]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ubifs/super.c
UBIFS: fix constants initialization
[net-next-2.6.git] / fs / ubifs / super.c
CommitLineData
1e51764a
AB
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements UBIFS initialization and VFS superblock operations. Some
25 * initialization stuff which is rather large and complex is placed at
26 * corresponding subsystems, but most of it is here.
27 */
28
29#include <linux/init.h>
30#include <linux/slab.h>
31#include <linux/module.h>
32#include <linux/ctype.h>
1e51764a
AB
33#include <linux/kthread.h>
34#include <linux/parser.h>
35#include <linux/seq_file.h>
36#include <linux/mount.h>
4d61db4f 37#include <linux/math64.h>
1e51764a
AB
38#include "ubifs.h"
39
39ce81ce
AB
40/*
41 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
42 * allocating too much.
43 */
44#define UBIFS_KMALLOC_OK (128*1024)
45
1e51764a
AB
46/* Slab cache for UBIFS inodes */
47struct kmem_cache *ubifs_inode_slab;
48
49/* UBIFS TNC shrinker description */
50static struct shrinker ubifs_shrinker_info = {
51 .shrink = ubifs_shrinker,
52 .seeks = DEFAULT_SEEKS,
53};
54
55/**
56 * validate_inode - validate inode.
57 * @c: UBIFS file-system description object
58 * @inode: the inode to validate
59 *
60 * This is a helper function for 'ubifs_iget()' which validates various fields
61 * of a newly built inode to make sure they contain sane values and prevent
62 * possible vulnerabilities. Returns zero if the inode is all right and
63 * a non-zero error code if not.
64 */
65static int validate_inode(struct ubifs_info *c, const struct inode *inode)
66{
67 int err;
68 const struct ubifs_inode *ui = ubifs_inode(inode);
69
70 if (inode->i_size > c->max_inode_sz) {
71 ubifs_err("inode is too large (%lld)",
72 (long long)inode->i_size);
73 return 1;
74 }
75
76 if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
77 ubifs_err("unknown compression type %d", ui->compr_type);
78 return 2;
79 }
80
81 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
82 return 3;
83
84 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
85 return 4;
86
87 if (ui->xattr && (inode->i_mode & S_IFMT) != S_IFREG)
88 return 5;
89
90 if (!ubifs_compr_present(ui->compr_type)) {
91 ubifs_warn("inode %lu uses '%s' compression, but it was not "
92 "compiled in", inode->i_ino,
93 ubifs_compr_name(ui->compr_type));
94 }
95
96 err = dbg_check_dir_size(c, inode);
97 return err;
98}
99
100struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
101{
102 int err;
103 union ubifs_key key;
104 struct ubifs_ino_node *ino;
105 struct ubifs_info *c = sb->s_fs_info;
106 struct inode *inode;
107 struct ubifs_inode *ui;
108
109 dbg_gen("inode %lu", inum);
110
111 inode = iget_locked(sb, inum);
112 if (!inode)
113 return ERR_PTR(-ENOMEM);
114 if (!(inode->i_state & I_NEW))
115 return inode;
116 ui = ubifs_inode(inode);
117
118 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
119 if (!ino) {
120 err = -ENOMEM;
121 goto out;
122 }
123
124 ino_key_init(c, &key, inode->i_ino);
125
126 err = ubifs_tnc_lookup(c, &key, ino);
127 if (err)
128 goto out_ino;
129
130 inode->i_flags |= (S_NOCMTIME | S_NOATIME);
131 inode->i_nlink = le32_to_cpu(ino->nlink);
132 inode->i_uid = le32_to_cpu(ino->uid);
133 inode->i_gid = le32_to_cpu(ino->gid);
134 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
135 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
136 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
137 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
138 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
139 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
140 inode->i_mode = le32_to_cpu(ino->mode);
141 inode->i_size = le64_to_cpu(ino->size);
142
143 ui->data_len = le32_to_cpu(ino->data_len);
144 ui->flags = le32_to_cpu(ino->flags);
145 ui->compr_type = le16_to_cpu(ino->compr_type);
146 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
147 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
148 ui->xattr_size = le32_to_cpu(ino->xattr_size);
149 ui->xattr_names = le32_to_cpu(ino->xattr_names);
150 ui->synced_i_size = ui->ui_size = inode->i_size;
151
152 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
153
154 err = validate_inode(c, inode);
155 if (err)
156 goto out_invalid;
157
0a883a05 158 /* Disable read-ahead */
1e51764a
AB
159 inode->i_mapping->backing_dev_info = &c->bdi;
160
161 switch (inode->i_mode & S_IFMT) {
162 case S_IFREG:
163 inode->i_mapping->a_ops = &ubifs_file_address_operations;
164 inode->i_op = &ubifs_file_inode_operations;
165 inode->i_fop = &ubifs_file_operations;
166 if (ui->xattr) {
167 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
168 if (!ui->data) {
169 err = -ENOMEM;
170 goto out_ino;
171 }
172 memcpy(ui->data, ino->data, ui->data_len);
173 ((char *)ui->data)[ui->data_len] = '\0';
174 } else if (ui->data_len != 0) {
175 err = 10;
176 goto out_invalid;
177 }
178 break;
179 case S_IFDIR:
180 inode->i_op = &ubifs_dir_inode_operations;
181 inode->i_fop = &ubifs_dir_operations;
182 if (ui->data_len != 0) {
183 err = 11;
184 goto out_invalid;
185 }
186 break;
187 case S_IFLNK:
188 inode->i_op = &ubifs_symlink_inode_operations;
189 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
190 err = 12;
191 goto out_invalid;
192 }
193 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
194 if (!ui->data) {
195 err = -ENOMEM;
196 goto out_ino;
197 }
198 memcpy(ui->data, ino->data, ui->data_len);
199 ((char *)ui->data)[ui->data_len] = '\0';
200 break;
201 case S_IFBLK:
202 case S_IFCHR:
203 {
204 dev_t rdev;
205 union ubifs_dev_desc *dev;
206
207 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
208 if (!ui->data) {
209 err = -ENOMEM;
210 goto out_ino;
211 }
212
213 dev = (union ubifs_dev_desc *)ino->data;
214 if (ui->data_len == sizeof(dev->new))
215 rdev = new_decode_dev(le32_to_cpu(dev->new));
216 else if (ui->data_len == sizeof(dev->huge))
217 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
218 else {
219 err = 13;
220 goto out_invalid;
221 }
222 memcpy(ui->data, ino->data, ui->data_len);
223 inode->i_op = &ubifs_file_inode_operations;
224 init_special_inode(inode, inode->i_mode, rdev);
225 break;
226 }
227 case S_IFSOCK:
228 case S_IFIFO:
229 inode->i_op = &ubifs_file_inode_operations;
230 init_special_inode(inode, inode->i_mode, 0);
231 if (ui->data_len != 0) {
232 err = 14;
233 goto out_invalid;
234 }
235 break;
236 default:
237 err = 15;
238 goto out_invalid;
239 }
240
241 kfree(ino);
242 ubifs_set_inode_flags(inode);
243 unlock_new_inode(inode);
244 return inode;
245
246out_invalid:
247 ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
248 dbg_dump_node(c, ino);
249 dbg_dump_inode(c, inode);
250 err = -EINVAL;
251out_ino:
252 kfree(ino);
253out:
254 ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
255 iget_failed(inode);
256 return ERR_PTR(err);
257}
258
259static struct inode *ubifs_alloc_inode(struct super_block *sb)
260{
261 struct ubifs_inode *ui;
262
263 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
264 if (!ui)
265 return NULL;
266
267 memset((void *)ui + sizeof(struct inode), 0,
268 sizeof(struct ubifs_inode) - sizeof(struct inode));
269 mutex_init(&ui->ui_mutex);
270 spin_lock_init(&ui->ui_lock);
271 return &ui->vfs_inode;
272};
273
274static void ubifs_destroy_inode(struct inode *inode)
275{
276 struct ubifs_inode *ui = ubifs_inode(inode);
277
278 kfree(ui->data);
279 kmem_cache_free(ubifs_inode_slab, inode);
280}
281
282/*
283 * Note, Linux write-back code calls this without 'i_mutex'.
284 */
285static int ubifs_write_inode(struct inode *inode, int wait)
286{
fbfa6c88 287 int err = 0;
1e51764a
AB
288 struct ubifs_info *c = inode->i_sb->s_fs_info;
289 struct ubifs_inode *ui = ubifs_inode(inode);
290
291 ubifs_assert(!ui->xattr);
292 if (is_bad_inode(inode))
293 return 0;
294
295 mutex_lock(&ui->ui_mutex);
296 /*
297 * Due to races between write-back forced by budgeting
298 * (see 'sync_some_inodes()') and pdflush write-back, the inode may
299 * have already been synchronized, do not do this again. This might
300 * also happen if it was synchronized in an VFS operation, e.g.
