]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/auditsc.c
tg3: Restore likely() check in tg3_poll_msix()
[net-next-2.6.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
45#include <linux/init.h>
1da177e4 46#include <asm/types.h>
715b49ef 47#include <asm/atomic.h>
73241ccc
AG
48#include <linux/fs.h>
49#include <linux/namei.h>
1da177e4
LT
50#include <linux/mm.h>
51#include <linux/module.h>
01116105 52#include <linux/mount.h>
3ec3b2fb 53#include <linux/socket.h>
20ca73bc 54#include <linux/mqueue.h>
1da177e4
LT
55#include <linux/audit.h>
56#include <linux/personality.h>
57#include <linux/time.h>
5bb289b5 58#include <linux/netlink.h>
f5561964 59#include <linux/compiler.h>
1da177e4 60#include <asm/unistd.h>
8c8570fb 61#include <linux/security.h>
fe7752ba 62#include <linux/list.h>
a6c043a8 63#include <linux/tty.h>
473ae30b 64#include <linux/binfmts.h>
a1f8e7f7 65#include <linux/highmem.h>
f46038ff 66#include <linux/syscalls.h>
74c3cbe3 67#include <linux/inotify.h>
851f7ff5 68#include <linux/capability.h>
5ad4e53b 69#include <linux/fs_struct.h>
1da177e4 70
fe7752ba 71#include "audit.h"
1da177e4 72
1da177e4
LT
73/* AUDIT_NAMES is the number of slots we reserve in the audit_context
74 * for saving names from getname(). */
75#define AUDIT_NAMES 20
76
9c937dcc
AG
77/* Indicates that audit should log the full pathname. */
78#define AUDIT_NAME_FULL -1
79
de6bbd1d
EP
80/* no execve audit message should be longer than this (userspace limits) */
81#define MAX_EXECVE_AUDIT_LEN 7500
82
471a5c7c
AV
83/* number of audit rules */
84int audit_n_rules;
85
e54dc243
AG
86/* determines whether we collect data for signals sent */
87int audit_signals;
88
851f7ff5
EP
89struct audit_cap_data {
90 kernel_cap_t permitted;
91 kernel_cap_t inheritable;
92 union {
93 unsigned int fE; /* effective bit of a file capability */
94 kernel_cap_t effective; /* effective set of a process */
95 };
96};
97
1da177e4
LT
98/* When fs/namei.c:getname() is called, we store the pointer in name and
99 * we don't let putname() free it (instead we free all of the saved
100 * pointers at syscall exit time).
101 *
102 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
103struct audit_names {
104 const char *name;
9c937dcc
AG
105 int name_len; /* number of name's characters to log */
106 unsigned name_put; /* call __putname() for this name */
1da177e4
LT
107 unsigned long ino;
108 dev_t dev;
109 umode_t mode;
110 uid_t uid;
111 gid_t gid;
112 dev_t rdev;
1b50eed9 113 u32 osid;
851f7ff5
EP
114 struct audit_cap_data fcap;
115 unsigned int fcap_ver;
1da177e4
LT
116};
117
118struct audit_aux_data {
119 struct audit_aux_data *next;
120 int type;
121};
122
123#define AUDIT_AUX_IPCPERM 0
124
e54dc243
AG
125/* Number of target pids per aux struct. */
126#define AUDIT_AUX_PIDS 16
127
473ae30b
AV
128struct audit_aux_data_execve {
129 struct audit_aux_data d;
130 int argc;
131 int envc;
bdf4c48a 132 struct mm_struct *mm;
473ae30b
AV
133};
134
e54dc243
AG
135struct audit_aux_data_pids {
136 struct audit_aux_data d;
137 pid_t target_pid[AUDIT_AUX_PIDS];
c2a7780e
EP
138 uid_t target_auid[AUDIT_AUX_PIDS];
139 uid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 140 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 141 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 142 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
143 int pid_count;
144};
145
3fc689e9
EP
146struct audit_aux_data_bprm_fcaps {
147 struct audit_aux_data d;
148 struct audit_cap_data fcap;
149 unsigned int fcap_ver;
150 struct audit_cap_data old_pcap;
151 struct audit_cap_data new_pcap;
152};
153
e68b75a0
EP
154struct audit_aux_data_capset {
155 struct audit_aux_data d;
156 pid_t pid;
157 struct audit_cap_data cap;
158};
159
74c3cbe3
AV
160struct audit_tree_refs {
161 struct audit_tree_refs *next;
162 struct audit_chunk *c[31];
163};
164
1da177e4
LT
165/* The per-task audit context. */
166struct audit_context {
d51374ad 167 int dummy; /* must be the first element */
1da177e4 168 int in_syscall; /* 1 if task is in a syscall */
0590b933 169 enum audit_state state, current_state;
1da177e4 170 unsigned int serial; /* serial number for record */
1da177e4 171 int major; /* syscall number */
44e51a1b 172 struct timespec ctime; /* time of syscall entry */
1da177e4 173 unsigned long argv[4]; /* syscall arguments */
2fd6f58b 174 long return_code;/* syscall return code */
0590b933 175 u64 prio;
44e51a1b 176 int return_valid; /* return code is valid */
1da177e4
LT
177 int name_count;
178 struct audit_names names[AUDIT_NAMES];
5adc8a6a 179 char * filterkey; /* key for rule that triggered record */
44707fdf 180 struct path pwd;
1da177e4
LT
181 struct audit_context *previous; /* For nested syscalls */
182 struct audit_aux_data *aux;
e54dc243 183 struct audit_aux_data *aux_pids;
4f6b434f
AV
184 struct sockaddr_storage *sockaddr;
185 size_t sockaddr_len;
1da177e4 186 /* Save things to print about task_struct */
f46038ff 187 pid_t pid, ppid;
1da177e4
LT
188 uid_t uid, euid, suid, fsuid;
189 gid_t gid, egid, sgid, fsgid;
190 unsigned long personality;
2fd6f58b 191 int arch;
1da177e4 192
a5cb013d 193 pid_t target_pid;
c2a7780e
EP
194 uid_t target_auid;
195 uid_t target_uid;
4746ec5b 196 unsigned int target_sessionid;
a5cb013d 197 u32 target_sid;
c2a7780e 198 char target_comm[TASK_COMM_LEN];
a5cb013d 199
74c3cbe3 200 struct audit_tree_refs *trees, *first_trees;
916d7576 201 struct list_head killed_trees;
44e51a1b 202 int tree_count;
74c3cbe3 203
f3298dc4
AV
204 int type;
205 union {
206 struct {
207 int nargs;
208 long args[6];
209 } socketcall;
a33e6751
AV
210 struct {
211 uid_t uid;
212 gid_t gid;
213 mode_t mode;
214 u32 osid;
e816f370
AV
215 int has_perm;
216 uid_t perm_uid;
217 gid_t perm_gid;
218 mode_t perm_mode;
219 unsigned long qbytes;
a33e6751 220 } ipc;
7392906e
AV
221 struct {
222 mqd_t mqdes;
223 struct mq_attr mqstat;
224 } mq_getsetattr;
20114f71
AV
225 struct {
226 mqd_t mqdes;
227 int sigev_signo;
228 } mq_notify;
c32c8af4
AV
229 struct {
230 mqd_t mqdes;
231 size_t msg_len;
232 unsigned int msg_prio;
233 struct timespec abs_timeout;
234 } mq_sendrecv;
564f6993
AV
235 struct {
236 int oflag;
237 mode_t mode;
238 struct mq_attr attr;
239 } mq_open;
57f71a0a
AV
240 struct {
241 pid_t pid;
242 struct audit_cap_data cap;
243 } capset;
f3298dc4 244 };
157cf649 245 int fds[2];
f3298dc4 246
1da177e4
LT
247#if AUDIT_DEBUG
248 int put_count;
249 int ino_count;
250#endif
251};
252
55669bfa
AV
253static inline int open_arg(int flags, int mask)
254{
255 int n = ACC_MODE(flags);
256 if (flags & (O_TRUNC | O_CREAT))
257 n |= AUDIT_PERM_WRITE;
258 return n & mask;
259}
260
261static int audit_match_perm(struct audit_context *ctx, int mask)
262{
c4bacefb 263 unsigned n;
1a61c88d 264 if (unlikely(!ctx))
265 return 0;
c4bacefb 266 n = ctx->major;
dbda4c0b 267
55669bfa
AV
268 switch (audit_classify_syscall(ctx->arch, n)) {
269 case 0: /* native */
270 if ((mask & AUDIT_PERM_WRITE) &&
271 audit_match_class(AUDIT_CLASS_WRITE, n))
272 return 1;
273 if ((mask & AUDIT_PERM_READ) &&
274 audit_match_class(AUDIT_CLASS_READ, n))
275 return 1;
276 if ((mask & AUDIT_PERM_ATTR) &&
277 audit_match_class(AUDIT_CLASS_CHATTR, n))
278 return 1;
279 return 0;
280 case 1: /* 32bit on biarch */
281 if ((mask & AUDIT_PERM_WRITE) &&
282 audit_match_class(AUDIT_CLASS_WRITE_32, n))
283 return 1;
284 if ((mask & AUDIT_PERM_READ) &&
285 audit_match_class(AUDIT_CLASS_READ_32, n))
286 return 1;
287 if ((mask & AUDIT_PERM_ATTR) &&
288 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
289 return 1;
290 return 0;
291 case 2: /* open */
292 return mask & ACC_MODE(ctx->argv[1]);
293 case 3: /* openat */
294 return mask & ACC_MODE(ctx->argv[2]);
295 case 4: /* socketcall */
296 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
297 case 5: /* execve */
298 return mask & AUDIT_PERM_EXEC;
299 default:
300 return 0;
301 }
302}
303
8b67dca9
AV
304static int audit_match_filetype(struct audit_context *ctx, int which)
305{
306 unsigned index = which & ~S_IFMT;
307 mode_t mode = which & S_IFMT;
1a61c88d 308
309 if (unlikely(!ctx))
310 return 0;
311
8b67dca9
AV
312 if (index >= ctx->name_count)
313 return 0;
314 if (ctx->names[index].ino == -1)
315 return 0;
316 if ((ctx->names[index].mode ^ mode) & S_IFMT)
317 return 0;
318 return 1;
319}
320
74c3cbe3
AV
321/*
322 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
323 * ->first_trees points to its beginning, ->trees - to the current end of data.
324 * ->tree_count is the number of free entries in array pointed to by ->trees.
325 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
326 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
327 * it's going to remain 1-element for almost any setup) until we free context itself.
328 * References in it _are_ dropped - at the same time we free/drop aux stuff.
