]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/cpuset.c
cpusets: replace zone allowed functions with node allowed
[net-next-2.6.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
1da177e4
LT
40#include <linux/module.h>
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
58#include <asm/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca
CW
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
1da177e4 62
f90d4118
MX
63/*
64 * Workqueue for cpuset related tasks.
65 *
66 * Using kevent workqueue may cause deadlock when memory_migrate
67 * is set. So we create a separate workqueue thread for cpuset.
68 */
69static struct workqueue_struct *cpuset_wq;
70
202f72d5
PJ
71/*
72 * Tracks how many cpusets are currently defined in system.
73 * When there is only one cpuset (the root cpuset) we can
74 * short circuit some hooks.
75 */
7edc5962 76int number_of_cpusets __read_mostly;
202f72d5 77
2df167a3 78/* Forward declare cgroup structures */
8793d854
PM
79struct cgroup_subsys cpuset_subsys;
80struct cpuset;
81
3e0d98b9
PJ
82/* See "Frequency meter" comments, below. */
83
84struct fmeter {
85 int cnt; /* unprocessed events count */
86 int val; /* most recent output value */
87 time_t time; /* clock (secs) when val computed */
88 spinlock_t lock; /* guards read or write of above */
89};
90
1da177e4 91struct cpuset {
8793d854
PM
92 struct cgroup_subsys_state css;
93
1da177e4 94 unsigned long flags; /* "unsigned long" so bitops work */
300ed6cb 95 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
1da177e4
LT
96 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
97
1da177e4 98 struct cpuset *parent; /* my parent */
1da177e4
LT
99
100 /*
101 * Copy of global cpuset_mems_generation as of the most
102 * recent time this cpuset changed its mems_allowed.
103 */
3e0d98b9
PJ
104 int mems_generation;
105
106 struct fmeter fmeter; /* memory_pressure filter */
029190c5
PJ
107
108 /* partition number for rebuild_sched_domains() */
109 int pn;
956db3ca 110
1d3504fc
HS
111 /* for custom sched domain */
112 int relax_domain_level;
113
956db3ca
CW
114 /* used for walking a cpuset heirarchy */
115 struct list_head stack_list;
1da177e4
LT
116};
117
8793d854
PM
118/* Retrieve the cpuset for a cgroup */
119static inline struct cpuset *cgroup_cs(struct cgroup *cont)
120{
121 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
122 struct cpuset, css);
123}
124
125/* Retrieve the cpuset for a task */
126static inline struct cpuset *task_cs(struct task_struct *task)
127{
128 return container_of(task_subsys_state(task, cpuset_subsys_id),
129 struct cpuset, css);
130}
8793d854 131
1da177e4
LT
132/* bits in struct cpuset flags field */
133typedef enum {
134 CS_CPU_EXCLUSIVE,
135 CS_MEM_EXCLUSIVE,
78608366 136 CS_MEM_HARDWALL,
45b07ef3 137 CS_MEMORY_MIGRATE,
029190c5 138 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
139 CS_SPREAD_PAGE,
140 CS_SPREAD_SLAB,
1da177e4
LT
141} cpuset_flagbits_t;
142
143/* convenient tests for these bits */
144static inline int is_cpu_exclusive(const struct cpuset *cs)
145{
7b5b9ef0 146 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
147}
148
149static inline int is_mem_exclusive(const struct cpuset *cs)
150{
7b5b9ef0 151 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
152}
153
78608366
PM
154static inline int is_mem_hardwall(const struct cpuset *cs)
155{
156 return test_bit(CS_MEM_HARDWALL, &cs->flags);
157}
158
029190c5
PJ
159static inline int is_sched_load_balance(const struct cpuset *cs)
160{
161 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
162}
163
45b07ef3
PJ
164static inline int is_memory_migrate(const struct cpuset *cs)
165{
7b5b9ef0 166 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
167}
168
825a46af
PJ
169static inline int is_spread_page(const struct cpuset *cs)
170{
171 return test_bit(CS_SPREAD_PAGE, &cs->flags);
172}
173
174static inline int is_spread_slab(const struct cpuset *cs)
175{
176 return test_bit(CS_SPREAD_SLAB, &cs->flags);
177}
178
1da177e4 179/*
151a4420 180 * Increment this integer everytime any cpuset changes its
1da177e4
LT
181 * mems_allowed value. Users of cpusets can track this generation
182 * number, and avoid having to lock and reload mems_allowed unless
183 * the cpuset they're using changes generation.
184 *
2df167a3 185 * A single, global generation is needed because cpuset_attach_task() could
1da177e4
LT
186 * reattach a task to a different cpuset, which must not have its
187 * generation numbers aliased with those of that tasks previous cpuset.
188 *
189 * Generations are needed for mems_allowed because one task cannot
2df167a3 190 * modify another's memory placement. So we must enable every task,
1da177e4
LT
191 * on every visit to __alloc_pages(), to efficiently check whether
192 * its current->cpuset->mems_allowed has changed, requiring an update
193 * of its current->mems_allowed.
151a4420 194 *
2df167a3 195 * Since writes to cpuset_mems_generation are guarded by the cgroup lock
151a4420 196 * there is no need to mark it atomic.
1da177e4 197 */
151a4420 198static int cpuset_mems_generation;
1da177e4
LT
199
200static struct cpuset top_cpuset = {
201 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
202};
203
1da177e4 204/*
2df167a3
PM
205 * There are two global mutexes guarding cpuset structures. The first
206 * is the main control groups cgroup_mutex, accessed via
207 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
208 * callback_mutex, below. They can nest. It is ok to first take
209 * cgroup_mutex, then nest callback_mutex. We also require taking
210 * task_lock() when dereferencing a task's cpuset pointer. See "The
211 * task_lock() exception", at the end of this comment.
053199ed 212 *
3d3f26a7 213 * A task must hold both mutexes to modify cpusets. If a task
2df167a3 214 * holds cgroup_mutex, then it blocks others wanting that mutex,
3d3f26a7 215 * ensuring that it is the only task able to also acquire callback_mutex
053199ed
PJ
216 * and be able to modify cpusets. It can perform various checks on
217 * the cpuset structure first, knowing nothing will change. It can
2df167a3 218 * also allocate memory while just holding cgroup_mutex. While it is
053199ed 219 * performing these checks, various callback routines can briefly
3d3f26a7
IM
220 * acquire callback_mutex to query cpusets. Once it is ready to make
221 * the changes, it takes callback_mutex, blocking everyone else.
053199ed
PJ
222 *
223 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 224 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
225 * from one of the callbacks into the cpuset code from within
226 * __alloc_pages().
227 *
3d3f26a7 228 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
229 * access to cpusets.
230 *
231 * The task_struct fields mems_allowed and mems_generation may only
232 * be accessed in the context of that task, so require no locks.
233 *
3d3f26a7 234 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
235 * small pieces of code, such as when reading out possibly multi-word
236 * cpumasks and nodemasks.
237 *
2df167a3
PM
238 * Accessing a task's cpuset should be done in accordance with the
239 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
240 */
241
3d3f26a7 242static DEFINE_MUTEX(callback_mutex);
4247bdc6 243
75aa1994
DR
244/*
245 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
246 * buffers. They are statically allocated to prevent using excess stack
247 * when calling cpuset_print_task_mems_allowed().
248 */
249#define CPUSET_NAME_LEN (128)
250#define CPUSET_NODELIST_LEN (256)
251static char cpuset_name[CPUSET_NAME_LEN];
252static char cpuset_nodelist[CPUSET_NODELIST_LEN];
253static DEFINE_SPINLOCK(cpuset_buffer_lock);
254
cf417141
MK
255/*
256 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 257 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
258 * silently switch it to mount "cgroup" instead
259 */
454e2398
DH
260static int cpuset_get_sb(struct file_system_type *fs_type,
261 int flags, const char *unused_dev_name,
262 void *data, struct vfsmount *mnt)
1da177e4 263{
8793d854
PM
264 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
265 int ret = -ENODEV;
266 if (cgroup_fs) {
267 char mountopts[] =
268 "cpuset,noprefix,"
269 "release_agent=/sbin/cpuset_release_agent";
270 ret = cgroup_fs->get_sb(cgroup_fs, flags,
271 unused_dev_name, mountopts, mnt);
272 put_filesystem(cgroup_fs);
273 }
274 return ret;
1da177e4
LT
275}
276
277static struct file_system_type cpuset_fs_type = {
278 .name = "cpuset",
279 .get_sb = cpuset_get_sb,
1da177e4
LT
280};
281
1da177e4 282/*
300ed6cb 283 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4
LT
284 * are online. If none are online, walk up the cpuset hierarchy
285 * until we find one that does have some online cpus. If we get
286 * all the way to the top and still haven't found any online cpus,
287 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
288 * task, return cpu_online_map.
289 *
290 * One way or another, we guarantee to return some non-empty subset
291 * of cpu_online_map.
292 *
3d3f26a7 293 * Call with callback_mutex held.
1da177e4
LT
294 */
295
6af866af
LZ
296static void guarantee_online_cpus(const struct cpuset *cs,
297 struct cpumask *pmask)
1da177e4 298{
300ed6cb 299 while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
1da177e4
LT
300 cs = cs->parent;
301 if (cs)
300ed6cb 302 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
1da177e4 303 else
300ed6cb
LZ
304 cpumask_copy(pmask, cpu_online_mask);
305 BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
1da177e4
LT
306}
307
308/*
309 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
310 * are online, with memory. If none are online with memory, walk
311 * up the cpuset hierarchy until we find one that does have some
312 * online mems. If we get all the way to the top and still haven't
313 * found any online mems, return node_states[N_HIGH_MEMORY].
1da177e4
LT
314 *
315 * One way or another, we guarantee to return some non-empty subset
0e1e7c7a 316 * of node_states[N_HIGH_MEMORY].
1da177e4 317 *
3d3f26a7 318 * Call with callback_mutex held.
1da177e4
LT
319 */
320
321static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
322{
0e1e7c7a
CL
323 while (cs && !nodes_intersects(cs->mems_allowed,
324 node_states[N_HIGH_MEMORY]))
1da177e4
LT
325 cs = cs->parent;
326 if (cs)
0e1e7c7a
CL
327 nodes_and(*pmask, cs->mems_allowed,
328 node_states[N_HIGH_MEMORY]);
1da177e4 329 else
0e1e7c7a
CL
330 *pmask = node_states[N_HIGH_MEMORY];
331 BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
1da177e4
LT
332}
333
cf2a473c
PJ
334/**
335 * cpuset_update_task_memory_state - update task memory placement
336 *
337 * If the current tasks cpusets mems_allowed changed behind our
338 * backs, update current->mems_allowed, mems_generation and task NUMA
339 * mempolicy to the new value.
053199ed 340 *
cf2a473c
PJ
341 * Task mempolicy is updated by rebinding it relative to the
342 * current->cpuset if a task has its memory placement changed.
343 * Do not call this routine if in_interrupt().
344 *
4a01c8d5 345 * Call without callback_mutex or task_lock() held. May be
2df167a3
PM
346 * called with or without cgroup_mutex held. Thanks in part to
347 * 'the_top_cpuset_hack', the task's cpuset pointer will never
41f7f60d
DR
348 * be NULL. This routine also might acquire callback_mutex during
349 * call.
053199ed 350 *
6b9c2603
PJ
351 * Reading current->cpuset->mems_generation doesn't need task_lock
352 * to guard the current->cpuset derefence, because it is guarded
2df167a3 353 * from concurrent freeing of current->cpuset using RCU.
