]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ext4/inode.c
ext4: fix error handling in migrate
[net-next-2.6.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
4c0425ff 40#include <linux/workqueue.h>
9bffad1e 41
3dcf5451 42#include "ext4_jbd2.h"
ac27a0ec
DK
43#include "xattr.h"
44#include "acl.h"
d2a17637 45#include "ext4_extents.h"
ac27a0ec 46
9bffad1e
TT
47#include <trace/events/ext4.h>
48
a1d6cc56
AK
49#define MPAGE_DA_EXTENT_TAIL 0x01
50
678aaf48
JK
51static inline int ext4_begin_ordered_truncate(struct inode *inode,
52 loff_t new_size)
53{
7f5aa215
JK
54 return jbd2_journal_begin_ordered_truncate(
55 EXT4_SB(inode->i_sb)->s_journal,
56 &EXT4_I(inode)->jinode,
57 new_size);
678aaf48
JK
58}
59
64769240
AT
60static void ext4_invalidatepage(struct page *page, unsigned long offset);
61
ac27a0ec
DK
62/*
63 * Test whether an inode is a fast symlink.
64 */
617ba13b 65static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 66{
617ba13b 67 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
68 (inode->i_sb->s_blocksize >> 9) : 0;
69
70 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
71}
72
ac27a0ec
DK
73/*
74 * Work out how many blocks we need to proceed with the next chunk of a
75 * truncate transaction.
76 */
77static unsigned long blocks_for_truncate(struct inode *inode)
78{
725d26d3 79 ext4_lblk_t needed;
ac27a0ec
DK
80
81 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
82
83 /* Give ourselves just enough room to cope with inodes in which
84 * i_blocks is corrupt: we've seen disk corruptions in the past
85 * which resulted in random data in an inode which looked enough
617ba13b 86 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
87 * will go a bit crazy if that happens, but at least we should
88 * try not to panic the whole kernel. */
89 if (needed < 2)
90 needed = 2;
91
92 /* But we need to bound the transaction so we don't overflow the
93 * journal. */
617ba13b
MC
94 if (needed > EXT4_MAX_TRANS_DATA)
95 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 96
617ba13b 97 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
98}
99
100/*
101 * Truncate transactions can be complex and absolutely huge. So we need to
102 * be able to restart the transaction at a conventient checkpoint to make
103 * sure we don't overflow the journal.
104 *
105 * start_transaction gets us a new handle for a truncate transaction,
106 * and extend_transaction tries to extend the existing one a bit. If
107 * extend fails, we need to propagate the failure up and restart the
108 * transaction in the top-level truncate loop. --sct
109 */
110static handle_t *start_transaction(struct inode *inode)
111{
112 handle_t *result;
113
617ba13b 114 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
115 if (!IS_ERR(result))
116 return result;
117
617ba13b 118 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
119 return result;
120}
121
122/*
123 * Try to extend this transaction for the purposes of truncation.
124 *
125 * Returns 0 if we managed to create more room. If we can't create more
126 * room, and the transaction must be restarted we return 1.
127 */
128static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
129{
0390131b
FM
130 if (!ext4_handle_valid(handle))
131 return 0;
132 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
ac27a0ec 133 return 0;
617ba13b 134 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
135 return 0;
136 return 1;
137}
138
139/*
140 * Restart the transaction associated with *handle. This does a commit,
141 * so before we call here everything must be consistently dirtied against
142 * this transaction.
143 */
fa5d1113 144int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 145 int nblocks)
ac27a0ec 146{
487caeef
JK
147 int ret;
148
149 /*
150 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
151 * moment, get_block can be called only for blocks inside i_size since
152 * page cache has been already dropped and writes are blocked by
153 * i_mutex. So we can safely drop the i_data_sem here.
154 */
0390131b 155 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 156 jbd_debug(2, "restarting handle %p\n", handle);
487caeef
JK
157 up_write(&EXT4_I(inode)->i_data_sem);
158 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
159 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 160 ext4_discard_preallocations(inode);
487caeef
JK
161
162 return ret;
ac27a0ec
DK
163}
164
165/*
166 * Called at the last iput() if i_nlink is zero.
167 */
af5bc92d 168void ext4_delete_inode(struct inode *inode)
ac27a0ec
DK
169{
170 handle_t *handle;
bc965ab3 171 int err;
ac27a0ec 172
678aaf48
JK
173 if (ext4_should_order_data(inode))
174 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
175 truncate_inode_pages(&inode->i_data, 0);
176
177 if (is_bad_inode(inode))
178 goto no_delete;
179
bc965ab3 180 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 181 if (IS_ERR(handle)) {
bc965ab3 182 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
183 /*
184 * If we're going to skip the normal cleanup, we still need to
185 * make sure that the in-core orphan linked list is properly
186 * cleaned up.
187 */
617ba13b 188 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
189 goto no_delete;
190 }
191
192 if (IS_SYNC(inode))
0390131b 193 ext4_handle_sync(handle);
ac27a0ec 194 inode->i_size = 0;
bc965ab3
TT
195 err = ext4_mark_inode_dirty(handle, inode);
196 if (err) {
12062ddd 197 ext4_warning(inode->i_sb,
bc965ab3
TT
198 "couldn't mark inode dirty (err %d)", err);
199 goto stop_handle;
200 }
ac27a0ec 201 if (inode->i_blocks)
617ba13b 202 ext4_truncate(inode);
bc965ab3
TT
203
204 /*
205 * ext4_ext_truncate() doesn't reserve any slop when it
206 * restarts journal transactions; therefore there may not be
207 * enough credits left in the handle to remove the inode from
208 * the orphan list and set the dtime field.
209 */
0390131b 210 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
211 err = ext4_journal_extend(handle, 3);
212 if (err > 0)
213 err = ext4_journal_restart(handle, 3);
214 if (err != 0) {
12062ddd 215 ext4_warning(inode->i_sb,
bc965ab3
TT
216 "couldn't extend journal (err %d)", err);
217 stop_handle:
218 ext4_journal_stop(handle);
219 goto no_delete;
220 }
221 }
222
ac27a0ec 223 /*
617ba13b 224 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 225 * AKPM: I think this can be inside the above `if'.
617ba13b 226 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 227 * deletion of a non-existent orphan - this is because we don't
617ba13b 228 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
229 * (Well, we could do this if we need to, but heck - it works)
230 */
617ba13b
MC
231 ext4_orphan_del(handle, inode);
232 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
233
234 /*
235 * One subtle ordering requirement: if anything has gone wrong
236 * (transaction abort, IO errors, whatever), then we can still
237 * do these next steps (the fs will already have been marked as
238 * having errors), but we can't free the inode if the mark_dirty
239 * fails.
240 */
617ba13b 241 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
242 /* If that failed, just do the required in-core inode clear. */
243 clear_inode(inode);
244 else
617ba13b
MC
245 ext4_free_inode(handle, inode);
246 ext4_journal_stop(handle);
ac27a0ec
DK
247 return;
248no_delete:
249 clear_inode(inode); /* We must guarantee clearing of inode... */
250}
251
252typedef struct {
253 __le32 *p;
254 __le32 key;
255 struct buffer_head *bh;
256} Indirect;
257
258static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
259{
260 p->key = *(p->p = v);
261 p->bh = bh;
262}
263
ac27a0ec 264/**
617ba13b 265 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
266 * @inode: inode in question (we are only interested in its superblock)
267 * @i_block: block number to be parsed
268 * @offsets: array to store the offsets in
8c55e204
DK
269 * @boundary: set this non-zero if the referred-to block is likely to be
270 * followed (on disk) by an indirect block.
ac27a0ec 271 *
617ba13b 272 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
273 * for UNIX filesystems - tree of pointers anchored in the inode, with
274 * data blocks at leaves and indirect blocks in intermediate nodes.
275 * This function translates the block number into path in that tree -
276 * return value is the path length and @offsets[n] is the offset of
277 * pointer to (n+1)th node in the nth one. If @block is out of range
278 * (negative or too large) warning is printed and zero returned.
279 *
280 * Note: function doesn't find node addresses, so no IO is needed. All
281 * we need to know is the capacity of indirect blocks (taken from the
282 * inode->i_sb).
283 */
284
285/*
286 * Portability note: the last comparison (check that we fit into triple
287 * indirect block) is spelled differently, because otherwise on an
288 * architecture with 32-bit longs and 8Kb pages we might get into trouble
289 * if our filesystem had 8Kb blocks. We might use long long, but that would
290 * kill us on x86. Oh, well, at least the sign propagation does not matter -
291 * i_block would have to be negative in the very beginning, so we would not
292 * get there at all.
293 */
294
617ba13b 295static int ext4_block_to_path(struct inode *inode,
de9a55b8
TT
296 ext4_lblk_t i_block,
297 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 298{
617ba13b
MC
299 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
300 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
301 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
302 indirect_blocks = ptrs,
303 double_blocks = (1 << (ptrs_bits * 2));
304 int n = 0;
305 int final = 0;
306
c333e073 307 if (i_block < direct_blocks) {
ac27a0ec
DK
308 offsets[n++] = i_block;
309 final = direct_blocks;
af5bc92d 310 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 311 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
312 offsets[n++] = i_block;
313 final = ptrs;
314 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 315 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
316 offsets[n++] = i_block >> ptrs_bits;
317 offsets[n++] = i_block & (ptrs - 1);
318 final = ptrs;
319 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 320 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
321 offsets[n++] = i_block >> (ptrs_bits * 2);
322 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
323 offsets[n++] = i_block & (ptrs - 1);
324 final = ptrs;
325 } else {
12062ddd 326 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
de9a55b8
TT
327 i_block + direct_blocks +
328 indirect_blocks + double_blocks, inode->i_ino);
ac27a0ec
DK
329 }
330 if (boundary)
331 *boundary = final - 1 - (i_block & (ptrs - 1));
332 return n;
333}
334
fe2c8191 335static int __ext4_check_blockref(const char *function, struct inode *inode,
6fd058f7
TT
336 __le32 *p, unsigned int max)
337{
f73953c0 338 __le32 *bref = p;
6fd058f7
TT
339 unsigned int blk;
340
fe2c8191 341 while (bref < p+max) {
6fd058f7 342 blk = le32_to_cpu(*bref++);
de9a55b8
TT
343 if (blk &&
344 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
6fd058f7 345 blk, 1))) {
12062ddd 346 __ext4_error(inode->i_sb, function,
6fd058f7
TT
347 "invalid block reference %u "
348 "in inode #%lu", blk, inode->i_ino);
de9a55b8
TT
349 return -EIO;
350 }
351 }
352 return 0;
fe2c8191
TN
353}
354
355
356#define ext4_check_indirect_blockref(inode, bh) \
de9a55b8 357 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
fe2c8191
TN
358 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
359
360#define ext4_check_inode_blockref(inode) \
de9a55b8 361 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
fe2c8191
TN
362 EXT4_NDIR_BLOCKS)
363
ac27a0ec 364/**
617ba13b 365 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
366 * @inode: inode in question
367 * @depth: depth of the chain (1 - direct pointer, etc.)
368 * @offsets: offsets of pointers in inode/indirect blocks
369 * @chain: place to store the result
370 * @err: here we store the error value
371 *
372 * Function fills the array of triples <key, p, bh> and returns %NULL
373 * if everything went OK or the pointer to the last filled triple
374 * (incomplete one) otherwise. Upon the return chain[i].key contains
375 * the number of (i+1)-th block in the chain (as it is stored in memory,
376 * i.e. little-endian 32-bit), chain[i].p contains the address of that
377 * number (it points into struct inode for i==0 and into the bh->b_data
378 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
379 * block for i>0 and NULL for i==0. In other words, it holds the block
380 * numbers of the chain, addresses they were taken from (and where we can
381 * verify that chain did not change) and buffer_heads hosting these
382 * numbers.
383 *
384 * Function stops when it stumbles upon zero pointer (absent block)
385 * (pointer to last triple returned, *@err == 0)
386 * or when it gets an IO error reading an indirect block
387 * (ditto, *@err == -EIO)
ac27a0ec
DK
388 * or when it reads all @depth-1 indirect blocks successfully and finds
389 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
390 *
391 * Need to be called with
0e855ac8 392 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 393 */
725d26d3
AK
394static Indirect *ext4_get_branch(struct inode *inode, int depth,
395 ext4_lblk_t *offsets,
ac27a0ec
DK
396 Indirect chain[4], int *err)
397{
398 struct super_block *sb = inode->i_sb;
399 Indirect *p = chain;
400 struct buffer_head *bh;
401
402 *err = 0;
403 /* i_data is not going away, no lock needed */
af5bc92d 404 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
405 if (!p->key)
406 goto no_block;
407 while (--depth) {
fe2c8191
TN
408 bh = sb_getblk(sb, le32_to_cpu(p->key));
409 if (unlikely(!bh))
ac27a0ec 410 goto failure;
de9a55b8 411
fe2c8191
TN
412 if (!bh_uptodate_or_lock(bh)) {
413 if (bh_submit_read(bh) < 0) {
414 put_bh(bh);
415 goto failure;
416 }
417 /* validate block references */
418 if (ext4_check_indirect_blockref(inode, bh)) {
419 put_bh(bh);
420 goto failure;
421 }
422 }
de9a55b8 423
af5bc92d 424 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
425 /* Reader: end */
426 if (!p->key)
427 goto no_block;
428 }
429 return NULL;
430
ac27a0ec
DK
431failure:
432 *err = -EIO;
433no_block:
434 return p;
435}
436
437/**
617ba13b 438 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
439 * @inode: owner
440 * @ind: descriptor of indirect block.
441 *
1cc8dcf5 442 * This function returns the preferred place for block allocation.
ac27a0ec
DK
443 * It is used when heuristic for sequential allocation fails.
444 * Rules are:
445 * + if there is a block to the left of our position - allocate near it.
446 * + if pointer will live in indirect block - allocate near that block.
447 * + if pointer will live in inode - allocate in the same
448 * cylinder group.
449 *
450 * In the latter case we colour the starting block by the callers PID to
451 * prevent it from clashing with concurrent allocations for a different inode
452 * in the same block group. The PID is used here so that functionally related
453 * files will be close-by on-disk.
454 *
455 * Caller must make sure that @ind is valid and will stay that way.
456 */
617ba13b 457static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 458{
617ba13b 459 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 460 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 461 __le32 *p;
617ba13b 462 ext4_fsblk_t bg_start;
74d3487f 463 ext4_fsblk_t last_block;
617ba13b 464 ext4_grpblk_t colour;
a4912123
TT
465 ext4_group_t block_group;
466 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
ac27a0ec
DK
467
468 /* Try to find previous block */
469 for (p = ind->p - 1; p >= start; p--) {
470 if (*p)
471 return le32_to_cpu(*p);
472 }
473
474 /* No such thing, so let's try location of indirect block */
475 if (ind->bh)
476 return ind->bh->b_blocknr;
477
478 /*
479 * It is going to be referred to from the inode itself? OK, just put it
480 * into the same cylinder group then.
481 */
a4912123
TT
482 block_group = ei->i_block_group;
483 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
484 block_group &= ~(flex_size-1);
485 if (S_ISREG(inode->i_mode))
486 block_group++;
487 }
488 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
74d3487f
VC
489 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
490
a4912123
TT
491 /*
492 * If we are doing delayed allocation, we don't need take
493 * colour into account.
494 */
495 if (test_opt(inode->i_sb, DELALLOC))
496 return bg_start;
497
74d3487f
VC
498 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
499 colour = (current->pid % 16) *
617ba13b 500 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
501 else
502 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
503 return bg_start + colour;
504}
505
506/**
1cc8dcf5 507 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
508 * @inode: owner
509 * @block: block we want
ac27a0ec 510 * @partial: pointer to the last triple within a chain
ac27a0ec 511 *
1cc8dcf5 512 * Normally this function find the preferred place for block allocation,
fb01bfda 513 * returns it.
fb0a387d
ES
514 * Because this is only used for non-extent files, we limit the block nr
515 * to 32 bits.
ac27a0ec 516 */
725d26d3 517static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
de9a55b8 518 Indirect *partial)
ac27a0ec 519{
fb0a387d
ES
520 ext4_fsblk_t goal;
521
ac27a0ec 522 /*
c2ea3fde 523 * XXX need to get goal block from mballoc's data structures
ac27a0ec 524 */
ac27a0ec 525
fb0a387d
ES
526 goal = ext4_find_near(inode, partial);
527 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
528 return goal;
ac27a0ec
DK
529}
530
531/**
617ba13b 532 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
533 * of direct blocks need to be allocated for the given branch.
534 *
535 * @branch: chain of indirect blocks
536 * @k: number of blocks need for indirect blocks
537 * @blks: number of data blocks to be mapped.
538 * @blocks_to_boundary: the offset in the indirect block
539 *
540 * return the total number of blocks to be allocate, including the
541 * direct and indirect blocks.
542 */
498e5f24 543static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
de9a55b8 544 int blocks_to_boundary)
ac27a0ec 545{
498e5f24 546 unsigned int count = 0;
ac27a0ec
DK
547
548 /*
549 * Simple case, [t,d]Indirect block(s) has not allocated yet
550 * then it's clear blocks on that path have not allocated
551 */
552 if (k > 0) {
553 /* right now we don't handle cross boundary allocation */
554 if (blks < blocks_to_boundary + 1)
555 count += blks;
556 else
557 count += blocks_to_boundary + 1;
558 return count;
559 }
560
561 count++;
562 while (count < blks && count <= blocks_to_boundary &&
563 le32_to_cpu(*(branch[0].p + count)) == 0) {
564 count++;
565 }
566 return count;
567}
568
569/**
617ba13b 570 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
571 * @indirect_blks: the number of blocks need to allocate for indirect
572 * blocks
573 *
574 * @new_blocks: on return it will store the new block numbers for
575 * the indirect blocks(if needed) and the first direct block,
576 * @blks: on return it will store the total number of allocated
577 * direct blocks
578 */
617ba13b 579static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
580 ext4_lblk_t iblock, ext4_fsblk_t goal,
581 int indirect_blks, int blks,
582 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 583{
815a1130 584 struct ext4_allocation_request ar;
ac27a0ec 585 int target, i;
7061eba7 586 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 587 int index = 0;
617ba13b 588 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
589 int ret = 0;
590
591 /*
592 * Here we try to allocate the requested multiple blocks at once,
593 * on a best-effort basis.
594 * To build a branch, we should allocate blocks for
595 * the indirect blocks(if not allocated yet), and at least
596 * the first direct block of this branch. That's the
597 * minimum number of blocks need to allocate(required)
598 */
7061eba7
AK
599 /* first we try to allocate the indirect blocks */
600 target = indirect_blks;
601 while (target > 0) {
ac27a0ec
DK
602 count = target;
603 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
604 current_block = ext4_new_meta_blocks(handle, inode,
605 goal, &count, err);
ac27a0ec
DK
606 if (*err)
607 goto failed_out;
608
fb0a387d
ES
609 BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
610
ac27a0ec
DK
611 target -= count;
612 /* allocate blocks for indirect blocks */
613 while (index < indirect_blks && count) {
614 new_blocks[index++] = current_block++;
615 count--;
616 }
7061eba7
AK
617 if (count > 0) {
618 /*
619 * save the new block number
620 * for the first direct block
621 */
622 new_blocks[index] = current_block;
623 printk(KERN_INFO "%s returned more blocks than "
624 "requested\n", __func__);
625 WARN_ON(1);
ac27a0ec 626 break;
7061eba7 627 }
ac27a0ec
DK
628 }
629
7061eba7
AK
630 target = blks - count ;
631 blk_allocated = count;
632 if (!target)
633 goto allocated;
634 /* Now allocate data blocks */
815a1130
TT
635 memset(&ar, 0, sizeof(ar));
636 ar.inode = inode;
637 ar.goal = goal;
638 ar.len = target;
639 ar.logical = iblock;
640 if (S_ISREG(inode->i_mode))
641 /* enable in-core preallocation only for regular files */
642 ar.flags = EXT4_MB_HINT_DATA;
643
644 current_block = ext4_mb_new_blocks(handle, &ar, err);
fb0a387d 645 BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
815a1130 646
7061eba7
AK
647 if (*err && (target == blks)) {
648 /*
649 * if the allocation failed and we didn't allocate
650 * any blocks before
651 */
652 goto failed_out;
653 }
654 if (!*err) {
655 if (target == blks) {
de9a55b8
TT
656 /*
657 * save the new block number
658 * for the first direct block
659 */
7061eba7
AK
660 new_blocks[index] = current_block;
661 }
815a1130 662 blk_allocated += ar.len;
7061eba7
AK
663 }
664allocated:
ac27a0ec 665 /* total number of blocks allocated for direct blocks */
7061eba7 666 ret = blk_allocated;
ac27a0ec
DK
667 *err = 0;
668 return ret;
669failed_out:
af5bc92d 670 for (i = 0; i < index; i++)
e6362609 671 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
ac27a0ec
DK
672 return ret;
673}
674
675/**
617ba13b 676 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
677 * @inode: owner
678 * @indirect_blks: number of allocated indirect blocks
679 * @blks: number of allocated direct blocks
680 * @offsets: offsets (in the blocks) to store the pointers to next.
681 * @branch: place to store the chain in.
682 *
683 * This function allocates blocks, zeroes out all but the last one,
684 * links them into chain and (if we are synchronous) writes them to disk.
685 * In other words, it prepares a branch that can be spliced onto the
686 * inode. It stores the information about that chain in the branch[], in
617ba13b 687 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
688 * we had read the existing part of chain and partial points to the last
689 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 690 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
691 * place chain is disconnected - *branch->p is still zero (we did not
692 * set the last link), but branch->key contains the number that should
693 * be placed into *branch->p to fill that gap.
694 *
695 * If allocation fails we free all blocks we've allocated (and forget
696 * their buffer_heads) and return the error value the from failed
617ba13b 697 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
698 * as described above and return 0.
699 */
617ba13b 700static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
701 ext4_lblk_t iblock, int indirect_blks,
702 int *blks, ext4_fsblk_t goal,
703 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
704{
705 int blocksize = inode->i_sb->s_blocksize;
706 int i, n = 0;
707 int err = 0;
708 struct buffer_head *bh;
709 int num;
617ba13b
MC
710 ext4_fsblk_t new_blocks[4];
711 ext4_fsblk_t current_block;
ac27a0ec 712
7061eba7 713 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
714 *blks, new_blocks, &err);
715 if (err)
716 return err;
717
718 branch[0].key = cpu_to_le32(new_blocks[0]);
719 /*
720 * metadata blocks and data blocks are allocated.
721 */
722 for (n = 1; n <= indirect_blks; n++) {
723 /*
724 * Get buffer_head for parent block, zero it out
725 * and set the pointer to new one, then send
726 * parent to disk.
727 */
728 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
729 branch[n].bh = bh;
730 lock_buffer(bh);
731 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 732 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec 733 if (err) {
6487a9d3
CW
734 /* Don't brelse(bh) here; it's done in
735 * ext4_journal_forget() below */
ac27a0ec 736 unlock_buffer(bh);
ac27a0ec
DK
737 goto failed;
738 }
739
740 memset(bh->b_data, 0, blocksize);
741 branch[n].p = (__le32 *) bh->b_data + offsets[n];
742 branch[n].key = cpu_to_le32(new_blocks[n]);
743 *branch[n].p = branch[n].key;
af5bc92d 744 if (n == indirect_blks) {
ac27a0ec
DK
745 current_block = new_blocks[n];
746 /*
747 * End of chain, update the last new metablock of
748 * the chain to point to the new allocated
749 * data blocks numbers
750 */
de9a55b8 751 for (i = 1; i < num; i++)
ac27a0ec
DK
752 *(branch[n].p + i) = cpu_to_le32(++current_block);
753 }
754 BUFFER_TRACE(bh, "marking uptodate");
755 set_buffer_uptodate(bh);
756 unlock_buffer(bh);
757
0390131b
FM
758 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
759 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
760 if (err)
761 goto failed;
762 }
763 *blks = num;
764 return err;
765failed:
766 /* Allocation failed, free what we already allocated */
e6362609 767 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
ac27a0ec 768 for (i = 1; i <= n ; i++) {
b7e57e7c 769 /*
e6362609
TT
770 * branch[i].bh is newly allocated, so there is no
771 * need to revoke the block, which is why we don't
772 * need to set EXT4_FREE_BLOCKS_METADATA.
b7e57e7c 773 */
e6362609
TT
774 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
775 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec 776 }
e6362609
TT
777 for (i = n+1; i < indirect_blks; i++)
778 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
ac27a0ec 779
e6362609 780 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
ac27a0ec
DK
781
782 return err;
783}
784
785/**
617ba13b 786 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
787 * @inode: owner
788 * @block: (logical) number of block we are adding
789 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 790 * ext4_alloc_branch)
ac27a0ec
DK
791 * @where: location of missing link
792 * @num: number of indirect blocks we are adding
793 * @blks: number of direct blocks we are adding
794 *
795 * This function fills the missing link and does all housekeeping needed in
796 * inode (->i_blocks, etc.). In case of success we end up with the full
797 * chain to new block and return 0.