329 */
330
331#ifdef CONFIG_AUDIT_TREE
679173b7
EP
332static void audit_set_auditable(struct audit_context *ctx)
333{
334 if (!ctx->prio) {
335 ctx->prio = 1;
336 ctx->current_state = AUDIT_RECORD_CONTEXT;
337 }
338}
339
74c3cbe3
AV
340static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
341{
342 struct audit_tree_refs *p = ctx->trees;
343 int left = ctx->tree_count;
344 if (likely(left)) {
345 p->c[--left] = chunk;
346 ctx->tree_count = left;
347 return 1;
348 }
349 if (!p)
350 return 0;
351 p = p->next;
352 if (p) {
353 p->c[30] = chunk;
354 ctx->trees = p;
355 ctx->tree_count = 30;
356 return 1;
357 }
358 return 0;
359}
360
361static int grow_tree_refs(struct audit_context *ctx)
362{
363 struct audit_tree_refs *p = ctx->trees;
364 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
365 if (!ctx->trees) {
366 ctx->trees = p;
367 return 0;
368 }
369 if (p)
370 p->next = ctx->trees;
371 else
372 ctx->first_trees = ctx->trees;
373 ctx->tree_count = 31;
374 return 1;
375}
376#endif
377
378static void unroll_tree_refs(struct audit_context *ctx,
379 struct audit_tree_refs *p, int count)
380{
381#ifdef CONFIG_AUDIT_TREE
382 struct audit_tree_refs *q;
383 int n;
384 if (!p) {
385 /* we started with empty chain */
386 p = ctx->first_trees;
387 count = 31;
388 /* if the very first allocation has failed, nothing to do */
389 if (!p)
390 return;
391 }
392 n = count;
393 for (q = p; q != ctx->trees; q = q->next, n = 31) {
394 while (n--) {
395 audit_put_chunk(q->c[n]);
396 q->c[n] = NULL;
397 }
398 }
399 while (n-- > ctx->tree_count) {
400 audit_put_chunk(q->c[n]);
401 q->c[n] = NULL;
402 }
403 ctx->trees = p;
404 ctx->tree_count = count;
405#endif
406}
407
408static void free_tree_refs(struct audit_context *ctx)
409{
410 struct audit_tree_refs *p, *q;
411 for (p = ctx->first_trees; p; p = q) {
412 q = p->next;
413 kfree(p);
414 }
415}
416
417static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
418{
419#ifdef CONFIG_AUDIT_TREE
420 struct audit_tree_refs *p;
421 int n;
422 if (!tree)
423 return 0;
424 /* full ones */
425 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
426 for (n = 0; n < 31; n++)
427 if (audit_tree_match(p->c[n], tree))
428 return 1;
429 }
430 /* partial */
431 if (p) {
432 for (n = ctx->tree_count; n < 31; n++)
433 if (audit_tree_match(p->c[n], tree))
434 return 1;
435 }
436#endif
437 return 0;
438}
439
f368c07d 440/* Determine if any context name data matches a rule's watch data */
1da177e4
LT
441/* Compare a task_struct with an audit_rule. Return 1 on match, 0
442 * otherwise. */
443static int audit_filter_rules(struct task_struct *tsk,
93315ed6 444 struct audit_krule *rule,
1da177e4 445 struct audit_context *ctx,
f368c07d 446 struct audit_names *name,
1da177e4
LT
447 enum audit_state *state)
448{
c69e8d9c 449 const struct cred *cred = get_task_cred(tsk);
2ad312d2 450 int i, j, need_sid = 1;
3dc7e315
DG
451 u32 sid;
452
1da177e4 453 for (i = 0; i < rule->field_count; i++) {
93315ed6 454 struct audit_field *f = &rule->fields[i];
1da177e4
LT
455 int result = 0;
456
93315ed6 457 switch (f->type) {
1da177e4 458 case AUDIT_PID:
93315ed6 459 result = audit_comparator(tsk->pid, f->op, f->val);
1da177e4 460 break;
3c66251e 461 case AUDIT_PPID:
419c58f1
AV
462 if (ctx) {
463 if (!ctx->ppid)
464 ctx->ppid = sys_getppid();
3c66251e 465 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 466 }
3c66251e 467 break;
1da177e4 468 case AUDIT_UID:
b6dff3ec 469 result = audit_comparator(cred->uid, f->op, f->val);
1da177e4
LT
470 break;
471 case AUDIT_EUID:
b6dff3ec 472 result = audit_comparator(cred->euid, f->op, f->val);
1da177e4
LT
473 break;
474 case AUDIT_SUID:
b6dff3ec 475 result = audit_comparator(cred->suid, f->op, f->val);
1da177e4
LT
476 break;
477 case AUDIT_FSUID:
b6dff3ec 478 result = audit_comparator(cred->fsuid, f->op, f->val);
1da177e4
LT
479 break;
480 case AUDIT_GID:
b6dff3ec 481 result = audit_comparator(cred->gid, f->op, f->val);
1da177e4
LT
482 break;
483 case AUDIT_EGID:
b6dff3ec 484 result = audit_comparator(cred->egid, f->op, f->val);
1da177e4
LT
485 break;
486 case AUDIT_SGID:
b6dff3ec 487 result = audit_comparator(cred->sgid, f->op, f->val);
1da177e4
LT
488 break;
489 case AUDIT_FSGID:
b6dff3ec 490 result = audit_comparator(cred->fsgid, f->op, f->val);
1da177e4
LT
491 break;
492 case AUDIT_PERS:
93315ed6 493 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 494 break;
2fd6f58b 495 case AUDIT_ARCH:
9f8dbe9c 496 if (ctx)
93315ed6 497 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 498 break;
1da177e4
LT
499
500 case AUDIT_EXIT:
501 if (ctx && ctx->return_valid)
93315ed6 502 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
503 break;
504 case AUDIT_SUCCESS:
b01f2cc1 505 if (ctx && ctx->return_valid) {
93315ed6
AG
506 if (f->val)
507 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 508 else
93315ed6 509 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 510 }
1da177e4
LT
511 break;
512 case AUDIT_DEVMAJOR:
f368c07d
AG
513 if (name)
514 result = audit_comparator(MAJOR(name->dev),
515 f->op, f->val);
516 else if (ctx) {
1da177e4 517 for (j = 0; j < ctx->name_count; j++) {
93315ed6 518 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
1da177e4
LT
519 ++result;
520 break;
521 }
522 }
523 }
524 break;
525 case AUDIT_DEVMINOR:
f368c07d
AG
526 if (name)
527 result = audit_comparator(MINOR(name->dev),
528 f->op, f->val);
529 else if (ctx) {
1da177e4 530 for (j = 0; j < ctx->name_count; j++) {
93315ed6 531 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
1da177e4
LT
532 ++result;
533 break;
534 }
535 }
536 }
537 break;
538 case AUDIT_INODE:
f368c07d 539 if (name)
9c937dcc 540 result = (name->ino == f->val);
f368c07d 541 else if (ctx) {
1da177e4 542 for (j = 0; j < ctx->name_count; j++) {
9c937dcc 543 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
1da177e4
LT
544 ++result;
545 break;
546 }
547 }
548 }
549 break;
f368c07d 550 case AUDIT_WATCH:
cfcad62c
EP
551 if (name && audit_watch_inode(rule->watch) != (unsigned long)-1)
552 result = (name->dev == audit_watch_dev(rule->watch) &&
553 name->ino == audit_watch_inode(rule->watch));
f368c07d 554 break;
74c3cbe3
AV
555 case AUDIT_DIR:
556 if (ctx)
557 result = match_tree_refs(ctx, rule->tree);
558 break;
1da177e4
LT
559 case AUDIT_LOGINUID:
560 result = 0;
561 if (ctx)
bfef93a5 562 result = audit_comparator(tsk->loginuid, f->op, f->val);
1da177e4 563 break;
3a6b9f85
DG
564 case AUDIT_SUBJ_USER:
565 case AUDIT_SUBJ_ROLE:
566 case AUDIT_SUBJ_TYPE:
567 case AUDIT_SUBJ_SEN:
568 case AUDIT_SUBJ_CLR:
3dc7e315
DG
569 /* NOTE: this may return negative values indicating
570 a temporary error. We simply treat this as a
571 match for now to avoid losing information that
572 may be wanted. An error message will also be
573 logged upon error */
04305e4a 574 if (f->lsm_rule) {
2ad312d2 575 if (need_sid) {
2a862b32 576 security_task_getsecid(tsk, &sid);
2ad312d2
SG
577 need_sid = 0;
578 }
d7a96f3a 579 result = security_audit_rule_match(sid, f->type,
3dc7e315 580 f->op,
04305e4a 581 f->lsm_rule,
3dc7e315 582 ctx);
2ad312d2 583 }
3dc7e315 584 break;
6e5a2d1d
DG
585 case AUDIT_OBJ_USER:
586 case AUDIT_OBJ_ROLE:
587 case AUDIT_OBJ_TYPE:
588 case AUDIT_OBJ_LEV_LOW:
589 case AUDIT_OBJ_LEV_HIGH:
590 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
591 also applies here */
04305e4a 592 if (f->lsm_rule) {
6e5a2d1d
DG
593 /* Find files that match */
594 if (name) {
d7a96f3a 595 result = security_audit_rule_match(
6e5a2d1d 596 name->osid, f->type, f->op,
04305e4a 597 f->lsm_rule, ctx);
6e5a2d1d
DG
598 } else if (ctx) {
599 for (j = 0; j < ctx->name_count; j++) {
d7a96f3a 600 if (security_audit_rule_match(
6e5a2d1d
DG
601 ctx->names[j].osid,
602 f->type, f->op,
04305e4a 603 f->lsm_rule, ctx)) {
6e5a2d1d
DG
604 ++result;
605 break;
606 }
607 }
608 }
609 /* Find ipc objects that match */
a33e6751
AV
610 if (!ctx || ctx->type != AUDIT_IPC)
611 break;
612 if (security_audit_rule_match(ctx->ipc.osid,
613 f->type, f->op,
614 f->lsm_rule, ctx))
615 ++result;
6e5a2d1d
DG
616 }
617 break;
1da177e4
LT
618 case AUDIT_ARG0:
619 case AUDIT_ARG1:
620 case AUDIT_ARG2:
621 case AUDIT_ARG3:
622 if (ctx)
93315ed6 623 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 624 break;
5adc8a6a
AG
625 case AUDIT_FILTERKEY:
626 /* ignore this field for filtering */
627 result = 1;
628 break;
55669bfa
AV
629 case AUDIT_PERM:
630 result = audit_match_perm(ctx, f->val);
631 break;
8b67dca9
AV
632 case AUDIT_FILETYPE:
633 result = audit_match_filetype(ctx, f->val);
634 break;
1da177e4
LT
635 }
636
c69e8d9c
DH
637 if (!result) {
638 put_cred(cred);
1da177e4 639 return 0;
c69e8d9c 640 }
1da177e4 641 }
0590b933
AV
642
643 if (ctx) {
644 if (rule->prio <= ctx->prio)
645 return 0;
646 if (rule->filterkey) {
647 kfree(ctx->filterkey);
648 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
649 }
650 ctx->prio = rule->prio;
651 }
1da177e4
LT
652 switch (rule->action) {
653 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
1da177e4
LT
654 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
655 }
c69e8d9c 656 put_cred(cred);
1da177e4
LT
657 return 1;
658}
659
660/* At process creation time, we can determine if system-call auditing is
661 * completely disabled for this task. Since we only have the task
662 * structure at this point, we can only check uid and gid.
