]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ext4/inode.c
default to simple_setattr
[net-next-2.6.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
4c0425ff 40#include <linux/workqueue.h>
744692dc 41#include <linux/kernel.h>
5a0e3ad6 42#include <linux/slab.h>
9bffad1e 43
3dcf5451 44#include "ext4_jbd2.h"
ac27a0ec
DK
45#include "xattr.h"
46#include "acl.h"
d2a17637 47#include "ext4_extents.h"
ac27a0ec 48
9bffad1e
TT
49#include <trace/events/ext4.h>
50
a1d6cc56
AK
51#define MPAGE_DA_EXTENT_TAIL 0x01
52
678aaf48
JK
53static inline int ext4_begin_ordered_truncate(struct inode *inode,
54 loff_t new_size)
55{
7f5aa215
JK
56 return jbd2_journal_begin_ordered_truncate(
57 EXT4_SB(inode->i_sb)->s_journal,
58 &EXT4_I(inode)->jinode,
59 new_size);
678aaf48
JK
60}
61
64769240
AT
62static void ext4_invalidatepage(struct page *page, unsigned long offset);
63
ac27a0ec
DK
64/*
65 * Test whether an inode is a fast symlink.
66 */
617ba13b 67static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 68{
617ba13b 69 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
70 (inode->i_sb->s_blocksize >> 9) : 0;
71
72 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
73}
74
ac27a0ec
DK
75/*
76 * Work out how many blocks we need to proceed with the next chunk of a
77 * truncate transaction.
78 */
79static unsigned long blocks_for_truncate(struct inode *inode)
80{
725d26d3 81 ext4_lblk_t needed;
ac27a0ec
DK
82
83 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
84
85 /* Give ourselves just enough room to cope with inodes in which
86 * i_blocks is corrupt: we've seen disk corruptions in the past
87 * which resulted in random data in an inode which looked enough
617ba13b 88 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
89 * will go a bit crazy if that happens, but at least we should
90 * try not to panic the whole kernel. */
91 if (needed < 2)
92 needed = 2;
93
94 /* But we need to bound the transaction so we don't overflow the
95 * journal. */
617ba13b
MC
96 if (needed > EXT4_MAX_TRANS_DATA)
97 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 98
617ba13b 99 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
100}
101
102/*
103 * Truncate transactions can be complex and absolutely huge. So we need to
104 * be able to restart the transaction at a conventient checkpoint to make
105 * sure we don't overflow the journal.
106 *
107 * start_transaction gets us a new handle for a truncate transaction,
108 * and extend_transaction tries to extend the existing one a bit. If
109 * extend fails, we need to propagate the failure up and restart the
110 * transaction in the top-level truncate loop. --sct
111 */
112static handle_t *start_transaction(struct inode *inode)
113{
114 handle_t *result;
115
617ba13b 116 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
117 if (!IS_ERR(result))
118 return result;
119
617ba13b 120 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
121 return result;
122}
123
124/*
125 * Try to extend this transaction for the purposes of truncation.
126 *
127 * Returns 0 if we managed to create more room. If we can't create more
128 * room, and the transaction must be restarted we return 1.
129 */
130static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
131{
0390131b
FM
132 if (!ext4_handle_valid(handle))
133 return 0;
134 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
ac27a0ec 135 return 0;
617ba13b 136 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
137 return 0;
138 return 1;
139}
140
141/*
142 * Restart the transaction associated with *handle. This does a commit,
143 * so before we call here everything must be consistently dirtied against
144 * this transaction.
145 */
fa5d1113 146int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 147 int nblocks)
ac27a0ec 148{
487caeef
JK
149 int ret;
150
151 /*
e35fd660 152 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
153 * moment, get_block can be called only for blocks inside i_size since
154 * page cache has been already dropped and writes are blocked by
155 * i_mutex. So we can safely drop the i_data_sem here.
156 */
0390131b 157 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 158 jbd_debug(2, "restarting handle %p\n", handle);
487caeef
JK
159 up_write(&EXT4_I(inode)->i_data_sem);
160 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
161 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 162 ext4_discard_preallocations(inode);
487caeef
JK
163
164 return ret;
ac27a0ec
DK
165}
166
167/*
168 * Called at the last iput() if i_nlink is zero.
169 */
af5bc92d 170void ext4_delete_inode(struct inode *inode)
ac27a0ec
DK
171{
172 handle_t *handle;
bc965ab3 173 int err;
ac27a0ec 174
907f4554 175 if (!is_bad_inode(inode))
871a2931 176 dquot_initialize(inode);
907f4554 177
678aaf48
JK
178 if (ext4_should_order_data(inode))
179 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
180 truncate_inode_pages(&inode->i_data, 0);
181
182 if (is_bad_inode(inode))
183 goto no_delete;
184
bc965ab3 185 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 186 if (IS_ERR(handle)) {
bc965ab3 187 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
188 /*
189 * If we're going to skip the normal cleanup, we still need to
190 * make sure that the in-core orphan linked list is properly
191 * cleaned up.
192 */
617ba13b 193 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
194 goto no_delete;
195 }
196
197 if (IS_SYNC(inode))
0390131b 198 ext4_handle_sync(handle);
ac27a0ec 199 inode->i_size = 0;
bc965ab3
TT
200 err = ext4_mark_inode_dirty(handle, inode);
201 if (err) {
12062ddd 202 ext4_warning(inode->i_sb,
bc965ab3
TT
203 "couldn't mark inode dirty (err %d)", err);
204 goto stop_handle;
205 }
ac27a0ec 206 if (inode->i_blocks)
617ba13b 207 ext4_truncate(inode);
bc965ab3
TT
208
209 /*
210 * ext4_ext_truncate() doesn't reserve any slop when it
211 * restarts journal transactions; therefore there may not be
212 * enough credits left in the handle to remove the inode from
213 * the orphan list and set the dtime field.
214 */
0390131b 215 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
216 err = ext4_journal_extend(handle, 3);
217 if (err > 0)
218 err = ext4_journal_restart(handle, 3);
219 if (err != 0) {
12062ddd 220 ext4_warning(inode->i_sb,
bc965ab3
TT
221 "couldn't extend journal (err %d)", err);
222 stop_handle:
223 ext4_journal_stop(handle);
224 goto no_delete;
225 }
226 }
227
ac27a0ec 228 /*
617ba13b 229 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 230 * AKPM: I think this can be inside the above `if'.
617ba13b 231 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 232 * deletion of a non-existent orphan - this is because we don't
617ba13b 233 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
234 * (Well, we could do this if we need to, but heck - it works)
235 */
617ba13b
MC
236 ext4_orphan_del(handle, inode);
237 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
238
239 /*
240 * One subtle ordering requirement: if anything has gone wrong
241 * (transaction abort, IO errors, whatever), then we can still
242 * do these next steps (the fs will already have been marked as
243 * having errors), but we can't free the inode if the mark_dirty
244 * fails.
245 */
617ba13b 246 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
247 /* If that failed, just do the required in-core inode clear. */
248 clear_inode(inode);
249 else
617ba13b
MC
250 ext4_free_inode(handle, inode);
251 ext4_journal_stop(handle);
ac27a0ec
DK
252 return;
253no_delete:
254 clear_inode(inode); /* We must guarantee clearing of inode... */
255}
256
257typedef struct {
258 __le32 *p;
259 __le32 key;
260 struct buffer_head *bh;
261} Indirect;
262
263static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
264{
265 p->key = *(p->p = v);
266 p->bh = bh;
267}
268
ac27a0ec 269/**
617ba13b 270 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
271 * @inode: inode in question (we are only interested in its superblock)
272 * @i_block: block number to be parsed
273 * @offsets: array to store the offsets in
8c55e204
DK
274 * @boundary: set this non-zero if the referred-to block is likely to be
275 * followed (on disk) by an indirect block.
ac27a0ec 276 *
617ba13b 277 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
278 * for UNIX filesystems - tree of pointers anchored in the inode, with
279 * data blocks at leaves and indirect blocks in intermediate nodes.
280 * This function translates the block number into path in that tree -
281 * return value is the path length and @offsets[n] is the offset of
282 * pointer to (n+1)th node in the nth one. If @block is out of range
283 * (negative or too large) warning is printed and zero returned.
284 *
285 * Note: function doesn't find node addresses, so no IO is needed. All
286 * we need to know is the capacity of indirect blocks (taken from the
287 * inode->i_sb).
288 */
289
290/*
291 * Portability note: the last comparison (check that we fit into triple
292 * indirect block) is spelled differently, because otherwise on an
293 * architecture with 32-bit longs and 8Kb pages we might get into trouble
294 * if our filesystem had 8Kb blocks. We might use long long, but that would
295 * kill us on x86. Oh, well, at least the sign propagation does not matter -
296 * i_block would have to be negative in the very beginning, so we would not
297 * get there at all.
298 */
299
617ba13b 300static int ext4_block_to_path(struct inode *inode,
de9a55b8
TT
301 ext4_lblk_t i_block,
302 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 303{
617ba13b
MC
304 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
305 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
306 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
307 indirect_blocks = ptrs,
308 double_blocks = (1 << (ptrs_bits * 2));
309 int n = 0;
310 int final = 0;
311
c333e073 312 if (i_block < direct_blocks) {
ac27a0ec
DK
313 offsets[n++] = i_block;
314 final = direct_blocks;
af5bc92d 315 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 316 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
317 offsets[n++] = i_block;
318 final = ptrs;
319 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 320 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
321 offsets[n++] = i_block >> ptrs_bits;
322 offsets[n++] = i_block & (ptrs - 1);
323 final = ptrs;
324 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 325 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
326 offsets[n++] = i_block >> (ptrs_bits * 2);
327 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
328 offsets[n++] = i_block & (ptrs - 1);
329 final = ptrs;
330 } else {
12062ddd 331 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
de9a55b8
TT
332 i_block + direct_blocks +
333 indirect_blocks + double_blocks, inode->i_ino);
ac27a0ec
DK
334 }
335 if (boundary)
336 *boundary = final - 1 - (i_block & (ptrs - 1));
337 return n;
338}
339
fe2c8191 340static int __ext4_check_blockref(const char *function, struct inode *inode,
6fd058f7
TT
341 __le32 *p, unsigned int max)
342{
f73953c0 343 __le32 *bref = p;
6fd058f7
TT
344 unsigned int blk;
345
fe2c8191 346 while (bref < p+max) {
6fd058f7 347 blk = le32_to_cpu(*bref++);
de9a55b8
TT
348 if (blk &&
349 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
6fd058f7 350 blk, 1))) {
24676da4
TT
351 ext4_error_inode(function, inode,
352 "invalid block reference %u", blk);
de9a55b8
TT
353 return -EIO;
354 }
355 }
356 return 0;
fe2c8191
TN
357}
358
359
360#define ext4_check_indirect_blockref(inode, bh) \
de9a55b8 361 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
fe2c8191
TN
362 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
363
364#define ext4_check_inode_blockref(inode) \
de9a55b8 365 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
fe2c8191
TN
366 EXT4_NDIR_BLOCKS)
367
ac27a0ec 368/**
617ba13b 369 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
370 * @inode: inode in question
371 * @depth: depth of the chain (1 - direct pointer, etc.)
372 * @offsets: offsets of pointers in inode/indirect blocks
373 * @chain: place to store the result
374 * @err: here we store the error value
375 *
376 * Function fills the array of triples <key, p, bh> and returns %NULL
377 * if everything went OK or the pointer to the last filled triple
378 * (incomplete one) otherwise. Upon the return chain[i].key contains
379 * the number of (i+1)-th block in the chain (as it is stored in memory,
380 * i.e. little-endian 32-bit), chain[i].p contains the address of that
381 * number (it points into struct inode for i==0 and into the bh->b_data
382 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
383 * block for i>0 and NULL for i==0. In other words, it holds the block
384 * numbers of the chain, addresses they were taken from (and where we can
385 * verify that chain did not change) and buffer_heads hosting these
386 * numbers.
387 *
388 * Function stops when it stumbles upon zero pointer (absent block)
389 * (pointer to last triple returned, *@err == 0)
390 * or when it gets an IO error reading an indirect block
391 * (ditto, *@err == -EIO)
ac27a0ec
DK
392 * or when it reads all @depth-1 indirect blocks successfully and finds
393 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
394 *
395 * Need to be called with
0e855ac8 396 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 397 */
725d26d3
AK
398static Indirect *ext4_get_branch(struct inode *inode, int depth,
399 ext4_lblk_t *offsets,
ac27a0ec
DK
400 Indirect chain[4], int *err)
401{
402 struct super_block *sb = inode->i_sb;
403 Indirect *p = chain;
404 struct buffer_head *bh;
405
406 *err = 0;
407 /* i_data is not going away, no lock needed */
af5bc92d 408 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
409 if (!p->key)
410 goto no_block;
411 while (--depth) {
fe2c8191
TN
412 bh = sb_getblk(sb, le32_to_cpu(p->key));
413 if (unlikely(!bh))
ac27a0ec 414 goto failure;
de9a55b8 415
fe2c8191
TN
416 if (!bh_uptodate_or_lock(bh)) {
417 if (bh_submit_read(bh) < 0) {
418 put_bh(bh);
419 goto failure;
420 }
421 /* validate block references */
422 if (ext4_check_indirect_blockref(inode, bh)) {
423 put_bh(bh);
424 goto failure;
425 }
426 }
de9a55b8 427
af5bc92d 428 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
429 /* Reader: end */
430 if (!p->key)
431 goto no_block;
432 }
433 return NULL;
434
ac27a0ec
DK
435failure:
436 *err = -EIO;
437no_block:
438 return p;
439}
440
441/**
617ba13b 442 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
443 * @inode: owner
444 * @ind: descriptor of indirect block.
445 *
1cc8dcf5 446 * This function returns the preferred place for block allocation.
ac27a0ec
DK
447 * It is used when heuristic for sequential allocation fails.
448 * Rules are:
449 * + if there is a block to the left of our position - allocate near it.
450 * + if pointer will live in indirect block - allocate near that block.
451 * + if pointer will live in inode - allocate in the same
452 * cylinder group.
453 *
454 * In the latter case we colour the starting block by the callers PID to
455 * prevent it from clashing with concurrent allocations for a different inode
456 * in the same block group. The PID is used here so that functionally related
457 * files will be close-by on-disk.
458 *
459 * Caller must make sure that @ind is valid and will stay that way.
460 */
617ba13b 461static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 462{
617ba13b 463 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 464 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 465 __le32 *p;
617ba13b 466 ext4_fsblk_t bg_start;
74d3487f 467 ext4_fsblk_t last_block;
617ba13b 468 ext4_grpblk_t colour;
a4912123
TT
469 ext4_group_t block_group;
470 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
ac27a0ec
DK
471
472 /* Try to find previous block */
473 for (p = ind->p - 1; p >= start; p--) {
474 if (*p)
475 return le32_to_cpu(*p);
476 }
477
478 /* No such thing, so let's try location of indirect block */
479 if (ind->bh)
480 return ind->bh->b_blocknr;
481
482 /*
483 * It is going to be referred to from the inode itself? OK, just put it
484 * into the same cylinder group then.
485 */
a4912123
TT
486 block_group = ei->i_block_group;
487 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
488 block_group &= ~(flex_size-1);
489 if (S_ISREG(inode->i_mode))
490 block_group++;
491 }
492 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
74d3487f
VC
493 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
494
a4912123
TT
495 /*
496 * If we are doing delayed allocation, we don't need take
497 * colour into account.
498 */
499 if (test_opt(inode->i_sb, DELALLOC))
500 return bg_start;
501
74d3487f
VC
502 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
503 colour = (current->pid % 16) *
617ba13b 504 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
505 else
506 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
507 return bg_start + colour;
508}
509
510/**
1cc8dcf5 511 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
512 * @inode: owner
513 * @block: block we want
ac27a0ec 514 * @partial: pointer to the last triple within a chain
ac27a0ec 515 *
1cc8dcf5 516 * Normally this function find the preferred place for block allocation,
fb01bfda 517 * returns it.
fb0a387d
ES
518 * Because this is only used for non-extent files, we limit the block nr
519 * to 32 bits.
ac27a0ec 520 */
725d26d3 521static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
de9a55b8 522 Indirect *partial)
ac27a0ec 523{
fb0a387d
ES
524 ext4_fsblk_t goal;
525
ac27a0ec 526 /*
c2ea3fde 527 * XXX need to get goal block from mballoc's data structures
ac27a0ec 528 */
ac27a0ec 529
fb0a387d
ES
530 goal = ext4_find_near(inode, partial);
531 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
532 return goal;
ac27a0ec
DK
533}
534
535/**
617ba13b 536 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
537 * of direct blocks need to be allocated for the given branch.
538 *
539 * @branch: chain of indirect blocks
540 * @k: number of blocks need for indirect blocks
541 * @blks: number of data blocks to be mapped.
542 * @blocks_to_boundary: the offset in the indirect block
543 *
544 * return the total number of blocks to be allocate, including the
545 * direct and indirect blocks.
546 */
498e5f24 547static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
de9a55b8 548 int blocks_to_boundary)
ac27a0ec 549{
498e5f24 550 unsigned int count = 0;
ac27a0ec
DK
551
552 /*
553 * Simple case, [t,d]Indirect block(s) has not allocated yet
554 * then it's clear blocks on that path have not allocated
555 */
556 if (k > 0) {
557 /* right now we don't handle cross boundary allocation */
558 if (blks < blocks_to_boundary + 1)
559 count += blks;
560 else
561 count += blocks_to_boundary + 1;
562 return count;
563 }
564
565 count++;
566 while (count < blks && count <= blocks_to_boundary &&
567 le32_to_cpu(*(branch[0].p + count)) == 0) {
568 count++;
569 }
570 return count;
571}
572
573/**
617ba13b 574 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
575 * @indirect_blks: the number of blocks need to allocate for indirect
576 * blocks
577 *
578 * @new_blocks: on return it will store the new block numbers for
579 * the indirect blocks(if needed) and the first direct block,
580 * @blks: on return it will store the total number of allocated
581 * direct blocks
582 */
617ba13b 583static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
584 ext4_lblk_t iblock, ext4_fsblk_t goal,
585 int indirect_blks, int blks,
586 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 587{
815a1130 588 struct ext4_allocation_request ar;
ac27a0ec 589 int target, i;
7061eba7 590 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 591 int index = 0;
617ba13b 592 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
593 int ret = 0;
594
595 /*
596 * Here we try to allocate the requested multiple blocks at once,
597 * on a best-effort basis.
598 * To build a branch, we should allocate blocks for
599 * the indirect blocks(if not allocated yet), and at least
600 * the first direct block of this branch. That's the
601 * minimum number of blocks need to allocate(required)
602 */
7061eba7
AK
603 /* first we try to allocate the indirect blocks */
604 target = indirect_blks;
605 while (target > 0) {
ac27a0ec
DK
606 count = target;
607 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
608 current_block = ext4_new_meta_blocks(handle, inode,
609 goal, &count, err);
ac27a0ec
DK
610 if (*err)
611 goto failed_out;
612
273df556
FM
613 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
614 EXT4_ERROR_INODE(inode,
615 "current_block %llu + count %lu > %d!",
616 current_block, count,
617 EXT4_MAX_BLOCK_FILE_PHYS);
618 *err = -EIO;
619 goto failed_out;
620 }
fb0a387d 621
ac27a0ec
DK
622 target -= count;
623 /* allocate blocks for indirect blocks */
624 while (index < indirect_blks && count) {
625 new_blocks[index++] = current_block++;
626 count--;
627 }
7061eba7
AK
628 if (count > 0) {
629 /*
630 * save the new block number
631 * for the first direct block
632 */
633 new_blocks[index] = current_block;
634 printk(KERN_INFO "%s returned more blocks than "
635 "requested\n", __func__);
636 WARN_ON(1);
ac27a0ec 637 break;
7061eba7 638 }
ac27a0ec
DK
639 }
640
7061eba7
AK
641 target = blks - count ;
642 blk_allocated = count;
643 if (!target)
644 goto allocated;
645 /* Now allocate data blocks */
815a1130
TT
646 memset(&ar, 0, sizeof(ar));
647 ar.inode = inode;
648 ar.goal = goal;
649 ar.len = target;
650 ar.logical = iblock;
651 if (S_ISREG(inode->i_mode))
652 /* enable in-core preallocation only for regular files */
653 ar.flags = EXT4_MB_HINT_DATA;
654
655 current_block = ext4_mb_new_blocks(handle, &ar, err);
273df556
FM
656 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
657 EXT4_ERROR_INODE(inode,
658 "current_block %llu + ar.len %d > %d!",
659 current_block, ar.len,
660 EXT4_MAX_BLOCK_FILE_PHYS);
661 *err = -EIO;
662 goto failed_out;
663 }
815a1130 664
7061eba7
AK
665 if (*err && (target == blks)) {
666 /*
667 * if the allocation failed and we didn't allocate
668 * any blocks before
669 */
670 goto failed_out;
671 }
672 if (!*err) {
673 if (target == blks) {
de9a55b8
TT
674 /*
675 * save the new block number
676 * for the first direct block
677 */
7061eba7
AK
678 new_blocks[index] = current_block;
679 }
815a1130 680 blk_allocated += ar.len;
7061eba7
AK
681 }
682allocated:
ac27a0ec 683 /* total number of blocks allocated for direct blocks */
7061eba7 684 ret = blk_allocated;
ac27a0ec
DK
685 *err = 0;
686 return ret;
687failed_out:
af5bc92d 688 for (i = 0; i < index; i++)
e6362609 689 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
ac27a0ec
DK
690 return ret;
691}
692
693/**
617ba13b 694 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
695 * @inode: owner
696 * @indirect_blks: number of allocated indirect blocks
697 * @blks: number of allocated direct blocks
698 * @offsets: offsets (in the blocks) to store the pointers to next.
699 * @branch: place to store the chain in.
700 *
701 * This function allocates blocks, zeroes out all but the last one,
702 * links them into chain and (if we are synchronous) writes them to disk.