301 * 'ubifs_link()'.
302 */
303 if (!ui->dirty) {
304 mutex_unlock(&ui->ui_mutex);
305 return 0;
306 }
307
fbfa6c88
AB
308 /*
309 * As an optimization, do not write orphan inodes to the media just
310 * because this is not needed.
311 */
312 dbg_gen("inode %lu, mode %#x, nlink %u",
313 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
314 if (inode->i_nlink) {
1f28681a 315 err = ubifs_jnl_write_inode(c, inode);
fbfa6c88
AB
316 if (err)
317 ubifs_err("can't write inode %lu, error %d",
318 inode->i_ino, err);
319 }
1e51764a
AB
320
321 ui->dirty = 0;
322 mutex_unlock(&ui->ui_mutex);
323 ubifs_release_dirty_inode_budget(c, ui);
324 return err;
325}
326
327static void ubifs_delete_inode(struct inode *inode)
328{
329 int err;
330 struct ubifs_info *c = inode->i_sb->s_fs_info;
1e0f358e 331 struct ubifs_inode *ui = ubifs_inode(inode);
1e51764a 332
1e0f358e 333 if (ui->xattr)
1e51764a
AB
334 /*
335 * Extended attribute inode deletions are fully handled in
336 * 'ubifs_removexattr()'. These inodes are special and have
337 * limited usage, so there is nothing to do here.
338 */
339 goto out;
340
7d32c2bb 341 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
1e51764a
AB
342 ubifs_assert(!atomic_read(&inode->i_count));
343 ubifs_assert(inode->i_nlink == 0);
344
345 truncate_inode_pages(&inode->i_data, 0);
346 if (is_bad_inode(inode))
347 goto out;
348
1e0f358e 349 ui->ui_size = inode->i_size = 0;
de94eb55 350 err = ubifs_jnl_delete_inode(c, inode);
1e51764a
AB
351 if (err)
352 /*
353 * Worst case we have a lost orphan inode wasting space, so a
0a883a05 354 * simple error message is OK here.
1e51764a 355 */
de94eb55
AB
356 ubifs_err("can't delete inode %lu, error %d",
357 inode->i_ino, err);
358
1e51764a 359out:
1e0f358e
AB
360 if (ui->dirty)
361 ubifs_release_dirty_inode_budget(c, ui);
1e51764a
AB
362 clear_inode(inode);
363}
364
365static void ubifs_dirty_inode(struct inode *inode)
366{
367 struct ubifs_inode *ui = ubifs_inode(inode);
368
369 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
370 if (!ui->dirty) {
371 ui->dirty = 1;
372 dbg_gen("inode %lu", inode->i_ino);
373 }
374}
375
376static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
377{
378 struct ubifs_info *c = dentry->d_sb->s_fs_info;
379 unsigned long long free;
7c7cbadf 380 __le32 *uuid = (__le32 *)c->uuid;
1e51764a 381
7dad181b 382 free = ubifs_get_free_space(c);
1e51764a
AB
383 dbg_gen("free space %lld bytes (%lld blocks)",
384 free, free >> UBIFS_BLOCK_SHIFT);
385
386 buf->f_type = UBIFS_SUPER_MAGIC;
387 buf->f_bsize = UBIFS_BLOCK_SIZE;
388 buf->f_blocks = c->block_cnt;
389 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
390 if (free > c->report_rp_size)
391 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
392 else
393 buf->f_bavail = 0;
394 buf->f_files = 0;
395 buf->f_ffree = 0;
396 buf->f_namelen = UBIFS_MAX_NLEN;
7c7cbadf
AB
397 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
398 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
1e51764a
AB
399 return 0;
400}
401
402static int ubifs_show_options(struct seq_file *s, struct vfsmount *mnt)
403{
404 struct ubifs_info *c = mnt->mnt_sb->s_fs_info;
405
406 if (c->mount_opts.unmount_mode == 2)
407 seq_printf(s, ",fast_unmount");
408 else if (c->mount_opts.unmount_mode == 1)
409 seq_printf(s, ",norm_unmount");
410
4793e7c5
AH
411 if (c->mount_opts.bulk_read == 2)
412 seq_printf(s, ",bulk_read");
413 else if (c->mount_opts.bulk_read == 1)
414 seq_printf(s, ",no_bulk_read");
415
2953e73f
AH
416 if (c->mount_opts.chk_data_crc == 2)
417 seq_printf(s, ",chk_data_crc");
418 else if (c->mount_opts.chk_data_crc == 1)
419 seq_printf(s, ",no_chk_data_crc");
420
553dea4d
AB
421 if (c->mount_opts.override_compr) {
422 seq_printf(s, ",compr=");
423 seq_printf(s, ubifs_compr_name(c->mount_opts.compr_type));
424 }
425
1e51764a
AB
426 return 0;
427}
428
429static int ubifs_sync_fs(struct super_block *sb, int wait)
430{
431 struct ubifs_info *c = sb->s_fs_info;
432 int i, ret = 0, err;
403e12ab 433 long long bud_bytes;
1e51764a 434
bed79935 435 if (c->jheads) {
1e51764a
AB
436 for (i = 0; i < c->jhead_cnt; i++) {
437 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
438 if (err && !ret)
439 ret = err;
440 }
403e12ab 441
bed79935
AH
442 /* Commit the journal unless it has too little data */
443 spin_lock(&c->buds_lock);
444 bud_bytes = c->bud_bytes;
445 spin_unlock(&c->buds_lock);
446 if (bud_bytes > c->leb_size) {
447 err = ubifs_run_commit(c);
448 if (err)
449 return err;
450 }
403e12ab
AB
451 }
452
1e51764a
AB
453 /*
454 * We ought to call sync for c->ubi but it does not have one. If it had
455 * it would in turn call mtd->sync, however mtd operations are
456 * synchronous anyway, so we don't lose any sleep here.
457 */
458 return ret;
459}
460
461/**
462 * init_constants_early - initialize UBIFS constants.
463 * @c: UBIFS file-system description object
464 *
465 * This function initialize UBIFS constants which do not need the superblock to
466 * be read. It also checks that the UBI volume satisfies basic UBIFS
467 * requirements. Returns zero in case of success and a negative error code in
468 * case of failure.
469 */
470static int init_constants_early(struct ubifs_info *c)
471{
472 if (c->vi.corrupted) {
473 ubifs_warn("UBI volume is corrupted - read-only mode");
474 c->ro_media = 1;
475 }
476
477 if (c->di.ro_mode) {
478 ubifs_msg("read-only UBI device");
479 c->ro_media = 1;
480 }
481
482 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
483 ubifs_msg("static UBI volume - read-only mode");
484 c->ro_media = 1;
485 }
486
487 c->leb_cnt = c->vi.size;
488 c->leb_size = c->vi.usable_leb_size;
489 c->half_leb_size = c->leb_size / 2;
490 c->min_io_size = c->di.min_io_size;
491 c->min_io_shift = fls(c->min_io_size) - 1;
492
493 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
494 ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
495 c->leb_size, UBIFS_MIN_LEB_SZ);
496 return -EINVAL;
497 }
498
499 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
500 ubifs_err("too few LEBs (%d), min. is %d",
501 c->leb_cnt, UBIFS_MIN_LEB_CNT);
502 return -EINVAL;
503 }
504
505 if (!is_power_of_2(c->min_io_size)) {
506 ubifs_err("bad min. I/O size %d", c->min_io_size);
507 return -EINVAL;
508 }
509
510 /*
511 * UBIFS aligns all node to 8-byte boundary, so to make function in
512 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
513 * less than 8.
514 */
515 if (c->min_io_size < 8) {
516 c->min_io_size = 8;
517 c->min_io_shift = 3;
518 }
519
520 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
521 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
522
523 /*
524 * Initialize node length ranges which are mostly needed for node
525 * length validation.
526 */
527 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
528 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
529 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
530 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
531 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
532 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
533
534 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
535 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
536 c->ranges[UBIFS_ORPH_NODE].min_len =
537 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
538 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
539 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
540 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
541 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
542 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
543 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
544 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
545 /*
546 * Minimum indexing node size is amended later when superblock is
547 * read and the key length is known.
548 */
549 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
550 /*
551 * Maximum indexing node size is amended later when superblock is
552 * read and the fanout is known.
553 */
554 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
555
556 /*
557 * Initialize dead and dark LEB space watermarks.
558 *
559 * Dead space is the space which cannot be used. Its watermark is
560 * equivalent to min. I/O unit or minimum node size if it is greater
561 * then min. I/O unit.
562 *
563 * Dark space is the space which might be used, or might not, depending
564 * on which node should be written to the LEB. Its watermark is
565 * equivalent to maximum UBIFS node size.
566 */
567 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
568 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
569
9bbb5726
AB
570 /*
571 * Calculate how many bytes would be wasted at the end of LEB if it was
572 * fully filled with data nodes of maximum size. This is used in
573 * calculations when reporting free space.
