]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ubifs/super.c
UBIFS: introduce LEB overhead
[net-next-2.6.git] / fs / ubifs / super.c
CommitLineData
1e51764a
AB
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements UBIFS initialization and VFS superblock operations. Some
25 * initialization stuff which is rather large and complex is placed at
26 * corresponding subsystems, but most of it is here.
27 */
28
29#include <linux/init.h>
30#include <linux/slab.h>
31#include <linux/module.h>
32#include <linux/ctype.h>
1e51764a
AB
33#include <linux/kthread.h>
34#include <linux/parser.h>
35#include <linux/seq_file.h>
36#include <linux/mount.h>
37#include "ubifs.h"
38
39/* Slab cache for UBIFS inodes */
40struct kmem_cache *ubifs_inode_slab;
41
42/* UBIFS TNC shrinker description */
43static struct shrinker ubifs_shrinker_info = {
44 .shrink = ubifs_shrinker,
45 .seeks = DEFAULT_SEEKS,
46};
47
48/**
49 * validate_inode - validate inode.
50 * @c: UBIFS file-system description object
51 * @inode: the inode to validate
52 *
53 * This is a helper function for 'ubifs_iget()' which validates various fields
54 * of a newly built inode to make sure they contain sane values and prevent
55 * possible vulnerabilities. Returns zero if the inode is all right and
56 * a non-zero error code if not.
57 */
58static int validate_inode(struct ubifs_info *c, const struct inode *inode)
59{
60 int err;
61 const struct ubifs_inode *ui = ubifs_inode(inode);
62
63 if (inode->i_size > c->max_inode_sz) {
64 ubifs_err("inode is too large (%lld)",
65 (long long)inode->i_size);
66 return 1;
67 }
68
69 if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
70 ubifs_err("unknown compression type %d", ui->compr_type);
71 return 2;
72 }
73
74 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
75 return 3;
76
77 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
78 return 4;
79
80 if (ui->xattr && (inode->i_mode & S_IFMT) != S_IFREG)
81 return 5;
82
83 if (!ubifs_compr_present(ui->compr_type)) {
84 ubifs_warn("inode %lu uses '%s' compression, but it was not "
85 "compiled in", inode->i_ino,
86 ubifs_compr_name(ui->compr_type));
87 }
88
89 err = dbg_check_dir_size(c, inode);
90 return err;
91}
92
93struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
94{
95 int err;
96 union ubifs_key key;
97 struct ubifs_ino_node *ino;
98 struct ubifs_info *c = sb->s_fs_info;
99 struct inode *inode;
100 struct ubifs_inode *ui;
101
102 dbg_gen("inode %lu", inum);
103
104 inode = iget_locked(sb, inum);
105 if (!inode)
106 return ERR_PTR(-ENOMEM);
107 if (!(inode->i_state & I_NEW))
108 return inode;
109 ui = ubifs_inode(inode);
110
111 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
112 if (!ino) {
113 err = -ENOMEM;
114 goto out;
115 }
116
117 ino_key_init(c, &key, inode->i_ino);
118
119 err = ubifs_tnc_lookup(c, &key, ino);
120 if (err)
121 goto out_ino;
122
123 inode->i_flags |= (S_NOCMTIME | S_NOATIME);
124 inode->i_nlink = le32_to_cpu(ino->nlink);
125 inode->i_uid = le32_to_cpu(ino->uid);
126 inode->i_gid = le32_to_cpu(ino->gid);
127 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
128 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
129 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
130 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
131 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
132 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
133 inode->i_mode = le32_to_cpu(ino->mode);
134 inode->i_size = le64_to_cpu(ino->size);
135
136 ui->data_len = le32_to_cpu(ino->data_len);
137 ui->flags = le32_to_cpu(ino->flags);
138 ui->compr_type = le16_to_cpu(ino->compr_type);
139 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
140 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
141 ui->xattr_size = le32_to_cpu(ino->xattr_size);
142 ui->xattr_names = le32_to_cpu(ino->xattr_names);
143 ui->synced_i_size = ui->ui_size = inode->i_size;
144
145 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
146
147 err = validate_inode(c, inode);
148 if (err)
149 goto out_invalid;
150
0a883a05 151 /* Disable read-ahead */
1e51764a
AB
152 inode->i_mapping->backing_dev_info = &c->bdi;
153
154 switch (inode->i_mode & S_IFMT) {
155 case S_IFREG:
156 inode->i_mapping->a_ops = &ubifs_file_address_operations;
157 inode->i_op = &ubifs_file_inode_operations;
158 inode->i_fop = &ubifs_file_operations;
159 if (ui->xattr) {
160 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
161 if (!ui->data) {
162 err = -ENOMEM;
163 goto out_ino;
164 }
165 memcpy(ui->data, ino->data, ui->data_len);
166 ((char *)ui->data)[ui->data_len] = '\0';
167 } else if (ui->data_len != 0) {
168 err = 10;
169 goto out_invalid;
170 }
171 break;
172 case S_IFDIR:
173 inode->i_op = &ubifs_dir_inode_operations;
174 inode->i_fop = &ubifs_dir_operations;
175 if (ui->data_len != 0) {
176 err = 11;
177 goto out_invalid;
178 }
179 break;
180 case S_IFLNK:
181 inode->i_op = &ubifs_symlink_inode_operations;
182 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
183 err = 12;
184 goto out_invalid;
185 }
186 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
187 if (!ui->data) {
188 err = -ENOMEM;
189 goto out_ino;
190 }
191 memcpy(ui->data, ino->data, ui->data_len);
192 ((char *)ui->data)[ui->data_len] = '\0';
193 break;
194 case S_IFBLK:
195 case S_IFCHR:
196 {
197 dev_t rdev;
198 union ubifs_dev_desc *dev;
199
200 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
201 if (!ui->data) {
202 err = -ENOMEM;
203 goto out_ino;
204 }
205
206 dev = (union ubifs_dev_desc *)ino->data;
207 if (ui->data_len == sizeof(dev->new))
208 rdev = new_decode_dev(le32_to_cpu(dev->new));
209 else if (ui->data_len == sizeof(dev->huge))
210 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
211 else {
212 err = 13;
213 goto out_invalid;
214 }
215 memcpy(ui->data, ino->data, ui->data_len);
216 inode->i_op = &ubifs_file_inode_operations;
217 init_special_inode(inode, inode->i_mode, rdev);
218 break;
219 }
220 case S_IFSOCK:
221 case S_IFIFO:
222 inode->i_op = &ubifs_file_inode_operations;
223 init_special_inode(inode, inode->i_mode, 0);
224 if (ui->data_len != 0) {
225 err = 14;
226 goto out_invalid;
227 }
228 break;
229 default:
230 err = 15;
231 goto out_invalid;
232 }
233
234 kfree(ino);
235 ubifs_set_inode_flags(inode);
236 unlock_new_inode(inode);
237 return inode;
238
239out_invalid:
240 ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
241 dbg_dump_node(c, ino);
242 dbg_dump_inode(c, inode);
243 err = -EINVAL;
244out_ino:
245 kfree(ino);
246out:
247 ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
248 iget_failed(inode);
249 return ERR_PTR(err);
250}
251
252static struct inode *ubifs_alloc_inode(struct super_block *sb)
253{
254 struct ubifs_inode *ui;
255
256 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
257 if (!ui)
258 return NULL;
259
260 memset((void *)ui + sizeof(struct inode), 0,
261 sizeof(struct ubifs_inode) - sizeof(struct inode));
262 mutex_init(&ui->ui_mutex);
263 spin_lock_init(&ui->ui_lock);
264 return &ui->vfs_inode;
265};
266
267static void ubifs_destroy_inode(struct inode *inode)
268{
269 struct ubifs_inode *ui = ubifs_inode(inode);
270
271 kfree(ui->data);
272 kmem_cache_free(ubifs_inode_slab, inode);
273}
274
275/*
276 * Note, Linux write-back code calls this without 'i_mutex'.
