5be7a479 1435 return -ENODEV;
e3712395 1436
5be7a479
PM
1437 switch (type) {
1438 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1439 retval = update_relax_domain_level(cs, val);
1440 break;
1441 default:
1442 retval = -EINVAL;
1443 break;
1444 }
1445 cgroup_unlock();
1446 return retval;
1447}
1448
e3712395
PM
1449/*
1450 * Common handling for a write to a "cpus" or "mems" file.
1451 */
1452static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1453 const char *buf)
1454{
1455 int retval = 0;
1456
1457 if (!cgroup_lock_live_group(cgrp))
1458 return -ENODEV;
1459
1460 switch (cft->private) {
1461 case FILE_CPULIST:
1462 retval = update_cpumask(cgroup_cs(cgrp), buf);
1463 break;
1464 case FILE_MEMLIST:
1465 retval = update_nodemask(cgroup_cs(cgrp), buf);
1466 break;
1467 default:
1468 retval = -EINVAL;
1469 break;
1470 }
1471 cgroup_unlock();
1472 return retval;
1473}
1474
1da177e4
LT
1475/*
1476 * These ascii lists should be read in a single call, by using a user
1477 * buffer large enough to hold the entire map. If read in smaller
1478 * chunks, there is no guarantee of atomicity. Since the display format
1479 * used, list of ranges of sequential numbers, is variable length,
1480 * and since these maps can change value dynamically, one could read
1481 * gibberish by doing partial reads while a list was changing.
1482 * A single large read to a buffer that crosses a page boundary is
1483 * ok, because the result being copied to user land is not recomputed
1484 * across a page fault.
1485 */
1486
1487static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1488{
5a7625df 1489 int ret;
1da177e4 1490
3d3f26a7 1491 mutex_lock(&callback_mutex);
5a7625df 1492 ret = cpulist_scnprintf(page, PAGE_SIZE, &cs->cpus_allowed);
3d3f26a7 1493 mutex_unlock(&callback_mutex);
1da177e4 1494
5a7625df 1495 return ret;
1da177e4
LT
1496}
1497
1498static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1499{
1500 nodemask_t mask;
1501
3d3f26a7 1502 mutex_lock(&callback_mutex);
1da177e4 1503 mask = cs->mems_allowed;
3d3f26a7 1504 mutex_unlock(&callback_mutex);
1da177e4
LT
1505
1506 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1507}
1508
8793d854
PM
1509static ssize_t cpuset_common_file_read(struct cgroup *cont,
1510 struct cftype *cft,
1511 struct file *file,
1512 char __user *buf,
1513 size_t nbytes, loff_t *ppos)
1da177e4 1514{
8793d854 1515 struct cpuset *cs = cgroup_cs(cont);
1da177e4
LT
1516 cpuset_filetype_t type = cft->private;
1517 char *page;
1518 ssize_t retval = 0;
1519 char *s;
1da177e4 1520
e12ba74d 1521 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1da177e4
LT
1522 return -ENOMEM;
1523
1524 s = page;
1525
1526 switch (type) {
1527 case FILE_CPULIST:
1528 s += cpuset_sprintf_cpulist(s, cs);
1529 break;
1530 case FILE_MEMLIST:
1531 s += cpuset_sprintf_memlist(s, cs);
1532 break;
1da177e4
LT
1533 default:
1534 retval = -EINVAL;
1535 goto out;
1536 }
1537 *s++ = '\n';
1da177e4 1538
eacaa1f5 1539 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1540out:
1541 free_page((unsigned long)page);
1542 return retval;
1543}
1544
700fe1ab
PM
1545static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1546{
1547 struct cpuset *cs = cgroup_cs(cont);
1548 cpuset_filetype_t type = cft->private;
1549 switch (type) {
1550 case FILE_CPU_EXCLUSIVE:
1551 return is_cpu_exclusive(cs);
1552 case FILE_MEM_EXCLUSIVE:
1553 return is_mem_exclusive(cs);
78608366
PM
1554 case FILE_MEM_HARDWALL:
1555 return is_mem_hardwall(cs);
700fe1ab
PM
1556 case FILE_SCHED_LOAD_BALANCE:
1557 return is_sched_load_balance(cs);
1558 case FILE_MEMORY_MIGRATE:
1559 return is_memory_migrate(cs);
1560 case FILE_MEMORY_PRESSURE_ENABLED:
1561 return cpuset_memory_pressure_enabled;
1562 case FILE_MEMORY_PRESSURE:
1563 return fmeter_getrate(&cs->fmeter);
1564 case FILE_SPREAD_PAGE:
1565 return is_spread_page(cs);
1566 case FILE_SPREAD_SLAB:
1567 return is_spread_slab(cs);
1568 default:
1569 BUG();
1570 }
cf417141
MK
1571
1572 /* Unreachable but makes gcc happy */
1573 return 0;