798 */
617ba13b 799static int ext4_splice_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
800 ext4_lblk_t block, Indirect *where, int num,
801 int blks)
ac27a0ec
DK
802{
803 int i;
804 int err = 0;
617ba13b 805 ext4_fsblk_t current_block;
ac27a0ec 806
ac27a0ec
DK
807 /*
808 * If we're splicing into a [td]indirect block (as opposed to the
809 * inode) then we need to get write access to the [td]indirect block
810 * before the splice.
811 */
812 if (where->bh) {
813 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 814 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
815 if (err)
816 goto err_out;
817 }
818 /* That's it */
819
820 *where->p = where->key;
821
822 /*
823 * Update the host buffer_head or inode to point to more just allocated
824 * direct blocks blocks
825 */
826 if (num == 0 && blks > 1) {
827 current_block = le32_to_cpu(where->key) + 1;
828 for (i = 1; i < blks; i++)
af5bc92d 829 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
830 }
831
ac27a0ec 832 /* We are done with atomic stuff, now do the rest of housekeeping */
ac27a0ec
DK
833 /* had we spliced it onto indirect block? */
834 if (where->bh) {
835 /*
836 * If we spliced it onto an indirect block, we haven't
837 * altered the inode. Note however that if it is being spliced
838 * onto an indirect block at the very end of the file (the
839 * file is growing) then we *will* alter the inode to reflect
840 * the new i_size. But that is not done here - it is done in
617ba13b 841 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
842 */
843 jbd_debug(5, "splicing indirect only\n");
0390131b
FM
844 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
845 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
ac27a0ec
DK
846 if (err)
847 goto err_out;
848 } else {
849 /*
850 * OK, we spliced it into the inode itself on a direct block.
ac27a0ec 851 */
41591750 852 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
853 jbd_debug(5, "splicing direct\n");
854 }
855 return err;
856
857err_out:
858 for (i = 1; i <= num; i++) {
b7e57e7c 859 /*
e6362609
TT
860 * branch[i].bh is newly allocated, so there is no
861 * need to revoke the block, which is why we don't
862 * need to set EXT4_FREE_BLOCKS_METADATA.
b7e57e7c 863 */
e6362609
TT
864 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
865 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec 866 }
e6362609
TT
867 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
868 blks, 0);
ac27a0ec
DK
869
870 return err;
871}
872
873/*
b920c755
TT
874 * The ext4_ind_get_blocks() function handles non-extents inodes
875 * (i.e., using the traditional indirect/double-indirect i_blocks
876 * scheme) for ext4_get_blocks().
877 *
ac27a0ec
DK
878 * Allocation strategy is simple: if we have to allocate something, we will
879 * have to go the whole way to leaf. So let's do it before attaching anything
880 * to tree, set linkage between the newborn blocks, write them if sync is
881 * required, recheck the path, free and repeat if check fails, otherwise
882 * set the last missing link (that will protect us from any truncate-generated
883 * removals - all blocks on the path are immune now) and possibly force the
884 * write on the parent block.
885 * That has a nice additional property: no special recovery from the failed
886 * allocations is needed - we simply release blocks and do not touch anything
887 * reachable from inode.
888 *
889 * `handle' can be NULL if create == 0.
890 *
ac27a0ec
DK
891 * return > 0, # of blocks mapped or allocated.
892 * return = 0, if plain lookup failed.
893 * return < 0, error case.
c278bfec 894 *
b920c755
TT
895 * The ext4_ind_get_blocks() function should be called with
896 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
897 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
898 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
899 * blocks.
ac27a0ec 900 */
e4d996ca 901static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
902 ext4_lblk_t iblock, unsigned int maxblocks,
903 struct buffer_head *bh_result,
904 int flags)
ac27a0ec
DK
905{
906 int err = -EIO;
725d26d3 907 ext4_lblk_t offsets[4];
ac27a0ec
DK
908 Indirect chain[4];
909 Indirect *partial;
617ba13b 910 ext4_fsblk_t goal;
ac27a0ec
DK
911 int indirect_blks;
912 int blocks_to_boundary = 0;
913 int depth;
ac27a0ec 914 int count = 0;
617ba13b 915 ext4_fsblk_t first_block = 0;
ac27a0ec 916
a86c6181 917 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
c2177057 918 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
725d26d3 919 depth = ext4_block_to_path(inode, iblock, offsets,
de9a55b8 920 &blocks_to_boundary);
ac27a0ec
DK
921
922 if (depth == 0)
923 goto out;
924
617ba13b 925 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
926
927 /* Simplest case - block found, no allocation needed */
928 if (!partial) {
929 first_block = le32_to_cpu(chain[depth - 1].key);
930 clear_buffer_new(bh_result);
931 count++;
932 /*map more blocks*/
933 while (count < maxblocks && count <= blocks_to_boundary) {
617ba13b 934 ext4_fsblk_t blk;
ac27a0ec 935
ac27a0ec
DK
936 blk = le32_to_cpu(*(chain[depth-1].p + count));
937
938 if (blk == first_block + count)
939 count++;
940 else
941 break;
942 }
c278bfec 943 goto got_it;
ac27a0ec
DK
944 }
945
946 /* Next simple case - plain lookup or failed read of indirect block */
c2177057 947 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
ac27a0ec
DK
948 goto cleanup;
949
ac27a0ec 950 /*
c2ea3fde 951 * Okay, we need to do block allocation.
ac27a0ec 952 */
fb01bfda 953 goal = ext4_find_goal(inode, iblock, partial);
ac27a0ec
DK
954
955 /* the number of blocks need to allocate for [d,t]indirect blocks */
956 indirect_blks = (chain + depth) - partial - 1;
957
958 /*
959 * Next look up the indirect map to count the totoal number of
960 * direct blocks to allocate for this branch.
961 */
617ba13b 962 count = ext4_blks_to_allocate(partial, indirect_blks,
ac27a0ec
DK
963 maxblocks, blocks_to_boundary);
964 /*
617ba13b 965 * Block out ext4_truncate while we alter the tree
ac27a0ec 966 */
7061eba7 967 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
de9a55b8
TT
968 &count, goal,
969 offsets + (partial - chain), partial);
ac27a0ec
DK
970
971 /*
617ba13b 972 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
973 * on the new chain if there is a failure, but that risks using
974 * up transaction credits, especially for bitmaps where the
975 * credits cannot be returned. Can we handle this somehow? We
976 * may need to return -EAGAIN upwards in the worst case. --sct
977 */
978 if (!err)
617ba13b 979 err = ext4_splice_branch(handle, inode, iblock,
de9a55b8 980 partial, indirect_blks, count);
2bba702d 981 if (err)
ac27a0ec
DK
982 goto cleanup;
983
984 set_buffer_new(bh_result);
b436b9be
JK
985
986 ext4_update_inode_fsync_trans(handle, inode, 1);
ac27a0ec
DK
987got_it:
988 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
989 if (count > blocks_to_boundary)
990 set_buffer_boundary(bh_result);
991 err = count;
992 /* Clean up and exit */
993 partial = chain + depth - 1; /* the whole chain */
994cleanup:
995 while (partial > chain) {
996 BUFFER_TRACE(partial->bh, "call brelse");
997 brelse(partial->bh);
998 partial--;
999 }
1000 BUFFER_TRACE(bh_result, "returned");
1001out:
1002 return err;
1003}
1004
a9e7f447
DM
1005#ifdef CONFIG_QUOTA
1006qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 1007{
a9e7f447 1008 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 1009}
a9e7f447 1010#endif
9d0be502 1011
12219aea
AK
1012/*
1013 * Calculate the number of metadata blocks need to reserve
9d0be502 1014 * to allocate a new block at @lblocks for non extent file based file
12219aea 1015 */
9d0be502
TT
1016static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1017 sector_t lblock)
12219aea 1018{
9d0be502
TT
1019 struct ext4_inode_info *ei = EXT4_I(inode);
1020 int dind_mask = EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1;
1021 int blk_bits;
12219aea 1022
9d0be502
TT
1023 if (lblock < EXT4_NDIR_BLOCKS)
1024 return 0;
12219aea 1025
9d0be502 1026 lblock -= EXT4_NDIR_BLOCKS;
12219aea 1027
9d0be502
TT
1028 if (ei->i_da_metadata_calc_len &&
1029 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1030 ei->i_da_metadata_calc_len++;
1031 return 0;
1032 }
1033 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1034 ei->i_da_metadata_calc_len = 1;
1035 blk_bits = roundup_pow_of_two(lblock + 1);
1036 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
12219aea
AK
1037}
1038
1039/*
1040 * Calculate the number of metadata blocks need to reserve
9d0be502 1041 * to allocate a block located at @lblock
12219aea 1042 */
9d0be502 1043static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
12219aea
AK
1044{
1045 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
9d0be502 1046 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 1047
9d0be502 1048 return ext4_indirect_calc_metadata_amount(inode, lblock);
12219aea
AK
1049}
1050
0637c6f4
TT
1051/*
1052 * Called with i_data_sem down, which is important since we can call
1053 * ext4_discard_preallocations() from here.
1054 */
5f634d06
AK
1055void ext4_da_update_reserve_space(struct inode *inode,
1056 int used, int quota_claim)
12219aea
AK
1057{
1058 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1059 struct ext4_inode_info *ei = EXT4_I(inode);
5f634d06 1060 int mdb_free = 0, allocated_meta_blocks = 0;
0637c6f4
TT
1061
1062 spin_lock(&ei->i_block_reservation_lock);
f8ec9d68 1063 trace_ext4_da_update_reserve_space(inode, used);
0637c6f4
TT
1064 if (unlikely(used > ei->i_reserved_data_blocks)) {
1065 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1066 "with only %d reserved data blocks\n",
1067 __func__, inode->i_ino, used,
1068 ei->i_reserved_data_blocks);
1069 WARN_ON(1);
1070 used = ei->i_reserved_data_blocks;
1071 }
12219aea 1072
0637c6f4
TT
1073 /* Update per-inode reservations */
1074 ei->i_reserved_data_blocks -= used;
1075 used += ei->i_allocated_meta_blocks;
1076 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
5f634d06 1077 allocated_meta_blocks = ei->i_allocated_meta_blocks;
0637c6f4
TT
1078 ei->i_allocated_meta_blocks = 0;
1079 percpu_counter_sub(&sbi->s_dirtyblocks_counter, used);
6bc6e63f 1080
0637c6f4
TT
1081 if (ei->i_reserved_data_blocks == 0) {
1082 /*
1083 * We can release all of the reserved metadata blocks
1084 * only when we have written all of the delayed
1085 * allocation blocks.
1086 */
ee5f4d9c
TT
1087 mdb_free = ei->i_reserved_meta_blocks;
1088 ei->i_reserved_meta_blocks = 0;
9d0be502 1089 ei->i_da_metadata_calc_len = 0;
6bc6e63f 1090 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
6bc6e63f 1091 }
12219aea 1092 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1093
0637c6f4 1094 /* Update quota subsystem */
5f634d06
AK
1095 if (quota_claim) {
1096 vfs_dq_claim_block(inode, used);
1097 if (mdb_free)
1098 vfs_dq_release_reservation_block(inode, mdb_free);
1099 } else {
1100 /*
1101 * We did fallocate with an offset that is already delayed
1102 * allocated. So on delayed allocated writeback we should
1103 * not update the quota for allocated blocks. But then
1104 * converting an fallocate region to initialized region would
1105 * have caused a metadata allocation. So claim quota for
1106 * that
1107 */
1108 if (allocated_meta_blocks)
1109 vfs_dq_claim_block(inode, allocated_meta_blocks);
1110 vfs_dq_release_reservation_block(inode, mdb_free + used);
1111 }
d6014301
AK
1112
1113 /*
1114 * If we have done all the pending block allocations and if
1115 * there aren't any writers on the inode, we can discard the
1116 * inode's preallocations.
1117 */
0637c6f4
TT
1118 if ((ei->i_reserved_data_blocks == 0) &&
1119 (atomic_read(&inode->i_writecount) == 0))
d6014301 1120 ext4_discard_preallocations(inode);
12219aea
AK
1121}
1122
80e42468
TT
1123static int check_block_validity(struct inode *inode, const char *msg,
1124 sector_t logical, sector_t phys, int len)
6fd058f7
TT
1125{
1126 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
12062ddd 1127 __ext4_error(inode->i_sb, msg,
6fd058f7
TT
1128 "inode #%lu logical block %llu mapped to %llu "
1129 "(size %d)", inode->i_ino,
1130 (unsigned long long) logical,
1131 (unsigned long long) phys, len);
6fd058f7
TT
1132 return -EIO;
1133 }
1134 return 0;
1135}
1136
55138e0b 1137/*
1f94533d
TT
1138 * Return the number of contiguous dirty pages in a given inode
1139 * starting at page frame idx.
55138e0b
TT
1140 */
1141static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1142 unsigned int max_pages)
1143{
1144 struct address_space *mapping = inode->i_mapping;
1145 pgoff_t index;
1146 struct pagevec pvec;
1147 pgoff_t num = 0;
1148 int i, nr_pages, done = 0;
1149
1150 if (max_pages == 0)
1151 return 0;
1152 pagevec_init(&pvec, 0);
1153 while (!done) {
1154 index = idx;
1155 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1156 PAGECACHE_TAG_DIRTY,
1157 (pgoff_t)PAGEVEC_SIZE);
1158 if (nr_pages == 0)
1159 break;
1160 for (i = 0; i < nr_pages; i++) {
1161 struct page *page = pvec.pages[i];
1162 struct buffer_head *bh, *head;
1163
1164 lock_page(page);
1165 if (unlikely(page->mapping != mapping) ||
1166 !PageDirty(page) ||
1167 PageWriteback(page) ||
1168 page->index != idx) {
1169 done = 1;
1170 unlock_page(page);
1171 break;
1172 }
1f94533d
TT
1173 if (page_has_buffers(page)) {
1174 bh = head = page_buffers(page);
1175 do {
1176 if (!buffer_delay(bh) &&
1177 !buffer_unwritten(bh))
1178 done = 1;
1179 bh = bh->b_this_page;
1180 } while (!done && (bh != head));
1181 }
55138e0b
TT
1182 unlock_page(page);
1183 if (done)
1184 break;
1185 idx++;
1186 num++;
1187 if (num >= max_pages)
1188 break;
1189 }
1190 pagevec_release(&pvec);
1191 }
1192 return num;
1193}
1194
f5ab0d1f 1195/*
12b7ac17 1196 * The ext4_get_blocks() function tries to look up the requested blocks,
2b2d6d01 1197 * and returns if the blocks are already mapped.
f5ab0d1f 1198 *
f5ab0d1f
MC
1199 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1200 * and store the allocated blocks in the result buffer head and mark it
1201 * mapped.
1202 *
1203 * If file type is extents based, it will call ext4_ext_get_blocks(),
e4d996ca 1204 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
f5ab0d1f
MC
1205 * based files
1206 *
1207 * On success, it returns the number of blocks being mapped or allocate.
1208 * if create==0 and the blocks are pre-allocated and uninitialized block,
1209 * the result buffer head is unmapped. If the create ==1, it will make sure
1210 * the buffer head is mapped.
1211 *
1212 * It returns 0 if plain look up failed (blocks have not been allocated), in
1213 * that casem, buffer head is unmapped
1214 *
1215 * It returns the error in case of allocation failure.
1216 */
12b7ac17
TT
1217int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1218 unsigned int max_blocks, struct buffer_head *bh,
c2177057 1219 int flags)
0e855ac8
AK
1220{
1221 int retval;
f5ab0d1f
MC
1222
1223 clear_buffer_mapped(bh);
2a8964d6 1224 clear_buffer_unwritten(bh);
f5ab0d1f 1225
0031462b
MC
1226 ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1227 "logical block %lu\n", inode->i_ino, flags, max_blocks,
1228 (unsigned long)block);
4df3d265 1229 /*
b920c755
TT
1230 * Try to see if we can get the block without requesting a new
1231 * file system block.
4df3d265
AK
1232 */
1233 down_read((&EXT4_I(inode)->i_data_sem));
1234 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1235 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
c2177057 1236 bh, 0);
0e855ac8 1237 } else {
e4d996ca 1238 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
c2177057 1239 bh, 0);
0e855ac8 1240 }
4df3d265 1241 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 1242
6fd058f7 1243 if (retval > 0 && buffer_mapped(bh)) {
80e42468
TT
1244 int ret = check_block_validity(inode, "file system corruption",
1245 block, bh->b_blocknr, retval);
6fd058f7
TT
1246 if (ret != 0)
1247 return ret;
1248 }
1249
f5ab0d1f 1250 /* If it is only a block(s) look up */
c2177057 1251 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
1252 return retval;
1253
1254 /*
1255 * Returns if the blocks have already allocated
1256 *
1257 * Note that if blocks have been preallocated
1258 * ext4_ext_get_block() returns th create = 0
1259 * with buffer head unmapped.
1260 */
1261 if (retval > 0 && buffer_mapped(bh))
4df3d265
AK
1262 return retval;
1263
2a8964d6
AK
1264 /*
1265 * When we call get_blocks without the create flag, the
1266 * BH_Unwritten flag could have gotten set if the blocks
1267 * requested were part of a uninitialized extent. We need to
1268 * clear this flag now that we are committed to convert all or
1269 * part of the uninitialized extent to be an initialized
1270 * extent. This is because we need to avoid the combination
1271 * of BH_Unwritten and BH_Mapped flags being simultaneously
1272 * set on the buffer_head.
1273 */
1274 clear_buffer_unwritten(bh);
1275
4df3d265 1276 /*
f5ab0d1f
MC
1277 * New blocks allocate and/or writing to uninitialized extent
1278 * will possibly result in updating i_data, so we take
1279 * the write lock of i_data_sem, and call get_blocks()
1280 * with create == 1 flag.
4df3d265
AK
1281 */
1282 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1283
1284 /*
1285 * if the caller is from delayed allocation writeout path
1286 * we have already reserved fs blocks for allocation
1287 * let the underlying get_block() function know to
1288 * avoid double accounting
1289 */
c2177057 1290 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1291 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1292 /*
1293 * We need to check for EXT4 here because migrate
1294 * could have changed the inode type in between
1295 */
0e855ac8
AK
1296 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1297 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
c2177057 1298 bh, flags);
0e855ac8 1299 } else {
e4d996ca 1300 retval = ext4_ind_get_blocks(handle, inode, block,
c2177057 1301 max_blocks, bh, flags);
267e4db9
AK
1302
1303 if (retval > 0 && buffer_new(bh)) {
1304 /*
1305 * We allocated new blocks which will result in
1306 * i_data's format changing. Force the migrate
1307 * to fail by clearing migrate flags
1308 */
19f5fb7a 1309 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 1310 }
d2a17637 1311
5f634d06
AK
1312 /*
1313 * Update reserved blocks/metadata blocks after successful
1314 * block allocation which had been deferred till now. We don't
1315 * support fallocate for non extent files. So we can update
1316 * reserve space here.
1317 */
1318 if ((retval > 0) &&
1296cc85 1319 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
1320 ext4_da_update_reserve_space(inode, retval, 1);
1321 }
2ac3b6e0 1322 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1323 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
2ac3b6e0 1324
4df3d265 1325 up_write((&EXT4_I(inode)->i_data_sem));
6fd058f7 1326 if (retval > 0 && buffer_mapped(bh)) {
80e42468
TT
1327 int ret = check_block_validity(inode, "file system "
1328 "corruption after allocation",
1329 block, bh->b_blocknr, retval);
6fd058f7
TT
1330 if (ret != 0)
1331 return ret;
1332 }
0e855ac8
AK
1333 return retval;
1334}
1335
f3bd1f3f
MC
1336/* Maximum number of blocks we map for direct IO at once. */
1337#define DIO_MAX_BLOCKS 4096
1338
6873fa0d
ES
1339int ext4_get_block(struct inode *inode, sector_t iblock,
1340 struct buffer_head *bh_result, int create)
ac27a0ec 1341{
3e4fdaf8 1342 handle_t *handle = ext4_journal_current_handle();
7fb5409d 1343 int ret = 0, started = 0;
ac27a0ec 1344 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
f3bd1f3f 1345 int dio_credits;
ac27a0ec 1346
7fb5409d
JK
1347 if (create && !handle) {
1348 /* Direct IO write... */
1349 if (max_blocks > DIO_MAX_BLOCKS)
1350 max_blocks = DIO_MAX_BLOCKS;
f3bd1f3f
MC
1351 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1352 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1353 if (IS_ERR(handle)) {
ac27a0ec 1354 ret = PTR_ERR(handle);
7fb5409d 1355 goto out;
ac27a0ec 1356 }
7fb5409d 1357 started = 1;
ac27a0ec
DK
1358 }
1359
12b7ac17 1360 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
c2177057 1361 create ? EXT4_GET_BLOCKS_CREATE : 0);
7fb5409d
JK
1362 if (ret > 0) {
1363 bh_result->b_size = (ret << inode->i_blkbits);
1364 ret = 0;
ac27a0ec 1365 }
7fb5409d
JK
1366 if (started)
1367 ext4_journal_stop(handle);
1368out:
ac27a0ec
DK
1369 return ret;
1370}
1371
1372/*
1373 * `handle' can be NULL if create is zero
1374 */
617ba13b 1375struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1376 ext4_lblk_t block, int create, int *errp)
ac27a0ec
DK
1377{
1378 struct buffer_head dummy;
1379 int fatal = 0, err;
03f5d8bc 1380 int flags = 0;
ac27a0ec
DK
1381
1382 J_ASSERT(handle != NULL || create == 0);
1383
1384 dummy.b_state = 0;
1385 dummy.b_blocknr = -1000;
1386 buffer_trace_init(&dummy.b_history);
c2177057
TT
1387 if (create)
1388 flags |= EXT4_GET_BLOCKS_CREATE;
1389 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
ac27a0ec 1390 /*
c2177057
TT
1391 * ext4_get_blocks() returns number of blocks mapped. 0 in
1392 * case of a HOLE.
ac27a0ec
DK
1393 */
1394 if (err > 0) {
1395 if (err > 1)
1396 WARN_ON(1);
1397 err = 0;
1398 }
1399 *errp = err;
1400 if (!err && buffer_mapped(&dummy)) {
1401 struct buffer_head *bh;
1402 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1403 if (!bh) {
1404 *errp = -EIO;
1405 goto err;
1406 }
1407 if (buffer_new(&dummy)) {
1408 J_ASSERT(create != 0);
ac39849d 1409 J_ASSERT(handle != NULL);
ac27a0ec
DK
1410
1411 /*
1412 * Now that we do not always journal data, we should
1413 * keep in mind whether this should always journal the
1414 * new buffer as metadata. For now, regular file
617ba13b 1415 * writes use ext4_get_block instead, so it's not a
ac27a0ec
DK
1416 * problem.
1417 */
1418 lock_buffer(bh);
1419 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 1420 fatal = ext4_journal_get_create_access(handle, bh);
ac27a0ec 1421 if (!fatal && !buffer_uptodate(bh)) {
af5bc92d 1422 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
ac27a0ec
DK
1423 set_buffer_uptodate(bh);
1424 }
1425 unlock_buffer(bh);
0390131b
FM
1426 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1427 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
1428 if (!fatal)
1429 fatal = err;
1430 } else {
1431 BUFFER_TRACE(bh, "not a new buffer");
1432 }
1433 if (fatal) {
1434 *errp = fatal;
1435 brelse(bh);
1436 bh = NULL;
1437 }
1438 return bh;
1439 }
1440err:
1441 return NULL;
1442}
1443
617ba13b 1444struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1445 ext4_lblk_t block, int create, int *err)
ac27a0ec 1446{
af5bc92d 1447 struct buffer_head *bh;
ac27a0ec 1448
617ba13b 1449 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1450 if (!bh)
1451 return bh;
1452 if (buffer_uptodate(bh))
1453 return bh;
1454 ll_rw_block(READ_META, 1, &bh);
1455 wait_on_buffer(bh);
1456 if (buffer_uptodate(bh))
1457 return bh;
1458 put_bh(bh);
1459 *err = -EIO;
1460 return NULL;
1461}
1462
af5bc92d
TT
1463static int walk_page_buffers(handle_t *handle,
1464 struct buffer_head *head,
1465 unsigned from,
1466 unsigned to,
1467 int *partial,
1468 int (*fn)(handle_t *handle,
1469 struct buffer_head *bh))
ac27a0ec
DK
1470{
1471 struct buffer_head *bh;
1472 unsigned block_start, block_end;
1473 unsigned blocksize = head->b_size;
1474 int err, ret = 0;
1475 struct buffer_head *next;
1476
af5bc92d
TT
1477 for (bh = head, block_start = 0;
1478 ret == 0 && (bh != head || !block_start);
de9a55b8 1479 block_start = block_end, bh = next) {
ac27a0ec
DK
1480 next = bh->b_this_page;
1481 block_end = block_start + blocksize;
1482 if (block_end <= from || block_start >= to) {
1483 if (partial && !buffer_uptodate(bh))
1484 *partial = 1;
1485 continue;
1486 }
1487 err = (*fn)(handle, bh);
1488 if (!ret)
1489 ret = err;
1490 }
1491 return ret;
1492}
1493
1494/*
1495 * To preserve ordering, it is essential that the hole instantiation and
1496 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1497 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1498 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1499 * prepare_write() is the right place.