277 */
278static int ubifs_write_inode(struct inode *inode, int wait)
279{
fbfa6c88 280 int err = 0;
1e51764a
AB
281 struct ubifs_info *c = inode->i_sb->s_fs_info;
282 struct ubifs_inode *ui = ubifs_inode(inode);
283
284 ubifs_assert(!ui->xattr);
285 if (is_bad_inode(inode))
286 return 0;
287
288 mutex_lock(&ui->ui_mutex);
289 /*
290 * Due to races between write-back forced by budgeting
291 * (see 'sync_some_inodes()') and pdflush write-back, the inode may
292 * have already been synchronized, do not do this again. This might
293 * also happen if it was synchronized in an VFS operation, e.g.
294 * 'ubifs_link()'.
295 */
296 if (!ui->dirty) {
297 mutex_unlock(&ui->ui_mutex);
298 return 0;
299 }
300
fbfa6c88
AB
301 /*
302 * As an optimization, do not write orphan inodes to the media just
303 * because this is not needed.
304 */
305 dbg_gen("inode %lu, mode %#x, nlink %u",
306 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
307 if (inode->i_nlink) {
1f28681a 308 err = ubifs_jnl_write_inode(c, inode);
fbfa6c88
AB
309 if (err)
310 ubifs_err("can't write inode %lu, error %d",
311 inode->i_ino, err);
312 }
1e51764a
AB
313
314 ui->dirty = 0;
315 mutex_unlock(&ui->ui_mutex);
316 ubifs_release_dirty_inode_budget(c, ui);
317 return err;
318}
319
320static void ubifs_delete_inode(struct inode *inode)
321{
322 int err;
323 struct ubifs_info *c = inode->i_sb->s_fs_info;
1e0f358e 324 struct ubifs_inode *ui = ubifs_inode(inode);
1e51764a 325
1e0f358e 326 if (ui->xattr)
1e51764a
AB
327 /*
328 * Extended attribute inode deletions are fully handled in
329 * 'ubifs_removexattr()'. These inodes are special and have
330 * limited usage, so there is nothing to do here.
331 */
332 goto out;
333
7d32c2bb 334 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
1e51764a
AB
335 ubifs_assert(!atomic_read(&inode->i_count));
336 ubifs_assert(inode->i_nlink == 0);
337
338 truncate_inode_pages(&inode->i_data, 0);
339 if (is_bad_inode(inode))
340 goto out;
341
1e0f358e 342 ui->ui_size = inode->i_size = 0;
de94eb55 343 err = ubifs_jnl_delete_inode(c, inode);
1e51764a
AB
344 if (err)
345 /*
346 * Worst case we have a lost orphan inode wasting space, so a
0a883a05 347 * simple error message is OK here.
1e51764a 348 */
de94eb55
AB
349 ubifs_err("can't delete inode %lu, error %d",
350 inode->i_ino, err);
351
1e51764a 352out:
1e0f358e
AB
353 if (ui->dirty)
354 ubifs_release_dirty_inode_budget(c, ui);
1e51764a
AB
355 clear_inode(inode);
356}
357
358static void ubifs_dirty_inode(struct inode *inode)
359{
360 struct ubifs_inode *ui = ubifs_inode(inode);
361
362 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
363 if (!ui->dirty) {
364 ui->dirty = 1;
365 dbg_gen("inode %lu", inode->i_ino);
366 }
367}
368
369static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
370{
371 struct ubifs_info *c = dentry->d_sb->s_fs_info;
372 unsigned long long free;
373
374 free = ubifs_budg_get_free_space(c);
375 dbg_gen("free space %lld bytes (%lld blocks)",
376 free, free >> UBIFS_BLOCK_SHIFT);
377
378 buf->f_type = UBIFS_SUPER_MAGIC;
379 buf->f_bsize = UBIFS_BLOCK_SIZE;
380 buf->f_blocks = c->block_cnt;
381 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
382 if (free > c->report_rp_size)
383 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
384 else
385 buf->f_bavail = 0;
386 buf->f_files = 0;
387 buf->f_ffree = 0;
388 buf->f_namelen = UBIFS_MAX_NLEN;
389
390 return 0;
391}
392
393static int ubifs_show_options(struct seq_file *s, struct vfsmount *mnt)
394{
395 struct ubifs_info *c = mnt->mnt_sb->s_fs_info;
396
397 if (c->mount_opts.unmount_mode == 2)
398 seq_printf(s, ",fast_unmount");
399 else if (c->mount_opts.unmount_mode == 1)
400 seq_printf(s, ",norm_unmount");
401
402 return 0;
403}
404
405static int ubifs_sync_fs(struct super_block *sb, int wait)
406{
407 struct ubifs_info *c = sb->s_fs_info;
408 int i, ret = 0, err;
409
410 if (c->jheads)
411 for (i = 0; i < c->jhead_cnt; i++) {
412 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
413 if (err && !ret)
414 ret = err;
415 }
416 /*
417 * We ought to call sync for c->ubi but it does not have one. If it had
418 * it would in turn call mtd->sync, however mtd operations are
419 * synchronous anyway, so we don't lose any sleep here.
420 */
421 return ret;
422}
423
424/**
425 * init_constants_early - initialize UBIFS constants.
426 * @c: UBIFS file-system description object
427 *
428 * This function initialize UBIFS constants which do not need the superblock to
429 * be read. It also checks that the UBI volume satisfies basic UBIFS
430 * requirements. Returns zero in case of success and a negative error code in
431 * case of failure.
432 */
433static int init_constants_early(struct ubifs_info *c)
434{
435 if (c->vi.corrupted) {
436 ubifs_warn("UBI volume is corrupted - read-only mode");
437 c->ro_media = 1;
438 }
439
440 if (c->di.ro_mode) {
441 ubifs_msg("read-only UBI device");
442 c->ro_media = 1;
443 }
444
445 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
446 ubifs_msg("static UBI volume - read-only mode");
447 c->ro_media = 1;
448 }
449
450 c->leb_cnt = c->vi.size;
451 c->leb_size = c->vi.usable_leb_size;
452 c->half_leb_size = c->leb_size / 2;
453 c->min_io_size = c->di.min_io_size;
454 c->min_io_shift = fls(c->min_io_size) - 1;
455
456 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
457 ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
458 c->leb_size, UBIFS_MIN_LEB_SZ);
459 return -EINVAL;
460 }
461
462 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
463 ubifs_err("too few LEBs (%d), min. is %d",
464 c->leb_cnt, UBIFS_MIN_LEB_CNT);
465 return -EINVAL;
466 }
467
468 if (!is_power_of_2(c->min_io_size)) {
469 ubifs_err("bad min. I/O size %d", c->min_io_size);
470 return -EINVAL;
471 }
472
473 /*
474 * UBIFS aligns all node to 8-byte boundary, so to make function in
475 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
476 * less than 8.
477 */
478 if (c->min_io_size < 8) {
479 c->min_io_size = 8;
480 c->min_io_shift = 3;
481 }
482
483 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
484 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
485
486 /*
487 * Initialize node length ranges which are mostly needed for node
488 * length validation.
489 */
490 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
491 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
492 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
493 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
494 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
495 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
496
497 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
498 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
499 c->ranges[UBIFS_ORPH_NODE].min_len =
500 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
501 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
502 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
503 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
504 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
505 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
506 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
507 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
508 /*
509 * Minimum indexing node size is amended later when superblock is
510 * read and the key length is known.
511 */
512 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
513 /*
514 * Maximum indexing node size is amended later when superblock is
515 * read and the fanout is known.
516 */
517 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
518
519 /*
520 * Initialize dead and dark LEB space watermarks.