703 * In other words, it prepares a branch that can be spliced onto the
704 * inode. It stores the information about that chain in the branch[], in
617ba13b 705 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
706 * we had read the existing part of chain and partial points to the last
707 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 708 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
709 * place chain is disconnected - *branch->p is still zero (we did not
710 * set the last link), but branch->key contains the number that should
711 * be placed into *branch->p to fill that gap.
712 *
713 * If allocation fails we free all blocks we've allocated (and forget
714 * their buffer_heads) and return the error value the from failed
617ba13b 715 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
716 * as described above and return 0.
717 */
617ba13b 718static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
719 ext4_lblk_t iblock, int indirect_blks,
720 int *blks, ext4_fsblk_t goal,
721 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
722{
723 int blocksize = inode->i_sb->s_blocksize;
724 int i, n = 0;
725 int err = 0;
726 struct buffer_head *bh;
727 int num;
617ba13b
MC
728 ext4_fsblk_t new_blocks[4];
729 ext4_fsblk_t current_block;
ac27a0ec 730
7061eba7 731 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
732 *blks, new_blocks, &err);
733 if (err)
734 return err;
735
736 branch[0].key = cpu_to_le32(new_blocks[0]);
737 /*
738 * metadata blocks and data blocks are allocated.
739 */
740 for (n = 1; n <= indirect_blks; n++) {
741 /*
742 * Get buffer_head for parent block, zero it out
743 * and set the pointer to new one, then send
744 * parent to disk.
745 */
746 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
747 branch[n].bh = bh;
748 lock_buffer(bh);
749 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 750 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec 751 if (err) {
6487a9d3
CW
752 /* Don't brelse(bh) here; it's done in
753 * ext4_journal_forget() below */
ac27a0ec 754 unlock_buffer(bh);
ac27a0ec
DK
755 goto failed;
756 }
757
758 memset(bh->b_data, 0, blocksize);
759 branch[n].p = (__le32 *) bh->b_data + offsets[n];
760 branch[n].key = cpu_to_le32(new_blocks[n]);
761 *branch[n].p = branch[n].key;
af5bc92d 762 if (n == indirect_blks) {
ac27a0ec
DK
763 current_block = new_blocks[n];
764 /*
765 * End of chain, update the last new metablock of
766 * the chain to point to the new allocated
767 * data blocks numbers
768 */
de9a55b8 769 for (i = 1; i < num; i++)
ac27a0ec
DK
770 *(branch[n].p + i) = cpu_to_le32(++current_block);
771 }
772 BUFFER_TRACE(bh, "marking uptodate");
773 set_buffer_uptodate(bh);
774 unlock_buffer(bh);
775
0390131b
FM
776 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
777 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
778 if (err)
779 goto failed;
780 }
781 *blks = num;
782 return err;
783failed:
784 /* Allocation failed, free what we already allocated */
e6362609 785 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
ac27a0ec 786 for (i = 1; i <= n ; i++) {
60e6679e 787 /*
e6362609
TT
788 * branch[i].bh is newly allocated, so there is no
789 * need to revoke the block, which is why we don't
790 * need to set EXT4_FREE_BLOCKS_METADATA.
b7e57e7c 791 */
e6362609
TT
792 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
793 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec 794 }
e6362609
TT
795 for (i = n+1; i < indirect_blks; i++)
796 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
ac27a0ec 797
e6362609 798 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
ac27a0ec
DK
799
800 return err;
801}
802
803/**
617ba13b 804 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
805 * @inode: owner
806 * @block: (logical) number of block we are adding
807 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 808 * ext4_alloc_branch)
ac27a0ec
DK
809 * @where: location of missing link
810 * @num: number of indirect blocks we are adding
811 * @blks: number of direct blocks we are adding
812 *
813 * This function fills the missing link and does all housekeeping needed in
814 * inode (->i_blocks, etc.). In case of success we end up with the full
815 * chain to new block and return 0.
816 */
617ba13b 817static int ext4_splice_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
818 ext4_lblk_t block, Indirect *where, int num,
819 int blks)
ac27a0ec
DK
820{
821 int i;
822 int err = 0;
617ba13b 823 ext4_fsblk_t current_block;
ac27a0ec 824
ac27a0ec
DK
825 /*
826 * If we're splicing into a [td]indirect block (as opposed to the
827 * inode) then we need to get write access to the [td]indirect block
828 * before the splice.
829 */
830 if (where->bh) {
831 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 832 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
833 if (err)
834 goto err_out;
835 }
836 /* That's it */
837
838 *where->p = where->key;
839
840 /*
841 * Update the host buffer_head or inode to point to more just allocated
842 * direct blocks blocks
843 */
844 if (num == 0 && blks > 1) {
845 current_block = le32_to_cpu(where->key) + 1;
846 for (i = 1; i < blks; i++)
af5bc92d 847 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
848 }
849
ac27a0ec 850 /* We are done with atomic stuff, now do the rest of housekeeping */
ac27a0ec
DK
851 /* had we spliced it onto indirect block? */
852 if (where->bh) {
853 /*
854 * If we spliced it onto an indirect block, we haven't
855 * altered the inode. Note however that if it is being spliced
856 * onto an indirect block at the very end of the file (the
857 * file is growing) then we *will* alter the inode to reflect
858 * the new i_size. But that is not done here - it is done in
617ba13b 859 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
860 */
861 jbd_debug(5, "splicing indirect only\n");
0390131b
FM
862 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
863 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
ac27a0ec
DK
864 if (err)
865 goto err_out;
866 } else {
867 /*
868 * OK, we spliced it into the inode itself on a direct block.
ac27a0ec 869 */
41591750 870 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
871 jbd_debug(5, "splicing direct\n");
872 }
873 return err;
874
875err_out:
876 for (i = 1; i <= num; i++) {
60e6679e 877 /*
e6362609
TT
878 * branch[i].bh is newly allocated, so there is no
879 * need to revoke the block, which is why we don't
880 * need to set EXT4_FREE_BLOCKS_METADATA.
b7e57e7c 881 */
e6362609
TT
882 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
883 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec 884 }
e6362609
TT
885 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
886 blks, 0);
ac27a0ec
DK
887
888 return err;
889}
890
891/*
e35fd660 892 * The ext4_ind_map_blocks() function handles non-extents inodes
b920c755 893 * (i.e., using the traditional indirect/double-indirect i_blocks
e35fd660 894 * scheme) for ext4_map_blocks().
b920c755 895 *
ac27a0ec
DK
896 * Allocation strategy is simple: if we have to allocate something, we will
897 * have to go the whole way to leaf. So let's do it before attaching anything
898 * to tree, set linkage between the newborn blocks, write them if sync is
899 * required, recheck the path, free and repeat if check fails, otherwise
900 * set the last missing link (that will protect us from any truncate-generated
901 * removals - all blocks on the path are immune now) and possibly force the
902 * write on the parent block.
903 * That has a nice additional property: no special recovery from the failed
904 * allocations is needed - we simply release blocks and do not touch anything
905 * reachable from inode.
906 *
907 * `handle' can be NULL if create == 0.
908 *
ac27a0ec
DK
909 * return > 0, # of blocks mapped or allocated.
910 * return = 0, if plain lookup failed.
911 * return < 0, error case.
c278bfec 912 *
b920c755
TT
913 * The ext4_ind_get_blocks() function should be called with
914 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
915 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
916 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
917 * blocks.
ac27a0ec 918 */
e35fd660
TT
919static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
920 struct ext4_map_blocks *map,
de9a55b8 921 int flags)
ac27a0ec
DK
922{
923 int err = -EIO;
725d26d3 924 ext4_lblk_t offsets[4];
ac27a0ec
DK
925 Indirect chain[4];
926 Indirect *partial;
617ba13b 927 ext4_fsblk_t goal;
ac27a0ec
DK
928 int indirect_blks;
929 int blocks_to_boundary = 0;
930 int depth;
ac27a0ec 931 int count = 0;
617ba13b 932 ext4_fsblk_t first_block = 0;
ac27a0ec 933
12e9b892 934 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
c2177057 935 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
e35fd660 936 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
de9a55b8 937 &blocks_to_boundary);
ac27a0ec
DK
938
939 if (depth == 0)
940 goto out;
941
617ba13b 942 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
943
944 /* Simplest case - block found, no allocation needed */
945 if (!partial) {
946 first_block = le32_to_cpu(chain[depth - 1].key);
ac27a0ec
DK
947 count++;
948 /*map more blocks*/
e35fd660 949 while (count < map->m_len && count <= blocks_to_boundary) {
617ba13b 950 ext4_fsblk_t blk;
ac27a0ec 951
ac27a0ec
DK
952 blk = le32_to_cpu(*(chain[depth-1].p + count));
953
954 if (blk == first_block + count)
955 count++;
956 else
957 break;
958 }
c278bfec 959 goto got_it;
ac27a0ec
DK
960 }
961
962 /* Next simple case - plain lookup or failed read of indirect block */
c2177057 963 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
ac27a0ec
DK
964 goto cleanup;
965
ac27a0ec 966 /*
c2ea3fde 967 * Okay, we need to do block allocation.
ac27a0ec 968 */
e35fd660 969 goal = ext4_find_goal(inode, map->m_lblk, partial);
ac27a0ec
DK
970
971 /* the number of blocks need to allocate for [d,t]indirect blocks */
972 indirect_blks = (chain + depth) - partial - 1;
973
974 /*
975 * Next look up the indirect map to count the totoal number of
976 * direct blocks to allocate for this branch.
977 */
617ba13b 978 count = ext4_blks_to_allocate(partial, indirect_blks,
e35fd660 979 map->m_len, blocks_to_boundary);
ac27a0ec 980 /*
617ba13b 981 * Block out ext4_truncate while we alter the tree
ac27a0ec 982 */
e35fd660 983 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
de9a55b8
TT
984 &count, goal,
985 offsets + (partial - chain), partial);
ac27a0ec
DK
986
987 /*
617ba13b 988 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
989 * on the new chain if there is a failure, but that risks using
990 * up transaction credits, especially for bitmaps where the
991 * credits cannot be returned. Can we handle this somehow? We
992 * may need to return -EAGAIN upwards in the worst case. --sct
993 */
994 if (!err)
e35fd660 995 err = ext4_splice_branch(handle, inode, map->m_lblk,
de9a55b8 996 partial, indirect_blks, count);
2bba702d 997 if (err)
ac27a0ec
DK
998 goto cleanup;
999
e35fd660 1000 map->m_flags |= EXT4_MAP_NEW;
b436b9be
JK
1001
1002 ext4_update_inode_fsync_trans(handle, inode, 1);
ac27a0ec 1003got_it:
e35fd660
TT
1004 map->m_flags |= EXT4_MAP_MAPPED;
1005 map->m_pblk = le32_to_cpu(chain[depth-1].key);
1006 map->m_len = count;
ac27a0ec 1007 if (count > blocks_to_boundary)
e35fd660 1008 map->m_flags |= EXT4_MAP_BOUNDARY;
ac27a0ec
DK
1009 err = count;
1010 /* Clean up and exit */
1011 partial = chain + depth - 1; /* the whole chain */
1012cleanup:
1013 while (partial > chain) {
1014 BUFFER_TRACE(partial->bh, "call brelse");
1015 brelse(partial->bh);
1016 partial--;
1017 }
ac27a0ec
DK
1018out:
1019 return err;
1020}
1021
a9e7f447
DM
1022#ifdef CONFIG_QUOTA
1023qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 1024{
a9e7f447 1025 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 1026}
a9e7f447 1027#endif
9d0be502 1028
12219aea
AK
1029/*
1030 * Calculate the number of metadata blocks need to reserve
9d0be502 1031 * to allocate a new block at @lblocks for non extent file based file
12219aea 1032 */
9d0be502
TT
1033static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1034 sector_t lblock)
12219aea 1035{
9d0be502 1036 struct ext4_inode_info *ei = EXT4_I(inode);
d330a5be 1037 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
9d0be502 1038 int blk_bits;
12219aea 1039
9d0be502
TT
1040 if (lblock < EXT4_NDIR_BLOCKS)
1041 return 0;
12219aea 1042
9d0be502 1043 lblock -= EXT4_NDIR_BLOCKS;
12219aea 1044
9d0be502
TT
1045 if (ei->i_da_metadata_calc_len &&
1046 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1047 ei->i_da_metadata_calc_len++;
1048 return 0;
1049 }
1050 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1051 ei->i_da_metadata_calc_len = 1;
d330a5be 1052 blk_bits = order_base_2(lblock);
9d0be502 1053 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
12219aea
AK
1054}
1055
1056/*
1057 * Calculate the number of metadata blocks need to reserve
9d0be502 1058 * to allocate a block located at @lblock
12219aea 1059 */
9d0be502 1060static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
12219aea 1061{
12e9b892 1062 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 1063 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 1064
9d0be502 1065 return ext4_indirect_calc_metadata_amount(inode, lblock);
12219aea
AK
1066}
1067
0637c6f4
TT
1068/*
1069 * Called with i_data_sem down, which is important since we can call
1070 * ext4_discard_preallocations() from here.
1071 */
5f634d06
AK
1072void ext4_da_update_reserve_space(struct inode *inode,
1073 int used, int quota_claim)
12219aea
AK
1074{
1075 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1076 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
1077
1078 spin_lock(&ei->i_block_reservation_lock);
f8ec9d68 1079 trace_ext4_da_update_reserve_space(inode, used);
0637c6f4
TT
1080 if (unlikely(used > ei->i_reserved_data_blocks)) {
1081 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1082 "with only %d reserved data blocks\n",
1083 __func__, inode->i_ino, used,
1084 ei->i_reserved_data_blocks);
1085 WARN_ON(1);
1086 used = ei->i_reserved_data_blocks;
1087 }
12219aea 1088
0637c6f4
TT
1089 /* Update per-inode reservations */
1090 ei->i_reserved_data_blocks -= used;
0637c6f4 1091 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
72b8ab9d
ES
1092 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1093 used + ei->i_allocated_meta_blocks);
0637c6f4 1094 ei->i_allocated_meta_blocks = 0;
6bc6e63f 1095
0637c6f4
TT
1096 if (ei->i_reserved_data_blocks == 0) {
1097 /*
1098 * We can release all of the reserved metadata blocks
1099 * only when we have written all of the delayed
1100 * allocation blocks.
1101 */
72b8ab9d
ES
1102 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1103 ei->i_reserved_meta_blocks);
ee5f4d9c 1104 ei->i_reserved_meta_blocks = 0;
9d0be502 1105 ei->i_da_metadata_calc_len = 0;
6bc6e63f 1106 }
12219aea 1107 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1108
72b8ab9d
ES
1109 /* Update quota subsystem for data blocks */
1110 if (quota_claim)
5dd4056d 1111 dquot_claim_block(inode, used);
72b8ab9d 1112 else {
5f634d06
AK
1113 /*
1114 * We did fallocate with an offset that is already delayed
1115 * allocated. So on delayed allocated writeback we should
72b8ab9d 1116 * not re-claim the quota for fallocated blocks.
5f634d06 1117 */
72b8ab9d 1118 dquot_release_reservation_block(inode, used);
5f634d06 1119 }
d6014301
AK
1120
1121 /*
1122 * If we have done all the pending block allocations and if
1123 * there aren't any writers on the inode, we can discard the
1124 * inode's preallocations.
1125 */
0637c6f4
TT
1126 if ((ei->i_reserved_data_blocks == 0) &&
1127 (atomic_read(&inode->i_writecount) == 0))
d6014301 1128 ext4_discard_preallocations(inode);
12219aea
AK
1129}
1130
24676da4
TT
1131static int check_block_validity(struct inode *inode, const char *func,
1132 struct ext4_map_blocks *map)
6fd058f7 1133{
24676da4
TT
1134 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1135 map->m_len)) {
1136 ext4_error_inode(func, inode,
1137 "lblock %lu mapped to illegal pblock %llu "
1138 "(length %d)", (unsigned long) map->m_lblk,
1139 map->m_pblk, map->m_len);
6fd058f7
TT
1140 return -EIO;
1141 }
1142 return 0;
1143}
1144
55138e0b 1145/*
1f94533d
TT
1146 * Return the number of contiguous dirty pages in a given inode
1147 * starting at page frame idx.
55138e0b
TT
1148 */
1149static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1150 unsigned int max_pages)
1151{
1152 struct address_space *mapping = inode->i_mapping;
1153 pgoff_t index;
1154 struct pagevec pvec;
1155 pgoff_t num = 0;
1156 int i, nr_pages, done = 0;
1157
1158 if (max_pages == 0)
1159 return 0;
1160 pagevec_init(&pvec, 0);
1161 while (!done) {
1162 index = idx;
1163 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1164 PAGECACHE_TAG_DIRTY,
1165 (pgoff_t)PAGEVEC_SIZE);
1166 if (nr_pages == 0)
1167 break;
1168 for (i = 0; i < nr_pages; i++) {
1169 struct page *page = pvec.pages[i];
1170 struct buffer_head *bh, *head;
1171
1172 lock_page(page);
1173 if (unlikely(page->mapping != mapping) ||
1174 !PageDirty(page) ||
1175 PageWriteback(page) ||
1176 page->index != idx) {
1177 done = 1;
1178 unlock_page(page);
1179 break;
1180 }
1f94533d
TT
1181 if (page_has_buffers(page)) {
1182 bh = head = page_buffers(page);
1183 do {
1184 if (!buffer_delay(bh) &&
1185 !buffer_unwritten(bh))
1186 done = 1;
1187 bh = bh->b_this_page;
1188 } while (!done && (bh != head));
1189 }
55138e0b
TT
1190 unlock_page(page);
1191 if (done)
1192 break;
1193 idx++;
1194 num++;
1195 if (num >= max_pages)
1196 break;
1197 }
1198 pagevec_release(&pvec);
1199 }
1200 return num;
1201}
1202
f5ab0d1f 1203/*
e35fd660 1204 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 1205 * and returns if the blocks are already mapped.
f5ab0d1f 1206 *
f5ab0d1f
MC
1207 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1208 * and store the allocated blocks in the result buffer head and mark it
1209 * mapped.
1210 *
e35fd660
TT
1211 * If file type is extents based, it will call ext4_ext_map_blocks(),
1212 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
1213 * based files
1214 *
1215 * On success, it returns the number of blocks being mapped or allocate.
1216 * if create==0 and the blocks are pre-allocated and uninitialized block,
1217 * the result buffer head is unmapped. If the create ==1, it will make sure
1218 * the buffer head is mapped.
1219 *
1220 * It returns 0 if plain look up failed (blocks have not been allocated), in
1221 * that casem, buffer head is unmapped
1222 *
1223 * It returns the error in case of allocation failure.
1224 */
e35fd660
TT
1225int ext4_map_blocks(handle_t *handle, struct inode *inode,
1226 struct ext4_map_blocks *map, int flags)
0e855ac8
AK
1227{
1228 int retval;
f5ab0d1f 1229
e35fd660
TT
1230 map->m_flags = 0;
1231 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1232 "logical block %lu\n", inode->i_ino, flags, map->m_len,
1233 (unsigned long) map->m_lblk);
4df3d265 1234 /*
b920c755
TT
1235 * Try to see if we can get the block without requesting a new
1236 * file system block.
4df3d265
AK
1237 */
1238 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 1239 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 1240 retval = ext4_ext_map_blocks(handle, inode, map, 0);
0e855ac8 1241 } else {
e35fd660 1242 retval = ext4_ind_map_blocks(handle, inode, map, 0);
0e855ac8 1243 }
4df3d265 1244 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 1245
e35fd660 1246 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
24676da4 1247 int ret = check_block_validity(inode, __func__, map);
6fd058f7
TT
1248 if (ret != 0)
1249 return ret;
1250 }
1251
f5ab0d1f 1252 /* If it is only a block(s) look up */
c2177057 1253 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
1254 return retval;
1255
1256 /*
1257 * Returns if the blocks have already allocated
1258 *
1259 * Note that if blocks have been preallocated
1260 * ext4_ext_get_block() returns th create = 0
1261 * with buffer head unmapped.
1262 */
e35fd660 1263 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
1264 return retval;
1265
2a8964d6
AK
1266 /*
1267 * When we call get_blocks without the create flag, the
1268 * BH_Unwritten flag could have gotten set if the blocks
1269 * requested were part of a uninitialized extent. We need to
1270 * clear this flag now that we are committed to convert all or
1271 * part of the uninitialized extent to be an initialized
1272 * extent. This is because we need to avoid the combination
1273 * of BH_Unwritten and BH_Mapped flags being simultaneously
1274 * set on the buffer_head.
1275 */
e35fd660 1276 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
2a8964d6 1277
4df3d265 1278 /*
f5ab0d1f
MC
1279 * New blocks allocate and/or writing to uninitialized extent
1280 * will possibly result in updating i_data, so we take
1281 * the write lock of i_data_sem, and call get_blocks()
1282 * with create == 1 flag.
4df3d265
AK
1283 */
1284 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1285
1286 /*
1287 * if the caller is from delayed allocation writeout path
1288 * we have already reserved fs blocks for allocation
1289 * let the underlying get_block() function know to
1290 * avoid double accounting
1291 */
c2177057 1292 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1293 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1294 /*
1295 * We need to check for EXT4 here because migrate
1296 * could have changed the inode type in between
1297 */
12e9b892 1298 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 1299 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 1300 } else {
e35fd660 1301 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 1302
e35fd660 1303 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
1304 /*
1305 * We allocated new blocks which will result in
1306 * i_data's format changing. Force the migrate
1307 * to fail by clearing migrate flags
1308 */
19f5fb7a 1309 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 1310 }
d2a17637 1311
5f634d06
AK
1312 /*
1313 * Update reserved blocks/metadata blocks after successful
1314 * block allocation which had been deferred till now. We don't
1315 * support fallocate for non extent files. So we can update
1316 * reserve space here.