663 */
e048e02c 664static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
1da177e4
LT
665{
666 struct audit_entry *e;
667 enum audit_state state;
668
669 rcu_read_lock();
0f45aa18 670 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f368c07d 671 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
e048e02c
AV
672 if (state == AUDIT_RECORD_CONTEXT)
673 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
1da177e4
LT
674 rcu_read_unlock();
675 return state;
676 }
677 }
678 rcu_read_unlock();
679 return AUDIT_BUILD_CONTEXT;
680}
681
682/* At syscall entry and exit time, this filter is called if the
683 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 684 * also not high enough that we already know we have to write an audit
b0dd25a8 685 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
686 */
687static enum audit_state audit_filter_syscall(struct task_struct *tsk,
688 struct audit_context *ctx,
689 struct list_head *list)
690{
691 struct audit_entry *e;
c3896495 692 enum audit_state state;
1da177e4 693
351bb722 694 if (audit_pid && tsk->tgid == audit_pid)
f7056d64
DW
695 return AUDIT_DISABLED;
696
1da177e4 697 rcu_read_lock();
c3896495 698 if (!list_empty(list)) {
b63862f4
DK
699 int word = AUDIT_WORD(ctx->major);
700 int bit = AUDIT_BIT(ctx->major);
701
702 list_for_each_entry_rcu(e, list, list) {
f368c07d
AG
703 if ((e->rule.mask[word] & bit) == bit &&
704 audit_filter_rules(tsk, &e->rule, ctx, NULL,
705 &state)) {
706 rcu_read_unlock();
0590b933 707 ctx->current_state = state;
f368c07d
AG
708 return state;
709 }
710 }
711 }
712 rcu_read_unlock();
713 return AUDIT_BUILD_CONTEXT;
714}
715
716/* At syscall exit time, this filter is called if any audit_names[] have been
717 * collected during syscall processing. We only check rules in sublists at hash
718 * buckets applicable to the inode numbers in audit_names[].
719 * Regarding audit_state, same rules apply as for audit_filter_syscall().
720 */
0590b933 721void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
f368c07d
AG
722{
723 int i;
724 struct audit_entry *e;
725 enum audit_state state;
726
727 if (audit_pid && tsk->tgid == audit_pid)
0590b933 728 return;
f368c07d
AG
729
730 rcu_read_lock();
731 for (i = 0; i < ctx->name_count; i++) {
732 int word = AUDIT_WORD(ctx->major);
733 int bit = AUDIT_BIT(ctx->major);
734 struct audit_names *n = &ctx->names[i];
735 int h = audit_hash_ino((u32)n->ino);
736 struct list_head *list = &audit_inode_hash[h];
737
738 if (list_empty(list))
739 continue;
740
741 list_for_each_entry_rcu(e, list, list) {
742 if ((e->rule.mask[word] & bit) == bit &&
743 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
b63862f4 744 rcu_read_unlock();
0590b933
AV
745 ctx->current_state = state;
746 return;
b63862f4 747 }
0f45aa18
DW
748 }
749 }
750 rcu_read_unlock();
0f45aa18
DW
751}
752
1da177e4
LT
753static inline struct audit_context *audit_get_context(struct task_struct *tsk,
754 int return_valid,
6d208da8 755 long return_code)
1da177e4
LT
756{
757 struct audit_context *context = tsk->audit_context;
758
759 if (likely(!context))
760 return NULL;
761 context->return_valid = return_valid;
f701b75e
EP
762
763 /*
764 * we need to fix up the return code in the audit logs if the actual
765 * return codes are later going to be fixed up by the arch specific
766 * signal handlers
767 *
768 * This is actually a test for:
769 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
770 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
771 *
772 * but is faster than a bunch of ||
773 */
774 if (unlikely(return_code <= -ERESTARTSYS) &&
775 (return_code >= -ERESTART_RESTARTBLOCK) &&
776 (return_code != -ENOIOCTLCMD))
777 context->return_code = -EINTR;
778 else
779 context->return_code = return_code;
1da177e4 780
0590b933
AV
781 if (context->in_syscall && !context->dummy) {
782 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
783 audit_filter_inodes(tsk, context);
1da177e4
LT
784 }
785
1da177e4
LT
786 tsk->audit_context = NULL;
787 return context;
788}
789
790static inline void audit_free_names(struct audit_context *context)
791{
792 int i;
793
794#if AUDIT_DEBUG == 2
0590b933 795 if (context->put_count + context->ino_count != context->name_count) {
73241ccc 796 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1da177e4
LT
797 " name_count=%d put_count=%d"
798 " ino_count=%d [NOT freeing]\n",
73241ccc 799 __FILE__, __LINE__,
1da177e4
LT
800 context->serial, context->major, context->in_syscall,
801 context->name_count, context->put_count,
802 context->ino_count);
8c8570fb 803 for (i = 0; i < context->name_count; i++) {
1da177e4
LT
804 printk(KERN_ERR "names[%d] = %p = %s\n", i,
805 context->names[i].name,
73241ccc 806 context->names[i].name ?: "(null)");
8c8570fb 807 }
1da177e4
LT
808 dump_stack();
809 return;
810 }
811#endif
812#if AUDIT_DEBUG
813 context->put_count = 0;
814 context->ino_count = 0;
815#endif
816
8c8570fb 817 for (i = 0; i < context->name_count; i++) {
9c937dcc 818 if (context->names[i].name && context->names[i].name_put)
1da177e4 819 __putname(context->names[i].name);
8c8570fb 820 }
1da177e4 821 context->name_count = 0;
44707fdf
JB
822 path_put(&context->pwd);
823 context->pwd.dentry = NULL;
824 context->pwd.mnt = NULL;
1da177e4
LT
825}
826
827static inline void audit_free_aux(struct audit_context *context)
828{
829 struct audit_aux_data *aux;
830
831 while ((aux = context->aux)) {
832 context->aux = aux->next;
833 kfree(aux);
834 }
e54dc243
AG
835 while ((aux = context->aux_pids)) {
836 context->aux_pids = aux->next;
837 kfree(aux);
838 }
1da177e4
LT
839}
840
841static inline void audit_zero_context(struct audit_context *context,
842 enum audit_state state)
843{
1da177e4
LT
844 memset(context, 0, sizeof(*context));
845 context->state = state;
0590b933 846 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1da177e4
LT
847}
848
849static inline struct audit_context *audit_alloc_context(enum audit_state state)
850{
851 struct audit_context *context;
852
853 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
854 return NULL;
855 audit_zero_context(context, state);
916d7576 856 INIT_LIST_HEAD(&context->killed_trees);
1da177e4
LT
857 return context;
858}
859
b0dd25a8
RD
860/**
861 * audit_alloc - allocate an audit context block for a task
862 * @tsk: task
863 *
864 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
865 * if necessary. Doing so turns on system call auditing for the
866 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
867 * needed.
868 */
1da177e4
LT
869int audit_alloc(struct task_struct *tsk)
870{
871 struct audit_context *context;
872 enum audit_state state;
e048e02c 873 char *key = NULL;
1da177e4 874
b593d384 875 if (likely(!audit_ever_enabled))
1da177e4
LT
876 return 0; /* Return if not auditing. */
877
e048e02c 878 state = audit_filter_task(tsk, &key);
1da177e4
LT
879 if (likely(state == AUDIT_DISABLED))
880 return 0;
881
882 if (!(context = audit_alloc_context(state))) {
e048e02c 883 kfree(key);
1da177e4
LT
884 audit_log_lost("out of memory in audit_alloc");
885 return -ENOMEM;
886 }
e048e02c 887 context->filterkey = key;
1da177e4 888
1da177e4
LT
889 tsk->audit_context = context;
890 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
891 return 0;
892}
893
894static inline void audit_free_context(struct audit_context *context)
895{
896 struct audit_context *previous;
897 int count = 0;
898
899 do {
900 previous = context->previous;
901 if (previous || (count && count < 10)) {
902 ++count;
903 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
904 " freeing multiple contexts (%d)\n",
905 context->serial, context->major,
906 context->name_count, count);
907 }
908 audit_free_names(context);
74c3cbe3
AV
909 unroll_tree_refs(context, NULL, 0);
910 free_tree_refs(context);
1da177e4 911 audit_free_aux(context);
5adc8a6a 912 kfree(context->filterkey);
4f6b434f 913 kfree(context->sockaddr);
1da177e4
LT
914 kfree(context);
915 context = previous;
916 } while (context);
917 if (count >= 10)
918 printk(KERN_ERR "audit: freed %d contexts\n", count);
919}
920
161a09e7 921void audit_log_task_context(struct audit_buffer *ab)
8c8570fb
DK
922{
923 char *ctx = NULL;
c4823bce
AV
924 unsigned len;
925 int error;
926 u32 sid;
927
2a862b32 928 security_task_getsecid(current, &sid);
c4823bce
AV
929 if (!sid)
930 return;
8c8570fb 931
2a862b32 932 error = security_secid_to_secctx(sid, &ctx, &len);
c4823bce
AV
933 if (error) {
934 if (error != -EINVAL)
8c8570fb
DK
935 goto error_path;
936 return;
937 }
938
8c8570fb 939 audit_log_format(ab, " subj=%s", ctx);
2a862b32 940 security_release_secctx(ctx, len);
7306a0b9 941 return;
8c8570fb
DK
942
943error_path:
7306a0b9 944 audit_panic("error in audit_log_task_context");
8c8570fb
DK
945 return;
946}
947
161a09e7
JL
948EXPORT_SYMBOL(audit_log_task_context);
949
e495149b 950static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
219f0817 951{
45d9bb0e
AV
952 char name[sizeof(tsk->comm)];
953 struct mm_struct *mm = tsk->mm;
219f0817
SS
954 struct vm_area_struct *vma;
955
e495149b
AV
956 /* tsk == current */
957
45d9bb0e 958 get_task_comm(name, tsk);
99e45eea
DW
959 audit_log_format(ab, " comm=");
960 audit_log_untrustedstring(ab, name);
219f0817 961
e495149b
AV
962 if (mm) {
963 down_read(&mm->mmap_sem);
964 vma = mm->mmap;
965 while (vma) {
966 if ((vma->vm_flags & VM_EXECUTABLE) &&
967 vma->vm_file) {
968 audit_log_d_path(ab, "exe=",
44707fdf 969 &vma->vm_file->f_path);
e495149b
AV
970 break;
971 }
972 vma = vma->vm_next;
219f0817 973 }
e495149b 974 up_read(&mm->mmap_sem);
219f0817 975 }
e495149b 976 audit_log_task_context(ab);
219f0817
SS
977}
978
e54dc243 979static int audit_log_pid_context(struct audit_context *context, pid_t pid,
4746ec5b
EP
980 uid_t auid, uid_t uid, unsigned int sessionid,
981 u32 sid, char *comm)
e54dc243
AG
982{
983 struct audit_buffer *ab;
2a862b32 984 char *ctx = NULL;
e54dc243
AG
985 u32 len;
986 int rc = 0;
987
988 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
989 if (!ab)
6246ccab 990 return rc;
e54dc243 991
4746ec5b
EP
992 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
993 uid, sessionid);
2a862b32 994 if (security_secid_to_secctx(sid, &ctx, &len)) {
c2a7780e 995 audit_log_format(ab, " obj=(none)");
e54dc243 996 rc = 1;
2a862b32
AD
997 } else {
998 audit_log_format(ab, " obj=%s", ctx);
999 security_release_secctx(ctx, len);
1000 }
c2a7780e
EP
1001 audit_log_format(ab, " ocomm=");
1002 audit_log_untrustedstring(ab, comm);
e54dc243 1003 audit_log_end(ab);
e54dc243
AG
1004
1005 return rc;
1006}
1007
de6bbd1d
EP
1008/*
1009 * to_send and len_sent accounting are very loose estimates. We aren't
1010 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1011 * within about 500 bytes (next page boundry)
1012 *
1013 * why snprintf? an int is up to 12 digits long. if we just assumed when
1014 * logging that a[%d]= was going to be 16 characters long we would be wasting
1015 * space in every audit message. In one 7500 byte message we can log up to
1016 * about 1000 min size arguments. That comes down to about 50% waste of space
1017 * if we didn't do the snprintf to find out how long arg_num_len was.