700fe1ab 1574}
1da177e4 1575
5be7a479
PM
1576static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1577{
1578 struct cpuset *cs = cgroup_cs(cont);
1579 cpuset_filetype_t type = cft->private;
1580 switch (type) {
1581 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1582 return cs->relax_domain_level;
1583 default:
1584 BUG();
1585 }
cf417141
MK
1586
1587 /* Unrechable but makes gcc happy */
1588 return 0;
5be7a479
PM
1589}
1590
1da177e4
LT
1591
1592/*
1593 * for the common functions, 'private' gives the type of file
1594 */
1595
addf2c73
PM
1596static struct cftype files[] = {
1597 {
1598 .name = "cpus",
1599 .read = cpuset_common_file_read,
e3712395
PM
1600 .write_string = cpuset_write_resmask,
1601 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1602 .private = FILE_CPULIST,
1603 },
1604
1605 {
1606 .name = "mems",
1607 .read = cpuset_common_file_read,
e3712395
PM
1608 .write_string = cpuset_write_resmask,
1609 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1610 .private = FILE_MEMLIST,
1611 },
1612
1613 {
1614 .name = "cpu_exclusive",
1615 .read_u64 = cpuset_read_u64,
1616 .write_u64 = cpuset_write_u64,
1617 .private = FILE_CPU_EXCLUSIVE,
1618 },
1619
1620 {
1621 .name = "mem_exclusive",
1622 .read_u64 = cpuset_read_u64,
1623 .write_u64 = cpuset_write_u64,
1624 .private = FILE_MEM_EXCLUSIVE,
1625 },
1626
78608366
PM
1627 {
1628 .name = "mem_hardwall",
1629 .read_u64 = cpuset_read_u64,
1630 .write_u64 = cpuset_write_u64,
1631 .private = FILE_MEM_HARDWALL,
1632 },
1633
addf2c73
PM
1634 {
1635 .name = "sched_load_balance",
1636 .read_u64 = cpuset_read_u64,
1637 .write_u64 = cpuset_write_u64,
1638 .private = FILE_SCHED_LOAD_BALANCE,
1639 },
1640
1641 {
1642 .name = "sched_relax_domain_level",
5be7a479
PM
1643 .read_s64 = cpuset_read_s64,
1644 .write_s64 = cpuset_write_s64,
addf2c73
PM
1645 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1646 },
1647
1648 {
1649 .name = "memory_migrate",
1650 .read_u64 = cpuset_read_u64,
1651 .write_u64 = cpuset_write_u64,
1652 .private = FILE_MEMORY_MIGRATE,
1653 },
1654
1655 {
1656 .name = "memory_pressure",
1657 .read_u64 = cpuset_read_u64,
1658 .write_u64 = cpuset_write_u64,
1659 .private = FILE_MEMORY_PRESSURE,
1660 },
1661
1662 {
1663 .name = "memory_spread_page",
1664 .read_u64 = cpuset_read_u64,
1665 .write_u64 = cpuset_write_u64,
1666 .private = FILE_SPREAD_PAGE,
1667 },
1668
1669 {
1670 .name = "memory_spread_slab",
1671 .read_u64 = cpuset_read_u64,
1672 .write_u64 = cpuset_write_u64,
1673 .private = FILE_SPREAD_SLAB,
1674 },
45b07ef3
PJ
1675};
1676
3e0d98b9
PJ
1677static struct cftype cft_memory_pressure_enabled = {
1678 .name = "memory_pressure_enabled",
700fe1ab
PM
1679 .read_u64 = cpuset_read_u64,
1680 .write_u64 = cpuset_write_u64,
3e0d98b9
PJ
1681 .private = FILE_MEMORY_PRESSURE_ENABLED,
1682};
1683
8793d854 1684static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4
LT
1685{
1686 int err;
1687
addf2c73
PM
1688 err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
1689 if (err)
1da177e4 1690 return err;
8793d854 1691 /* memory_pressure_enabled is in root cpuset only */
addf2c73 1692 if (!cont->parent)
8793d854 1693 err = cgroup_add_file(cont, ss,
addf2c73
PM
1694 &cft_memory_pressure_enabled);
1695 return err;
1da177e4
LT
1696}
1697
8793d854
PM
1698/*
1699 * post_clone() is called at the end of cgroup_clone().
1700 * 'cgroup' was just created automatically as a result of
1701 * a cgroup_clone(), and the current task is about to
1702 * be moved into 'cgroup'.
1703 *
1704 * Currently we refuse to set up the cgroup - thereby
1705 * refusing the task to be entered, and as a result refusing
1706 * the sys_unshare() or clone() which initiated it - if any
1707 * sibling cpusets have exclusive cpus or mem.
1708 *
1709 * If this becomes a problem for some users who wish to
1710 * allow that scenario, then cpuset_post_clone() could be
1711 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2df167a3
PM
1712 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1713 * held.