1317 */
1318 if ((retval > 0) &&
1296cc85 1319 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
1320 ext4_da_update_reserve_space(inode, retval, 1);
1321 }
2ac3b6e0 1322 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1323 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
2ac3b6e0 1324
4df3d265 1325 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 1326 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
24676da4
TT
1327 int ret = check_block_validity(inode,
1328 "ext4_map_blocks_after_alloc",
1329 map);
6fd058f7
TT
1330 if (ret != 0)
1331 return ret;
1332 }
0e855ac8
AK
1333 return retval;
1334}
1335
f3bd1f3f
MC
1336/* Maximum number of blocks we map for direct IO at once. */
1337#define DIO_MAX_BLOCKS 4096
1338
2ed88685
TT
1339static int _ext4_get_block(struct inode *inode, sector_t iblock,
1340 struct buffer_head *bh, int flags)
ac27a0ec 1341{
3e4fdaf8 1342 handle_t *handle = ext4_journal_current_handle();
2ed88685 1343 struct ext4_map_blocks map;
7fb5409d 1344 int ret = 0, started = 0;
f3bd1f3f 1345 int dio_credits;
ac27a0ec 1346
2ed88685
TT
1347 map.m_lblk = iblock;
1348 map.m_len = bh->b_size >> inode->i_blkbits;
1349
1350 if (flags && !handle) {
7fb5409d 1351 /* Direct IO write... */
2ed88685
TT
1352 if (map.m_len > DIO_MAX_BLOCKS)
1353 map.m_len = DIO_MAX_BLOCKS;
1354 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
f3bd1f3f 1355 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1356 if (IS_ERR(handle)) {
ac27a0ec 1357 ret = PTR_ERR(handle);
2ed88685 1358 return ret;
ac27a0ec 1359 }
7fb5409d 1360 started = 1;
ac27a0ec
DK
1361 }
1362
2ed88685 1363 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 1364 if (ret > 0) {
2ed88685
TT
1365 map_bh(bh, inode->i_sb, map.m_pblk);
1366 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1367 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 1368 ret = 0;
ac27a0ec 1369 }
7fb5409d
JK
1370 if (started)
1371 ext4_journal_stop(handle);
ac27a0ec
DK
1372 return ret;
1373}
1374
2ed88685
TT
1375int ext4_get_block(struct inode *inode, sector_t iblock,
1376 struct buffer_head *bh, int create)
1377{
1378 return _ext4_get_block(inode, iblock, bh,
1379 create ? EXT4_GET_BLOCKS_CREATE : 0);
1380}
1381
ac27a0ec
DK
1382/*
1383 * `handle' can be NULL if create is zero
1384 */
617ba13b 1385struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1386 ext4_lblk_t block, int create, int *errp)
ac27a0ec 1387{
2ed88685
TT
1388 struct ext4_map_blocks map;
1389 struct buffer_head *bh;
ac27a0ec
DK
1390 int fatal = 0, err;
1391
1392 J_ASSERT(handle != NULL || create == 0);
1393
2ed88685
TT
1394 map.m_lblk = block;
1395 map.m_len = 1;
1396 err = ext4_map_blocks(handle, inode, &map,
1397 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 1398
2ed88685
TT
1399 if (err < 0)
1400 *errp = err;
1401 if (err <= 0)
1402 return NULL;
1403 *errp = 0;
1404
1405 bh = sb_getblk(inode->i_sb, map.m_pblk);
1406 if (!bh) {
1407 *errp = -EIO;
1408 return NULL;
ac27a0ec 1409 }
2ed88685
TT
1410 if (map.m_flags & EXT4_MAP_NEW) {
1411 J_ASSERT(create != 0);
1412 J_ASSERT(handle != NULL);
ac27a0ec 1413
2ed88685
TT
1414 /*
1415 * Now that we do not always journal data, we should
1416 * keep in mind whether this should always journal the
1417 * new buffer as metadata. For now, regular file
1418 * writes use ext4_get_block instead, so it's not a
1419 * problem.
1420 */
1421 lock_buffer(bh);
1422 BUFFER_TRACE(bh, "call get_create_access");
1423 fatal = ext4_journal_get_create_access(handle, bh);
1424 if (!fatal && !buffer_uptodate(bh)) {
1425 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1426 set_buffer_uptodate(bh);
ac27a0ec 1427 }
2ed88685
TT
1428 unlock_buffer(bh);
1429 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1430 err = ext4_handle_dirty_metadata(handle, inode, bh);
1431 if (!fatal)
1432 fatal = err;
1433 } else {
1434 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 1435 }
2ed88685
TT
1436 if (fatal) {
1437 *errp = fatal;
1438 brelse(bh);
1439 bh = NULL;
1440 }
1441 return bh;
ac27a0ec
DK
1442}
1443
617ba13b 1444struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1445 ext4_lblk_t block, int create, int *err)
ac27a0ec 1446{
af5bc92d 1447 struct buffer_head *bh;
ac27a0ec 1448
617ba13b 1449 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1450 if (!bh)
1451 return bh;
1452 if (buffer_uptodate(bh))
1453 return bh;
1454 ll_rw_block(READ_META, 1, &bh);
1455 wait_on_buffer(bh);
1456 if (buffer_uptodate(bh))
1457 return bh;
1458 put_bh(bh);
1459 *err = -EIO;
1460 return NULL;
1461}
1462
af5bc92d
TT
1463static int walk_page_buffers(handle_t *handle,
1464 struct buffer_head *head,
1465 unsigned from,
1466 unsigned to,
1467 int *partial,
1468 int (*fn)(handle_t *handle,
1469 struct buffer_head *bh))
ac27a0ec
DK
1470{
1471 struct buffer_head *bh;
1472 unsigned block_start, block_end;
1473 unsigned blocksize = head->b_size;
1474 int err, ret = 0;
1475 struct buffer_head *next;
1476
af5bc92d
TT
1477 for (bh = head, block_start = 0;
1478 ret == 0 && (bh != head || !block_start);
de9a55b8 1479 block_start = block_end, bh = next) {
ac27a0ec
DK
1480 next = bh->b_this_page;
1481 block_end = block_start + blocksize;
1482 if (block_end <= from || block_start >= to) {
1483 if (partial && !buffer_uptodate(bh))
1484 *partial = 1;
1485 continue;
1486 }
1487 err = (*fn)(handle, bh);
1488 if (!ret)
1489 ret = err;
1490 }
1491 return ret;
1492}
1493
1494/*
1495 * To preserve ordering, it is essential that the hole instantiation and
1496 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1497 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1498 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1499 * prepare_write() is the right place.
1500 *
617ba13b
MC
1501 * Also, this function can nest inside ext4_writepage() ->
1502 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1503 * has generated enough buffer credits to do the whole page. So we won't
1504 * block on the journal in that case, which is good, because the caller may
1505 * be PF_MEMALLOC.
1506 *
617ba13b 1507 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1508 * quota file writes. If we were to commit the transaction while thus
1509 * reentered, there can be a deadlock - we would be holding a quota
1510 * lock, and the commit would never complete if another thread had a
1511 * transaction open and was blocking on the quota lock - a ranking
1512 * violation.
1513 *
dab291af 1514 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1515 * will _not_ run commit under these circumstances because handle->h_ref
1516 * is elevated. We'll still have enough credits for the tiny quotafile
1517 * write.
1518 */
1519static int do_journal_get_write_access(handle_t *handle,
de9a55b8 1520 struct buffer_head *bh)
ac27a0ec
DK
1521{
1522 if (!buffer_mapped(bh) || buffer_freed(bh))
1523 return 0;
617ba13b 1524 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1525}
1526
b9a4207d
JK
1527/*
1528 * Truncate blocks that were not used by write. We have to truncate the
1529 * pagecache as well so that corresponding buffers get properly unmapped.
1530 */
1531static void ext4_truncate_failed_write(struct inode *inode)
1532{
1533 truncate_inode_pages(inode->i_mapping, inode->i_size);
1534 ext4_truncate(inode);
1535}
1536
744692dc
JZ
1537static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1538 struct buffer_head *bh_result, int create);
bfc1af65 1539static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1540 loff_t pos, unsigned len, unsigned flags,
1541 struct page **pagep, void **fsdata)
ac27a0ec 1542{
af5bc92d 1543 struct inode *inode = mapping->host;
1938a150 1544 int ret, needed_blocks;
ac27a0ec
DK
1545 handle_t *handle;
1546 int retries = 0;
af5bc92d 1547 struct page *page;
de9a55b8 1548 pgoff_t index;
af5bc92d 1549 unsigned from, to;
bfc1af65 1550
9bffad1e 1551 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1552 /*
1553 * Reserve one block more for addition to orphan list in case
1554 * we allocate blocks but write fails for some reason
1555 */
1556 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 1557 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1558 from = pos & (PAGE_CACHE_SIZE - 1);
1559 to = from + len;
ac27a0ec
DK
1560
1561retry:
af5bc92d
TT
1562 handle = ext4_journal_start(inode, needed_blocks);
1563 if (IS_ERR(handle)) {
1564 ret = PTR_ERR(handle);
1565 goto out;
7479d2b9 1566 }
ac27a0ec 1567
ebd3610b
JK
1568 /* We cannot recurse into the filesystem as the transaction is already
1569 * started */
1570 flags |= AOP_FLAG_NOFS;
1571
54566b2c 1572 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1573 if (!page) {
1574 ext4_journal_stop(handle);
1575 ret = -ENOMEM;
1576 goto out;
1577 }
1578 *pagep = page;
1579
744692dc 1580 if (ext4_should_dioread_nolock(inode))
6e1db88d 1581 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 1582 else
6e1db88d 1583 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
1584
1585 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1586 ret = walk_page_buffers(handle, page_buffers(page),
1587 from, to, NULL, do_journal_get_write_access);
1588 }
bfc1af65
NP
1589
1590 if (ret) {
af5bc92d 1591 unlock_page(page);
af5bc92d 1592 page_cache_release(page);
ae4d5372 1593 /*
6e1db88d 1594 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1595 * outside i_size. Trim these off again. Don't need
1596 * i_size_read because we hold i_mutex.
1938a150
AK
1597 *
1598 * Add inode to orphan list in case we crash before
1599 * truncate finishes
ae4d5372 1600 */
ffacfa7a 1601 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1602 ext4_orphan_add(handle, inode);
1603
1604 ext4_journal_stop(handle);
1605 if (pos + len > inode->i_size) {
b9a4207d 1606 ext4_truncate_failed_write(inode);
de9a55b8 1607 /*
ffacfa7a 1608 * If truncate failed early the inode might
1938a150
AK
1609 * still be on the orphan list; we need to
1610 * make sure the inode is removed from the
1611 * orphan list in that case.
1612 */
1613 if (inode->i_nlink)
1614 ext4_orphan_del(NULL, inode);
1615 }
bfc1af65
NP
1616 }
1617
617ba13b 1618 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1619 goto retry;
7479d2b9 1620out:
ac27a0ec
DK
1621 return ret;
1622}
1623
bfc1af65
NP
1624/* For write_end() in data=journal mode */
1625static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1626{
1627 if (!buffer_mapped(bh) || buffer_freed(bh))
1628 return 0;
1629 set_buffer_uptodate(bh);
0390131b 1630 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1631}
1632
f8514083 1633static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
1634 struct address_space *mapping,
1635 loff_t pos, unsigned len, unsigned copied,
1636 struct page *page, void *fsdata)
f8514083
AK
1637{
1638 int i_size_changed = 0;
1639 struct inode *inode = mapping->host;
1640 handle_t *handle = ext4_journal_current_handle();
1641
1642 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1643
1644 /*
1645 * No need to use i_size_read() here, the i_size
1646 * cannot change under us because we hold i_mutex.
1647 *
1648 * But it's important to update i_size while still holding page lock:
1649 * page writeout could otherwise come in and zero beyond i_size.
1650 */
1651 if (pos + copied > inode->i_size) {
1652 i_size_write(inode, pos + copied);
1653 i_size_changed = 1;
1654 }
1655
1656 if (pos + copied > EXT4_I(inode)->i_disksize) {
1657 /* We need to mark inode dirty even if
1658 * new_i_size is less that inode->i_size
1659 * bu greater than i_disksize.(hint delalloc)
1660 */
1661 ext4_update_i_disksize(inode, (pos + copied));
1662 i_size_changed = 1;
1663 }
1664 unlock_page(page);
1665 page_cache_release(page);
1666
1667 /*
1668 * Don't mark the inode dirty under page lock. First, it unnecessarily
1669 * makes the holding time of page lock longer. Second, it forces lock
1670 * ordering of page lock and transaction start for journaling
1671 * filesystems.
1672 */
1673 if (i_size_changed)
1674 ext4_mark_inode_dirty(handle, inode);
1675
1676 return copied;
1677}
1678
ac27a0ec
DK
1679/*
1680 * We need to pick up the new inode size which generic_commit_write gave us
1681 * `file' can be NULL - eg, when called from page_symlink().
1682 *
617ba13b 1683 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1684 * buffers are managed internally.
1685 */
bfc1af65 1686static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
1687 struct address_space *mapping,
1688 loff_t pos, unsigned len, unsigned copied,
1689 struct page *page, void *fsdata)
ac27a0ec 1690{
617ba13b 1691 handle_t *handle = ext4_journal_current_handle();
cf108bca 1692 struct inode *inode = mapping->host;
ac27a0ec
DK
1693 int ret = 0, ret2;
1694
9bffad1e 1695 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 1696 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1697
1698 if (ret == 0) {
f8514083 1699 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1700 page, fsdata);
f8a87d89 1701 copied = ret2;
ffacfa7a 1702 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1703 /* if we have allocated more blocks and copied
1704 * less. We will have blocks allocated outside
1705 * inode->i_size. So truncate them
1706 */
1707 ext4_orphan_add(handle, inode);
f8a87d89
RK
1708 if (ret2 < 0)
1709 ret = ret2;
ac27a0ec 1710 }
617ba13b 1711 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1712 if (!ret)
1713 ret = ret2;
bfc1af65 1714
f8514083 1715 if (pos + len > inode->i_size) {
b9a4207d 1716 ext4_truncate_failed_write(inode);
de9a55b8 1717 /*
ffacfa7a 1718 * If truncate failed early the inode might still be
f8514083
AK
1719 * on the orphan list; we need to make sure the inode
1720 * is removed from the orphan list in that case.
1721 */
1722 if (inode->i_nlink)
1723 ext4_orphan_del(NULL, inode);
1724 }
1725
1726
bfc1af65 1727 return ret ? ret : copied;
ac27a0ec
DK
1728}
1729
bfc1af65 1730static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
1731 struct address_space *mapping,
1732 loff_t pos, unsigned len, unsigned copied,
1733 struct page *page, void *fsdata)
ac27a0ec 1734{
617ba13b 1735 handle_t *handle = ext4_journal_current_handle();
cf108bca 1736 struct inode *inode = mapping->host;
ac27a0ec 1737 int ret = 0, ret2;
ac27a0ec 1738
9bffad1e 1739 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 1740 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1741 page, fsdata);
f8a87d89 1742 copied = ret2;
ffacfa7a 1743 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1744 /* if we have allocated more blocks and copied
1745 * less. We will have blocks allocated outside
1746 * inode->i_size. So truncate them
1747 */
1748 ext4_orphan_add(handle, inode);
1749
f8a87d89
RK
1750 if (ret2 < 0)
1751 ret = ret2;
ac27a0ec 1752
617ba13b 1753 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1754 if (!ret)
1755 ret = ret2;
bfc1af65 1756
f8514083 1757 if (pos + len > inode->i_size) {
b9a4207d 1758 ext4_truncate_failed_write(inode);
de9a55b8 1759 /*
ffacfa7a 1760 * If truncate failed early the inode might still be
f8514083
AK
1761 * on the orphan list; we need to make sure the inode
1762 * is removed from the orphan list in that case.
1763 */
1764 if (inode->i_nlink)
1765 ext4_orphan_del(NULL, inode);
1766 }
1767
bfc1af65 1768 return ret ? ret : copied;
ac27a0ec
DK
1769}
1770
bfc1af65 1771static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1772 struct address_space *mapping,
1773 loff_t pos, unsigned len, unsigned copied,
1774 struct page *page, void *fsdata)
ac27a0ec 1775{
617ba13b 1776 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1777 struct inode *inode = mapping->host;
ac27a0ec
DK
1778 int ret = 0, ret2;
1779 int partial = 0;
bfc1af65 1780 unsigned from, to;
cf17fea6 1781 loff_t new_i_size;
ac27a0ec 1782
9bffad1e 1783 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1784 from = pos & (PAGE_CACHE_SIZE - 1);
1785 to = from + len;
1786
1787 if (copied < len) {
1788 if (!PageUptodate(page))
1789 copied = 0;
1790 page_zero_new_buffers(page, from+copied, to);
1791 }
ac27a0ec
DK
1792
1793 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1794 to, &partial, write_end_fn);
ac27a0ec
DK
1795 if (!partial)
1796 SetPageUptodate(page);
cf17fea6
AK
1797 new_i_size = pos + copied;
1798 if (new_i_size > inode->i_size)
bfc1af65 1799 i_size_write(inode, pos+copied);
19f5fb7a 1800 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
cf17fea6
AK
1801 if (new_i_size > EXT4_I(inode)->i_disksize) {
1802 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1803 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1804 if (!ret)
1805 ret = ret2;
1806 }
bfc1af65 1807
cf108bca 1808 unlock_page(page);
f8514083 1809 page_cache_release(page);
ffacfa7a 1810 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1811 /* if we have allocated more blocks and copied
1812 * less. We will have blocks allocated outside
1813 * inode->i_size. So truncate them
1814 */
1815 ext4_orphan_add(handle, inode);
1816
617ba13b 1817 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1818 if (!ret)
1819 ret = ret2;
f8514083 1820 if (pos + len > inode->i_size) {
b9a4207d 1821 ext4_truncate_failed_write(inode);
de9a55b8 1822 /*
ffacfa7a 1823 * If truncate failed early the inode might still be
f8514083
AK
1824 * on the orphan list; we need to make sure the inode
1825 * is removed from the orphan list in that case.
1826 */
1827 if (inode->i_nlink)
1828 ext4_orphan_del(NULL, inode);
1829 }
bfc1af65
NP
1830
1831 return ret ? ret : copied;
ac27a0ec 1832}
d2a17637 1833
9d0be502
TT
1834/*
1835 * Reserve a single block located at lblock
1836 */
1837static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
d2a17637 1838{
030ba6bc 1839 int retries = 0;
60e58e0f 1840 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1841 struct ext4_inode_info *ei = EXT4_I(inode);
72b8ab9d 1842 unsigned long md_needed;
5dd4056d 1843 int ret;
d2a17637
MC
1844
1845 /*
1846 * recalculate the amount of metadata blocks to reserve
1847 * in order to allocate nrblocks
1848 * worse case is one extent per block
1849 */
030ba6bc 1850repeat:
0637c6f4 1851 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1852 md_needed = ext4_calc_metadata_amount(inode, lblock);
f8ec9d68 1853 trace_ext4_da_reserve_space(inode, md_needed);
0637c6f4 1854 spin_unlock(&ei->i_block_reservation_lock);
d2a17637 1855
60e58e0f 1856 /*
72b8ab9d
ES
1857 * We will charge metadata quota at writeout time; this saves
1858 * us from metadata over-estimation, though we may go over by
1859 * a small amount in the end. Here we just reserve for data.
60e58e0f 1860 */
72b8ab9d 1861 ret = dquot_reserve_block(inode, 1);
5dd4056d
CH
1862 if (ret)
1863 return ret;
72b8ab9d
ES
1864 /*
1865 * We do still charge estimated metadata to the sb though;
1866 * we cannot afford to run out of free blocks.
1867 */
9d0be502 1868 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
72b8ab9d 1869 dquot_release_reservation_block(inode, 1);
030ba6bc
AK
1870 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1871 yield();
1872 goto repeat;
1873 }
d2a17637
MC
1874 return -ENOSPC;
1875 }
0637c6f4 1876 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1877 ei->i_reserved_data_blocks++;
0637c6f4
TT
1878 ei->i_reserved_meta_blocks += md_needed;
1879 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1880
d2a17637
MC
1881 return 0; /* success */
1882}
1883
12219aea 1884static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1885{
1886 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1887 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1888
cd213226
MC
1889 if (!to_free)
1890 return; /* Nothing to release, exit */
1891
d2a17637 1892 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1893
5a58ec87 1894 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1895 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1896 /*
0637c6f4
TT
1897 * if there aren't enough reserved blocks, then the
1898 * counter is messed up somewhere. Since this
1899 * function is called from invalidate page, it's
1900 * harmless to return without any action.
cd213226 1901 */
0637c6f4
TT
1902 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1903 "ino %lu, to_free %d with only %d reserved "
1904 "data blocks\n", inode->i_ino, to_free,
1905 ei->i_reserved_data_blocks);
1906 WARN_ON(1);
1907 to_free = ei->i_reserved_data_blocks;
cd213226 1908 }
0637c6f4 1909 ei->i_reserved_data_blocks -= to_free;
cd213226 1910
0637c6f4
TT
1911 if (ei->i_reserved_data_blocks == 0) {
1912 /*
1913 * We can release all of the reserved metadata blocks
1914 * only when we have written all of the delayed
1915 * allocation blocks.
1916 */
72b8ab9d
ES
1917 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1918 ei->i_reserved_meta_blocks);
ee5f4d9c 1919 ei->i_reserved_meta_blocks = 0;
9d0be502 1920 ei->i_da_metadata_calc_len = 0;
0637c6f4 1921 }
d2a17637 1922
72b8ab9d 1923 /* update fs dirty data blocks counter */
0637c6f4 1924 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
d2a17637 1925
d2a17637 1926 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1927
5dd4056d 1928 dquot_release_reservation_block(inode, to_free);
d2a17637
MC
1929}
1930
1931static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1932 unsigned long offset)
d2a17637
MC
1933{
1934 int to_release = 0;
1935 struct buffer_head *head, *bh;
1936 unsigned int curr_off = 0;
1937
1938 head = page_buffers(page);
1939 bh = head;
1940 do {
1941 unsigned int next_off = curr_off + bh->b_size;
1942
1943 if ((offset <= curr_off) && (buffer_delay(bh))) {
1944 to_release++;
1945 clear_buffer_delay(bh);
1946 }
1947 curr_off = next_off;
1948 } while ((bh = bh->b_this_page) != head);
12219aea 1949 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1950}
ac27a0ec 1951
64769240
AT
1952/*
1953 * Delayed allocation stuff
1954 */
1955
64769240
AT
1956/*
1957 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1958 * them with writepage() call back
64769240
AT
1959 *
1960 * @mpd->inode: inode
1961 * @mpd->first_page: first page of the extent
1962 * @mpd->next_page: page after the last page of the extent
64769240
AT
1963 *
1964 * By the time mpage_da_submit_io() is called we expect all blocks
1965 * to be allocated. this may be wrong if allocation failed.