1500 *
617ba13b
MC
1501 * Also, this function can nest inside ext4_writepage() ->
1502 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1503 * has generated enough buffer credits to do the whole page. So we won't
1504 * block on the journal in that case, which is good, because the caller may
1505 * be PF_MEMALLOC.
1506 *
617ba13b 1507 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1508 * quota file writes. If we were to commit the transaction while thus
1509 * reentered, there can be a deadlock - we would be holding a quota
1510 * lock, and the commit would never complete if another thread had a
1511 * transaction open and was blocking on the quota lock - a ranking
1512 * violation.
1513 *
dab291af 1514 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1515 * will _not_ run commit under these circumstances because handle->h_ref
1516 * is elevated. We'll still have enough credits for the tiny quotafile
1517 * write.
1518 */
1519static int do_journal_get_write_access(handle_t *handle,
de9a55b8 1520 struct buffer_head *bh)
ac27a0ec
DK
1521{
1522 if (!buffer_mapped(bh) || buffer_freed(bh))
1523 return 0;
617ba13b 1524 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1525}
1526
b9a4207d
JK
1527/*
1528 * Truncate blocks that were not used by write. We have to truncate the
1529 * pagecache as well so that corresponding buffers get properly unmapped.
1530 */
1531static void ext4_truncate_failed_write(struct inode *inode)
1532{
1533 truncate_inode_pages(inode->i_mapping, inode->i_size);
1534 ext4_truncate(inode);
1535}
1536
bfc1af65 1537static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1538 loff_t pos, unsigned len, unsigned flags,
1539 struct page **pagep, void **fsdata)
ac27a0ec 1540{
af5bc92d 1541 struct inode *inode = mapping->host;
1938a150 1542 int ret, needed_blocks;
ac27a0ec
DK
1543 handle_t *handle;
1544 int retries = 0;
af5bc92d 1545 struct page *page;
de9a55b8 1546 pgoff_t index;
af5bc92d 1547 unsigned from, to;
bfc1af65 1548
9bffad1e 1549 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1550 /*
1551 * Reserve one block more for addition to orphan list in case
1552 * we allocate blocks but write fails for some reason
1553 */
1554 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 1555 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1556 from = pos & (PAGE_CACHE_SIZE - 1);
1557 to = from + len;
ac27a0ec
DK
1558
1559retry:
af5bc92d
TT
1560 handle = ext4_journal_start(inode, needed_blocks);
1561 if (IS_ERR(handle)) {
1562 ret = PTR_ERR(handle);
1563 goto out;
7479d2b9 1564 }
ac27a0ec 1565
ebd3610b
JK
1566 /* We cannot recurse into the filesystem as the transaction is already
1567 * started */
1568 flags |= AOP_FLAG_NOFS;
1569
54566b2c 1570 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1571 if (!page) {
1572 ext4_journal_stop(handle);
1573 ret = -ENOMEM;
1574 goto out;
1575 }
1576 *pagep = page;
1577
bfc1af65 1578 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
ebd3610b 1579 ext4_get_block);
bfc1af65
NP
1580
1581 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1582 ret = walk_page_buffers(handle, page_buffers(page),
1583 from, to, NULL, do_journal_get_write_access);
1584 }
bfc1af65
NP
1585
1586 if (ret) {
af5bc92d 1587 unlock_page(page);
af5bc92d 1588 page_cache_release(page);
ae4d5372
AK
1589 /*
1590 * block_write_begin may have instantiated a few blocks
1591 * outside i_size. Trim these off again. Don't need
1592 * i_size_read because we hold i_mutex.
1938a150
AK
1593 *
1594 * Add inode to orphan list in case we crash before
1595 * truncate finishes
ae4d5372 1596 */
ffacfa7a 1597 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1598 ext4_orphan_add(handle, inode);
1599
1600 ext4_journal_stop(handle);
1601 if (pos + len > inode->i_size) {
b9a4207d 1602 ext4_truncate_failed_write(inode);
de9a55b8 1603 /*
ffacfa7a 1604 * If truncate failed early the inode might
1938a150
AK
1605 * still be on the orphan list; we need to
1606 * make sure the inode is removed from the
1607 * orphan list in that case.
1608 */
1609 if (inode->i_nlink)
1610 ext4_orphan_del(NULL, inode);
1611 }
bfc1af65
NP
1612 }
1613
617ba13b 1614 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1615 goto retry;
7479d2b9 1616out:
ac27a0ec
DK
1617 return ret;
1618}
1619
bfc1af65
NP
1620/* For write_end() in data=journal mode */
1621static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1622{
1623 if (!buffer_mapped(bh) || buffer_freed(bh))
1624 return 0;
1625 set_buffer_uptodate(bh);
0390131b 1626 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1627}
1628
f8514083 1629static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
1630 struct address_space *mapping,
1631 loff_t pos, unsigned len, unsigned copied,
1632 struct page *page, void *fsdata)
f8514083
AK
1633{
1634 int i_size_changed = 0;
1635 struct inode *inode = mapping->host;
1636 handle_t *handle = ext4_journal_current_handle();
1637
1638 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1639
1640 /*
1641 * No need to use i_size_read() here, the i_size
1642 * cannot change under us because we hold i_mutex.
1643 *
1644 * But it's important to update i_size while still holding page lock:
1645 * page writeout could otherwise come in and zero beyond i_size.
1646 */
1647 if (pos + copied > inode->i_size) {
1648 i_size_write(inode, pos + copied);
1649 i_size_changed = 1;
1650 }
1651
1652 if (pos + copied > EXT4_I(inode)->i_disksize) {
1653 /* We need to mark inode dirty even if
1654 * new_i_size is less that inode->i_size
1655 * bu greater than i_disksize.(hint delalloc)
1656 */
1657 ext4_update_i_disksize(inode, (pos + copied));
1658 i_size_changed = 1;
1659 }
1660 unlock_page(page);
1661 page_cache_release(page);
1662
1663 /*
1664 * Don't mark the inode dirty under page lock. First, it unnecessarily
1665 * makes the holding time of page lock longer. Second, it forces lock
1666 * ordering of page lock and transaction start for journaling
1667 * filesystems.
1668 */
1669 if (i_size_changed)
1670 ext4_mark_inode_dirty(handle, inode);
1671
1672 return copied;
1673}
1674
ac27a0ec
DK
1675/*
1676 * We need to pick up the new inode size which generic_commit_write gave us
1677 * `file' can be NULL - eg, when called from page_symlink().
1678 *
617ba13b 1679 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1680 * buffers are managed internally.
1681 */
bfc1af65 1682static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
1683 struct address_space *mapping,
1684 loff_t pos, unsigned len, unsigned copied,
1685 struct page *page, void *fsdata)
ac27a0ec 1686{
617ba13b 1687 handle_t *handle = ext4_journal_current_handle();
cf108bca 1688 struct inode *inode = mapping->host;
ac27a0ec
DK
1689 int ret = 0, ret2;
1690
9bffad1e 1691 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 1692 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1693
1694 if (ret == 0) {
f8514083 1695 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1696 page, fsdata);
f8a87d89 1697 copied = ret2;
ffacfa7a 1698 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1699 /* if we have allocated more blocks and copied
1700 * less. We will have blocks allocated outside
1701 * inode->i_size. So truncate them
1702 */
1703 ext4_orphan_add(handle, inode);
f8a87d89
RK
1704 if (ret2 < 0)
1705 ret = ret2;
ac27a0ec 1706 }
617ba13b 1707 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1708 if (!ret)
1709 ret = ret2;
bfc1af65 1710
f8514083 1711 if (pos + len > inode->i_size) {
b9a4207d 1712 ext4_truncate_failed_write(inode);
de9a55b8 1713 /*
ffacfa7a 1714 * If truncate failed early the inode might still be
f8514083
AK
1715 * on the orphan list; we need to make sure the inode
1716 * is removed from the orphan list in that case.
1717 */
1718 if (inode->i_nlink)
1719 ext4_orphan_del(NULL, inode);
1720 }
1721
1722
bfc1af65 1723 return ret ? ret : copied;
ac27a0ec
DK
1724}
1725
bfc1af65 1726static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
1727 struct address_space *mapping,
1728 loff_t pos, unsigned len, unsigned copied,
1729 struct page *page, void *fsdata)
ac27a0ec 1730{
617ba13b 1731 handle_t *handle = ext4_journal_current_handle();
cf108bca 1732 struct inode *inode = mapping->host;
ac27a0ec 1733 int ret = 0, ret2;
ac27a0ec 1734
9bffad1e 1735 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 1736 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1737 page, fsdata);
f8a87d89 1738 copied = ret2;
ffacfa7a 1739 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1740 /* if we have allocated more blocks and copied
1741 * less. We will have blocks allocated outside
1742 * inode->i_size. So truncate them
1743 */
1744 ext4_orphan_add(handle, inode);
1745
f8a87d89
RK
1746 if (ret2 < 0)
1747 ret = ret2;
ac27a0ec 1748
617ba13b 1749 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1750 if (!ret)
1751 ret = ret2;
bfc1af65 1752
f8514083 1753 if (pos + len > inode->i_size) {
b9a4207d 1754 ext4_truncate_failed_write(inode);
de9a55b8 1755 /*
ffacfa7a 1756 * If truncate failed early the inode might still be
f8514083
AK
1757 * on the orphan list; we need to make sure the inode
1758 * is removed from the orphan list in that case.
1759 */
1760 if (inode->i_nlink)
1761 ext4_orphan_del(NULL, inode);
1762 }
1763
bfc1af65 1764 return ret ? ret : copied;
ac27a0ec
DK
1765}
1766
bfc1af65 1767static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1768 struct address_space *mapping,
1769 loff_t pos, unsigned len, unsigned copied,
1770 struct page *page, void *fsdata)
ac27a0ec 1771{
617ba13b 1772 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1773 struct inode *inode = mapping->host;
ac27a0ec
DK
1774 int ret = 0, ret2;
1775 int partial = 0;
bfc1af65 1776 unsigned from, to;
cf17fea6 1777 loff_t new_i_size;
ac27a0ec 1778
9bffad1e 1779 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1780 from = pos & (PAGE_CACHE_SIZE - 1);
1781 to = from + len;
1782
1783 if (copied < len) {
1784 if (!PageUptodate(page))
1785 copied = 0;
1786 page_zero_new_buffers(page, from+copied, to);
1787 }
ac27a0ec
DK
1788
1789 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1790 to, &partial, write_end_fn);
ac27a0ec
DK
1791 if (!partial)
1792 SetPageUptodate(page);
cf17fea6
AK
1793 new_i_size = pos + copied;
1794 if (new_i_size > inode->i_size)
bfc1af65 1795 i_size_write(inode, pos+copied);
19f5fb7a 1796 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
cf17fea6
AK
1797 if (new_i_size > EXT4_I(inode)->i_disksize) {
1798 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1799 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1800 if (!ret)
1801 ret = ret2;
1802 }
bfc1af65 1803
cf108bca 1804 unlock_page(page);
f8514083 1805 page_cache_release(page);
ffacfa7a 1806 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1807 /* if we have allocated more blocks and copied
1808 * less. We will have blocks allocated outside
1809 * inode->i_size. So truncate them
1810 */
1811 ext4_orphan_add(handle, inode);
1812
617ba13b 1813 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1814 if (!ret)
1815 ret = ret2;
f8514083 1816 if (pos + len > inode->i_size) {
b9a4207d 1817 ext4_truncate_failed_write(inode);
de9a55b8 1818 /*
ffacfa7a 1819 * If truncate failed early the inode might still be
f8514083
AK
1820 * on the orphan list; we need to make sure the inode
1821 * is removed from the orphan list in that case.
1822 */
1823 if (inode->i_nlink)
1824 ext4_orphan_del(NULL, inode);
1825 }
bfc1af65
NP
1826
1827 return ret ? ret : copied;
ac27a0ec 1828}
d2a17637 1829
9d0be502
TT
1830/*
1831 * Reserve a single block located at lblock
1832 */
1833static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
d2a17637 1834{
030ba6bc 1835 int retries = 0;
60e58e0f 1836 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1837 struct ext4_inode_info *ei = EXT4_I(inode);
9d0be502 1838 unsigned long md_needed, md_reserved;
d2a17637
MC
1839
1840 /*
1841 * recalculate the amount of metadata blocks to reserve
1842 * in order to allocate nrblocks
1843 * worse case is one extent per block
1844 */
030ba6bc 1845repeat:
0637c6f4
TT
1846 spin_lock(&ei->i_block_reservation_lock);
1847 md_reserved = ei->i_reserved_meta_blocks;
9d0be502 1848 md_needed = ext4_calc_metadata_amount(inode, lblock);
f8ec9d68 1849 trace_ext4_da_reserve_space(inode, md_needed);
0637c6f4 1850 spin_unlock(&ei->i_block_reservation_lock);
d2a17637 1851
60e58e0f
MC
1852 /*
1853 * Make quota reservation here to prevent quota overflow
1854 * later. Real quota accounting is done at pages writeout
1855 * time.
1856 */
1db91382 1857 if (vfs_dq_reserve_block(inode, md_needed + 1))
60e58e0f 1858 return -EDQUOT;
60e58e0f 1859
9d0be502
TT
1860 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1861 vfs_dq_release_reservation_block(inode, md_needed + 1);
030ba6bc
AK
1862 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1863 yield();
1864 goto repeat;
1865 }
d2a17637
MC
1866 return -ENOSPC;
1867 }
0637c6f4 1868 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1869 ei->i_reserved_data_blocks++;
0637c6f4
TT
1870 ei->i_reserved_meta_blocks += md_needed;
1871 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1872
d2a17637
MC
1873 return 0; /* success */
1874}
1875
12219aea 1876static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1877{
1878 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1879 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1880
cd213226
MC
1881 if (!to_free)
1882 return; /* Nothing to release, exit */
1883
d2a17637 1884 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1885
0637c6f4 1886 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1887 /*
0637c6f4
TT
1888 * if there aren't enough reserved blocks, then the
1889 * counter is messed up somewhere. Since this
1890 * function is called from invalidate page, it's
1891 * harmless to return without any action.
cd213226 1892 */
0637c6f4
TT
1893 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1894 "ino %lu, to_free %d with only %d reserved "
1895 "data blocks\n", inode->i_ino, to_free,
1896 ei->i_reserved_data_blocks);
1897 WARN_ON(1);
1898 to_free = ei->i_reserved_data_blocks;
cd213226 1899 }
0637c6f4 1900 ei->i_reserved_data_blocks -= to_free;
cd213226 1901
0637c6f4
TT
1902 if (ei->i_reserved_data_blocks == 0) {
1903 /*
1904 * We can release all of the reserved metadata blocks
1905 * only when we have written all of the delayed
1906 * allocation blocks.
1907 */
ee5f4d9c
TT
1908 to_free += ei->i_reserved_meta_blocks;
1909 ei->i_reserved_meta_blocks = 0;
9d0be502 1910 ei->i_da_metadata_calc_len = 0;
0637c6f4 1911 }
d2a17637 1912
0637c6f4
TT
1913 /* update fs dirty blocks counter */
1914 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
d2a17637 1915
d2a17637 1916 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1917
0637c6f4 1918 vfs_dq_release_reservation_block(inode, to_free);
d2a17637
MC
1919}
1920
1921static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1922 unsigned long offset)
d2a17637
MC
1923{
1924 int to_release = 0;
1925 struct buffer_head *head, *bh;
1926 unsigned int curr_off = 0;
1927
1928 head = page_buffers(page);
1929 bh = head;
1930 do {
1931 unsigned int next_off = curr_off + bh->b_size;
1932
1933 if ((offset <= curr_off) && (buffer_delay(bh))) {
1934 to_release++;
1935 clear_buffer_delay(bh);
1936 }
1937 curr_off = next_off;
1938 } while ((bh = bh->b_this_page) != head);
12219aea 1939 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1940}
ac27a0ec 1941
64769240
AT
1942/*
1943 * Delayed allocation stuff
1944 */
1945
64769240
AT
1946/*
1947 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1948 * them with writepage() call back
64769240
AT
1949 *
1950 * @mpd->inode: inode
1951 * @mpd->first_page: first page of the extent
1952 * @mpd->next_page: page after the last page of the extent
64769240
AT
1953 *
1954 * By the time mpage_da_submit_io() is called we expect all blocks
1955 * to be allocated. this may be wrong if allocation failed.
1956 *
1957 * As pages are already locked by write_cache_pages(), we can't use it
1958 */
1959static int mpage_da_submit_io(struct mpage_da_data *mpd)
1960{
22208ded 1961 long pages_skipped;
791b7f08
AK
1962 struct pagevec pvec;
1963 unsigned long index, end;
1964 int ret = 0, err, nr_pages, i;
1965 struct inode *inode = mpd->inode;
1966 struct address_space *mapping = inode->i_mapping;
64769240
AT
1967
1968 BUG_ON(mpd->next_page <= mpd->first_page);
791b7f08
AK
1969 /*
1970 * We need to start from the first_page to the next_page - 1
1971 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1972 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1973 * at the currently mapped buffer_heads.
1974 */
64769240
AT
1975 index = mpd->first_page;
1976 end = mpd->next_page - 1;
1977
791b7f08 1978 pagevec_init(&pvec, 0);
64769240 1979 while (index <= end) {
791b7f08 1980 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1981 if (nr_pages == 0)
1982 break;
1983 for (i = 0; i < nr_pages; i++) {
1984 struct page *page = pvec.pages[i];
1985
791b7f08
AK
1986 index = page->index;
1987 if (index > end)
1988 break;
1989 index++;
1990
1991 BUG_ON(!PageLocked(page));
1992 BUG_ON(PageWriteback(page));
1993
22208ded 1994 pages_skipped = mpd->wbc->pages_skipped;
a1d6cc56 1995 err = mapping->a_ops->writepage(page, mpd->wbc);
22208ded
AK
1996 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1997 /*
1998 * have successfully written the page
1999 * without skipping the same
2000 */
a1d6cc56 2001 mpd->pages_written++;
64769240
AT
2002 /*
2003 * In error case, we have to continue because
2004 * remaining pages are still locked
2005 * XXX: unlock and re-dirty them?
2006 */
2007 if (ret == 0)
2008 ret = err;
2009 }
2010 pagevec_release(&pvec);
2011 }
64769240
AT
2012 return ret;
2013}
2014
2015/*
2016 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2017 *
2018 * @mpd->inode - inode to walk through
2019 * @exbh->b_blocknr - first block on a disk
2020 * @exbh->b_size - amount of space in bytes
2021 * @logical - first logical block to start assignment with
2022 *
2023 * the function goes through all passed space and put actual disk
29fa89d0 2024 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
64769240
AT
2025 */
2026static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
2027 struct buffer_head *exbh)
2028{
2029 struct inode *inode = mpd->inode;
2030 struct address_space *mapping = inode->i_mapping;
2031 int blocks = exbh->b_size >> inode->i_blkbits;
2032 sector_t pblock = exbh->b_blocknr, cur_logical;
2033 struct buffer_head *head, *bh;
a1d6cc56 2034 pgoff_t index, end;
64769240
AT
2035 struct pagevec pvec;
2036 int nr_pages, i;
2037
2038 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2039 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2040 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2041
2042 pagevec_init(&pvec, 0);
2043
2044 while (index <= end) {
2045 /* XXX: optimize tail */
2046 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2047 if (nr_pages == 0)
2048 break;
2049 for (i = 0; i < nr_pages; i++) {
2050 struct page *page = pvec.pages[i];
2051
2052 index = page->index;
2053 if (index > end)
2054 break;
2055 index++;
2056
2057 BUG_ON(!PageLocked(page));
2058 BUG_ON(PageWriteback(page));
2059 BUG_ON(!page_has_buffers(page));
2060
2061 bh = page_buffers(page);
2062 head = bh;
2063
2064 /* skip blocks out of the range */
2065 do {
2066 if (cur_logical >= logical)
2067 break;
2068 cur_logical++;
2069 } while ((bh = bh->b_this_page) != head);
2070
2071 do {
2072 if (cur_logical >= logical + blocks)
2073 break;
29fa89d0
AK
2074
2075 if (buffer_delay(bh) ||
2076 buffer_unwritten(bh)) {
2077
2078 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2079
2080 if (buffer_delay(bh)) {
2081 clear_buffer_delay(bh);
2082 bh->b_blocknr = pblock;
2083 } else {
2084 /*
2085 * unwritten already should have
2086 * blocknr assigned. Verify that
2087 */
2088 clear_buffer_unwritten(bh);
2089 BUG_ON(bh->b_blocknr != pblock);
2090 }
2091
61628a3f 2092 } else if (buffer_mapped(bh))
64769240 2093 BUG_ON(bh->b_blocknr != pblock);
64769240
AT
2094
2095 cur_logical++;
2096 pblock++;
2097 } while ((bh = bh->b_this_page) != head);
2098 }
2099 pagevec_release(&pvec);
2100 }
2101}
2102
2103
2104/*
2105 * __unmap_underlying_blocks - just a helper function to unmap
2106 * set of blocks described by @bh
2107 */
2108static inline void __unmap_underlying_blocks(struct inode *inode,
2109 struct buffer_head *bh)
2110{
2111 struct block_device *bdev = inode->i_sb->s_bdev;
2112 int blocks, i;
2113
2114 blocks = bh->b_size >> inode->i_blkbits;
2115 for (i = 0; i < blocks; i++)
2116 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2117}
2118
c4a0c46e
AK
2119static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2120 sector_t logical, long blk_cnt)
2121{
2122 int nr_pages, i;
2123 pgoff_t index, end;
2124 struct pagevec pvec;
2125 struct inode *inode = mpd->inode;
2126 struct address_space *mapping = inode->i_mapping;
2127
2128 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2129 end = (logical + blk_cnt - 1) >>
2130 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2131 while (index <= end) {
2132 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2133 if (nr_pages == 0)
2134 break;
2135 for (i = 0; i < nr_pages; i++) {
2136 struct page *page = pvec.pages[i];
2137 index = page->index;
2138 if (index > end)
2139 break;
2140 index++;
2141
2142 BUG_ON(!PageLocked(page));
2143 BUG_ON(PageWriteback(page));
2144 block_invalidatepage(page, 0);
2145 ClearPageUptodate(page);
2146 unlock_page(page);
2147 }
2148 }
2149 return;
2150}
2151
df22291f
AK
2152static void ext4_print_free_blocks(struct inode *inode)
2153{
2154 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1693918e
TT
2155 printk(KERN_CRIT "Total free blocks count %lld\n",
2156 ext4_count_free_blocks(inode->i_sb));
2157 printk(KERN_CRIT "Free/Dirty block details\n");
2158 printk(KERN_CRIT "free_blocks=%lld\n",
2159 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2160 printk(KERN_CRIT "dirty_blocks=%lld\n",
2161 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2162 printk(KERN_CRIT "Block reservation details\n");
2163 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2164 EXT4_I(inode)->i_reserved_data_blocks);
2165 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2166 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
2167 return;
2168}
2169
64769240
AT
2170/*
2171 * mpage_da_map_blocks - go through given space
2172 *
8dc207c0 2173 * @mpd - bh describing space
64769240
AT
2174 *
2175 * The function skips space we know is already mapped to disk blocks.
2176 *
64769240 2177 */
ed5bde0b 2178static int mpage_da_map_blocks(struct mpage_da_data *mpd)
64769240 2179{
2ac3b6e0 2180 int err, blks, get_blocks_flags;
030ba6bc 2181 struct buffer_head new;
2fa3cdfb
TT
2182 sector_t next = mpd->b_blocknr;
2183 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2184 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2185 handle_t *handle = NULL;
64769240
AT
2186
2187 /*
2188 * We consider only non-mapped and non-allocated blocks
2189 */
8dc207c0 2190 if ((mpd->b_state & (1 << BH_Mapped)) &&
29fa89d0
AK
2191 !(mpd->b_state & (1 << BH_Delay)) &&
2192 !(mpd->b_state & (1 << BH_Unwritten)))
c4a0c46e 2193 return 0;
2fa3cdfb
TT
2194
2195 /*
2196 * If we didn't accumulate anything to write simply return
2197 */
2198 if (!mpd->b_size)
2199 return 0;
2200
2201 handle = ext4_journal_current_handle();
2202 BUG_ON(!handle);
2203
79ffab34 2204 /*
2ac3b6e0
TT
2205 * Call ext4_get_blocks() to allocate any delayed allocation
2206 * blocks, or to convert an uninitialized extent to be
2207 * initialized (in the case where we have written into
2208 * one or more preallocated blocks).
2209 *
2210 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2211 * indicate that we are on the delayed allocation path. This
2212 * affects functions in many different parts of the allocation
2213 * call path. This flag exists primarily because we don't
2214 * want to change *many* call functions, so ext4_get_blocks()
2215 * will set the magic i_delalloc_reserved_flag once the
2216 * inode's allocation semaphore is taken.