521 *
522 * Dead space is the space which cannot be used. Its watermark is
523 * equivalent to min. I/O unit or minimum node size if it is greater
524 * then min. I/O unit.
525 *
526 * Dark space is the space which might be used, or might not, depending
527 * on which node should be written to the LEB. Its watermark is
528 * equivalent to maximum UBIFS node size.
529 */
530 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
531 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
532
9bbb5726
AB
533 /*
534 * Calculate how many bytes would be wasted at the end of LEB if it was
535 * fully filled with data nodes of maximum size. This is used in
536 * calculations when reporting free space.
537 */
538 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
1e51764a
AB
539 return 0;
540}
541
542/**
543 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
544 * @c: UBIFS file-system description object
545 * @lnum: LEB the write-buffer was synchronized to
546 * @free: how many free bytes left in this LEB
547 * @pad: how many bytes were padded
548 *
549 * This is a callback function which is called by the I/O unit when the
550 * write-buffer is synchronized. We need this to correctly maintain space
551 * accounting in bud logical eraseblocks. This function returns zero in case of
552 * success and a negative error code in case of failure.
553 *
554 * This function actually belongs to the journal, but we keep it here because
555 * we want to keep it static.
556 */
557static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
558{
559 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
560}
561
562/*
563 * init_constants_late - initialize UBIFS constants.
564 * @c: UBIFS file-system description object
565 *
566 * This is a helper function which initializes various UBIFS constants after
567 * the superblock has been read. It also checks various UBIFS parameters and
568 * makes sure they are all right. Returns zero in case of success and a
569 * negative error code in case of failure.
570 */
571static int init_constants_late(struct ubifs_info *c)
572{
573 int tmp, err;
574 uint64_t tmp64;
575
576 c->main_bytes = (long long)c->main_lebs * c->leb_size;
577 c->max_znode_sz = sizeof(struct ubifs_znode) +
578 c->fanout * sizeof(struct ubifs_zbranch);
579
580 tmp = ubifs_idx_node_sz(c, 1);
581 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
582 c->min_idx_node_sz = ALIGN(tmp, 8);
583
584 tmp = ubifs_idx_node_sz(c, c->fanout);
585 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
586 c->max_idx_node_sz = ALIGN(tmp, 8);
587
588 /* Make sure LEB size is large enough to fit full commit */
589 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
590 tmp = ALIGN(tmp, c->min_io_size);
591 if (tmp > c->leb_size) {
592 dbg_err("too small LEB size %d, at least %d needed",
593 c->leb_size, tmp);
594 return -EINVAL;
595 }
596
597 /*
598 * Make sure that the log is large enough to fit reference nodes for
599 * all buds plus one reserved LEB.
600 */
601 tmp64 = c->max_bud_bytes;
602 tmp = do_div(tmp64, c->leb_size);
603 c->max_bud_cnt = tmp64 + !!tmp;
604 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
605 tmp /= c->leb_size;
606 tmp += 1;
607 if (c->log_lebs < tmp) {
608 dbg_err("too small log %d LEBs, required min. %d LEBs",
609 c->log_lebs, tmp);
610 return -EINVAL;
611 }
612
613 /*
614 * When budgeting we assume worst-case scenarios when the pages are not
615 * be compressed and direntries are of the maximum size.
616 *
617 * Note, data, which may be stored in inodes is budgeted separately, so
618 * it is not included into 'c->inode_budget'.
619 */
620 c->page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
621 c->inode_budget = UBIFS_INO_NODE_SZ;
622 c->dent_budget = UBIFS_MAX_DENT_NODE_SZ;
623
624 /*
625 * When the amount of flash space used by buds becomes
626 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
627 * The writers are unblocked when the commit is finished. To avoid
628 * writers to be blocked UBIFS initiates background commit in advance,
629 * when number of bud bytes becomes above the limit defined below.
630 */
631 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
632
633 /*
634 * Ensure minimum journal size. All the bytes in the journal heads are
635 * considered to be used, when calculating the current journal usage.
636 * Consequently, if the journal is too small, UBIFS will treat it as
637 * always full.
638 */
639 tmp64 = (uint64_t)(c->jhead_cnt + 1) * c->leb_size + 1;
640 if (c->bg_bud_bytes < tmp64)
641 c->bg_bud_bytes = tmp64;
642 if (c->max_bud_bytes < tmp64 + c->leb_size)
643 c->max_bud_bytes = tmp64 + c->leb_size;
644
645 err = ubifs_calc_lpt_geom(c);
646 if (err)
647 return err;
648
649 c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
650
651 /*
652 * Calculate total amount of FS blocks. This number is not used
653 * internally because it does not make much sense for UBIFS, but it is
654 * necessary to report something for the 'statfs()' call.
655 *
656 * Subtract the LEB reserved for GC and the LEB which is reserved for
657 * deletions.
1e51764a
AB
658 */
659 tmp64 = c->main_lebs - 2;
660 tmp64 *= (uint64_t)c->leb_size - c->dark_wm;
661 tmp64 = ubifs_reported_space(c, tmp64);
662 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
663
664 return 0;
665}
666
667/**
668 * take_gc_lnum - reserve GC LEB.
669 * @c: UBIFS file-system description object
670 *
671 * This function ensures that the LEB reserved for garbage collection is
672 * unmapped and is marked as "taken" in lprops. We also have to set free space
673 * to LEB size and dirty space to zero, because lprops may contain out-of-date
674 * information if the file-system was un-mounted before it has been committed.
675 * This function returns zero in case of success and a negative error code in
676 * case of failure.
677 */
678static int take_gc_lnum(struct ubifs_info *c)
679{
680 int err;
681
682 if (c->gc_lnum == -1) {
683 ubifs_err("no LEB for GC");
684 return -EINVAL;
685 }
686
687 err = ubifs_leb_unmap(c, c->gc_lnum);
688 if (err)
689 return err;
690
691 /* And we have to tell lprops that this LEB is taken */
692 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
693 LPROPS_TAKEN, 0, 0);
694 return err;
695}
696
697/**
698 * alloc_wbufs - allocate write-buffers.
699 * @c: UBIFS file-system description object
700 *
701 * This helper function allocates and initializes UBIFS write-buffers. Returns
702 * zero in case of success and %-ENOMEM in case of failure.
703 */
704static int alloc_wbufs(struct ubifs_info *c)
705{
706 int i, err;
707
708 c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
709 GFP_KERNEL);
710 if (!c->jheads)
711 return -ENOMEM;
712
713 /* Initialize journal heads */
714 for (i = 0; i < c->jhead_cnt; i++) {
715 INIT_LIST_HEAD(&c->jheads[i].buds_list);
716 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
717 if (err)
718 return err;
719
720 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
721 c->jheads[i].wbuf.jhead = i;
722 }
723
724 c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM;
725 /*
726 * Garbage Collector head likely contains long-term data and
727 * does not need to be synchronized by timer.
728 */
729 c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM;
730 c->jheads[GCHD].wbuf.timeout = 0;
731
732 return 0;
733}
734
735/**
736 * free_wbufs - free write-buffers.
737 * @c: UBIFS file-system description object
738 */
739static void free_wbufs(struct ubifs_info *c)
740{
741 int i;
742
743 if (c->jheads) {
744 for (i = 0; i < c->jhead_cnt; i++) {
745 kfree(c->jheads[i].wbuf.buf);
746 kfree(c->jheads[i].wbuf.inodes);
747 }
748 kfree(c->jheads);
749 c->jheads = NULL;
750 }
751}
752
753/**
754 * free_orphans - free orphans.