6b9c2603
PJ
354 *
355 * The rcu_dereference() is technically probably not needed,
356 * as I don't actually mind if I see a new cpuset pointer but
357 * an old value of mems_generation. However this really only
358 * matters on alpha systems using cpusets heavily. If I dropped
359 * that rcu_dereference(), it would save them a memory barrier.
360 * For all other arch's, rcu_dereference is a no-op anyway, and for
361 * alpha systems not using cpusets, another planned optimization,
362 * avoiding the rcu critical section for tasks in the root cpuset
363 * which is statically allocated, so can't vanish, will make this
364 * irrelevant. Better to use RCU as intended, than to engage in
365 * some cute trick to save a memory barrier that is impossible to
366 * test, for alpha systems using cpusets heavily, which might not
367 * even exist.
053199ed
PJ
368 *
369 * This routine is needed to update the per-task mems_allowed data,
370 * within the tasks context, when it is trying to allocate memory
371 * (in various mm/mempolicy.c routines) and notices that some other
372 * task has been modifying its cpuset.
1da177e4
LT
373 */
374
fe85a998 375void cpuset_update_task_memory_state(void)
1da177e4 376{
053199ed 377 int my_cpusets_mem_gen;
cf2a473c 378 struct task_struct *tsk = current;
6b9c2603 379 struct cpuset *cs;
053199ed 380
13337714
LJ
381 rcu_read_lock();
382 my_cpusets_mem_gen = task_cs(tsk)->mems_generation;
383 rcu_read_unlock();
1da177e4 384
cf2a473c 385 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
3d3f26a7 386 mutex_lock(&callback_mutex);
cf2a473c 387 task_lock(tsk);
8793d854 388 cs = task_cs(tsk); /* Maybe changed when task not locked */
cf2a473c
PJ
389 guarantee_online_mems(cs, &tsk->mems_allowed);
390 tsk->cpuset_mems_generation = cs->mems_generation;
825a46af
PJ
391 if (is_spread_page(cs))
392 tsk->flags |= PF_SPREAD_PAGE;
393 else
394 tsk->flags &= ~PF_SPREAD_PAGE;
395 if (is_spread_slab(cs))
396 tsk->flags |= PF_SPREAD_SLAB;
397 else
398 tsk->flags &= ~PF_SPREAD_SLAB;
cf2a473c 399 task_unlock(tsk);
3d3f26a7 400 mutex_unlock(&callback_mutex);
74cb2155 401 mpol_rebind_task(tsk, &tsk->mems_allowed);
1da177e4
LT
402 }
403}
404
405/*
406 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
407 *
408 * One cpuset is a subset of another if all its allowed CPUs and
409 * Memory Nodes are a subset of the other, and its exclusive flags
2df167a3 410 * are only set if the other's are set. Call holding cgroup_mutex.
1da177e4
LT
411 */
412
413static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
414{
300ed6cb 415 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
416 nodes_subset(p->mems_allowed, q->mems_allowed) &&
417 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
418 is_mem_exclusive(p) <= is_mem_exclusive(q);
419}
420
645fcc9d
LZ
421/**
422 * alloc_trial_cpuset - allocate a trial cpuset
423 * @cs: the cpuset that the trial cpuset duplicates
424 */
425static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
426{
300ed6cb
LZ
427 struct cpuset *trial;
428
429 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
430 if (!trial)
431 return NULL;
432
433 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
434 kfree(trial);
435 return NULL;
436 }
437 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
438
439 return trial;
645fcc9d
LZ
440}
441
442/**
443 * free_trial_cpuset - free the trial cpuset
444 * @trial: the trial cpuset to be freed
445 */
446static void free_trial_cpuset(struct cpuset *trial)
447{
300ed6cb 448 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
449 kfree(trial);
450}
451
1da177e4
LT
452/*
453 * validate_change() - Used to validate that any proposed cpuset change
454 * follows the structural rules for cpusets.
455 *
456 * If we replaced the flag and mask values of the current cpuset
457 * (cur) with those values in the trial cpuset (trial), would
458 * our various subset and exclusive rules still be valid? Presumes
2df167a3 459 * cgroup_mutex held.
1da177e4
LT
460 *
461 * 'cur' is the address of an actual, in-use cpuset. Operations
462 * such as list traversal that depend on the actual address of the
463 * cpuset in the list must use cur below, not trial.
464 *
465 * 'trial' is the address of bulk structure copy of cur, with
466 * perhaps one or more of the fields cpus_allowed, mems_allowed,
467 * or flags changed to new, trial values.
468 *
469 * Return 0 if valid, -errno if not.
470 */
471
472static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
473{
8793d854 474 struct cgroup *cont;
1da177e4
LT
475 struct cpuset *c, *par;
476
477 /* Each of our child cpusets must be a subset of us */
8793d854
PM
478 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
479 if (!is_cpuset_subset(cgroup_cs(cont), trial))
1da177e4
LT
480 return -EBUSY;
481 }
482
483 /* Remaining checks don't apply to root cpuset */
69604067 484 if (cur == &top_cpuset)
1da177e4
LT
485 return 0;
486
69604067
PJ
487 par = cur->parent;
488
1da177e4
LT
489 /* We must be a subset of our parent cpuset */
490 if (!is_cpuset_subset(trial, par))
491 return -EACCES;
492
2df167a3
PM
493 /*
494 * If either I or some sibling (!= me) is exclusive, we can't
495 * overlap
496 */
8793d854
PM
497 list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
498 c = cgroup_cs(cont);
1da177e4
LT
499 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
500 c != cur &&
300ed6cb 501 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
1da177e4
LT
502 return -EINVAL;
503 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
504 c != cur &&
505 nodes_intersects(trial->mems_allowed, c->mems_allowed))
506 return -EINVAL;
507 }
508
020958b6
PJ
509 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
510 if (cgroup_task_count(cur->css.cgroup)) {
300ed6cb 511 if (cpumask_empty(trial->cpus_allowed) ||
020958b6
PJ
512 nodes_empty(trial->mems_allowed)) {
513 return -ENOSPC;
514 }
515 }
516
1da177e4
LT
517 return 0;
518}
519
029190c5 520/*
cf417141 521 * Helper routine for generate_sched_domains().
029190c5
PJ
522 * Do cpusets a, b have overlapping cpus_allowed masks?
523 */
029190c5
PJ
524static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
525{
300ed6cb 526 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
029190c5
PJ
527}
528
1d3504fc
HS
529static void
530update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
531{
1d3504fc
HS
532 if (dattr->relax_domain_level < c->relax_domain_level)
533 dattr->relax_domain_level = c->relax_domain_level;
534 return;
535}
536
f5393693
LJ
537static void
538update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
539{
540 LIST_HEAD(q);
541
542 list_add(&c->stack_list, &q);
543 while (!list_empty(&q)) {
544 struct cpuset *cp;
545 struct cgroup *cont;
546 struct cpuset *child;
547
548 cp = list_first_entry(&q, struct cpuset, stack_list);
549 list_del(q.next);
550
300ed6cb 551 if (cpumask_empty(cp->cpus_allowed))
f5393693
LJ
552 continue;
553
554 if (is_sched_load_balance(cp))
555 update_domain_attr(dattr, cp);
556
557 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
558 child = cgroup_cs(cont);
559 list_add_tail(&child->stack_list, &q);
560 }
561 }
562}
563
029190c5 564/*
cf417141
MK
565 * generate_sched_domains()
566 *
567 * This function builds a partial partition of the systems CPUs
568 * A 'partial partition' is a set of non-overlapping subsets whose
569 * union is a subset of that set.
570 * The output of this function needs to be passed to kernel/sched.c
571 * partition_sched_domains() routine, which will rebuild the scheduler's
572 * load balancing domains (sched domains) as specified by that partial
573 * partition.
029190c5 574 *
45ce80fb 575 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
576 * for a background explanation of this.
577 *
578 * Does not return errors, on the theory that the callers of this
579 * routine would rather not worry about failures to rebuild sched
580 * domains when operating in the severe memory shortage situations
581 * that could cause allocation failures below.
582 *
cf417141 583 * Must be called with cgroup_lock held.
029190c5
PJ
584 *
585 * The three key local variables below are:
aeed6824 586 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
587 * top-down scan of all cpusets. This scan loads a pointer
588 * to each cpuset marked is_sched_load_balance into the
589 * array 'csa'. For our purposes, rebuilding the schedulers
590 * sched domains, we can ignore !is_sched_load_balance cpusets.
591 * csa - (for CpuSet Array) Array of pointers to all the cpusets
592 * that need to be load balanced, for convenient iterative
593 * access by the subsequent code that finds the best partition,
594 * i.e the set of domains (subsets) of CPUs such that the
595 * cpus_allowed of every cpuset marked is_sched_load_balance
596 * is a subset of one of these domains, while there are as
597 * many such domains as possible, each as small as possible.
598 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
599 * the kernel/sched.c routine partition_sched_domains() in a
600 * convenient format, that can be easily compared to the prior
601 * value to determine what partition elements (sched domains)
602 * were changed (added or removed.)
603 *
604 * Finding the best partition (set of domains):
605 * The triple nested loops below over i, j, k scan over the
606 * load balanced cpusets (using the array of cpuset pointers in
607 * csa[]) looking for pairs of cpusets that have overlapping
608 * cpus_allowed, but which don't have the same 'pn' partition
609 * number and gives them in the same partition number. It keeps
610 * looping on the 'restart' label until it can no longer find
611 * any such pairs.
612 *
613 * The union of the cpus_allowed masks from the set of
614 * all cpusets having the same 'pn' value then form the one
615 * element of the partition (one sched domain) to be passed to
616 * partition_sched_domains().
617 */
6af866af
LZ
618/* FIXME: see the FIXME in partition_sched_domains() */
619static int generate_sched_domains(struct cpumask **domains,
cf417141 620 struct sched_domain_attr **attributes)
029190c5 621{
cf417141 622 LIST_HEAD(q); /* queue of cpusets to be scanned */
029190c5
PJ
623 struct cpuset *cp; /* scans q */
624 struct cpuset **csa; /* array of all cpuset ptrs */
625 int csn; /* how many cpuset ptrs in csa so far */
626 int i, j, k; /* indices for partition finding loops */
6af866af 627 struct cpumask *doms; /* resulting partition; i.e. sched domains */
1d3504fc 628 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 629 int ndoms = 0; /* number of sched domains in result */
6af866af 630 int nslot; /* next empty doms[] struct cpumask slot */
029190c5 631
029190c5 632 doms = NULL;
1d3504fc 633 dattr = NULL;
cf417141 634 csa = NULL;
029190c5
PJ
635
636 /* Special case for the 99% of systems with one, full, sched domain */
637 if (is_sched_load_balance(&top_cpuset)) {
6af866af 638 doms = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 639 if (!doms)
cf417141
MK
640 goto done;
641
1d3504fc
HS
642 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
643 if (dattr) {
644 *dattr = SD_ATTR_INIT;
93a65575 645 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 646 }
300ed6cb 647 cpumask_copy(doms, top_cpuset.cpus_allowed);
cf417141
MK
648
649 ndoms = 1;
650 goto done;
029190c5
PJ
651 }
652
029190c5
PJ
653 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
654 if (!csa)
655 goto done;
656 csn = 0;
657
aeed6824
LZ
658 list_add(&top_cpuset.stack_list, &q);
659 while (!list_empty(&q)) {
029190c5
PJ
660 struct cgroup *cont;
661 struct cpuset *child; /* scans child cpusets of cp */
489a5393 662
aeed6824
LZ
663 cp = list_first_entry(&q, struct cpuset, stack_list);
664 list_del(q.next);
665
300ed6cb 666 if (cpumask_empty(cp->cpus_allowed))
489a5393
LJ
667 continue;
668
f5393693
LJ
669 /*
670 * All child cpusets contain a subset of the parent's cpus, so
671 * just skip them, and then we call update_domain_attr_tree()
672 * to calc relax_domain_level of the corresponding sched
673 * domain.