1966 *
1967 * As pages are already locked by write_cache_pages(), we can't use it
1968 */
1969static int mpage_da_submit_io(struct mpage_da_data *mpd)
1970{
22208ded 1971 long pages_skipped;
791b7f08
AK
1972 struct pagevec pvec;
1973 unsigned long index, end;
1974 int ret = 0, err, nr_pages, i;
1975 struct inode *inode = mpd->inode;
1976 struct address_space *mapping = inode->i_mapping;
64769240
AT
1977
1978 BUG_ON(mpd->next_page <= mpd->first_page);
791b7f08
AK
1979 /*
1980 * We need to start from the first_page to the next_page - 1
1981 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1982 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1983 * at the currently mapped buffer_heads.
1984 */
64769240
AT
1985 index = mpd->first_page;
1986 end = mpd->next_page - 1;
1987
791b7f08 1988 pagevec_init(&pvec, 0);
64769240 1989 while (index <= end) {
791b7f08 1990 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1991 if (nr_pages == 0)
1992 break;
1993 for (i = 0; i < nr_pages; i++) {
1994 struct page *page = pvec.pages[i];
1995
791b7f08
AK
1996 index = page->index;
1997 if (index > end)
1998 break;
1999 index++;
2000
2001 BUG_ON(!PageLocked(page));
2002 BUG_ON(PageWriteback(page));
2003
22208ded 2004 pages_skipped = mpd->wbc->pages_skipped;
a1d6cc56 2005 err = mapping->a_ops->writepage(page, mpd->wbc);
22208ded
AK
2006 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2007 /*
2008 * have successfully written the page
2009 * without skipping the same
2010 */
a1d6cc56 2011 mpd->pages_written++;
64769240
AT
2012 /*
2013 * In error case, we have to continue because
2014 * remaining pages are still locked
2015 * XXX: unlock and re-dirty them?
2016 */
2017 if (ret == 0)
2018 ret = err;
2019 }
2020 pagevec_release(&pvec);
2021 }
64769240
AT
2022 return ret;
2023}
2024
2025/*
2026 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2027 *
64769240 2028 * the function goes through all passed space and put actual disk
29fa89d0 2029 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
64769240 2030 */
2ed88685
TT
2031static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd,
2032 struct ext4_map_blocks *map)
64769240
AT
2033{
2034 struct inode *inode = mpd->inode;
2035 struct address_space *mapping = inode->i_mapping;
2ed88685
TT
2036 int blocks = map->m_len;
2037 sector_t pblock = map->m_pblk, cur_logical;
64769240 2038 struct buffer_head *head, *bh;
a1d6cc56 2039 pgoff_t index, end;
64769240
AT
2040 struct pagevec pvec;
2041 int nr_pages, i;
2042
2ed88685
TT
2043 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2044 end = (map->m_lblk + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
64769240
AT
2045 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2046
2047 pagevec_init(&pvec, 0);
2048
2049 while (index <= end) {
2050 /* XXX: optimize tail */
2051 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2052 if (nr_pages == 0)
2053 break;
2054 for (i = 0; i < nr_pages; i++) {
2055 struct page *page = pvec.pages[i];
2056
2057 index = page->index;
2058 if (index > end)
2059 break;
2060 index++;
2061
2062 BUG_ON(!PageLocked(page));
2063 BUG_ON(PageWriteback(page));
2064 BUG_ON(!page_has_buffers(page));
2065
2066 bh = page_buffers(page);
2067 head = bh;
2068
2069 /* skip blocks out of the range */
2070 do {
2ed88685 2071 if (cur_logical >= map->m_lblk)
64769240
AT
2072 break;
2073 cur_logical++;
2074 } while ((bh = bh->b_this_page) != head);
2075
2076 do {
2ed88685 2077 if (cur_logical >= map->m_lblk + blocks)
64769240 2078 break;
29fa89d0 2079
2ed88685 2080 if (buffer_delay(bh) || buffer_unwritten(bh)) {
29fa89d0
AK
2081
2082 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2083
2084 if (buffer_delay(bh)) {
2085 clear_buffer_delay(bh);
2086 bh->b_blocknr = pblock;
2087 } else {
2088 /*
2089 * unwritten already should have
2090 * blocknr assigned. Verify that
2091 */
2092 clear_buffer_unwritten(bh);
2093 BUG_ON(bh->b_blocknr != pblock);
2094 }
2095
61628a3f 2096 } else if (buffer_mapped(bh))
64769240 2097 BUG_ON(bh->b_blocknr != pblock);
64769240 2098
2ed88685 2099 if (map->m_flags & EXT4_MAP_UNINIT)
744692dc 2100 set_buffer_uninit(bh);
64769240
AT
2101 cur_logical++;
2102 pblock++;
2103 } while ((bh = bh->b_this_page) != head);
2104 }
2105 pagevec_release(&pvec);
2106 }
2107}
2108
2109
c4a0c46e
AK
2110static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2111 sector_t logical, long blk_cnt)
2112{
2113 int nr_pages, i;
2114 pgoff_t index, end;
2115 struct pagevec pvec;
2116 struct inode *inode = mpd->inode;
2117 struct address_space *mapping = inode->i_mapping;
2118
2119 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2120 end = (logical + blk_cnt - 1) >>
2121 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2122 while (index <= end) {
2123 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2124 if (nr_pages == 0)
2125 break;
2126 for (i = 0; i < nr_pages; i++) {
2127 struct page *page = pvec.pages[i];
9b1d0998 2128 if (page->index > end)
c4a0c46e 2129 break;
c4a0c46e
AK
2130 BUG_ON(!PageLocked(page));
2131 BUG_ON(PageWriteback(page));
2132 block_invalidatepage(page, 0);
2133 ClearPageUptodate(page);
2134 unlock_page(page);
2135 }
9b1d0998
JK
2136 index = pvec.pages[nr_pages - 1]->index + 1;
2137 pagevec_release(&pvec);
c4a0c46e
AK
2138 }
2139 return;
2140}
2141
df22291f
AK
2142static void ext4_print_free_blocks(struct inode *inode)
2143{
2144 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1693918e
TT
2145 printk(KERN_CRIT "Total free blocks count %lld\n",
2146 ext4_count_free_blocks(inode->i_sb));
2147 printk(KERN_CRIT "Free/Dirty block details\n");
2148 printk(KERN_CRIT "free_blocks=%lld\n",
2149 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2150 printk(KERN_CRIT "dirty_blocks=%lld\n",
2151 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2152 printk(KERN_CRIT "Block reservation details\n");
2153 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2154 EXT4_I(inode)->i_reserved_data_blocks);
2155 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2156 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
2157 return;
2158}
2159
64769240
AT
2160/*
2161 * mpage_da_map_blocks - go through given space
2162 *
8dc207c0 2163 * @mpd - bh describing space
64769240
AT
2164 *
2165 * The function skips space we know is already mapped to disk blocks.
2166 *
64769240 2167 */
ed5bde0b 2168static int mpage_da_map_blocks(struct mpage_da_data *mpd)
64769240 2169{
2ac3b6e0 2170 int err, blks, get_blocks_flags;
2ed88685 2171 struct ext4_map_blocks map;
2fa3cdfb
TT
2172 sector_t next = mpd->b_blocknr;
2173 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2174 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2175 handle_t *handle = NULL;
64769240
AT
2176
2177 /*
2178 * We consider only non-mapped and non-allocated blocks
2179 */
8dc207c0 2180 if ((mpd->b_state & (1 << BH_Mapped)) &&
29fa89d0
AK
2181 !(mpd->b_state & (1 << BH_Delay)) &&
2182 !(mpd->b_state & (1 << BH_Unwritten)))
c4a0c46e 2183 return 0;
2fa3cdfb
TT
2184
2185 /*
2186 * If we didn't accumulate anything to write simply return
2187 */
2188 if (!mpd->b_size)
2189 return 0;
2190
2191 handle = ext4_journal_current_handle();
2192 BUG_ON(!handle);
2193
79ffab34 2194 /*
2ac3b6e0
TT
2195 * Call ext4_get_blocks() to allocate any delayed allocation
2196 * blocks, or to convert an uninitialized extent to be
2197 * initialized (in the case where we have written into
2198 * one or more preallocated blocks).
2199 *
2200 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2201 * indicate that we are on the delayed allocation path. This
2202 * affects functions in many different parts of the allocation
2203 * call path. This flag exists primarily because we don't
2204 * want to change *many* call functions, so ext4_get_blocks()
2205 * will set the magic i_delalloc_reserved_flag once the
2206 * inode's allocation semaphore is taken.
2207 *
2208 * If the blocks in questions were delalloc blocks, set
2209 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2210 * variables are updated after the blocks have been allocated.
79ffab34 2211 */
2ed88685
TT
2212 map.m_lblk = next;
2213 map.m_len = max_blocks;
1296cc85 2214 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
744692dc
JZ
2215 if (ext4_should_dioread_nolock(mpd->inode))
2216 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 2217 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
2218 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2219
2ed88685 2220 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb
TT
2221 if (blks < 0) {
2222 err = blks;
ed5bde0b
TT
2223 /*
2224 * If get block returns with error we simply
2225 * return. Later writepage will redirty the page and
2226 * writepages will find the dirty page again
c4a0c46e
AK
2227 */
2228 if (err == -EAGAIN)
2229 return 0;
df22291f
AK
2230
2231 if (err == -ENOSPC &&
ed5bde0b 2232 ext4_count_free_blocks(mpd->inode->i_sb)) {
df22291f
AK
2233 mpd->retval = err;
2234 return 0;
2235 }
2236
c4a0c46e 2237 /*
ed5bde0b
TT
2238 * get block failure will cause us to loop in
2239 * writepages, because a_ops->writepage won't be able
2240 * to make progress. The page will be redirtied by
2241 * writepage and writepages will again try to write
2242 * the same.
c4a0c46e 2243 */
1693918e
TT
2244 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2245 "delayed block allocation failed for inode %lu at "
2246 "logical offset %llu with max blocks %zd with "
fbe845dd 2247 "error %d", mpd->inode->i_ino,
1693918e
TT
2248 (unsigned long long) next,
2249 mpd->b_size >> mpd->inode->i_blkbits, err);
2250 printk(KERN_CRIT "This should not happen!! "
2251 "Data will be lost\n");
030ba6bc 2252 if (err == -ENOSPC) {
df22291f 2253 ext4_print_free_blocks(mpd->inode);
030ba6bc 2254 }
2fa3cdfb 2255 /* invalidate all the pages */
c4a0c46e 2256 ext4_da_block_invalidatepages(mpd, next,
8dc207c0 2257 mpd->b_size >> mpd->inode->i_blkbits);
c4a0c46e
AK
2258 return err;
2259 }
2fa3cdfb
TT
2260 BUG_ON(blks == 0);
2261
2ed88685
TT
2262 if (map.m_flags & EXT4_MAP_NEW) {
2263 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2264 int i;
64769240 2265
2ed88685
TT
2266 for (i = 0; i < map.m_len; i++)
2267 unmap_underlying_metadata(bdev, map.m_pblk + i);
2268 }
64769240 2269
a1d6cc56
AK
2270 /*
2271 * If blocks are delayed marked, we need to
2272 * put actual blocknr and drop delayed bit
2273 */
8dc207c0
TT
2274 if ((mpd->b_state & (1 << BH_Delay)) ||
2275 (mpd->b_state & (1 << BH_Unwritten)))
2ed88685 2276 mpage_put_bnr_to_bhs(mpd, &map);
64769240 2277
2fa3cdfb
TT
2278 if (ext4_should_order_data(mpd->inode)) {
2279 err = ext4_jbd2_file_inode(handle, mpd->inode);
2280 if (err)
2281 return err;
2282 }
2283
2284 /*
03f5d8bc 2285 * Update on-disk size along with block allocation.
2fa3cdfb
TT
2286 */
2287 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2288 if (disksize > i_size_read(mpd->inode))
2289 disksize = i_size_read(mpd->inode);
2290 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2291 ext4_update_i_disksize(mpd->inode, disksize);
2292 return ext4_mark_inode_dirty(handle, mpd->inode);
2293 }
2294
c4a0c46e 2295 return 0;
64769240
AT
2296}
2297
bf068ee2
AK
2298#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2299 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
2300
2301/*
2302 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2303 *
2304 * @mpd->lbh - extent of blocks
2305 * @logical - logical number of the block in the file
2306 * @bh - bh of the block (used to access block's state)
2307 *
2308 * the function is used to collect contig. blocks in same state
2309 */
2310static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
2311 sector_t logical, size_t b_size,
2312 unsigned long b_state)
64769240 2313{
64769240 2314 sector_t next;
8dc207c0 2315 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 2316
c445e3e0
ES
2317 /*
2318 * XXX Don't go larger than mballoc is willing to allocate
2319 * This is a stopgap solution. We eventually need to fold
2320 * mpage_da_submit_io() into this function and then call
2321 * ext4_get_blocks() multiple times in a loop
2322 */
2323 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2324 goto flush_it;
2325
525f4ed8 2326 /* check if thereserved journal credits might overflow */
12e9b892 2327 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
525f4ed8
MC
2328 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2329 /*
2330 * With non-extent format we are limited by the journal
2331 * credit available. Total credit needed to insert
2332 * nrblocks contiguous blocks is dependent on the
2333 * nrblocks. So limit nrblocks.
2334 */
2335 goto flush_it;
2336 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2337 EXT4_MAX_TRANS_DATA) {
2338 /*
2339 * Adding the new buffer_head would make it cross the
2340 * allowed limit for which we have journal credit
2341 * reserved. So limit the new bh->b_size
2342 */
2343 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2344 mpd->inode->i_blkbits;
2345 /* we will do mpage_da_submit_io in the next loop */
2346 }
2347 }
64769240
AT
2348 /*
2349 * First block in the extent
2350 */
8dc207c0
TT
2351 if (mpd->b_size == 0) {
2352 mpd->b_blocknr = logical;
2353 mpd->b_size = b_size;
2354 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
2355 return;
2356 }
2357
8dc207c0 2358 next = mpd->b_blocknr + nrblocks;
64769240
AT
2359 /*
2360 * Can we merge the block to our big extent?
2361 */
8dc207c0
TT
2362 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2363 mpd->b_size += b_size;
64769240
AT
2364 return;
2365 }
2366
525f4ed8 2367flush_it:
64769240
AT
2368 /*
2369 * We couldn't merge the block to our extent, so we
2370 * need to flush current extent and start new one
2371 */
c4a0c46e
AK
2372 if (mpage_da_map_blocks(mpd) == 0)
2373 mpage_da_submit_io(mpd);
a1d6cc56
AK
2374 mpd->io_done = 1;
2375 return;
64769240
AT
2376}
2377
c364b22c 2378static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 2379{
c364b22c 2380 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
2381}
2382
64769240
AT
2383/*
2384 * __mpage_da_writepage - finds extent of pages and blocks
2385 *
2386 * @page: page to consider
2387 * @wbc: not used, we just follow rules
2388 * @data: context
2389 *
2390 * The function finds extents of pages and scan them for all blocks.
2391 */
2392static int __mpage_da_writepage(struct page *page,
2393 struct writeback_control *wbc, void *data)
2394{
2395 struct mpage_da_data *mpd = data;
2396 struct inode *inode = mpd->inode;
8dc207c0 2397 struct buffer_head *bh, *head;
64769240
AT
2398 sector_t logical;
2399
2400 /*
2401 * Can we merge this page to current extent?
2402 */
2403 if (mpd->next_page != page->index) {
2404 /*
2405 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 2406 * and start IO on them using writepage()
64769240
AT
2407 */
2408 if (mpd->next_page != mpd->first_page) {
c4a0c46e
AK
2409 if (mpage_da_map_blocks(mpd) == 0)
2410 mpage_da_submit_io(mpd);
a1d6cc56
AK
2411 /*
2412 * skip rest of the page in the page_vec
2413 */
2414 mpd->io_done = 1;
2415 redirty_page_for_writepage(wbc, page);
2416 unlock_page(page);
2417 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2418 }
2419
2420 /*
2421 * Start next extent of pages ...
2422 */
2423 mpd->first_page = page->index;
2424
2425 /*
2426 * ... and blocks
2427 */
8dc207c0
TT
2428 mpd->b_size = 0;
2429 mpd->b_state = 0;
2430 mpd->b_blocknr = 0;
64769240
AT
2431 }
2432
2433 mpd->next_page = page->index + 1;
2434 logical = (sector_t) page->index <<
2435 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2436
2437 if (!page_has_buffers(page)) {
8dc207c0
TT
2438 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2439 (1 << BH_Dirty) | (1 << BH_Uptodate));
a1d6cc56
AK
2440 if (mpd->io_done)
2441 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2442 } else {
2443 /*
2444 * Page with regular buffer heads, just add all dirty ones
2445 */
2446 head = page_buffers(page);
2447 bh = head;
2448 do {
2449 BUG_ON(buffer_locked(bh));
791b7f08
AK
2450 /*
2451 * We need to try to allocate
2452 * unmapped blocks in the same page.
2453 * Otherwise we won't make progress
43ce1d23 2454 * with the page in ext4_writepage
791b7f08 2455 */
c364b22c 2456 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
8dc207c0
TT
2457 mpage_add_bh_to_extent(mpd, logical,
2458 bh->b_size,
2459 bh->b_state);
a1d6cc56
AK
2460 if (mpd->io_done)
2461 return MPAGE_DA_EXTENT_TAIL;
791b7f08
AK
2462 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2463 /*
2464 * mapped dirty buffer. We need to update
2465 * the b_state because we look at
2466 * b_state in mpage_da_map_blocks. We don't
2467 * update b_size because if we find an
2468 * unmapped buffer_head later we need to
2469 * use the b_state flag of that buffer_head.
2470 */
8dc207c0
TT
2471 if (mpd->b_size == 0)
2472 mpd->b_state = bh->b_state & BH_FLAGS;
a1d6cc56 2473 }
64769240
AT
2474 logical++;
2475 } while ((bh = bh->b_this_page) != head);
2476 }
2477
2478 return 0;
2479}
2480
64769240 2481/*
b920c755
TT
2482 * This is a special get_blocks_t callback which is used by
2483 * ext4_da_write_begin(). It will either return mapped block or
2484 * reserve space for a single block.
29fa89d0
AK
2485 *
2486 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2487 * We also have b_blocknr = -1 and b_bdev initialized properly
2488 *
2489 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2490 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2491 * initialized properly.
64769240
AT
2492 */
2493static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2ed88685 2494 struct buffer_head *bh, int create)
64769240 2495{
2ed88685 2496 struct ext4_map_blocks map;
64769240 2497 int ret = 0;
33b9817e
AK
2498 sector_t invalid_block = ~((sector_t) 0xffff);
2499
2500 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2501 invalid_block = ~0;
64769240
AT
2502
2503 BUG_ON(create == 0);
2ed88685
TT
2504 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2505
2506 map.m_lblk = iblock;
2507 map.m_len = 1;
64769240
AT
2508
2509 /*
2510 * first, we need to know whether the block is allocated already
2511 * preallocated blocks are unmapped but should treated
2512 * the same as allocated blocks.
2513 */
2ed88685
TT
2514 ret = ext4_map_blocks(NULL, inode, &map, 0);
2515 if (ret < 0)
2516 return ret;
2517 if (ret == 0) {
2518 if (buffer_delay(bh))
2519 return 0; /* Not sure this could or should happen */
64769240
AT
2520 /*
2521 * XXX: __block_prepare_write() unmaps passed block,
2522 * is it OK?
2523 */
9d0be502 2524 ret = ext4_da_reserve_space(inode, iblock);
d2a17637
MC
2525 if (ret)
2526 /* not enough space to reserve */
2527 return ret;
2528
2ed88685
TT
2529 map_bh(bh, inode->i_sb, invalid_block);
2530 set_buffer_new(bh);
2531 set_buffer_delay(bh);
2532 return 0;
64769240
AT
2533 }
2534
2ed88685
TT
2535 map_bh(bh, inode->i_sb, map.m_pblk);
2536 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2537
2538 if (buffer_unwritten(bh)) {
2539 /* A delayed write to unwritten bh should be marked
2540 * new and mapped. Mapped ensures that we don't do
2541 * get_block multiple times when we write to the same
2542 * offset and new ensures that we do proper zero out
2543 * for partial write.
2544 */
2545 set_buffer_new(bh);
2546 set_buffer_mapped(bh);
2547 }
2548 return 0;
64769240 2549}
61628a3f 2550
b920c755
TT
2551/*
2552 * This function is used as a standard get_block_t calback function
2553 * when there is no desire to allocate any blocks. It is used as a
2554 * callback function for block_prepare_write(), nobh_writepage(), and
2555 * block_write_full_page(). These functions should only try to map a
2556 * single block at a time.
2557 *
2558 * Since this function doesn't do block allocations even if the caller
2559 * requests it by passing in create=1, it is critically important that
2560 * any caller checks to make sure that any buffer heads are returned
2561 * by this function are either all already mapped or marked for
2562 * delayed allocation before calling nobh_writepage() or
2563 * block_write_full_page(). Otherwise, b_blocknr could be left
2564 * unitialized, and the page write functions will be taken by
2565 * surprise.