574 */
575 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
39ce81ce 576
4793e7c5 577 /* Buffer size for bulk-reads */
6c0c42cd
AB
578 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
579 if (c->max_bu_buf_len > c->leb_size)
580 c->max_bu_buf_len = c->leb_size;
1e51764a
AB
581 return 0;
582}
583
584/**
585 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
586 * @c: UBIFS file-system description object
587 * @lnum: LEB the write-buffer was synchronized to
588 * @free: how many free bytes left in this LEB
589 * @pad: how many bytes were padded
590 *
591 * This is a callback function which is called by the I/O unit when the
592 * write-buffer is synchronized. We need this to correctly maintain space
593 * accounting in bud logical eraseblocks. This function returns zero in case of
594 * success and a negative error code in case of failure.
595 *
596 * This function actually belongs to the journal, but we keep it here because
597 * we want to keep it static.
598 */
599static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
600{
601 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
602}
603
604/*
79807d07 605 * init_constants_sb - initialize UBIFS constants.
1e51764a
AB
606 * @c: UBIFS file-system description object
607 *
608 * This is a helper function which initializes various UBIFS constants after
609 * the superblock has been read. It also checks various UBIFS parameters and
610 * makes sure they are all right. Returns zero in case of success and a
611 * negative error code in case of failure.
612 */
79807d07 613static int init_constants_sb(struct ubifs_info *c)
1e51764a
AB
614{
615 int tmp, err;
4d61db4f 616 long long tmp64;
1e51764a
AB
617
618 c->main_bytes = (long long)c->main_lebs * c->leb_size;
619 c->max_znode_sz = sizeof(struct ubifs_znode) +
620 c->fanout * sizeof(struct ubifs_zbranch);
621
622 tmp = ubifs_idx_node_sz(c, 1);
623 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
624 c->min_idx_node_sz = ALIGN(tmp, 8);
625
626 tmp = ubifs_idx_node_sz(c, c->fanout);
627 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
628 c->max_idx_node_sz = ALIGN(tmp, 8);
629
630 /* Make sure LEB size is large enough to fit full commit */
631 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
632 tmp = ALIGN(tmp, c->min_io_size);
633 if (tmp > c->leb_size) {
634 dbg_err("too small LEB size %d, at least %d needed",
635 c->leb_size, tmp);
636 return -EINVAL;
637 }
638
639 /*
640 * Make sure that the log is large enough to fit reference nodes for
641 * all buds plus one reserved LEB.
642 */
4d61db4f
AB
643 tmp64 = c->max_bud_bytes + c->leb_size - 1;
644 c->max_bud_cnt = div_u64(tmp64, c->leb_size);
1e51764a
AB
645 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
646 tmp /= c->leb_size;
647 tmp += 1;
648 if (c->log_lebs < tmp) {
649 dbg_err("too small log %d LEBs, required min. %d LEBs",
650 c->log_lebs, tmp);
651 return -EINVAL;
652 }
653
654 /*
655 * When budgeting we assume worst-case scenarios when the pages are not
656 * be compressed and direntries are of the maximum size.
657 *
658 * Note, data, which may be stored in inodes is budgeted separately, so
659 * it is not included into 'c->inode_budget'.
660 */
661 c->page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
662 c->inode_budget = UBIFS_INO_NODE_SZ;
663 c->dent_budget = UBIFS_MAX_DENT_NODE_SZ;
664
665 /*
666 * When the amount of flash space used by buds becomes
667 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
668 * The writers are unblocked when the commit is finished. To avoid
669 * writers to be blocked UBIFS initiates background commit in advance,
670 * when number of bud bytes becomes above the limit defined below.
671 */
672 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
673
674 /*
675 * Ensure minimum journal size. All the bytes in the journal heads are
676 * considered to be used, when calculating the current journal usage.
677 * Consequently, if the journal is too small, UBIFS will treat it as
678 * always full.
679 */
4d61db4f 680 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
1e51764a
AB
681 if (c->bg_bud_bytes < tmp64)
682 c->bg_bud_bytes = tmp64;
683 if (c->max_bud_bytes < tmp64 + c->leb_size)
684 c->max_bud_bytes = tmp64 + c->leb_size;
685
686 err = ubifs_calc_lpt_geom(c);
687 if (err)
688 return err;
689
79807d07
AB
690 return 0;
691}
692
693/*
694 * init_constants_master - initialize UBIFS constants.
695 * @c: UBIFS file-system description object
696 *
697 * This is a helper function which initializes various UBIFS constants after
698 * the master node has been read. It also checks various UBIFS parameters and
699 * makes sure they are all right.
700 */
701static void init_constants_master(struct ubifs_info *c)
702{
703 long long tmp64;
704
1e51764a
AB
705 c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
706
707 /*
708 * Calculate total amount of FS blocks. This number is not used
709 * internally because it does not make much sense for UBIFS, but it is
710 * necessary to report something for the 'statfs()' call.
711 *
7dad181b 712 * Subtract the LEB reserved for GC, the LEB which is reserved for
af14a1ad
AB
713 * deletions, minimum LEBs for the index, and assume only one journal
714 * head is available.
1e51764a 715 */
af14a1ad 716 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
4d61db4f 717 tmp64 *= (long long)c->leb_size - c->leb_overhead;
1e51764a
AB
718 tmp64 = ubifs_reported_space(c, tmp64);
719 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
1e51764a
AB
720}
721
722/**
723 * take_gc_lnum - reserve GC LEB.
724 * @c: UBIFS file-system description object
725 *
726 * This function ensures that the LEB reserved for garbage collection is
727 * unmapped and is marked as "taken" in lprops. We also have to set free space
728 * to LEB size and dirty space to zero, because lprops may contain out-of-date
729 * information if the file-system was un-mounted before it has been committed.
730 * This function returns zero in case of success and a negative error code in
731 * case of failure.
732 */
733static int take_gc_lnum(struct ubifs_info *c)
734{
735 int err;
736
737 if (c->gc_lnum == -1) {
738 ubifs_err("no LEB for GC");
739 return -EINVAL;
740 }
741
742 err = ubifs_leb_unmap(c, c->gc_lnum);
743 if (err)
744 return err;
745
746 /* And we have to tell lprops that this LEB is taken */
747 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
748 LPROPS_TAKEN, 0, 0);
749 return err;
750}
751
752/**
753 * alloc_wbufs - allocate write-buffers.
754 * @c: UBIFS file-system description object
755 *
756 * This helper function allocates and initializes UBIFS write-buffers. Returns
757 * zero in case of success and %-ENOMEM in case of failure.
758 */
759static int alloc_wbufs(struct ubifs_info *c)
760{
761 int i, err;
762
763 c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
764 GFP_KERNEL);
765 if (!c->jheads)
766 return -ENOMEM;
767
768 /* Initialize journal heads */
769 for (i = 0; i < c->jhead_cnt; i++) {
770 INIT_LIST_HEAD(&c->jheads[i].buds_list);
771 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
772 if (err)
773 return err;
774
775 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
776 c->jheads[i].wbuf.jhead = i;
777 }
778
779 c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM;
780 /*
781 * Garbage Collector head likely contains long-term data and
782 * does not need to be synchronized by timer.
783 */
784 c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM;
785 c->jheads[GCHD].wbuf.timeout = 0;
786
787 return 0;
788}
789
790/**
791 * free_wbufs - free write-buffers.
792 * @c: UBIFS file-system description object
793 */
794static void free_wbufs(struct ubifs_info *c)
795{
796 int i;
797
798 if (c->jheads) {
799 for (i = 0; i < c->jhead_cnt; i++) {
800 kfree(c->jheads[i].wbuf.buf);
801 kfree(c->jheads[i].wbuf.inodes);
802 }
803 kfree(c->jheads);
804 c->jheads = NULL;
805 }
806}
807
808/**
809 * free_orphans - free orphans.
810 * @c: UBIFS file-system description object
811 */
812static void free_orphans(struct ubifs_info *c)
813{
814 struct ubifs_orphan *orph;
815
816 while (c->orph_dnext) {
817 orph = c->orph_dnext;
818 c->orph_dnext = orph->dnext;
819 list_del(&orph->list);
820 kfree(orph);
821 }
822
823 while (!list_empty(&c->orph_list)) {
824 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
825 list_del(&orph->list);
826 kfree(orph);
827 dbg_err("orphan list not empty at unmount");
828 }
829
830 vfree(c->orph_buf);
831 c->orph_buf = NULL;
832}
833
834/**
835 * free_buds - free per-bud objects.