674 */
675 if (is_sched_load_balance(cp)) {
029190c5 676 csa[csn++] = cp;
f5393693
LJ
677 continue;
678 }
489a5393 679
029190c5
PJ
680 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
681 child = cgroup_cs(cont);
aeed6824 682 list_add_tail(&child->stack_list, &q);
029190c5
PJ
683 }
684 }
685
686 for (i = 0; i < csn; i++)
687 csa[i]->pn = i;
688 ndoms = csn;
689
690restart:
691 /* Find the best partition (set of sched domains) */
692 for (i = 0; i < csn; i++) {
693 struct cpuset *a = csa[i];
694 int apn = a->pn;
695
696 for (j = 0; j < csn; j++) {
697 struct cpuset *b = csa[j];
698 int bpn = b->pn;
699
700 if (apn != bpn && cpusets_overlap(a, b)) {
701 for (k = 0; k < csn; k++) {
702 struct cpuset *c = csa[k];
703
704 if (c->pn == bpn)
705 c->pn = apn;
706 }
707 ndoms--; /* one less element */
708 goto restart;
709 }
710 }
711 }
712
cf417141
MK
713 /*
714 * Now we know how many domains to create.
715 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
716 */
6af866af 717 doms = kmalloc(ndoms * cpumask_size(), GFP_KERNEL);
700018e0 718 if (!doms)
cf417141 719 goto done;
cf417141
MK
720
721 /*
722 * The rest of the code, including the scheduler, can deal with
723 * dattr==NULL case. No need to abort if alloc fails.
724 */
1d3504fc 725 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
726
727 for (nslot = 0, i = 0; i < csn; i++) {
728 struct cpuset *a = csa[i];
6af866af 729 struct cpumask *dp;
029190c5
PJ
730 int apn = a->pn;
731
cf417141
MK
732 if (apn < 0) {
733 /* Skip completed partitions */
734 continue;
735 }
736
737 dp = doms + nslot;
738
739 if (nslot == ndoms) {
740 static int warnings = 10;
741 if (warnings) {
742 printk(KERN_WARNING
743 "rebuild_sched_domains confused:"
744 " nslot %d, ndoms %d, csn %d, i %d,"
745 " apn %d\n",
746 nslot, ndoms, csn, i, apn);
747 warnings--;
029190c5 748 }
cf417141
MK
749 continue;
750 }
029190c5 751
6af866af 752 cpumask_clear(dp);
cf417141
MK
753 if (dattr)
754 *(dattr + nslot) = SD_ATTR_INIT;
755 for (j = i; j < csn; j++) {
756 struct cpuset *b = csa[j];
757
758 if (apn == b->pn) {
300ed6cb 759 cpumask_or(dp, dp, b->cpus_allowed);
cf417141
MK
760 if (dattr)
761 update_domain_attr_tree(dattr + nslot, b);
762
763 /* Done with this partition */
764 b->pn = -1;
029190c5 765 }
029190c5 766 }
cf417141 767 nslot++;
029190c5
PJ
768 }
769 BUG_ON(nslot != ndoms);
770
cf417141
MK
771done:
772 kfree(csa);
773
700018e0
LZ
774 /*
775 * Fallback to the default domain if kmalloc() failed.
776 * See comments in partition_sched_domains().
777 */
778 if (doms == NULL)
779 ndoms = 1;
780
cf417141
MK
781 *domains = doms;
782 *attributes = dattr;
783 return ndoms;
784}
785
786/*
787 * Rebuild scheduler domains.
788 *
789 * Call with neither cgroup_mutex held nor within get_online_cpus().
790 * Takes both cgroup_mutex and get_online_cpus().
791 *
792 * Cannot be directly called from cpuset code handling changes
793 * to the cpuset pseudo-filesystem, because it cannot be called
794 * from code that already holds cgroup_mutex.
795 */
796static void do_rebuild_sched_domains(struct work_struct *unused)
797{
798 struct sched_domain_attr *attr;
6af866af 799 struct cpumask *doms;
cf417141
MK
800 int ndoms;
801
86ef5c9a 802 get_online_cpus();
cf417141
MK
803
804 /* Generate domain masks and attrs */
805 cgroup_lock();
806 ndoms = generate_sched_domains(&doms, &attr);
807 cgroup_unlock();
808
809 /* Have scheduler rebuild the domains */
810 partition_sched_domains(ndoms, doms, attr);
811
86ef5c9a 812 put_online_cpus();
cf417141 813}
029190c5 814
cf417141
MK
815static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
816
817/*
818 * Rebuild scheduler domains, asynchronously via workqueue.
819 *
820 * If the flag 'sched_load_balance' of any cpuset with non-empty
821 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
822 * which has that flag enabled, or if any cpuset with a non-empty
823 * 'cpus' is removed, then call this routine to rebuild the
824 * scheduler's dynamic sched domains.
825 *
826 * The rebuild_sched_domains() and partition_sched_domains()
827 * routines must nest cgroup_lock() inside get_online_cpus(),
828 * but such cpuset changes as these must nest that locking the
829 * other way, holding cgroup_lock() for much of the code.
830 *
831 * So in order to avoid an ABBA deadlock, the cpuset code handling
832 * these user changes delegates the actual sched domain rebuilding
833 * to a separate workqueue thread, which ends up processing the
834 * above do_rebuild_sched_domains() function.
835 */
836static void async_rebuild_sched_domains(void)
837{
f90d4118 838 queue_work(cpuset_wq, &rebuild_sched_domains_work);
cf417141
MK
839}
840
841/*
842 * Accomplishes the same scheduler domain rebuild as the above
843 * async_rebuild_sched_domains(), however it directly calls the
844 * rebuild routine synchronously rather than calling it via an
845 * asynchronous work thread.
846 *
847 * This can only be called from code that is not holding
848 * cgroup_mutex (not nested in a cgroup_lock() call.)
849 */
850void rebuild_sched_domains(void)
851{
852 do_rebuild_sched_domains(NULL);
029190c5
PJ
853}
854
58f4790b
CW
855/**
856 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
857 * @tsk: task to test
858 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
859 *
2df167a3 860 * Call with cgroup_mutex held. May take callback_mutex during call.
58f4790b
CW
861 * Called for each task in a cgroup by cgroup_scan_tasks().
862 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
863 * words, if its mask is not equal to its cpuset's mask).
053199ed 864 */
9e0c914c
AB
865static int cpuset_test_cpumask(struct task_struct *tsk,
866 struct cgroup_scanner *scan)
58f4790b 867{
300ed6cb 868 return !cpumask_equal(&tsk->cpus_allowed,
58f4790b
CW
869 (cgroup_cs(scan->cg))->cpus_allowed);
870}
053199ed 871
58f4790b
CW
872/**
873 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
874 * @tsk: task to test
875 * @scan: struct cgroup_scanner containing the cgroup of the task
876 *
877 * Called by cgroup_scan_tasks() for each task in a cgroup whose
878 * cpus_allowed mask needs to be changed.
879 *
880 * We don't need to re-check for the cgroup/cpuset membership, since we're
881 * holding cgroup_lock() at this point.
882 */
9e0c914c
AB
883static void cpuset_change_cpumask(struct task_struct *tsk,
884 struct cgroup_scanner *scan)
58f4790b 885{
300ed6cb 886 set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
58f4790b
CW
887}
888
0b2f630a
MX
889/**
890 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
891 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
4e74339a 892 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a
MX
893 *
894 * Called with cgroup_mutex held
895 *
896 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
897 * calling callback functions for each.
898 *
4e74339a
LZ
899 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
900 * if @heap != NULL.
0b2f630a 901 */
4e74339a 902static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
0b2f630a
MX
903{
904 struct cgroup_scanner scan;
0b2f630a
MX
905
906 scan.cg = cs->css.cgroup;
907 scan.test_task = cpuset_test_cpumask;
908 scan.process_task = cpuset_change_cpumask;
4e74339a
LZ
909 scan.heap = heap;
910 cgroup_scan_tasks(&scan);
0b2f630a
MX
911}
912
58f4790b
CW
913/**
914 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
915 * @cs: the cpuset to consider
916 * @buf: buffer of cpu numbers written to this cpuset
917 */
645fcc9d
LZ
918static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
919 const char *buf)
1da177e4 920{
4e74339a 921 struct ptr_heap heap;
58f4790b
CW
922 int retval;
923 int is_load_balanced;
1da177e4 924
4c4d50f7
PJ
925 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
926 if (cs == &top_cpuset)
927 return -EACCES;
928
6f7f02e7 929 /*
c8d9c90c 930 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
931 * Since cpulist_parse() fails on an empty mask, we special case
932 * that parsing. The validate_change() call ensures that cpusets
933 * with tasks have cpus.
6f7f02e7 934 */
020958b6 935 if (!*buf) {
300ed6cb 936 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 937 } else {
300ed6cb 938 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
939 if (retval < 0)
940 return retval;
37340746 941
300ed6cb 942 if (!cpumask_subset(trialcs->cpus_allowed, cpu_online_mask))
37340746 943 return -EINVAL;
6f7f02e7 944 }
645fcc9d 945 retval = validate_change(cs, trialcs);
85d7b949
DG
946 if (retval < 0)
947 return retval;
029190c5 948
8707d8b8 949 /* Nothing to do if the cpus didn't change */
300ed6cb 950 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 951 return 0;
58f4790b 952
4e74339a
LZ
953 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
954 if (retval)
955 return retval;
956
645fcc9d 957 is_load_balanced = is_sched_load_balance(trialcs);
029190c5 958
3d3f26a7 959 mutex_lock(&callback_mutex);
300ed6cb 960 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
3d3f26a7 961 mutex_unlock(&callback_mutex);
029190c5 962
8707d8b8
PM
963 /*
964 * Scan tasks in the cpuset, and update the cpumasks of any
58f4790b 965 * that need an update.
8707d8b8 966 */
4e74339a
LZ
967 update_tasks_cpumask(cs, &heap);
968
969 heap_free(&heap);
58f4790b 970
8707d8b8 971 if (is_load_balanced)
cf417141 972 async_rebuild_sched_domains();
85d7b949 973 return 0;
1da177e4
LT
974}
975
e4e364e8
PJ
976/*
977 * cpuset_migrate_mm
978 *
979 * Migrate memory region from one set of nodes to another.
980 *
981 * Temporarilly set tasks mems_allowed to target nodes of migration,
982 * so that the migration code can allocate pages on these nodes.
983 *
2df167a3 984 * Call holding cgroup_mutex, so current's cpuset won't change
c8d9c90c 985 * during this call, as manage_mutex holds off any cpuset_attach()
e4e364e8
PJ
986 * calls. Therefore we don't need to take task_lock around the
987 * call to guarantee_online_mems(), as we know no one is changing
2df167a3 988 * our task's cpuset.
e4e364e8
PJ
989 *
990 * Hold callback_mutex around the two modifications of our tasks
991 * mems_allowed to synchronize with cpuset_mems_allowed().