8793d854
PM
1714 */
1715static void cpuset_post_clone(struct cgroup_subsys *ss,
1716 struct cgroup *cgroup)
1717{
1718 struct cgroup *parent, *child;
1719 struct cpuset *cs, *parent_cs;
1720
1721 parent = cgroup->parent;
1722 list_for_each_entry(child, &parent->children, sibling) {
1723 cs = cgroup_cs(child);
1724 if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1725 return;
1726 }
1727 cs = cgroup_cs(cgroup);
1728 parent_cs = cgroup_cs(parent);
1729
1730 cs->mems_allowed = parent_cs->mems_allowed;
1731 cs->cpus_allowed = parent_cs->cpus_allowed;
1732 return;
1733}
1734
1da177e4
LT
1735/*
1736 * cpuset_create - create a cpuset
2df167a3
PM
1737 * ss: cpuset cgroup subsystem
1738 * cont: control group that the new cpuset will be part of
1da177e4
LT
1739 */
1740
8793d854
PM
1741static struct cgroup_subsys_state *cpuset_create(
1742 struct cgroup_subsys *ss,
1743 struct cgroup *cont)
1da177e4
LT
1744{
1745 struct cpuset *cs;
8793d854 1746 struct cpuset *parent;
1da177e4 1747
8793d854
PM
1748 if (!cont->parent) {
1749 /* This is early initialization for the top cgroup */
1750 top_cpuset.mems_generation = cpuset_mems_generation++;
1751 return &top_cpuset.css;
1752 }
1753 parent = cgroup_cs(cont->parent);
1da177e4
LT
1754 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1755 if (!cs)
8793d854 1756 return ERR_PTR(-ENOMEM);
1da177e4 1757
cf2a473c 1758 cpuset_update_task_memory_state();
1da177e4 1759 cs->flags = 0;
825a46af
PJ
1760 if (is_spread_page(parent))
1761 set_bit(CS_SPREAD_PAGE, &cs->flags);
1762 if (is_spread_slab(parent))
1763 set_bit(CS_SPREAD_SLAB, &cs->flags);
029190c5 1764 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
f9a86fcb
MT
1765 cpus_clear(cs->cpus_allowed);
1766 nodes_clear(cs->mems_allowed);
151a4420 1767 cs->mems_generation = cpuset_mems_generation++;
3e0d98b9 1768 fmeter_init(&cs->fmeter);
1d3504fc 1769 cs->relax_domain_level = -1;
1da177e4
LT
1770
1771 cs->parent = parent;
202f72d5 1772 number_of_cpusets++;
8793d854 1773 return &cs->css ;
1da177e4
LT
1774}
1775
029190c5 1776/*
029190c5
PJ
1777 * If the cpuset being removed has its flag 'sched_load_balance'
1778 * enabled, then simulate turning sched_load_balance off, which
cf417141 1779 * will call async_rebuild_sched_domains().
029190c5
PJ
1780 */
1781
8793d854 1782static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4 1783{
8793d854 1784 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1785
cf2a473c 1786 cpuset_update_task_memory_state();
029190c5
PJ
1787
1788 if (is_sched_load_balance(cs))
700fe1ab 1789 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
029190c5 1790
202f72d5 1791 number_of_cpusets--;
8793d854 1792 kfree(cs);
1da177e4
LT
1793}
1794
8793d854
PM
1795struct cgroup_subsys cpuset_subsys = {
1796 .name = "cpuset",
1797 .create = cpuset_create,
cf417141 1798 .destroy = cpuset_destroy,
8793d854
PM
1799 .can_attach = cpuset_can_attach,
1800 .attach = cpuset_attach,
1801 .populate = cpuset_populate,
1802 .post_clone = cpuset_post_clone,
1803 .subsys_id = cpuset_subsys_id,
1804 .early_init = 1,
1805};
1806
c417f024
PJ
1807/*
1808 * cpuset_init_early - just enough so that the calls to
1809 * cpuset_update_task_memory_state() in early init code
1810 * are harmless.
1811 */
1812
1813int __init cpuset_init_early(void)
1814{
8793d854 1815 top_cpuset.mems_generation = cpuset_mems_generation++;
c417f024
PJ
1816 return 0;
1817}
1818
8793d854 1819
1da177e4
LT
1820/**
1821 * cpuset_init - initialize cpusets at system boot
1822 *
1823 * Description: Initialize top_cpuset and the cpuset internal file system,
1824 **/
1825
1826int __init cpuset_init(void)
1827{
8793d854 1828 int err = 0;
1da177e4 1829
f9a86fcb
MT
1830 cpus_setall(top_cpuset.cpus_allowed);
1831 nodes_setall(top_cpuset.mems_allowed);
1da177e4 1832
3e0d98b9 1833 fmeter_init(&top_cpuset.fmeter);
151a4420 1834 top_cpuset.mems_generation = cpuset_mems_generation++;
029190c5 1835 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 1836 top_cpuset.relax_domain_level = -1;
1da177e4 1837
1da177e4
LT
1838 err = register_filesystem(&cpuset_fs_type);
1839 if (err < 0)
8793d854
PM
1840 return err;
1841
2341d1b6
LZ
1842 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1843 BUG();
1844
202f72d5 1845 number_of_cpusets = 1;
8793d854 1846 return 0;
1da177e4
LT
1847}
1848
956db3ca
CW
1849/**
1850 * cpuset_do_move_task - move a given task to another cpuset
1851 * @tsk: pointer to task_struct the task to move
1852 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1853 *
1854 * Called by cgroup_scan_tasks() for each task in a cgroup.