2217 *
2218 * If the blocks in questions were delalloc blocks, set
2219 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2220 * variables are updated after the blocks have been allocated.
79ffab34 2221 */
2ac3b6e0 2222 new.b_state = 0;
1296cc85 2223 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2ac3b6e0 2224 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
2225 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2226
2fa3cdfb 2227 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2ac3b6e0 2228 &new, get_blocks_flags);
2fa3cdfb
TT
2229 if (blks < 0) {
2230 err = blks;
ed5bde0b
TT
2231 /*
2232 * If get block returns with error we simply
2233 * return. Later writepage will redirty the page and
2234 * writepages will find the dirty page again
c4a0c46e
AK
2235 */
2236 if (err == -EAGAIN)
2237 return 0;
df22291f
AK
2238
2239 if (err == -ENOSPC &&
ed5bde0b 2240 ext4_count_free_blocks(mpd->inode->i_sb)) {
df22291f
AK
2241 mpd->retval = err;
2242 return 0;
2243 }
2244
c4a0c46e 2245 /*
ed5bde0b
TT
2246 * get block failure will cause us to loop in
2247 * writepages, because a_ops->writepage won't be able
2248 * to make progress. The page will be redirtied by
2249 * writepage and writepages will again try to write
2250 * the same.
c4a0c46e 2251 */
1693918e
TT
2252 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2253 "delayed block allocation failed for inode %lu at "
2254 "logical offset %llu with max blocks %zd with "
2255 "error %d\n", mpd->inode->i_ino,
2256 (unsigned long long) next,
2257 mpd->b_size >> mpd->inode->i_blkbits, err);
2258 printk(KERN_CRIT "This should not happen!! "
2259 "Data will be lost\n");
030ba6bc 2260 if (err == -ENOSPC) {
df22291f 2261 ext4_print_free_blocks(mpd->inode);
030ba6bc 2262 }
2fa3cdfb 2263 /* invalidate all the pages */
c4a0c46e 2264 ext4_da_block_invalidatepages(mpd, next,
8dc207c0 2265 mpd->b_size >> mpd->inode->i_blkbits);
c4a0c46e
AK
2266 return err;
2267 }
2fa3cdfb
TT
2268 BUG_ON(blks == 0);
2269
2270 new.b_size = (blks << mpd->inode->i_blkbits);
64769240 2271
a1d6cc56
AK
2272 if (buffer_new(&new))
2273 __unmap_underlying_blocks(mpd->inode, &new);
64769240 2274
a1d6cc56
AK
2275 /*
2276 * If blocks are delayed marked, we need to
2277 * put actual blocknr and drop delayed bit
2278 */
8dc207c0
TT
2279 if ((mpd->b_state & (1 << BH_Delay)) ||
2280 (mpd->b_state & (1 << BH_Unwritten)))
a1d6cc56 2281 mpage_put_bnr_to_bhs(mpd, next, &new);
64769240 2282
2fa3cdfb
TT
2283 if (ext4_should_order_data(mpd->inode)) {
2284 err = ext4_jbd2_file_inode(handle, mpd->inode);
2285 if (err)
2286 return err;
2287 }
2288
2289 /*
03f5d8bc 2290 * Update on-disk size along with block allocation.
2fa3cdfb
TT
2291 */
2292 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2293 if (disksize > i_size_read(mpd->inode))
2294 disksize = i_size_read(mpd->inode);
2295 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2296 ext4_update_i_disksize(mpd->inode, disksize);
2297 return ext4_mark_inode_dirty(handle, mpd->inode);
2298 }
2299
c4a0c46e 2300 return 0;
64769240
AT
2301}
2302
bf068ee2
AK
2303#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2304 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
2305
2306/*
2307 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2308 *
2309 * @mpd->lbh - extent of blocks
2310 * @logical - logical number of the block in the file
2311 * @bh - bh of the block (used to access block's state)
2312 *
2313 * the function is used to collect contig. blocks in same state
2314 */
2315static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
2316 sector_t logical, size_t b_size,
2317 unsigned long b_state)
64769240 2318{
64769240 2319 sector_t next;
8dc207c0 2320 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 2321
525f4ed8
MC
2322 /* check if thereserved journal credits might overflow */
2323 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2324 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2325 /*
2326 * With non-extent format we are limited by the journal
2327 * credit available. Total credit needed to insert
2328 * nrblocks contiguous blocks is dependent on the
2329 * nrblocks. So limit nrblocks.
2330 */
2331 goto flush_it;
2332 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2333 EXT4_MAX_TRANS_DATA) {
2334 /*
2335 * Adding the new buffer_head would make it cross the
2336 * allowed limit for which we have journal credit
2337 * reserved. So limit the new bh->b_size
2338 */
2339 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2340 mpd->inode->i_blkbits;
2341 /* we will do mpage_da_submit_io in the next loop */
2342 }
2343 }
64769240
AT
2344 /*
2345 * First block in the extent
2346 */
8dc207c0
TT
2347 if (mpd->b_size == 0) {
2348 mpd->b_blocknr = logical;
2349 mpd->b_size = b_size;
2350 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
2351 return;
2352 }
2353
8dc207c0 2354 next = mpd->b_blocknr + nrblocks;
64769240
AT
2355 /*
2356 * Can we merge the block to our big extent?
2357 */
8dc207c0
TT
2358 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2359 mpd->b_size += b_size;
64769240
AT
2360 return;
2361 }
2362
525f4ed8 2363flush_it:
64769240
AT
2364 /*
2365 * We couldn't merge the block to our extent, so we
2366 * need to flush current extent and start new one
2367 */
c4a0c46e
AK
2368 if (mpage_da_map_blocks(mpd) == 0)
2369 mpage_da_submit_io(mpd);
a1d6cc56
AK
2370 mpd->io_done = 1;
2371 return;
64769240
AT
2372}
2373
c364b22c 2374static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 2375{
c364b22c 2376 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
2377}
2378
64769240
AT
2379/*
2380 * __mpage_da_writepage - finds extent of pages and blocks
2381 *
2382 * @page: page to consider
2383 * @wbc: not used, we just follow rules
2384 * @data: context
2385 *
2386 * The function finds extents of pages and scan them for all blocks.
2387 */
2388static int __mpage_da_writepage(struct page *page,
2389 struct writeback_control *wbc, void *data)
2390{
2391 struct mpage_da_data *mpd = data;
2392 struct inode *inode = mpd->inode;
8dc207c0 2393 struct buffer_head *bh, *head;
64769240
AT
2394 sector_t logical;
2395
a1d6cc56
AK
2396 if (mpd->io_done) {
2397 /*
2398 * Rest of the page in the page_vec
2399 * redirty then and skip then. We will
fd589a8f 2400 * try to write them again after
a1d6cc56
AK
2401 * starting a new transaction
2402 */
2403 redirty_page_for_writepage(wbc, page);
2404 unlock_page(page);
2405 return MPAGE_DA_EXTENT_TAIL;
2406 }
64769240
AT
2407 /*
2408 * Can we merge this page to current extent?
2409 */
2410 if (mpd->next_page != page->index) {
2411 /*
2412 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 2413 * and start IO on them using writepage()
64769240
AT
2414 */
2415 if (mpd->next_page != mpd->first_page) {
c4a0c46e
AK
2416 if (mpage_da_map_blocks(mpd) == 0)
2417 mpage_da_submit_io(mpd);
a1d6cc56
AK
2418 /*
2419 * skip rest of the page in the page_vec
2420 */
2421 mpd->io_done = 1;
2422 redirty_page_for_writepage(wbc, page);
2423 unlock_page(page);
2424 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2425 }
2426
2427 /*
2428 * Start next extent of pages ...
2429 */
2430 mpd->first_page = page->index;
2431
2432 /*
2433 * ... and blocks
2434 */
8dc207c0
TT
2435 mpd->b_size = 0;
2436 mpd->b_state = 0;
2437 mpd->b_blocknr = 0;
64769240
AT
2438 }
2439
2440 mpd->next_page = page->index + 1;
2441 logical = (sector_t) page->index <<
2442 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2443
2444 if (!page_has_buffers(page)) {
8dc207c0
TT
2445 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2446 (1 << BH_Dirty) | (1 << BH_Uptodate));
a1d6cc56
AK
2447 if (mpd->io_done)
2448 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2449 } else {
2450 /*
2451 * Page with regular buffer heads, just add all dirty ones
2452 */
2453 head = page_buffers(page);
2454 bh = head;
2455 do {
2456 BUG_ON(buffer_locked(bh));
791b7f08
AK
2457 /*
2458 * We need to try to allocate
2459 * unmapped blocks in the same page.
2460 * Otherwise we won't make progress
43ce1d23 2461 * with the page in ext4_writepage
791b7f08 2462 */
c364b22c 2463 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
8dc207c0
TT
2464 mpage_add_bh_to_extent(mpd, logical,
2465 bh->b_size,
2466 bh->b_state);
a1d6cc56
AK
2467 if (mpd->io_done)
2468 return MPAGE_DA_EXTENT_TAIL;
791b7f08
AK
2469 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2470 /*
2471 * mapped dirty buffer. We need to update
2472 * the b_state because we look at
2473 * b_state in mpage_da_map_blocks. We don't
2474 * update b_size because if we find an
2475 * unmapped buffer_head later we need to
2476 * use the b_state flag of that buffer_head.
2477 */
8dc207c0
TT
2478 if (mpd->b_size == 0)
2479 mpd->b_state = bh->b_state & BH_FLAGS;
a1d6cc56 2480 }
64769240
AT
2481 logical++;
2482 } while ((bh = bh->b_this_page) != head);
2483 }
2484
2485 return 0;
2486}
2487
64769240 2488/*
b920c755
TT
2489 * This is a special get_blocks_t callback which is used by
2490 * ext4_da_write_begin(). It will either return mapped block or
2491 * reserve space for a single block.
29fa89d0
AK
2492 *
2493 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2494 * We also have b_blocknr = -1 and b_bdev initialized properly
2495 *
2496 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2497 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2498 * initialized properly.
64769240
AT
2499 */
2500static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2501 struct buffer_head *bh_result, int create)
2502{
2503 int ret = 0;
33b9817e
AK
2504 sector_t invalid_block = ~((sector_t) 0xffff);
2505
2506 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2507 invalid_block = ~0;
64769240
AT
2508
2509 BUG_ON(create == 0);
2510 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2511
2512 /*
2513 * first, we need to know whether the block is allocated already
2514 * preallocated blocks are unmapped but should treated
2515 * the same as allocated blocks.
2516 */
c2177057 2517 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
d2a17637
MC
2518 if ((ret == 0) && !buffer_delay(bh_result)) {
2519 /* the block isn't (pre)allocated yet, let's reserve space */
64769240
AT
2520 /*
2521 * XXX: __block_prepare_write() unmaps passed block,
2522 * is it OK?
2523 */
9d0be502 2524 ret = ext4_da_reserve_space(inode, iblock);
d2a17637
MC
2525 if (ret)
2526 /* not enough space to reserve */
2527 return ret;
2528
33b9817e 2529 map_bh(bh_result, inode->i_sb, invalid_block);
64769240
AT
2530 set_buffer_new(bh_result);
2531 set_buffer_delay(bh_result);
2532 } else if (ret > 0) {
2533 bh_result->b_size = (ret << inode->i_blkbits);
29fa89d0
AK
2534 if (buffer_unwritten(bh_result)) {
2535 /* A delayed write to unwritten bh should
2536 * be marked new and mapped. Mapped ensures
2537 * that we don't do get_block multiple times
2538 * when we write to the same offset and new
2539 * ensures that we do proper zero out for
2540 * partial write.
2541 */
9c1ee184 2542 set_buffer_new(bh_result);
29fa89d0
AK
2543 set_buffer_mapped(bh_result);
2544 }
64769240
AT
2545 ret = 0;
2546 }
2547
2548 return ret;
2549}
61628a3f 2550
b920c755
TT
2551/*
2552 * This function is used as a standard get_block_t calback function
2553 * when there is no desire to allocate any blocks. It is used as a
2554 * callback function for block_prepare_write(), nobh_writepage(), and
2555 * block_write_full_page(). These functions should only try to map a
2556 * single block at a time.
2557 *
2558 * Since this function doesn't do block allocations even if the caller
2559 * requests it by passing in create=1, it is critically important that
2560 * any caller checks to make sure that any buffer heads are returned
2561 * by this function are either all already mapped or marked for
2562 * delayed allocation before calling nobh_writepage() or
2563 * block_write_full_page(). Otherwise, b_blocknr could be left
2564 * unitialized, and the page write functions will be taken by
2565 * surprise.
2566 */
2567static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
2568 struct buffer_head *bh_result, int create)
2569{
2570 int ret = 0;
2571 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2572
a2dc52b5
TT
2573 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2574
f0e6c985
AK
2575 /*
2576 * we don't want to do block allocation in writepage
2577 * so call get_block_wrap with create = 0
2578 */
c2177057 2579 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
f0e6c985
AK
2580 if (ret > 0) {
2581 bh_result->b_size = (ret << inode->i_blkbits);
2582 ret = 0;
2583 }
2584 return ret;
61628a3f
MC
2585}
2586
62e086be
AK
2587static int bget_one(handle_t *handle, struct buffer_head *bh)
2588{
2589 get_bh(bh);
2590 return 0;
2591}
2592
2593static int bput_one(handle_t *handle, struct buffer_head *bh)
2594{
2595 put_bh(bh);
2596 return 0;
2597}
2598
2599static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
2600 unsigned int len)
2601{
2602 struct address_space *mapping = page->mapping;
2603 struct inode *inode = mapping->host;
2604 struct buffer_head *page_bufs;
2605 handle_t *handle = NULL;
2606 int ret = 0;
2607 int err;
2608
2609 page_bufs = page_buffers(page);
2610 BUG_ON(!page_bufs);
2611 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2612 /* As soon as we unlock the page, it can go away, but we have
2613 * references to buffers so we are safe */
2614 unlock_page(page);
2615
2616 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2617 if (IS_ERR(handle)) {
2618 ret = PTR_ERR(handle);
2619 goto out;
2620 }
2621
2622 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2623 do_journal_get_write_access);
2624
2625 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2626 write_end_fn);
2627 if (ret == 0)
2628 ret = err;
2629 err = ext4_journal_stop(handle);
2630 if (!ret)
2631 ret = err;
2632
2633 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
19f5fb7a 2634 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be
AK
2635out:
2636 return ret;
2637}
2638
61628a3f 2639/*
43ce1d23
AK
2640 * Note that we don't need to start a transaction unless we're journaling data
2641 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2642 * need to file the inode to the transaction's list in ordered mode because if
2643 * we are writing back data added by write(), the inode is already there and if
2644 * we are writing back data modified via mmap(), noone guarantees in which
2645 * transaction the data will hit the disk. In case we are journaling data, we
2646 * cannot start transaction directly because transaction start ranks above page
2647 * lock so we have to do some magic.
2648 *
b920c755
TT
2649 * This function can get called via...
2650 * - ext4_da_writepages after taking page lock (have journal handle)
2651 * - journal_submit_inode_data_buffers (no journal handle)
2652 * - shrink_page_list via pdflush (no journal handle)
2653 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2654 *
2655 * We don't do any block allocation in this function. If we have page with
2656 * multiple blocks we need to write those buffer_heads that are mapped. This
2657 * is important for mmaped based write. So if we do with blocksize 1K
2658 * truncate(f, 1024);
2659 * a = mmap(f, 0, 4096);
2660 * a[0] = 'a';
2661 * truncate(f, 4096);
2662 * we have in the page first buffer_head mapped via page_mkwrite call back
2663 * but other bufer_heads would be unmapped but dirty(dirty done via the
2664 * do_wp_page). So writepage should write the first block. If we modify
2665 * the mmap area beyond 1024 we will again get a page_fault and the
2666 * page_mkwrite callback will do the block allocation and mark the
2667 * buffer_heads mapped.
2668 *
2669 * We redirty the page if we have any buffer_heads that is either delay or
2670 * unwritten in the page.
2671 *
2672 * We can get recursively called as show below.
2673 *
2674 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2675 * ext4_writepage()
2676 *
2677 * But since we don't do any block allocation we should not deadlock.
2678 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2679 */
43ce1d23 2680static int ext4_writepage(struct page *page,
62e086be 2681 struct writeback_control *wbc)
64769240 2682{
64769240 2683 int ret = 0;
61628a3f 2684 loff_t size;
498e5f24 2685 unsigned int len;
61628a3f
MC
2686 struct buffer_head *page_bufs;
2687 struct inode *inode = page->mapping->host;
2688
43ce1d23 2689 trace_ext4_writepage(inode, page);
f0e6c985
AK
2690 size = i_size_read(inode);
2691 if (page->index == size >> PAGE_CACHE_SHIFT)
2692 len = size & ~PAGE_CACHE_MASK;
2693 else
2694 len = PAGE_CACHE_SIZE;
64769240 2695
f0e6c985 2696 if (page_has_buffers(page)) {
61628a3f 2697 page_bufs = page_buffers(page);
f0e6c985 2698 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2699 ext4_bh_delay_or_unwritten)) {
61628a3f 2700 /*
f0e6c985
AK
2701 * We don't want to do block allocation
2702 * So redirty the page and return
cd1aac32
AK
2703 * We may reach here when we do a journal commit
2704 * via journal_submit_inode_data_buffers.
2705 * If we don't have mapping block we just ignore
f0e6c985
AK
2706 * them. We can also reach here via shrink_page_list
2707 */
2708 redirty_page_for_writepage(wbc, page);
2709 unlock_page(page);
2710 return 0;
2711 }
2712 } else {
2713 /*
2714 * The test for page_has_buffers() is subtle:
2715 * We know the page is dirty but it lost buffers. That means
2716 * that at some moment in time after write_begin()/write_end()
2717 * has been called all buffers have been clean and thus they
2718 * must have been written at least once. So they are all
2719 * mapped and we can happily proceed with mapping them
2720 * and writing the page.
2721 *
2722 * Try to initialize the buffer_heads and check whether
2723 * all are mapped and non delay. We don't want to
2724 * do block allocation here.
2725 */
b767e78a 2726 ret = block_prepare_write(page, 0, len,
b920c755 2727 noalloc_get_block_write);
f0e6c985
AK
2728 if (!ret) {
2729 page_bufs = page_buffers(page);
2730 /* check whether all are mapped and non delay */
2731 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2732 ext4_bh_delay_or_unwritten)) {
f0e6c985
AK
2733 redirty_page_for_writepage(wbc, page);
2734 unlock_page(page);
2735 return 0;
2736 }
2737 } else {
2738 /*
2739 * We can't do block allocation here
2740 * so just redity the page and unlock
2741 * and return
61628a3f 2742 */
61628a3f
MC
2743 redirty_page_for_writepage(wbc, page);
2744 unlock_page(page);
2745 return 0;
2746 }
ed9b3e33 2747 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 2748 block_commit_write(page, 0, len);
64769240
AT
2749 }
2750
43ce1d23
AK
2751 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2752 /*
2753 * It's mmapped pagecache. Add buffers and journal it. There
2754 * doesn't seem much point in redirtying the page here.
2755 */
2756 ClearPageChecked(page);
3f0ca309 2757 return __ext4_journalled_writepage(page, len);
43ce1d23
AK
2758 }
2759
64769240 2760 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
b920c755 2761 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
64769240 2762 else
b920c755
TT
2763 ret = block_write_full_page(page, noalloc_get_block_write,
2764 wbc);
64769240 2765
64769240
AT
2766 return ret;
2767}
2768
61628a3f 2769/*
525f4ed8
MC
2770 * This is called via ext4_da_writepages() to
2771 * calulate the total number of credits to reserve to fit
2772 * a single extent allocation into a single transaction,
2773 * ext4_da_writpeages() will loop calling this before
2774 * the block allocation.
61628a3f 2775 */
525f4ed8
MC
2776
2777static int ext4_da_writepages_trans_blocks(struct inode *inode)
2778{
2779 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2780
2781 /*
2782 * With non-extent format the journal credit needed to
2783 * insert nrblocks contiguous block is dependent on
2784 * number of contiguous block. So we will limit
2785 * number of contiguous block to a sane value
2786 */
30c6e07a 2787 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
525f4ed8
MC
2788 (max_blocks > EXT4_MAX_TRANS_DATA))
2789 max_blocks = EXT4_MAX_TRANS_DATA;
2790
2791 return ext4_chunk_trans_blocks(inode, max_blocks);
2792}
61628a3f 2793
64769240 2794static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2795 struct writeback_control *wbc)
64769240 2796{
22208ded
AK
2797 pgoff_t index;
2798 int range_whole = 0;
61628a3f 2799 handle_t *handle = NULL;
df22291f 2800 struct mpage_da_data mpd;
5e745b04 2801 struct inode *inode = mapping->host;
22208ded 2802 int no_nrwrite_index_update;
498e5f24
TT
2803 int pages_written = 0;
2804 long pages_skipped;
55138e0b 2805 unsigned int max_pages;
2acf2c26 2806 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2807 int needed_blocks, ret = 0;
2808 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2809 loff_t range_start = wbc->range_start;
5e745b04 2810 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f 2811
9bffad1e 2812 trace_ext4_da_writepages(inode, wbc);
ba80b101 2813
61628a3f
MC
2814 /*
2815 * No pages to write? This is mainly a kludge to avoid starting
2816 * a transaction for special inodes like journal inode on last iput()
2817 * because that could violate lock ordering on umount
2818 */
a1d6cc56 2819 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2820 return 0;
2a21e37e
TT
2821
2822 /*
2823 * If the filesystem has aborted, it is read-only, so return
2824 * right away instead of dumping stack traces later on that
2825 * will obscure the real source of the problem. We test
4ab2f15b 2826 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2827 * the latter could be true if the filesystem is mounted
2828 * read-only, and in that case, ext4_da_writepages should
2829 * *never* be called, so if that ever happens, we would want
2830 * the stack trace.
2831 */
4ab2f15b 2832 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2833 return -EROFS;
2834
22208ded
AK
2835 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2836 range_whole = 1;
61628a3f 2837
2acf2c26
AK
2838 range_cyclic = wbc->range_cyclic;
2839 if (wbc->range_cyclic) {
22208ded 2840 index = mapping->writeback_index;
2acf2c26
AK
2841 if (index)
2842 cycled = 0;
2843 wbc->range_start = index << PAGE_CACHE_SHIFT;
2844 wbc->range_end = LLONG_MAX;
2845 wbc->range_cyclic = 0;
2846 } else
22208ded 2847 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 2848
55138e0b
TT
2849 /*
2850 * This works around two forms of stupidity. The first is in
2851 * the writeback code, which caps the maximum number of pages
2852 * written to be 1024 pages. This is wrong on multiple
2853 * levels; different architectues have a different page size,
2854 * which changes the maximum amount of data which gets
2855 * written. Secondly, 4 megabytes is way too small. XFS
2856 * forces this value to be 16 megabytes by multiplying
2857 * nr_to_write parameter by four, and then relies on its
2858 * allocator to allocate larger extents to make them
2859 * contiguous. Unfortunately this brings us to the second
2860 * stupidity, which is that ext4's mballoc code only allocates
2861 * at most 2048 blocks. So we force contiguous writes up to
2862 * the number of dirty blocks in the inode, or
2863 * sbi->max_writeback_mb_bump whichever is smaller.
2864 */
2865 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2866 if (!range_cyclic && range_whole)
2867 desired_nr_to_write = wbc->nr_to_write * 8;
2868 else
2869 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2870 max_pages);
2871 if (desired_nr_to_write > max_pages)
2872 desired_nr_to_write = max_pages;
2873
2874 if (wbc->nr_to_write < desired_nr_to_write) {
2875 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2876 wbc->nr_to_write = desired_nr_to_write;
2877 }
2878
df22291f
AK
2879 mpd.wbc = wbc;
2880 mpd.inode = mapping->host;
2881
22208ded
AK
2882 /*
2883 * we don't want write_cache_pages to update
2884 * nr_to_write and writeback_index
2885 */
2886 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2887 wbc->no_nrwrite_index_update = 1;
2888 pages_skipped = wbc->pages_skipped;
2889
2acf2c26 2890retry:
22208ded 2891 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2892
2893 /*
2894 * we insert one extent at a time. So we need
2895 * credit needed for single extent allocation.
2896 * journalled mode is currently not supported
2897 * by delalloc
2898 */
2899 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2900 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2901
61628a3f
MC
2902 /* start a new transaction*/
2903 handle = ext4_journal_start(inode, needed_blocks);
2904 if (IS_ERR(handle)) {
2905 ret = PTR_ERR(handle);
1693918e 2906 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
a1d6cc56
AK
2907 "%ld pages, ino %lu; err %d\n", __func__,
2908 wbc->nr_to_write, inode->i_ino, ret);
61628a3f
MC
2909 goto out_writepages;
2910 }
f63e6005
TT
2911
2912 /*
2913 * Now call __mpage_da_writepage to find the next
2914 * contiguous region of logical blocks that need
2915 * blocks to be allocated by ext4. We don't actually
2916 * submit the blocks for I/O here, even though
2917 * write_cache_pages thinks it will, and will set the
2918 * pages as clean for write before calling
2919 * __mpage_da_writepage().