992 *
993 * While the mm_struct we are migrating is typically from some
994 * other task, the task_struct mems_allowed that we are hacking
995 * is for our current task, which must allocate new pages for that
996 * migrating memory region.
997 *
998 * We call cpuset_update_task_memory_state() before hacking
999 * our tasks mems_allowed, so that we are assured of being in
1000 * sync with our tasks cpuset, and in particular, callbacks to
1001 * cpuset_update_task_memory_state() from nested page allocations
1002 * won't see any mismatch of our cpuset and task mems_generation
1003 * values, so won't overwrite our hacked tasks mems_allowed
1004 * nodemask.
1005 */
1006
1007static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1008 const nodemask_t *to)
1009{
1010 struct task_struct *tsk = current;
1011
1012 cpuset_update_task_memory_state();
1013
1014 mutex_lock(&callback_mutex);
1015 tsk->mems_allowed = *to;
1016 mutex_unlock(&callback_mutex);
1017
1018 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
1019
1020 mutex_lock(&callback_mutex);
8793d854 1021 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
e4e364e8
PJ
1022 mutex_unlock(&callback_mutex);
1023}
1024
3b6766fe
LZ
1025/*
1026 * Rebind task's vmas to cpuset's new mems_allowed, and migrate pages to new
1027 * nodes if memory_migrate flag is set. Called with cgroup_mutex held.
1028 */
1029static void cpuset_change_nodemask(struct task_struct *p,
1030 struct cgroup_scanner *scan)
1031{
1032 struct mm_struct *mm;
1033 struct cpuset *cs;
1034 int migrate;
1035 const nodemask_t *oldmem = scan->data;
1036
1037 mm = get_task_mm(p);
1038 if (!mm)
1039 return;
1040
1041 cs = cgroup_cs(scan->cg);
1042 migrate = is_memory_migrate(cs);
1043
1044 mpol_rebind_mm(mm, &cs->mems_allowed);
1045 if (migrate)
1046 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
1047 mmput(mm);
1048}
1049
8793d854
PM
1050static void *cpuset_being_rebound;
1051
0b2f630a
MX
1052/**
1053 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1054 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1055 * @oldmem: old mems_allowed of cpuset cs
010cfac4 1056 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a
MX
1057 *
1058 * Called with cgroup_mutex held
010cfac4
LZ
1059 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1060 * if @heap != NULL.
0b2f630a 1061 */
010cfac4
LZ
1062static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
1063 struct ptr_heap *heap)
1da177e4 1064{
3b6766fe 1065 struct cgroup_scanner scan;
59dac16f 1066
846a16bf 1067 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1068
3b6766fe
LZ
1069 scan.cg = cs->css.cgroup;
1070 scan.test_task = NULL;
1071 scan.process_task = cpuset_change_nodemask;
010cfac4 1072 scan.heap = heap;
3b6766fe 1073 scan.data = (nodemask_t *)oldmem;
4225399a
PJ
1074
1075 /*
3b6766fe
LZ
1076 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1077 * take while holding tasklist_lock. Forks can happen - the
1078 * mpol_dup() cpuset_being_rebound check will catch such forks,
1079 * and rebind their vma mempolicies too. Because we still hold
1080 * the global cgroup_mutex, we know that no other rebind effort
1081 * will be contending for the global variable cpuset_being_rebound.
4225399a 1082 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1083 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1084 */
010cfac4 1085 cgroup_scan_tasks(&scan);
4225399a 1086
2df167a3 1087 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1088 cpuset_being_rebound = NULL;
1da177e4
LT
1089}
1090
0b2f630a
MX
1091/*
1092 * Handle user request to change the 'mems' memory placement
1093 * of a cpuset. Needs to validate the request, update the
1094 * cpusets mems_allowed and mems_generation, and for each
1095 * task in the cpuset, rebind any vma mempolicies and if
1096 * the cpuset is marked 'memory_migrate', migrate the tasks
1097 * pages to the new memory.
1098 *
1099 * Call with cgroup_mutex held. May take callback_mutex during call.
1100 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1101 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1102 * their mempolicies to the cpusets new mems_allowed.
1103 */
645fcc9d
LZ
1104static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1105 const char *buf)
0b2f630a 1106{
0b2f630a
MX
1107 nodemask_t oldmem;
1108 int retval;
010cfac4 1109 struct ptr_heap heap;
0b2f630a
MX
1110
1111 /*
1112 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
1113 * it's read-only
1114 */
1115 if (cs == &top_cpuset)
1116 return -EACCES;
1117
0b2f630a
MX
1118 /*
1119 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1120 * Since nodelist_parse() fails on an empty mask, we special case
1121 * that parsing. The validate_change() call ensures that cpusets
1122 * with tasks have memory.
1123 */
1124 if (!*buf) {
645fcc9d 1125 nodes_clear(trialcs->mems_allowed);
0b2f630a 1126 } else {
645fcc9d 1127 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1128 if (retval < 0)
1129 goto done;
1130
645fcc9d 1131 if (!nodes_subset(trialcs->mems_allowed,
0b2f630a
MX
1132 node_states[N_HIGH_MEMORY]))
1133 return -EINVAL;
1134 }
1135 oldmem = cs->mems_allowed;
645fcc9d 1136 if (nodes_equal(oldmem, trialcs->mems_allowed)) {
0b2f630a
MX
1137 retval = 0; /* Too easy - nothing to do */
1138 goto done;
1139 }
645fcc9d 1140 retval = validate_change(cs, trialcs);
0b2f630a
MX
1141 if (retval < 0)
1142 goto done;
1143
010cfac4
LZ
1144 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1145 if (retval < 0)
1146 goto done;
1147
0b2f630a 1148 mutex_lock(&callback_mutex);
645fcc9d 1149 cs->mems_allowed = trialcs->mems_allowed;
0b2f630a
MX
1150 cs->mems_generation = cpuset_mems_generation++;
1151 mutex_unlock(&callback_mutex);
1152
010cfac4
LZ
1153 update_tasks_nodemask(cs, &oldmem, &heap);
1154
1155 heap_free(&heap);
0b2f630a
MX
1156done:
1157 return retval;
1158}
1159
8793d854
PM
1160int current_cpuset_is_being_rebound(void)
1161{
1162 return task_cs(current) == cpuset_being_rebound;
1163}
1164
5be7a479 1165static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1166{
30e0e178
LZ
1167 if (val < -1 || val >= SD_LV_MAX)
1168 return -EINVAL;
1d3504fc
HS
1169
1170 if (val != cs->relax_domain_level) {
1171 cs->relax_domain_level = val;
300ed6cb
LZ
1172 if (!cpumask_empty(cs->cpus_allowed) &&
1173 is_sched_load_balance(cs))
cf417141 1174 async_rebuild_sched_domains();
1d3504fc
HS
1175 }
1176
1177 return 0;
1178}
1179
1da177e4
LT
1180/*
1181 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1182 * bit: the bit to update (see cpuset_flagbits_t)
1183 * cs: the cpuset to update
1184 * turning_on: whether the flag is being set or cleared
053199ed 1185 *
2df167a3 1186 * Call with cgroup_mutex held.
1da177e4
LT
1187 */
1188
700fe1ab
PM
1189static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1190 int turning_on)
1da177e4 1191{
645fcc9d 1192 struct cpuset *trialcs;
607717a6 1193 int err;
40b6a762 1194 int balance_flag_changed;
1da177e4 1195
645fcc9d
LZ
1196 trialcs = alloc_trial_cpuset(cs);
1197 if (!trialcs)
1198 return -ENOMEM;
1199
1da177e4 1200 if (turning_on)
645fcc9d 1201 set_bit(bit, &trialcs->flags);
1da177e4 1202 else
645fcc9d 1203 clear_bit(bit, &trialcs->flags);
1da177e4 1204
645fcc9d 1205 err = validate_change(cs, trialcs);
85d7b949 1206 if (err < 0)
645fcc9d 1207 goto out;
029190c5 1208
029190c5 1209 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1210 is_sched_load_balance(trialcs));
029190c5 1211
3d3f26a7 1212 mutex_lock(&callback_mutex);
645fcc9d 1213 cs->flags = trialcs->flags;
3d3f26a7 1214 mutex_unlock(&callback_mutex);
85d7b949 1215
300ed6cb 1216 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
cf417141 1217 async_rebuild_sched_domains();
029190c5 1218
645fcc9d
LZ
1219out:
1220 free_trial_cpuset(trialcs);
1221 return err;
1da177e4
LT
1222}
1223
3e0d98b9 1224/*
80f7228b 1225 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1226 *
1227 * These routines manage a digitally filtered, constant time based,
1228 * event frequency meter. There are four routines:
1229 * fmeter_init() - initialize a frequency meter.
1230 * fmeter_markevent() - called each time the event happens.
1231 * fmeter_getrate() - returns the recent rate of such events.
1232 * fmeter_update() - internal routine used to update fmeter.
1233 *
1234 * A common data structure is passed to each of these routines,
1235 * which is used to keep track of the state required to manage the
1236 * frequency meter and its digital filter.
1237 *
1238 * The filter works on the number of events marked per unit time.
1239 * The filter is single-pole low-pass recursive (IIR). The time unit
1240 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1241 * simulate 3 decimal digits of precision (multiplied by 1000).
1242 *
1243 * With an FM_COEF of 933, and a time base of 1 second, the filter
1244 * has a half-life of 10 seconds, meaning that if the events quit
1245 * happening, then the rate returned from the fmeter_getrate()
1246 * will be cut in half each 10 seconds, until it converges to zero.
1247 *
1248 * It is not worth doing a real infinitely recursive filter. If more
1249 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1250 * just compute FM_MAXTICKS ticks worth, by which point the level
1251 * will be stable.
1252 *
1253 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1254 * arithmetic overflow in the fmeter_update() routine.
1255 *
1256 * Given the simple 32 bit integer arithmetic used, this meter works
1257 * best for reporting rates between one per millisecond (msec) and
1258 * one per 32 (approx) seconds. At constant rates faster than one
1259 * per msec it maxes out at values just under 1,000,000. At constant
1260 * rates between one per msec, and one per second it will stabilize
1261 * to a value N*1000, where N is the rate of events per second.
1262 * At constant rates between one per second and one per 32 seconds,
1263 * it will be choppy, moving up on the seconds that have an event,
1264 * and then decaying until the next event. At rates slower than
1265 * about one in 32 seconds, it decays all the way back to zero between
1266 * each event.