836 * @c: UBIFS file-system description object
837 */
838static void free_buds(struct ubifs_info *c)
839{
840 struct rb_node *this = c->buds.rb_node;
841 struct ubifs_bud *bud;
842
843 while (this) {
844 if (this->rb_left)
845 this = this->rb_left;
846 else if (this->rb_right)
847 this = this->rb_right;
848 else {
849 bud = rb_entry(this, struct ubifs_bud, rb);
850 this = rb_parent(this);
851 if (this) {
852 if (this->rb_left == &bud->rb)
853 this->rb_left = NULL;
854 else
855 this->rb_right = NULL;
856 }
857 kfree(bud);
858 }
859 }
860}
861
862/**
863 * check_volume_empty - check if the UBI volume is empty.
864 * @c: UBIFS file-system description object
865 *
866 * This function checks if the UBIFS volume is empty by looking if its LEBs are
867 * mapped or not. The result of checking is stored in the @c->empty variable.
868 * Returns zero in case of success and a negative error code in case of
869 * failure.
870 */
871static int check_volume_empty(struct ubifs_info *c)
872{
873 int lnum, err;
874
875 c->empty = 1;
876 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
877 err = ubi_is_mapped(c->ubi, lnum);
878 if (unlikely(err < 0))
879 return err;
880 if (err == 1) {
881 c->empty = 0;
882 break;
883 }
884
885 cond_resched();
886 }
887
888 return 0;
889}
890
891/*
892 * UBIFS mount options.
893 *
894 * Opt_fast_unmount: do not run a journal commit before un-mounting
895 * Opt_norm_unmount: run a journal commit before un-mounting
4793e7c5
AH
896 * Opt_bulk_read: enable bulk-reads
897 * Opt_no_bulk_read: disable bulk-reads
2953e73f
AH
898 * Opt_chk_data_crc: check CRCs when reading data nodes
899 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
553dea4d 900 * Opt_override_compr: override default compressor
1e51764a
AB
901 * Opt_err: just end of array marker
902 */
903enum {
904 Opt_fast_unmount,
905 Opt_norm_unmount,
4793e7c5
AH
906 Opt_bulk_read,
907 Opt_no_bulk_read,
2953e73f
AH
908 Opt_chk_data_crc,
909 Opt_no_chk_data_crc,
553dea4d 910 Opt_override_compr,
1e51764a
AB
911 Opt_err,
912};
913
a447c093 914static const match_table_t tokens = {
1e51764a
AB
915 {Opt_fast_unmount, "fast_unmount"},
916 {Opt_norm_unmount, "norm_unmount"},
4793e7c5
AH
917 {Opt_bulk_read, "bulk_read"},
918 {Opt_no_bulk_read, "no_bulk_read"},
2953e73f
AH
919 {Opt_chk_data_crc, "chk_data_crc"},
920 {Opt_no_chk_data_crc, "no_chk_data_crc"},
553dea4d 921 {Opt_override_compr, "compr=%s"},
1e51764a
AB
922 {Opt_err, NULL},
923};
924
925/**
926 * ubifs_parse_options - parse mount parameters.
927 * @c: UBIFS file-system description object
928 * @options: parameters to parse
929 * @is_remount: non-zero if this is FS re-mount
930 *
931 * This function parses UBIFS mount options and returns zero in case success
932 * and a negative error code in case of failure.
933 */
934static int ubifs_parse_options(struct ubifs_info *c, char *options,
935 int is_remount)
936{
937 char *p;
938 substring_t args[MAX_OPT_ARGS];
939
940 if (!options)
941 return 0;
942
943 while ((p = strsep(&options, ","))) {
944 int token;
945
946 if (!*p)
947 continue;
948
949 token = match_token(p, tokens, args);
950 switch (token) {
951 case Opt_fast_unmount:
952 c->mount_opts.unmount_mode = 2;
953 c->fast_unmount = 1;
954 break;
955 case Opt_norm_unmount:
956 c->mount_opts.unmount_mode = 1;
957 c->fast_unmount = 0;
958 break;
4793e7c5
AH
959 case Opt_bulk_read:
960 c->mount_opts.bulk_read = 2;
961 c->bulk_read = 1;
962 break;
963 case Opt_no_bulk_read:
964 c->mount_opts.bulk_read = 1;
965 c->bulk_read = 0;
966 break;
2953e73f
AH
967 case Opt_chk_data_crc:
968 c->mount_opts.chk_data_crc = 2;
969 c->no_chk_data_crc = 0;
970 break;
971 case Opt_no_chk_data_crc:
972 c->mount_opts.chk_data_crc = 1;
973 c->no_chk_data_crc = 1;
974 break;
553dea4d
AB
975 case Opt_override_compr:
976 {
977 char *name = match_strdup(&args[0]);
978
979 if (!name)
980 return -ENOMEM;
981 if (!strcmp(name, "none"))
982 c->mount_opts.compr_type = UBIFS_COMPR_NONE;
983 else if (!strcmp(name, "lzo"))
984 c->mount_opts.compr_type = UBIFS_COMPR_LZO;
985 else if (!strcmp(name, "zlib"))
986 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
987 else {
988 ubifs_err("unknown compressor \"%s\"", name);
989 kfree(name);
990 return -EINVAL;
991 }
992 kfree(name);
993 c->mount_opts.override_compr = 1;
994 c->default_compr = c->mount_opts.compr_type;
995 break;
996 }
1e51764a
AB
997 default:
998 ubifs_err("unrecognized mount option \"%s\" "
999 "or missing value", p);
1000 return -EINVAL;
1001 }
1002 }
1003
1004 return 0;
1005}
1006
1007/**
1008 * destroy_journal - destroy journal data structures.
1009 * @c: UBIFS file-system description object
1010 *
1011 * This function destroys journal data structures including those that may have
1012 * been created by recovery functions.
1013 */
1014static void destroy_journal(struct ubifs_info *c)
1015{
1016 while (!list_empty(&c->unclean_leb_list)) {
1017 struct ubifs_unclean_leb *ucleb;
1018
1019 ucleb = list_entry(c->unclean_leb_list.next,
1020 struct ubifs_unclean_leb, list);
1021 list_del(&ucleb->list);
1022 kfree(ucleb);
1023 }
1024 while (!list_empty(&c->old_buds)) {
1025 struct ubifs_bud *bud;
1026
1027 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1028 list_del(&bud->list);
1029 kfree(bud);
1030 }
1031 ubifs_destroy_idx_gc(c);
1032 ubifs_destroy_size_tree(c);
1033 ubifs_tnc_close(c);
1034 free_buds(c);
1035}
1036
3477d204
AB
1037/**
1038 * bu_init - initialize bulk-read information.
1039 * @c: UBIFS file-system description object
1040 */
1041static void bu_init(struct ubifs_info *c)
1042{
1043 ubifs_assert(c->bulk_read == 1);
1044
1045 if (c->bu.buf)
1046 return; /* Already initialized */
1047
1048again:
1049 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1050 if (!c->bu.buf) {
1051 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1052 c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1053 goto again;
1054 }
1055
1056 /* Just disable bulk-read */
1057 ubifs_warn("Cannot allocate %d bytes of memory for bulk-read, "
1058 "disabling it", c->max_bu_buf_len);
1059 c->mount_opts.bulk_read = 1;
1060 c->bulk_read = 0;
1061 return;
1062 }
1063}
1064
1e51764a
AB
1065/**
1066 * mount_ubifs - mount UBIFS file-system.
1067 * @c: UBIFS file-system description object
1068 *
1069 * This function mounts UBIFS file system. Returns zero in case of success and
1070 * a negative error code in case of failure.
1071 *
1072 * Note, the function does not de-allocate resources it it fails half way
1073 * through, and the caller has to do this instead.
1074 */
1075static int mount_ubifs(struct ubifs_info *c)
1076{
1077 struct super_block *sb = c->vfs_sb;
1078 int err, mounted_read_only = (sb->s_flags & MS_RDONLY);
1079 long long x;
1080 size_t sz;
1081
1082 err = init_constants_early(c);
1083 if (err)
1084 return err;
1085
17c2f9f8
AB
1086 err = ubifs_debugging_init(c);
1087 if (err)
1088 return err;
1e51764a
AB
1089
1090 err = check_volume_empty(c);
1091 if (err)
1092 goto out_free;
1093
1094 if (c->empty && (mounted_read_only || c->ro_media)) {
1095 /*
1096 * This UBI volume is empty, and read-only, or the file system
1097 * is mounted read-only - we cannot format it.
1098 */
1099 ubifs_err("can't format empty UBI volume: read-only %s",
1100 c->ro_media ? "UBI volume" : "mount");
1101 err = -EROFS;
1102 goto out_free;
1103 }
1104
1105 if (c->ro_media && !mounted_read_only) {
1106 ubifs_err("cannot mount read-write - read-only media");
1107 err = -EROFS;
1108 goto out_free;
1109 }
1110
1111 /*
1112 * The requirement for the buffer is that it should fit indexing B-tree
1113 * height amount of integers. We assume the height if the TNC tree will
1114 * never exceed 64.