2566 */
2567static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
2568 struct buffer_head *bh_result, int create)
2569{
a2dc52b5 2570 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2ed88685 2571 return _ext4_get_block(inode, iblock, bh_result, 0);
61628a3f
MC
2572}
2573
62e086be
AK
2574static int bget_one(handle_t *handle, struct buffer_head *bh)
2575{
2576 get_bh(bh);
2577 return 0;
2578}
2579
2580static int bput_one(handle_t *handle, struct buffer_head *bh)
2581{
2582 put_bh(bh);
2583 return 0;
2584}
2585
2586static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
2587 unsigned int len)
2588{
2589 struct address_space *mapping = page->mapping;
2590 struct inode *inode = mapping->host;
2591 struct buffer_head *page_bufs;
2592 handle_t *handle = NULL;
2593 int ret = 0;
2594 int err;
2595
2596 page_bufs = page_buffers(page);
2597 BUG_ON(!page_bufs);
2598 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2599 /* As soon as we unlock the page, it can go away, but we have
2600 * references to buffers so we are safe */
2601 unlock_page(page);
2602
2603 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2604 if (IS_ERR(handle)) {
2605 ret = PTR_ERR(handle);
2606 goto out;
2607 }
2608
2609 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2610 do_journal_get_write_access);
2611
2612 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2613 write_end_fn);
2614 if (ret == 0)
2615 ret = err;
2616 err = ext4_journal_stop(handle);
2617 if (!ret)
2618 ret = err;
2619
2620 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
19f5fb7a 2621 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be
AK
2622out:
2623 return ret;
2624}
2625
744692dc
JZ
2626static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2627static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2628
61628a3f 2629/*
43ce1d23
AK
2630 * Note that we don't need to start a transaction unless we're journaling data
2631 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2632 * need to file the inode to the transaction's list in ordered mode because if
2633 * we are writing back data added by write(), the inode is already there and if
2634 * we are writing back data modified via mmap(), noone guarantees in which
2635 * transaction the data will hit the disk. In case we are journaling data, we
2636 * cannot start transaction directly because transaction start ranks above page
2637 * lock so we have to do some magic.
2638 *
b920c755
TT
2639 * This function can get called via...
2640 * - ext4_da_writepages after taking page lock (have journal handle)
2641 * - journal_submit_inode_data_buffers (no journal handle)
2642 * - shrink_page_list via pdflush (no journal handle)
2643 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2644 *
2645 * We don't do any block allocation in this function. If we have page with
2646 * multiple blocks we need to write those buffer_heads that are mapped. This
2647 * is important for mmaped based write. So if we do with blocksize 1K
2648 * truncate(f, 1024);
2649 * a = mmap(f, 0, 4096);
2650 * a[0] = 'a';
2651 * truncate(f, 4096);
2652 * we have in the page first buffer_head mapped via page_mkwrite call back
2653 * but other bufer_heads would be unmapped but dirty(dirty done via the
2654 * do_wp_page). So writepage should write the first block. If we modify
2655 * the mmap area beyond 1024 we will again get a page_fault and the
2656 * page_mkwrite callback will do the block allocation and mark the
2657 * buffer_heads mapped.
2658 *
2659 * We redirty the page if we have any buffer_heads that is either delay or
2660 * unwritten in the page.
2661 *
2662 * We can get recursively called as show below.
2663 *
2664 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2665 * ext4_writepage()
2666 *
2667 * But since we don't do any block allocation we should not deadlock.
2668 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2669 */
43ce1d23 2670static int ext4_writepage(struct page *page,
62e086be 2671 struct writeback_control *wbc)
64769240 2672{
64769240 2673 int ret = 0;
61628a3f 2674 loff_t size;
498e5f24 2675 unsigned int len;
744692dc 2676 struct buffer_head *page_bufs = NULL;
61628a3f
MC
2677 struct inode *inode = page->mapping->host;
2678
43ce1d23 2679 trace_ext4_writepage(inode, page);
f0e6c985
AK
2680 size = i_size_read(inode);
2681 if (page->index == size >> PAGE_CACHE_SHIFT)
2682 len = size & ~PAGE_CACHE_MASK;
2683 else
2684 len = PAGE_CACHE_SIZE;
64769240 2685
f0e6c985 2686 if (page_has_buffers(page)) {
61628a3f 2687 page_bufs = page_buffers(page);
f0e6c985 2688 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2689 ext4_bh_delay_or_unwritten)) {
61628a3f 2690 /*
f0e6c985
AK
2691 * We don't want to do block allocation
2692 * So redirty the page and return
cd1aac32
AK
2693 * We may reach here when we do a journal commit
2694 * via journal_submit_inode_data_buffers.
2695 * If we don't have mapping block we just ignore
f0e6c985
AK
2696 * them. We can also reach here via shrink_page_list
2697 */
2698 redirty_page_for_writepage(wbc, page);
2699 unlock_page(page);
2700 return 0;
2701 }
2702 } else {
2703 /*
2704 * The test for page_has_buffers() is subtle:
2705 * We know the page is dirty but it lost buffers. That means
2706 * that at some moment in time after write_begin()/write_end()
2707 * has been called all buffers have been clean and thus they
2708 * must have been written at least once. So they are all
2709 * mapped and we can happily proceed with mapping them
2710 * and writing the page.
2711 *
2712 * Try to initialize the buffer_heads and check whether
2713 * all are mapped and non delay. We don't want to
2714 * do block allocation here.
2715 */
b767e78a 2716 ret = block_prepare_write(page, 0, len,
b920c755 2717 noalloc_get_block_write);
f0e6c985
AK
2718 if (!ret) {
2719 page_bufs = page_buffers(page);
2720 /* check whether all are mapped and non delay */
2721 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2722 ext4_bh_delay_or_unwritten)) {
f0e6c985
AK
2723 redirty_page_for_writepage(wbc, page);
2724 unlock_page(page);
2725 return 0;
2726 }
2727 } else {
2728 /*
2729 * We can't do block allocation here
2730 * so just redity the page and unlock
2731 * and return
61628a3f 2732 */
61628a3f
MC
2733 redirty_page_for_writepage(wbc, page);
2734 unlock_page(page);
2735 return 0;
2736 }
ed9b3e33 2737 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 2738 block_commit_write(page, 0, len);
64769240
AT
2739 }
2740
43ce1d23
AK
2741 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2742 /*
2743 * It's mmapped pagecache. Add buffers and journal it. There
2744 * doesn't seem much point in redirtying the page here.
2745 */
2746 ClearPageChecked(page);
3f0ca309 2747 return __ext4_journalled_writepage(page, len);
43ce1d23
AK
2748 }
2749
64769240 2750 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
b920c755 2751 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
744692dc
JZ
2752 else if (page_bufs && buffer_uninit(page_bufs)) {
2753 ext4_set_bh_endio(page_bufs, inode);
2754 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2755 wbc, ext4_end_io_buffer_write);
2756 } else
b920c755
TT
2757 ret = block_write_full_page(page, noalloc_get_block_write,
2758 wbc);
64769240 2759
64769240
AT
2760 return ret;
2761}
2762
61628a3f 2763/*
525f4ed8
MC
2764 * This is called via ext4_da_writepages() to
2765 * calulate the total number of credits to reserve to fit
2766 * a single extent allocation into a single transaction,
2767 * ext4_da_writpeages() will loop calling this before
2768 * the block allocation.
61628a3f 2769 */
525f4ed8
MC
2770
2771static int ext4_da_writepages_trans_blocks(struct inode *inode)
2772{
2773 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2774
2775 /*
2776 * With non-extent format the journal credit needed to
2777 * insert nrblocks contiguous block is dependent on
2778 * number of contiguous block. So we will limit
2779 * number of contiguous block to a sane value
2780 */
12e9b892 2781 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
2782 (max_blocks > EXT4_MAX_TRANS_DATA))
2783 max_blocks = EXT4_MAX_TRANS_DATA;
2784
2785 return ext4_chunk_trans_blocks(inode, max_blocks);
2786}
61628a3f 2787
8e48dcfb
TT
2788/*
2789 * write_cache_pages_da - walk the list of dirty pages of the given
2790 * address space and call the callback function (which usually writes
2791 * the pages).
2792 *
2793 * This is a forked version of write_cache_pages(). Differences:
2794 * Range cyclic is ignored.
2795 * no_nrwrite_index_update is always presumed true
2796 */
2797static int write_cache_pages_da(struct address_space *mapping,
2798 struct writeback_control *wbc,
2799 struct mpage_da_data *mpd)
2800{
2801 int ret = 0;
2802 int done = 0;
2803 struct pagevec pvec;
2804 int nr_pages;
2805 pgoff_t index;
2806 pgoff_t end; /* Inclusive */
2807 long nr_to_write = wbc->nr_to_write;
2808
2809 pagevec_init(&pvec, 0);
2810 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2811 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2812
2813 while (!done && (index <= end)) {
2814 int i;
2815
2816 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2817 PAGECACHE_TAG_DIRTY,
2818 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2819 if (nr_pages == 0)
2820 break;
2821
2822 for (i = 0; i < nr_pages; i++) {
2823 struct page *page = pvec.pages[i];
2824
2825 /*
2826 * At this point, the page may be truncated or
2827 * invalidated (changing page->mapping to NULL), or
2828 * even swizzled back from swapper_space to tmpfs file
2829 * mapping. However, page->index will not change
2830 * because we have a reference on the page.
2831 */
2832 if (page->index > end) {
2833 done = 1;
2834 break;
2835 }
2836
2837 lock_page(page);
2838
2839 /*
2840 * Page truncated or invalidated. We can freely skip it
2841 * then, even for data integrity operations: the page
2842 * has disappeared concurrently, so there could be no
2843 * real expectation of this data interity operation
2844 * even if there is now a new, dirty page at the same
2845 * pagecache address.
2846 */
2847 if (unlikely(page->mapping != mapping)) {
2848continue_unlock:
2849 unlock_page(page);
2850 continue;
2851 }
2852
2853 if (!PageDirty(page)) {
2854 /* someone wrote it for us */
2855 goto continue_unlock;
2856 }
2857
2858 if (PageWriteback(page)) {
2859 if (wbc->sync_mode != WB_SYNC_NONE)
2860 wait_on_page_writeback(page);
2861 else
2862 goto continue_unlock;
2863 }
2864
2865 BUG_ON(PageWriteback(page));
2866 if (!clear_page_dirty_for_io(page))
2867 goto continue_unlock;
2868
2869 ret = __mpage_da_writepage(page, wbc, mpd);
2870 if (unlikely(ret)) {
2871 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2872 unlock_page(page);
2873 ret = 0;
2874 } else {
2875 done = 1;
2876 break;
2877 }
2878 }
2879
2880 if (nr_to_write > 0) {
2881 nr_to_write--;
2882 if (nr_to_write == 0 &&
2883 wbc->sync_mode == WB_SYNC_NONE) {
2884 /*
2885 * We stop writing back only if we are
2886 * not doing integrity sync. In case of
2887 * integrity sync we have to keep going
2888 * because someone may be concurrently
2889 * dirtying pages, and we might have
2890 * synced a lot of newly appeared dirty
2891 * pages, but have not synced all of the
2892 * old dirty pages.
2893 */
2894 done = 1;
2895 break;
2896 }
2897 }
2898 }
2899 pagevec_release(&pvec);
2900 cond_resched();
2901 }
2902 return ret;
2903}
2904
2905
64769240 2906static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2907 struct writeback_control *wbc)
64769240 2908{
22208ded
AK
2909 pgoff_t index;
2910 int range_whole = 0;
61628a3f 2911 handle_t *handle = NULL;
df22291f 2912 struct mpage_da_data mpd;
5e745b04 2913 struct inode *inode = mapping->host;
498e5f24
TT
2914 int pages_written = 0;
2915 long pages_skipped;
55138e0b 2916 unsigned int max_pages;
2acf2c26 2917 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2918 int needed_blocks, ret = 0;
2919 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2920 loff_t range_start = wbc->range_start;
5e745b04 2921 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f 2922
9bffad1e 2923 trace_ext4_da_writepages(inode, wbc);
ba80b101 2924
61628a3f
MC
2925 /*
2926 * No pages to write? This is mainly a kludge to avoid starting
2927 * a transaction for special inodes like journal inode on last iput()
2928 * because that could violate lock ordering on umount
2929 */
a1d6cc56 2930 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2931 return 0;
2a21e37e
TT
2932
2933 /*
2934 * If the filesystem has aborted, it is read-only, so return
2935 * right away instead of dumping stack traces later on that
2936 * will obscure the real source of the problem. We test
4ab2f15b 2937 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2938 * the latter could be true if the filesystem is mounted
2939 * read-only, and in that case, ext4_da_writepages should
2940 * *never* be called, so if that ever happens, we would want
2941 * the stack trace.
2942 */
4ab2f15b 2943 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2944 return -EROFS;
2945
22208ded
AK
2946 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2947 range_whole = 1;
61628a3f 2948
2acf2c26
AK
2949 range_cyclic = wbc->range_cyclic;
2950 if (wbc->range_cyclic) {
22208ded 2951 index = mapping->writeback_index;
2acf2c26
AK
2952 if (index)
2953 cycled = 0;
2954 wbc->range_start = index << PAGE_CACHE_SHIFT;
2955 wbc->range_end = LLONG_MAX;
2956 wbc->range_cyclic = 0;
2957 } else
22208ded 2958 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 2959
55138e0b
TT
2960 /*
2961 * This works around two forms of stupidity. The first is in
2962 * the writeback code, which caps the maximum number of pages
2963 * written to be 1024 pages. This is wrong on multiple
2964 * levels; different architectues have a different page size,
2965 * which changes the maximum amount of data which gets
2966 * written. Secondly, 4 megabytes is way too small. XFS
2967 * forces this value to be 16 megabytes by multiplying
2968 * nr_to_write parameter by four, and then relies on its
2969 * allocator to allocate larger extents to make them
2970 * contiguous. Unfortunately this brings us to the second
2971 * stupidity, which is that ext4's mballoc code only allocates
2972 * at most 2048 blocks. So we force contiguous writes up to
2973 * the number of dirty blocks in the inode, or
2974 * sbi->max_writeback_mb_bump whichever is smaller.
2975 */
2976 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2977 if (!range_cyclic && range_whole)
2978 desired_nr_to_write = wbc->nr_to_write * 8;
2979 else
2980 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2981 max_pages);
2982 if (desired_nr_to_write > max_pages)
2983 desired_nr_to_write = max_pages;
2984
2985 if (wbc->nr_to_write < desired_nr_to_write) {
2986 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2987 wbc->nr_to_write = desired_nr_to_write;
2988 }
2989
df22291f
AK
2990 mpd.wbc = wbc;
2991 mpd.inode = mapping->host;
2992
22208ded
AK
2993 pages_skipped = wbc->pages_skipped;
2994
2acf2c26 2995retry:
22208ded 2996 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2997
2998 /*
2999 * we insert one extent at a time. So we need
3000 * credit needed for single extent allocation.
3001 * journalled mode is currently not supported
3002 * by delalloc
3003 */
3004 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 3005 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 3006
61628a3f
MC
3007 /* start a new transaction*/
3008 handle = ext4_journal_start(inode, needed_blocks);
3009 if (IS_ERR(handle)) {
3010 ret = PTR_ERR(handle);
1693918e 3011 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 3012 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 3013 wbc->nr_to_write, inode->i_ino, ret);
61628a3f
MC
3014 goto out_writepages;
3015 }
f63e6005
TT
3016
3017 /*
3018 * Now call __mpage_da_writepage to find the next
3019 * contiguous region of logical blocks that need
3020 * blocks to be allocated by ext4. We don't actually
3021 * submit the blocks for I/O here, even though
3022 * write_cache_pages thinks it will, and will set the
3023 * pages as clean for write before calling
3024 * __mpage_da_writepage().
3025 */
3026 mpd.b_size = 0;
3027 mpd.b_state = 0;
3028 mpd.b_blocknr = 0;
3029 mpd.first_page = 0;
3030 mpd.next_page = 0;
3031 mpd.io_done = 0;
3032 mpd.pages_written = 0;
3033 mpd.retval = 0;
8e48dcfb 3034 ret = write_cache_pages_da(mapping, wbc, &mpd);
f63e6005 3035 /*
af901ca1 3036 * If we have a contiguous extent of pages and we
f63e6005
TT
3037 * haven't done the I/O yet, map the blocks and submit
3038 * them for I/O.
3039 */
3040 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3041 if (mpage_da_map_blocks(&mpd) == 0)
3042 mpage_da_submit_io(&mpd);
3043 mpd.io_done = 1;
3044 ret = MPAGE_DA_EXTENT_TAIL;
3045 }
b3a3ca8c 3046 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 3047 wbc->nr_to_write -= mpd.pages_written;
df22291f 3048
61628a3f 3049 ext4_journal_stop(handle);
df22291f 3050
8f64b32e 3051 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
3052 /* commit the transaction which would
3053 * free blocks released in the transaction
3054 * and try again
3055 */
df22291f 3056 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
3057 wbc->pages_skipped = pages_skipped;
3058 ret = 0;
3059 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
3060 /*
3061 * got one extent now try with
3062 * rest of the pages
3063 */
22208ded
AK
3064 pages_written += mpd.pages_written;
3065 wbc->pages_skipped = pages_skipped;
a1d6cc56 3066 ret = 0;
2acf2c26 3067 io_done = 1;
22208ded 3068 } else if (wbc->nr_to_write)
61628a3f
MC
3069 /*
3070 * There is no more writeout needed
3071 * or we requested for a noblocking writeout
3072 * and we found the device congested
3073 */
61628a3f 3074 break;
a1d6cc56 3075 }
2acf2c26
AK
3076 if (!io_done && !cycled) {
3077 cycled = 1;
3078 index = 0;
3079 wbc->range_start = index << PAGE_CACHE_SHIFT;
3080 wbc->range_end = mapping->writeback_index - 1;
3081 goto retry;
3082 }
22208ded 3083 if (pages_skipped != wbc->pages_skipped)
1693918e
TT
3084 ext4_msg(inode->i_sb, KERN_CRIT,
3085 "This should not happen leaving %s "
fbe845dd 3086 "with nr_to_write = %ld ret = %d",
1693918e 3087 __func__, wbc->nr_to_write, ret);
22208ded
AK
3088
3089 /* Update index */
3090 index += pages_written;
2acf2c26 3091 wbc->range_cyclic = range_cyclic;
22208ded
AK
3092 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3093 /*
3094 * set the writeback_index so that range_cyclic
3095 * mode will write it back later
3096 */
3097 mapping->writeback_index = index;
a1d6cc56 3098
61628a3f 3099out_writepages:
2faf2e19 3100 wbc->nr_to_write -= nr_to_writebump;
de89de6e 3101 wbc->range_start = range_start;
9bffad1e 3102 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 3103 return ret;
64769240
AT
3104}
3105
79f0be8d
AK
3106#define FALL_BACK_TO_NONDELALLOC 1
3107static int ext4_nonda_switch(struct super_block *sb)
3108{
3109 s64 free_blocks, dirty_blocks;
3110 struct ext4_sb_info *sbi = EXT4_SB(sb);
3111
3112 /*
3113 * switch to non delalloc mode if we are running low
3114 * on free block. The free block accounting via percpu
179f7ebf 3115 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
3116 * accumulated on each CPU without updating global counters
3117 * Delalloc need an accurate free block accounting. So switch
3118 * to non delalloc when we are near to error range.
3119 */
3120 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3121 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3122 if (2 * free_blocks < 3 * dirty_blocks ||
3123 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3124 /*
c8afb446
ES
3125 * free block count is less than 150% of dirty blocks
3126 * or free blocks is less than watermark
79f0be8d
AK
3127 */
3128 return 1;
3129 }
c8afb446
ES
3130 /*
3131 * Even if we don't switch but are nearing capacity,
3132 * start pushing delalloc when 1/2 of free blocks are dirty.
3133 */
3134 if (free_blocks < 2 * dirty_blocks)
3135 writeback_inodes_sb_if_idle(sb);
3136
79f0be8d
AK
3137 return 0;
3138}
3139
64769240 3140static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
3141 loff_t pos, unsigned len, unsigned flags,
3142 struct page **pagep, void **fsdata)
64769240 3143{
72b8ab9d 3144 int ret, retries = 0;
64769240
AT
3145 struct page *page;
3146 pgoff_t index;
3147 unsigned from, to;
3148 struct inode *inode = mapping->host;
3149 handle_t *handle;
3150
3151 index = pos >> PAGE_CACHE_SHIFT;
3152 from = pos & (PAGE_CACHE_SIZE - 1);
3153 to = from + len;
79f0be8d
AK
3154
3155 if (ext4_nonda_switch(inode->i_sb)) {
3156 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3157 return ext4_write_begin(file, mapping, pos,
3158 len, flags, pagep, fsdata);
3159 }
3160 *fsdata = (void *)0;
9bffad1e 3161 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 3162retry:
64769240
AT
3163 /*
3164 * With delayed allocation, we don't log the i_disksize update
3165 * if there is delayed block allocation. But we still need
3166 * to journalling the i_disksize update if writes to the end
3167 * of file which has an already mapped buffer.
3168 */
3169 handle = ext4_journal_start(inode, 1);
3170 if (IS_ERR(handle)) {
3171 ret = PTR_ERR(handle);
3172 goto out;
3173 }
ebd3610b
JK
3174 /* We cannot recurse into the filesystem as the transaction is already
3175 * started */
3176 flags |= AOP_FLAG_NOFS;
64769240 3177
54566b2c 3178 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
3179 if (!page) {
3180 ext4_journal_stop(handle);
3181 ret = -ENOMEM;
3182 goto out;
3183 }
64769240
AT
3184 *pagep = page;
3185
6e1db88d 3186 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
3187 if (ret < 0) {
3188 unlock_page(page);
3189 ext4_journal_stop(handle);
3190 page_cache_release(page);
ae4d5372
AK
3191 /*
3192 * block_write_begin may have instantiated a few blocks
3193 * outside i_size. Trim these off again. Don't need
3194 * i_size_read because we hold i_mutex.