1267 */
1268
1269#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1270#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1271#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1272#define FM_SCALE 1000 /* faux fixed point scale */
1273
1274/* Initialize a frequency meter */
1275static void fmeter_init(struct fmeter *fmp)
1276{
1277 fmp->cnt = 0;
1278 fmp->val = 0;
1279 fmp->time = 0;
1280 spin_lock_init(&fmp->lock);
1281}
1282
1283/* Internal meter update - process cnt events and update value */
1284static void fmeter_update(struct fmeter *fmp)
1285{
1286 time_t now = get_seconds();
1287 time_t ticks = now - fmp->time;
1288
1289 if (ticks == 0)
1290 return;
1291
1292 ticks = min(FM_MAXTICKS, ticks);
1293 while (ticks-- > 0)
1294 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1295 fmp->time = now;
1296
1297 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1298 fmp->cnt = 0;
1299}
1300
1301/* Process any previous ticks, then bump cnt by one (times scale). */
1302static void fmeter_markevent(struct fmeter *fmp)
1303{
1304 spin_lock(&fmp->lock);
1305 fmeter_update(fmp);
1306 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1307 spin_unlock(&fmp->lock);
1308}
1309
1310/* Process any previous ticks, then return current value. */
1311static int fmeter_getrate(struct fmeter *fmp)
1312{
1313 int val;
1314
1315 spin_lock(&fmp->lock);
1316 fmeter_update(fmp);
1317 val = fmp->val;
1318 spin_unlock(&fmp->lock);
1319 return val;
1320}
1321
2341d1b6
LZ
1322/* Protected by cgroup_lock */
1323static cpumask_var_t cpus_attach;
1324
2df167a3 1325/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
8793d854
PM
1326static int cpuset_can_attach(struct cgroup_subsys *ss,
1327 struct cgroup *cont, struct task_struct *tsk)
1da177e4 1328{
8793d854 1329 struct cpuset *cs = cgroup_cs(cont);
5771f0a2 1330 int ret = 0;
1da177e4 1331
300ed6cb 1332 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1da177e4 1333 return -ENOSPC;
9985b0ba 1334
5771f0a2 1335 if (tsk->flags & PF_THREAD_BOUND) {
9985b0ba 1336 mutex_lock(&callback_mutex);
300ed6cb 1337 if (!cpumask_equal(&tsk->cpus_allowed, cs->cpus_allowed))
5771f0a2 1338 ret = -EINVAL;
9985b0ba 1339 mutex_unlock(&callback_mutex);
9985b0ba 1340 }
1da177e4 1341
5771f0a2 1342 return ret < 0 ? ret : security_task_setscheduler(tsk, 0, NULL);
8793d854 1343}
1da177e4 1344
8793d854
PM
1345static void cpuset_attach(struct cgroup_subsys *ss,
1346 struct cgroup *cont, struct cgroup *oldcont,
1347 struct task_struct *tsk)
1348{
8793d854
PM
1349 nodemask_t from, to;
1350 struct mm_struct *mm;
1351 struct cpuset *cs = cgroup_cs(cont);
1352 struct cpuset *oldcs = cgroup_cs(oldcont);
9985b0ba 1353 int err;
22fb52dd 1354
f5813d94 1355 if (cs == &top_cpuset) {
2341d1b6 1356 cpumask_copy(cpus_attach, cpu_possible_mask);
f5813d94
MX
1357 } else {
1358 mutex_lock(&callback_mutex);
2341d1b6 1359 guarantee_online_cpus(cs, cpus_attach);
f5813d94
MX
1360 mutex_unlock(&callback_mutex);
1361 }
2341d1b6 1362 err = set_cpus_allowed_ptr(tsk, cpus_attach);
9985b0ba
DR
1363 if (err)
1364 return;
1da177e4 1365
45b07ef3
PJ
1366 from = oldcs->mems_allowed;
1367 to = cs->mems_allowed;
4225399a
PJ
1368 mm = get_task_mm(tsk);
1369 if (mm) {
1370 mpol_rebind_mm(mm, &to);
2741a559 1371 if (is_memory_migrate(cs))
e4e364e8 1372 cpuset_migrate_mm(mm, &from, &to);
4225399a
PJ
1373 mmput(mm);
1374 }
1da177e4
LT
1375}
1376
1377/* The various types of files and directories in a cpuset file system */
1378
1379typedef enum {
45b07ef3 1380 FILE_MEMORY_MIGRATE,
1da177e4
LT
1381 FILE_CPULIST,
1382 FILE_MEMLIST,
1383 FILE_CPU_EXCLUSIVE,
1384 FILE_MEM_EXCLUSIVE,
78608366 1385 FILE_MEM_HARDWALL,
029190c5 1386 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1387 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1388 FILE_MEMORY_PRESSURE_ENABLED,
1389 FILE_MEMORY_PRESSURE,
825a46af
PJ
1390 FILE_SPREAD_PAGE,
1391 FILE_SPREAD_SLAB,
1da177e4
LT
1392} cpuset_filetype_t;
1393
700fe1ab
PM
1394static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1395{
1396 int retval = 0;
1397 struct cpuset *cs = cgroup_cs(cgrp);
1398 cpuset_filetype_t type = cft->private;
1399
e3712395 1400 if (!cgroup_lock_live_group(cgrp))
700fe1ab 1401 return -ENODEV;
700fe1ab
PM
1402
1403 switch (type) {
1da177e4 1404 case FILE_CPU_EXCLUSIVE:
700fe1ab 1405 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1406 break;
1407 case FILE_MEM_EXCLUSIVE:
700fe1ab 1408 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1409 break;
78608366
PM
1410 case FILE_MEM_HARDWALL:
1411 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1412 break;
029190c5 1413 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1414 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1415 break;
45b07ef3 1416 case FILE_MEMORY_MIGRATE:
700fe1ab 1417 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1418 break;
3e0d98b9 1419 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1420 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1421 break;
1422 case FILE_MEMORY_PRESSURE:
1423 retval = -EACCES;
1424 break;
825a46af 1425 case FILE_SPREAD_PAGE:
700fe1ab 1426 retval = update_flag(CS_SPREAD_PAGE, cs, val);
151a4420 1427 cs->mems_generation = cpuset_mems_generation++;
825a46af
PJ
1428 break;
1429 case FILE_SPREAD_SLAB:
700fe1ab 1430 retval = update_flag(CS_SPREAD_SLAB, cs, val);
151a4420 1431 cs->mems_generation = cpuset_mems_generation++;
825a46af 1432 break;
1da177e4
LT
1433 default:
1434 retval = -EINVAL;
700fe1ab 1435 break;
1da177e4 1436 }
8793d854 1437 cgroup_unlock();
1da177e4
LT
1438 return retval;
1439}
1440
5be7a479
PM
1441static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1442{
1443 int retval = 0;
1444 struct cpuset *cs = cgroup_cs(cgrp);
1445 cpuset_filetype_t type = cft->private;
1446
e3712395 1447 if (!cgroup_lock_live_group(cgrp))
5be7a479 1448 return -ENODEV;
e3712395 1449
5be7a479
PM
1450 switch (type) {
1451 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1452 retval = update_relax_domain_level(cs, val);
1453 break;
1454 default:
1455 retval = -EINVAL;
1456 break;
1457 }
1458 cgroup_unlock();
1459 return retval;
1460}
1461
e3712395
PM
1462/*
1463 * Common handling for a write to a "cpus" or "mems" file.
1464 */
1465static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1466 const char *buf)
1467{
1468 int retval = 0;
645fcc9d
LZ
1469 struct cpuset *cs = cgroup_cs(cgrp);
1470 struct cpuset *trialcs;
e3712395
PM
1471
1472 if (!cgroup_lock_live_group(cgrp))
1473 return -ENODEV;
1474
645fcc9d
LZ
1475 trialcs = alloc_trial_cpuset(cs);
1476 if (!trialcs)
1477 return -ENOMEM;
1478
e3712395
PM
1479 switch (cft->private) {
1480 case FILE_CPULIST:
645fcc9d 1481 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1482 break;
1483 case FILE_MEMLIST:
645fcc9d 1484 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1485 break;
1486 default:
1487 retval = -EINVAL;
1488 break;
1489 }
645fcc9d
LZ
1490
1491 free_trial_cpuset(trialcs);
e3712395
PM
1492 cgroup_unlock();
1493 return retval;
1494}
1495
1da177e4
LT
1496/*
1497 * These ascii lists should be read in a single call, by using a user
1498 * buffer large enough to hold the entire map. If read in smaller
1499 * chunks, there is no guarantee of atomicity. Since the display format
1500 * used, list of ranges of sequential numbers, is variable length,
1501 * and since these maps can change value dynamically, one could read
1502 * gibberish by doing partial reads while a list was changing.
1503 * A single large read to a buffer that crosses a page boundary is
1504 * ok, because the result being copied to user land is not recomputed
1505 * across a page fault.
1506 */
1507
1508static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1509{
5a7625df 1510 int ret;
1da177e4 1511
3d3f26a7 1512 mutex_lock(&callback_mutex);
300ed6cb 1513 ret = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
3d3f26a7 1514 mutex_unlock(&callback_mutex);
1da177e4 1515
5a7625df 1516 return ret;
1da177e4
LT
1517}
1518
1519static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1520{
1521 nodemask_t mask;
1522
3d3f26a7 1523 mutex_lock(&callback_mutex);
1da177e4 1524 mask = cs->mems_allowed;
3d3f26a7 1525 mutex_unlock(&callback_mutex);
1da177e4
LT
1526
1527 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1528}
1529
8793d854
PM
1530static ssize_t cpuset_common_file_read(struct cgroup *cont,
1531 struct cftype *cft,
1532 struct file *file,
1533 char __user *buf,
1534 size_t nbytes, loff_t *ppos)
1da177e4 1535{
8793d854 1536 struct cpuset *cs = cgroup_cs(cont);
1da177e4
LT
1537 cpuset_filetype_t type = cft->private;
1538 char *page;
1539 ssize_t retval = 0;
1540 char *s;
1da177e4 1541
e12ba74d 1542 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1da177e4
LT
1543 return -ENOMEM;
1544
1545 s = page;
1546
1547 switch (type) {
1548 case FILE_CPULIST:
1549 s += cpuset_sprintf_cpulist(s, cs);
1550 break;
1551 case FILE_MEMLIST:
1552 s += cpuset_sprintf_memlist(s, cs);
1553 break;
1da177e4
LT
1554 default:
1555 retval = -EINVAL;
1556 goto out;
1557 }
1558 *s++ = '\n';
1da177e4 1559
eacaa1f5 1560 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1561out:
1562 free_page((unsigned long)page);
1563 return retval;
1564}
1565
700fe1ab
PM
1566static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1567{
1568 struct cpuset *cs = cgroup_cs(cont);
1569 cpuset_filetype_t type = cft->private;
1570 switch (type) {
1571 case FILE_CPU_EXCLUSIVE:
1572 return is_cpu_exclusive(cs);
1573 case FILE_MEM_EXCLUSIVE:
1574 return is_mem_exclusive(cs);
78608366
PM
1575 case FILE_MEM_HARDWALL:
1576 return is_mem_hardwall(cs);
700fe1ab
PM
1577 case FILE_SCHED_LOAD_BALANCE:
1578 return is_sched_load_balance(cs);
1579 case FILE_MEMORY_MIGRATE:
1580 return is_memory_migrate(cs);
1581 case FILE_MEMORY_PRESSURE_ENABLED:
1582 return cpuset_memory_pressure_enabled;
1583 case FILE_MEMORY_PRESSURE:
1584 return fmeter_getrate(&cs->fmeter);
1585 case FILE_SPREAD_PAGE:
1586 return is_spread_page(cs);
1587 case FILE_SPREAD_SLAB:
1588 return is_spread_slab(cs);
1589 default:
1590 BUG();
1591 }
cf417141
MK
1592
1593 /* Unreachable but makes gcc happy */
1594 return 0;
700fe1ab 1595}
1da177e4 1596
5be7a479
PM
1597static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1598{
1599 struct cpuset *cs = cgroup_cs(cont);
1600 cpuset_filetype_t type = cft->private;
1601 switch (type) {
1602 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1603 return cs->relax_domain_level;
1604 default:
1605 BUG();
1606 }
cf417141
MK
1607
1608 /* Unrechable but makes gcc happy */
1609 return 0;
5be7a479
PM
1610}