1115 */
1116 err = -ENOMEM;
1117 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1118 if (!c->bottom_up_buf)
1119 goto out_free;
1120
1121 c->sbuf = vmalloc(c->leb_size);
1122 if (!c->sbuf)
1123 goto out_free;
1124
1125 if (!mounted_read_only) {
1126 c->ileb_buf = vmalloc(c->leb_size);
1127 if (!c->ileb_buf)
1128 goto out_free;
1129 }
1130
3477d204
AB
1131 if (c->bulk_read == 1)
1132 bu_init(c);
1133
1134 /*
1135 * We have to check all CRCs, even for data nodes, when we mount the FS
1136 * (specifically, when we are replaying).
1137 */
2953e73f
AH
1138 c->always_chk_crc = 1;
1139
1e51764a
AB
1140 err = ubifs_read_superblock(c);
1141 if (err)
1142 goto out_free;
1143
1144 /*
553dea4d
AB
1145 * Make sure the compressor which is set as default in the superblock
1146 * or overriden by mount options is actually compiled in.
1e51764a
AB
1147 */
1148 if (!ubifs_compr_present(c->default_compr)) {
553dea4d
AB
1149 ubifs_err("'compressor \"%s\" is not compiled in",
1150 ubifs_compr_name(c->default_compr));
1151 goto out_free;
1e51764a
AB
1152 }
1153
79807d07 1154 err = init_constants_sb(c);
1e51764a 1155 if (err)
17c2f9f8 1156 goto out_free;
1e51764a
AB
1157
1158 sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1159 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1160 c->cbuf = kmalloc(sz, GFP_NOFS);
1161 if (!c->cbuf) {
1162 err = -ENOMEM;
17c2f9f8 1163 goto out_free;
1e51764a
AB
1164 }
1165
0855f310 1166 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1e51764a
AB
1167 if (!mounted_read_only) {
1168 err = alloc_wbufs(c);
1169 if (err)
1170 goto out_cbuf;
1171
1172 /* Create background thread */
1e51764a 1173 c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name);
1e51764a
AB
1174 if (IS_ERR(c->bgt)) {
1175 err = PTR_ERR(c->bgt);
1176 c->bgt = NULL;
1177 ubifs_err("cannot spawn \"%s\", error %d",
1178 c->bgt_name, err);
1179 goto out_wbufs;
1180 }
1181 wake_up_process(c->bgt);
1182 }
1183
1184 err = ubifs_read_master(c);
1185 if (err)
1186 goto out_master;
1187
79807d07
AB
1188 init_constants_master(c);
1189
1e51764a
AB
1190 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1191 ubifs_msg("recovery needed");
1192 c->need_recovery = 1;
1193 if (!mounted_read_only) {
1194 err = ubifs_recover_inl_heads(c, c->sbuf);
1195 if (err)
1196 goto out_master;
1197 }
1198 } else if (!mounted_read_only) {
1199 /*
1200 * Set the "dirty" flag so that if we reboot uncleanly we
1201 * will notice this immediately on the next mount.
1202 */
1203 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1204 err = ubifs_write_master(c);
1205 if (err)
1206 goto out_master;
1207 }
1208
1209 err = ubifs_lpt_init(c, 1, !mounted_read_only);
1210 if (err)
1211 goto out_lpt;
1212
1213 err = dbg_check_idx_size(c, c->old_idx_sz);
1214 if (err)
1215 goto out_lpt;
1216
1217 err = ubifs_replay_journal(c);
1218 if (err)
1219 goto out_journal;
1220
1221 err = ubifs_mount_orphans(c, c->need_recovery, mounted_read_only);
1222 if (err)
1223 goto out_orphans;
1224
1225 if (!mounted_read_only) {
1226 int lnum;
1227
1228 /* Check for enough free space */
1229 if (ubifs_calc_available(c, c->min_idx_lebs) <= 0) {
1230 ubifs_err("insufficient available space");
1231 err = -EINVAL;
1232 goto out_orphans;
1233 }
1234
1235 /* Check for enough log space */
1236 lnum = c->lhead_lnum + 1;
1237 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1238 lnum = UBIFS_LOG_LNUM;
1239 if (lnum == c->ltail_lnum) {
1240 err = ubifs_consolidate_log(c);
1241 if (err)
1242 goto out_orphans;
1243 }
1244
1245 if (c->need_recovery) {
1246 err = ubifs_recover_size(c);
1247 if (err)
1248 goto out_orphans;
1249 err = ubifs_rcvry_gc_commit(c);
1250 } else
1251 err = take_gc_lnum(c);
1252 if (err)
1253 goto out_orphans;
1254
1255 err = dbg_check_lprops(c);
1256 if (err)
1257 goto out_orphans;
1258 } else if (c->need_recovery) {
1259 err = ubifs_recover_size(c);
1260 if (err)
1261 goto out_orphans;
1262 }
1263
1264 spin_lock(&ubifs_infos_lock);
1265 list_add_tail(&c->infos_list, &ubifs_infos);
1266 spin_unlock(&ubifs_infos_lock);
1267
1268 if (c->need_recovery) {
1269 if (mounted_read_only)
1270 ubifs_msg("recovery deferred");
1271 else {
1272 c->need_recovery = 0;
1273 ubifs_msg("recovery completed");
1274 }
1275 }
1276
552ff317
AB
1277 err = dbg_debugfs_init_fs(c);
1278 if (err)
1279 goto out_infos;
1280
1e51764a
AB
1281 err = dbg_check_filesystem(c);
1282 if (err)
1283 goto out_infos;
1284
2953e73f
AH
1285 c->always_chk_crc = 0;
1286
ce769caa
AB
1287 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"",
1288 c->vi.ubi_num, c->vi.vol_id, c->vi.name);
1e51764a
AB
1289 if (mounted_read_only)
1290 ubifs_msg("mounted read-only");
1291 x = (long long)c->main_lebs * c->leb_size;
948cfb21
AB
1292 ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d "
1293 "LEBs)", x, x >> 10, x >> 20, c->main_lebs);
1e51764a 1294 x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
948cfb21
AB
1295 ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d "
1296 "LEBs)", x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt);
1297 ubifs_msg("media format: %d (latest is %d)",
1e51764a 1298 c->fmt_version, UBIFS_FORMAT_VERSION);
948cfb21 1299 ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr));
fae7fb29 1300 ubifs_msg("reserved for root: %llu bytes (%llu KiB)",
948cfb21 1301 c->report_rp_size, c->report_rp_size >> 10);
1e51764a
AB
1302
1303 dbg_msg("compiled on: " __DATE__ " at " __TIME__);
1304 dbg_msg("min. I/O unit size: %d bytes", c->min_io_size);
1305 dbg_msg("LEB size: %d bytes (%d KiB)",
948cfb21 1306 c->leb_size, c->leb_size >> 10);
1e51764a
AB
1307 dbg_msg("data journal heads: %d",
1308 c->jhead_cnt - NONDATA_JHEADS_CNT);
1309 dbg_msg("UUID: %02X%02X%02X%02X-%02X%02X"
1310 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
1311 c->uuid[0], c->uuid[1], c->uuid[2], c->uuid[3],
1312 c->uuid[4], c->uuid[5], c->uuid[6], c->uuid[7],
1313 c->uuid[8], c->uuid[9], c->uuid[10], c->uuid[11],
1314 c->uuid[12], c->uuid[13], c->uuid[14], c->uuid[15]);
1315 dbg_msg("fast unmount: %d", c->fast_unmount);
1316 dbg_msg("big_lpt %d", c->big_lpt);
1317 dbg_msg("log LEBs: %d (%d - %d)",
1318 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1319 dbg_msg("LPT area LEBs: %d (%d - %d)",
1320 c->lpt_lebs, c->lpt_first, c->lpt_last);
1321 dbg_msg("orphan area LEBs: %d (%d - %d)",
1322 c->orph_lebs, c->orph_first, c->orph_last);
1323 dbg_msg("main area LEBs: %d (%d - %d)",
1324 c->main_lebs, c->main_first, c->leb_cnt - 1);
1325 dbg_msg("index LEBs: %d", c->lst.idx_lebs);
1326 dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)",
1327 c->old_idx_sz, c->old_idx_sz >> 10, c->old_idx_sz >> 20);
1328 dbg_msg("key hash type: %d", c->key_hash_type);
1329 dbg_msg("tree fanout: %d", c->fanout);
1330 dbg_msg("reserved GC LEB: %d", c->gc_lnum);
1331 dbg_msg("first main LEB: %d", c->main_first);
1332 dbg_msg("dead watermark: %d", c->dead_wm);
1333 dbg_msg("dark watermark: %d", c->dark_wm);
1334 x = (long long)c->main_lebs * c->dark_wm;
1335 dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)",
1336 x, x >> 10, x >> 20);
1337 dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1338 c->max_bud_bytes, c->max_bud_bytes >> 10,
1339 c->max_bud_bytes >> 20);
1340 dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1341 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1342 c->bg_bud_bytes >> 20);
1343 dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)",
1344 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1345 dbg_msg("max. seq. number: %llu", c->max_sqnum);
1346 dbg_msg("commit number: %llu", c->cmt_no);
1347
1348 return 0;
1349
1350out_infos:
1351 spin_lock(&ubifs_infos_lock);
1352 list_del(&c->infos_list);
1353 spin_unlock(&ubifs_infos_lock);
1354out_orphans:
1355 free_orphans(c);
1356out_journal:
1357 destroy_journal(c);
1358out_lpt:
1359 ubifs_lpt_free(c, 0);
1360out_master:
1361 kfree(c->mst_node);
1362 kfree(c->rcvrd_mst_node);
1363 if (c->bgt)
1364 kthread_stop(c->bgt);
1365out_wbufs:
1366 free_wbufs(c);
1367out_cbuf:
1368 kfree(c->cbuf);
1e51764a 1369out_free:
3477d204 1370 kfree(c->bu.buf);
1e51764a
AB
1371 vfree(c->ileb_buf);
1372 vfree(c->sbuf);
1373 kfree(c->bottom_up_buf);
17c2f9f8 1374 ubifs_debugging_exit(c);
1e51764a
AB
1375 return err;
1376}
1377
1378/**
1379 * ubifs_umount - un-mount UBIFS file-system.