2920 */
2921 mpd.b_size = 0;
2922 mpd.b_state = 0;
2923 mpd.b_blocknr = 0;
2924 mpd.first_page = 0;
2925 mpd.next_page = 0;
2926 mpd.io_done = 0;
2927 mpd.pages_written = 0;
2928 mpd.retval = 0;
2929 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2930 &mpd);
2931 /*
af901ca1 2932 * If we have a contiguous extent of pages and we
f63e6005
TT
2933 * haven't done the I/O yet, map the blocks and submit
2934 * them for I/O.
2935 */
2936 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2937 if (mpage_da_map_blocks(&mpd) == 0)
2938 mpage_da_submit_io(&mpd);
2939 mpd.io_done = 1;
2940 ret = MPAGE_DA_EXTENT_TAIL;
2941 }
b3a3ca8c 2942 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 2943 wbc->nr_to_write -= mpd.pages_written;
df22291f 2944
61628a3f 2945 ext4_journal_stop(handle);
df22291f 2946
8f64b32e 2947 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2948 /* commit the transaction which would
2949 * free blocks released in the transaction
2950 * and try again
2951 */
df22291f 2952 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2953 wbc->pages_skipped = pages_skipped;
2954 ret = 0;
2955 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
2956 /*
2957 * got one extent now try with
2958 * rest of the pages
2959 */
22208ded
AK
2960 pages_written += mpd.pages_written;
2961 wbc->pages_skipped = pages_skipped;
a1d6cc56 2962 ret = 0;
2acf2c26 2963 io_done = 1;
22208ded 2964 } else if (wbc->nr_to_write)
61628a3f
MC
2965 /*
2966 * There is no more writeout needed
2967 * or we requested for a noblocking writeout
2968 * and we found the device congested
2969 */
61628a3f 2970 break;
a1d6cc56 2971 }
2acf2c26
AK
2972 if (!io_done && !cycled) {
2973 cycled = 1;
2974 index = 0;
2975 wbc->range_start = index << PAGE_CACHE_SHIFT;
2976 wbc->range_end = mapping->writeback_index - 1;
2977 goto retry;
2978 }
22208ded 2979 if (pages_skipped != wbc->pages_skipped)
1693918e
TT
2980 ext4_msg(inode->i_sb, KERN_CRIT,
2981 "This should not happen leaving %s "
2982 "with nr_to_write = %ld ret = %d\n",
2983 __func__, wbc->nr_to_write, ret);
22208ded
AK
2984
2985 /* Update index */
2986 index += pages_written;
2acf2c26 2987 wbc->range_cyclic = range_cyclic;
22208ded
AK
2988 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2989 /*
2990 * set the writeback_index so that range_cyclic
2991 * mode will write it back later
2992 */
2993 mapping->writeback_index = index;
a1d6cc56 2994
61628a3f 2995out_writepages:
22208ded
AK
2996 if (!no_nrwrite_index_update)
2997 wbc->no_nrwrite_index_update = 0;
2faf2e19 2998 wbc->nr_to_write -= nr_to_writebump;
de89de6e 2999 wbc->range_start = range_start;
9bffad1e 3000 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 3001 return ret;
64769240
AT
3002}
3003
79f0be8d
AK
3004#define FALL_BACK_TO_NONDELALLOC 1
3005static int ext4_nonda_switch(struct super_block *sb)
3006{
3007 s64 free_blocks, dirty_blocks;
3008 struct ext4_sb_info *sbi = EXT4_SB(sb);
3009
3010 /*
3011 * switch to non delalloc mode if we are running low
3012 * on free block. The free block accounting via percpu
179f7ebf 3013 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
3014 * accumulated on each CPU without updating global counters
3015 * Delalloc need an accurate free block accounting. So switch
3016 * to non delalloc when we are near to error range.
3017 */
3018 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3019 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3020 if (2 * free_blocks < 3 * dirty_blocks ||
3021 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3022 /*
c8afb446
ES
3023 * free block count is less than 150% of dirty blocks
3024 * or free blocks is less than watermark
79f0be8d
AK
3025 */
3026 return 1;
3027 }
c8afb446
ES
3028 /*
3029 * Even if we don't switch but are nearing capacity,
3030 * start pushing delalloc when 1/2 of free blocks are dirty.
3031 */
3032 if (free_blocks < 2 * dirty_blocks)
3033 writeback_inodes_sb_if_idle(sb);
3034
79f0be8d
AK
3035 return 0;
3036}
3037
64769240 3038static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
3039 loff_t pos, unsigned len, unsigned flags,
3040 struct page **pagep, void **fsdata)
64769240 3041{
1db91382 3042 int ret, retries = 0, quota_retries = 0;
64769240
AT
3043 struct page *page;
3044 pgoff_t index;
3045 unsigned from, to;
3046 struct inode *inode = mapping->host;
3047 handle_t *handle;
3048
3049 index = pos >> PAGE_CACHE_SHIFT;
3050 from = pos & (PAGE_CACHE_SIZE - 1);
3051 to = from + len;
79f0be8d
AK
3052
3053 if (ext4_nonda_switch(inode->i_sb)) {
3054 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3055 return ext4_write_begin(file, mapping, pos,
3056 len, flags, pagep, fsdata);
3057 }
3058 *fsdata = (void *)0;
9bffad1e 3059 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 3060retry:
64769240
AT
3061 /*
3062 * With delayed allocation, we don't log the i_disksize update
3063 * if there is delayed block allocation. But we still need
3064 * to journalling the i_disksize update if writes to the end
3065 * of file which has an already mapped buffer.
3066 */
3067 handle = ext4_journal_start(inode, 1);
3068 if (IS_ERR(handle)) {
3069 ret = PTR_ERR(handle);
3070 goto out;
3071 }
ebd3610b
JK
3072 /* We cannot recurse into the filesystem as the transaction is already
3073 * started */
3074 flags |= AOP_FLAG_NOFS;
64769240 3075
54566b2c 3076 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
3077 if (!page) {
3078 ext4_journal_stop(handle);
3079 ret = -ENOMEM;
3080 goto out;
3081 }
64769240
AT
3082 *pagep = page;
3083
3084 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
b920c755 3085 ext4_da_get_block_prep);
64769240
AT
3086 if (ret < 0) {
3087 unlock_page(page);
3088 ext4_journal_stop(handle);
3089 page_cache_release(page);
ae4d5372
AK
3090 /*
3091 * block_write_begin may have instantiated a few blocks
3092 * outside i_size. Trim these off again. Don't need
3093 * i_size_read because we hold i_mutex.
3094 */
3095 if (pos + len > inode->i_size)
b9a4207d 3096 ext4_truncate_failed_write(inode);
64769240
AT
3097 }
3098
d2a17637
MC
3099 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3100 goto retry;
1db91382
AK
3101
3102 if ((ret == -EDQUOT) &&
3103 EXT4_I(inode)->i_reserved_meta_blocks &&
3104 (quota_retries++ < 3)) {
3105 /*
3106 * Since we often over-estimate the number of meta
3107 * data blocks required, we may sometimes get a
3108 * spurios out of quota error even though there would
3109 * be enough space once we write the data blocks and
3110 * find out how many meta data blocks were _really_
3111 * required. So try forcing the inode write to see if
3112 * that helps.
3113 */
3114 write_inode_now(inode, (quota_retries == 3));
3115 goto retry;
3116 }
64769240
AT
3117out:
3118 return ret;
3119}
3120
632eaeab
MC
3121/*
3122 * Check if we should update i_disksize
3123 * when write to the end of file but not require block allocation
3124 */
3125static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3126 unsigned long offset)
632eaeab
MC
3127{
3128 struct buffer_head *bh;
3129 struct inode *inode = page->mapping->host;
3130 unsigned int idx;
3131 int i;
3132
3133 bh = page_buffers(page);
3134 idx = offset >> inode->i_blkbits;
3135
af5bc92d 3136 for (i = 0; i < idx; i++)
632eaeab
MC
3137 bh = bh->b_this_page;
3138
29fa89d0 3139 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3140 return 0;
3141 return 1;
3142}
3143
64769240 3144static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3145 struct address_space *mapping,
3146 loff_t pos, unsigned len, unsigned copied,
3147 struct page *page, void *fsdata)
64769240
AT
3148{
3149 struct inode *inode = mapping->host;
3150 int ret = 0, ret2;
3151 handle_t *handle = ext4_journal_current_handle();
3152 loff_t new_i_size;
632eaeab 3153 unsigned long start, end;
79f0be8d
AK
3154 int write_mode = (int)(unsigned long)fsdata;
3155
3156 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3157 if (ext4_should_order_data(inode)) {
3158 return ext4_ordered_write_end(file, mapping, pos,
3159 len, copied, page, fsdata);
3160 } else if (ext4_should_writeback_data(inode)) {
3161 return ext4_writeback_write_end(file, mapping, pos,
3162 len, copied, page, fsdata);
3163 } else {
3164 BUG();
3165 }
3166 }
632eaeab 3167
9bffad1e 3168 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 3169 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 3170 end = start + copied - 1;
64769240
AT
3171
3172 /*
3173 * generic_write_end() will run mark_inode_dirty() if i_size
3174 * changes. So let's piggyback the i_disksize mark_inode_dirty
3175 * into that.
3176 */
3177
3178 new_i_size = pos + copied;
632eaeab
MC
3179 if (new_i_size > EXT4_I(inode)->i_disksize) {
3180 if (ext4_da_should_update_i_disksize(page, end)) {
3181 down_write(&EXT4_I(inode)->i_data_sem);
3182 if (new_i_size > EXT4_I(inode)->i_disksize) {
3183 /*
3184 * Updating i_disksize when extending file
3185 * without needing block allocation
3186 */
3187 if (ext4_should_order_data(inode))
3188 ret = ext4_jbd2_file_inode(handle,
3189 inode);
64769240 3190
632eaeab
MC
3191 EXT4_I(inode)->i_disksize = new_i_size;
3192 }
3193 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
3194 /* We need to mark inode dirty even if
3195 * new_i_size is less that inode->i_size
3196 * bu greater than i_disksize.(hint delalloc)
3197 */
3198 ext4_mark_inode_dirty(handle, inode);
64769240 3199 }
632eaeab 3200 }
64769240
AT
3201 ret2 = generic_write_end(file, mapping, pos, len, copied,
3202 page, fsdata);
3203 copied = ret2;
3204 if (ret2 < 0)
3205 ret = ret2;
3206 ret2 = ext4_journal_stop(handle);
3207 if (!ret)
3208 ret = ret2;
3209
3210 return ret ? ret : copied;
3211}
3212
3213static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3214{
64769240
AT
3215 /*
3216 * Drop reserved blocks
3217 */
3218 BUG_ON(!PageLocked(page));
3219 if (!page_has_buffers(page))
3220 goto out;
3221
d2a17637 3222 ext4_da_page_release_reservation(page, offset);
64769240
AT
3223
3224out:
3225 ext4_invalidatepage(page, offset);
3226
3227 return;
3228}
3229
ccd2506b
TT
3230/*
3231 * Force all delayed allocation blocks to be allocated for a given inode.
3232 */
3233int ext4_alloc_da_blocks(struct inode *inode)
3234{
fb40ba0d
TT
3235 trace_ext4_alloc_da_blocks(inode);
3236
ccd2506b
TT
3237 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3238 !EXT4_I(inode)->i_reserved_meta_blocks)
3239 return 0;
3240
3241 /*
3242 * We do something simple for now. The filemap_flush() will
3243 * also start triggering a write of the data blocks, which is
3244 * not strictly speaking necessary (and for users of
3245 * laptop_mode, not even desirable). However, to do otherwise
3246 * would require replicating code paths in:
de9a55b8 3247 *
ccd2506b
TT
3248 * ext4_da_writepages() ->
3249 * write_cache_pages() ---> (via passed in callback function)
3250 * __mpage_da_writepage() -->
3251 * mpage_add_bh_to_extent()
3252 * mpage_da_map_blocks()
3253 *
3254 * The problem is that write_cache_pages(), located in
3255 * mm/page-writeback.c, marks pages clean in preparation for
3256 * doing I/O, which is not desirable if we're not planning on
3257 * doing I/O at all.
3258 *
3259 * We could call write_cache_pages(), and then redirty all of
3260 * the pages by calling redirty_page_for_writeback() but that
3261 * would be ugly in the extreme. So instead we would need to
3262 * replicate parts of the code in the above functions,
3263 * simplifying them becuase we wouldn't actually intend to
3264 * write out the pages, but rather only collect contiguous
3265 * logical block extents, call the multi-block allocator, and
3266 * then update the buffer heads with the block allocations.
de9a55b8 3267 *
ccd2506b
TT
3268 * For now, though, we'll cheat by calling filemap_flush(),
3269 * which will map the blocks, and start the I/O, but not
3270 * actually wait for the I/O to complete.
3271 */
3272 return filemap_flush(inode->i_mapping);
3273}
64769240 3274
ac27a0ec
DK
3275/*
3276 * bmap() is special. It gets used by applications such as lilo and by
3277 * the swapper to find the on-disk block of a specific piece of data.
3278 *
3279 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3280 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3281 * filesystem and enables swap, then they may get a nasty shock when the
3282 * data getting swapped to that swapfile suddenly gets overwritten by
3283 * the original zero's written out previously to the journal and
3284 * awaiting writeback in the kernel's buffer cache.
3285 *
3286 * So, if we see any bmap calls here on a modified, data-journaled file,
3287 * take extra steps to flush any blocks which might be in the cache.
3288 */
617ba13b 3289static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3290{
3291 struct inode *inode = mapping->host;
3292 journal_t *journal;
3293 int err;
3294
64769240
AT
3295 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3296 test_opt(inode->i_sb, DELALLOC)) {
3297 /*
3298 * With delalloc we want to sync the file
3299 * so that we can make sure we allocate
3300 * blocks for file
3301 */
3302 filemap_write_and_wait(mapping);
3303 }
3304
19f5fb7a
TT
3305 if (EXT4_JOURNAL(inode) &&
3306 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
3307 /*
3308 * This is a REALLY heavyweight approach, but the use of
3309 * bmap on dirty files is expected to be extremely rare:
3310 * only if we run lilo or swapon on a freshly made file
3311 * do we expect this to happen.
3312 *
3313 * (bmap requires CAP_SYS_RAWIO so this does not
3314 * represent an unprivileged user DOS attack --- we'd be
3315 * in trouble if mortal users could trigger this path at
3316 * will.)
3317 *
617ba13b 3318 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3319 * regular files. If somebody wants to bmap a directory
3320 * or symlink and gets confused because the buffer
3321 * hasn't yet been flushed to disk, they deserve
3322 * everything they get.
3323 */
3324
19f5fb7a 3325 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 3326 journal = EXT4_JOURNAL(inode);
dab291af
MC
3327 jbd2_journal_lock_updates(journal);
3328 err = jbd2_journal_flush(journal);
3329 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3330
3331 if (err)
3332 return 0;
3333 }
3334
af5bc92d 3335 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3336}
3337
617ba13b 3338static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3339{
617ba13b 3340 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
3341}
3342
3343static int
617ba13b 3344ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3345 struct list_head *pages, unsigned nr_pages)
3346{
617ba13b 3347 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3348}
3349
617ba13b 3350static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3351{
617ba13b 3352 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3353
3354 /*
3355 * If it's a full truncate we just forget about the pending dirtying
3356 */
3357 if (offset == 0)
3358 ClearPageChecked(page);
3359
0390131b
FM
3360 if (journal)
3361 jbd2_journal_invalidatepage(journal, page, offset);
3362 else
3363 block_invalidatepage(page, offset);
ac27a0ec
DK
3364}
3365
617ba13b 3366static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3367{
617ba13b 3368 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3369
3370 WARN_ON(PageChecked(page));
3371 if (!page_has_buffers(page))
3372 return 0;
0390131b
FM
3373 if (journal)
3374 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3375 else
3376 return try_to_free_buffers(page);
ac27a0ec
DK
3377}
3378
3379/*
4c0425ff
MC
3380 * O_DIRECT for ext3 (or indirect map) based files
3381 *
ac27a0ec
DK
3382 * If the O_DIRECT write will extend the file then add this inode to the
3383 * orphan list. So recovery will truncate it back to the original size
3384 * if the machine crashes during the write.
3385 *
3386 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3387 * crashes then stale disk data _may_ be exposed inside the file. But current
3388 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3389 */
4c0425ff 3390static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
de9a55b8
TT
3391 const struct iovec *iov, loff_t offset,
3392 unsigned long nr_segs)
ac27a0ec
DK
3393{
3394 struct file *file = iocb->ki_filp;
3395 struct inode *inode = file->f_mapping->host;
617ba13b 3396 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3397 handle_t *handle;
ac27a0ec
DK
3398 ssize_t ret;
3399 int orphan = 0;
3400 size_t count = iov_length(iov, nr_segs);
fbbf6945 3401 int retries = 0;
ac27a0ec
DK
3402
3403 if (rw == WRITE) {
3404 loff_t final_size = offset + count;
3405
ac27a0ec 3406 if (final_size > inode->i_size) {
7fb5409d
JK
3407 /* Credits for sb + inode write */
3408 handle = ext4_journal_start(inode, 2);
3409 if (IS_ERR(handle)) {
3410 ret = PTR_ERR(handle);
3411 goto out;
3412 }
617ba13b 3413 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3414 if (ret) {
3415 ext4_journal_stop(handle);
3416 goto out;
3417 }
ac27a0ec
DK
3418 orphan = 1;
3419 ei->i_disksize = inode->i_size;
7fb5409d 3420 ext4_journal_stop(handle);
ac27a0ec
DK
3421 }
3422 }
3423
fbbf6945 3424retry:
ac27a0ec
DK
3425 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3426 offset, nr_segs,
617ba13b 3427 ext4_get_block, NULL);
fbbf6945
ES
3428 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3429 goto retry;
ac27a0ec 3430
7fb5409d 3431 if (orphan) {
ac27a0ec
DK
3432 int err;
3433
7fb5409d
JK
3434 /* Credits for sb + inode write */
3435 handle = ext4_journal_start(inode, 2);
3436 if (IS_ERR(handle)) {
3437 /* This is really bad luck. We've written the data
3438 * but cannot extend i_size. Bail out and pretend
3439 * the write failed... */
3440 ret = PTR_ERR(handle);
3441 goto out;
3442 }
3443 if (inode->i_nlink)
617ba13b 3444 ext4_orphan_del(handle, inode);
7fb5409d 3445 if (ret > 0) {
ac27a0ec
DK
3446 loff_t end = offset + ret;
3447 if (end > inode->i_size) {
3448 ei->i_disksize = end;
3449 i_size_write(inode, end);
3450 /*
3451 * We're going to return a positive `ret'
3452 * here due to non-zero-length I/O, so there's
3453 * no way of reporting error returns from
617ba13b 3454 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3455 * ignore it.
3456 */
617ba13b 3457 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3458 }
3459 }
617ba13b 3460 err = ext4_journal_stop(handle);
ac27a0ec
DK
3461 if (ret == 0)
3462 ret = err;
3463 }
3464out:
3465 return ret;
3466}
3467
4c0425ff
MC
3468static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock,
3469 struct buffer_head *bh_result, int create)
3470{
3471 handle_t *handle = NULL;
3472 int ret = 0;
3473 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3474 int dio_credits;
3475
8d5d02e6
MC
3476 ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
3477 inode->i_ino, create);
4c0425ff
MC
3478 /*
3479 * DIO VFS code passes create = 0 flag for write to
3480 * the middle of file. It does this to avoid block
3481 * allocation for holes, to prevent expose stale data
3482 * out when there is parallel buffered read (which does
3483 * not hold the i_mutex lock) while direct IO write has
3484 * not completed. DIO request on holes finally falls back
3485 * to buffered IO for this reason.
3486 *
3487 * For ext4 extent based file, since we support fallocate,
3488 * new allocated extent as uninitialized, for holes, we
3489 * could fallocate blocks for holes, thus parallel
3490 * buffered IO read will zero out the page when read on
3491 * a hole while parallel DIO write to the hole has not completed.
3492 *
3493 * when we come here, we know it's a direct IO write to
3494 * to the middle of file (<i_size)
3495 * so it's safe to override the create flag from VFS.
3496 */
3497 create = EXT4_GET_BLOCKS_DIO_CREATE_EXT;
3498
3499 if (max_blocks > DIO_MAX_BLOCKS)
3500 max_blocks = DIO_MAX_BLOCKS;
3501 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3502 handle = ext4_journal_start(inode, dio_credits);
3503 if (IS_ERR(handle)) {
3504 ret = PTR_ERR(handle);
3505 goto out;
3506 }
3507 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3508 create);
3509 if (ret > 0) {
3510 bh_result->b_size = (ret << inode->i_blkbits);
3511 ret = 0;
3512 }
3513 ext4_journal_stop(handle);
3514out:
3515 return ret;
3516}
3517
4c0425ff
MC
3518static void ext4_free_io_end(ext4_io_end_t *io)
3519{
8d5d02e6
MC
3520 BUG_ON(!io);
3521 iput(io->inode);
4c0425ff
MC
3522 kfree(io);
3523}
8d5d02e6
MC
3524static void dump_aio_dio_list(struct inode * inode)
3525{
3526#ifdef EXT4_DEBUG
3527 struct list_head *cur, *before, *after;
3528 ext4_io_end_t *io, *io0, *io1;
3529
3530 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3531 ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino);
3532 return;
3533 }
3534
3535 ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino);
3536 list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){
3537 cur = &io->list;
3538 before = cur->prev;
3539 io0 = container_of(before, ext4_io_end_t, list);
3540 after = cur->next;
3541 io1 = container_of(after, ext4_io_end_t, list);
3542
3543 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3544 io, inode->i_ino, io0, io1);
3545 }
3546#endif
3547}
4c0425ff
MC
3548
3549/*
4c0425ff
MC
3550 * check a range of space and convert unwritten extents to written.
3551 */
8d5d02e6 3552static int ext4_end_aio_dio_nolock(ext4_io_end_t *io)
4c0425ff 3553{
4c0425ff
MC
3554 struct inode *inode = io->inode;
3555 loff_t offset = io->offset;
a1de02dc 3556 ssize_t size = io->size;
4c0425ff 3557 int ret = 0;
4c0425ff 3558
8d5d02e6
MC
3559 ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
3560 "list->prev 0x%p\n",
3561 io, inode->i_ino, io->list.next, io->list.prev);
3562
3563 if (list_empty(&io->list))
3564 return ret;
3565
3566 if (io->flag != DIO_AIO_UNWRITTEN)
3567 return ret;
3568
4c0425ff
MC
3569 if (offset + size <= i_size_read(inode))
3570 ret = ext4_convert_unwritten_extents(inode, offset, size);
3571
8d5d02e6 3572 if (ret < 0) {
4c0425ff 3573 printk(KERN_EMERG "%s: failed to convert unwritten"
8d5d02e6
MC
3574 "extents to written extents, error is %d"
3575 " io is still on inode %lu aio dio list\n",
3576 __func__, ret, inode->i_ino);
3577 return ret;
3578 }
4c0425ff 3579
8d5d02e6
MC
3580 /* clear the DIO AIO unwritten flag */
3581 io->flag = 0;
3582 return ret;
4c0425ff 3583}
8d5d02e6
MC
3584/*
3585 * work on completed aio dio IO, to convert unwritten extents to extents
3586 */
3587static void ext4_end_aio_dio_work(struct work_struct *work)
3588{
3589 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3590 struct inode *inode = io->inode;
3591 int ret = 0;
4c0425ff 3592
8d5d02e6
MC
3593 mutex_lock(&inode->i_mutex);
3594 ret = ext4_end_aio_dio_nolock(io);
3595 if (ret >= 0) {
3596 if (!list_empty(&io->list))
3597 list_del_init(&io->list);
3598 ext4_free_io_end(io);
3599 }
3600 mutex_unlock(&inode->i_mutex);
3601}
3602/*
3603 * This function is called from ext4_sync_file().
3604 *
3605 * When AIO DIO IO is completed, the work to convert unwritten
3606 * extents to written is queued on workqueue but may not get immediately
3607 * scheduled. When fsync is called, we need to ensure the
3608 * conversion is complete before fsync returns.
3609 * The inode keeps track of a list of completed AIO from DIO path
3610 * that might needs to do the conversion. This function walks through
3611 * the list and convert the related unwritten extents to written.
3612 */
3613int flush_aio_dio_completed_IO(struct inode *inode)
3614{
3615 ext4_io_end_t *io;
3616 int ret = 0;
3617 int ret2 = 0;
3618
3619 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list))
3620 return ret;
3621
3622 dump_aio_dio_list(inode);
3623 while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3624 io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next,
3625 ext4_io_end_t, list);
3626 /*
3627 * Calling ext4_end_aio_dio_nolock() to convert completed
3628 * IO to written.