1018 */
1019static int audit_log_single_execve_arg(struct audit_context *context,
1020 struct audit_buffer **ab,
1021 int arg_num,
1022 size_t *len_sent,
1023 const char __user *p,
1024 char *buf)
bdf4c48a 1025{
de6bbd1d
EP
1026 char arg_num_len_buf[12];
1027 const char __user *tmp_p = p;
b87ce6e4
EP
1028 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1029 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
de6bbd1d
EP
1030 size_t len, len_left, to_send;
1031 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1032 unsigned int i, has_cntl = 0, too_long = 0;
1033 int ret;
1034
1035 /* strnlen_user includes the null we don't want to send */
1036 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
bdf4c48a 1037
de6bbd1d
EP
1038 /*
1039 * We just created this mm, if we can't find the strings
1040 * we just copied into it something is _very_ wrong. Similar
1041 * for strings that are too long, we should not have created
1042 * any.
1043 */
b0abcfc1 1044 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
de6bbd1d
EP
1045 WARN_ON(1);
1046 send_sig(SIGKILL, current, 0);
b0abcfc1 1047 return -1;
de6bbd1d 1048 }
040b3a2d 1049
de6bbd1d
EP
1050 /* walk the whole argument looking for non-ascii chars */
1051 do {
1052 if (len_left > MAX_EXECVE_AUDIT_LEN)
1053 to_send = MAX_EXECVE_AUDIT_LEN;
1054 else
1055 to_send = len_left;
1056 ret = copy_from_user(buf, tmp_p, to_send);
bdf4c48a 1057 /*
de6bbd1d
EP
1058 * There is no reason for this copy to be short. We just
1059 * copied them here, and the mm hasn't been exposed to user-
1060 * space yet.
bdf4c48a 1061 */
de6bbd1d 1062 if (ret) {
bdf4c48a
PZ
1063 WARN_ON(1);
1064 send_sig(SIGKILL, current, 0);
b0abcfc1 1065 return -1;
bdf4c48a 1066 }
de6bbd1d
EP
1067 buf[to_send] = '\0';
1068 has_cntl = audit_string_contains_control(buf, to_send);
1069 if (has_cntl) {
1070 /*
1071 * hex messages get logged as 2 bytes, so we can only
1072 * send half as much in each message
1073 */
1074 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
bdf4c48a
PZ
1075 break;
1076 }
de6bbd1d
EP
1077 len_left -= to_send;
1078 tmp_p += to_send;
1079 } while (len_left > 0);
1080
1081 len_left = len;
1082
1083 if (len > max_execve_audit_len)
1084 too_long = 1;
1085
1086 /* rewalk the argument actually logging the message */
1087 for (i = 0; len_left > 0; i++) {
1088 int room_left;
1089
1090 if (len_left > max_execve_audit_len)
1091 to_send = max_execve_audit_len;
1092 else
1093 to_send = len_left;
1094
1095 /* do we have space left to send this argument in this ab? */
1096 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1097 if (has_cntl)
1098 room_left -= (to_send * 2);
1099 else
1100 room_left -= to_send;
1101 if (room_left < 0) {
1102 *len_sent = 0;
1103 audit_log_end(*ab);
1104 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1105 if (!*ab)
1106 return 0;
1107 }
bdf4c48a 1108
bdf4c48a 1109 /*
de6bbd1d
EP
1110 * first record needs to say how long the original string was
1111 * so we can be sure nothing was lost.
1112 */
1113 if ((i == 0) && (too_long))
ca96a895 1114 audit_log_format(*ab, " a%d_len=%zu", arg_num,
de6bbd1d
EP
1115 has_cntl ? 2*len : len);
1116
1117 /*
1118 * normally arguments are small enough to fit and we already
1119 * filled buf above when we checked for control characters
1120 * so don't bother with another copy_from_user
bdf4c48a 1121 */
de6bbd1d
EP
1122 if (len >= max_execve_audit_len)
1123 ret = copy_from_user(buf, p, to_send);
1124 else
1125 ret = 0;
040b3a2d 1126 if (ret) {
bdf4c48a
PZ
1127 WARN_ON(1);
1128 send_sig(SIGKILL, current, 0);
b0abcfc1 1129 return -1;
bdf4c48a 1130 }
de6bbd1d
EP
1131 buf[to_send] = '\0';
1132
1133 /* actually log it */
ca96a895 1134 audit_log_format(*ab, " a%d", arg_num);
de6bbd1d
EP
1135 if (too_long)
1136 audit_log_format(*ab, "[%d]", i);
1137 audit_log_format(*ab, "=");
1138 if (has_cntl)
b556f8ad 1139 audit_log_n_hex(*ab, buf, to_send);
de6bbd1d 1140 else
9d960985 1141 audit_log_string(*ab, buf);
de6bbd1d
EP
1142
1143 p += to_send;
1144 len_left -= to_send;
1145 *len_sent += arg_num_len;
1146 if (has_cntl)
1147 *len_sent += to_send * 2;
1148 else
1149 *len_sent += to_send;
1150 }
1151 /* include the null we didn't log */
1152 return len + 1;
1153}
1154
1155static void audit_log_execve_info(struct audit_context *context,
1156 struct audit_buffer **ab,
1157 struct audit_aux_data_execve *axi)
1158{
1159 int i;
1160 size_t len, len_sent = 0;
1161 const char __user *p;
1162 char *buf;
bdf4c48a 1163
de6bbd1d
EP
1164 if (axi->mm != current->mm)
1165 return; /* execve failed, no additional info */
1166
1167 p = (const char __user *)axi->mm->arg_start;
bdf4c48a 1168
ca96a895 1169 audit_log_format(*ab, "argc=%d", axi->argc);
de6bbd1d
EP
1170
1171 /*
1172 * we need some kernel buffer to hold the userspace args. Just
1173 * allocate one big one rather than allocating one of the right size
1174 * for every single argument inside audit_log_single_execve_arg()
1175 * should be <8k allocation so should be pretty safe.
1176 */
1177 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1178 if (!buf) {
1179 audit_panic("out of memory for argv string\n");
1180 return;
bdf4c48a 1181 }
de6bbd1d
EP
1182
1183 for (i = 0; i < axi->argc; i++) {
1184 len = audit_log_single_execve_arg(context, ab, i,
1185 &len_sent, p, buf);
1186 if (len <= 0)
1187 break;
1188 p += len;
1189 }
1190 kfree(buf);
bdf4c48a
PZ
1191}
1192
851f7ff5
EP
1193static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1194{
1195 int i;
1196
1197 audit_log_format(ab, " %s=", prefix);
1198 CAP_FOR_EACH_U32(i) {
1199 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1200 }
1201}
1202
1203static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1204{
1205 kernel_cap_t *perm = &name->fcap.permitted;
1206 kernel_cap_t *inh = &name->fcap.inheritable;
1207 int log = 0;
1208
1209 if (!cap_isclear(*perm)) {
1210 audit_log_cap(ab, "cap_fp", perm);
1211 log = 1;
1212 }
1213 if (!cap_isclear(*inh)) {
1214 audit_log_cap(ab, "cap_fi", inh);
1215 log = 1;
1216 }
1217
1218 if (log)
1219 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1220}
1221
a33e6751 1222static void show_special(struct audit_context *context, int *call_panic)
f3298dc4
AV
1223{
1224 struct audit_buffer *ab;
1225 int i;
1226
1227 ab = audit_log_start(context, GFP_KERNEL, context->type);
1228 if (!ab)
1229 return;
1230
1231 switch (context->type) {
1232 case AUDIT_SOCKETCALL: {
1233 int nargs = context->socketcall.nargs;
1234 audit_log_format(ab, "nargs=%d", nargs);
1235 for (i = 0; i < nargs; i++)
1236 audit_log_format(ab, " a%d=%lx", i,
1237 context->socketcall.args[i]);
1238 break; }
a33e6751
AV
1239 case AUDIT_IPC: {
1240 u32 osid = context->ipc.osid;
1241
1242 audit_log_format(ab, "ouid=%u ogid=%u mode=%#o",
1243 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1244 if (osid) {
1245 char *ctx = NULL;
1246 u32 len;
1247 if (security_secid_to_secctx(osid, &ctx, &len)) {
1248 audit_log_format(ab, " osid=%u", osid);
1249 *call_panic = 1;
1250 } else {
1251 audit_log_format(ab, " obj=%s", ctx);
1252 security_release_secctx(ctx, len);
1253 }
1254 }
e816f370
AV
1255 if (context->ipc.has_perm) {
1256 audit_log_end(ab);
1257 ab = audit_log_start(context, GFP_KERNEL,
1258 AUDIT_IPC_SET_PERM);
1259 audit_log_format(ab,
1260 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1261 context->ipc.qbytes,
1262 context->ipc.perm_uid,
1263 context->ipc.perm_gid,
1264 context->ipc.perm_mode);
1265 if (!ab)
1266 return;
1267 }
a33e6751 1268 break; }
564f6993
AV
1269 case AUDIT_MQ_OPEN: {
1270 audit_log_format(ab,
1271 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1272 "mq_msgsize=%ld mq_curmsgs=%ld",
1273 context->mq_open.oflag, context->mq_open.mode,
1274 context->mq_open.attr.mq_flags,
1275 context->mq_open.attr.mq_maxmsg,
1276 context->mq_open.attr.mq_msgsize,
1277 context->mq_open.attr.mq_curmsgs);
1278 break; }
c32c8af4
AV
1279 case AUDIT_MQ_SENDRECV: {
1280 audit_log_format(ab,
1281 "mqdes=%d msg_len=%zd msg_prio=%u "
1282 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1283 context->mq_sendrecv.mqdes,
1284 context->mq_sendrecv.msg_len,
1285 context->mq_sendrecv.msg_prio,
1286 context->mq_sendrecv.abs_timeout.tv_sec,
1287 context->mq_sendrecv.abs_timeout.tv_nsec);
1288 break; }
20114f71
AV
1289 case AUDIT_MQ_NOTIFY: {
1290 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1291 context->mq_notify.mqdes,
1292 context->mq_notify.sigev_signo);
1293 break; }
7392906e
AV
1294 case AUDIT_MQ_GETSETATTR: {
1295 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1296 audit_log_format(ab,
1297 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1298 "mq_curmsgs=%ld ",
1299 context->mq_getsetattr.mqdes,
1300 attr->mq_flags, attr->mq_maxmsg,
1301 attr->mq_msgsize, attr->mq_curmsgs);
1302 break; }
57f71a0a
AV
1303 case AUDIT_CAPSET: {
1304 audit_log_format(ab, "pid=%d", context->capset.pid);
1305 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1306 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1307 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1308 break; }
f3298dc4
AV
1309 }
1310 audit_log_end(ab);
1311}
1312
e495149b 1313static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1da177e4 1314{
c69e8d9c 1315 const struct cred *cred;
9c7aa6aa 1316 int i, call_panic = 0;
1da177e4 1317 struct audit_buffer *ab;
7551ced3 1318 struct audit_aux_data *aux;
a6c043a8 1319 const char *tty;
1da177e4 1320
e495149b 1321 /* tsk == current */
3f2792ff 1322 context->pid = tsk->pid;
419c58f1
AV
1323 if (!context->ppid)
1324 context->ppid = sys_getppid();
c69e8d9c
DH
1325 cred = current_cred();
1326 context->uid = cred->uid;
1327 context->gid = cred->gid;