1380 * @c: UBIFS file-system description object
1381 *
1382 * Note, this function is called to free allocated resourced when un-mounting,
1383 * as well as free resources when an error occurred while we were half way
1384 * through mounting (error path cleanup function). So it has to make sure the
1385 * resource was actually allocated before freeing it.
1386 */
1387static void ubifs_umount(struct ubifs_info *c)
1388{
1389 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1390 c->vi.vol_id);
1391
552ff317 1392 dbg_debugfs_exit_fs(c);
1e51764a
AB
1393 spin_lock(&ubifs_infos_lock);
1394 list_del(&c->infos_list);
1395 spin_unlock(&ubifs_infos_lock);
1396
1397 if (c->bgt)
1398 kthread_stop(c->bgt);
1399
1400 destroy_journal(c);
1401 free_wbufs(c);
1402 free_orphans(c);
1403 ubifs_lpt_free(c, 0);
1404
1405 kfree(c->cbuf);
1406 kfree(c->rcvrd_mst_node);
1407 kfree(c->mst_node);
3477d204
AB
1408 kfree(c->bu.buf);
1409 vfree(c->ileb_buf);
1e51764a
AB
1410 vfree(c->sbuf);
1411 kfree(c->bottom_up_buf);
17c2f9f8 1412 ubifs_debugging_exit(c);
1e51764a
AB
1413}
1414
1415/**
1416 * ubifs_remount_rw - re-mount in read-write mode.
1417 * @c: UBIFS file-system description object
1418 *
1419 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1420 * mode. This function allocates the needed resources and re-mounts UBIFS in
1421 * read-write mode.
1422 */
1423static int ubifs_remount_rw(struct ubifs_info *c)
1424{
1425 int err, lnum;
1426
1427 if (c->ro_media)
1428 return -EINVAL;
1429
1430 mutex_lock(&c->umount_mutex);
1431 c->remounting_rw = 1;
2953e73f 1432 c->always_chk_crc = 1;
1e51764a
AB
1433
1434 /* Check for enough free space */
1435 if (ubifs_calc_available(c, c->min_idx_lebs) <= 0) {
1436 ubifs_err("insufficient available space");
1437 err = -EINVAL;
1438 goto out;
1439 }
1440
1441 if (c->old_leb_cnt != c->leb_cnt) {
1442 struct ubifs_sb_node *sup;
1443
1444 sup = ubifs_read_sb_node(c);
1445 if (IS_ERR(sup)) {
1446 err = PTR_ERR(sup);
1447 goto out;
1448 }
1449 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1450 err = ubifs_write_sb_node(c, sup);
1451 if (err)
1452 goto out;
1453 }
1454
1455 if (c->need_recovery) {
1456 ubifs_msg("completing deferred recovery");
1457 err = ubifs_write_rcvrd_mst_node(c);
1458 if (err)
1459 goto out;
1460 err = ubifs_recover_size(c);
1461 if (err)
1462 goto out;
1463 err = ubifs_clean_lebs(c, c->sbuf);
1464 if (err)
1465 goto out;
1466 err = ubifs_recover_inl_heads(c, c->sbuf);
1467 if (err)
1468 goto out;
1469 }
1470
1471 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1472 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1473 err = ubifs_write_master(c);
1474 if (err)
1475 goto out;
1476 }
1477
1478 c->ileb_buf = vmalloc(c->leb_size);
1479 if (!c->ileb_buf) {
1480 err = -ENOMEM;
1481 goto out;
1482 }
1483
1484 err = ubifs_lpt_init(c, 0, 1);
1485 if (err)
1486 goto out;
1487
1488 err = alloc_wbufs(c);
1489 if (err)
1490 goto out;
1491
1492 ubifs_create_buds_lists(c);
1493
1494 /* Create background thread */
1495 c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name);
1e51764a
AB
1496 if (IS_ERR(c->bgt)) {
1497 err = PTR_ERR(c->bgt);
1498 c->bgt = NULL;
1499 ubifs_err("cannot spawn \"%s\", error %d",
1500 c->bgt_name, err);
2953e73f 1501 goto out;
1e51764a
AB
1502 }
1503 wake_up_process(c->bgt);
1504
1505 c->orph_buf = vmalloc(c->leb_size);
2953e73f
AH
1506 if (!c->orph_buf) {
1507 err = -ENOMEM;
1508 goto out;
1509 }
1e51764a
AB
1510
1511 /* Check for enough log space */
1512 lnum = c->lhead_lnum + 1;
1513 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1514 lnum = UBIFS_LOG_LNUM;
1515 if (lnum == c->ltail_lnum) {
1516 err = ubifs_consolidate_log(c);
1517 if (err)
1518 goto out;
1519 }
1520
1521 if (c->need_recovery)
1522 err = ubifs_rcvry_gc_commit(c);
1523 else
1524 err = take_gc_lnum(c);
1525 if (err)
1526 goto out;
1527
1528 if (c->need_recovery) {
1529 c->need_recovery = 0;
1530 ubifs_msg("deferred recovery completed");
1531 }
1532
1533 dbg_gen("re-mounted read-write");
1534 c->vfs_sb->s_flags &= ~MS_RDONLY;
1535 c->remounting_rw = 0;
2953e73f 1536 c->always_chk_crc = 0;
1e51764a
AB
1537 mutex_unlock(&c->umount_mutex);
1538 return 0;
1539
1540out:
1541 vfree(c->orph_buf);
1542 c->orph_buf = NULL;
1543 if (c->bgt) {
1544 kthread_stop(c->bgt);
1545 c->bgt = NULL;
1546 }
1547 free_wbufs(c);
1548 vfree(c->ileb_buf);
1549 c->ileb_buf = NULL;
1550 ubifs_lpt_free(c, 1);
1551 c->remounting_rw = 0;
2953e73f 1552 c->always_chk_crc = 0;
1e51764a
AB
1553 mutex_unlock(&c->umount_mutex);
1554 return err;
1555}
1556
1557/**
1558 * commit_on_unmount - commit the journal when un-mounting.
1559 * @c: UBIFS file-system description object
1560 *
af2eb563
AB
1561 * This function is called during un-mounting and re-mounting, and it commits
1562 * the journal unless the "fast unmount" mode is enabled. It also avoids
1563 * committing the journal if it contains too few data.
1e51764a
AB
1564 */
1565static void commit_on_unmount(struct ubifs_info *c)
1566{
1567 if (!c->fast_unmount) {
1568 long long bud_bytes;
1569
1570 spin_lock(&c->buds_lock);
1571 bud_bytes = c->bud_bytes;
1572 spin_unlock(&c->buds_lock);
1573 if (bud_bytes > c->leb_size)
1574 ubifs_run_commit(c);
1575 }
1576}
1577
1578/**
1579 * ubifs_remount_ro - re-mount in read-only mode.
1580 * @c: UBIFS file-system description object
1581 *
1582 * We rely on VFS to have stopped writing. Possibly the background thread could
1583 * be running a commit, however kthread_stop will wait in that case.