3195 */
3196 if (pos + len > inode->i_size)
b9a4207d 3197 ext4_truncate_failed_write(inode);
64769240
AT
3198 }
3199
d2a17637
MC
3200 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3201 goto retry;
64769240
AT
3202out:
3203 return ret;
3204}
3205
632eaeab
MC
3206/*
3207 * Check if we should update i_disksize
3208 * when write to the end of file but not require block allocation
3209 */
3210static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3211 unsigned long offset)
632eaeab
MC
3212{
3213 struct buffer_head *bh;
3214 struct inode *inode = page->mapping->host;
3215 unsigned int idx;
3216 int i;
3217
3218 bh = page_buffers(page);
3219 idx = offset >> inode->i_blkbits;
3220
af5bc92d 3221 for (i = 0; i < idx; i++)
632eaeab
MC
3222 bh = bh->b_this_page;
3223
29fa89d0 3224 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3225 return 0;
3226 return 1;
3227}
3228
64769240 3229static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3230 struct address_space *mapping,
3231 loff_t pos, unsigned len, unsigned copied,
3232 struct page *page, void *fsdata)
64769240
AT
3233{
3234 struct inode *inode = mapping->host;
3235 int ret = 0, ret2;
3236 handle_t *handle = ext4_journal_current_handle();
3237 loff_t new_i_size;
632eaeab 3238 unsigned long start, end;
79f0be8d
AK
3239 int write_mode = (int)(unsigned long)fsdata;
3240
3241 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3242 if (ext4_should_order_data(inode)) {
3243 return ext4_ordered_write_end(file, mapping, pos,
3244 len, copied, page, fsdata);
3245 } else if (ext4_should_writeback_data(inode)) {
3246 return ext4_writeback_write_end(file, mapping, pos,
3247 len, copied, page, fsdata);
3248 } else {
3249 BUG();
3250 }
3251 }
632eaeab 3252
9bffad1e 3253 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 3254 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 3255 end = start + copied - 1;
64769240
AT
3256
3257 /*
3258 * generic_write_end() will run mark_inode_dirty() if i_size
3259 * changes. So let's piggyback the i_disksize mark_inode_dirty
3260 * into that.
3261 */
3262
3263 new_i_size = pos + copied;
632eaeab
MC
3264 if (new_i_size > EXT4_I(inode)->i_disksize) {
3265 if (ext4_da_should_update_i_disksize(page, end)) {
3266 down_write(&EXT4_I(inode)->i_data_sem);
3267 if (new_i_size > EXT4_I(inode)->i_disksize) {
3268 /*
3269 * Updating i_disksize when extending file
3270 * without needing block allocation
3271 */
3272 if (ext4_should_order_data(inode))
3273 ret = ext4_jbd2_file_inode(handle,
3274 inode);
64769240 3275
632eaeab
MC
3276 EXT4_I(inode)->i_disksize = new_i_size;
3277 }
3278 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
3279 /* We need to mark inode dirty even if
3280 * new_i_size is less that inode->i_size
3281 * bu greater than i_disksize.(hint delalloc)
3282 */
3283 ext4_mark_inode_dirty(handle, inode);
64769240 3284 }
632eaeab 3285 }
64769240
AT
3286 ret2 = generic_write_end(file, mapping, pos, len, copied,
3287 page, fsdata);
3288 copied = ret2;
3289 if (ret2 < 0)
3290 ret = ret2;
3291 ret2 = ext4_journal_stop(handle);
3292 if (!ret)
3293 ret = ret2;
3294
3295 return ret ? ret : copied;
3296}
3297
3298static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3299{
64769240
AT
3300 /*
3301 * Drop reserved blocks
3302 */
3303 BUG_ON(!PageLocked(page));
3304 if (!page_has_buffers(page))
3305 goto out;
3306
d2a17637 3307 ext4_da_page_release_reservation(page, offset);
64769240
AT
3308
3309out:
3310 ext4_invalidatepage(page, offset);
3311
3312 return;
3313}
3314
ccd2506b
TT
3315/*
3316 * Force all delayed allocation blocks to be allocated for a given inode.
3317 */
3318int ext4_alloc_da_blocks(struct inode *inode)
3319{
fb40ba0d
TT
3320 trace_ext4_alloc_da_blocks(inode);
3321
ccd2506b
TT
3322 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3323 !EXT4_I(inode)->i_reserved_meta_blocks)
3324 return 0;
3325
3326 /*
3327 * We do something simple for now. The filemap_flush() will
3328 * also start triggering a write of the data blocks, which is
3329 * not strictly speaking necessary (and for users of
3330 * laptop_mode, not even desirable). However, to do otherwise
3331 * would require replicating code paths in:
de9a55b8 3332 *
ccd2506b
TT
3333 * ext4_da_writepages() ->
3334 * write_cache_pages() ---> (via passed in callback function)
3335 * __mpage_da_writepage() -->
3336 * mpage_add_bh_to_extent()
3337 * mpage_da_map_blocks()
3338 *
3339 * The problem is that write_cache_pages(), located in
3340 * mm/page-writeback.c, marks pages clean in preparation for
3341 * doing I/O, which is not desirable if we're not planning on
3342 * doing I/O at all.
3343 *
3344 * We could call write_cache_pages(), and then redirty all of
3345 * the pages by calling redirty_page_for_writeback() but that
3346 * would be ugly in the extreme. So instead we would need to
3347 * replicate parts of the code in the above functions,
3348 * simplifying them becuase we wouldn't actually intend to
3349 * write out the pages, but rather only collect contiguous
3350 * logical block extents, call the multi-block allocator, and
3351 * then update the buffer heads with the block allocations.
de9a55b8 3352 *
ccd2506b
TT
3353 * For now, though, we'll cheat by calling filemap_flush(),
3354 * which will map the blocks, and start the I/O, but not
3355 * actually wait for the I/O to complete.
3356 */
3357 return filemap_flush(inode->i_mapping);
3358}
64769240 3359
ac27a0ec
DK
3360/*
3361 * bmap() is special. It gets used by applications such as lilo and by
3362 * the swapper to find the on-disk block of a specific piece of data.
3363 *
3364 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3365 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3366 * filesystem and enables swap, then they may get a nasty shock when the
3367 * data getting swapped to that swapfile suddenly gets overwritten by
3368 * the original zero's written out previously to the journal and
3369 * awaiting writeback in the kernel's buffer cache.
3370 *
3371 * So, if we see any bmap calls here on a modified, data-journaled file,
3372 * take extra steps to flush any blocks which might be in the cache.
3373 */
617ba13b 3374static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3375{
3376 struct inode *inode = mapping->host;
3377 journal_t *journal;
3378 int err;
3379
64769240
AT
3380 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3381 test_opt(inode->i_sb, DELALLOC)) {
3382 /*
3383 * With delalloc we want to sync the file
3384 * so that we can make sure we allocate
3385 * blocks for file
3386 */
3387 filemap_write_and_wait(mapping);
3388 }
3389
19f5fb7a
TT
3390 if (EXT4_JOURNAL(inode) &&
3391 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
3392 /*
3393 * This is a REALLY heavyweight approach, but the use of
3394 * bmap on dirty files is expected to be extremely rare:
3395 * only if we run lilo or swapon on a freshly made file
3396 * do we expect this to happen.
3397 *
3398 * (bmap requires CAP_SYS_RAWIO so this does not
3399 * represent an unprivileged user DOS attack --- we'd be
3400 * in trouble if mortal users could trigger this path at
3401 * will.)
3402 *
617ba13b 3403 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3404 * regular files. If somebody wants to bmap a directory
3405 * or symlink and gets confused because the buffer
3406 * hasn't yet been flushed to disk, they deserve
3407 * everything they get.
3408 */
3409
19f5fb7a 3410 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 3411 journal = EXT4_JOURNAL(inode);
dab291af
MC
3412 jbd2_journal_lock_updates(journal);
3413 err = jbd2_journal_flush(journal);
3414 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3415
3416 if (err)
3417 return 0;
3418 }
3419
af5bc92d 3420 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3421}
3422
617ba13b 3423static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3424{
617ba13b 3425 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
3426}
3427
3428static int
617ba13b 3429ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3430 struct list_head *pages, unsigned nr_pages)
3431{
617ba13b 3432 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3433}
3434
744692dc
JZ
3435static void ext4_free_io_end(ext4_io_end_t *io)
3436{
3437 BUG_ON(!io);
3438 if (io->page)
3439 put_page(io->page);
3440 iput(io->inode);
3441 kfree(io);
3442}
3443
3444static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3445{
3446 struct buffer_head *head, *bh;
3447 unsigned int curr_off = 0;
3448
3449 if (!page_has_buffers(page))
3450 return;
3451 head = bh = page_buffers(page);
3452 do {
3453 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3454 && bh->b_private) {
3455 ext4_free_io_end(bh->b_private);
3456 bh->b_private = NULL;
3457 bh->b_end_io = NULL;
3458 }
3459 curr_off = curr_off + bh->b_size;
3460 bh = bh->b_this_page;
3461 } while (bh != head);
3462}
3463
617ba13b 3464static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3465{
617ba13b 3466 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3467
744692dc
JZ
3468 /*
3469 * free any io_end structure allocated for buffers to be discarded
3470 */
3471 if (ext4_should_dioread_nolock(page->mapping->host))
3472 ext4_invalidatepage_free_endio(page, offset);
ac27a0ec
DK
3473 /*
3474 * If it's a full truncate we just forget about the pending dirtying
3475 */
3476 if (offset == 0)
3477 ClearPageChecked(page);
3478
0390131b
FM
3479 if (journal)
3480 jbd2_journal_invalidatepage(journal, page, offset);
3481 else
3482 block_invalidatepage(page, offset);
ac27a0ec
DK
3483}
3484
617ba13b 3485static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3486{
617ba13b 3487 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3488
3489 WARN_ON(PageChecked(page));
3490 if (!page_has_buffers(page))
3491 return 0;
0390131b
FM
3492 if (journal)
3493 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3494 else
3495 return try_to_free_buffers(page);
ac27a0ec
DK
3496}
3497
3498/*
4c0425ff
MC
3499 * O_DIRECT for ext3 (or indirect map) based files
3500 *
ac27a0ec
DK
3501 * If the O_DIRECT write will extend the file then add this inode to the
3502 * orphan list. So recovery will truncate it back to the original size
3503 * if the machine crashes during the write.
3504 *
3505 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3506 * crashes then stale disk data _may_ be exposed inside the file. But current
3507 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3508 */
4c0425ff 3509static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
de9a55b8
TT
3510 const struct iovec *iov, loff_t offset,
3511 unsigned long nr_segs)
ac27a0ec
DK
3512{
3513 struct file *file = iocb->ki_filp;
3514 struct inode *inode = file->f_mapping->host;
617ba13b 3515 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3516 handle_t *handle;
ac27a0ec
DK
3517 ssize_t ret;
3518 int orphan = 0;
3519 size_t count = iov_length(iov, nr_segs);
fbbf6945 3520 int retries = 0;
ac27a0ec
DK
3521
3522 if (rw == WRITE) {
3523 loff_t final_size = offset + count;
3524
ac27a0ec 3525 if (final_size > inode->i_size) {
7fb5409d
JK
3526 /* Credits for sb + inode write */
3527 handle = ext4_journal_start(inode, 2);
3528 if (IS_ERR(handle)) {
3529 ret = PTR_ERR(handle);
3530 goto out;
3531 }
617ba13b 3532 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3533 if (ret) {
3534 ext4_journal_stop(handle);
3535 goto out;
3536 }
ac27a0ec
DK
3537 orphan = 1;
3538 ei->i_disksize = inode->i_size;
7fb5409d 3539 ext4_journal_stop(handle);
ac27a0ec
DK
3540 }
3541 }
3542
fbbf6945 3543retry:
b7adc1f3 3544 if (rw == READ && ext4_should_dioread_nolock(inode))
eafdc7d1 3545 ret = __blockdev_direct_IO(rw, iocb, inode,
b7adc1f3
JZ
3546 inode->i_sb->s_bdev, iov,
3547 offset, nr_segs,
eafdc7d1
CH
3548 ext4_get_block, NULL, NULL, 0);
3549 else {
b7adc1f3
JZ
3550 ret = blockdev_direct_IO(rw, iocb, inode,
3551 inode->i_sb->s_bdev, iov,
ac27a0ec 3552 offset, nr_segs,
617ba13b 3553 ext4_get_block, NULL);
eafdc7d1
CH
3554
3555 if (unlikely((rw & WRITE) && ret < 0)) {
3556 loff_t isize = i_size_read(inode);
3557 loff_t end = offset + iov_length(iov, nr_segs);
3558
3559 if (end > isize)
3560 vmtruncate(inode, isize);
3561 }
3562 }
fbbf6945
ES
3563 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3564 goto retry;
ac27a0ec 3565
7fb5409d 3566 if (orphan) {
ac27a0ec
DK
3567 int err;
3568
7fb5409d
JK
3569 /* Credits for sb + inode write */
3570 handle = ext4_journal_start(inode, 2);
3571 if (IS_ERR(handle)) {
3572 /* This is really bad luck. We've written the data
3573 * but cannot extend i_size. Bail out and pretend
3574 * the write failed... */
3575 ret = PTR_ERR(handle);
da1dafca
DM
3576 if (inode->i_nlink)
3577 ext4_orphan_del(NULL, inode);
3578
7fb5409d
JK
3579 goto out;
3580 }
3581 if (inode->i_nlink)
617ba13b 3582 ext4_orphan_del(handle, inode);
7fb5409d 3583 if (ret > 0) {
ac27a0ec
DK
3584 loff_t end = offset + ret;
3585 if (end > inode->i_size) {
3586 ei->i_disksize = end;
3587 i_size_write(inode, end);
3588 /*
3589 * We're going to return a positive `ret'
3590 * here due to non-zero-length I/O, so there's
3591 * no way of reporting error returns from
617ba13b 3592 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3593 * ignore it.
3594 */
617ba13b 3595 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3596 }
3597 }
617ba13b 3598 err = ext4_journal_stop(handle);
ac27a0ec
DK
3599 if (ret == 0)
3600 ret = err;
3601 }
3602out:
3603 return ret;
3604}
3605
2ed88685
TT
3606/*
3607 * ext4_get_block used when preparing for a DIO write or buffer write.
3608 * We allocate an uinitialized extent if blocks haven't been allocated.
3609 * The extent will be converted to initialized after the IO is complete.
3610 */
c7064ef1 3611static int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
3612 struct buffer_head *bh_result, int create)
3613{
c7064ef1 3614 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 3615 inode->i_ino, create);
2ed88685
TT
3616 return _ext4_get_block(inode, iblock, bh_result,
3617 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
3618}
3619
c7064ef1 3620static void dump_completed_IO(struct inode * inode)
8d5d02e6
MC
3621{
3622#ifdef EXT4_DEBUG
3623 struct list_head *cur, *before, *after;
3624 ext4_io_end_t *io, *io0, *io1;
744692dc 3625 unsigned long flags;
8d5d02e6 3626
c7064ef1
JZ
3627 if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
3628 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
8d5d02e6
MC
3629 return;
3630 }
3631
c7064ef1 3632 ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
744692dc 3633 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
c7064ef1 3634 list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
8d5d02e6
MC
3635 cur = &io->list;
3636 before = cur->prev;
3637 io0 = container_of(before, ext4_io_end_t, list);
3638 after = cur->next;
3639 io1 = container_of(after, ext4_io_end_t, list);
3640
3641 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3642 io, inode->i_ino, io0, io1);
3643 }
744692dc 3644 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
8d5d02e6
MC
3645#endif
3646}
4c0425ff
MC
3647
3648/*
4c0425ff
MC
3649 * check a range of space and convert unwritten extents to written.
3650 */
c7064ef1 3651static int ext4_end_io_nolock(ext4_io_end_t *io)
4c0425ff 3652{
4c0425ff
MC
3653 struct inode *inode = io->inode;
3654 loff_t offset = io->offset;
a1de02dc 3655 ssize_t size = io->size;
4c0425ff 3656 int ret = 0;
4c0425ff 3657
c7064ef1 3658 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
8d5d02e6
MC
3659 "list->prev 0x%p\n",
3660 io, inode->i_ino, io->list.next, io->list.prev);
3661
3662 if (list_empty(&io->list))
3663 return ret;
3664
c7064ef1 3665 if (io->flag != EXT4_IO_UNWRITTEN)
8d5d02e6
MC
3666 return ret;
3667
744692dc 3668 ret = ext4_convert_unwritten_extents(inode, offset, size);
8d5d02e6 3669 if (ret < 0) {
4c0425ff 3670 printk(KERN_EMERG "%s: failed to convert unwritten"
8d5d02e6
MC
3671 "extents to written extents, error is %d"
3672 " io is still on inode %lu aio dio list\n",
3673 __func__, ret, inode->i_ino);
3674 return ret;
3675 }
4c0425ff 3676
8d5d02e6
MC
3677 /* clear the DIO AIO unwritten flag */
3678 io->flag = 0;
3679 return ret;
4c0425ff 3680}
c7064ef1 3681
8d5d02e6
MC
3682/*
3683 * work on completed aio dio IO, to convert unwritten extents to extents
3684 */
c7064ef1 3685static void ext4_end_io_work(struct work_struct *work)
8d5d02e6 3686{
744692dc
JZ
3687 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3688 struct inode *inode = io->inode;
3689 struct ext4_inode_info *ei = EXT4_I(inode);
3690 unsigned long flags;
3691 int ret;
4c0425ff 3692
8d5d02e6 3693 mutex_lock(&inode->i_mutex);
c7064ef1 3694 ret = ext4_end_io_nolock(io);
744692dc
JZ
3695 if (ret < 0) {
3696 mutex_unlock(&inode->i_mutex);
3697 return;
8d5d02e6 3698 }
744692dc
JZ
3699
3700 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3701 if (!list_empty(&io->list))
3702 list_del_init(&io->list);
3703 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
8d5d02e6 3704 mutex_unlock(&inode->i_mutex);
744692dc 3705 ext4_free_io_end(io);
8d5d02e6 3706}
c7064ef1 3707
8d5d02e6
MC
3708/*
3709 * This function is called from ext4_sync_file().
3710 *
c7064ef1
JZ
3711 * When IO is completed, the work to convert unwritten extents to
3712 * written is queued on workqueue but may not get immediately
8d5d02e6
MC
3713 * scheduled. When fsync is called, we need to ensure the
3714 * conversion is complete before fsync returns.
c7064ef1
JZ
3715 * The inode keeps track of a list of pending/completed IO that
3716 * might needs to do the conversion. This function walks through
3717 * the list and convert the related unwritten extents for completed IO
3718 * to written.
3719 * The function return the number of pending IOs on success.
8d5d02e6 3720 */
c7064ef1 3721int flush_completed_IO(struct inode *inode)
8d5d02e6
MC
3722{
3723 ext4_io_end_t *io;
744692dc
JZ
3724 struct ext4_inode_info *ei = EXT4_I(inode);
3725 unsigned long flags;
8d5d02e6
MC
3726 int ret = 0;
3727 int ret2 = 0;
3728
744692dc 3729 if (list_empty(&ei->i_completed_io_list))
8d5d02e6
MC
3730 return ret;
3731
c7064ef1 3732 dump_completed_IO(inode);
744692dc
JZ
3733 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3734 while (!list_empty(&ei->i_completed_io_list)){
3735 io = list_entry(ei->i_completed_io_list.next,
8d5d02e6
MC
3736 ext4_io_end_t, list);
3737 /*
c7064ef1 3738 * Calling ext4_end_io_nolock() to convert completed
8d5d02e6
MC
3739 * IO to written.
3740 *
3741 * When ext4_sync_file() is called, run_queue() may already
3742 * about to flush the work corresponding to this io structure.
3743 * It will be upset if it founds the io structure related
3744 * to the work-to-be schedule is freed.
3745 *
3746 * Thus we need to keep the io structure still valid here after
3747 * convertion finished. The io structure has a flag to
3748 * avoid double converting from both fsync and background work
3749 * queue work.
3750 */
744692dc 3751 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
c7064ef1 3752 ret = ext4_end_io_nolock(io);
744692dc 3753 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
8d5d02e6
MC
3754 if (ret < 0)
3755 ret2 = ret;
3756 else
3757 list_del_init(&io->list);
3758 }
744692dc 3759 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
8d5d02e6
MC
3760 return (ret2 < 0) ? ret2 : 0;
3761}
3762
744692dc 3763static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
4c0425ff
MC
3764{
3765 ext4_io_end_t *io = NULL;
3766
744692dc 3767 io = kmalloc(sizeof(*io), flags);
4c0425ff
MC
3768
3769 if (io) {
8d5d02e6 3770 igrab(inode);
4c0425ff 3771 io->inode = inode;
8d5d02e6 3772 io->flag = 0;
4c0425ff
MC
3773 io->offset = 0;
3774 io->size = 0;
744692dc 3775 io->page = NULL;
c7064ef1 3776 INIT_WORK(&io->work, ext4_end_io_work);
8d5d02e6 3777 INIT_LIST_HEAD(&io->list);
4c0425ff
MC
3778 }
3779
3780 return io;
3781}
3782
3783static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
40e2e973
CH
3784 ssize_t size, void *private, int ret,
3785 bool is_async)
4c0425ff
MC
3786{
3787 ext4_io_end_t *io_end = iocb->private;
3788 struct workqueue_struct *wq;
744692dc
JZ
3789 unsigned long flags;
3790 struct ext4_inode_info *ei;
4c0425ff 3791
4b70df18
M
3792 /* if not async direct IO or dio with 0 bytes write, just return */
3793 if (!io_end || !size)
40e2e973 3794 goto out;
4b70df18 3795
8d5d02e6
MC
3796 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3797 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3798 iocb->private, io_end->inode->i_ino, iocb, offset,
3799 size);
8d5d02e6
MC
3800
3801 /* if not aio dio with unwritten extents, just free io and return */
c7064ef1 3802 if (io_end->flag != EXT4_IO_UNWRITTEN){
8d5d02e6
MC
3803 ext4_free_io_end(io_end);
3804 iocb->private = NULL;
40e2e973 3805 goto out;
8d5d02e6
MC
3806 }
3807
4c0425ff
MC
3808 io_end->offset = offset;
3809 io_end->size = size;
744692dc 3810 io_end->flag = EXT4_IO_UNWRITTEN;
4c0425ff
MC
3811 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3812
8d5d02e6 3813 /* queue the work to convert unwritten extents to written */
4c0425ff
MC
3814 queue_work(wq, &io_end->work);
3815
8d5d02e6 3816 /* Add the io_end to per-inode completed aio dio list*/
744692dc
JZ
3817 ei = EXT4_I(io_end->inode);
3818 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3819 list_add_tail(&io_end->list, &ei->i_completed_io_list);
3820 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
4c0425ff 3821 iocb->private = NULL;
40e2e973
CH
3822out:
3823 if (is_async)
3824 aio_complete(iocb, ret, 0);
4c0425ff 3825}
c7064ef1 3826
744692dc
JZ
3827static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3828{
3829 ext4_io_end_t *io_end = bh->b_private;
3830 struct workqueue_struct *wq;
3831 struct inode *inode;
3832 unsigned long flags;
3833
3834 if (!test_clear_buffer_uninit(bh) || !io_end)
3835 goto out;
3836
3837 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3838 printk("sb umounted, discard end_io request for inode %lu\n",
3839 io_end->inode->i_ino);
3840 ext4_free_io_end(io_end);
3841 goto out;
3842 }
3843
3844 io_end->flag = EXT4_IO_UNWRITTEN;
3845 inode = io_end->inode;
3846
3847 /* Add the io_end to per-inode completed io list*/
3848 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3849 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3850 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3851
3852 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3853 /* queue the work to convert unwritten extents to written */
3854 queue_work(wq, &io_end->work);
3855out:
3856 bh->b_private = NULL;
3857 bh->b_end_io = NULL;
3858 clear_buffer_uninit(bh);
3859 end_buffer_async_write(bh, uptodate);
3860}
3861
3862static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3863{
3864 ext4_io_end_t *io_end;
3865 struct page *page = bh->b_page;
3866 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3867 size_t size = bh->b_size;
3868
3869retry:
3870 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3871 if (!io_end) {
3872 if (printk_ratelimit())
3873 printk(KERN_WARNING "%s: allocation fail\n", __func__);
3874 schedule();
3875 goto retry;
3876 }
3877 io_end->offset = offset;
3878 io_end->size = size;
3879 /*
3880 * We need to hold a reference to the page to make sure it
3881 * doesn't get evicted before ext4_end_io_work() has a chance
3882 * to convert the extent from written to unwritten.