1611
1da177e4
LT
1612
1613/*
1614 * for the common functions, 'private' gives the type of file
1615 */
1616
addf2c73
PM
1617static struct cftype files[] = {
1618 {
1619 .name = "cpus",
1620 .read = cpuset_common_file_read,
e3712395
PM
1621 .write_string = cpuset_write_resmask,
1622 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1623 .private = FILE_CPULIST,
1624 },
1625
1626 {
1627 .name = "mems",
1628 .read = cpuset_common_file_read,
e3712395
PM
1629 .write_string = cpuset_write_resmask,
1630 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1631 .private = FILE_MEMLIST,
1632 },
1633
1634 {
1635 .name = "cpu_exclusive",
1636 .read_u64 = cpuset_read_u64,
1637 .write_u64 = cpuset_write_u64,
1638 .private = FILE_CPU_EXCLUSIVE,
1639 },
1640
1641 {
1642 .name = "mem_exclusive",
1643 .read_u64 = cpuset_read_u64,
1644 .write_u64 = cpuset_write_u64,
1645 .private = FILE_MEM_EXCLUSIVE,
1646 },
1647
78608366
PM
1648 {
1649 .name = "mem_hardwall",
1650 .read_u64 = cpuset_read_u64,
1651 .write_u64 = cpuset_write_u64,
1652 .private = FILE_MEM_HARDWALL,
1653 },
1654
addf2c73
PM
1655 {
1656 .name = "sched_load_balance",
1657 .read_u64 = cpuset_read_u64,
1658 .write_u64 = cpuset_write_u64,
1659 .private = FILE_SCHED_LOAD_BALANCE,
1660 },
1661
1662 {
1663 .name = "sched_relax_domain_level",
5be7a479
PM
1664 .read_s64 = cpuset_read_s64,
1665 .write_s64 = cpuset_write_s64,
addf2c73
PM
1666 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1667 },
1668
1669 {
1670 .name = "memory_migrate",
1671 .read_u64 = cpuset_read_u64,
1672 .write_u64 = cpuset_write_u64,
1673 .private = FILE_MEMORY_MIGRATE,
1674 },
1675
1676 {
1677 .name = "memory_pressure",
1678 .read_u64 = cpuset_read_u64,
1679 .write_u64 = cpuset_write_u64,
1680 .private = FILE_MEMORY_PRESSURE,
099fca32 1681 .mode = S_IRUGO,
addf2c73
PM
1682 },
1683
1684 {
1685 .name = "memory_spread_page",
1686 .read_u64 = cpuset_read_u64,
1687 .write_u64 = cpuset_write_u64,
1688 .private = FILE_SPREAD_PAGE,
1689 },
1690
1691 {
1692 .name = "memory_spread_slab",
1693 .read_u64 = cpuset_read_u64,
1694 .write_u64 = cpuset_write_u64,
1695 .private = FILE_SPREAD_SLAB,
1696 },
45b07ef3
PJ
1697};
1698
3e0d98b9
PJ
1699static struct cftype cft_memory_pressure_enabled = {
1700 .name = "memory_pressure_enabled",
700fe1ab
PM
1701 .read_u64 = cpuset_read_u64,
1702 .write_u64 = cpuset_write_u64,
3e0d98b9
PJ
1703 .private = FILE_MEMORY_PRESSURE_ENABLED,
1704};
1705
8793d854 1706static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4
LT
1707{
1708 int err;
1709
addf2c73
PM
1710 err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
1711 if (err)
1da177e4 1712 return err;
8793d854 1713 /* memory_pressure_enabled is in root cpuset only */
addf2c73 1714 if (!cont->parent)
8793d854 1715 err = cgroup_add_file(cont, ss,
addf2c73
PM
1716 &cft_memory_pressure_enabled);
1717 return err;
1da177e4
LT
1718}
1719
8793d854
PM
1720/*
1721 * post_clone() is called at the end of cgroup_clone().
1722 * 'cgroup' was just created automatically as a result of
1723 * a cgroup_clone(), and the current task is about to
1724 * be moved into 'cgroup'.
1725 *
1726 * Currently we refuse to set up the cgroup - thereby
1727 * refusing the task to be entered, and as a result refusing
1728 * the sys_unshare() or clone() which initiated it - if any
1729 * sibling cpusets have exclusive cpus or mem.
1730 *
1731 * If this becomes a problem for some users who wish to
1732 * allow that scenario, then cpuset_post_clone() could be
1733 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2df167a3
PM
1734 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1735 * held.
8793d854
PM
1736 */
1737static void cpuset_post_clone(struct cgroup_subsys *ss,
1738 struct cgroup *cgroup)
1739{
1740 struct cgroup *parent, *child;
1741 struct cpuset *cs, *parent_cs;
1742
1743 parent = cgroup->parent;
1744 list_for_each_entry(child, &parent->children, sibling) {
1745 cs = cgroup_cs(child);
1746 if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1747 return;
1748 }
1749 cs = cgroup_cs(cgroup);
1750 parent_cs = cgroup_cs(parent);
1751
1752 cs->mems_allowed = parent_cs->mems_allowed;
300ed6cb 1753 cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed);
8793d854
PM
1754 return;
1755}
1756
1da177e4
LT
1757/*
1758 * cpuset_create - create a cpuset
2df167a3
PM
1759 * ss: cpuset cgroup subsystem
1760 * cont: control group that the new cpuset will be part of
1da177e4
LT
1761 */
1762
8793d854
PM
1763static struct cgroup_subsys_state *cpuset_create(
1764 struct cgroup_subsys *ss,
1765 struct cgroup *cont)
1da177e4
LT
1766{
1767 struct cpuset *cs;
8793d854 1768 struct cpuset *parent;
1da177e4 1769
8793d854
PM
1770 if (!cont->parent) {
1771 /* This is early initialization for the top cgroup */
1772 top_cpuset.mems_generation = cpuset_mems_generation++;
1773 return &top_cpuset.css;
1774 }
1775 parent = cgroup_cs(cont->parent);
1da177e4
LT
1776 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1777 if (!cs)
8793d854 1778 return ERR_PTR(-ENOMEM);
300ed6cb
LZ
1779 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1780 kfree(cs);
1781 return ERR_PTR(-ENOMEM);
1782 }
1da177e4 1783
cf2a473c 1784 cpuset_update_task_memory_state();
1da177e4 1785 cs->flags = 0;
825a46af
PJ
1786 if (is_spread_page(parent))
1787 set_bit(CS_SPREAD_PAGE, &cs->flags);
1788 if (is_spread_slab(parent))
1789 set_bit(CS_SPREAD_SLAB, &cs->flags);
029190c5 1790 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1791 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1792 nodes_clear(cs->mems_allowed);
151a4420 1793 cs->mems_generation = cpuset_mems_generation++;
3e0d98b9 1794 fmeter_init(&cs->fmeter);
1d3504fc 1795 cs->relax_domain_level = -1;
1da177e4
LT
1796
1797 cs->parent = parent;
202f72d5 1798 number_of_cpusets++;
8793d854 1799 return &cs->css ;
1da177e4
LT
1800}
1801
029190c5 1802/*
029190c5
PJ
1803 * If the cpuset being removed has its flag 'sched_load_balance'
1804 * enabled, then simulate turning sched_load_balance off, which
cf417141 1805 * will call async_rebuild_sched_domains().
029190c5
PJ
1806 */
1807
8793d854 1808static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4 1809{
8793d854 1810 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1811
cf2a473c 1812 cpuset_update_task_memory_state();
029190c5
PJ
1813
1814 if (is_sched_load_balance(cs))
700fe1ab 1815 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
029190c5 1816
202f72d5 1817 number_of_cpusets--;
300ed6cb 1818 free_cpumask_var(cs->cpus_allowed);
8793d854 1819 kfree(cs);
1da177e4
LT
1820}
1821
8793d854
PM
1822struct cgroup_subsys cpuset_subsys = {
1823 .name = "cpuset",
1824 .create = cpuset_create,
cf417141 1825 .destroy = cpuset_destroy,
8793d854
PM
1826 .can_attach = cpuset_can_attach,
1827 .attach = cpuset_attach,
1828 .populate = cpuset_populate,
1829 .post_clone = cpuset_post_clone,
1830 .subsys_id = cpuset_subsys_id,
1831 .early_init = 1,
1832};
1833
c417f024
PJ
1834/*
1835 * cpuset_init_early - just enough so that the calls to
1836 * cpuset_update_task_memory_state() in early init code
1837 * are harmless.
1838 */
1839
1840int __init cpuset_init_early(void)
1841{
300ed6cb
LZ
1842 alloc_bootmem_cpumask_var(&top_cpuset.cpus_allowed);
1843
8793d854 1844 top_cpuset.mems_generation = cpuset_mems_generation++;
c417f024
PJ
1845 return 0;
1846}
1847
8793d854 1848
1da177e4
LT
1849/**
1850 * cpuset_init - initialize cpusets at system boot
1851 *
1852 * Description: Initialize top_cpuset and the cpuset internal file system,
1853 **/
1854
1855int __init cpuset_init(void)
1856{
8793d854 1857 int err = 0;
1da177e4 1858
300ed6cb 1859 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 1860 nodes_setall(top_cpuset.mems_allowed);
1da177e4 1861
3e0d98b9 1862 fmeter_init(&top_cpuset.fmeter);
151a4420 1863 top_cpuset.mems_generation = cpuset_mems_generation++;
029190c5 1864 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 1865 top_cpuset.relax_domain_level = -1;
1da177e4 1866
1da177e4
LT
1867 err = register_filesystem(&cpuset_fs_type);
1868 if (err < 0)
8793d854
PM
1869 return err;
1870
2341d1b6
LZ
1871 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1872 BUG();
1873
202f72d5 1874 number_of_cpusets = 1;
8793d854 1875 return 0;
1da177e4
LT
1876}
1877
956db3ca
CW
1878/**
1879 * cpuset_do_move_task - move a given task to another cpuset
1880 * @tsk: pointer to task_struct the task to move
1881 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1882 *
1883 * Called by cgroup_scan_tasks() for each task in a cgroup.
1884 * Return nonzero to stop the walk through the tasks.
1885 */
9e0c914c
AB
1886static void cpuset_do_move_task(struct task_struct *tsk,
1887 struct cgroup_scanner *scan)
956db3ca 1888{
7f81b1ae 1889 struct cgroup *new_cgroup = scan->data;
956db3ca 1890
7f81b1ae 1891 cgroup_attach_task(new_cgroup, tsk);
956db3ca
CW
1892}
1893
1894/**
1895 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1896 * @from: cpuset in which the tasks currently reside
1897 * @to: cpuset to which the tasks will be moved
1898 *
c8d9c90c
PJ
1899 * Called with cgroup_mutex held
1900 * callback_mutex must not be held, as cpuset_attach() will take it.
956db3ca
CW
1901 *
1902 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1903 * calling callback functions for each.
1904 */
1905static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1906{
7f81b1ae 1907 struct cgroup_scanner scan;
956db3ca 1908
7f81b1ae
LZ
1909 scan.cg = from->css.cgroup;
1910 scan.test_task = NULL; /* select all tasks in cgroup */
1911 scan.process_task = cpuset_do_move_task;
1912 scan.heap = NULL;
1913 scan.data = to->css.cgroup;
956db3ca 1914
7f81b1ae 1915 if (cgroup_scan_tasks(&scan))
956db3ca
CW
1916 printk(KERN_ERR "move_member_tasks_to_cpuset: "
1917 "cgroup_scan_tasks failed\n");
1918}
1919
b1aac8bb 1920/*
cf417141 1921 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
1922 * or memory nodes, we need to walk over the cpuset hierarchy,
1923 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
1924 * last CPU or node from a cpuset, then move the tasks in the empty
1925 * cpuset to its next-highest non-empty parent.
b1aac8bb 1926 *
c8d9c90c
PJ
1927 * Called with cgroup_mutex held
1928 * callback_mutex must not be held, as cpuset_attach() will take it.
b1aac8bb 1929 */
956db3ca
CW
1930static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1931{
1932 struct cpuset *parent;
1933
c8d9c90c
PJ
1934 /*
1935 * The cgroup's css_sets list is in use if there are tasks
1936 * in the cpuset; the list is empty if there are none;
1937 * the cs->css.refcnt seems always 0.