1328 context->euid = cred->euid;
1329 context->suid = cred->suid;
b6dff3ec 1330 context->fsuid = cred->fsuid;
c69e8d9c
DH
1331 context->egid = cred->egid;
1332 context->sgid = cred->sgid;
b6dff3ec 1333 context->fsgid = cred->fsgid;
3f2792ff 1334 context->personality = tsk->personality;
e495149b
AV
1335
1336 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1337 if (!ab)
1338 return; /* audit_panic has been called */
bccf6ae0
DW
1339 audit_log_format(ab, "arch=%x syscall=%d",
1340 context->arch, context->major);
1da177e4
LT
1341 if (context->personality != PER_LINUX)
1342 audit_log_format(ab, " per=%lx", context->personality);
1343 if (context->return_valid)
9f8dbe9c 1344 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b
DW
1345 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1346 context->return_code);
eb84a20e 1347
dbda4c0b 1348 spin_lock_irq(&tsk->sighand->siglock);
45d9bb0e
AV
1349 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1350 tty = tsk->signal->tty->name;
a6c043a8
SG
1351 else
1352 tty = "(none)";
dbda4c0b
AC
1353 spin_unlock_irq(&tsk->sighand->siglock);
1354
1da177e4
LT
1355 audit_log_format(ab,
1356 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
f46038ff 1357 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
326e9c8b 1358 " euid=%u suid=%u fsuid=%u"
4746ec5b 1359 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1da177e4
LT
1360 context->argv[0],
1361 context->argv[1],
1362 context->argv[2],
1363 context->argv[3],
1364 context->name_count,
f46038ff 1365 context->ppid,
1da177e4 1366 context->pid,
bfef93a5 1367 tsk->loginuid,
1da177e4
LT
1368 context->uid,
1369 context->gid,
1370 context->euid, context->suid, context->fsuid,
4746ec5b
EP
1371 context->egid, context->sgid, context->fsgid, tty,
1372 tsk->sessionid);
eb84a20e 1373
eb84a20e 1374
e495149b 1375 audit_log_task_info(ab, tsk);
9d960985 1376 audit_log_key(ab, context->filterkey);
1da177e4 1377 audit_log_end(ab);
1da177e4 1378
7551ced3 1379 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1380
e495149b 1381 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1382 if (!ab)
1383 continue; /* audit_panic has been called */
1384
1da177e4 1385 switch (aux->type) {
20ca73bc 1386
473ae30b
AV
1387 case AUDIT_EXECVE: {
1388 struct audit_aux_data_execve *axi = (void *)aux;
de6bbd1d 1389 audit_log_execve_info(context, &ab, axi);
473ae30b 1390 break; }
073115d6 1391
3fc689e9
EP
1392 case AUDIT_BPRM_FCAPS: {
1393 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1394 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1395 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1396 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1397 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1398 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1399 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1400 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1401 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1402 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1403 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1404 break; }
1405
1da177e4
LT
1406 }
1407 audit_log_end(ab);
1da177e4
LT
1408 }
1409
f3298dc4 1410 if (context->type)
a33e6751 1411 show_special(context, &call_panic);
f3298dc4 1412
157cf649
AV
1413 if (context->fds[0] >= 0) {
1414 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1415 if (ab) {
1416 audit_log_format(ab, "fd0=%d fd1=%d",
1417 context->fds[0], context->fds[1]);
1418 audit_log_end(ab);
1419 }
1420 }
1421
4f6b434f
AV
1422 if (context->sockaddr_len) {
1423 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1424 if (ab) {
1425 audit_log_format(ab, "saddr=");
1426 audit_log_n_hex(ab, (void *)context->sockaddr,
1427 context->sockaddr_len);
1428 audit_log_end(ab);
1429 }
1430 }
1431
e54dc243
AG
1432 for (aux = context->aux_pids; aux; aux = aux->next) {
1433 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1434
1435 for (i = 0; i < axs->pid_count; i++)
1436 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1437 axs->target_auid[i],
1438 axs->target_uid[i],
4746ec5b 1439 axs->target_sessionid[i],
c2a7780e
EP
1440 axs->target_sid[i],
1441 axs->target_comm[i]))
e54dc243 1442 call_panic = 1;
a5cb013d
AV
1443 }
1444
e54dc243
AG
1445 if (context->target_pid &&
1446 audit_log_pid_context(context, context->target_pid,
c2a7780e 1447 context->target_auid, context->target_uid,
4746ec5b 1448 context->target_sessionid,
c2a7780e 1449 context->target_sid, context->target_comm))
e54dc243
AG
1450 call_panic = 1;
1451
44707fdf 1452 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1453 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1454 if (ab) {
44707fdf 1455 audit_log_d_path(ab, "cwd=", &context->pwd);
8f37d47c
DW
1456 audit_log_end(ab);
1457 }
1458 }
1da177e4 1459 for (i = 0; i < context->name_count; i++) {
9c937dcc 1460 struct audit_names *n = &context->names[i];
73241ccc 1461
e495149b 1462 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1da177e4
LT
1463 if (!ab)
1464 continue; /* audit_panic has been called */
8f37d47c 1465
1da177e4 1466 audit_log_format(ab, "item=%d", i);
73241ccc 1467
9c937dcc
AG
1468 if (n->name) {
1469 switch(n->name_len) {
1470 case AUDIT_NAME_FULL:
1471 /* log the full path */
1472 audit_log_format(ab, " name=");
1473 audit_log_untrustedstring(ab, n->name);
1474 break;
1475 case 0:
1476 /* name was specified as a relative path and the
1477 * directory component is the cwd */
def57543 1478 audit_log_d_path(ab, "name=", &context->pwd);
9c937dcc
AG
1479 break;
1480 default:
1481 /* log the name's directory component */
1482 audit_log_format(ab, " name=");
b556f8ad
EP
1483 audit_log_n_untrustedstring(ab, n->name,
1484 n->name_len);
9c937dcc
AG
1485 }
1486 } else
1487 audit_log_format(ab, " name=(null)");
1488
1489 if (n->ino != (unsigned long)-1) {
1490 audit_log_format(ab, " inode=%lu"
1491 " dev=%02x:%02x mode=%#o"
1492 " ouid=%u ogid=%u rdev=%02x:%02x",
1493 n->ino,
1494 MAJOR(n->dev),
1495 MINOR(n->dev),
1496 n->mode,
1497 n->uid,
1498 n->gid,
1499 MAJOR(n->rdev),
1500 MINOR(n->rdev));
1501 }
1502 if (n->osid != 0) {
1b50eed9
SG
1503 char *ctx = NULL;
1504 u32 len;
2a862b32 1505 if (security_secid_to_secctx(
9c937dcc
AG
1506 n->osid, &ctx, &len)) {
1507 audit_log_format(ab, " osid=%u", n->osid);
9c7aa6aa 1508 call_panic = 2;
2a862b32 1509 } else {
1b50eed9 1510 audit_log_format(ab, " obj=%s", ctx);
2a862b32
AD
1511 security_release_secctx(ctx, len);
1512 }
8c8570fb
DK
1513 }
1514
851f7ff5
EP
1515 audit_log_fcaps(ab, n);
1516
1da177e4
LT
1517 audit_log_end(ab);
1518 }
c0641f28
EP
1519
1520 /* Send end of event record to help user space know we are finished */
1521 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1522 if (ab)
1523 audit_log_end(ab);
9c7aa6aa
SG
1524 if (call_panic)
1525 audit_panic("error converting sid to string");
1da177e4
LT
1526}
1527
b0dd25a8
RD
1528/**
1529 * audit_free - free a per-task audit context
1530 * @tsk: task whose audit context block to free
1531 *
fa84cb93 1532 * Called from copy_process and do_exit
b0dd25a8 1533 */
1da177e4
LT
1534void audit_free(struct task_struct *tsk)
1535{
1536 struct audit_context *context;
1537
1da177e4 1538 context = audit_get_context(tsk, 0, 0);
1da177e4
LT
1539 if (likely(!context))
1540 return;
1541
1542 /* Check for system calls that do not go through the exit
9f8dbe9c
DW
1543 * function (e.g., exit_group), then free context block.
1544 * We use GFP_ATOMIC here because we might be doing this
f5561964 1545 * in the context of the idle thread */
e495149b 1546 /* that can happen only if we are called from do_exit() */
0590b933 1547 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1548 audit_log_exit(context, tsk);
916d7576
AV
1549 if (!list_empty(&context->killed_trees))
1550 audit_kill_trees(&context->killed_trees);
1da177e4
LT
1551
1552 audit_free_context(context);
1553}
1554
b0dd25a8
RD
1555/**
1556 * audit_syscall_entry - fill in an audit record at syscall entry
b0dd25a8
RD
1557 * @arch: architecture type
1558 * @major: major syscall type (function)
1559 * @a1: additional syscall register 1
1560 * @a2: additional syscall register 2
1561 * @a3: additional syscall register 3
1562 * @a4: additional syscall register 4
1563 *
1564 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1565 * audit context was created when the task was created and the state or
1566 * filters demand the audit context be built. If the state from the
1567 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1568 * then the record will be written at syscall exit time (otherwise, it
1569 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1570 * be written).
1571 */
5411be59 1572void audit_syscall_entry(int arch, int major,
1da177e4
LT
1573 unsigned long a1, unsigned long a2,
1574 unsigned long a3, unsigned long a4)
1575{
5411be59 1576 struct task_struct *tsk = current;
1da177e4
LT
1577 struct audit_context *context = tsk->audit_context;
1578 enum audit_state state;
1579
86a1c34a
RM
1580 if (unlikely(!context))
1581 return;
1da177e4 1582
b0dd25a8
RD
1583 /*
1584 * This happens only on certain architectures that make system
1da177e4
LT
1585 * calls in kernel_thread via the entry.S interface, instead of
1586 * with direct calls. (If you are porting to a new
1587 * architecture, hitting this condition can indicate that you
1588 * got the _exit/_leave calls backward in entry.S.)
1589 *
1590 * i386 no
1591 * x86_64 no
2ef9481e 1592 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1da177e4
LT
1593 *
1594 * This also happens with vm86 emulation in a non-nested manner
1595 * (entries without exits), so this case must be caught.