3883 */
3884 io_end->page = page;
3885 get_page(io_end->page);
3886
3887 bh->b_private = io_end;
3888 bh->b_end_io = ext4_end_io_buffer_write;
3889 return 0;
3890}
3891
4c0425ff
MC
3892/*
3893 * For ext4 extent files, ext4 will do direct-io write to holes,
3894 * preallocated extents, and those write extend the file, no need to
3895 * fall back to buffered IO.
3896 *
3897 * For holes, we fallocate those blocks, mark them as unintialized
3898 * If those blocks were preallocated, we mark sure they are splited, but
3899 * still keep the range to write as unintialized.
3900 *
8d5d02e6
MC
3901 * The unwrritten extents will be converted to written when DIO is completed.
3902 * For async direct IO, since the IO may still pending when return, we
3903 * set up an end_io call back function, which will do the convertion
3904 * when async direct IO completed.
4c0425ff
MC
3905 *
3906 * If the O_DIRECT write will extend the file then add this inode to the
3907 * orphan list. So recovery will truncate it back to the original size
3908 * if the machine crashes during the write.
3909 *
3910 */
3911static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3912 const struct iovec *iov, loff_t offset,
3913 unsigned long nr_segs)
3914{
3915 struct file *file = iocb->ki_filp;
3916 struct inode *inode = file->f_mapping->host;
3917 ssize_t ret;
3918 size_t count = iov_length(iov, nr_segs);
3919
3920 loff_t final_size = offset + count;
3921 if (rw == WRITE && final_size <= inode->i_size) {
3922 /*
8d5d02e6
MC
3923 * We could direct write to holes and fallocate.
3924 *
3925 * Allocated blocks to fill the hole are marked as uninitialized
4c0425ff
MC
3926 * to prevent paralel buffered read to expose the stale data
3927 * before DIO complete the data IO.
8d5d02e6
MC
3928 *
3929 * As to previously fallocated extents, ext4 get_block
4c0425ff
MC
3930 * will just simply mark the buffer mapped but still
3931 * keep the extents uninitialized.
3932 *
8d5d02e6
MC
3933 * for non AIO case, we will convert those unwritten extents
3934 * to written after return back from blockdev_direct_IO.
3935 *
3936 * for async DIO, the conversion needs to be defered when
3937 * the IO is completed. The ext4 end_io callback function
3938 * will be called to take care of the conversion work.
3939 * Here for async case, we allocate an io_end structure to
3940 * hook to the iocb.
4c0425ff 3941 */
8d5d02e6
MC
3942 iocb->private = NULL;
3943 EXT4_I(inode)->cur_aio_dio = NULL;
3944 if (!is_sync_kiocb(iocb)) {
744692dc 3945 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
8d5d02e6
MC
3946 if (!iocb->private)
3947 return -ENOMEM;
3948 /*
3949 * we save the io structure for current async
3950 * direct IO, so that later ext4_get_blocks()
3951 * could flag the io structure whether there
3952 * is a unwritten extents needs to be converted
3953 * when IO is completed.
3954 */
3955 EXT4_I(inode)->cur_aio_dio = iocb->private;
3956 }
3957
4c0425ff
MC
3958 ret = blockdev_direct_IO(rw, iocb, inode,
3959 inode->i_sb->s_bdev, iov,
3960 offset, nr_segs,
c7064ef1 3961 ext4_get_block_write,
4c0425ff 3962 ext4_end_io_dio);
8d5d02e6
MC
3963 if (iocb->private)
3964 EXT4_I(inode)->cur_aio_dio = NULL;
3965 /*
3966 * The io_end structure takes a reference to the inode,
3967 * that structure needs to be destroyed and the
3968 * reference to the inode need to be dropped, when IO is
3969 * complete, even with 0 byte write, or failed.
3970 *
3971 * In the successful AIO DIO case, the io_end structure will be
3972 * desctroyed and the reference to the inode will be dropped
3973 * after the end_io call back function is called.
3974 *
3975 * In the case there is 0 byte write, or error case, since
3976 * VFS direct IO won't invoke the end_io call back function,
3977 * we need to free the end_io structure here.
3978 */
3979 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3980 ext4_free_io_end(iocb->private);
3981 iocb->private = NULL;
19f5fb7a
TT
3982 } else if (ret > 0 && ext4_test_inode_state(inode,
3983 EXT4_STATE_DIO_UNWRITTEN)) {
109f5565 3984 int err;
8d5d02e6
MC
3985 /*
3986 * for non AIO case, since the IO is already
3987 * completed, we could do the convertion right here
3988 */
109f5565
M
3989 err = ext4_convert_unwritten_extents(inode,
3990 offset, ret);
3991 if (err < 0)
3992 ret = err;
19f5fb7a 3993 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
109f5565 3994 }
4c0425ff
MC
3995 return ret;
3996 }
8d5d02e6
MC
3997
3998 /* for write the the end of file case, we fall back to old way */
4c0425ff
MC
3999 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4000}
4001
4002static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
4003 const struct iovec *iov, loff_t offset,
4004 unsigned long nr_segs)
4005{
4006 struct file *file = iocb->ki_filp;
4007 struct inode *inode = file->f_mapping->host;
4008
12e9b892 4009 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4c0425ff
MC
4010 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
4011
4012 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4013}
4014
ac27a0ec 4015/*
617ba13b 4016 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
4017 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
4018 * much here because ->set_page_dirty is called under VFS locks. The page is
4019 * not necessarily locked.
4020 *
4021 * We cannot just dirty the page and leave attached buffers clean, because the
4022 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
4023 * or jbddirty because all the journalling code will explode.
4024 *
4025 * So what we do is to mark the page "pending dirty" and next time writepage
4026 * is called, propagate that into the buffers appropriately.
4027 */
617ba13b 4028static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
4029{
4030 SetPageChecked(page);
4031 return __set_page_dirty_nobuffers(page);
4032}
4033
617ba13b 4034static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
4035 .readpage = ext4_readpage,
4036 .readpages = ext4_readpages,
43ce1d23 4037 .writepage = ext4_writepage,
8ab22b9a
HH
4038 .sync_page = block_sync_page,
4039 .write_begin = ext4_write_begin,
4040 .write_end = ext4_ordered_write_end,
4041 .bmap = ext4_bmap,
4042 .invalidatepage = ext4_invalidatepage,
4043 .releasepage = ext4_releasepage,
4044 .direct_IO = ext4_direct_IO,
4045 .migratepage = buffer_migrate_page,
4046 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4047 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
4048};
4049
617ba13b 4050static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
4051 .readpage = ext4_readpage,
4052 .readpages = ext4_readpages,
43ce1d23 4053 .writepage = ext4_writepage,
8ab22b9a
HH
4054 .sync_page = block_sync_page,
4055 .write_begin = ext4_write_begin,
4056 .write_end = ext4_writeback_write_end,
4057 .bmap = ext4_bmap,
4058 .invalidatepage = ext4_invalidatepage,
4059 .releasepage = ext4_releasepage,
4060 .direct_IO = ext4_direct_IO,
4061 .migratepage = buffer_migrate_page,
4062 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4063 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
4064};
4065
617ba13b 4066static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
4067 .readpage = ext4_readpage,
4068 .readpages = ext4_readpages,
43ce1d23 4069 .writepage = ext4_writepage,
8ab22b9a
HH
4070 .sync_page = block_sync_page,
4071 .write_begin = ext4_write_begin,
4072 .write_end = ext4_journalled_write_end,
4073 .set_page_dirty = ext4_journalled_set_page_dirty,
4074 .bmap = ext4_bmap,
4075 .invalidatepage = ext4_invalidatepage,
4076 .releasepage = ext4_releasepage,
4077 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4078 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
4079};
4080
64769240 4081static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
4082 .readpage = ext4_readpage,
4083 .readpages = ext4_readpages,
43ce1d23 4084 .writepage = ext4_writepage,
8ab22b9a
HH
4085 .writepages = ext4_da_writepages,
4086 .sync_page = block_sync_page,
4087 .write_begin = ext4_da_write_begin,
4088 .write_end = ext4_da_write_end,
4089 .bmap = ext4_bmap,
4090 .invalidatepage = ext4_da_invalidatepage,
4091 .releasepage = ext4_releasepage,
4092 .direct_IO = ext4_direct_IO,
4093 .migratepage = buffer_migrate_page,
4094 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4095 .error_remove_page = generic_error_remove_page,
64769240
AT
4096};
4097
617ba13b 4098void ext4_set_aops(struct inode *inode)
ac27a0ec 4099{
cd1aac32
AK
4100 if (ext4_should_order_data(inode) &&
4101 test_opt(inode->i_sb, DELALLOC))
4102 inode->i_mapping->a_ops = &ext4_da_aops;
4103 else if (ext4_should_order_data(inode))
617ba13b 4104 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
4105 else if (ext4_should_writeback_data(inode) &&
4106 test_opt(inode->i_sb, DELALLOC))
4107 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
4108 else if (ext4_should_writeback_data(inode))
4109 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 4110 else
617ba13b 4111 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
4112}
4113
4114/*
617ba13b 4115 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
4116 * up to the end of the block which corresponds to `from'.
4117 * This required during truncate. We need to physically zero the tail end
4118 * of that block so it doesn't yield old data if the file is later grown.
4119 */
cf108bca 4120int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
4121 struct address_space *mapping, loff_t from)
4122{
617ba13b 4123 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 4124 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
4125 unsigned blocksize, length, pos;
4126 ext4_lblk_t iblock;
ac27a0ec
DK
4127 struct inode *inode = mapping->host;
4128 struct buffer_head *bh;
cf108bca 4129 struct page *page;
ac27a0ec 4130 int err = 0;
ac27a0ec 4131
f4a01017
TT
4132 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4133 mapping_gfp_mask(mapping) & ~__GFP_FS);
cf108bca
JK
4134 if (!page)
4135 return -EINVAL;
4136
ac27a0ec
DK
4137 blocksize = inode->i_sb->s_blocksize;
4138 length = blocksize - (offset & (blocksize - 1));
4139 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4140
4141 /*
4142 * For "nobh" option, we can only work if we don't need to
4143 * read-in the page - otherwise we create buffers to do the IO.
4144 */
4145 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 4146 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 4147 zero_user(page, offset, length);
ac27a0ec
DK
4148 set_page_dirty(page);
4149 goto unlock;
4150 }
4151
4152 if (!page_has_buffers(page))
4153 create_empty_buffers(page, blocksize, 0);
4154
4155 /* Find the buffer that contains "offset" */
4156 bh = page_buffers(page);
4157 pos = blocksize;
4158 while (offset >= pos) {
4159 bh = bh->b_this_page;
4160 iblock++;
4161 pos += blocksize;
4162 }
4163
4164 err = 0;
4165 if (buffer_freed(bh)) {
4166 BUFFER_TRACE(bh, "freed: skip");
4167 goto unlock;
4168 }
4169
4170 if (!buffer_mapped(bh)) {
4171 BUFFER_TRACE(bh, "unmapped");
617ba13b 4172 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
4173 /* unmapped? It's a hole - nothing to do */
4174 if (!buffer_mapped(bh)) {
4175 BUFFER_TRACE(bh, "still unmapped");
4176 goto unlock;
4177 }
4178 }
4179
4180 /* Ok, it's mapped. Make sure it's up-to-date */
4181 if (PageUptodate(page))
4182 set_buffer_uptodate(bh);
4183
4184 if (!buffer_uptodate(bh)) {
4185 err = -EIO;
4186 ll_rw_block(READ, 1, &bh);
4187 wait_on_buffer(bh);
4188 /* Uhhuh. Read error. Complain and punt. */
4189 if (!buffer_uptodate(bh))
4190 goto unlock;
4191 }
4192
617ba13b 4193 if (ext4_should_journal_data(inode)) {
ac27a0ec 4194 BUFFER_TRACE(bh, "get write access");
617ba13b 4195 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
4196 if (err)
4197 goto unlock;
4198 }
4199
eebd2aa3 4200 zero_user(page, offset, length);
ac27a0ec
DK
4201
4202 BUFFER_TRACE(bh, "zeroed end of block");
4203
4204 err = 0;
617ba13b 4205 if (ext4_should_journal_data(inode)) {
0390131b 4206 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 4207 } else {
617ba13b 4208 if (ext4_should_order_data(inode))
678aaf48 4209 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
4210 mark_buffer_dirty(bh);
4211 }
4212
4213unlock:
4214 unlock_page(page);
4215 page_cache_release(page);
4216 return err;
4217}
4218
4219/*
4220 * Probably it should be a library function... search for first non-zero word
4221 * or memcmp with zero_page, whatever is better for particular architecture.
4222 * Linus?
4223 */
4224static inline int all_zeroes(__le32 *p, __le32 *q)
4225{
4226 while (p < q)
4227 if (*p++)
4228 return 0;
4229 return 1;
4230}
4231
4232/**
617ba13b 4233 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
4234 * @inode: inode in question
4235 * @depth: depth of the affected branch
617ba13b 4236 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
4237 * @chain: place to store the pointers to partial indirect blocks
4238 * @top: place to the (detached) top of branch
4239 *
617ba13b 4240 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
4241 *
4242 * When we do truncate() we may have to clean the ends of several
4243 * indirect blocks but leave the blocks themselves alive. Block is
4244 * partially truncated if some data below the new i_size is refered
4245 * from it (and it is on the path to the first completely truncated
4246 * data block, indeed). We have to free the top of that path along
4247 * with everything to the right of the path. Since no allocation
617ba13b 4248 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
4249 * finishes, we may safely do the latter, but top of branch may
4250 * require special attention - pageout below the truncation point
4251 * might try to populate it.
4252 *
4253 * We atomically detach the top of branch from the tree, store the
4254 * block number of its root in *@top, pointers to buffer_heads of
4255 * partially truncated blocks - in @chain[].bh and pointers to
4256 * their last elements that should not be removed - in
4257 * @chain[].p. Return value is the pointer to last filled element
4258 * of @chain.
4259 *
4260 * The work left to caller to do the actual freeing of subtrees:
4261 * a) free the subtree starting from *@top
4262 * b) free the subtrees whose roots are stored in
4263 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4264 * c) free the subtrees growing from the inode past the @chain[0].
4265 * (no partially truncated stuff there). */
4266
617ba13b 4267static Indirect *ext4_find_shared(struct inode *inode, int depth,
de9a55b8
TT
4268 ext4_lblk_t offsets[4], Indirect chain[4],
4269 __le32 *top)
ac27a0ec
DK
4270{
4271 Indirect *partial, *p;
4272 int k, err;
4273
4274 *top = 0;
bf48aabb 4275 /* Make k index the deepest non-null offset + 1 */
ac27a0ec
DK
4276 for (k = depth; k > 1 && !offsets[k-1]; k--)
4277 ;
617ba13b 4278 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
4279 /* Writer: pointers */
4280 if (!partial)
4281 partial = chain + k-1;
4282 /*
4283 * If the branch acquired continuation since we've looked at it -
4284 * fine, it should all survive and (new) top doesn't belong to us.
4285 */
4286 if (!partial->key && *partial->p)
4287 /* Writer: end */
4288 goto no_top;
af5bc92d 4289 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
4290 ;
4291 /*
4292 * OK, we've found the last block that must survive. The rest of our
4293 * branch should be detached before unlocking. However, if that rest
4294 * of branch is all ours and does not grow immediately from the inode
4295 * it's easier to cheat and just decrement partial->p.
4296 */
4297 if (p == chain + k - 1 && p > chain) {
4298 p->p--;
4299 } else {
4300 *top = *p->p;
617ba13b 4301 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
4302#if 0
4303 *p->p = 0;
4304#endif
4305 }
4306 /* Writer: end */
4307
af5bc92d 4308 while (partial > p) {
ac27a0ec
DK
4309 brelse(partial->bh);
4310 partial--;
4311 }
4312no_top:
4313 return partial;
4314}
4315
4316/*
4317 * Zero a number of block pointers in either an inode or an indirect block.
4318 * If we restart the transaction we must again get write access to the
4319 * indirect block for further modification.
4320 *
4321 * We release `count' blocks on disk, but (last - first) may be greater
4322 * than `count' because there can be holes in there.
4323 */
1f2acb60
TT
4324static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4325 struct buffer_head *bh,
4326 ext4_fsblk_t block_to_free,
4327 unsigned long count, __le32 *first,
4328 __le32 *last)
ac27a0ec
DK
4329{
4330 __le32 *p;
1f2acb60 4331 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
e6362609
TT
4332
4333 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4334 flags |= EXT4_FREE_BLOCKS_METADATA;
50689696 4335
1f2acb60
TT
4336 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4337 count)) {
24676da4
TT
4338 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4339 "blocks %llu len %lu",
4340 (unsigned long long) block_to_free, count);
1f2acb60
TT
4341 return 1;
4342 }
4343
ac27a0ec
DK
4344 if (try_to_extend_transaction(handle, inode)) {
4345 if (bh) {
0390131b
FM
4346 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4347 ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 4348 }
617ba13b 4349 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4350 ext4_truncate_restart_trans(handle, inode,
4351 blocks_for_truncate(inode));
ac27a0ec
DK
4352 if (bh) {
4353 BUFFER_TRACE(bh, "retaking write access");
617ba13b 4354 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
4355 }
4356 }
4357
e6362609
TT
4358 for (p = first; p < last; p++)
4359 *p = 0;
ac27a0ec 4360
e6362609 4361 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
1f2acb60 4362 return 0;
ac27a0ec
DK
4363}
4364
4365/**
617ba13b 4366 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
4367 * @handle: handle for this transaction
4368 * @inode: inode we are dealing with
4369 * @this_bh: indirect buffer_head which contains *@first and *@last
4370 * @first: array of block numbers
4371 * @last: points immediately past the end of array
4372 *
4373 * We are freeing all blocks refered from that array (numbers are stored as
4374 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4375 *
4376 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4377 * blocks are contiguous then releasing them at one time will only affect one
4378 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4379 * actually use a lot of journal space.
4380 *
4381 * @this_bh will be %NULL if @first and @last point into the inode's direct
4382 * block pointers.
4383 */
617ba13b 4384static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4385 struct buffer_head *this_bh,
4386 __le32 *first, __le32 *last)
4387{
617ba13b 4388 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
4389 unsigned long count = 0; /* Number of blocks in the run */
4390 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4391 corresponding to
4392 block_to_free */
617ba13b 4393 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
4394 __le32 *p; /* Pointer into inode/ind
4395 for current block */
4396 int err;
4397
4398 if (this_bh) { /* For indirect block */
4399 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 4400 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
4401 /* Important: if we can't update the indirect pointers
4402 * to the blocks, we can't free them. */
4403 if (err)
4404 return;
4405 }
4406
4407 for (p = first; p < last; p++) {
4408 nr = le32_to_cpu(*p);
4409 if (nr) {
4410 /* accumulate blocks to free if they're contiguous */
4411 if (count == 0) {
4412 block_to_free = nr;
4413 block_to_free_p = p;
4414 count = 1;
4415 } else if (nr == block_to_free + count) {
4416 count++;
4417 } else {
1f2acb60
TT
4418 if (ext4_clear_blocks(handle, inode, this_bh,
4419 block_to_free, count,
4420 block_to_free_p, p))
4421 break;
ac27a0ec
DK
4422 block_to_free = nr;
4423 block_to_free_p = p;
4424 count = 1;
4425 }
4426 }
4427 }
4428
4429 if (count > 0)
617ba13b 4430 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
4431 count, block_to_free_p, p);
4432
4433 if (this_bh) {
0390131b 4434 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
71dc8fbc
DG
4435
4436 /*
4437 * The buffer head should have an attached journal head at this
4438 * point. However, if the data is corrupted and an indirect
4439 * block pointed to itself, it would have been detached when
4440 * the block was cleared. Check for this instead of OOPSing.