1855 * Return nonzero to stop the walk through the tasks.
1856 */
9e0c914c
AB
1857static void cpuset_do_move_task(struct task_struct *tsk,
1858 struct cgroup_scanner *scan)
956db3ca
CW
1859{
1860 struct cpuset_hotplug_scanner *chsp;
1861
1862 chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
1863 cgroup_attach_task(chsp->to, tsk);
1864}
1865
1866/**
1867 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1868 * @from: cpuset in which the tasks currently reside
1869 * @to: cpuset to which the tasks will be moved
1870 *
c8d9c90c
PJ
1871 * Called with cgroup_mutex held
1872 * callback_mutex must not be held, as cpuset_attach() will take it.
956db3ca
CW
1873 *
1874 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1875 * calling callback functions for each.
1876 */
1877static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1878{
1879 struct cpuset_hotplug_scanner scan;
1880
1881 scan.scan.cg = from->css.cgroup;
1882 scan.scan.test_task = NULL; /* select all tasks in cgroup */
1883 scan.scan.process_task = cpuset_do_move_task;
1884 scan.scan.heap = NULL;
1885 scan.to = to->css.cgroup;
1886
da5ef6bb 1887 if (cgroup_scan_tasks(&scan.scan))
956db3ca
CW
1888 printk(KERN_ERR "move_member_tasks_to_cpuset: "
1889 "cgroup_scan_tasks failed\n");
1890}
1891
b1aac8bb 1892/*
cf417141 1893 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
1894 * or memory nodes, we need to walk over the cpuset hierarchy,
1895 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
1896 * last CPU or node from a cpuset, then move the tasks in the empty
1897 * cpuset to its next-highest non-empty parent.
b1aac8bb 1898 *
c8d9c90c
PJ
1899 * Called with cgroup_mutex held
1900 * callback_mutex must not be held, as cpuset_attach() will take it.
b1aac8bb 1901 */
956db3ca
CW
1902static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1903{
1904 struct cpuset *parent;
1905
c8d9c90c
PJ
1906 /*
1907 * The cgroup's css_sets list is in use if there are tasks
1908 * in the cpuset; the list is empty if there are none;
1909 * the cs->css.refcnt seems always 0.
1910 */
956db3ca
CW
1911 if (list_empty(&cs->css.cgroup->css_sets))
1912 return;
b1aac8bb 1913
956db3ca
CW
1914 /*
1915 * Find its next-highest non-empty parent, (top cpuset
1916 * has online cpus, so can't be empty).
1917 */
1918 parent = cs->parent;
b4501295
PJ
1919 while (cpus_empty(parent->cpus_allowed) ||
1920 nodes_empty(parent->mems_allowed))
956db3ca 1921 parent = parent->parent;
956db3ca
CW
1922
1923 move_member_tasks_to_cpuset(cs, parent);
1924}
1925
1926/*
1927 * Walk the specified cpuset subtree and look for empty cpusets.
1928 * The tasks of such cpuset must be moved to a parent cpuset.
1929 *
2df167a3 1930 * Called with cgroup_mutex held. We take callback_mutex to modify
956db3ca
CW
1931 * cpus_allowed and mems_allowed.
1932 *
1933 * This walk processes the tree from top to bottom, completing one layer
1934 * before dropping down to the next. It always processes a node before
1935 * any of its children.
1936 *
1937 * For now, since we lack memory hot unplug, we'll never see a cpuset
1938 * that has tasks along with an empty 'mems'. But if we did see such
1939 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
1940 */
d294eb83 1941static void scan_for_empty_cpusets(struct cpuset *root)
b1aac8bb 1942{
8d1e6266 1943 LIST_HEAD(queue);
956db3ca
CW
1944 struct cpuset *cp; /* scans cpusets being updated */
1945 struct cpuset *child; /* scans child cpusets of cp */
8793d854 1946 struct cgroup *cont;
f9b4fb8d 1947 nodemask_t oldmems;
b1aac8bb 1948
956db3ca
CW
1949 list_add_tail((struct list_head *)&root->stack_list, &queue);
1950
956db3ca 1951 while (!list_empty(&queue)) {
8d1e6266 1952 cp = list_first_entry(&queue, struct cpuset, stack_list);
956db3ca
CW
1953 list_del(queue.next);
1954 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
1955 child = cgroup_cs(cont);
1956 list_add_tail(&child->stack_list, &queue);
1957 }
b4501295
PJ
1958
1959 /* Continue past cpusets with all cpus, mems online */
1960 if (cpus_subset(cp->cpus_allowed, cpu_online_map) &&
1961 nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
1962 continue;
1963
f9b4fb8d
MX
1964 oldmems = cp->mems_allowed;
1965
956db3ca 1966 /* Remove offline cpus and mems from this cpuset. */
b4501295 1967 mutex_lock(&callback_mutex);
956db3ca
CW
1968 cpus_and(cp->cpus_allowed, cp->cpus_allowed, cpu_online_map);
1969 nodes_and(cp->mems_allowed, cp->mems_allowed,
1970 node_states[N_HIGH_MEMORY]);
b4501295
PJ
1971 mutex_unlock(&callback_mutex);
1972
1973 /* Move tasks from the empty cpuset to a parent */
c8d9c90c 1974 if (cpus_empty(cp->cpus_allowed) ||
b4501295 1975 nodes_empty(cp->mems_allowed))
956db3ca 1976 remove_tasks_in_empty_cpuset(cp);
f9b4fb8d 1977 else {
4e74339a 1978 update_tasks_cpumask(cp, NULL);
f9b4fb8d
MX
1979 update_tasks_nodemask(cp, &oldmems);
1980 }
b1aac8bb
PJ
1981 }
1982}
1983
4c4d50f7
PJ
1984/*
1985 * The top_cpuset tracks what CPUs and Memory Nodes are online,
1986 * period. This is necessary in order to make cpusets transparent
1987 * (of no affect) on systems that are actively using CPU hotplug
1988 * but making no active use of cpusets.