1596 */
1597 if (context->in_syscall) {
1598 struct audit_context *newctx;
1599
1da177e4
LT
1600#if AUDIT_DEBUG
1601 printk(KERN_ERR
1602 "audit(:%d) pid=%d in syscall=%d;"
1603 " entering syscall=%d\n",
1604 context->serial, tsk->pid, context->major, major);
1605#endif
1606 newctx = audit_alloc_context(context->state);
1607 if (newctx) {
1608 newctx->previous = context;
1609 context = newctx;
1610 tsk->audit_context = newctx;
1611 } else {
1612 /* If we can't alloc a new context, the best we
1613 * can do is to leak memory (any pending putname
1614 * will be lost). The only other alternative is
1615 * to abandon auditing. */
1616 audit_zero_context(context, context->state);
1617 }
1618 }
1619 BUG_ON(context->in_syscall || context->name_count);
1620
1621 if (!audit_enabled)
1622 return;
1623
2fd6f58b 1624 context->arch = arch;
1da177e4
LT
1625 context->major = major;
1626 context->argv[0] = a1;
1627 context->argv[1] = a2;
1628 context->argv[2] = a3;
1629 context->argv[3] = a4;
1630
1631 state = context->state;
d51374ad 1632 context->dummy = !audit_n_rules;
0590b933
AV
1633 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1634 context->prio = 0;
0f45aa18 1635 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
0590b933 1636 }
1da177e4
LT
1637 if (likely(state == AUDIT_DISABLED))
1638 return;
1639
ce625a80 1640 context->serial = 0;
1da177e4
LT
1641 context->ctime = CURRENT_TIME;
1642 context->in_syscall = 1;
0590b933 1643 context->current_state = state;
419c58f1 1644 context->ppid = 0;
1da177e4
LT
1645}
1646
a64e6494
AV
1647void audit_finish_fork(struct task_struct *child)
1648{
1649 struct audit_context *ctx = current->audit_context;
1650 struct audit_context *p = child->audit_context;
0590b933
AV
1651 if (!p || !ctx)
1652 return;
1653 if (!ctx->in_syscall || ctx->current_state != AUDIT_RECORD_CONTEXT)
a64e6494
AV
1654 return;
1655 p->arch = ctx->arch;
1656 p->major = ctx->major;
1657 memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1658 p->ctime = ctx->ctime;
1659 p->dummy = ctx->dummy;
a64e6494
AV
1660 p->in_syscall = ctx->in_syscall;
1661 p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1662 p->ppid = current->pid;
0590b933
AV
1663 p->prio = ctx->prio;
1664 p->current_state = ctx->current_state;
a64e6494
AV
1665}
1666
b0dd25a8
RD
1667/**
1668 * audit_syscall_exit - deallocate audit context after a system call
b0dd25a8
RD
1669 * @valid: success/failure flag
1670 * @return_code: syscall return value
1671 *
1672 * Tear down after system call. If the audit context has been marked as
1da177e4
LT
1673 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1674 * filtering, or because some other part of the kernel write an audit
1675 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1676 * free the names stored from getname().
1677 */
5411be59 1678void audit_syscall_exit(int valid, long return_code)
1da177e4 1679{
5411be59 1680 struct task_struct *tsk = current;
1da177e4
LT
1681 struct audit_context *context;
1682
2fd6f58b 1683 context = audit_get_context(tsk, valid, return_code);
1da177e4 1684
1da177e4 1685 if (likely(!context))
97e94c45 1686 return;
1da177e4 1687
0590b933 1688 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1689 audit_log_exit(context, tsk);
1da177e4
LT
1690
1691 context->in_syscall = 0;
0590b933 1692 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
2fd6f58b 1693
916d7576
AV
1694 if (!list_empty(&context->killed_trees))
1695 audit_kill_trees(&context->killed_trees);
1696
1da177e4
LT
1697 if (context->previous) {
1698 struct audit_context *new_context = context->previous;
1699 context->previous = NULL;
1700 audit_free_context(context);
1701 tsk->audit_context = new_context;
1702 } else {
1703 audit_free_names(context);
74c3cbe3 1704 unroll_tree_refs(context, NULL, 0);
1da177e4 1705 audit_free_aux(context);
e54dc243
AG
1706 context->aux = NULL;
1707 context->aux_pids = NULL;
a5cb013d 1708 context->target_pid = 0;
e54dc243 1709 context->target_sid = 0;
4f6b434f 1710 context->sockaddr_len = 0;
f3298dc4 1711 context->type = 0;
157cf649 1712 context->fds[0] = -1;
e048e02c
AV
1713 if (context->state != AUDIT_RECORD_CONTEXT) {
1714 kfree(context->filterkey);
1715 context->filterkey = NULL;
1716 }
1da177e4
LT
1717 tsk->audit_context = context;
1718 }
1da177e4
LT
1719}
1720
74c3cbe3
AV
1721static inline void handle_one(const struct inode *inode)
1722{
1723#ifdef CONFIG_AUDIT_TREE
1724 struct audit_context *context;
1725 struct audit_tree_refs *p;
1726 struct audit_chunk *chunk;
1727 int count;
1728 if (likely(list_empty(&inode->inotify_watches)))
1729 return;
1730 context = current->audit_context;
1731 p = context->trees;
1732 count = context->tree_count;
1733 rcu_read_lock();
1734 chunk = audit_tree_lookup(inode);
1735 rcu_read_unlock();
1736 if (!chunk)
1737 return;
1738 if (likely(put_tree_ref(context, chunk)))
1739 return;
1740 if (unlikely(!grow_tree_refs(context))) {
436c405c 1741 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1742 audit_set_auditable(context);
1743 audit_put_chunk(chunk);
1744 unroll_tree_refs(context, p, count);
1745 return;
1746 }
1747 put_tree_ref(context, chunk);
1748#endif
1749}
1750
1751static void handle_path(const struct dentry *dentry)
1752{
1753#ifdef CONFIG_AUDIT_TREE
1754 struct audit_context *context;
1755 struct audit_tree_refs *p;
1756 const struct dentry *d, *parent;
1757 struct audit_chunk *drop;
1758 unsigned long seq;
1759 int count;
1760
1761 context = current->audit_context;
1762 p = context->trees;
1763 count = context->tree_count;
1764retry:
1765 drop = NULL;
1766 d = dentry;
1767 rcu_read_lock();
1768 seq = read_seqbegin(&rename_lock);
1769 for(;;) {
1770 struct inode *inode = d->d_inode;
1771 if (inode && unlikely(!list_empty(&inode->inotify_watches))) {
1772 struct audit_chunk *chunk;
1773 chunk = audit_tree_lookup(inode);
1774 if (chunk) {
1775 if (unlikely(!put_tree_ref(context, chunk))) {
1776 drop = chunk;
1777 break;
1778 }
1779 }
1780 }
1781 parent = d->d_parent;
1782 if (parent == d)
1783 break;
1784 d = parent;
1785 }
1786 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1787 rcu_read_unlock();
1788 if (!drop) {
1789 /* just a race with rename */
1790 unroll_tree_refs(context, p, count);
1791 goto retry;
1792 }
1793 audit_put_chunk(drop);
1794 if (grow_tree_refs(context)) {
1795 /* OK, got more space */
1796 unroll_tree_refs(context, p, count);
1797 goto retry;
1798 }
1799 /* too bad */
1800 printk(KERN_WARNING
436c405c 1801 "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1802 unroll_tree_refs(context, p, count);
1803 audit_set_auditable(context);
1804 return;
1805 }
1806 rcu_read_unlock();
1807#endif
1808}
1809
b0dd25a8
RD
1810/**
1811 * audit_getname - add a name to the list
1812 * @name: name to add
1813 *
1814 * Add a name to the list of audit names for this context.
1815 * Called from fs/namei.c:getname().
1816 */
d8945bb5 1817void __audit_getname(const char *name)
1da177e4
LT
1818{
1819 struct audit_context *context = current->audit_context;
1820
d8945bb5 1821 if (IS_ERR(name) || !name)
1da177e4
LT
1822 return;
1823
1824 if (!context->in_syscall) {
1825#if AUDIT_DEBUG == 2
1826 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1827 __FILE__, __LINE__, context->serial, name);
1828 dump_stack();
1829#endif
1830 return;
1831 }
1832 BUG_ON(context->name_count >= AUDIT_NAMES);
1833 context->names[context->name_count].name = name;
9c937dcc
AG
1834 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1835 context->names[context->name_count].name_put = 1;
1da177e4 1836 context->names[context->name_count].ino = (unsigned long)-1;
e41e8bde 1837 context->names[context->name_count].osid = 0;
1da177e4 1838 ++context->name_count;
44707fdf 1839 if (!context->pwd.dentry) {
8f37d47c 1840 read_lock(&current->fs->lock);
44707fdf
JB
1841 context->pwd = current->fs->pwd;
1842 path_get(&current->fs->pwd);
8f37d47c
DW
1843 read_unlock(&current->fs->lock);
1844 }
9f8dbe9c 1845
1da177e4
LT
1846}
1847
b0dd25a8
RD
1848/* audit_putname - intercept a putname request
1849 * @name: name to intercept and delay for putname
1850 *
1851 * If we have stored the name from getname in the audit context,
1852 * then we delay the putname until syscall exit.
1853 * Called from include/linux/fs.h:putname().
1854 */
1da177e4
LT
1855void audit_putname(const char *name)
1856{
1857 struct audit_context *context = current->audit_context;
1858
1859 BUG_ON(!context);
1860 if (!context->in_syscall) {
1861#if AUDIT_DEBUG == 2
1862 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1863 __FILE__, __LINE__, context->serial, name);
1864 if (context->name_count) {
1865 int i;
1866 for (i = 0; i < context->name_count; i++)
1867 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1868 context->names[i].name,
73241ccc 1869 context->names[i].name ?: "(null)");
1da177e4
LT
1870 }
1871#endif
1872 __putname(name);
1873 }
1874#if AUDIT_DEBUG
1875 else {
1876 ++context->put_count;
1877 if (context->put_count > context->name_count) {
1878 printk(KERN_ERR "%s:%d(:%d): major=%d"
1879 " in_syscall=%d putname(%p) name_count=%d"
1880 " put_count=%d\n",
1881 __FILE__, __LINE__,
1882 context->serial, context->major,
1883 context->in_syscall, name, context->name_count,
1884 context->put_count);
1885 dump_stack();
1886 }
1887 }
1888#endif
1889}
1890
5712e88f
AG
1891static int audit_inc_name_count(struct audit_context *context,
1892 const struct inode *inode)
1893{
1894 if (context->name_count >= AUDIT_NAMES) {
1895 if (inode)
1896 printk(KERN_DEBUG "name_count maxed, losing inode data: "
436c405c 1897 "dev=%02x:%02x, inode=%lu\n",
5712e88f
AG
1898 MAJOR(inode->i_sb->s_dev),
1899 MINOR(inode->i_sb->s_dev),
1900 inode->i_ino);
1901
1902 else
436c405c 1903 printk(KERN_DEBUG "name_count maxed, losing inode data\n");
5712e88f
AG
1904 return 1;
1905 }
1906 context->name_count++;
1907#if AUDIT_DEBUG
1908 context->ino_count++;
1909#endif
1910 return 0;
1911}
1912
851f7ff5
EP
1913
1914static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1915{
1916 struct cpu_vfs_cap_data caps;
1917 int rc;
1918
1919 memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1920 memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1921 name->fcap.fE = 0;
1922 name->fcap_ver = 0;
1923
1924 if (!dentry)
1925 return 0;
1926
1927 rc = get_vfs_caps_from_disk(dentry, &caps);
1928 if (rc)
1929 return rc;
1930
1931 name->fcap.permitted = caps.permitted;
1932 name->fcap.inheritable = caps.inheritable;
1933 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1934 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1935
1936 return 0;
1937}
1938
1939
3e2efce0 1940/* Copy inode data into an audit_names. */
851f7ff5
EP
1941static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1942 const struct inode *inode)
8c8570fb 1943{
3e2efce0
AG
1944 name->ino = inode->i_ino;
1945 name->dev = inode->i_sb->s_dev;
1946 name->mode = inode->i_mode;
1947 name->uid = inode->i_uid;
1948 name->gid = inode->i_gid;
1949 name->rdev = inode->i_rdev;
2a862b32 1950 security_inode_getsecid(inode, &name->osid);
851f7ff5 1951 audit_copy_fcaps(name, dentry);
8c8570fb
DK
1952}
1953
b0dd25a8
RD
1954/**
1955 * audit_inode - store the inode and device from a lookup
1956 * @name: name being audited
481968f4 1957 * @dentry: dentry being audited
b0dd25a8
RD
1958 *
1959 * Called from fs/namei.c:path_lookup().