755 * @c: UBIFS file-system description object
756 */
757static void free_orphans(struct ubifs_info *c)
758{
759 struct ubifs_orphan *orph;
760
761 while (c->orph_dnext) {
762 orph = c->orph_dnext;
763 c->orph_dnext = orph->dnext;
764 list_del(&orph->list);
765 kfree(orph);
766 }
767
768 while (!list_empty(&c->orph_list)) {
769 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
770 list_del(&orph->list);
771 kfree(orph);
772 dbg_err("orphan list not empty at unmount");
773 }
774
775 vfree(c->orph_buf);
776 c->orph_buf = NULL;
777}
778
779/**
780 * free_buds - free per-bud objects.
781 * @c: UBIFS file-system description object
782 */
783static void free_buds(struct ubifs_info *c)
784{
785 struct rb_node *this = c->buds.rb_node;
786 struct ubifs_bud *bud;
787
788 while (this) {
789 if (this->rb_left)
790 this = this->rb_left;
791 else if (this->rb_right)
792 this = this->rb_right;
793 else {
794 bud = rb_entry(this, struct ubifs_bud, rb);
795 this = rb_parent(this);
796 if (this) {
797 if (this->rb_left == &bud->rb)
798 this->rb_left = NULL;
799 else
800 this->rb_right = NULL;
801 }
802 kfree(bud);
803 }
804 }
805}
806
807/**
808 * check_volume_empty - check if the UBI volume is empty.
809 * @c: UBIFS file-system description object
810 *
811 * This function checks if the UBIFS volume is empty by looking if its LEBs are
812 * mapped or not. The result of checking is stored in the @c->empty variable.
813 * Returns zero in case of success and a negative error code in case of
814 * failure.
815 */
816static int check_volume_empty(struct ubifs_info *c)
817{
818 int lnum, err;
819
820 c->empty = 1;
821 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
822 err = ubi_is_mapped(c->ubi, lnum);
823 if (unlikely(err < 0))
824 return err;
825 if (err == 1) {
826 c->empty = 0;
827 break;
828 }
829
830 cond_resched();
831 }
832
833 return 0;
834}
835
836/*
837 * UBIFS mount options.
838 *
839 * Opt_fast_unmount: do not run a journal commit before un-mounting
840 * Opt_norm_unmount: run a journal commit before un-mounting
841 * Opt_err: just end of array marker
842 */
843enum {
844 Opt_fast_unmount,
845 Opt_norm_unmount,
846 Opt_err,
847};
848
849static match_table_t tokens = {
850 {Opt_fast_unmount, "fast_unmount"},
851 {Opt_norm_unmount, "norm_unmount"},
852 {Opt_err, NULL},
853};
854
855/**
856 * ubifs_parse_options - parse mount parameters.
857 * @c: UBIFS file-system description object
858 * @options: parameters to parse
859 * @is_remount: non-zero if this is FS re-mount
860 *
861 * This function parses UBIFS mount options and returns zero in case success
862 * and a negative error code in case of failure.
863 */
864static int ubifs_parse_options(struct ubifs_info *c, char *options,
865 int is_remount)
866{
867 char *p;
868 substring_t args[MAX_OPT_ARGS];
869
870 if (!options)
871 return 0;
872
873 while ((p = strsep(&options, ","))) {
874 int token;
875
876 if (!*p)
877 continue;
878
879 token = match_token(p, tokens, args);
880 switch (token) {
881 case Opt_fast_unmount:
882 c->mount_opts.unmount_mode = 2;
883 c->fast_unmount = 1;
884 break;
885 case Opt_norm_unmount:
886 c->mount_opts.unmount_mode = 1;
887 c->fast_unmount = 0;
888 break;
889 default:
890 ubifs_err("unrecognized mount option \"%s\" "
891 "or missing value", p);
892 return -EINVAL;
893 }
894 }
895
896 return 0;
897}
898
899/**
900 * destroy_journal - destroy journal data structures.
901 * @c: UBIFS file-system description object
902 *
903 * This function destroys journal data structures including those that may have
904 * been created by recovery functions.
905 */
906static void destroy_journal(struct ubifs_info *c)
907{
908 while (!list_empty(&c->unclean_leb_list)) {
909 struct ubifs_unclean_leb *ucleb;
910
911 ucleb = list_entry(c->unclean_leb_list.next,
912 struct ubifs_unclean_leb, list);
913 list_del(&ucleb->list);
914 kfree(ucleb);
915 }
916 while (!list_empty(&c->old_buds)) {
917 struct ubifs_bud *bud;
918
919 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
920 list_del(&bud->list);
921 kfree(bud);
922 }
923 ubifs_destroy_idx_gc(c);
924 ubifs_destroy_size_tree(c);
925 ubifs_tnc_close(c);
926 free_buds(c);
927}
928
929/**
930 * mount_ubifs - mount UBIFS file-system.
931 * @c: UBIFS file-system description object
932 *
933 * This function mounts UBIFS file system. Returns zero in case of success and
934 * a negative error code in case of failure.
935 *
936 * Note, the function does not de-allocate resources it it fails half way
937 * through, and the caller has to do this instead.
938 */
939static int mount_ubifs(struct ubifs_info *c)
940{
941 struct super_block *sb = c->vfs_sb;
942 int err, mounted_read_only = (sb->s_flags & MS_RDONLY);
943 long long x;
944 size_t sz;
945
946 err = init_constants_early(c);
947 if (err)
948 return err;
949
950#ifdef CONFIG_UBIFS_FS_DEBUG
951 c->dbg_buf = vmalloc(c->leb_size);
952 if (!c->dbg_buf)
953 return -ENOMEM;
954#endif
955
956 err = check_volume_empty(c);
957 if (err)
958 goto out_free;
959
960 if (c->empty && (mounted_read_only || c->ro_media)) {
961 /*
962 * This UBI volume is empty, and read-only, or the file system
963 * is mounted read-only - we cannot format it.
964 */
965 ubifs_err("can't format empty UBI volume: read-only %s",
966 c->ro_media ? "UBI volume" : "mount");
967 err = -EROFS;
968 goto out_free;
969 }
970
971 if (c->ro_media && !mounted_read_only) {
972 ubifs_err("cannot mount read-write - read-only media");
973 err = -EROFS;
974 goto out_free;
975 }
976
977 /*
978 * The requirement for the buffer is that it should fit indexing B-tree
979 * height amount of integers. We assume the height if the TNC tree will
980 * never exceed 64.
981 */
982 err = -ENOMEM;
983 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
984 if (!c->bottom_up_buf)
985 goto out_free;
986
987 c->sbuf = vmalloc(c->leb_size);
988 if (!c->sbuf)
989 goto out_free;
990
991 if (!mounted_read_only) {
992 c->ileb_buf = vmalloc(c->leb_size);
993 if (!c->ileb_buf)
994 goto out_free;
995 }
996
997 err = ubifs_read_superblock(c);
998 if (err)
999 goto out_free;
1000
1001 /*
1002 * Make sure the compressor which is set as the default on in the
1003 * superblock was actually compiled in.
1004 */
1005 if (!ubifs_compr_present(c->default_compr)) {
1006 ubifs_warn("'%s' compressor is set by superblock, but not "
1007 "compiled in", ubifs_compr_name(c->default_compr));
1008 c->default_compr = UBIFS_COMPR_NONE;
1009 }
1010
1011 dbg_failure_mode_registration(c);
1012
1013 err = init_constants_late(c);
1014 if (err)
1015 goto out_dereg;
1016
1017 sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1018 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1019 c->cbuf = kmalloc(sz, GFP_NOFS);
1020 if (!c->cbuf) {
1021 err = -ENOMEM;
1022 goto out_dereg;
1023 }
1024
1025 if (!mounted_read_only) {
1026 err = alloc_wbufs(c);
1027 if (err)
1028 goto out_cbuf;
1029
1030 /* Create background thread */
1031 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num,
1032 c->vi.vol_id);
1033 c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name);
1034 if (!c->bgt)
1035 c->bgt = ERR_PTR(-EINVAL);
1036 if (IS_ERR(c->bgt)) {
1037 err = PTR_ERR(c->bgt);
1038 c->bgt = NULL;
1039 ubifs_err("cannot spawn \"%s\", error %d",
1040 c->bgt_name, err);
1041 goto out_wbufs;
1042 }
1043 wake_up_process(c->bgt);
1044 }
1045
1046 err = ubifs_read_master(c);
1047 if (err)
1048 goto out_master;
1049
1050 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1051 ubifs_msg("recovery needed");
1052 c->need_recovery = 1;
1053 if (!mounted_read_only) {
1054 err = ubifs_recover_inl_heads(c, c->sbuf);
1055 if (err)
1056 goto out_master;
1057 }
1058 } else if (!mounted_read_only) {
1059 /*
1060 * Set the "dirty" flag so that if we reboot uncleanly we
1061 * will notice this immediately on the next mount.