1989 *
38837fc7
PJ
1990 * This routine ensures that top_cpuset.cpus_allowed tracks
1991 * cpu_online_map on each CPU hotplug (cpuhp) event.
cf417141
MK
1992 *
1993 * Called within get_online_cpus(). Needs to call cgroup_lock()
1994 * before calling generate_sched_domains().
4c4d50f7 1995 */
cf417141 1996static int cpuset_track_online_cpus(struct notifier_block *unused_nb,
029190c5 1997 unsigned long phase, void *unused_cpu)
4c4d50f7 1998{
cf417141
MK
1999 struct sched_domain_attr *attr;
2000 cpumask_t *doms;
2001 int ndoms;
2002
3e84050c 2003 switch (phase) {
3e84050c
DA
2004 case CPU_ONLINE:
2005 case CPU_ONLINE_FROZEN:
2006 case CPU_DEAD:
2007 case CPU_DEAD_FROZEN:
3e84050c 2008 break;
cf417141 2009
3e84050c 2010 default:
ac076758 2011 return NOTIFY_DONE;
3e84050c 2012 }
ac076758 2013
cf417141
MK
2014 cgroup_lock();
2015 top_cpuset.cpus_allowed = cpu_online_map;
2016 scan_for_empty_cpusets(&top_cpuset);
2017 ndoms = generate_sched_domains(&doms, &attr);
2018 cgroup_unlock();
2019
2020 /* Have scheduler rebuild the domains */
2021 partition_sched_domains(ndoms, doms, attr);
2022
3e84050c 2023 return NOTIFY_OK;
4c4d50f7 2024}
4c4d50f7 2025
b1aac8bb 2026#ifdef CONFIG_MEMORY_HOTPLUG
38837fc7 2027/*
0e1e7c7a 2028 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
cf417141
MK
2029 * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
2030 * See also the previous routine cpuset_track_online_cpus().
38837fc7 2031 */
f481891f
MX
2032static int cpuset_track_online_nodes(struct notifier_block *self,
2033 unsigned long action, void *arg)
38837fc7 2034{
cf417141 2035 cgroup_lock();
f481891f
MX
2036 switch (action) {
2037 case MEM_ONLINE:
2038 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2039 break;
2040 case MEM_OFFLINE:
2041 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2042 scan_for_empty_cpusets(&top_cpuset);
2043 break;
2044 default:
2045 break;
2046 }
cf417141 2047 cgroup_unlock();
f481891f 2048 return NOTIFY_OK;
38837fc7
PJ
2049}
2050#endif
2051
1da177e4
LT
2052/**
2053 * cpuset_init_smp - initialize cpus_allowed
2054 *
2055 * Description: Finish top cpuset after cpu, node maps are initialized
2056 **/
2057
2058void __init cpuset_init_smp(void)
2059{
2060 top_cpuset.cpus_allowed = cpu_online_map;
0e1e7c7a 2061 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
4c4d50f7 2062
cf417141 2063 hotcpu_notifier(cpuset_track_online_cpus, 0);
f481891f 2064 hotplug_memory_notifier(cpuset_track_online_nodes, 10);
1da177e4
LT
2065}
2066
2067/**
1da177e4
LT
2068 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2069 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
f9a86fcb 2070 * @pmask: pointer to cpumask_t variable to receive cpus_allowed set.
1da177e4
LT
2071 *
2072 * Description: Returns the cpumask_t cpus_allowed of the cpuset
2073 * attached to the specified @tsk. Guaranteed to return some non-empty
2074 * subset of cpu_online_map, even if this means going outside the
2075 * tasks cpuset.
2076 **/
2077
f9a86fcb 2078void cpuset_cpus_allowed(struct task_struct *tsk, cpumask_t *pmask)
1da177e4 2079{
3d3f26a7 2080 mutex_lock(&callback_mutex);
f9a86fcb 2081 cpuset_cpus_allowed_locked(tsk, pmask);
470fd646 2082 mutex_unlock(&callback_mutex);
470fd646
CW
2083}
2084
2085/**
2086 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
2df167a3 2087 * Must be called with callback_mutex held.