1960 */
5a190ae6 1961void __audit_inode(const char *name, const struct dentry *dentry)
1da177e4
LT
1962{
1963 int idx;
1964 struct audit_context *context = current->audit_context;
74c3cbe3 1965 const struct inode *inode = dentry->d_inode;
1da177e4
LT
1966
1967 if (!context->in_syscall)
1968 return;
1969 if (context->name_count
1970 && context->names[context->name_count-1].name
1971 && context->names[context->name_count-1].name == name)
1972 idx = context->name_count - 1;
1973 else if (context->name_count > 1
1974 && context->names[context->name_count-2].name
1975 && context->names[context->name_count-2].name == name)
1976 idx = context->name_count - 2;
1977 else {
1978 /* FIXME: how much do we care about inodes that have no
1979 * associated name? */
5712e88f 1980 if (audit_inc_name_count(context, inode))
1da177e4 1981 return;
5712e88f 1982 idx = context->name_count - 1;
1da177e4 1983 context->names[idx].name = NULL;
1da177e4 1984 }
74c3cbe3 1985 handle_path(dentry);
851f7ff5 1986 audit_copy_inode(&context->names[idx], dentry, inode);
73241ccc
AG
1987}
1988
1989/**
1990 * audit_inode_child - collect inode info for created/removed objects
481968f4 1991 * @dentry: dentry being audited
73d3ec5a 1992 * @parent: inode of dentry parent
73241ccc
AG
1993 *
1994 * For syscalls that create or remove filesystem objects, audit_inode
1995 * can only collect information for the filesystem object's parent.
1996 * This call updates the audit context with the child's information.
1997 * Syscalls that create a new filesystem object must be hooked after
1998 * the object is created. Syscalls that remove a filesystem object
1999 * must be hooked prior, in order to capture the target inode during
2000 * unsuccessful attempts.
2001 */
cccc6bba 2002void __audit_inode_child(const struct dentry *dentry,
73d3ec5a 2003 const struct inode *parent)
73241ccc
AG
2004{
2005 int idx;
2006 struct audit_context *context = current->audit_context;
5712e88f 2007 const char *found_parent = NULL, *found_child = NULL;
5a190ae6 2008 const struct inode *inode = dentry->d_inode;
cccc6bba 2009 const char *dname = dentry->d_name.name;
9c937dcc 2010 int dirlen = 0;
73241ccc
AG
2011
2012 if (!context->in_syscall)
2013 return;
2014
74c3cbe3
AV
2015 if (inode)
2016 handle_one(inode);
73241ccc 2017
5712e88f
AG
2018 /* parent is more likely, look for it first */
2019 for (idx = 0; idx < context->name_count; idx++) {
2020 struct audit_names *n = &context->names[idx];
f368c07d 2021
5712e88f
AG
2022 if (!n->name)
2023 continue;
2024
2025 if (n->ino == parent->i_ino &&
2026 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2027 n->name_len = dirlen; /* update parent data in place */
2028 found_parent = n->name;
2029 goto add_names;
f368c07d 2030 }
5712e88f 2031 }
73241ccc 2032
5712e88f
AG
2033 /* no matching parent, look for matching child */
2034 for (idx = 0; idx < context->name_count; idx++) {
2035 struct audit_names *n = &context->names[idx];
2036
2037 if (!n->name)
2038 continue;
2039
2040 /* strcmp() is the more likely scenario */
2041 if (!strcmp(dname, n->name) ||
2042 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2043 if (inode)
851f7ff5 2044 audit_copy_inode(n, NULL, inode);
5712e88f
AG
2045 else
2046 n->ino = (unsigned long)-1;
2047 found_child = n->name;
2048 goto add_names;
2049 }
ac9910ce 2050 }
5712e88f
AG
2051
2052add_names:
2053 if (!found_parent) {
2054 if (audit_inc_name_count(context, parent))
ac9910ce 2055 return;
5712e88f
AG
2056 idx = context->name_count - 1;
2057 context->names[idx].name = NULL;
851f7ff5 2058 audit_copy_inode(&context->names[idx], NULL, parent);
73d3ec5a 2059 }
5712e88f
AG
2060
2061 if (!found_child) {
2062 if (audit_inc_name_count(context, inode))
2063 return;
2064 idx = context->name_count - 1;
2065
2066 /* Re-use the name belonging to the slot for a matching parent
2067 * directory. All names for this context are relinquished in
2068 * audit_free_names() */
2069 if (found_parent) {
2070 context->names[idx].name = found_parent;
2071 context->names[idx].name_len = AUDIT_NAME_FULL;
2072 /* don't call __putname() */
2073 context->names[idx].name_put = 0;
2074 } else {
2075 context->names[idx].name = NULL;
2076 }
2077
2078 if (inode)
851f7ff5 2079 audit_copy_inode(&context->names[idx], NULL, inode);
5712e88f
AG
2080 else
2081 context->names[idx].ino = (unsigned long)-1;
2082 }
3e2efce0 2083}
50e437d5 2084EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 2085
b0dd25a8
RD
2086/**
2087 * auditsc_get_stamp - get local copies of audit_context values
2088 * @ctx: audit_context for the task
2089 * @t: timespec to store time recorded in the audit_context
2090 * @serial: serial value that is recorded in the audit_context
2091 *
2092 * Also sets the context as auditable.
2093 */
48887e63 2094int auditsc_get_stamp(struct audit_context *ctx,
bfb4496e 2095 struct timespec *t, unsigned int *serial)
1da177e4 2096{
48887e63
AV
2097 if (!ctx->in_syscall)
2098 return 0;
ce625a80
DW
2099 if (!ctx->serial)
2100 ctx->serial = audit_serial();
bfb4496e
DW
2101 t->tv_sec = ctx->ctime.tv_sec;
2102 t->tv_nsec = ctx->ctime.tv_nsec;
2103 *serial = ctx->serial;
0590b933
AV
2104 if (!ctx->prio) {
2105 ctx->prio = 1;
2106 ctx->current_state = AUDIT_RECORD_CONTEXT;
2107 }
48887e63 2108 return 1;
1da177e4
LT
2109}
2110
4746ec5b
EP
2111/* global counter which is incremented every time something logs in */
2112static atomic_t session_id = ATOMIC_INIT(0);
2113
b0dd25a8
RD
2114/**
2115 * audit_set_loginuid - set a task's audit_context loginuid
2116 * @task: task whose audit context is being modified
2117 * @loginuid: loginuid value
2118 *
2119 * Returns 0.
2120 *
2121 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2122 */
456be6cd 2123int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1da177e4 2124{
4746ec5b 2125 unsigned int sessionid = atomic_inc_return(&session_id);
41757106
SG
2126 struct audit_context *context = task->audit_context;
2127
bfef93a5
AV
2128 if (context && context->in_syscall) {
2129 struct audit_buffer *ab;
2130
2131 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2132 if (ab) {
2133 audit_log_format(ab, "login pid=%d uid=%u "
4746ec5b
EP
2134 "old auid=%u new auid=%u"
2135 " old ses=%u new ses=%u",
c69e8d9c 2136 task->pid, task_uid(task),
4746ec5b
EP
2137 task->loginuid, loginuid,
2138 task->sessionid, sessionid);
bfef93a5 2139 audit_log_end(ab);
c0404993 2140 }
1da177e4 2141 }
4746ec5b 2142 task->sessionid = sessionid;
bfef93a5 2143 task->loginuid = loginuid;
1da177e4
LT
2144 return 0;
2145}
2146
20ca73bc
GW
2147/**
2148 * __audit_mq_open - record audit data for a POSIX MQ open
2149 * @oflag: open flag
2150 * @mode: mode bits
6b962559 2151 * @attr: queue attributes
20ca73bc 2152 *
20ca73bc 2153 */
564f6993 2154void __audit_mq_open(int oflag, mode_t mode, struct mq_attr *attr)
20ca73bc 2155{
20ca73bc
GW
2156 struct audit_context *context = current->audit_context;
2157
564f6993
AV
2158 if (attr)
2159 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2160 else
2161 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
20ca73bc 2162
564f6993
AV
2163 context->mq_open.oflag = oflag;
2164 context->mq_open.mode = mode;
20ca73bc 2165
564f6993 2166 context->type = AUDIT_MQ_OPEN;
20ca73bc
GW
2167}
2168
2169/**
c32c8af4 2170 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
20ca73bc
GW
2171 * @mqdes: MQ descriptor
2172 * @msg_len: Message length
2173 * @msg_prio: Message priority
c32c8af4 2174 * @abs_timeout: Message timeout in absolute time
20ca73bc 2175 *
20ca73bc 2176 */
c32c8af4
AV
2177void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2178 const struct timespec *abs_timeout)
20ca73bc 2179{
20ca73bc 2180 struct audit_context *context = current->audit_context;
c32c8af4 2181 struct timespec *p = &context->mq_sendrecv.abs_timeout;
20ca73bc 2182
c32c8af4
AV
2183 if (abs_timeout)
2184 memcpy(p, abs_timeout, sizeof(struct timespec));
2185 else
2186 memset(p, 0, sizeof(struct timespec));
20ca73bc 2187
c32c8af4
AV
2188 context->mq_sendrecv.mqdes = mqdes;
2189 context->mq_sendrecv.msg_len = msg_len;
2190 context->mq_sendrecv.msg_prio = msg_prio;
20ca73bc 2191
c32c8af4 2192 context->type = AUDIT_MQ_SENDRECV;
20ca73bc
GW
2193}
2194
2195/**
2196 * __audit_mq_notify - record audit data for a POSIX MQ notify
2197 * @mqdes: MQ descriptor
6b962559 2198 * @notification: Notification event
20ca73bc 2199 *
20ca73bc
GW
2200 */
2201
20114f71 2202void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
20ca73bc 2203{
20ca73bc
GW
2204 struct audit_context *context = current->audit_context;
2205
20114f71
AV
2206 if (notification)
2207 context->mq_notify.sigev_signo = notification->sigev_signo;
2208 else
2209 context->mq_notify.sigev_signo = 0;
20ca73bc 2210
20114f71
AV
2211 context->mq_notify.mqdes = mqdes;
2212 context->type = AUDIT_MQ_NOTIFY;
20ca73bc
GW
2213}
2214
2215/**
2216 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2217 * @mqdes: MQ descriptor
2218 * @mqstat: MQ flags
2219 *
20ca73bc 2220 */
7392906e 2221void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
20ca73bc 2222{
20ca73bc 2223 struct audit_context *context = current->audit_context;
7392906e
AV
2224 context->mq_getsetattr.mqdes = mqdes;
2225 context->mq_getsetattr.mqstat = *mqstat;
2226 context->type = AUDIT_MQ_GETSETATTR;
20ca73bc
GW
2227}
2228
b0dd25a8 2229/**
073115d6
SG
2230 * audit_ipc_obj - record audit data for ipc object
2231 * @ipcp: ipc permissions
2232 *
073115d6 2233 */
a33e6751 2234void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6 2235{
073115d6 2236 struct audit_context *context = current->audit_context;
a33e6751
AV
2237 context->ipc.uid = ipcp->uid;
2238 context->ipc.gid = ipcp->gid;
2239 context->ipc.mode = ipcp->mode;
e816f370 2240 context->ipc.has_perm = 0;
a33e6751
AV
2241 security_ipc_getsecid(ipcp, &context->ipc.osid);
2242 context->type = AUDIT_IPC;
073115d6
SG
2243}
2244
2245/**
2246 * audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2247 * @qbytes: msgq bytes
2248 * @uid: msgq user id
2249 * @gid: msgq group id
2250 * @mode: msgq mode (permissions)
2251 *
e816f370 2252 * Called only after audit_ipc_obj().