1062 */
1063 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1064 err = ubifs_write_master(c);
1065 if (err)
1066 goto out_master;
1067 }
1068
1069 err = ubifs_lpt_init(c, 1, !mounted_read_only);
1070 if (err)
1071 goto out_lpt;
1072
1073 err = dbg_check_idx_size(c, c->old_idx_sz);
1074 if (err)
1075 goto out_lpt;
1076
1077 err = ubifs_replay_journal(c);
1078 if (err)
1079 goto out_journal;
1080
1081 err = ubifs_mount_orphans(c, c->need_recovery, mounted_read_only);
1082 if (err)
1083 goto out_orphans;
1084
1085 if (!mounted_read_only) {
1086 int lnum;
1087
1088 /* Check for enough free space */
1089 if (ubifs_calc_available(c, c->min_idx_lebs) <= 0) {
1090 ubifs_err("insufficient available space");
1091 err = -EINVAL;
1092 goto out_orphans;
1093 }
1094
1095 /* Check for enough log space */
1096 lnum = c->lhead_lnum + 1;
1097 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1098 lnum = UBIFS_LOG_LNUM;
1099 if (lnum == c->ltail_lnum) {
1100 err = ubifs_consolidate_log(c);
1101 if (err)
1102 goto out_orphans;
1103 }
1104
1105 if (c->need_recovery) {
1106 err = ubifs_recover_size(c);
1107 if (err)
1108 goto out_orphans;
1109 err = ubifs_rcvry_gc_commit(c);
1110 } else
1111 err = take_gc_lnum(c);
1112 if (err)
1113 goto out_orphans;
1114
1115 err = dbg_check_lprops(c);
1116 if (err)
1117 goto out_orphans;
1118 } else if (c->need_recovery) {
1119 err = ubifs_recover_size(c);
1120 if (err)
1121 goto out_orphans;
1122 }
1123
1124 spin_lock(&ubifs_infos_lock);
1125 list_add_tail(&c->infos_list, &ubifs_infos);
1126 spin_unlock(&ubifs_infos_lock);
1127
1128 if (c->need_recovery) {
1129 if (mounted_read_only)
1130 ubifs_msg("recovery deferred");
1131 else {
1132 c->need_recovery = 0;
1133 ubifs_msg("recovery completed");
1134 }
1135 }
1136
1137 err = dbg_check_filesystem(c);
1138 if (err)
1139 goto out_infos;
1140
ce769caa
AB
1141 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"",
1142 c->vi.ubi_num, c->vi.vol_id, c->vi.name);
1e51764a
AB
1143 if (mounted_read_only)
1144 ubifs_msg("mounted read-only");
1145 x = (long long)c->main_lebs * c->leb_size;
1146 ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d LEBs)",
1147 x, x >> 10, x >> 20, c->main_lebs);
1148 x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1149 ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d LEBs)",
1150 x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt);
1151 ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr));
1152 ubifs_msg("media format %d, latest format %d",
1153 c->fmt_version, UBIFS_FORMAT_VERSION);
1154
1155 dbg_msg("compiled on: " __DATE__ " at " __TIME__);
1156 dbg_msg("min. I/O unit size: %d bytes", c->min_io_size);
1157 dbg_msg("LEB size: %d bytes (%d KiB)",
1158 c->leb_size, c->leb_size / 1024);
1159 dbg_msg("data journal heads: %d",
1160 c->jhead_cnt - NONDATA_JHEADS_CNT);
1161 dbg_msg("UUID: %02X%02X%02X%02X-%02X%02X"
1162 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
1163 c->uuid[0], c->uuid[1], c->uuid[2], c->uuid[3],
1164 c->uuid[4], c->uuid[5], c->uuid[6], c->uuid[7],
1165 c->uuid[8], c->uuid[9], c->uuid[10], c->uuid[11],
1166 c->uuid[12], c->uuid[13], c->uuid[14], c->uuid[15]);
1167 dbg_msg("fast unmount: %d", c->fast_unmount);
1168 dbg_msg("big_lpt %d", c->big_lpt);
1169 dbg_msg("log LEBs: %d (%d - %d)",
1170 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1171 dbg_msg("LPT area LEBs: %d (%d - %d)",
1172 c->lpt_lebs, c->lpt_first, c->lpt_last);
1173 dbg_msg("orphan area LEBs: %d (%d - %d)",
1174 c->orph_lebs, c->orph_first, c->orph_last);
1175 dbg_msg("main area LEBs: %d (%d - %d)",
1176 c->main_lebs, c->main_first, c->leb_cnt - 1);
1177 dbg_msg("index LEBs: %d", c->lst.idx_lebs);
1178 dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)",
1179 c->old_idx_sz, c->old_idx_sz >> 10, c->old_idx_sz >> 20);
1180 dbg_msg("key hash type: %d", c->key_hash_type);
1181 dbg_msg("tree fanout: %d", c->fanout);
1182 dbg_msg("reserved GC LEB: %d", c->gc_lnum);
1183 dbg_msg("first main LEB: %d", c->main_first);
1184 dbg_msg("dead watermark: %d", c->dead_wm);
1185 dbg_msg("dark watermark: %d", c->dark_wm);
1186 x = (long long)c->main_lebs * c->dark_wm;
1187 dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)",
1188 x, x >> 10, x >> 20);
1189 dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1190 c->max_bud_bytes, c->max_bud_bytes >> 10,
1191 c->max_bud_bytes >> 20);
1192 dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1193 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1194 c->bg_bud_bytes >> 20);
1195 dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)",
1196 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1197 dbg_msg("max. seq. number: %llu", c->max_sqnum);
1198 dbg_msg("commit number: %llu", c->cmt_no);
1199
1200 return 0;
1201
1202out_infos:
1203 spin_lock(&ubifs_infos_lock);
1204 list_del(&c->infos_list);
1205 spin_unlock(&ubifs_infos_lock);
1206out_orphans:
1207 free_orphans(c);
1208out_journal:
1209 destroy_journal(c);
1210out_lpt:
1211 ubifs_lpt_free(c, 0);
1212out_master:
1213 kfree(c->mst_node);
1214 kfree(c->rcvrd_mst_node);
1215 if (c->bgt)
1216 kthread_stop(c->bgt);
1217out_wbufs:
1218 free_wbufs(c);
1219out_cbuf:
1220 kfree(c->cbuf);
1221out_dereg:
1222 dbg_failure_mode_deregistration(c);
1223out_free:
1224 vfree(c->ileb_buf);
1225 vfree(c->sbuf);
1226 kfree(c->bottom_up_buf);
1227 UBIFS_DBG(vfree(c->dbg_buf));
1228 return err;
1229}
1230
1231/**
1232 * ubifs_umount - un-mount UBIFS file-system.
1233 * @c: UBIFS file-system description object
1234 *
1235 * Note, this function is called to free allocated resourced when un-mounting,
1236 * as well as free resources when an error occurred while we were half way
1237 * through mounting (error path cleanup function). So it has to make sure the
1238 * resource was actually allocated before freeing it.