470fd646 2088 **/
f9a86fcb 2089void cpuset_cpus_allowed_locked(struct task_struct *tsk, cpumask_t *pmask)
470fd646 2090{
909d75a3 2091 task_lock(tsk);
f9a86fcb 2092 guarantee_online_cpus(task_cs(tsk), pmask);
909d75a3 2093 task_unlock(tsk);
1da177e4
LT
2094}
2095
2096void cpuset_init_current_mems_allowed(void)
2097{
f9a86fcb 2098 nodes_setall(current->mems_allowed);
1da177e4
LT
2099}
2100
909d75a3
PJ
2101/**
2102 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2103 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2104 *
2105 * Description: Returns the nodemask_t mems_allowed of the cpuset
2106 * attached to the specified @tsk. Guaranteed to return some non-empty
0e1e7c7a 2107 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
909d75a3
PJ
2108 * tasks cpuset.
2109 **/
2110
2111nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2112{
2113 nodemask_t mask;
2114
3d3f26a7 2115 mutex_lock(&callback_mutex);
909d75a3 2116 task_lock(tsk);
8793d854 2117 guarantee_online_mems(task_cs(tsk), &mask);
909d75a3 2118 task_unlock(tsk);
3d3f26a7 2119 mutex_unlock(&callback_mutex);
909d75a3
PJ
2120
2121 return mask;
2122}
2123
d9fd8a6d 2124/**
19770b32
MG
2125 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2126 * @nodemask: the nodemask to be checked
d9fd8a6d 2127 *
19770b32 2128 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2129 */
19770b32 2130int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2131{
19770b32 2132 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2133}
2134
9bf2229f 2135/*
78608366
PM
2136 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2137 * mem_hardwall ancestor to the specified cpuset. Call holding
2138 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2139 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2140 */
78608366 2141static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
9bf2229f 2142{
78608366 2143 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
9bf2229f
PJ
2144 cs = cs->parent;
2145 return cs;
2146}
2147
d9fd8a6d 2148/**
02a0e53d 2149 * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
9bf2229f 2150 * @z: is this zone on an allowed node?
02a0e53d 2151 * @gfp_mask: memory allocation flags
d9fd8a6d 2152 *
02a0e53d
PJ
2153 * If we're in interrupt, yes, we can always allocate. If
2154 * __GFP_THISNODE is set, yes, we can always allocate. If zone
9bf2229f
PJ
2155 * z's node is in our tasks mems_allowed, yes. If it's not a
2156 * __GFP_HARDWALL request and this zone's nodes is in the nearest
78608366 2157 * hardwalled cpuset ancestor to this tasks cpuset, yes.
c596d9f3
DR
2158 * If the task has been OOM killed and has access to memory reserves
2159 * as specified by the TIF_MEMDIE flag, yes.
9bf2229f
PJ
2160 * Otherwise, no.
2161 *
02a0e53d
PJ
2162 * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
2163 * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
2164 * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
2165 * from an enclosing cpuset.
2166 *
2167 * cpuset_zone_allowed_hardwall() only handles the simpler case of
2168 * hardwall cpusets, and never sleeps.
2169 *
2170 * The __GFP_THISNODE placement logic is really handled elsewhere,
2171 * by forcibly using a zonelist starting at a specified node, and by
2172 * (in get_page_from_freelist()) refusing to consider the zones for
2173 * any node on the zonelist except the first. By the time any such
2174 * calls get to this routine, we should just shut up and say 'yes'.
2175 *
9bf2229f 2176 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2177 * and do not allow allocations outside the current tasks cpuset
2178 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2179 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2180 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2181 *
02a0e53d
PJ
2182 * Scanning up parent cpusets requires callback_mutex. The
2183 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2184 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2185 * current tasks mems_allowed came up empty on the first pass over
2186 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2187 * cpuset are short of memory, might require taking the callback_mutex
2188 * mutex.
9bf2229f 2189 *
36be57ff 2190 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2191 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2192 * so no allocation on a node outside the cpuset is allowed (unless
2193 * in interrupt, of course).
36be57ff
PJ
2194 *
2195 * The second pass through get_page_from_freelist() doesn't even call
2196 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2197 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2198 * in alloc_flags. That logic and the checks below have the combined
2199 * affect that:
9bf2229f
PJ
2200 * in_interrupt - any node ok (current task context irrelevant)
2201 * GFP_ATOMIC - any node ok
c596d9f3 2202 * TIF_MEMDIE - any node ok
78608366 2203 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2204 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2205 *
2206 * Rule:
02a0e53d 2207 * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2208 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2209 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2210 */
9bf2229f 2211
02a0e53d 2212int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
1da177e4 2213{
9bf2229f
PJ
2214 int node; /* node that zone z is on */
2215 const struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2216 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2217
9b819d20 2218 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2219 return 1;
89fa3024 2220 node = zone_to_nid(z);
92d1dbd2 2221 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2222 if (node_isset(node, current->mems_allowed))
2223 return 1;
c596d9f3
DR
2224 /*
2225 * Allow tasks that have access to memory reserves because they have
2226 * been OOM killed to get memory anywhere.