b0dd25a8 2253 */
e816f370 2254void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
1da177e4 2255{
1da177e4
LT
2256 struct audit_context *context = current->audit_context;
2257
e816f370
AV
2258 context->ipc.qbytes = qbytes;
2259 context->ipc.perm_uid = uid;
2260 context->ipc.perm_gid = gid;
2261 context->ipc.perm_mode = mode;
2262 context->ipc.has_perm = 1;
1da177e4 2263}
c2f0c7c3 2264
473ae30b
AV
2265int audit_bprm(struct linux_binprm *bprm)
2266{
2267 struct audit_aux_data_execve *ax;
2268 struct audit_context *context = current->audit_context;
473ae30b 2269
5ac3a9c2 2270 if (likely(!audit_enabled || !context || context->dummy))
473ae30b
AV
2271 return 0;
2272
bdf4c48a 2273 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
473ae30b
AV
2274 if (!ax)
2275 return -ENOMEM;
2276
2277 ax->argc = bprm->argc;
2278 ax->envc = bprm->envc;
bdf4c48a 2279 ax->mm = bprm->mm;
473ae30b
AV
2280 ax->d.type = AUDIT_EXECVE;
2281 ax->d.next = context->aux;
2282 context->aux = (void *)ax;
2283 return 0;
2284}
2285
2286
b0dd25a8
RD
2287/**
2288 * audit_socketcall - record audit data for sys_socketcall
2289 * @nargs: number of args
2290 * @args: args array
2291 *
b0dd25a8 2292 */
f3298dc4 2293void audit_socketcall(int nargs, unsigned long *args)
3ec3b2fb 2294{
3ec3b2fb
DW
2295 struct audit_context *context = current->audit_context;
2296
5ac3a9c2 2297 if (likely(!context || context->dummy))
f3298dc4 2298 return;
3ec3b2fb 2299
f3298dc4
AV
2300 context->type = AUDIT_SOCKETCALL;
2301 context->socketcall.nargs = nargs;
2302 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
3ec3b2fb
DW
2303}
2304
db349509
AV
2305/**
2306 * __audit_fd_pair - record audit data for pipe and socketpair
2307 * @fd1: the first file descriptor
2308 * @fd2: the second file descriptor
2309 *
db349509 2310 */
157cf649 2311void __audit_fd_pair(int fd1, int fd2)
db349509
AV
2312{
2313 struct audit_context *context = current->audit_context;
157cf649
AV
2314 context->fds[0] = fd1;
2315 context->fds[1] = fd2;
db349509
AV
2316}
2317
b0dd25a8
RD
2318/**
2319 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2320 * @len: data length in user space
2321 * @a: data address in kernel space
2322 *
2323 * Returns 0 for success or NULL context or < 0 on error.
2324 */
3ec3b2fb
DW
2325int audit_sockaddr(int len, void *a)
2326{
3ec3b2fb
DW
2327 struct audit_context *context = current->audit_context;
2328
5ac3a9c2 2329 if (likely(!context || context->dummy))
3ec3b2fb
DW
2330 return 0;
2331
4f6b434f
AV
2332 if (!context->sockaddr) {
2333 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2334 if (!p)
2335 return -ENOMEM;
2336 context->sockaddr = p;
2337 }
3ec3b2fb 2338
4f6b434f
AV
2339 context->sockaddr_len = len;
2340 memcpy(context->sockaddr, a, len);
3ec3b2fb
DW
2341 return 0;
2342}
2343
a5cb013d
AV
2344void __audit_ptrace(struct task_struct *t)
2345{
2346 struct audit_context *context = current->audit_context;
2347
2348 context->target_pid = t->pid;
c2a7780e 2349 context->target_auid = audit_get_loginuid(t);
c69e8d9c 2350 context->target_uid = task_uid(t);
4746ec5b 2351 context->target_sessionid = audit_get_sessionid(t);
2a862b32 2352 security_task_getsecid(t, &context->target_sid);
c2a7780e 2353 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2354}
2355
b0dd25a8
RD
2356/**
2357 * audit_signal_info - record signal info for shutting down audit subsystem
2358 * @sig: signal value
2359 * @t: task being signaled
2360 *
2361 * If the audit subsystem is being terminated, record the task (pid)
2362 * and uid that is doing that.
2363 */
e54dc243 2364int __audit_signal_info(int sig, struct task_struct *t)
c2f0c7c3 2365{
e54dc243
AG
2366 struct audit_aux_data_pids *axp;
2367 struct task_struct *tsk = current;
2368 struct audit_context *ctx = tsk->audit_context;
c69e8d9c 2369 uid_t uid = current_uid(), t_uid = task_uid(t);
e1396065 2370
175fc484 2371 if (audit_pid && t->tgid == audit_pid) {
ee1d3156 2372 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
175fc484 2373 audit_sig_pid = tsk->pid;
bfef93a5
AV
2374 if (tsk->loginuid != -1)
2375 audit_sig_uid = tsk->loginuid;
175fc484 2376 else
c69e8d9c 2377 audit_sig_uid = uid;
2a862b32 2378 security_task_getsecid(tsk, &audit_sig_sid);
175fc484
AV
2379 }
2380 if (!audit_signals || audit_dummy_context())
2381 return 0;
c2f0c7c3 2382 }
e54dc243 2383
e54dc243
AG
2384 /* optimize the common case by putting first signal recipient directly
2385 * in audit_context */
2386 if (!ctx->target_pid) {
2387 ctx->target_pid = t->tgid;
c2a7780e 2388 ctx->target_auid = audit_get_loginuid(t);
c69e8d9c 2389 ctx->target_uid = t_uid;
4746ec5b 2390 ctx->target_sessionid = audit_get_sessionid(t);
2a862b32 2391 security_task_getsecid(t, &ctx->target_sid);
c2a7780e 2392 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2393 return 0;
2394 }
2395
2396 axp = (void *)ctx->aux_pids;
2397 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2398 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2399 if (!axp)
2400 return -ENOMEM;
2401
2402 axp->d.type = AUDIT_OBJ_PID;
2403 axp->d.next = ctx->aux_pids;
2404 ctx->aux_pids = (void *)axp;
2405 }
88ae704c 2406 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243
AG
2407
2408 axp->target_pid[axp->pid_count] = t->tgid;
c2a7780e 2409 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
c69e8d9c 2410 axp->target_uid[axp->pid_count] = t_uid;
4746ec5b 2411 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2a862b32 2412 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2413 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2414 axp->pid_count++;
2415
2416 return 0;
c2f0c7c3 2417}
0a4ff8c2 2418
3fc689e9
EP
2419/**
2420 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
d84f4f99
DH
2421 * @bprm: pointer to the bprm being processed
2422 * @new: the proposed new credentials
2423 * @old: the old credentials
3fc689e9
EP
2424 *
2425 * Simply check if the proc already has the caps given by the file and if not
2426 * store the priv escalation info for later auditing at the end of the syscall
2427 *
3fc689e9
EP
2428 * -Eric
2429 */
d84f4f99
DH
2430int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2431 const struct cred *new, const struct cred *old)
3fc689e9
EP
2432{
2433 struct audit_aux_data_bprm_fcaps *ax;
2434 struct audit_context *context = current->audit_context;
2435 struct cpu_vfs_cap_data vcaps;
2436 struct dentry *dentry;
2437
2438 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2439 if (!ax)
d84f4f99 2440 return -ENOMEM;
3fc689e9
EP
2441
2442 ax->d.type = AUDIT_BPRM_FCAPS;
2443 ax->d.next = context->aux;
2444 context->aux = (void *)ax;
2445
2446 dentry = dget(bprm->file->f_dentry);
2447 get_vfs_caps_from_disk(dentry, &vcaps);
2448 dput(dentry);
2449
2450 ax->fcap.permitted = vcaps.permitted;
2451 ax->fcap.inheritable = vcaps.inheritable;
2452 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2453 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2454
d84f4f99
DH
2455 ax->old_pcap.permitted = old->cap_permitted;
2456 ax->old_pcap.inheritable = old->cap_inheritable;
2457 ax->old_pcap.effective = old->cap_effective;
3fc689e9 2458
d84f4f99
DH
2459 ax->new_pcap.permitted = new->cap_permitted;
2460 ax->new_pcap.inheritable = new->cap_inheritable;
2461 ax->new_pcap.effective = new->cap_effective;
2462 return 0;
3fc689e9
EP
2463}
2464
e68b75a0
EP
2465/**
2466 * __audit_log_capset - store information about the arguments to the capset syscall
d84f4f99
DH
2467 * @pid: target pid of the capset call
2468 * @new: the new credentials
2469 * @old: the old (current) credentials
e68b75a0
EP
2470 *
2471 * Record the aguments userspace sent to sys_capset for later printing by the
2472 * audit system if applicable
2473 */
57f71a0a 2474void __audit_log_capset(pid_t pid,
d84f4f99 2475 const struct cred *new, const struct cred *old)
e68b75a0 2476{
e68b75a0 2477 struct audit_context *context = current->audit_context;
57f71a0a
AV
2478 context->capset.pid = pid;
2479 context->capset.cap.effective = new->cap_effective;
2480 context->capset.cap.inheritable = new->cap_effective;
2481 context->capset.cap.permitted = new->cap_permitted;
2482 context->type = AUDIT_CAPSET;
e68b75a0
EP
2483}
2484
0a4ff8c2
SG
2485/**
2486 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2487 * @signr: signal value
0a4ff8c2
SG
2488 *
2489 * If a process ends with a core dump, something fishy is going on and we
2490 * should record the event for investigation.
2491 */
2492void audit_core_dumps(long signr)
2493{
2494 struct audit_buffer *ab;
2495 u32 sid;
76aac0e9
DH
2496 uid_t auid = audit_get_loginuid(current), uid;
2497 gid_t gid;
4746ec5b 2498 unsigned int sessionid = audit_get_sessionid(current);
0a4ff8c2
SG
2499
2500 if (!audit_enabled)
2501 return;
2502
2503 if (signr == SIGQUIT) /* don't care for those */
2504 return;
2505
2506 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
76aac0e9 2507 current_uid_gid(&uid, &gid);
4746ec5b 2508 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
76aac0e9 2509 auid, uid, gid, sessionid);
2a862b32 2510 security_task_getsecid(current, &sid);
0a4ff8c2
SG
2511 if (sid) {
2512 char *ctx = NULL;
2513 u32 len;
2514
2a862b32 2515 if (security_secid_to_secctx(sid, &ctx, &len))
0a4ff8c2 2516 audit_log_format(ab, " ssid=%u", sid);
2a862b32 2517 else {
0a4ff8c2 2518 audit_log_format(ab, " subj=%s", ctx);
2a862b32
AD
2519 security_release_secctx(ctx, len);
2520 }
0a4ff8c2
SG
2521 }
2522 audit_log_format(ab, " pid=%d comm=", current->pid);
2523 audit_log_untrustedstring(ab, current->comm);
2524 audit_log_format(ab, " sig=%ld", signr);
2525 audit_log_end(ab);
2526}
916d7576
AV
2527
2528struct list_head *audit_killed_trees(void)
2529{
2530 struct audit_context *ctx = current->audit_context;
2531 if (likely(!ctx || !ctx->in_syscall))
2532 return NULL;
2533 return &ctx->killed_trees;
2534}