1239 */
1240static void ubifs_umount(struct ubifs_info *c)
1241{
1242 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1243 c->vi.vol_id);
1244
1245 spin_lock(&ubifs_infos_lock);
1246 list_del(&c->infos_list);
1247 spin_unlock(&ubifs_infos_lock);
1248
1249 if (c->bgt)
1250 kthread_stop(c->bgt);
1251
1252 destroy_journal(c);
1253 free_wbufs(c);
1254 free_orphans(c);
1255 ubifs_lpt_free(c, 0);
1256
1257 kfree(c->cbuf);
1258 kfree(c->rcvrd_mst_node);
1259 kfree(c->mst_node);
1260 vfree(c->sbuf);
1261 kfree(c->bottom_up_buf);
1262 UBIFS_DBG(vfree(c->dbg_buf));
1263 vfree(c->ileb_buf);
1264 dbg_failure_mode_deregistration(c);
1265}
1266
1267/**
1268 * ubifs_remount_rw - re-mount in read-write mode.
1269 * @c: UBIFS file-system description object
1270 *
1271 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1272 * mode. This function allocates the needed resources and re-mounts UBIFS in
1273 * read-write mode.
1274 */
1275static int ubifs_remount_rw(struct ubifs_info *c)
1276{
1277 int err, lnum;
1278
1279 if (c->ro_media)
1280 return -EINVAL;
1281
1282 mutex_lock(&c->umount_mutex);
1283 c->remounting_rw = 1;
1284
1285 /* Check for enough free space */
1286 if (ubifs_calc_available(c, c->min_idx_lebs) <= 0) {
1287 ubifs_err("insufficient available space");
1288 err = -EINVAL;
1289 goto out;
1290 }
1291
1292 if (c->old_leb_cnt != c->leb_cnt) {
1293 struct ubifs_sb_node *sup;
1294
1295 sup = ubifs_read_sb_node(c);
1296 if (IS_ERR(sup)) {
1297 err = PTR_ERR(sup);
1298 goto out;
1299 }
1300 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1301 err = ubifs_write_sb_node(c, sup);
1302 if (err)
1303 goto out;
1304 }
1305
1306 if (c->need_recovery) {
1307 ubifs_msg("completing deferred recovery");
1308 err = ubifs_write_rcvrd_mst_node(c);
1309 if (err)
1310 goto out;
1311 err = ubifs_recover_size(c);
1312 if (err)
1313 goto out;
1314 err = ubifs_clean_lebs(c, c->sbuf);
1315 if (err)
1316 goto out;
1317 err = ubifs_recover_inl_heads(c, c->sbuf);
1318 if (err)
1319 goto out;
1320 }
1321
1322 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1323 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1324 err = ubifs_write_master(c);
1325 if (err)
1326 goto out;
1327 }
1328
1329 c->ileb_buf = vmalloc(c->leb_size);
1330 if (!c->ileb_buf) {
1331 err = -ENOMEM;
1332 goto out;
1333 }
1334
1335 err = ubifs_lpt_init(c, 0, 1);
1336 if (err)
1337 goto out;
1338
1339 err = alloc_wbufs(c);
1340 if (err)
1341 goto out;
1342
1343 ubifs_create_buds_lists(c);
1344
1345 /* Create background thread */
1346 c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name);
1347 if (!c->bgt)
1348 c->bgt = ERR_PTR(-EINVAL);
1349 if (IS_ERR(c->bgt)) {
1350 err = PTR_ERR(c->bgt);
1351 c->bgt = NULL;
1352 ubifs_err("cannot spawn \"%s\", error %d",
1353 c->bgt_name, err);
1354 return err;
1355 }
1356 wake_up_process(c->bgt);
1357
1358 c->orph_buf = vmalloc(c->leb_size);
1359 if (!c->orph_buf)
1360 return -ENOMEM;
1361
1362 /* Check for enough log space */
1363 lnum = c->lhead_lnum + 1;
1364 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1365 lnum = UBIFS_LOG_LNUM;
1366 if (lnum == c->ltail_lnum) {
1367 err = ubifs_consolidate_log(c);
1368 if (err)
1369 goto out;
1370 }
1371
1372 if (c->need_recovery)
1373 err = ubifs_rcvry_gc_commit(c);
1374 else
1375 err = take_gc_lnum(c);
1376 if (err)
1377 goto out;
1378
1379 if (c->need_recovery) {
1380 c->need_recovery = 0;
1381 ubifs_msg("deferred recovery completed");
1382 }
1383
1384 dbg_gen("re-mounted read-write");
1385 c->vfs_sb->s_flags &= ~MS_RDONLY;
1386 c->remounting_rw = 0;
1387 mutex_unlock(&c->umount_mutex);
1388 return 0;
1389
1390out:
1391 vfree(c->orph_buf);
1392 c->orph_buf = NULL;
1393 if (c->bgt) {
1394 kthread_stop(c->bgt);
1395 c->bgt = NULL;
1396 }
1397 free_wbufs(c);
1398 vfree(c->ileb_buf);
1399 c->ileb_buf = NULL;
1400 ubifs_lpt_free(c, 1);
1401 c->remounting_rw = 0;
1402 mutex_unlock(&c->umount_mutex);
1403 return err;
1404}
1405
1406/**
1407 * commit_on_unmount - commit the journal when un-mounting.
1408 * @c: UBIFS file-system description object
1409 *
1410 * This function is called during un-mounting and it commits the journal unless
1411 * the "fast unmount" mode is enabled. It also avoids committing the journal if
1412 * it contains too few data.
1413 *
1414 * Sometimes recovery requires the journal to be committed at least once, and
1415 * this function takes care about this.
1416 */
1417static void commit_on_unmount(struct ubifs_info *c)
1418{
1419 if (!c->fast_unmount) {
1420 long long bud_bytes;
1421
1422 spin_lock(&c->buds_lock);
1423 bud_bytes = c->bud_bytes;
1424 spin_unlock(&c->buds_lock);
1425 if (bud_bytes > c->leb_size)
1426 ubifs_run_commit(c);
1427 }
1428}
1429
1430/**
1431 * ubifs_remount_ro - re-mount in read-only mode.
1432 * @c: UBIFS file-system description object
1433 *
1434 * We rely on VFS to have stopped writing. Possibly the background thread could
1435 * be running a commit, however kthread_stop will wait in that case.
1436 */
1437static void ubifs_remount_ro(struct ubifs_info *c)
1438{
1439 int i, err;
1440
1441 ubifs_assert(!c->need_recovery);
1442 commit_on_unmount(c);
1443
1444 mutex_lock(&c->umount_mutex);
1445 if (c->bgt) {
1446 kthread_stop(c->bgt);
1447 c->bgt = NULL;
1448 }
1449
1450 for (i = 0; i < c->jhead_cnt; i++) {
1451 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1452 del_timer_sync(&c->jheads[i].wbuf.timer);
1453 }
1454
1455 if (!c->ro_media) {
1456 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1457 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1458 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1459 err = ubifs_write_master(c);
1460 if (err)
1461 ubifs_ro_mode(c, err);
1462 }
1463
1464 ubifs_destroy_idx_gc(c);
1465 free_wbufs(c);
1466 vfree(c->orph_buf);
1467 c->orph_buf = NULL;
1468 vfree(c->ileb_buf);
1469 c->ileb_buf = NULL;
1470 ubifs_lpt_free(c, 1);
1471 mutex_unlock(&c->umount_mutex);
1472}
1473
1474static void ubifs_put_super(struct super_block *sb)
1475{
1476 int i;
1477 struct ubifs_info *c = sb->s_fs_info;
1478
1479 ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1480 c->vi.vol_id);
1481 /*
1482 * The following asserts are only valid if there has not been a failure
1483 * of the media. For example, there will be dirty inodes if we failed
1484 * to write them back because of I/O errors.