2227 */
2228 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2229 return 1;
9bf2229f
PJ
2230 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2231 return 0;
2232
5563e770
BP
2233 if (current->flags & PF_EXITING) /* Let dying task have memory */
2234 return 1;
2235
9bf2229f 2236 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2237 mutex_lock(&callback_mutex);
053199ed 2238
053199ed 2239 task_lock(current);
78608366 2240 cs = nearest_hardwall_ancestor(task_cs(current));
053199ed
PJ
2241 task_unlock(current);
2242
9bf2229f 2243 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 2244 mutex_unlock(&callback_mutex);
9bf2229f 2245 return allowed;
1da177e4
LT
2246}
2247
02a0e53d
PJ
2248/*
2249 * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
2250 * @z: is this zone on an allowed node?
2251 * @gfp_mask: memory allocation flags
2252 *
2253 * If we're in interrupt, yes, we can always allocate.
2254 * If __GFP_THISNODE is set, yes, we can always allocate. If zone
c596d9f3
DR
2255 * z's node is in our tasks mems_allowed, yes. If the task has been
2256 * OOM killed and has access to memory reserves as specified by the
2257 * TIF_MEMDIE flag, yes. Otherwise, no.
02a0e53d
PJ
2258 *
2259 * The __GFP_THISNODE placement logic is really handled elsewhere,
2260 * by forcibly using a zonelist starting at a specified node, and by
2261 * (in get_page_from_freelist()) refusing to consider the zones for
2262 * any node on the zonelist except the first. By the time any such
2263 * calls get to this routine, we should just shut up and say 'yes'.
2264 *
2265 * Unlike the cpuset_zone_allowed_softwall() variant, above,
2266 * this variant requires that the zone be in the current tasks
2267 * mems_allowed or that we're in interrupt. It does not scan up the
2268 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2269 * It never sleeps.
2270 */
2271
2272int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
2273{
2274 int node; /* node that zone z is on */
2275
2276 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2277 return 1;
2278 node = zone_to_nid(z);
2279 if (node_isset(node, current->mems_allowed))
2280 return 1;
dedf8b79
DW
2281 /*
2282 * Allow tasks that have access to memory reserves because they have
2283 * been OOM killed to get memory anywhere.
2284 */
2285 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2286 return 1;
02a0e53d
PJ
2287 return 0;
2288}
2289
505970b9
PJ
2290/**
2291 * cpuset_lock - lock out any changes to cpuset structures
2292 *
3d3f26a7 2293 * The out of memory (oom) code needs to mutex_lock cpusets
505970b9 2294 * from being changed while it scans the tasklist looking for a
3d3f26a7 2295 * task in an overlapping cpuset. Expose callback_mutex via this
505970b9
PJ
2296 * cpuset_lock() routine, so the oom code can lock it, before
2297 * locking the task list. The tasklist_lock is a spinlock, so
3d3f26a7 2298 * must be taken inside callback_mutex.
505970b9
PJ
2299 */
2300
2301void cpuset_lock(void)
2302{
3d3f26a7 2303 mutex_lock(&callback_mutex);
505970b9
PJ
2304}
2305
2306/**
2307 * cpuset_unlock - release lock on cpuset changes
2308 *
2309 * Undo the lock taken in a previous cpuset_lock() call.
2310 */
2311
2312void cpuset_unlock(void)
2313{
3d3f26a7 2314 mutex_unlock(&callback_mutex);
505970b9
PJ
2315}
2316
825a46af
PJ
2317/**
2318 * cpuset_mem_spread_node() - On which node to begin search for a page
2319 *
2320 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2321 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2322 * and if the memory allocation used cpuset_mem_spread_node()
2323 * to determine on which node to start looking, as it will for
2324 * certain page cache or slab cache pages such as used for file
2325 * system buffers and inode caches, then instead of starting on the
2326 * local node to look for a free page, rather spread the starting
2327 * node around the tasks mems_allowed nodes.
2328 *
2329 * We don't have to worry about the returned node being offline
2330 * because "it can't happen", and even if it did, it would be ok.
2331 *
2332 * The routines calling guarantee_online_mems() are careful to
2333 * only set nodes in task->mems_allowed that are online. So it
2334 * should not be possible for the following code to return an
2335 * offline node. But if it did, that would be ok, as this routine
2336 * is not returning the node where the allocation must be, only
2337 * the node where the search should start. The zonelist passed to
2338 * __alloc_pages() will include all nodes. If the slab allocator
2339 * is passed an offline node, it will fall back to the local node.
2340 * See kmem_cache_alloc_node().
2341 */
2342
2343int cpuset_mem_spread_node(void)
2344{
2345 int node;
2346
2347 node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
2348 if (node == MAX_NUMNODES)
2349 node = first_node(current->mems_allowed);
2350 current->cpuset_mem_spread_rotor = node;
2351 return node;
2352}
2353EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2354
ef08e3b4 2355/**
bbe373f2
DR
2356 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2357 * @tsk1: pointer to task_struct of some task.
2358 * @tsk2: pointer to task_struct of some other task.