3629 *
3630 * When ext4_sync_file() is called, run_queue() may already
3631 * about to flush the work corresponding to this io structure.
3632 * It will be upset if it founds the io structure related
3633 * to the work-to-be schedule is freed.
3634 *
3635 * Thus we need to keep the io structure still valid here after
3636 * convertion finished. The io structure has a flag to
3637 * avoid double converting from both fsync and background work
3638 * queue work.
3639 */
3640 ret = ext4_end_aio_dio_nolock(io);
3641 if (ret < 0)
3642 ret2 = ret;
3643 else
3644 list_del_init(&io->list);
3645 }
3646 return (ret2 < 0) ? ret2 : 0;
3647}
3648
3649static ext4_io_end_t *ext4_init_io_end (struct inode *inode)
4c0425ff
MC
3650{
3651 ext4_io_end_t *io = NULL;
3652
3653 io = kmalloc(sizeof(*io), GFP_NOFS);
3654
3655 if (io) {
8d5d02e6 3656 igrab(inode);
4c0425ff 3657 io->inode = inode;
8d5d02e6 3658 io->flag = 0;
4c0425ff
MC
3659 io->offset = 0;
3660 io->size = 0;
3661 io->error = 0;
8d5d02e6
MC
3662 INIT_WORK(&io->work, ext4_end_aio_dio_work);
3663 INIT_LIST_HEAD(&io->list);
4c0425ff
MC
3664 }
3665
3666 return io;
3667}
3668
3669static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3670 ssize_t size, void *private)
3671{
3672 ext4_io_end_t *io_end = iocb->private;
3673 struct workqueue_struct *wq;
3674
4b70df18
M
3675 /* if not async direct IO or dio with 0 bytes write, just return */
3676 if (!io_end || !size)
3677 return;
3678
8d5d02e6
MC
3679 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3680 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3681 iocb->private, io_end->inode->i_ino, iocb, offset,
3682 size);
8d5d02e6
MC
3683
3684 /* if not aio dio with unwritten extents, just free io and return */
3685 if (io_end->flag != DIO_AIO_UNWRITTEN){
3686 ext4_free_io_end(io_end);
3687 iocb->private = NULL;
4c0425ff 3688 return;
8d5d02e6
MC
3689 }
3690
4c0425ff
MC
3691 io_end->offset = offset;
3692 io_end->size = size;
3693 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3694
8d5d02e6 3695 /* queue the work to convert unwritten extents to written */
4c0425ff
MC
3696 queue_work(wq, &io_end->work);
3697
8d5d02e6
MC
3698 /* Add the io_end to per-inode completed aio dio list*/
3699 list_add_tail(&io_end->list,
3700 &EXT4_I(io_end->inode)->i_aio_dio_complete_list);
4c0425ff
MC
3701 iocb->private = NULL;
3702}
3703/*
3704 * For ext4 extent files, ext4 will do direct-io write to holes,
3705 * preallocated extents, and those write extend the file, no need to
3706 * fall back to buffered IO.
3707 *
3708 * For holes, we fallocate those blocks, mark them as unintialized
3709 * If those blocks were preallocated, we mark sure they are splited, but
3710 * still keep the range to write as unintialized.
3711 *
8d5d02e6
MC
3712 * The unwrritten extents will be converted to written when DIO is completed.
3713 * For async direct IO, since the IO may still pending when return, we
3714 * set up an end_io call back function, which will do the convertion
3715 * when async direct IO completed.
4c0425ff
MC
3716 *
3717 * If the O_DIRECT write will extend the file then add this inode to the
3718 * orphan list. So recovery will truncate it back to the original size
3719 * if the machine crashes during the write.
3720 *
3721 */
3722static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3723 const struct iovec *iov, loff_t offset,
3724 unsigned long nr_segs)
3725{
3726 struct file *file = iocb->ki_filp;
3727 struct inode *inode = file->f_mapping->host;
3728 ssize_t ret;
3729 size_t count = iov_length(iov, nr_segs);
3730
3731 loff_t final_size = offset + count;
3732 if (rw == WRITE && final_size <= inode->i_size) {
3733 /*
8d5d02e6
MC
3734 * We could direct write to holes and fallocate.
3735 *
3736 * Allocated blocks to fill the hole are marked as uninitialized
4c0425ff
MC
3737 * to prevent paralel buffered read to expose the stale data
3738 * before DIO complete the data IO.
8d5d02e6
MC
3739 *
3740 * As to previously fallocated extents, ext4 get_block
4c0425ff
MC
3741 * will just simply mark the buffer mapped but still
3742 * keep the extents uninitialized.
3743 *
8d5d02e6
MC
3744 * for non AIO case, we will convert those unwritten extents
3745 * to written after return back from blockdev_direct_IO.
3746 *
3747 * for async DIO, the conversion needs to be defered when
3748 * the IO is completed. The ext4 end_io callback function
3749 * will be called to take care of the conversion work.
3750 * Here for async case, we allocate an io_end structure to
3751 * hook to the iocb.
4c0425ff 3752 */
8d5d02e6
MC
3753 iocb->private = NULL;
3754 EXT4_I(inode)->cur_aio_dio = NULL;
3755 if (!is_sync_kiocb(iocb)) {
3756 iocb->private = ext4_init_io_end(inode);
3757 if (!iocb->private)
3758 return -ENOMEM;
3759 /*
3760 * we save the io structure for current async
3761 * direct IO, so that later ext4_get_blocks()
3762 * could flag the io structure whether there
3763 * is a unwritten extents needs to be converted
3764 * when IO is completed.
3765 */
3766 EXT4_I(inode)->cur_aio_dio = iocb->private;
3767 }
3768
4c0425ff
MC
3769 ret = blockdev_direct_IO(rw, iocb, inode,
3770 inode->i_sb->s_bdev, iov,
3771 offset, nr_segs,
3772 ext4_get_block_dio_write,
3773 ext4_end_io_dio);
8d5d02e6
MC
3774 if (iocb->private)
3775 EXT4_I(inode)->cur_aio_dio = NULL;
3776 /*
3777 * The io_end structure takes a reference to the inode,
3778 * that structure needs to be destroyed and the
3779 * reference to the inode need to be dropped, when IO is
3780 * complete, even with 0 byte write, or failed.
3781 *
3782 * In the successful AIO DIO case, the io_end structure will be
3783 * desctroyed and the reference to the inode will be dropped
3784 * after the end_io call back function is called.
3785 *
3786 * In the case there is 0 byte write, or error case, since
3787 * VFS direct IO won't invoke the end_io call back function,
3788 * we need to free the end_io structure here.
3789 */
3790 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3791 ext4_free_io_end(iocb->private);
3792 iocb->private = NULL;
19f5fb7a
TT
3793 } else if (ret > 0 && ext4_test_inode_state(inode,
3794 EXT4_STATE_DIO_UNWRITTEN)) {
109f5565 3795 int err;
8d5d02e6
MC
3796 /*
3797 * for non AIO case, since the IO is already
3798 * completed, we could do the convertion right here
3799 */
109f5565
M
3800 err = ext4_convert_unwritten_extents(inode,
3801 offset, ret);
3802 if (err < 0)
3803 ret = err;
19f5fb7a 3804 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
109f5565 3805 }
4c0425ff
MC
3806 return ret;
3807 }
8d5d02e6
MC
3808
3809 /* for write the the end of file case, we fall back to old way */
4c0425ff
MC
3810 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3811}
3812
3813static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3814 const struct iovec *iov, loff_t offset,
3815 unsigned long nr_segs)
3816{
3817 struct file *file = iocb->ki_filp;
3818 struct inode *inode = file->f_mapping->host;
3819
3820 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3821 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3822
3823 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3824}
3825
ac27a0ec 3826/*
617ba13b 3827 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3828 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3829 * much here because ->set_page_dirty is called under VFS locks. The page is
3830 * not necessarily locked.
3831 *
3832 * We cannot just dirty the page and leave attached buffers clean, because the
3833 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3834 * or jbddirty because all the journalling code will explode.
3835 *
3836 * So what we do is to mark the page "pending dirty" and next time writepage
3837 * is called, propagate that into the buffers appropriately.
3838 */
617ba13b 3839static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3840{
3841 SetPageChecked(page);
3842 return __set_page_dirty_nobuffers(page);
3843}
3844
617ba13b 3845static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3846 .readpage = ext4_readpage,
3847 .readpages = ext4_readpages,
43ce1d23 3848 .writepage = ext4_writepage,
8ab22b9a
HH
3849 .sync_page = block_sync_page,
3850 .write_begin = ext4_write_begin,
3851 .write_end = ext4_ordered_write_end,
3852 .bmap = ext4_bmap,
3853 .invalidatepage = ext4_invalidatepage,
3854 .releasepage = ext4_releasepage,
3855 .direct_IO = ext4_direct_IO,
3856 .migratepage = buffer_migrate_page,
3857 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3858 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3859};
3860
617ba13b 3861static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3862 .readpage = ext4_readpage,
3863 .readpages = ext4_readpages,
43ce1d23 3864 .writepage = ext4_writepage,
8ab22b9a
HH
3865 .sync_page = block_sync_page,
3866 .write_begin = ext4_write_begin,
3867 .write_end = ext4_writeback_write_end,
3868 .bmap = ext4_bmap,
3869 .invalidatepage = ext4_invalidatepage,
3870 .releasepage = ext4_releasepage,
3871 .direct_IO = ext4_direct_IO,
3872 .migratepage = buffer_migrate_page,
3873 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3874 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3875};
3876
617ba13b 3877static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3878 .readpage = ext4_readpage,
3879 .readpages = ext4_readpages,
43ce1d23 3880 .writepage = ext4_writepage,
8ab22b9a
HH
3881 .sync_page = block_sync_page,
3882 .write_begin = ext4_write_begin,
3883 .write_end = ext4_journalled_write_end,
3884 .set_page_dirty = ext4_journalled_set_page_dirty,
3885 .bmap = ext4_bmap,
3886 .invalidatepage = ext4_invalidatepage,
3887 .releasepage = ext4_releasepage,
3888 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3889 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3890};
3891
64769240 3892static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3893 .readpage = ext4_readpage,
3894 .readpages = ext4_readpages,
43ce1d23 3895 .writepage = ext4_writepage,
8ab22b9a
HH
3896 .writepages = ext4_da_writepages,
3897 .sync_page = block_sync_page,
3898 .write_begin = ext4_da_write_begin,
3899 .write_end = ext4_da_write_end,
3900 .bmap = ext4_bmap,
3901 .invalidatepage = ext4_da_invalidatepage,
3902 .releasepage = ext4_releasepage,
3903 .direct_IO = ext4_direct_IO,
3904 .migratepage = buffer_migrate_page,
3905 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3906 .error_remove_page = generic_error_remove_page,
64769240
AT
3907};
3908
617ba13b 3909void ext4_set_aops(struct inode *inode)
ac27a0ec 3910{
cd1aac32
AK
3911 if (ext4_should_order_data(inode) &&
3912 test_opt(inode->i_sb, DELALLOC))
3913 inode->i_mapping->a_ops = &ext4_da_aops;
3914 else if (ext4_should_order_data(inode))
617ba13b 3915 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
3916 else if (ext4_should_writeback_data(inode) &&
3917 test_opt(inode->i_sb, DELALLOC))
3918 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
3919 else if (ext4_should_writeback_data(inode))
3920 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 3921 else
617ba13b 3922 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
3923}
3924
3925/*
617ba13b 3926 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
3927 * up to the end of the block which corresponds to `from'.
3928 * This required during truncate. We need to physically zero the tail end
3929 * of that block so it doesn't yield old data if the file is later grown.
3930 */
cf108bca 3931int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
3932 struct address_space *mapping, loff_t from)
3933{
617ba13b 3934 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 3935 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
3936 unsigned blocksize, length, pos;
3937 ext4_lblk_t iblock;
ac27a0ec
DK
3938 struct inode *inode = mapping->host;
3939 struct buffer_head *bh;
cf108bca 3940 struct page *page;
ac27a0ec 3941 int err = 0;
ac27a0ec 3942
f4a01017
TT
3943 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3944 mapping_gfp_mask(mapping) & ~__GFP_FS);
cf108bca
JK
3945 if (!page)
3946 return -EINVAL;
3947
ac27a0ec
DK
3948 blocksize = inode->i_sb->s_blocksize;
3949 length = blocksize - (offset & (blocksize - 1));
3950 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3951
3952 /*
3953 * For "nobh" option, we can only work if we don't need to
3954 * read-in the page - otherwise we create buffers to do the IO.
3955 */
3956 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 3957 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 3958 zero_user(page, offset, length);
ac27a0ec
DK
3959 set_page_dirty(page);
3960 goto unlock;
3961 }
3962
3963 if (!page_has_buffers(page))
3964 create_empty_buffers(page, blocksize, 0);
3965
3966 /* Find the buffer that contains "offset" */
3967 bh = page_buffers(page);
3968 pos = blocksize;
3969 while (offset >= pos) {
3970 bh = bh->b_this_page;
3971 iblock++;
3972 pos += blocksize;
3973 }
3974
3975 err = 0;
3976 if (buffer_freed(bh)) {
3977 BUFFER_TRACE(bh, "freed: skip");
3978 goto unlock;
3979 }
3980
3981 if (!buffer_mapped(bh)) {
3982 BUFFER_TRACE(bh, "unmapped");
617ba13b 3983 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
3984 /* unmapped? It's a hole - nothing to do */
3985 if (!buffer_mapped(bh)) {
3986 BUFFER_TRACE(bh, "still unmapped");
3987 goto unlock;
3988 }
3989 }
3990
3991 /* Ok, it's mapped. Make sure it's up-to-date */
3992 if (PageUptodate(page))
3993 set_buffer_uptodate(bh);
3994
3995 if (!buffer_uptodate(bh)) {
3996 err = -EIO;
3997 ll_rw_block(READ, 1, &bh);
3998 wait_on_buffer(bh);
3999 /* Uhhuh. Read error. Complain and punt. */
4000 if (!buffer_uptodate(bh))
4001 goto unlock;
4002 }
4003
617ba13b 4004 if (ext4_should_journal_data(inode)) {
ac27a0ec 4005 BUFFER_TRACE(bh, "get write access");
617ba13b 4006 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
4007 if (err)
4008 goto unlock;
4009 }
4010
eebd2aa3 4011 zero_user(page, offset, length);
ac27a0ec
DK
4012
4013 BUFFER_TRACE(bh, "zeroed end of block");
4014
4015 err = 0;
617ba13b 4016 if (ext4_should_journal_data(inode)) {
0390131b 4017 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 4018 } else {
617ba13b 4019 if (ext4_should_order_data(inode))
678aaf48 4020 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
4021 mark_buffer_dirty(bh);
4022 }
4023
4024unlock:
4025 unlock_page(page);
4026 page_cache_release(page);
4027 return err;
4028}
4029
4030/*
4031 * Probably it should be a library function... search for first non-zero word
4032 * or memcmp with zero_page, whatever is better for particular architecture.
4033 * Linus?
4034 */
4035static inline int all_zeroes(__le32 *p, __le32 *q)
4036{
4037 while (p < q)
4038 if (*p++)
4039 return 0;
4040 return 1;
4041}
4042
4043/**
617ba13b 4044 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
4045 * @inode: inode in question
4046 * @depth: depth of the affected branch
617ba13b 4047 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
4048 * @chain: place to store the pointers to partial indirect blocks
4049 * @top: place to the (detached) top of branch
4050 *
617ba13b 4051 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
4052 *
4053 * When we do truncate() we may have to clean the ends of several
4054 * indirect blocks but leave the blocks themselves alive. Block is
4055 * partially truncated if some data below the new i_size is refered
4056 * from it (and it is on the path to the first completely truncated
4057 * data block, indeed). We have to free the top of that path along
4058 * with everything to the right of the path. Since no allocation
617ba13b 4059 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
4060 * finishes, we may safely do the latter, but top of branch may
4061 * require special attention - pageout below the truncation point
4062 * might try to populate it.
4063 *
4064 * We atomically detach the top of branch from the tree, store the
4065 * block number of its root in *@top, pointers to buffer_heads of
4066 * partially truncated blocks - in @chain[].bh and pointers to
4067 * their last elements that should not be removed - in
4068 * @chain[].p. Return value is the pointer to last filled element
4069 * of @chain.
4070 *
4071 * The work left to caller to do the actual freeing of subtrees:
4072 * a) free the subtree starting from *@top
4073 * b) free the subtrees whose roots are stored in
4074 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4075 * c) free the subtrees growing from the inode past the @chain[0].
4076 * (no partially truncated stuff there). */
4077
617ba13b 4078static Indirect *ext4_find_shared(struct inode *inode, int depth,
de9a55b8
TT
4079 ext4_lblk_t offsets[4], Indirect chain[4],
4080 __le32 *top)
ac27a0ec
DK
4081{
4082 Indirect *partial, *p;
4083 int k, err;
4084
4085 *top = 0;
bf48aabb 4086 /* Make k index the deepest non-null offset + 1 */
ac27a0ec
DK
4087 for (k = depth; k > 1 && !offsets[k-1]; k--)
4088 ;
617ba13b 4089 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
4090 /* Writer: pointers */
4091 if (!partial)
4092 partial = chain + k-1;
4093 /*
4094 * If the branch acquired continuation since we've looked at it -
4095 * fine, it should all survive and (new) top doesn't belong to us.
4096 */
4097 if (!partial->key && *partial->p)
4098 /* Writer: end */
4099 goto no_top;
af5bc92d 4100 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
4101 ;
4102 /*
4103 * OK, we've found the last block that must survive. The rest of our
4104 * branch should be detached before unlocking. However, if that rest
4105 * of branch is all ours and does not grow immediately from the inode
4106 * it's easier to cheat and just decrement partial->p.
4107 */
4108 if (p == chain + k - 1 && p > chain) {
4109 p->p--;
4110 } else {
4111 *top = *p->p;
617ba13b 4112 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
4113#if 0
4114 *p->p = 0;
4115#endif
4116 }
4117 /* Writer: end */
4118
af5bc92d 4119 while (partial > p) {
ac27a0ec
DK
4120 brelse(partial->bh);
4121 partial--;
4122 }
4123no_top:
4124 return partial;
4125}
4126
4127/*
4128 * Zero a number of block pointers in either an inode or an indirect block.
4129 * If we restart the transaction we must again get write access to the
4130 * indirect block for further modification.
4131 *
4132 * We release `count' blocks on disk, but (last - first) may be greater
4133 * than `count' because there can be holes in there.
4134 */
1f2acb60
TT
4135static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4136 struct buffer_head *bh,
4137 ext4_fsblk_t block_to_free,
4138 unsigned long count, __le32 *first,
4139 __le32 *last)
ac27a0ec
DK
4140{
4141 __le32 *p;
1f2acb60 4142 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
e6362609
TT
4143
4144 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4145 flags |= EXT4_FREE_BLOCKS_METADATA;
50689696 4146
1f2acb60
TT
4147 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4148 count)) {
12062ddd 4149 ext4_error(inode->i_sb, "inode #%lu: "
1f2acb60
TT
4150 "attempt to clear blocks %llu len %lu, invalid",
4151 inode->i_ino, (unsigned long long) block_to_free,
4152 count);
4153 return 1;
4154 }
4155
ac27a0ec
DK
4156 if (try_to_extend_transaction(handle, inode)) {
4157 if (bh) {
0390131b
FM
4158 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4159 ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 4160 }
617ba13b 4161 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4162 ext4_truncate_restart_trans(handle, inode,
4163 blocks_for_truncate(inode));
ac27a0ec
DK
4164 if (bh) {
4165 BUFFER_TRACE(bh, "retaking write access");
617ba13b 4166 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
4167 }
4168 }
4169
e6362609
TT
4170 for (p = first; p < last; p++)
4171 *p = 0;
ac27a0ec 4172
e6362609 4173 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
1f2acb60 4174 return 0;
ac27a0ec
DK
4175}
4176
4177/**
617ba13b 4178 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
4179 * @handle: handle for this transaction
4180 * @inode: inode we are dealing with
4181 * @this_bh: indirect buffer_head which contains *@first and *@last
4182 * @first: array of block numbers
4183 * @last: points immediately past the end of array
4184 *
4185 * We are freeing all blocks refered from that array (numbers are stored as
4186 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4187 *
4188 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4189 * blocks are contiguous then releasing them at one time will only affect one
4190 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4191 * actually use a lot of journal space.
4192 *
4193 * @this_bh will be %NULL if @first and @last point into the inode's direct
4194 * block pointers.
4195 */
617ba13b 4196static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4197 struct buffer_head *this_bh,
4198 __le32 *first, __le32 *last)
4199{
617ba13b 4200 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
4201 unsigned long count = 0; /* Number of blocks in the run */
4202 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4203 corresponding to
4204 block_to_free */
617ba13b 4205 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
4206 __le32 *p; /* Pointer into inode/ind
4207 for current block */
4208 int err;
4209
4210 if (this_bh) { /* For indirect block */
4211 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 4212 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
4213 /* Important: if we can't update the indirect pointers
4214 * to the blocks, we can't free them. */
4215 if (err)
4216 return;
4217 }
4218
4219 for (p = first; p < last; p++) {
4220 nr = le32_to_cpu(*p);
4221 if (nr) {
4222 /* accumulate blocks to free if they're contiguous */
4223 if (count == 0) {
4224 block_to_free = nr;
4225 block_to_free_p = p;
4226 count = 1;
4227 } else if (nr == block_to_free + count) {
4228 count++;
4229 } else {
1f2acb60
TT
4230 if (ext4_clear_blocks(handle, inode, this_bh,
4231 block_to_free, count,
4232 block_to_free_p, p))
4233 break;
ac27a0ec
DK
4234 block_to_free = nr;
4235 block_to_free_p = p;
4236 count = 1;
4237 }
4238 }
4239 }
4240
4241 if (count > 0)
617ba13b 4242 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
4243 count, block_to_free_p, p);
4244
4245 if (this_bh) {
0390131b 4246 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
71dc8fbc
DG
4247
4248 /*
4249 * The buffer head should have an attached journal head at this
4250 * point. However, if the data is corrupted and an indirect
4251 * block pointed to itself, it would have been detached when
4252 * the block was cleared. Check for this instead of OOPSing.
4253 */
e7f07968 4254 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
0390131b 4255 ext4_handle_dirty_metadata(handle, inode, this_bh);
71dc8fbc 4256 else
12062ddd 4257 ext4_error(inode->i_sb,
71dc8fbc
DG
4258 "circular indirect block detected, "
4259 "inode=%lu, block=%llu",
4260 inode->i_ino,
4261 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
4262 }
4263}
4264
4265/**
617ba13b 4266 * ext4_free_branches - free an array of branches
ac27a0ec
DK
4267 * @handle: JBD handle for this transaction
4268 * @inode: inode we are dealing with
4269 * @parent_bh: the buffer_head which contains *@first and *@last
4270 * @first: array of block numbers
4271 * @last: pointer immediately past the end of array
4272 * @depth: depth of the branches to free
4273 *
4274 * We are freeing all blocks refered from these branches (numbers are
4275 * stored as little-endian 32-bit) and updating @inode->i_blocks
4276 * appropriately.
4277 */
617ba13b 4278static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4279 struct buffer_head *parent_bh,
4280 __le32 *first, __le32 *last, int depth)
4281{
617ba13b 4282 ext4_fsblk_t nr;
ac27a0ec
DK
4283 __le32 *p;
4284
0390131b 4285 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4286 return;
4287
4288 if (depth--) {
4289 struct buffer_head *bh;
617ba13b 4290 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
4291 p = last;
4292 while (--p >= first) {
4293 nr = le32_to_cpu(*p);
4294 if (!nr)
4295 continue; /* A hole */
4296
1f2acb60
TT
4297 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4298 nr, 1)) {
12062ddd 4299 ext4_error(inode->i_sb,
1f2acb60
TT
4300 "indirect mapped block in inode "
4301 "#%lu invalid (level %d, blk #%lu)",
4302 inode->i_ino, depth,
4303 (unsigned long) nr);
4304 break;
4305 }
4306
ac27a0ec
DK
4307 /* Go read the buffer for the next level down */
4308 bh = sb_bread(inode->i_sb, nr);
4309
4310 /*
4311 * A read failure? Report error and clear slot
4312 * (should be rare).
4313 */
4314 if (!bh) {
12062ddd 4315 ext4_error(inode->i_sb,
2ae02107 4316 "Read failure, inode=%lu, block=%llu",
ac27a0ec
DK
4317 inode->i_ino, nr);
4318 continue;
4319 }
4320
4321 /* This zaps the entire block. Bottom up. */
4322 BUFFER_TRACE(bh, "free child branches");
617ba13b 4323 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
4324 (__le32 *) bh->b_data,
4325 (__le32 *) bh->b_data + addr_per_block,
4326 depth);
ac27a0ec
DK
4327
4328 /*
4329 * We've probably journalled the indirect block several
4330 * times during the truncate. But it's no longer
4331 * needed and we now drop it from the transaction via
dab291af 4332 * jbd2_journal_revoke().
ac27a0ec
DK
4333 *
4334 * That's easy if it's exclusively part of this
4335 * transaction. But if it's part of the committing
dab291af 4336 * transaction then jbd2_journal_forget() will simply
ac27a0ec 4337 * brelse() it. That means that if the underlying
617ba13b 4338 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
4339 * unmap_underlying_metadata() will find this block
4340 * and will try to get rid of it. damn, damn.