1485 */
1486 ubifs_assert(atomic_long_read(&c->dirty_pg_cnt) == 0);
1487 ubifs_assert(c->budg_idx_growth == 0);
7d32c2bb 1488 ubifs_assert(c->budg_dd_growth == 0);
1e51764a
AB
1489 ubifs_assert(c->budg_data_growth == 0);
1490
1491 /*
1492 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1493 * and file system un-mount. Namely, it prevents the shrinker from
1494 * picking this superblock for shrinking - it will be just skipped if
1495 * the mutex is locked.
1496 */
1497 mutex_lock(&c->umount_mutex);
1498 if (!(c->vfs_sb->s_flags & MS_RDONLY)) {
1499 /*
1500 * First of all kill the background thread to make sure it does
1501 * not interfere with un-mounting and freeing resources.
1502 */
1503 if (c->bgt) {
1504 kthread_stop(c->bgt);
1505 c->bgt = NULL;
1506 }
1507
1508 /* Synchronize write-buffers */
1509 if (c->jheads)
1510 for (i = 0; i < c->jhead_cnt; i++) {
1511 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1512 del_timer_sync(&c->jheads[i].wbuf.timer);
1513 }
1514
1515 /*
1516 * On fatal errors c->ro_media is set to 1, in which case we do
1517 * not write the master node.
1518 */
1519 if (!c->ro_media) {
1520 /*
1521 * We are being cleanly unmounted which means the
1522 * orphans were killed - indicate this in the master
1523 * node. Also save the reserved GC LEB number.
1524 */
1525 int err;
1526
1527 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1528 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1529 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1530 err = ubifs_write_master(c);
1531 if (err)
1532 /*
1533 * Recovery will attempt to fix the master area
1534 * next mount, so we just print a message and
1535 * continue to unmount normally.
1536 */
1537 ubifs_err("failed to write master node, "
1538 "error %d", err);
1539 }
1540 }
1541
1542 ubifs_umount(c);
1543 bdi_destroy(&c->bdi);
1544 ubi_close_volume(c->ubi);
1545 mutex_unlock(&c->umount_mutex);
1546 kfree(c);
1547}
1548
1549static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1550{
1551 int err;
1552 struct ubifs_info *c = sb->s_fs_info;
1553
1554 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1555
1556 err = ubifs_parse_options(c, data, 1);
1557 if (err) {
1558 ubifs_err("invalid or unknown remount parameter");
1559 return err;
1560 }
1561 if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
1562 err = ubifs_remount_rw(c);
1563 if (err)
1564 return err;
1565 } else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY))
1566 ubifs_remount_ro(c);
1567
1568 return 0;
1569}
1570
1571struct super_operations ubifs_super_operations = {
1572 .alloc_inode = ubifs_alloc_inode,
1573 .destroy_inode = ubifs_destroy_inode,
1574 .put_super = ubifs_put_super,
1575 .write_inode = ubifs_write_inode,
1576 .delete_inode = ubifs_delete_inode,
1577 .statfs = ubifs_statfs,
1578 .dirty_inode = ubifs_dirty_inode,
1579 .remount_fs = ubifs_remount_fs,
1580 .show_options = ubifs_show_options,
1581 .sync_fs = ubifs_sync_fs,
1582};
1583
1584/**
1585 * open_ubi - parse UBI device name string and open the UBI device.
1586 * @name: UBI volume name
1587 * @mode: UBI volume open mode
1588 *
1589 * There are several ways to specify UBI volumes when mounting UBIFS:
1590 * o ubiX_Y - UBI device number X, volume Y;
1591 * o ubiY - UBI device number 0, volume Y;
1592 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1593 * o ubi:NAME - mount UBI device 0, volume with name NAME.
1594 *
1595 * Alternative '!' separator may be used instead of ':' (because some shells
1596 * like busybox may interpret ':' as an NFS host name separator). This function
1597 * returns ubi volume object in case of success and a negative error code in
1598 * case of failure.
1599 */
1600static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1601{
1602 int dev, vol;
1603 char *endptr;
1604
1605 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1606 return ERR_PTR(-EINVAL);
1607
1608 /* ubi:NAME method */
1609 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1610 return ubi_open_volume_nm(0, name + 4, mode);
1611
1612 if (!isdigit(name[3]))
1613 return ERR_PTR(-EINVAL);
1614
1615 dev = simple_strtoul(name + 3, &endptr, 0);
1616
1617 /* ubiY method */
1618 if (*endptr == '\0')
1619 return ubi_open_volume(0, dev, mode);
1620
1621 /* ubiX_Y method */
1622 if (*endptr == '_' && isdigit(endptr[1])) {
1623 vol = simple_strtoul(endptr + 1, &endptr, 0);
1624 if (*endptr != '\0')
1625 return ERR_PTR(-EINVAL);
1626 return ubi_open_volume(dev, vol, mode);
1627 }
1628
1629 /* ubiX:NAME method */
1630 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1631 return ubi_open_volume_nm(dev, ++endptr, mode);
1632
1633 return ERR_PTR(-EINVAL);
1634}
1635
1636static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
1637{
1638 struct ubi_volume_desc *ubi = sb->s_fs_info;
1639 struct ubifs_info *c;
1640 struct inode *root;
1641 int err;
1642
1643 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1644 if (!c)
1645 return -ENOMEM;
1646
1647 spin_lock_init(&c->cnt_lock);
1648 spin_lock_init(&c->cs_lock);
1649 spin_lock_init(&c->buds_lock);
1650 spin_lock_init(&c->space_lock);
1651 spin_lock_init(&c->orphan_lock);
1652 init_rwsem(&c->commit_sem);
1653 mutex_init(&c->lp_mutex);
1654 mutex_init(&c->tnc_mutex);
1655 mutex_init(&c->log_mutex);
1656 mutex_init(&c->mst_mutex);
1657 mutex_init(&c->umount_mutex);
1658 init_waitqueue_head(&c->cmt_wq);
1659 c->buds = RB_ROOT;
1660 c->old_idx = RB_ROOT;
1661 c->size_tree = RB_ROOT;
1662 c->orph_tree = RB_ROOT;
1663 INIT_LIST_HEAD(&c->infos_list);
1664 INIT_LIST_HEAD(&c->idx_gc);
1665 INIT_LIST_HEAD(&c->replay_list);
1666 INIT_LIST_HEAD(&c->replay_buds);
1667 INIT_LIST_HEAD(&c->uncat_list);
1668 INIT_LIST_HEAD(&c->empty_list);
1669 INIT_LIST_HEAD(&c->freeable_list);
1670 INIT_LIST_HEAD(&c->frdi_idx_list);
1671 INIT_LIST_HEAD(&c->unclean_leb_list);
1672 INIT_LIST_HEAD(&c->old_buds);
1673 INIT_LIST_HEAD(&c->orph_list);
1674 INIT_LIST_HEAD(&c->orph_new);
1675
1676 c->highest_inum = UBIFS_FIRST_INO;
1e51764a
AB
1677 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
1678
1679 ubi_get_volume_info(ubi, &c->vi);
1680 ubi_get_device_info(c->vi.ubi_num, &c->di);
1681
1682 /* Re-open the UBI device in read-write mode */
1683 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
1684 if (IS_ERR(c->ubi)) {
1685 err = PTR_ERR(c->ubi);
1686 goto out_free;
1687 }
1688
1689 /*
0a883a05 1690 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
1e51764a
AB
1691 * UBIFS, I/O is not deferred, it is done immediately in readpage,
1692 * which means the user would have to wait not just for their own I/O
0a883a05 1693 * but the read-ahead I/O as well i.e. completely pointless.