2359 *
2360 * Description: Return true if @tsk1's mems_allowed intersects the
2361 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2362 * one of the task's memory usage might impact the memory available
2363 * to the other.
ef08e3b4
PJ
2364 **/
2365
bbe373f2
DR
2366int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2367 const struct task_struct *tsk2)
ef08e3b4 2368{
bbe373f2 2369 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2370}
2371
75aa1994
DR
2372/**
2373 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2374 * @task: pointer to task_struct of some task.
2375 *
2376 * Description: Prints @task's name, cpuset name, and cached copy of its
2377 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2378 * dereferencing task_cs(task).
2379 */
2380void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2381{
2382 struct dentry *dentry;
2383
2384 dentry = task_cs(tsk)->css.cgroup->dentry;
2385 spin_lock(&cpuset_buffer_lock);
2386 snprintf(cpuset_name, CPUSET_NAME_LEN,
2387 dentry ? (const char *)dentry->d_name.name : "/");
2388 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2389 tsk->mems_allowed);
2390 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2391 tsk->comm, cpuset_name, cpuset_nodelist);
2392 spin_unlock(&cpuset_buffer_lock);
2393}
2394
3e0d98b9
PJ
2395/*
2396 * Collection of memory_pressure is suppressed unless
2397 * this flag is enabled by writing "1" to the special
2398 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2399 */
2400
c5b2aff8 2401int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2402
2403/**
2404 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2405 *
2406 * Keep a running average of the rate of synchronous (direct)
2407 * page reclaim efforts initiated by tasks in each cpuset.
2408 *
2409 * This represents the rate at which some task in the cpuset
2410 * ran low on memory on all nodes it was allowed to use, and
2411 * had to enter the kernels page reclaim code in an effort to
2412 * create more free memory by tossing clean pages or swapping
2413 * or writing dirty pages.
2414 *
2415 * Display to user space in the per-cpuset read-only file
2416 * "memory_pressure". Value displayed is an integer
2417 * representing the recent rate of entry into the synchronous
2418 * (direct) page reclaim by any task attached to the cpuset.
2419 **/
2420
2421void __cpuset_memory_pressure_bump(void)
2422{
3e0d98b9 2423 task_lock(current);
8793d854 2424 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2425 task_unlock(current);
2426}
2427
8793d854 2428#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2429/*
2430 * proc_cpuset_show()
2431 * - Print tasks cpuset path into seq_file.
2432 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2433 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2434 * doesn't really matter if tsk->cpuset changes after we read it,
c8d9c90c 2435 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2df167a3 2436 * anyway.
1da177e4 2437 */
029190c5 2438static int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2439{
13b41b09 2440 struct pid *pid;
1da177e4
LT
2441 struct task_struct *tsk;
2442 char *buf;
8793d854 2443 struct cgroup_subsys_state *css;
99f89551 2444 int retval;
1da177e4 2445
99f89551 2446 retval = -ENOMEM;
1da177e4
LT
2447 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2448 if (!buf)
99f89551
EB
2449 goto out;
2450
2451 retval = -ESRCH;
13b41b09
EB
2452 pid = m->private;
2453 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2454 if (!tsk)
2455 goto out_free;
1da177e4 2456
99f89551 2457 retval = -EINVAL;
8793d854
PM
2458 cgroup_lock();
2459 css = task_subsys_state(tsk, cpuset_subsys_id);
2460 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
1da177e4 2461 if (retval < 0)
99f89551 2462 goto out_unlock;
1da177e4
LT
2463 seq_puts(m, buf);
2464 seq_putc(m, '\n');
99f89551 2465out_unlock:
8793d854 2466 cgroup_unlock();
99f89551
EB
2467 put_task_struct(tsk);
2468out_free:
1da177e4 2469 kfree(buf);
99f89551 2470out:
1da177e4
LT
2471 return retval;
2472}
2473
2474static int cpuset_open(struct inode *inode, struct file *file)
2475{
13b41b09
EB
2476 struct pid *pid = PROC_I(inode)->pid;
2477 return single_open(file, proc_cpuset_show, pid);
1da177e4
LT
2478}
2479
9a32144e 2480const struct file_operations proc_cpuset_operations = {
1da177e4
LT
2481 .open = cpuset_open,
2482 .read = seq_read,
2483 .llseek = seq_lseek,
2484 .release = single_release,
2485};
8793d854 2486#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4
LT
2487
2488/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2489void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2490{
2491 seq_printf(m, "Cpus_allowed:\t");
30e8e136 2492 seq_cpumask(m, &task->cpus_allowed);
df5f8314 2493 seq_printf(m, "\n");
39106dcf 2494 seq_printf(m, "Cpus_allowed_list:\t");
30e8e136 2495 seq_cpumask_list(m, &task->cpus_allowed);
39106dcf 2496 seq_printf(m, "\n");
df5f8314 2497 seq_printf(m, "Mems_allowed:\t");
30e8e136 2498 seq_nodemask(m, &task->mems_allowed);
df5f8314 2499 seq_printf(m, "\n");
39106dcf 2500 seq_printf(m, "Mems_allowed_list:\t");
30e8e136 2501 seq_nodemask_list(m, &task->mems_allowed);
39106dcf 2502 seq_printf(m, "\n");
1da177e4 2503}