1584 */
1585static void ubifs_remount_ro(struct ubifs_info *c)
1586{
1587 int i, err;
1588
1589 ubifs_assert(!c->need_recovery);
1590 commit_on_unmount(c);
1591
1592 mutex_lock(&c->umount_mutex);
1593 if (c->bgt) {
1594 kthread_stop(c->bgt);
1595 c->bgt = NULL;
1596 }
1597
1598 for (i = 0; i < c->jhead_cnt; i++) {
1599 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1600 del_timer_sync(&c->jheads[i].wbuf.timer);
1601 }
1602
1603 if (!c->ro_media) {
1604 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1605 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1606 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1607 err = ubifs_write_master(c);
1608 if (err)
1609 ubifs_ro_mode(c, err);
1610 }
1611
1612 ubifs_destroy_idx_gc(c);
1613 free_wbufs(c);
1614 vfree(c->orph_buf);
1615 c->orph_buf = NULL;
1616 vfree(c->ileb_buf);
1617 c->ileb_buf = NULL;
1618 ubifs_lpt_free(c, 1);
1619 mutex_unlock(&c->umount_mutex);
1620}
1621
1622static void ubifs_put_super(struct super_block *sb)
1623{
1624 int i;
1625 struct ubifs_info *c = sb->s_fs_info;
1626
1627 ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1628 c->vi.vol_id);
1629 /*
1630 * The following asserts are only valid if there has not been a failure
1631 * of the media. For example, there will be dirty inodes if we failed
1632 * to write them back because of I/O errors.
1633 */
1634 ubifs_assert(atomic_long_read(&c->dirty_pg_cnt) == 0);
1635 ubifs_assert(c->budg_idx_growth == 0);
7d32c2bb 1636 ubifs_assert(c->budg_dd_growth == 0);
1e51764a
AB
1637 ubifs_assert(c->budg_data_growth == 0);
1638
1639 /*
1640 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1641 * and file system un-mount. Namely, it prevents the shrinker from
1642 * picking this superblock for shrinking - it will be just skipped if
1643 * the mutex is locked.
1644 */
1645 mutex_lock(&c->umount_mutex);
1646 if (!(c->vfs_sb->s_flags & MS_RDONLY)) {
1647 /*
1648 * First of all kill the background thread to make sure it does
1649 * not interfere with un-mounting and freeing resources.
1650 */
1651 if (c->bgt) {
1652 kthread_stop(c->bgt);
1653 c->bgt = NULL;
1654 }
1655
1656 /* Synchronize write-buffers */
1657 if (c->jheads)
1658 for (i = 0; i < c->jhead_cnt; i++) {
1659 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1660 del_timer_sync(&c->jheads[i].wbuf.timer);
1661 }
1662
1663 /*
1664 * On fatal errors c->ro_media is set to 1, in which case we do
1665 * not write the master node.
1666 */
1667 if (!c->ro_media) {
1668 /*
1669 * We are being cleanly unmounted which means the
1670 * orphans were killed - indicate this in the master
1671 * node. Also save the reserved GC LEB number.
1672 */
1673 int err;
1674
1675 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1676 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1677 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1678 err = ubifs_write_master(c);
1679 if (err)
1680 /*
1681 * Recovery will attempt to fix the master area
1682 * next mount, so we just print a message and
1683 * continue to unmount normally.
1684 */
1685 ubifs_err("failed to write master node, "
1686 "error %d", err);
1687 }
1688 }
1689
1690 ubifs_umount(c);
1691 bdi_destroy(&c->bdi);
1692 ubi_close_volume(c->ubi);
1693 mutex_unlock(&c->umount_mutex);
1694 kfree(c);
1695}
1696
1697static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1698{
1699 int err;
1700 struct ubifs_info *c = sb->s_fs_info;
1701
1702 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1703
1704 err = ubifs_parse_options(c, data, 1);
1705 if (err) {
1706 ubifs_err("invalid or unknown remount parameter");
1707 return err;
1708 }
3477d204 1709
1e51764a
AB
1710 if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
1711 err = ubifs_remount_rw(c);
1712 if (err)
1713 return err;
1714 } else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY))
1715 ubifs_remount_ro(c);
1716
3477d204
AB
1717 if (c->bulk_read == 1)
1718 bu_init(c);
1719 else {
1720 dbg_gen("disable bulk-read");
1721 kfree(c->bu.buf);
1722 c->bu.buf = NULL;
1723 }
1724
1e51764a
AB
1725 return 0;
1726}
1727
1728struct super_operations ubifs_super_operations = {
1729 .alloc_inode = ubifs_alloc_inode,
1730 .destroy_inode = ubifs_destroy_inode,
1731 .put_super = ubifs_put_super,
1732 .write_inode = ubifs_write_inode,
1733 .delete_inode = ubifs_delete_inode,
1734 .statfs = ubifs_statfs,
1735 .dirty_inode = ubifs_dirty_inode,
1736 .remount_fs = ubifs_remount_fs,
1737 .show_options = ubifs_show_options,
1738 .sync_fs = ubifs_sync_fs,
1739};
1740
1741/**
1742 * open_ubi - parse UBI device name string and open the UBI device.
1743 * @name: UBI volume name
1744 * @mode: UBI volume open mode
1745 *
1746 * There are several ways to specify UBI volumes when mounting UBIFS:
1747 * o ubiX_Y - UBI device number X, volume Y;
1748 * o ubiY - UBI device number 0, volume Y;
1749 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1750 * o ubi:NAME - mount UBI device 0, volume with name NAME.
1751 *
1752 * Alternative '!' separator may be used instead of ':' (because some shells
1753 * like busybox may interpret ':' as an NFS host name separator). This function
1754 * returns ubi volume object in case of success and a negative error code in
1755 * case of failure.
1756 */
1757static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1758{
1759 int dev, vol;
1760 char *endptr;
1761
1762 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1763 return ERR_PTR(-EINVAL);
1764
1765 /* ubi:NAME method */
1766 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1767 return ubi_open_volume_nm(0, name + 4, mode);
1768
1769 if (!isdigit(name[3]))
1770 return ERR_PTR(-EINVAL);
1771
1772 dev = simple_strtoul(name + 3, &endptr, 0);
1773
1774 /* ubiY method */
1775 if (*endptr == '\0')
1776 return ubi_open_volume(0, dev, mode);
1777
1778 /* ubiX_Y method */
1779 if (*endptr == '_' && isdigit(endptr[1])) {
1780 vol = simple_strtoul(endptr + 1, &endptr, 0);
1781 if (*endptr != '\0')
1782 return ERR_PTR(-EINVAL);
1783 return ubi_open_volume(dev, vol, mode);
1784 }
1785
1786 /* ubiX:NAME method */
1787 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1788 return ubi_open_volume_nm(dev, ++endptr, mode);
1789
1790 return ERR_PTR(-EINVAL);
1791}
1792
1793static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
1794{
1795 struct ubi_volume_desc *ubi = sb->s_fs_info;
1796 struct ubifs_info *c;
1797 struct inode *root;
1798 int err;
1799
1800 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1801 if (!c)
1802 return -ENOMEM;
1803
1804 spin_lock_init(&c->cnt_lock);
1805 spin_lock_init(&c->cs_lock);
1806 spin_lock_init(&c->buds_lock);
1807 spin_lock_init(&c->space_lock);
1808 spin_lock_init(&c->orphan_lock);
1809 init_rwsem(&c->commit_sem);
1810 mutex_init(&c->lp_mutex);
1811 mutex_init(&c->tnc_mutex);
1812 mutex_init(&c->log_mutex);
1813 mutex_init(&c->mst_mutex);
1814 mutex_init(&c->umount_mutex);
3477d204 1815 mutex_init(&c->bu_mutex);
1e51764a
AB
1816 init_waitqueue_head(&c->cmt_wq);
1817 c->buds = RB_ROOT;
1818 c->old_idx = RB_ROOT;
1819 c->size_tree = RB_ROOT;
1820 c->orph_tree = RB_ROOT;
1821 INIT_LIST_HEAD(&c->infos_list);
1822 INIT_LIST_HEAD(&c->idx_gc);
1823 INIT_LIST_HEAD(&c->replay_list);
1824 INIT_LIST_HEAD(&c->replay_buds);
1825 INIT_LIST_HEAD(&c->uncat_list);
1826 INIT_LIST_HEAD(&c->empty_list);
1827 INIT_LIST_HEAD(&c->freeable_list);
1828 INIT_LIST_HEAD(&c->frdi_idx_list);
1829 INIT_LIST_HEAD(&c->unclean_leb_list);
1830 INIT_LIST_HEAD(&c->old_buds);
1831 INIT_LIST_HEAD(&c->orph_list);
1832 INIT_LIST_HEAD(&c->orph_new);
1833
1834 c->highest_inum = UBIFS_FIRST_INO;
1e51764a
AB
1835 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
1836
1837 ubi_get_volume_info(ubi, &c->vi);
1838 ubi_get_device_info(c->vi.ubi_num, &c->di);
1839
1840 /* Re-open the UBI device in read-write mode */
1841 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
1842 if (IS_ERR(c->ubi)) {
1843 err = PTR_ERR(c->ubi);
1844 goto out_free;
1845 }
1846
1847 /*
0a883a05 1848 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
1e51764a
AB
1849 * UBIFS, I/O is not deferred, it is done immediately in readpage,
1850 * which means the user would have to wait not just for their own I/O
0a883a05 1851 * but the read-ahead I/O as well i.e. completely pointless.