1e51764a
AB
1694 *
1695 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
1696 */
1697 c->bdi.capabilities = BDI_CAP_MAP_COPY;
1698 c->bdi.unplug_io_fn = default_unplug_io_fn;
1699 err = bdi_init(&c->bdi);
1700 if (err)
1701 goto out_close;
1702
1703 err = ubifs_parse_options(c, data, 0);
1704 if (err)
1705 goto out_bdi;
1706
1707 c->vfs_sb = sb;
1708
1709 sb->s_fs_info = c;
1710 sb->s_magic = UBIFS_SUPER_MAGIC;
1711 sb->s_blocksize = UBIFS_BLOCK_SIZE;
1712 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
1713 sb->s_dev = c->vi.cdev;
1714 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
1715 if (c->max_inode_sz > MAX_LFS_FILESIZE)
1716 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
1717 sb->s_op = &ubifs_super_operations;
1718
1719 mutex_lock(&c->umount_mutex);
1720 err = mount_ubifs(c);
1721 if (err) {
1722 ubifs_assert(err < 0);
1723 goto out_unlock;
1724 }
1725
1726 /* Read the root inode */
1727 root = ubifs_iget(sb, UBIFS_ROOT_INO);
1728 if (IS_ERR(root)) {
1729 err = PTR_ERR(root);
1730 goto out_umount;
1731 }
1732
1733 sb->s_root = d_alloc_root(root);
1734 if (!sb->s_root)
1735 goto out_iput;
1736
1737 mutex_unlock(&c->umount_mutex);
1738
1739 return 0;
1740
1741out_iput:
1742 iput(root);
1743out_umount:
1744 ubifs_umount(c);
1745out_unlock:
1746 mutex_unlock(&c->umount_mutex);
1747out_bdi:
1748 bdi_destroy(&c->bdi);
1749out_close:
1750 ubi_close_volume(c->ubi);
1751out_free:
1752 kfree(c);
1753 return err;
1754}
1755
1756static int sb_test(struct super_block *sb, void *data)
1757{
1758 dev_t *dev = data;
1759
1760 return sb->s_dev == *dev;
1761}
1762
1763static int sb_set(struct super_block *sb, void *data)
1764{
1765 dev_t *dev = data;
1766
1767 sb->s_dev = *dev;
1768 return 0;
1769}
1770
1771static int ubifs_get_sb(struct file_system_type *fs_type, int flags,
1772 const char *name, void *data, struct vfsmount *mnt)
1773{
1774 struct ubi_volume_desc *ubi;
1775 struct ubi_volume_info vi;
1776 struct super_block *sb;
1777 int err;
1778
1779 dbg_gen("name %s, flags %#x", name, flags);
1780
1781 /*
1782 * Get UBI device number and volume ID. Mount it read-only so far
1783 * because this might be a new mount point, and UBI allows only one
1784 * read-write user at a time.
1785 */
1786 ubi = open_ubi(name, UBI_READONLY);
1787 if (IS_ERR(ubi)) {
1788 ubifs_err("cannot open \"%s\", error %d",
1789 name, (int)PTR_ERR(ubi));
1790 return PTR_ERR(ubi);
1791 }
1792 ubi_get_volume_info(ubi, &vi);
1793
1794 dbg_gen("opened ubi%d_%d", vi.ubi_num, vi.vol_id);
1795
1796 sb = sget(fs_type, &sb_test, &sb_set, &vi.cdev);
1797 if (IS_ERR(sb)) {
1798 err = PTR_ERR(sb);
1799 goto out_close;
1800 }
1801
1802 if (sb->s_root) {
1803 /* A new mount point for already mounted UBIFS */
1804 dbg_gen("this ubi volume is already mounted");
1805 if ((flags ^ sb->s_flags) & MS_RDONLY) {
1806 err = -EBUSY;
1807 goto out_deact;
1808 }
1809 } else {
1810 sb->s_flags = flags;
1811 /*
1812 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is
1813 * replaced by 'c'.
1814 */
1815 sb->s_fs_info = ubi;
1816 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
1817 if (err)
1818 goto out_deact;
1819 /* We do not support atime */
1820 sb->s_flags |= MS_ACTIVE | MS_NOATIME;
1821 }
1822
1823 /* 'fill_super()' opens ubi again so we must close it here */
1824 ubi_close_volume(ubi);
1825
1826 return simple_set_mnt(mnt, sb);
1827
1828out_deact:
1829 up_write(&sb->s_umount);
1830 deactivate_super(sb);
1831out_close:
1832 ubi_close_volume(ubi);
1833 return err;
1834}
1835
1836static void ubifs_kill_sb(struct super_block *sb)
1837{
1838 struct ubifs_info *c = sb->s_fs_info;
1839
1840 /*
1841 * We do 'commit_on_unmount()' here instead of 'ubifs_put_super()'
1842 * in order to be outside BKL.
1843 */
1844 if (sb->s_root && !(sb->s_flags & MS_RDONLY))
1845 commit_on_unmount(c);
1846 /* The un-mount routine is actually done in put_super() */
1847 generic_shutdown_super(sb);
1848}
1849
1850static struct file_system_type ubifs_fs_type = {
1851 .name = "ubifs",
1852 .owner = THIS_MODULE,
1853 .get_sb = ubifs_get_sb,
1854 .kill_sb = ubifs_kill_sb
1855};
1856
1857/*
1858 * Inode slab cache constructor.
1859 */
51cc5068 1860static void inode_slab_ctor(void *obj)
1e51764a
AB
1861{
1862 struct ubifs_inode *ui = obj;
1863 inode_init_once(&ui->vfs_inode);
1864}
1865
1866static int __init ubifs_init(void)
1867{
1868 int err;
1869
1870 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
1871
1872 /* Make sure node sizes are 8-byte aligned */
1873 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
1874 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
1875 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
1876 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
1877 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
1878 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
1879 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
1880 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
1881 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
1882 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
1883 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
1884
1885 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
1886 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
1887 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
1888 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
1889 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
1890 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
1891
1892 /* Check min. node size */
1893 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
1894 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
1895 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
1896 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
1897
1898 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
1899 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
1900 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
1901 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
1902
1903 /* Defined node sizes */
1904 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
1905 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
1906 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
1907 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
1908
1909 /*
1910 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
1911 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
1912 */
1913 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
1914 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires"
1915 " at least 4096 bytes",
1916 (unsigned int)PAGE_CACHE_SIZE);
1917 return -EINVAL;
1918 }
1919
1920 err = register_filesystem(&ubifs_fs_type);
1921 if (err) {
1922 ubifs_err("cannot register file system, error %d", err);
1923 return err;
1924 }
1925
1926 err = -ENOMEM;
1927 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
1928 sizeof(struct ubifs_inode), 0,
1929 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
1930 &inode_slab_ctor);
1931 if (!ubifs_inode_slab)
1932 goto out_reg;
1933
1934 register_shrinker(&ubifs_shrinker_info);
1935
1936 err = ubifs_compressors_init();
1937 if (err)
1938 goto out_compr;
1939
1940 return 0;
1941
1942out_compr:
1943 unregister_shrinker(&ubifs_shrinker_info);
1944 kmem_cache_destroy(ubifs_inode_slab);
1945out_reg:
1946 unregister_filesystem(&ubifs_fs_type);
1947 return err;
1948}
1949/* late_initcall to let compressors initialize first */
1950late_initcall(ubifs_init);
1951
1952static void __exit ubifs_exit(void)
1953{
1954 ubifs_assert(list_empty(&ubifs_infos));
1955 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
1956
1957 ubifs_compressors_exit();
1958 unregister_shrinker(&ubifs_shrinker_info);
1959 kmem_cache_destroy(ubifs_inode_slab);
1960 unregister_filesystem(&ubifs_fs_type);
1961}
1962module_exit(ubifs_exit);
1963
1964MODULE_LICENSE("GPL");
1965MODULE_VERSION(__stringify(UBIFS_VERSION));
1966MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
1967MODULE_DESCRIPTION("UBIFS - UBI File System");