4341 *
4342 * If this block has already been committed to the
4343 * journal, a revoke record will be written. And
4344 * revoke records must be emitted *before* clearing
4345 * this block's bit in the bitmaps.
4346 */
617ba13b 4347 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
4348
4349 /*
4350 * Everything below this this pointer has been
4351 * released. Now let this top-of-subtree go.
4352 *
4353 * We want the freeing of this indirect block to be
4354 * atomic in the journal with the updating of the
4355 * bitmap block which owns it. So make some room in
4356 * the journal.
4357 *
4358 * We zero the parent pointer *after* freeing its
4359 * pointee in the bitmaps, so if extend_transaction()
4360 * for some reason fails to put the bitmap changes and
4361 * the release into the same transaction, recovery
4362 * will merely complain about releasing a free block,
4363 * rather than leaking blocks.
4364 */
0390131b 4365 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4366 return;
4367 if (try_to_extend_transaction(handle, inode)) {
617ba13b 4368 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4369 ext4_truncate_restart_trans(handle, inode,
4370 blocks_for_truncate(inode));
ac27a0ec
DK
4371 }
4372
e6362609
TT
4373 ext4_free_blocks(handle, inode, 0, nr, 1,
4374 EXT4_FREE_BLOCKS_METADATA);
ac27a0ec
DK
4375
4376 if (parent_bh) {
4377 /*
4378 * The block which we have just freed is
4379 * pointed to by an indirect block: journal it
4380 */
4381 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 4382 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
4383 parent_bh)){
4384 *p = 0;
4385 BUFFER_TRACE(parent_bh,
0390131b
FM
4386 "call ext4_handle_dirty_metadata");
4387 ext4_handle_dirty_metadata(handle,
4388 inode,
4389 parent_bh);
ac27a0ec
DK
4390 }
4391 }
4392 }
4393 } else {
4394 /* We have reached the bottom of the tree. */
4395 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 4396 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
4397 }
4398}
4399
91ef4caf
DG
4400int ext4_can_truncate(struct inode *inode)
4401{
4402 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4403 return 0;
4404 if (S_ISREG(inode->i_mode))
4405 return 1;
4406 if (S_ISDIR(inode->i_mode))
4407 return 1;
4408 if (S_ISLNK(inode->i_mode))
4409 return !ext4_inode_is_fast_symlink(inode);
4410 return 0;
4411}
4412
ac27a0ec 4413/*
617ba13b 4414 * ext4_truncate()
ac27a0ec 4415 *
617ba13b
MC
4416 * We block out ext4_get_block() block instantiations across the entire
4417 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4418 * simultaneously on behalf of the same inode.
4419 *
4420 * As we work through the truncate and commmit bits of it to the journal there
4421 * is one core, guiding principle: the file's tree must always be consistent on
4422 * disk. We must be able to restart the truncate after a crash.
4423 *
4424 * The file's tree may be transiently inconsistent in memory (although it
4425 * probably isn't), but whenever we close off and commit a journal transaction,
4426 * the contents of (the filesystem + the journal) must be consistent and
4427 * restartable. It's pretty simple, really: bottom up, right to left (although
4428 * left-to-right works OK too).
4429 *
4430 * Note that at recovery time, journal replay occurs *before* the restart of
4431 * truncate against the orphan inode list.
4432 *
4433 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4434 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4435 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4436 * ext4_truncate() to have another go. So there will be instantiated blocks
4437 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4438 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4439 * ext4_truncate() run will find them and release them.
ac27a0ec 4440 */
617ba13b 4441void ext4_truncate(struct inode *inode)
ac27a0ec
DK
4442{
4443 handle_t *handle;
617ba13b 4444 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4445 __le32 *i_data = ei->i_data;
617ba13b 4446 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 4447 struct address_space *mapping = inode->i_mapping;
725d26d3 4448 ext4_lblk_t offsets[4];
ac27a0ec
DK
4449 Indirect chain[4];
4450 Indirect *partial;
4451 __le32 nr = 0;
4452 int n;
725d26d3 4453 ext4_lblk_t last_block;
ac27a0ec 4454 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 4455
91ef4caf 4456 if (!ext4_can_truncate(inode))
ac27a0ec
DK
4457 return;
4458
c8d46e41
JZ
4459 EXT4_I(inode)->i_flags &= ~EXT4_EOFBLOCKS_FL;
4460
5534fb5b 4461 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 4462 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 4463
1d03ec98 4464 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
cf108bca 4465 ext4_ext_truncate(inode);
1d03ec98
AK
4466 return;
4467 }
a86c6181 4468
ac27a0ec 4469 handle = start_transaction(inode);
cf108bca 4470 if (IS_ERR(handle))
ac27a0ec 4471 return; /* AKPM: return what? */
ac27a0ec
DK
4472
4473 last_block = (inode->i_size + blocksize-1)
617ba13b 4474 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 4475
cf108bca
JK
4476 if (inode->i_size & (blocksize - 1))
4477 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4478 goto out_stop;
ac27a0ec 4479
617ba13b 4480 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
4481 if (n == 0)
4482 goto out_stop; /* error */
4483
4484 /*
4485 * OK. This truncate is going to happen. We add the inode to the
4486 * orphan list, so that if this truncate spans multiple transactions,
4487 * and we crash, we will resume the truncate when the filesystem
4488 * recovers. It also marks the inode dirty, to catch the new size.
4489 *
4490 * Implication: the file must always be in a sane, consistent
4491 * truncatable state while each transaction commits.
4492 */
617ba13b 4493 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
4494 goto out_stop;
4495
632eaeab
MC
4496 /*
4497 * From here we block out all ext4_get_block() callers who want to
4498 * modify the block allocation tree.
4499 */
4500 down_write(&ei->i_data_sem);
b4df2030 4501
c2ea3fde 4502 ext4_discard_preallocations(inode);
b4df2030 4503
ac27a0ec
DK
4504 /*
4505 * The orphan list entry will now protect us from any crash which
4506 * occurs before the truncate completes, so it is now safe to propagate
4507 * the new, shorter inode size (held for now in i_size) into the
4508 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 4509 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
4510 */
4511 ei->i_disksize = inode->i_size;
4512
ac27a0ec 4513 if (n == 1) { /* direct blocks */
617ba13b
MC
4514 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4515 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
4516 goto do_indirects;
4517 }
4518
617ba13b 4519 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
4520 /* Kill the top of shared branch (not detached) */
4521 if (nr) {
4522 if (partial == chain) {
4523 /* Shared branch grows from the inode */
617ba13b 4524 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
4525 &nr, &nr+1, (chain+n-1) - partial);
4526 *partial->p = 0;
4527 /*
4528 * We mark the inode dirty prior to restart,
4529 * and prior to stop. No need for it here.
4530 */
4531 } else {
4532 /* Shared branch grows from an indirect block */
4533 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 4534 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
4535 partial->p,
4536 partial->p+1, (chain+n-1) - partial);
4537 }
4538 }
4539 /* Clear the ends of indirect blocks on the shared branch */
4540 while (partial > chain) {
617ba13b 4541 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
4542 (__le32*)partial->bh->b_data+addr_per_block,
4543 (chain+n-1) - partial);
4544 BUFFER_TRACE(partial->bh, "call brelse");
de9a55b8 4545 brelse(partial->bh);
ac27a0ec
DK
4546 partial--;
4547 }
4548do_indirects:
4549 /* Kill the remaining (whole) subtrees */
4550 switch (offsets[0]) {
4551 default:
617ba13b 4552 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 4553 if (nr) {
617ba13b
MC
4554 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4555 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 4556 }
617ba13b
MC
4557 case EXT4_IND_BLOCK:
4558 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 4559 if (nr) {
617ba13b
MC
4560 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4561 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 4562 }
617ba13b
MC
4563 case EXT4_DIND_BLOCK:
4564 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 4565 if (nr) {
617ba13b
MC
4566 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4567 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 4568 }
617ba13b 4569 case EXT4_TIND_BLOCK:
ac27a0ec
DK
4570 ;
4571 }
4572
0e855ac8 4573 up_write(&ei->i_data_sem);
ef7f3835 4574 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 4575 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4576
4577 /*
4578 * In a multi-transaction truncate, we only make the final transaction
4579 * synchronous
4580 */
4581 if (IS_SYNC(inode))
0390131b 4582 ext4_handle_sync(handle);
ac27a0ec
DK
4583out_stop:
4584 /*
4585 * If this was a simple ftruncate(), and the file will remain alive
4586 * then we need to clear up the orphan record which we created above.
4587 * However, if this was a real unlink then we were called by
617ba13b 4588 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
4589 * orphan info for us.
4590 */
4591 if (inode->i_nlink)
617ba13b 4592 ext4_orphan_del(handle, inode);
ac27a0ec 4593
617ba13b 4594 ext4_journal_stop(handle);
ac27a0ec
DK
4595}
4596
ac27a0ec 4597/*
617ba13b 4598 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4599 * underlying buffer_head on success. If 'in_mem' is true, we have all
4600 * data in memory that is needed to recreate the on-disk version of this
4601 * inode.
4602 */
617ba13b
MC
4603static int __ext4_get_inode_loc(struct inode *inode,
4604 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4605{
240799cd
TT
4606 struct ext4_group_desc *gdp;
4607 struct buffer_head *bh;
4608 struct super_block *sb = inode->i_sb;
4609 ext4_fsblk_t block;
4610 int inodes_per_block, inode_offset;
4611
3a06d778 4612 iloc->bh = NULL;
240799cd
TT
4613 if (!ext4_valid_inum(sb, inode->i_ino))
4614 return -EIO;
ac27a0ec 4615
240799cd
TT
4616 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4617 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4618 if (!gdp)
ac27a0ec
DK
4619 return -EIO;
4620
240799cd
TT
4621 /*
4622 * Figure out the offset within the block group inode table
4623 */
4624 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4625 inode_offset = ((inode->i_ino - 1) %
4626 EXT4_INODES_PER_GROUP(sb));
4627 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4628 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4629
4630 bh = sb_getblk(sb, block);
ac27a0ec 4631 if (!bh) {
12062ddd
ES
4632 ext4_error(sb, "unable to read inode block - "
4633 "inode=%lu, block=%llu", inode->i_ino, block);
ac27a0ec
DK
4634 return -EIO;
4635 }
4636 if (!buffer_uptodate(bh)) {
4637 lock_buffer(bh);
9c83a923
HK
4638
4639 /*
4640 * If the buffer has the write error flag, we have failed
4641 * to write out another inode in the same block. In this
4642 * case, we don't have to read the block because we may
4643 * read the old inode data successfully.
4644 */
4645 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4646 set_buffer_uptodate(bh);
4647
ac27a0ec
DK
4648 if (buffer_uptodate(bh)) {
4649 /* someone brought it uptodate while we waited */
4650 unlock_buffer(bh);
4651 goto has_buffer;
4652 }
4653
4654 /*
4655 * If we have all information of the inode in memory and this
4656 * is the only valid inode in the block, we need not read the
4657 * block.
4658 */
4659 if (in_mem) {
4660 struct buffer_head *bitmap_bh;
240799cd 4661 int i, start;
ac27a0ec 4662
240799cd 4663 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4664
240799cd
TT
4665 /* Is the inode bitmap in cache? */
4666 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
4667 if (!bitmap_bh)
4668 goto make_io;
4669
4670 /*
4671 * If the inode bitmap isn't in cache then the
4672 * optimisation may end up performing two reads instead
4673 * of one, so skip it.
4674 */
4675 if (!buffer_uptodate(bitmap_bh)) {
4676 brelse(bitmap_bh);
4677 goto make_io;
4678 }
240799cd 4679 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4680 if (i == inode_offset)
4681 continue;
617ba13b 4682 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4683 break;
4684 }
4685 brelse(bitmap_bh);
240799cd 4686 if (i == start + inodes_per_block) {
ac27a0ec
DK
4687 /* all other inodes are free, so skip I/O */
4688 memset(bh->b_data, 0, bh->b_size);
4689 set_buffer_uptodate(bh);
4690 unlock_buffer(bh);
4691 goto has_buffer;
4692 }
4693 }
4694
4695make_io:
240799cd
TT
4696 /*
4697 * If we need to do any I/O, try to pre-readahead extra
4698 * blocks from the inode table.
4699 */
4700 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4701 ext4_fsblk_t b, end, table;
4702 unsigned num;
4703
4704 table = ext4_inode_table(sb, gdp);
b713a5ec 4705 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
4706 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4707 if (table > b)
4708 b = table;
4709 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4710 num = EXT4_INODES_PER_GROUP(sb);
4711 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4712 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 4713 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4714 table += num / inodes_per_block;
4715 if (end > table)
4716 end = table;
4717 while (b <= end)
4718 sb_breadahead(sb, b++);
4719 }
4720
ac27a0ec
DK
4721 /*
4722 * There are other valid inodes in the buffer, this inode
4723 * has in-inode xattrs, or we don't have this inode in memory.
4724 * Read the block from disk.
4725 */
4726 get_bh(bh);
4727 bh->b_end_io = end_buffer_read_sync;
4728 submit_bh(READ_META, bh);
4729 wait_on_buffer(bh);
4730 if (!buffer_uptodate(bh)) {
12062ddd
ES
4731 ext4_error(sb, "unable to read inode block - inode=%lu,"
4732 " block=%llu", inode->i_ino, block);
ac27a0ec
DK
4733 brelse(bh);
4734 return -EIO;
4735 }
4736 }
4737has_buffer:
4738 iloc->bh = bh;
4739 return 0;
4740}
4741
617ba13b 4742int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4743{
4744 /* We have all inode data except xattrs in memory here. */
617ba13b 4745 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4746 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4747}
4748
617ba13b 4749void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4750{
617ba13b 4751 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4752
4753 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4754 if (flags & EXT4_SYNC_FL)
ac27a0ec 4755 inode->i_flags |= S_SYNC;
617ba13b 4756 if (flags & EXT4_APPEND_FL)
ac27a0ec 4757 inode->i_flags |= S_APPEND;
617ba13b 4758 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4759 inode->i_flags |= S_IMMUTABLE;
617ba13b 4760 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4761 inode->i_flags |= S_NOATIME;
617ba13b 4762 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4763 inode->i_flags |= S_DIRSYNC;
4764}
4765
ff9ddf7e
JK
4766/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4767void ext4_get_inode_flags(struct ext4_inode_info *ei)
4768{
4769 unsigned int flags = ei->vfs_inode.i_flags;
4770
4771 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4772 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4773 if (flags & S_SYNC)
4774 ei->i_flags |= EXT4_SYNC_FL;
4775 if (flags & S_APPEND)
4776 ei->i_flags |= EXT4_APPEND_FL;
4777 if (flags & S_IMMUTABLE)
4778 ei->i_flags |= EXT4_IMMUTABLE_FL;
4779 if (flags & S_NOATIME)
4780 ei->i_flags |= EXT4_NOATIME_FL;
4781 if (flags & S_DIRSYNC)
4782 ei->i_flags |= EXT4_DIRSYNC_FL;
4783}
de9a55b8 4784
0fc1b451 4785static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4786 struct ext4_inode_info *ei)
0fc1b451
AK
4787{
4788 blkcnt_t i_blocks ;
8180a562
AK
4789 struct inode *inode = &(ei->vfs_inode);
4790 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4791
4792 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4793 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4794 /* we are using combined 48 bit field */
4795 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4796 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
4797 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4798 /* i_blocks represent file system block size */
4799 return i_blocks << (inode->i_blkbits - 9);
4800 } else {
4801 return i_blocks;
4802 }
0fc1b451
AK
4803 } else {
4804 return le32_to_cpu(raw_inode->i_blocks_lo);
4805 }
4806}
ff9ddf7e 4807
1d1fe1ee 4808struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4809{
617ba13b
MC
4810 struct ext4_iloc iloc;
4811 struct ext4_inode *raw_inode;
1d1fe1ee 4812 struct ext4_inode_info *ei;
1d1fe1ee 4813 struct inode *inode;
b436b9be 4814 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4815 long ret;
ac27a0ec
DK
4816 int block;
4817
1d1fe1ee
DH
4818 inode = iget_locked(sb, ino);
4819 if (!inode)
4820 return ERR_PTR(-ENOMEM);
4821 if (!(inode->i_state & I_NEW))
4822 return inode;
4823
4824 ei = EXT4_I(inode);
567f3e9a 4825 iloc.bh = 0;
ac27a0ec 4826
1d1fe1ee
DH
4827 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4828 if (ret < 0)
ac27a0ec 4829 goto bad_inode;
617ba13b 4830 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
4831 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4832 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4833 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4834 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4835 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4836 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4837 }
4838 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec 4839
19f5fb7a 4840 ei->i_state_flags = 0;
ac27a0ec
DK
4841 ei->i_dir_start_lookup = 0;
4842 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4843 /* We now have enough fields to check if the inode was active or not.
4844 * This is needed because nfsd might try to access dead inodes
4845 * the test is that same one that e2fsck uses
4846 * NeilBrown 1999oct15
4847 */
4848 if (inode->i_nlink == 0) {
4849 if (inode->i_mode == 0 ||
617ba13b 4850 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 4851 /* this inode is deleted */
1d1fe1ee 4852 ret = -ESTALE;
ac27a0ec
DK
4853 goto bad_inode;
4854 }
4855 /* The only unlinked inodes we let through here have
4856 * valid i_mode and are being read by the orphan
4857 * recovery code: that's fine, we're about to complete
4858 * the process of deleting those. */
4859 }
ac27a0ec 4860 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4861 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4862 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4863 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4864 ei->i_file_acl |=
4865 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4866 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4867 ei->i_disksize = inode->i_size;
a9e7f447
DM
4868#ifdef CONFIG_QUOTA
4869 ei->i_reserved_quota = 0;
4870#endif
ac27a0ec
DK
4871 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4872 ei->i_block_group = iloc.block_group;
a4912123 4873 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4874 /*
4875 * NOTE! The in-memory inode i_data array is in little-endian order
4876 * even on big-endian machines: we do NOT byteswap the block numbers!
4877 */
617ba13b 4878 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4879 ei->i_data[block] = raw_inode->i_block[block];
4880 INIT_LIST_HEAD(&ei->i_orphan);
4881
b436b9be
JK
4882 /*
4883 * Set transaction id's of transactions that have to be committed
4884 * to finish f[data]sync. We set them to currently running transaction
4885 * as we cannot be sure that the inode or some of its metadata isn't
4886 * part of the transaction - the inode could have been reclaimed and
4887 * now it is reread from disk.
4888 */
4889 if (journal) {
4890 transaction_t *transaction;
4891 tid_t tid;
4892
4893 spin_lock(&journal->j_state_lock);
4894 if (journal->j_running_transaction)
4895 transaction = journal->j_running_transaction;
4896 else
4897 transaction = journal->j_committing_transaction;
4898 if (transaction)
4899 tid = transaction->t_tid;
4900 else
4901 tid = journal->j_commit_sequence;
4902 spin_unlock(&journal->j_state_lock);
4903 ei->i_sync_tid = tid;
4904 ei->i_datasync_tid = tid;
4905 }
4906
0040d987 4907 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 4908 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 4909 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 4910 EXT4_INODE_SIZE(inode->i_sb)) {
1d1fe1ee 4911 ret = -EIO;
ac27a0ec 4912 goto bad_inode;
e5d2861f 4913 }
ac27a0ec
DK
4914 if (ei->i_extra_isize == 0) {
4915 /* The extra space is currently unused. Use it. */
617ba13b
MC
4916 ei->i_extra_isize = sizeof(struct ext4_inode) -
4917 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
4918 } else {
4919 __le32 *magic = (void *)raw_inode +
617ba13b 4920 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 4921 ei->i_extra_isize;
617ba13b 4922 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
19f5fb7a 4923 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
ac27a0ec
DK
4924 }
4925 } else
4926 ei->i_extra_isize = 0;
4927
ef7f3835
KS
4928 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4929 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4930 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4931 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4932
25ec56b5
JNC
4933 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4934 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4935 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4936 inode->i_version |=
4937 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4938 }
4939
c4b5a614 4940 ret = 0;
485c26ec 4941 if (ei->i_file_acl &&
1032988c 4942 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
12062ddd 4943 ext4_error(sb, "bad extended attribute block %llu inode #%lu",
485c26ec
TT
4944 ei->i_file_acl, inode->i_ino);
4945 ret = -EIO;
4946 goto bad_inode;
4947 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
c4b5a614
TT
4948 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4949 (S_ISLNK(inode->i_mode) &&
4950 !ext4_inode_is_fast_symlink(inode)))
4951 /* Validate extent which is part of inode */
4952 ret = ext4_ext_check_inode(inode);
de9a55b8 4953 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
fe2c8191
TN
4954 (S_ISLNK(inode->i_mode) &&
4955 !ext4_inode_is_fast_symlink(inode))) {
de9a55b8 4956 /* Validate block references which are part of inode */
fe2c8191
TN
4957 ret = ext4_check_inode_blockref(inode);
4958 }
567f3e9a 4959 if (ret)
de9a55b8 4960 goto bad_inode;
7a262f7c 4961
ac27a0ec 4962 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4963 inode->i_op = &ext4_file_inode_operations;
4964 inode->i_fop = &ext4_file_operations;
4965 ext4_set_aops(inode);
ac27a0ec 4966 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4967 inode->i_op = &ext4_dir_inode_operations;
4968 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4969 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4970 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4971 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4972 nd_terminate_link(ei->i_data, inode->i_size,
4973 sizeof(ei->i_data) - 1);
4974 } else {
617ba13b
MC
4975 inode->i_op = &ext4_symlink_inode_operations;
4976 ext4_set_aops(inode);
ac27a0ec 4977 }
563bdd61
TT
4978 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4979 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4980 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4981 if (raw_inode->i_block[0])
4982 init_special_inode(inode, inode->i_mode,
4983 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4984 else
4985 init_special_inode(inode, inode->i_mode,
4986 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 4987 } else {
563bdd61 4988 ret = -EIO;
12062ddd 4989 ext4_error(inode->i_sb, "bogus i_mode (%o) for inode=%lu",
563bdd61
TT
4990 inode->i_mode, inode->i_ino);
4991 goto bad_inode;
ac27a0ec 4992 }
af5bc92d 4993 brelse(iloc.bh);
617ba13b 4994 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4995 unlock_new_inode(inode);
4996 return inode;
ac27a0ec
DK
4997
4998bad_inode:
567f3e9a 4999 brelse(iloc.bh);
1d1fe1ee
DH
5000 iget_failed(inode);
5001 return ERR_PTR(ret);
ac27a0ec
DK
5002}
5003
0fc1b451
AK
5004static int ext4_inode_blocks_set(handle_t *handle,
5005 struct ext4_inode *raw_inode,
5006 struct ext4_inode_info *ei)
5007{
5008 struct inode *inode = &(ei->vfs_inode);
5009 u64 i_blocks = inode->i_blocks;
5010 struct super_block *sb = inode->i_sb;
0fc1b451
AK
5011
5012 if (i_blocks <= ~0U) {
5013 /*
5014 * i_blocks can be represnted in a 32 bit variable
5015 * as multiple of 512 bytes
5016 */
8180a562 5017 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5018 raw_inode->i_blocks_high = 0;
8180a562 5019 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
f287a1a5
TT
5020 return 0;
5021 }
5022 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5023 return -EFBIG;
5024
5025 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
5026 /*
5027 * i_blocks can be represented in a 48 bit variable
5028 * as multiple of 512 bytes
5029 */
8180a562 5030 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5031 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 5032 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 5033 } else {
8180a562
AK
5034 ei->i_flags |= EXT4_HUGE_FILE_FL;
5035 /* i_block is stored in file system block size */
5036 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5037 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5038 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 5039 }
f287a1a5 5040 return 0;
0fc1b451
AK
5041}
5042
ac27a0ec
DK
5043/*
5044 * Post the struct inode info into an on-disk inode location in the
5045 * buffer-cache. This gobbles the caller's reference to the
5046 * buffer_head in the inode location struct.
5047 *
5048 * The caller must have write access to iloc->bh.