1938 */
956db3ca
CW
1939 if (list_empty(&cs->css.cgroup->css_sets))
1940 return;
b1aac8bb 1941
956db3ca
CW
1942 /*
1943 * Find its next-highest non-empty parent, (top cpuset
1944 * has online cpus, so can't be empty).
1945 */
1946 parent = cs->parent;
300ed6cb 1947 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 1948 nodes_empty(parent->mems_allowed))
956db3ca 1949 parent = parent->parent;
956db3ca
CW
1950
1951 move_member_tasks_to_cpuset(cs, parent);
1952}
1953
1954/*
1955 * Walk the specified cpuset subtree and look for empty cpusets.
1956 * The tasks of such cpuset must be moved to a parent cpuset.
1957 *
2df167a3 1958 * Called with cgroup_mutex held. We take callback_mutex to modify
956db3ca
CW
1959 * cpus_allowed and mems_allowed.
1960 *
1961 * This walk processes the tree from top to bottom, completing one layer
1962 * before dropping down to the next. It always processes a node before
1963 * any of its children.
1964 *
1965 * For now, since we lack memory hot unplug, we'll never see a cpuset
1966 * that has tasks along with an empty 'mems'. But if we did see such
1967 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
1968 */
d294eb83 1969static void scan_for_empty_cpusets(struct cpuset *root)
b1aac8bb 1970{
8d1e6266 1971 LIST_HEAD(queue);
956db3ca
CW
1972 struct cpuset *cp; /* scans cpusets being updated */
1973 struct cpuset *child; /* scans child cpusets of cp */
8793d854 1974 struct cgroup *cont;
f9b4fb8d 1975 nodemask_t oldmems;
b1aac8bb 1976
956db3ca
CW
1977 list_add_tail((struct list_head *)&root->stack_list, &queue);
1978
956db3ca 1979 while (!list_empty(&queue)) {
8d1e6266 1980 cp = list_first_entry(&queue, struct cpuset, stack_list);
956db3ca
CW
1981 list_del(queue.next);
1982 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
1983 child = cgroup_cs(cont);
1984 list_add_tail(&child->stack_list, &queue);
1985 }
b4501295
PJ
1986
1987 /* Continue past cpusets with all cpus, mems online */
300ed6cb 1988 if (cpumask_subset(cp->cpus_allowed, cpu_online_mask) &&
b4501295
PJ
1989 nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
1990 continue;
1991
f9b4fb8d
MX
1992 oldmems = cp->mems_allowed;
1993
956db3ca 1994 /* Remove offline cpus and mems from this cpuset. */
b4501295 1995 mutex_lock(&callback_mutex);
300ed6cb
LZ
1996 cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
1997 cpu_online_mask);
956db3ca
CW
1998 nodes_and(cp->mems_allowed, cp->mems_allowed,
1999 node_states[N_HIGH_MEMORY]);
b4501295
PJ
2000 mutex_unlock(&callback_mutex);
2001
2002 /* Move tasks from the empty cpuset to a parent */
300ed6cb 2003 if (cpumask_empty(cp->cpus_allowed) ||
b4501295 2004 nodes_empty(cp->mems_allowed))
956db3ca 2005 remove_tasks_in_empty_cpuset(cp);
f9b4fb8d 2006 else {
4e74339a 2007 update_tasks_cpumask(cp, NULL);
010cfac4 2008 update_tasks_nodemask(cp, &oldmems, NULL);
f9b4fb8d 2009 }
b1aac8bb
PJ
2010 }
2011}
2012
4c4d50f7
PJ
2013/*
2014 * The top_cpuset tracks what CPUs and Memory Nodes are online,
2015 * period. This is necessary in order to make cpusets transparent
2016 * (of no affect) on systems that are actively using CPU hotplug
2017 * but making no active use of cpusets.
2018 *
38837fc7
PJ
2019 * This routine ensures that top_cpuset.cpus_allowed tracks
2020 * cpu_online_map on each CPU hotplug (cpuhp) event.
cf417141
MK
2021 *
2022 * Called within get_online_cpus(). Needs to call cgroup_lock()
2023 * before calling generate_sched_domains().
4c4d50f7 2024 */
cf417141 2025static int cpuset_track_online_cpus(struct notifier_block *unused_nb,
029190c5 2026 unsigned long phase, void *unused_cpu)
4c4d50f7 2027{
cf417141 2028 struct sched_domain_attr *attr;
6af866af 2029 struct cpumask *doms;
cf417141
MK
2030 int ndoms;
2031
3e84050c 2032 switch (phase) {
3e84050c
DA
2033 case CPU_ONLINE:
2034 case CPU_ONLINE_FROZEN:
2035 case CPU_DEAD:
2036 case CPU_DEAD_FROZEN:
3e84050c 2037 break;
cf417141 2038
3e84050c 2039 default:
ac076758 2040 return NOTIFY_DONE;
3e84050c 2041 }
ac076758 2042
cf417141 2043 cgroup_lock();
0b4217b3 2044 mutex_lock(&callback_mutex);
300ed6cb 2045 cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask);
0b4217b3 2046 mutex_unlock(&callback_mutex);
cf417141
MK
2047 scan_for_empty_cpusets(&top_cpuset);
2048 ndoms = generate_sched_domains(&doms, &attr);
2049 cgroup_unlock();
2050
2051 /* Have scheduler rebuild the domains */
2052 partition_sched_domains(ndoms, doms, attr);
2053
3e84050c 2054 return NOTIFY_OK;
4c4d50f7 2055}
4c4d50f7 2056
b1aac8bb 2057#ifdef CONFIG_MEMORY_HOTPLUG
38837fc7 2058/*
0e1e7c7a 2059 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
cf417141
MK
2060 * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
2061 * See also the previous routine cpuset_track_online_cpus().
38837fc7 2062 */
f481891f
MX
2063static int cpuset_track_online_nodes(struct notifier_block *self,
2064 unsigned long action, void *arg)
38837fc7 2065{
cf417141 2066 cgroup_lock();
f481891f
MX
2067 switch (action) {
2068 case MEM_ONLINE:
f481891f 2069 case MEM_OFFLINE:
0b4217b3 2070 mutex_lock(&callback_mutex);
f481891f 2071 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
0b4217b3
LZ
2072 mutex_unlock(&callback_mutex);
2073 if (action == MEM_OFFLINE)
2074 scan_for_empty_cpusets(&top_cpuset);
f481891f
MX
2075 break;
2076 default:
2077 break;
2078 }
cf417141 2079 cgroup_unlock();
f481891f 2080 return NOTIFY_OK;
38837fc7
PJ
2081}
2082#endif
2083
1da177e4
LT
2084/**
2085 * cpuset_init_smp - initialize cpus_allowed
2086 *
2087 * Description: Finish top cpuset after cpu, node maps are initialized
2088 **/
2089
2090void __init cpuset_init_smp(void)
2091{
300ed6cb 2092 cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask);
0e1e7c7a 2093 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
4c4d50f7 2094
cf417141 2095 hotcpu_notifier(cpuset_track_online_cpus, 0);
f481891f 2096 hotplug_memory_notifier(cpuset_track_online_nodes, 10);
f90d4118
MX
2097
2098 cpuset_wq = create_singlethread_workqueue("cpuset");
2099 BUG_ON(!cpuset_wq);
1da177e4
LT
2100}
2101
2102/**
1da177e4
LT
2103 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2104 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2105 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2106 *
300ed6cb 2107 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4
LT
2108 * attached to the specified @tsk. Guaranteed to return some non-empty
2109 * subset of cpu_online_map, even if this means going outside the
2110 * tasks cpuset.
2111 **/
2112
6af866af 2113void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2114{
3d3f26a7 2115 mutex_lock(&callback_mutex);
f9a86fcb 2116 cpuset_cpus_allowed_locked(tsk, pmask);
470fd646 2117 mutex_unlock(&callback_mutex);
470fd646
CW
2118}
2119
2120/**
2121 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
2df167a3 2122 * Must be called with callback_mutex held.
470fd646 2123 **/
6af866af 2124void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask)
470fd646 2125{
909d75a3 2126 task_lock(tsk);
f9a86fcb 2127 guarantee_online_cpus(task_cs(tsk), pmask);
909d75a3 2128 task_unlock(tsk);
1da177e4
LT
2129}
2130
2131void cpuset_init_current_mems_allowed(void)
2132{
f9a86fcb 2133 nodes_setall(current->mems_allowed);
1da177e4
LT
2134}
2135
909d75a3
PJ
2136/**
2137 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2138 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2139 *
2140 * Description: Returns the nodemask_t mems_allowed of the cpuset
2141 * attached to the specified @tsk. Guaranteed to return some non-empty
0e1e7c7a 2142 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
909d75a3
PJ
2143 * tasks cpuset.
2144 **/
2145
2146nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2147{
2148 nodemask_t mask;
2149
3d3f26a7 2150 mutex_lock(&callback_mutex);
909d75a3 2151 task_lock(tsk);
8793d854 2152 guarantee_online_mems(task_cs(tsk), &mask);
909d75a3 2153 task_unlock(tsk);
3d3f26a7 2154 mutex_unlock(&callback_mutex);
909d75a3
PJ
2155
2156 return mask;
2157}
2158
d9fd8a6d 2159/**
19770b32
MG
2160 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2161 * @nodemask: the nodemask to be checked
d9fd8a6d 2162 *
19770b32 2163 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2164 */
19770b32 2165int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2166{
19770b32 2167 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2168}
2169
9bf2229f 2170/*
78608366
PM
2171 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2172 * mem_hardwall ancestor to the specified cpuset. Call holding
2173 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2174 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2175 */
78608366 2176static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
9bf2229f 2177{
78608366 2178 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
9bf2229f
PJ
2179 cs = cs->parent;
2180 return cs;
2181}
2182
d9fd8a6d 2183/**
a1bc5a4e
DR
2184 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2185 * @node: is this an allowed node?
02a0e53d 2186 * @gfp_mask: memory allocation flags
d9fd8a6d 2187 *
a1bc5a4e
DR
2188 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2189 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2190 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2191 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2192 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2193 * flag, yes.
9bf2229f
PJ
2194 * Otherwise, no.
2195 *
a1bc5a4e
DR
2196 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2197 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2198 * might sleep, and might allow a node from an enclosing cpuset.
02a0e53d 2199 *
a1bc5a4e
DR
2200 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2201 * cpusets, and never sleeps.
02a0e53d
PJ
2202 *
2203 * The __GFP_THISNODE placement logic is really handled elsewhere,
2204 * by forcibly using a zonelist starting at a specified node, and by
2205 * (in get_page_from_freelist()) refusing to consider the zones for
2206 * any node on the zonelist except the first. By the time any such
2207 * calls get to this routine, we should just shut up and say 'yes'.