1e51764a
AB
1852 *
1853 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
1854 */
1855 c->bdi.capabilities = BDI_CAP_MAP_COPY;
1856 c->bdi.unplug_io_fn = default_unplug_io_fn;
1857 err = bdi_init(&c->bdi);
1858 if (err)
1859 goto out_close;
1860
1861 err = ubifs_parse_options(c, data, 0);
1862 if (err)
1863 goto out_bdi;
1864
1865 c->vfs_sb = sb;
1866
1867 sb->s_fs_info = c;
1868 sb->s_magic = UBIFS_SUPER_MAGIC;
1869 sb->s_blocksize = UBIFS_BLOCK_SIZE;
1870 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
1871 sb->s_dev = c->vi.cdev;
1872 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
1873 if (c->max_inode_sz > MAX_LFS_FILESIZE)
1874 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
1875 sb->s_op = &ubifs_super_operations;
1876
1877 mutex_lock(&c->umount_mutex);
1878 err = mount_ubifs(c);
1879 if (err) {
1880 ubifs_assert(err < 0);
1881 goto out_unlock;
1882 }
1883
1884 /* Read the root inode */
1885 root = ubifs_iget(sb, UBIFS_ROOT_INO);
1886 if (IS_ERR(root)) {
1887 err = PTR_ERR(root);
1888 goto out_umount;
1889 }
1890
1891 sb->s_root = d_alloc_root(root);
1892 if (!sb->s_root)
1893 goto out_iput;
1894
1895 mutex_unlock(&c->umount_mutex);
1e51764a
AB
1896 return 0;
1897
1898out_iput:
1899 iput(root);
1900out_umount:
1901 ubifs_umount(c);
1902out_unlock:
1903 mutex_unlock(&c->umount_mutex);
1904out_bdi:
1905 bdi_destroy(&c->bdi);
1906out_close:
1907 ubi_close_volume(c->ubi);
1908out_free:
1909 kfree(c);
1910 return err;
1911}
1912
1913static int sb_test(struct super_block *sb, void *data)
1914{
1915 dev_t *dev = data;
1916
1917 return sb->s_dev == *dev;
1918}
1919
1920static int sb_set(struct super_block *sb, void *data)
1921{
1922 dev_t *dev = data;
1923
1924 sb->s_dev = *dev;
1925 return 0;
1926}
1927
1928static int ubifs_get_sb(struct file_system_type *fs_type, int flags,
1929 const char *name, void *data, struct vfsmount *mnt)
1930{
1931 struct ubi_volume_desc *ubi;
1932 struct ubi_volume_info vi;
1933 struct super_block *sb;
1934 int err;
1935
1936 dbg_gen("name %s, flags %#x", name, flags);
1937
1938 /*
1939 * Get UBI device number and volume ID. Mount it read-only so far
1940 * because this might be a new mount point, and UBI allows only one
1941 * read-write user at a time.
1942 */
1943 ubi = open_ubi(name, UBI_READONLY);
1944 if (IS_ERR(ubi)) {
1945 ubifs_err("cannot open \"%s\", error %d",
1946 name, (int)PTR_ERR(ubi));
1947 return PTR_ERR(ubi);
1948 }
1949 ubi_get_volume_info(ubi, &vi);
1950
1951 dbg_gen("opened ubi%d_%d", vi.ubi_num, vi.vol_id);
1952
1953 sb = sget(fs_type, &sb_test, &sb_set, &vi.cdev);
1954 if (IS_ERR(sb)) {
1955 err = PTR_ERR(sb);
1956 goto out_close;
1957 }
1958
1959 if (sb->s_root) {
1960 /* A new mount point for already mounted UBIFS */
1961 dbg_gen("this ubi volume is already mounted");
1962 if ((flags ^ sb->s_flags) & MS_RDONLY) {
1963 err = -EBUSY;
1964 goto out_deact;
1965 }
1966 } else {
1967 sb->s_flags = flags;
1968 /*
1969 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is
1970 * replaced by 'c'.
1971 */
1972 sb->s_fs_info = ubi;
1973 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
1974 if (err)
1975 goto out_deact;
1976 /* We do not support atime */
1977 sb->s_flags |= MS_ACTIVE | MS_NOATIME;
1978 }
1979
1980 /* 'fill_super()' opens ubi again so we must close it here */
1981 ubi_close_volume(ubi);
1982
1983 return simple_set_mnt(mnt, sb);
1984
1985out_deact:
1986 up_write(&sb->s_umount);
1987 deactivate_super(sb);
1988out_close:
1989 ubi_close_volume(ubi);
1990 return err;
1991}
1992
1993static void ubifs_kill_sb(struct super_block *sb)
1994{
1995 struct ubifs_info *c = sb->s_fs_info;
1996
1997 /*
1998 * We do 'commit_on_unmount()' here instead of 'ubifs_put_super()'
1999 * in order to be outside BKL.
2000 */
2001 if (sb->s_root && !(sb->s_flags & MS_RDONLY))
2002 commit_on_unmount(c);
2003 /* The un-mount routine is actually done in put_super() */
2004 generic_shutdown_super(sb);
2005}
2006
2007static struct file_system_type ubifs_fs_type = {
2008 .name = "ubifs",
2009 .owner = THIS_MODULE,
2010 .get_sb = ubifs_get_sb,
2011 .kill_sb = ubifs_kill_sb
2012};
2013
2014/*
2015 * Inode slab cache constructor.
2016 */
51cc5068 2017static void inode_slab_ctor(void *obj)
1e51764a
AB
2018{
2019 struct ubifs_inode *ui = obj;
2020 inode_init_once(&ui->vfs_inode);
2021}
2022
2023static int __init ubifs_init(void)
2024{
2025 int err;
2026
2027 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2028
2029 /* Make sure node sizes are 8-byte aligned */
2030 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
2031 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
2032 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2033 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2034 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2035 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2036 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
2037 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
2038 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
2039 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
2040 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2041
2042 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2043 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2044 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2045 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
2046 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
2047 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
2048
2049 /* Check min. node size */
2050 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
2051 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2052 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2053 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2054
2055 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2056 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2057 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2058 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
2059
2060 /* Defined node sizes */
2061 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
2062 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2063 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2064 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2065
a1dc080c
AB
2066 /*
2067 * We use 2 bit wide bit-fields to store compression type, which should
2068 * be amended if more compressors are added. The bit-fields are:
553dea4d
AB
2069 * @compr_type in 'struct ubifs_inode', @default_compr in
2070 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
a1dc080c
AB
2071 */
2072 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2073
1e51764a
AB
2074 /*
2075 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2076 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2077 */
2078 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2079 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires"
2080 " at least 4096 bytes",
2081 (unsigned int)PAGE_CACHE_SIZE);
2082 return -EINVAL;
2083 }
2084
2085 err = register_filesystem(&ubifs_fs_type);
2086 if (err) {
2087 ubifs_err("cannot register file system, error %d", err);
2088 return err;
2089 }
2090
2091 err = -ENOMEM;
2092 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2093 sizeof(struct ubifs_inode), 0,
2094 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2095 &inode_slab_ctor);
2096 if (!ubifs_inode_slab)
2097 goto out_reg;
2098
2099 register_shrinker(&ubifs_shrinker_info);
2100
2101 err = ubifs_compressors_init();
552ff317
AB
2102 if (err)
2103 goto out_shrinker;
2104
2105 err = dbg_debugfs_init();
1e51764a
AB
2106 if (err)
2107 goto out_compr;
2108
2109 return 0;
2110
2111out_compr:
552ff317
AB
2112 ubifs_compressors_exit();
2113out_shrinker:
1e51764a
AB
2114 unregister_shrinker(&ubifs_shrinker_info);
2115 kmem_cache_destroy(ubifs_inode_slab);
2116out_reg:
2117 unregister_filesystem(&ubifs_fs_type);
2118 return err;
2119}
2120/* late_initcall to let compressors initialize first */
2121late_initcall(ubifs_init);
2122
2123static void __exit ubifs_exit(void)
2124{
2125 ubifs_assert(list_empty(&ubifs_infos));
2126 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2127
552ff317 2128 dbg_debugfs_exit();
1e51764a
AB
2129 ubifs_compressors_exit();
2130 unregister_shrinker(&ubifs_shrinker_info);
2131 kmem_cache_destroy(ubifs_inode_slab);
2132 unregister_filesystem(&ubifs_fs_type);
2133}
2134module_exit(ubifs_exit);
2135
2136MODULE_LICENSE("GPL");
2137MODULE_VERSION(__stringify(UBIFS_VERSION));
2138MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2139MODULE_DESCRIPTION("UBIFS - UBI File System");