5049 */
617ba13b 5050static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 5051 struct inode *inode,
830156c7 5052 struct ext4_iloc *iloc)
ac27a0ec 5053{
617ba13b
MC
5054 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5055 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
5056 struct buffer_head *bh = iloc->bh;
5057 int err = 0, rc, block;
5058
5059 /* For fields not not tracking in the in-memory inode,
5060 * initialise them to zero for new inodes. */
19f5fb7a 5061 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 5062 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 5063
ff9ddf7e 5064 ext4_get_inode_flags(ei);
ac27a0ec 5065 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 5066 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
5067 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5068 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5069/*
5070 * Fix up interoperability with old kernels. Otherwise, old inodes get
5071 * re-used with the upper 16 bits of the uid/gid intact
5072 */
af5bc92d 5073 if (!ei->i_dtime) {
ac27a0ec
DK
5074 raw_inode->i_uid_high =
5075 cpu_to_le16(high_16_bits(inode->i_uid));
5076 raw_inode->i_gid_high =
5077 cpu_to_le16(high_16_bits(inode->i_gid));
5078 } else {
5079 raw_inode->i_uid_high = 0;
5080 raw_inode->i_gid_high = 0;
5081 }
5082 } else {
5083 raw_inode->i_uid_low =
5084 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5085 raw_inode->i_gid_low =
5086 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5087 raw_inode->i_uid_high = 0;
5088 raw_inode->i_gid_high = 0;
5089 }
5090 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
5091
5092 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5093 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5094 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5095 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5096
0fc1b451
AK
5097 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5098 goto out_brelse;
ac27a0ec 5099 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1b9c12f4 5100 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
9b8f1f01
MC
5101 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5102 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
5103 raw_inode->i_file_acl_high =
5104 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 5105 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
5106 ext4_isize_set(raw_inode, ei->i_disksize);
5107 if (ei->i_disksize > 0x7fffffffULL) {
5108 struct super_block *sb = inode->i_sb;
5109 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5110 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5111 EXT4_SB(sb)->s_es->s_rev_level ==
5112 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5113 /* If this is the first large file
5114 * created, add a flag to the superblock.
5115 */
5116 err = ext4_journal_get_write_access(handle,
5117 EXT4_SB(sb)->s_sbh);
5118 if (err)
5119 goto out_brelse;
5120 ext4_update_dynamic_rev(sb);
5121 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 5122 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 5123 sb->s_dirt = 1;
0390131b 5124 ext4_handle_sync(handle);
73b50c1c 5125 err = ext4_handle_dirty_metadata(handle, NULL,
a48380f7 5126 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
5127 }
5128 }
5129 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5130 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5131 if (old_valid_dev(inode->i_rdev)) {
5132 raw_inode->i_block[0] =
5133 cpu_to_le32(old_encode_dev(inode->i_rdev));
5134 raw_inode->i_block[1] = 0;
5135 } else {
5136 raw_inode->i_block[0] = 0;
5137 raw_inode->i_block[1] =
5138 cpu_to_le32(new_encode_dev(inode->i_rdev));
5139 raw_inode->i_block[2] = 0;
5140 }
de9a55b8
TT
5141 } else
5142 for (block = 0; block < EXT4_N_BLOCKS; block++)
5143 raw_inode->i_block[block] = ei->i_data[block];
ac27a0ec 5144
25ec56b5
JNC
5145 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5146 if (ei->i_extra_isize) {
5147 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5148 raw_inode->i_version_hi =
5149 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 5150 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
5151 }
5152
830156c7 5153 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 5154 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
5155 if (!err)
5156 err = rc;
19f5fb7a 5157 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 5158
b436b9be 5159 ext4_update_inode_fsync_trans(handle, inode, 0);
ac27a0ec 5160out_brelse:
af5bc92d 5161 brelse(bh);
617ba13b 5162 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5163 return err;
5164}
5165
5166/*
617ba13b 5167 * ext4_write_inode()
ac27a0ec
DK
5168 *
5169 * We are called from a few places:
5170 *
5171 * - Within generic_file_write() for O_SYNC files.
5172 * Here, there will be no transaction running. We wait for any running
5173 * trasnaction to commit.
5174 *
5175 * - Within sys_sync(), kupdate and such.
5176 * We wait on commit, if tol to.
5177 *
5178 * - Within prune_icache() (PF_MEMALLOC == true)
5179 * Here we simply return. We can't afford to block kswapd on the
5180 * journal commit.
5181 *
5182 * In all cases it is actually safe for us to return without doing anything,
5183 * because the inode has been copied into a raw inode buffer in
617ba13b 5184 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
5185 * knfsd.
5186 *
5187 * Note that we are absolutely dependent upon all inode dirtiers doing the
5188 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5189 * which we are interested.
5190 *
5191 * It would be a bug for them to not do this. The code:
5192 *
5193 * mark_inode_dirty(inode)
5194 * stuff();
5195 * inode->i_size = expr;
5196 *
5197 * is in error because a kswapd-driven write_inode() could occur while
5198 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5199 * will no longer be on the superblock's dirty inode list.
5200 */
617ba13b 5201int ext4_write_inode(struct inode *inode, int wait)
ac27a0ec 5202{
91ac6f43
FM
5203 int err;
5204
ac27a0ec
DK
5205 if (current->flags & PF_MEMALLOC)
5206 return 0;
5207
91ac6f43
FM
5208 if (EXT4_SB(inode->i_sb)->s_journal) {
5209 if (ext4_journal_current_handle()) {
5210 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5211 dump_stack();
5212 return -EIO;
5213 }
ac27a0ec 5214
91ac6f43
FM
5215 if (!wait)
5216 return 0;
5217
5218 err = ext4_force_commit(inode->i_sb);
5219 } else {
5220 struct ext4_iloc iloc;
ac27a0ec 5221
91ac6f43
FM
5222 err = ext4_get_inode_loc(inode, &iloc);
5223 if (err)
5224 return err;
830156c7
FM
5225 if (wait)
5226 sync_dirty_buffer(iloc.bh);
5227 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
12062ddd
ES
5228 ext4_error(inode->i_sb, "IO error syncing inode, "
5229 "inode=%lu, block=%llu", inode->i_ino,
830156c7
FM
5230 (unsigned long long)iloc.bh->b_blocknr);
5231 err = -EIO;
5232 }
91ac6f43
FM
5233 }
5234 return err;
ac27a0ec
DK
5235}
5236
5237/*
617ba13b 5238 * ext4_setattr()
ac27a0ec
DK
5239 *
5240 * Called from notify_change.
5241 *
5242 * We want to trap VFS attempts to truncate the file as soon as
5243 * possible. In particular, we want to make sure that when the VFS
5244 * shrinks i_size, we put the inode on the orphan list and modify
5245 * i_disksize immediately, so that during the subsequent flushing of
5246 * dirty pages and freeing of disk blocks, we can guarantee that any
5247 * commit will leave the blocks being flushed in an unused state on
5248 * disk. (On recovery, the inode will get truncated and the blocks will
5249 * be freed, so we have a strong guarantee that no future commit will
5250 * leave these blocks visible to the user.)
5251 *
678aaf48
JK
5252 * Another thing we have to assure is that if we are in ordered mode
5253 * and inode is still attached to the committing transaction, we must
5254 * we start writeout of all the dirty pages which are being truncated.
5255 * This way we are sure that all the data written in the previous
5256 * transaction are already on disk (truncate waits for pages under
5257 * writeback).
5258 *
5259 * Called with inode->i_mutex down.
ac27a0ec 5260 */
617ba13b 5261int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
5262{
5263 struct inode *inode = dentry->d_inode;
5264 int error, rc = 0;
5265 const unsigned int ia_valid = attr->ia_valid;
5266
5267 error = inode_change_ok(inode, attr);
5268 if (error)
5269 return error;
5270
5271 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5272 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5273 handle_t *handle;
5274
5275 /* (user+group)*(old+new) structure, inode write (sb,
5276 * inode block, ? - but truncate inode update has it) */
5aca07eb 5277 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
194074ac 5278 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
5279 if (IS_ERR(handle)) {
5280 error = PTR_ERR(handle);
5281 goto err_out;
5282 }
a269eb18 5283 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
ac27a0ec 5284 if (error) {
617ba13b 5285 ext4_journal_stop(handle);
ac27a0ec
DK
5286 return error;
5287 }
5288 /* Update corresponding info in inode so that everything is in
5289 * one transaction */
5290 if (attr->ia_valid & ATTR_UID)
5291 inode->i_uid = attr->ia_uid;
5292 if (attr->ia_valid & ATTR_GID)
5293 inode->i_gid = attr->ia_gid;
617ba13b
MC
5294 error = ext4_mark_inode_dirty(handle, inode);
5295 ext4_journal_stop(handle);
ac27a0ec
DK
5296 }
5297
e2b46574
ES
5298 if (attr->ia_valid & ATTR_SIZE) {
5299 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5300 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5301
5302 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5303 error = -EFBIG;
5304 goto err_out;
5305 }
5306 }
5307 }
5308
ac27a0ec 5309 if (S_ISREG(inode->i_mode) &&
c8d46e41
JZ
5310 attr->ia_valid & ATTR_SIZE &&
5311 (attr->ia_size < inode->i_size ||
5312 (EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL))) {
ac27a0ec
DK
5313 handle_t *handle;
5314
617ba13b 5315 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
5316 if (IS_ERR(handle)) {
5317 error = PTR_ERR(handle);
5318 goto err_out;
5319 }
5320
617ba13b
MC
5321 error = ext4_orphan_add(handle, inode);
5322 EXT4_I(inode)->i_disksize = attr->ia_size;
5323 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
5324 if (!error)
5325 error = rc;
617ba13b 5326 ext4_journal_stop(handle);
678aaf48
JK
5327
5328 if (ext4_should_order_data(inode)) {
5329 error = ext4_begin_ordered_truncate(inode,
5330 attr->ia_size);
5331 if (error) {
5332 /* Do as much error cleanup as possible */
5333 handle = ext4_journal_start(inode, 3);
5334 if (IS_ERR(handle)) {
5335 ext4_orphan_del(NULL, inode);
5336 goto err_out;
5337 }
5338 ext4_orphan_del(handle, inode);
5339 ext4_journal_stop(handle);
5340 goto err_out;
5341 }
5342 }
c8d46e41
JZ
5343 /* ext4_truncate will clear the flag */
5344 if ((EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL))
5345 ext4_truncate(inode);
ac27a0ec
DK
5346 }
5347
5348 rc = inode_setattr(inode, attr);
5349
617ba13b 5350 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
5351 * transaction handle at all, we need to clean up the in-core
5352 * orphan list manually. */
5353 if (inode->i_nlink)
617ba13b 5354 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
5355
5356 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 5357 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
5358
5359err_out:
617ba13b 5360 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5361 if (!error)
5362 error = rc;
5363 return error;
5364}
5365
3e3398a0
MC
5366int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5367 struct kstat *stat)
5368{
5369 struct inode *inode;
5370 unsigned long delalloc_blocks;
5371
5372 inode = dentry->d_inode;
5373 generic_fillattr(inode, stat);
5374
5375 /*
5376 * We can't update i_blocks if the block allocation is delayed
5377 * otherwise in the case of system crash before the real block
5378 * allocation is done, we will have i_blocks inconsistent with
5379 * on-disk file blocks.
5380 * We always keep i_blocks updated together with real
5381 * allocation. But to not confuse with user, stat
5382 * will return the blocks that include the delayed allocation
5383 * blocks for this file.
5384 */
5385 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5386 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5387 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5388
5389 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5390 return 0;
5391}
ac27a0ec 5392
a02908f1
MC
5393static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5394 int chunk)
5395{
5396 int indirects;
5397
5398 /* if nrblocks are contiguous */
5399 if (chunk) {
5400 /*
5401 * With N contiguous data blocks, it need at most
5402 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5403 * 2 dindirect blocks
5404 * 1 tindirect block
5405 */
5406 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5407 return indirects + 3;
5408 }
5409 /*
5410 * if nrblocks are not contiguous, worse case, each block touch
5411 * a indirect block, and each indirect block touch a double indirect
5412 * block, plus a triple indirect block
5413 */
5414 indirects = nrblocks * 2 + 1;
5415 return indirects;
5416}
5417
5418static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5419{
5420 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
ac51d837
TT
5421 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5422 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 5423}
ac51d837 5424
ac27a0ec 5425/*
a02908f1
MC
5426 * Account for index blocks, block groups bitmaps and block group
5427 * descriptor blocks if modify datablocks and index blocks
5428 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5429 *
a02908f1 5430 * If datablocks are discontiguous, they are possible to spread over
af901ca1 5431 * different block groups too. If they are contiuguous, with flexbg,
a02908f1 5432 * they could still across block group boundary.
ac27a0ec 5433 *
a02908f1
MC
5434 * Also account for superblock, inode, quota and xattr blocks
5435 */
5436int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5437{
8df9675f
TT
5438 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5439 int gdpblocks;
a02908f1
MC
5440 int idxblocks;
5441 int ret = 0;
5442
5443 /*
5444 * How many index blocks need to touch to modify nrblocks?
5445 * The "Chunk" flag indicating whether the nrblocks is
5446 * physically contiguous on disk
5447 *
5448 * For Direct IO and fallocate, they calls get_block to allocate
5449 * one single extent at a time, so they could set the "Chunk" flag
5450 */
5451 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5452
5453 ret = idxblocks;
5454
5455 /*
5456 * Now let's see how many group bitmaps and group descriptors need
5457 * to account
5458 */
5459 groups = idxblocks;
5460 if (chunk)
5461 groups += 1;
5462 else
5463 groups += nrblocks;
5464
5465 gdpblocks = groups;
8df9675f
TT
5466 if (groups > ngroups)
5467 groups = ngroups;
a02908f1
MC
5468 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5469 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5470
5471 /* bitmaps and block group descriptor blocks */
5472 ret += groups + gdpblocks;
5473
5474 /* Blocks for super block, inode, quota and xattr blocks */
5475 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5476
5477 return ret;
5478}
5479
5480/*
5481 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
5482 * the modification of a single pages into a single transaction,
5483 * which may include multiple chunks of block allocations.
ac27a0ec 5484 *
525f4ed8 5485 * This could be called via ext4_write_begin()
ac27a0ec 5486 *
525f4ed8 5487 * We need to consider the worse case, when
a02908f1 5488 * one new block per extent.
ac27a0ec 5489 */
a86c6181 5490int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5491{
617ba13b 5492 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5493 int ret;
5494
a02908f1 5495 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 5496
a02908f1 5497 /* Account for data blocks for journalled mode */
617ba13b 5498 if (ext4_should_journal_data(inode))
a02908f1 5499 ret += bpp;
ac27a0ec
DK
5500 return ret;
5501}
f3bd1f3f
MC
5502
5503/*
5504 * Calculate the journal credits for a chunk of data modification.
5505 *
5506 * This is called from DIO, fallocate or whoever calling
af901ca1 5507 * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5508 *
5509 * journal buffers for data blocks are not included here, as DIO
5510 * and fallocate do no need to journal data buffers.
5511 */
5512int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5513{
5514 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5515}
5516
ac27a0ec 5517/*
617ba13b 5518 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5519 * Give this, we know that the caller already has write access to iloc->bh.
5520 */
617ba13b 5521int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5522 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5523{
5524 int err = 0;
5525
25ec56b5
JNC
5526 if (test_opt(inode->i_sb, I_VERSION))
5527 inode_inc_iversion(inode);
5528
ac27a0ec
DK
5529 /* the do_update_inode consumes one bh->b_count */
5530 get_bh(iloc->bh);
5531
dab291af 5532 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5533 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5534 put_bh(iloc->bh);
5535 return err;
5536}
5537
5538/*
5539 * On success, We end up with an outstanding reference count against
5540 * iloc->bh. This _must_ be cleaned up later.
5541 */
5542
5543int
617ba13b
MC
5544ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5545 struct ext4_iloc *iloc)
ac27a0ec 5546{
0390131b
FM
5547 int err;
5548
5549 err = ext4_get_inode_loc(inode, iloc);
5550 if (!err) {
5551 BUFFER_TRACE(iloc->bh, "get_write_access");
5552 err = ext4_journal_get_write_access(handle, iloc->bh);
5553 if (err) {
5554 brelse(iloc->bh);
5555 iloc->bh = NULL;
ac27a0ec
DK
5556 }
5557 }
617ba13b 5558 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5559 return err;
5560}
5561
6dd4ee7c
KS
5562/*
5563 * Expand an inode by new_extra_isize bytes.
5564 * Returns 0 on success or negative error number on failure.
5565 */
1d03ec98
AK
5566static int ext4_expand_extra_isize(struct inode *inode,
5567 unsigned int new_extra_isize,
5568 struct ext4_iloc iloc,
5569 handle_t *handle)
6dd4ee7c
KS
5570{
5571 struct ext4_inode *raw_inode;
5572 struct ext4_xattr_ibody_header *header;
5573 struct ext4_xattr_entry *entry;
5574
5575 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5576 return 0;
5577
5578 raw_inode = ext4_raw_inode(&iloc);
5579
5580 header = IHDR(inode, raw_inode);
5581 entry = IFIRST(header);
5582
5583 /* No extended attributes present */
19f5fb7a
TT
5584 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5585 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
5586 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5587 new_extra_isize);
5588 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5589 return 0;
5590 }
5591
5592 /* try to expand with EAs present */
5593 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5594 raw_inode, handle);
5595}
5596
ac27a0ec
DK
5597/*
5598 * What we do here is to mark the in-core inode as clean with respect to inode
5599 * dirtiness (it may still be data-dirty).
5600 * This means that the in-core inode may be reaped by prune_icache
5601 * without having to perform any I/O. This is a very good thing,
5602 * because *any* task may call prune_icache - even ones which
5603 * have a transaction open against a different journal.
5604 *
5605 * Is this cheating? Not really. Sure, we haven't written the
5606 * inode out, but prune_icache isn't a user-visible syncing function.
5607 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5608 * we start and wait on commits.
5609 *
5610 * Is this efficient/effective? Well, we're being nice to the system
5611 * by cleaning up our inodes proactively so they can be reaped
5612 * without I/O. But we are potentially leaving up to five seconds'
5613 * worth of inodes floating about which prune_icache wants us to
5614 * write out. One way to fix that would be to get prune_icache()
5615 * to do a write_super() to free up some memory. It has the desired
5616 * effect.
5617 */
617ba13b 5618int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5619{
617ba13b 5620 struct ext4_iloc iloc;
6dd4ee7c
KS
5621 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5622 static unsigned int mnt_count;
5623 int err, ret;
ac27a0ec
DK
5624
5625 might_sleep();
617ba13b 5626 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5627 if (ext4_handle_valid(handle) &&
5628 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5629 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
5630 /*
5631 * We need extra buffer credits since we may write into EA block
5632 * with this same handle. If journal_extend fails, then it will
5633 * only result in a minor loss of functionality for that inode.
5634 * If this is felt to be critical, then e2fsck should be run to
5635 * force a large enough s_min_extra_isize.
5636 */
5637 if ((jbd2_journal_extend(handle,
5638 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5639 ret = ext4_expand_extra_isize(inode,
5640 sbi->s_want_extra_isize,
5641 iloc, handle);
5642 if (ret) {
19f5fb7a
TT
5643 ext4_set_inode_state(inode,
5644 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
5645 if (mnt_count !=
5646 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5647 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5648 "Unable to expand inode %lu. Delete"
5649 " some EAs or run e2fsck.",
5650 inode->i_ino);
c1bddad9
AK
5651 mnt_count =
5652 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5653 }
5654 }
5655 }
5656 }
ac27a0ec 5657 if (!err)
617ba13b 5658 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5659 return err;
5660}
5661
5662/*
617ba13b 5663 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5664 *
5665 * We're really interested in the case where a file is being extended.
5666 * i_size has been changed by generic_commit_write() and we thus need
5667 * to include the updated inode in the current transaction.
5668 *
a269eb18 5669 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5670 * are allocated to the file.
5671 *
5672 * If the inode is marked synchronous, we don't honour that here - doing
5673 * so would cause a commit on atime updates, which we don't bother doing.
5674 * We handle synchronous inodes at the highest possible level.
5675 */
617ba13b 5676void ext4_dirty_inode(struct inode *inode)
ac27a0ec 5677{
ac27a0ec
DK
5678 handle_t *handle;
5679
617ba13b 5680 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
5681 if (IS_ERR(handle))
5682 goto out;
f3dc272f 5683
f3dc272f
CW
5684 ext4_mark_inode_dirty(handle, inode);
5685
617ba13b 5686 ext4_journal_stop(handle);
ac27a0ec
DK
5687out:
5688 return;
5689}
5690
5691#if 0
5692/*
5693 * Bind an inode's backing buffer_head into this transaction, to prevent
5694 * it from being flushed to disk early. Unlike
617ba13b 5695 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5696 * returns no iloc structure, so the caller needs to repeat the iloc
5697 * lookup to mark the inode dirty later.
5698 */
617ba13b 5699static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5700{
617ba13b 5701 struct ext4_iloc iloc;
ac27a0ec
DK
5702
5703 int err = 0;
5704 if (handle) {
617ba13b 5705 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5706 if (!err) {
5707 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5708 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5709 if (!err)
0390131b 5710 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5711 NULL,
0390131b 5712 iloc.bh);
ac27a0ec
DK
5713 brelse(iloc.bh);
5714 }
5715 }
617ba13b 5716 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5717 return err;
5718}
5719#endif
5720
617ba13b 5721int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5722{
5723 journal_t *journal;
5724 handle_t *handle;
5725 int err;
5726
5727 /*
5728 * We have to be very careful here: changing a data block's
5729 * journaling status dynamically is dangerous. If we write a
5730 * data block to the journal, change the status and then delete
5731 * that block, we risk forgetting to revoke the old log record
5732 * from the journal and so a subsequent replay can corrupt data.
5733 * So, first we make sure that the journal is empty and that
5734 * nobody is changing anything.
5735 */
5736
617ba13b 5737 journal = EXT4_JOURNAL(inode);
0390131b
FM
5738 if (!journal)
5739 return 0;
d699594d 5740 if (is_journal_aborted(journal))
ac27a0ec
DK
5741 return -EROFS;
5742
dab291af
MC
5743 jbd2_journal_lock_updates(journal);
5744 jbd2_journal_flush(journal);
ac27a0ec
DK
5745
5746 /*
5747 * OK, there are no updates running now, and all cached data is
5748 * synced to disk. We are now in a completely consistent state
5749 * which doesn't have anything in the journal, and we know that
5750 * no filesystem updates are running, so it is safe to modify
5751 * the inode's in-core data-journaling state flag now.
5752 */
5753
5754 if (val)
617ba13b 5755 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
ac27a0ec 5756 else
617ba13b
MC
5757 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5758 ext4_set_aops(inode);
ac27a0ec 5759
dab291af 5760 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
5761
5762 /* Finally we can mark the inode as dirty. */
5763
617ba13b 5764 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
5765 if (IS_ERR(handle))
5766 return PTR_ERR(handle);
5767
617ba13b 5768 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5769 ext4_handle_sync(handle);
617ba13b
MC
5770 ext4_journal_stop(handle);
5771 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5772
5773 return err;
5774}
2e9ee850
AK
5775
5776static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5777{
5778 return !buffer_mapped(bh);
5779}
5780
c2ec175c 5781int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5782{
c2ec175c 5783 struct page *page = vmf->page;
2e9ee850
AK
5784 loff_t size;
5785 unsigned long len;
5786 int ret = -EINVAL;
79f0be8d 5787 void *fsdata;
2e9ee850
AK
5788 struct file *file = vma->vm_file;
5789 struct inode *inode = file->f_path.dentry->d_inode;
5790 struct address_space *mapping = inode->i_mapping;
5791
5792 /*
5793 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5794 * get i_mutex because we are already holding mmap_sem.
5795 */
5796 down_read(&inode->i_alloc_sem);
5797 size = i_size_read(inode);
5798 if (page->mapping != mapping || size <= page_offset(page)
5799 || !PageUptodate(page)) {
5800 /* page got truncated from under us? */
5801 goto out_unlock;
5802 }
5803 ret = 0;
5804 if (PageMappedToDisk(page))
5805 goto out_unlock;
5806
5807 if (page->index == size >> PAGE_CACHE_SHIFT)
5808 len = size & ~PAGE_CACHE_MASK;
5809 else
5810 len = PAGE_CACHE_SIZE;
5811
a827eaff
AK
5812 lock_page(page);
5813 /*
5814 * return if we have all the buffers mapped. This avoid
5815 * the need to call write_begin/write_end which does a
5816 * journal_start/journal_stop which can block and take
5817 * long time
5818 */
2e9ee850 5819 if (page_has_buffers(page)) {
2e9ee850 5820 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
a827eaff
AK
5821 ext4_bh_unmapped)) {
5822 unlock_page(page);
2e9ee850 5823 goto out_unlock;
a827eaff 5824 }
2e9ee850 5825 }
a827eaff 5826 unlock_page(page);
2e9ee850
AK
5827 /*
5828 * OK, we need to fill the hole... Do write_begin write_end
5829 * to do block allocation/reservation.We are not holding
5830 * inode.i__mutex here. That allow * parallel write_begin,
5831 * write_end call. lock_page prevent this from happening
5832 * on the same page though
5833 */
5834 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 5835 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
5836 if (ret < 0)
5837 goto out_unlock;
5838 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 5839 len, len, page, fsdata);
2e9ee850
AK
5840 if (ret < 0)
5841 goto out_unlock;
5842 ret = 0;
5843out_unlock:
c2ec175c
NP
5844 if (ret)
5845 ret = VM_FAULT_SIGBUS;
2e9ee850
AK
5846 up_read(&inode->i_alloc_sem);
5847 return ret;
5848}