2208 *
9bf2229f 2209 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2210 * and do not allow allocations outside the current tasks cpuset
2211 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2212 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2213 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2214 *
02a0e53d
PJ
2215 * Scanning up parent cpusets requires callback_mutex. The
2216 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2217 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2218 * current tasks mems_allowed came up empty on the first pass over
2219 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2220 * cpuset are short of memory, might require taking the callback_mutex
2221 * mutex.
9bf2229f 2222 *
36be57ff 2223 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2224 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2225 * so no allocation on a node outside the cpuset is allowed (unless
2226 * in interrupt, of course).
36be57ff
PJ
2227 *
2228 * The second pass through get_page_from_freelist() doesn't even call
2229 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2230 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2231 * in alloc_flags. That logic and the checks below have the combined
2232 * affect that:
9bf2229f
PJ
2233 * in_interrupt - any node ok (current task context irrelevant)
2234 * GFP_ATOMIC - any node ok
c596d9f3 2235 * TIF_MEMDIE - any node ok
78608366 2236 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2237 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2238 *
2239 * Rule:
a1bc5a4e 2240 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2241 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2242 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2243 */
a1bc5a4e 2244int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
1da177e4 2245{
9bf2229f 2246 const struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2247 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2248
9b819d20 2249 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2250 return 1;
92d1dbd2 2251 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2252 if (node_isset(node, current->mems_allowed))
2253 return 1;
c596d9f3
DR
2254 /*
2255 * Allow tasks that have access to memory reserves because they have
2256 * been OOM killed to get memory anywhere.
2257 */
2258 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2259 return 1;
9bf2229f
PJ
2260 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2261 return 0;
2262
5563e770
BP
2263 if (current->flags & PF_EXITING) /* Let dying task have memory */
2264 return 1;
2265
9bf2229f 2266 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2267 mutex_lock(&callback_mutex);
053199ed 2268
053199ed 2269 task_lock(current);
78608366 2270 cs = nearest_hardwall_ancestor(task_cs(current));
053199ed
PJ
2271 task_unlock(current);
2272
9bf2229f 2273 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 2274 mutex_unlock(&callback_mutex);
9bf2229f 2275 return allowed;
1da177e4
LT
2276}
2277
02a0e53d 2278/*
a1bc5a4e
DR
2279 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2280 * @node: is this an allowed node?
02a0e53d
PJ
2281 * @gfp_mask: memory allocation flags
2282 *
a1bc5a4e
DR
2283 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2284 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2285 * yes. If the task has been OOM killed and has access to memory reserves as
2286 * specified by the TIF_MEMDIE flag, yes.
2287 * Otherwise, no.
02a0e53d
PJ
2288 *
2289 * The __GFP_THISNODE placement logic is really handled elsewhere,
2290 * by forcibly using a zonelist starting at a specified node, and by
2291 * (in get_page_from_freelist()) refusing to consider the zones for
2292 * any node on the zonelist except the first. By the time any such
2293 * calls get to this routine, we should just shut up and say 'yes'.
2294 *
a1bc5a4e
DR
2295 * Unlike the cpuset_node_allowed_softwall() variant, above,
2296 * this variant requires that the node be in the current task's
02a0e53d
PJ
2297 * mems_allowed or that we're in interrupt. It does not scan up the
2298 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2299 * It never sleeps.
2300 */
a1bc5a4e 2301int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
02a0e53d 2302{
02a0e53d
PJ
2303 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2304 return 1;
02a0e53d
PJ
2305 if (node_isset(node, current->mems_allowed))
2306 return 1;
dedf8b79
DW
2307 /*
2308 * Allow tasks that have access to memory reserves because they have
2309 * been OOM killed to get memory anywhere.
2310 */
2311 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2312 return 1;
02a0e53d
PJ
2313 return 0;
2314}
2315
505970b9
PJ
2316/**
2317 * cpuset_lock - lock out any changes to cpuset structures
2318 *
3d3f26a7 2319 * The out of memory (oom) code needs to mutex_lock cpusets
505970b9 2320 * from being changed while it scans the tasklist looking for a
3d3f26a7 2321 * task in an overlapping cpuset. Expose callback_mutex via this
505970b9
PJ
2322 * cpuset_lock() routine, so the oom code can lock it, before
2323 * locking the task list. The tasklist_lock is a spinlock, so
3d3f26a7 2324 * must be taken inside callback_mutex.
505970b9
PJ
2325 */
2326
2327void cpuset_lock(void)
2328{
3d3f26a7 2329 mutex_lock(&callback_mutex);
505970b9
PJ
2330}
2331
2332/**
2333 * cpuset_unlock - release lock on cpuset changes
2334 *
2335 * Undo the lock taken in a previous cpuset_lock() call.
2336 */
2337
2338void cpuset_unlock(void)
2339{
3d3f26a7 2340 mutex_unlock(&callback_mutex);
505970b9
PJ
2341}
2342
825a46af
PJ
2343/**
2344 * cpuset_mem_spread_node() - On which node to begin search for a page
2345 *
2346 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2347 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2348 * and if the memory allocation used cpuset_mem_spread_node()
2349 * to determine on which node to start looking, as it will for
2350 * certain page cache or slab cache pages such as used for file
2351 * system buffers and inode caches, then instead of starting on the
2352 * local node to look for a free page, rather spread the starting
2353 * node around the tasks mems_allowed nodes.
2354 *
2355 * We don't have to worry about the returned node being offline
2356 * because "it can't happen", and even if it did, it would be ok.
2357 *
2358 * The routines calling guarantee_online_mems() are careful to
2359 * only set nodes in task->mems_allowed that are online. So it
2360 * should not be possible for the following code to return an
2361 * offline node. But if it did, that would be ok, as this routine
2362 * is not returning the node where the allocation must be, only
2363 * the node where the search should start. The zonelist passed to
2364 * __alloc_pages() will include all nodes. If the slab allocator
2365 * is passed an offline node, it will fall back to the local node.
2366 * See kmem_cache_alloc_node().
2367 */
2368
2369int cpuset_mem_spread_node(void)
2370{
2371 int node;
2372
2373 node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
2374 if (node == MAX_NUMNODES)
2375 node = first_node(current->mems_allowed);
2376 current->cpuset_mem_spread_rotor = node;
2377 return node;
2378}
2379EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2380
ef08e3b4 2381/**
bbe373f2
DR
2382 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2383 * @tsk1: pointer to task_struct of some task.
2384 * @tsk2: pointer to task_struct of some other task.
2385 *
2386 * Description: Return true if @tsk1's mems_allowed intersects the
2387 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2388 * one of the task's memory usage might impact the memory available
2389 * to the other.
ef08e3b4
PJ
2390 **/
2391
bbe373f2
DR
2392int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2393 const struct task_struct *tsk2)
ef08e3b4 2394{
bbe373f2 2395 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2396}
2397
75aa1994
DR
2398/**
2399 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2400 * @task: pointer to task_struct of some task.
2401 *
2402 * Description: Prints @task's name, cpuset name, and cached copy of its
2403 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2404 * dereferencing task_cs(task).
2405 */
2406void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2407{
2408 struct dentry *dentry;
2409
2410 dentry = task_cs(tsk)->css.cgroup->dentry;
2411 spin_lock(&cpuset_buffer_lock);
2412 snprintf(cpuset_name, CPUSET_NAME_LEN,
2413 dentry ? (const char *)dentry->d_name.name : "/");
2414 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2415 tsk->mems_allowed);
2416 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2417 tsk->comm, cpuset_name, cpuset_nodelist);
2418 spin_unlock(&cpuset_buffer_lock);
2419}
2420
3e0d98b9
PJ
2421/*
2422 * Collection of memory_pressure is suppressed unless
2423 * this flag is enabled by writing "1" to the special
2424 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2425 */
2426
c5b2aff8 2427int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2428
2429/**
2430 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2431 *
2432 * Keep a running average of the rate of synchronous (direct)
2433 * page reclaim efforts initiated by tasks in each cpuset.
2434 *
2435 * This represents the rate at which some task in the cpuset
2436 * ran low on memory on all nodes it was allowed to use, and
2437 * had to enter the kernels page reclaim code in an effort to
2438 * create more free memory by tossing clean pages or swapping
2439 * or writing dirty pages.
2440 *
2441 * Display to user space in the per-cpuset read-only file
2442 * "memory_pressure". Value displayed is an integer
2443 * representing the recent rate of entry into the synchronous
2444 * (direct) page reclaim by any task attached to the cpuset.
2445 **/
2446
2447void __cpuset_memory_pressure_bump(void)
2448{
3e0d98b9 2449 task_lock(current);
8793d854 2450 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2451 task_unlock(current);
2452}
2453
8793d854 2454#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2455/*
2456 * proc_cpuset_show()
2457 * - Print tasks cpuset path into seq_file.
2458 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2459 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2460 * doesn't really matter if tsk->cpuset changes after we read it,
c8d9c90c 2461 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2df167a3 2462 * anyway.
1da177e4 2463 */
029190c5 2464static int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2465{
13b41b09 2466 struct pid *pid;
1da177e4
LT
2467 struct task_struct *tsk;
2468 char *buf;
8793d854 2469 struct cgroup_subsys_state *css;
99f89551 2470 int retval;
1da177e4 2471
99f89551 2472 retval = -ENOMEM;
1da177e4
LT
2473 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2474 if (!buf)
99f89551
EB
2475 goto out;
2476
2477 retval = -ESRCH;
13b41b09
EB
2478 pid = m->private;
2479 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2480 if (!tsk)
2481 goto out_free;
1da177e4 2482
99f89551 2483 retval = -EINVAL;
8793d854
PM
2484 cgroup_lock();
2485 css = task_subsys_state(tsk, cpuset_subsys_id);
2486 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
1da177e4 2487 if (retval < 0)
99f89551 2488 goto out_unlock;
1da177e4
LT
2489 seq_puts(m, buf);
2490 seq_putc(m, '\n');
99f89551 2491out_unlock:
8793d854 2492 cgroup_unlock();
99f89551
EB
2493 put_task_struct(tsk);
2494out_free:
1da177e4 2495 kfree(buf);
99f89551 2496out:
1da177e4
LT
2497 return retval;
2498}
2499
2500static int cpuset_open(struct inode *inode, struct file *file)
2501{
13b41b09
EB
2502 struct pid *pid = PROC_I(inode)->pid;
2503 return single_open(file, proc_cpuset_show, pid);
1da177e4
LT
2504}
2505
9a32144e 2506const struct file_operations proc_cpuset_operations = {
1da177e4
LT
2507 .open = cpuset_open,
2508 .read = seq_read,
2509 .llseek = seq_lseek,
2510 .release = single_release,
2511};
8793d854 2512#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4
LT
2513
2514/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2515void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2516{
2517 seq_printf(m, "Cpus_allowed:\t");
30e8e136 2518 seq_cpumask(m, &task->cpus_allowed);
df5f8314 2519 seq_printf(m, "\n");
39106dcf 2520 seq_printf(m, "Cpus_allowed_list:\t");
30e8e136 2521 seq_cpumask_list(m, &task->cpus_allowed);
39106dcf 2522 seq_printf(m, "\n");
df5f8314 2523 seq_printf(m, "Mems_allowed:\t");
30e8e136 2524 seq_nodemask(m, &task->mems_allowed);
df5f8314 2525 seq_printf(m, "\n");
39106dcf 2526 seq_printf(m, "Mems_allowed_list:\t");
30e8e136 2527 seq_nodemask_list(m, &task->mems_allowed);
39106dcf 2528 seq_printf(m, "\n");
1da177e4 2529}