4441 */
e7f07968 4442 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
0390131b 4443 ext4_handle_dirty_metadata(handle, inode, this_bh);
71dc8fbc 4444 else
24676da4
TT
4445 EXT4_ERROR_INODE(inode,
4446 "circular indirect block detected at "
4447 "block %llu",
4448 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
4449 }
4450}
4451
4452/**
617ba13b 4453 * ext4_free_branches - free an array of branches
ac27a0ec
DK
4454 * @handle: JBD handle for this transaction
4455 * @inode: inode we are dealing with
4456 * @parent_bh: the buffer_head which contains *@first and *@last
4457 * @first: array of block numbers
4458 * @last: pointer immediately past the end of array
4459 * @depth: depth of the branches to free
4460 *
4461 * We are freeing all blocks refered from these branches (numbers are
4462 * stored as little-endian 32-bit) and updating @inode->i_blocks
4463 * appropriately.
4464 */
617ba13b 4465static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4466 struct buffer_head *parent_bh,
4467 __le32 *first, __le32 *last, int depth)
4468{
617ba13b 4469 ext4_fsblk_t nr;
ac27a0ec
DK
4470 __le32 *p;
4471
0390131b 4472 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4473 return;
4474
4475 if (depth--) {
4476 struct buffer_head *bh;
617ba13b 4477 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
4478 p = last;
4479 while (--p >= first) {
4480 nr = le32_to_cpu(*p);
4481 if (!nr)
4482 continue; /* A hole */
4483
1f2acb60
TT
4484 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4485 nr, 1)) {
24676da4
TT
4486 EXT4_ERROR_INODE(inode,
4487 "invalid indirect mapped "
4488 "block %lu (level %d)",
4489 (unsigned long) nr, depth);
1f2acb60
TT
4490 break;
4491 }
4492
ac27a0ec
DK
4493 /* Go read the buffer for the next level down */
4494 bh = sb_bread(inode->i_sb, nr);
4495
4496 /*
4497 * A read failure? Report error and clear slot
4498 * (should be rare).
4499 */
4500 if (!bh) {
24676da4
TT
4501 EXT4_ERROR_INODE(inode,
4502 "Read failure block=%llu",
4503 (unsigned long long) nr);
ac27a0ec
DK
4504 continue;
4505 }
4506
4507 /* This zaps the entire block. Bottom up. */
4508 BUFFER_TRACE(bh, "free child branches");
617ba13b 4509 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
4510 (__le32 *) bh->b_data,
4511 (__le32 *) bh->b_data + addr_per_block,
4512 depth);
ac27a0ec
DK
4513
4514 /*
4515 * We've probably journalled the indirect block several
4516 * times during the truncate. But it's no longer
4517 * needed and we now drop it from the transaction via
dab291af 4518 * jbd2_journal_revoke().
ac27a0ec
DK
4519 *
4520 * That's easy if it's exclusively part of this
4521 * transaction. But if it's part of the committing
dab291af 4522 * transaction then jbd2_journal_forget() will simply
ac27a0ec 4523 * brelse() it. That means that if the underlying
617ba13b 4524 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
4525 * unmap_underlying_metadata() will find this block
4526 * and will try to get rid of it. damn, damn.
4527 *
4528 * If this block has already been committed to the
4529 * journal, a revoke record will be written. And
4530 * revoke records must be emitted *before* clearing
4531 * this block's bit in the bitmaps.
4532 */
617ba13b 4533 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
4534
4535 /*
4536 * Everything below this this pointer has been
4537 * released. Now let this top-of-subtree go.
4538 *
4539 * We want the freeing of this indirect block to be
4540 * atomic in the journal with the updating of the
4541 * bitmap block which owns it. So make some room in
4542 * the journal.
4543 *
4544 * We zero the parent pointer *after* freeing its
4545 * pointee in the bitmaps, so if extend_transaction()
4546 * for some reason fails to put the bitmap changes and
4547 * the release into the same transaction, recovery
4548 * will merely complain about releasing a free block,
4549 * rather than leaking blocks.
4550 */
0390131b 4551 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4552 return;
4553 if (try_to_extend_transaction(handle, inode)) {
617ba13b 4554 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4555 ext4_truncate_restart_trans(handle, inode,
4556 blocks_for_truncate(inode));
ac27a0ec
DK
4557 }
4558
e6362609
TT
4559 ext4_free_blocks(handle, inode, 0, nr, 1,
4560 EXT4_FREE_BLOCKS_METADATA);
ac27a0ec
DK
4561
4562 if (parent_bh) {
4563 /*
4564 * The block which we have just freed is
4565 * pointed to by an indirect block: journal it
4566 */
4567 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 4568 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
4569 parent_bh)){
4570 *p = 0;
4571 BUFFER_TRACE(parent_bh,
0390131b
FM
4572 "call ext4_handle_dirty_metadata");
4573 ext4_handle_dirty_metadata(handle,
4574 inode,
4575 parent_bh);
ac27a0ec
DK
4576 }
4577 }
4578 }
4579 } else {
4580 /* We have reached the bottom of the tree. */
4581 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 4582 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
4583 }
4584}
4585
91ef4caf
DG
4586int ext4_can_truncate(struct inode *inode)
4587{
4588 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4589 return 0;
4590 if (S_ISREG(inode->i_mode))
4591 return 1;
4592 if (S_ISDIR(inode->i_mode))
4593 return 1;
4594 if (S_ISLNK(inode->i_mode))
4595 return !ext4_inode_is_fast_symlink(inode);
4596 return 0;
4597}
4598
ac27a0ec 4599/*
617ba13b 4600 * ext4_truncate()
ac27a0ec 4601 *
617ba13b
MC
4602 * We block out ext4_get_block() block instantiations across the entire
4603 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4604 * simultaneously on behalf of the same inode.
4605 *
4606 * As we work through the truncate and commmit bits of it to the journal there
4607 * is one core, guiding principle: the file's tree must always be consistent on
4608 * disk. We must be able to restart the truncate after a crash.
4609 *
4610 * The file's tree may be transiently inconsistent in memory (although it
4611 * probably isn't), but whenever we close off and commit a journal transaction,
4612 * the contents of (the filesystem + the journal) must be consistent and
4613 * restartable. It's pretty simple, really: bottom up, right to left (although
4614 * left-to-right works OK too).
4615 *
4616 * Note that at recovery time, journal replay occurs *before* the restart of
4617 * truncate against the orphan inode list.
4618 *
4619 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4620 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4621 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4622 * ext4_truncate() to have another go. So there will be instantiated blocks
4623 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4624 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4625 * ext4_truncate() run will find them and release them.
ac27a0ec 4626 */
617ba13b 4627void ext4_truncate(struct inode *inode)
ac27a0ec
DK
4628{
4629 handle_t *handle;
617ba13b 4630 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4631 __le32 *i_data = ei->i_data;
617ba13b 4632 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 4633 struct address_space *mapping = inode->i_mapping;
725d26d3 4634 ext4_lblk_t offsets[4];
ac27a0ec
DK
4635 Indirect chain[4];
4636 Indirect *partial;
4637 __le32 nr = 0;
4638 int n;
725d26d3 4639 ext4_lblk_t last_block;
ac27a0ec 4640 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 4641
91ef4caf 4642 if (!ext4_can_truncate(inode))
ac27a0ec
DK
4643 return;
4644
12e9b892 4645 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 4646
5534fb5b 4647 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 4648 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 4649
12e9b892 4650 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
cf108bca 4651 ext4_ext_truncate(inode);
1d03ec98
AK
4652 return;
4653 }
a86c6181 4654
ac27a0ec 4655 handle = start_transaction(inode);
cf108bca 4656 if (IS_ERR(handle))
ac27a0ec 4657 return; /* AKPM: return what? */
ac27a0ec
DK
4658
4659 last_block = (inode->i_size + blocksize-1)
617ba13b 4660 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 4661
cf108bca
JK
4662 if (inode->i_size & (blocksize - 1))
4663 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4664 goto out_stop;
ac27a0ec 4665
617ba13b 4666 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
4667 if (n == 0)
4668 goto out_stop; /* error */
4669
4670 /*
4671 * OK. This truncate is going to happen. We add the inode to the
4672 * orphan list, so that if this truncate spans multiple transactions,
4673 * and we crash, we will resume the truncate when the filesystem
4674 * recovers. It also marks the inode dirty, to catch the new size.
4675 *
4676 * Implication: the file must always be in a sane, consistent
4677 * truncatable state while each transaction commits.
4678 */
617ba13b 4679 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
4680 goto out_stop;
4681
632eaeab
MC
4682 /*
4683 * From here we block out all ext4_get_block() callers who want to
4684 * modify the block allocation tree.
4685 */
4686 down_write(&ei->i_data_sem);
b4df2030 4687
c2ea3fde 4688 ext4_discard_preallocations(inode);
b4df2030 4689
ac27a0ec
DK
4690 /*
4691 * The orphan list entry will now protect us from any crash which
4692 * occurs before the truncate completes, so it is now safe to propagate
4693 * the new, shorter inode size (held for now in i_size) into the
4694 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 4695 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
4696 */
4697 ei->i_disksize = inode->i_size;
4698
ac27a0ec 4699 if (n == 1) { /* direct blocks */
617ba13b
MC
4700 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4701 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
4702 goto do_indirects;
4703 }
4704
617ba13b 4705 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
4706 /* Kill the top of shared branch (not detached) */
4707 if (nr) {
4708 if (partial == chain) {
4709 /* Shared branch grows from the inode */
617ba13b 4710 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
4711 &nr, &nr+1, (chain+n-1) - partial);
4712 *partial->p = 0;
4713 /*
4714 * We mark the inode dirty prior to restart,
4715 * and prior to stop. No need for it here.
4716 */
4717 } else {
4718 /* Shared branch grows from an indirect block */
4719 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 4720 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
4721 partial->p,
4722 partial->p+1, (chain+n-1) - partial);
4723 }
4724 }
4725 /* Clear the ends of indirect blocks on the shared branch */
4726 while (partial > chain) {
617ba13b 4727 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
4728 (__le32*)partial->bh->b_data+addr_per_block,
4729 (chain+n-1) - partial);
4730 BUFFER_TRACE(partial->bh, "call brelse");
de9a55b8 4731 brelse(partial->bh);
ac27a0ec
DK
4732 partial--;
4733 }
4734do_indirects:
4735 /* Kill the remaining (whole) subtrees */
4736 switch (offsets[0]) {
4737 default:
617ba13b 4738 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 4739 if (nr) {
617ba13b
MC
4740 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4741 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 4742 }
617ba13b
MC
4743 case EXT4_IND_BLOCK:
4744 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 4745 if (nr) {
617ba13b
MC
4746 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4747 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 4748 }
617ba13b
MC
4749 case EXT4_DIND_BLOCK:
4750 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 4751 if (nr) {
617ba13b
MC
4752 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4753 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 4754 }
617ba13b 4755 case EXT4_TIND_BLOCK:
ac27a0ec
DK
4756 ;
4757 }
4758
0e855ac8 4759 up_write(&ei->i_data_sem);
ef7f3835 4760 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 4761 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4762
4763 /*
4764 * In a multi-transaction truncate, we only make the final transaction
4765 * synchronous
4766 */
4767 if (IS_SYNC(inode))
0390131b 4768 ext4_handle_sync(handle);
ac27a0ec
DK
4769out_stop:
4770 /*
4771 * If this was a simple ftruncate(), and the file will remain alive
4772 * then we need to clear up the orphan record which we created above.
4773 * However, if this was a real unlink then we were called by
617ba13b 4774 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
4775 * orphan info for us.
4776 */
4777 if (inode->i_nlink)
617ba13b 4778 ext4_orphan_del(handle, inode);
ac27a0ec 4779
617ba13b 4780 ext4_journal_stop(handle);
ac27a0ec
DK
4781}
4782
ac27a0ec 4783/*
617ba13b 4784 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4785 * underlying buffer_head on success. If 'in_mem' is true, we have all
4786 * data in memory that is needed to recreate the on-disk version of this
4787 * inode.
4788 */
617ba13b
MC
4789static int __ext4_get_inode_loc(struct inode *inode,
4790 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4791{
240799cd
TT
4792 struct ext4_group_desc *gdp;
4793 struct buffer_head *bh;
4794 struct super_block *sb = inode->i_sb;
4795 ext4_fsblk_t block;
4796 int inodes_per_block, inode_offset;
4797
3a06d778 4798 iloc->bh = NULL;
240799cd
TT
4799 if (!ext4_valid_inum(sb, inode->i_ino))
4800 return -EIO;
ac27a0ec 4801
240799cd
TT
4802 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4803 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4804 if (!gdp)
ac27a0ec
DK
4805 return -EIO;
4806
240799cd
TT
4807 /*
4808 * Figure out the offset within the block group inode table
4809 */
4810 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4811 inode_offset = ((inode->i_ino - 1) %
4812 EXT4_INODES_PER_GROUP(sb));
4813 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4814 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4815
4816 bh = sb_getblk(sb, block);
ac27a0ec 4817 if (!bh) {
24676da4
TT
4818 EXT4_ERROR_INODE(inode, "unable to read inode block - "
4819 "block %llu", block);
ac27a0ec
DK
4820 return -EIO;
4821 }
4822 if (!buffer_uptodate(bh)) {
4823 lock_buffer(bh);
9c83a923
HK
4824
4825 /*
4826 * If the buffer has the write error flag, we have failed
4827 * to write out another inode in the same block. In this
4828 * case, we don't have to read the block because we may
4829 * read the old inode data successfully.
4830 */
4831 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4832 set_buffer_uptodate(bh);
4833
ac27a0ec
DK
4834 if (buffer_uptodate(bh)) {
4835 /* someone brought it uptodate while we waited */
4836 unlock_buffer(bh);
4837 goto has_buffer;
4838 }
4839
4840 /*
4841 * If we have all information of the inode in memory and this
4842 * is the only valid inode in the block, we need not read the
4843 * block.
4844 */
4845 if (in_mem) {
4846 struct buffer_head *bitmap_bh;
240799cd 4847 int i, start;
ac27a0ec 4848
240799cd 4849 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4850
240799cd
TT
4851 /* Is the inode bitmap in cache? */
4852 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
4853 if (!bitmap_bh)
4854 goto make_io;
4855
4856 /*
4857 * If the inode bitmap isn't in cache then the
4858 * optimisation may end up performing two reads instead
4859 * of one, so skip it.
4860 */
4861 if (!buffer_uptodate(bitmap_bh)) {
4862 brelse(bitmap_bh);
4863 goto make_io;
4864 }
240799cd 4865 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4866 if (i == inode_offset)
4867 continue;
617ba13b 4868 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4869 break;
4870 }
4871 brelse(bitmap_bh);
240799cd 4872 if (i == start + inodes_per_block) {
ac27a0ec
DK
4873 /* all other inodes are free, so skip I/O */
4874 memset(bh->b_data, 0, bh->b_size);
4875 set_buffer_uptodate(bh);
4876 unlock_buffer(bh);
4877 goto has_buffer;
4878 }
4879 }
4880
4881make_io:
240799cd
TT
4882 /*
4883 * If we need to do any I/O, try to pre-readahead extra
4884 * blocks from the inode table.
4885 */
4886 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4887 ext4_fsblk_t b, end, table;
4888 unsigned num;
4889
4890 table = ext4_inode_table(sb, gdp);
b713a5ec 4891 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
4892 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4893 if (table > b)
4894 b = table;
4895 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4896 num = EXT4_INODES_PER_GROUP(sb);
4897 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4898 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 4899 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4900 table += num / inodes_per_block;
4901 if (end > table)
4902 end = table;
4903 while (b <= end)
4904 sb_breadahead(sb, b++);
4905 }
4906
ac27a0ec
DK
4907 /*
4908 * There are other valid inodes in the buffer, this inode
4909 * has in-inode xattrs, or we don't have this inode in memory.
4910 * Read the block from disk.
4911 */
4912 get_bh(bh);
4913 bh->b_end_io = end_buffer_read_sync;
4914 submit_bh(READ_META, bh);
4915 wait_on_buffer(bh);
4916 if (!buffer_uptodate(bh)) {
24676da4
TT
4917 EXT4_ERROR_INODE(inode, "unable to read inode "
4918 "block %llu", block);
ac27a0ec
DK
4919 brelse(bh);
4920 return -EIO;
4921 }
4922 }
4923has_buffer:
4924 iloc->bh = bh;
4925 return 0;
4926}
4927
617ba13b 4928int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4929{
4930 /* We have all inode data except xattrs in memory here. */
617ba13b 4931 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4932 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4933}
4934
617ba13b 4935void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4936{
617ba13b 4937 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4938
4939 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4940 if (flags & EXT4_SYNC_FL)
ac27a0ec 4941 inode->i_flags |= S_SYNC;
617ba13b 4942 if (flags & EXT4_APPEND_FL)
ac27a0ec 4943 inode->i_flags |= S_APPEND;
617ba13b 4944 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4945 inode->i_flags |= S_IMMUTABLE;
617ba13b 4946 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4947 inode->i_flags |= S_NOATIME;
617ba13b 4948 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4949 inode->i_flags |= S_DIRSYNC;
4950}
4951
ff9ddf7e
JK
4952/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4953void ext4_get_inode_flags(struct ext4_inode_info *ei)
4954{
84a8dce2
DM
4955 unsigned int vfs_fl;
4956 unsigned long old_fl, new_fl;
4957
4958 do {
4959 vfs_fl = ei->vfs_inode.i_flags;
4960 old_fl = ei->i_flags;
4961 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4962 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4963 EXT4_DIRSYNC_FL);
4964 if (vfs_fl & S_SYNC)
4965 new_fl |= EXT4_SYNC_FL;
4966 if (vfs_fl & S_APPEND)
4967 new_fl |= EXT4_APPEND_FL;
4968 if (vfs_fl & S_IMMUTABLE)
4969 new_fl |= EXT4_IMMUTABLE_FL;
4970 if (vfs_fl & S_NOATIME)
4971 new_fl |= EXT4_NOATIME_FL;
4972 if (vfs_fl & S_DIRSYNC)
4973 new_fl |= EXT4_DIRSYNC_FL;
4974 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 4975}
de9a55b8 4976
0fc1b451 4977static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4978 struct ext4_inode_info *ei)
0fc1b451
AK
4979{
4980 blkcnt_t i_blocks ;
8180a562
AK
4981 struct inode *inode = &(ei->vfs_inode);
4982 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4983
4984 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4985 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4986 /* we are using combined 48 bit field */
4987 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4988 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
4989 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4990 /* i_blocks represent file system block size */
4991 return i_blocks << (inode->i_blkbits - 9);
4992 } else {
4993 return i_blocks;
4994 }
0fc1b451
AK
4995 } else {
4996 return le32_to_cpu(raw_inode->i_blocks_lo);
4997 }
4998}
ff9ddf7e 4999
1d1fe1ee 5000struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 5001{
617ba13b
MC
5002 struct ext4_iloc iloc;
5003 struct ext4_inode *raw_inode;
1d1fe1ee 5004 struct ext4_inode_info *ei;
1d1fe1ee 5005 struct inode *inode;
b436b9be 5006 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 5007 long ret;
ac27a0ec
DK
5008 int block;
5009
1d1fe1ee
DH
5010 inode = iget_locked(sb, ino);
5011 if (!inode)
5012 return ERR_PTR(-ENOMEM);
5013 if (!(inode->i_state & I_NEW))
5014 return inode;
5015
5016 ei = EXT4_I(inode);
567f3e9a 5017 iloc.bh = 0;
ac27a0ec 5018
1d1fe1ee
DH
5019 ret = __ext4_get_inode_loc(inode, &iloc, 0);
5020 if (ret < 0)
ac27a0ec 5021 goto bad_inode;
617ba13b 5022 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
5023 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
5024 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
5025 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 5026 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
5027 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
5028 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
5029 }
5030 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec 5031
19f5fb7a 5032 ei->i_state_flags = 0;
ac27a0ec
DK
5033 ei->i_dir_start_lookup = 0;
5034 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
5035 /* We now have enough fields to check if the inode was active or not.
5036 * This is needed because nfsd might try to access dead inodes
5037 * the test is that same one that e2fsck uses
5038 * NeilBrown 1999oct15
5039 */
5040 if (inode->i_nlink == 0) {
5041 if (inode->i_mode == 0 ||
617ba13b 5042 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 5043 /* this inode is deleted */
1d1fe1ee 5044 ret = -ESTALE;
ac27a0ec
DK
5045 goto bad_inode;
5046 }
5047 /* The only unlinked inodes we let through here have
5048 * valid i_mode and are being read by the orphan
5049 * recovery code: that's fine, we're about to complete
5050 * the process of deleting those. */
5051 }
ac27a0ec 5052 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 5053 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 5054 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 5055 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
5056 ei->i_file_acl |=
5057 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 5058 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 5059 ei->i_disksize = inode->i_size;
a9e7f447
DM
5060#ifdef CONFIG_QUOTA
5061 ei->i_reserved_quota = 0;
5062#endif
ac27a0ec
DK
5063 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5064 ei->i_block_group = iloc.block_group;
a4912123 5065 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
5066 /*
5067 * NOTE! The in-memory inode i_data array is in little-endian order
5068 * even on big-endian machines: we do NOT byteswap the block numbers!
5069 */
617ba13b 5070 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
5071 ei->i_data[block] = raw_inode->i_block[block];
5072 INIT_LIST_HEAD(&ei->i_orphan);
5073
b436b9be
JK
5074 /*
5075 * Set transaction id's of transactions that have to be committed
5076 * to finish f[data]sync. We set them to currently running transaction
5077 * as we cannot be sure that the inode or some of its metadata isn't
5078 * part of the transaction - the inode could have been reclaimed and
5079 * now it is reread from disk.
5080 */
5081 if (journal) {
5082 transaction_t *transaction;
5083 tid_t tid;
5084
5085 spin_lock(&journal->j_state_lock);
5086 if (journal->j_running_transaction)
5087 transaction = journal->j_running_transaction;
5088 else
5089 transaction = journal->j_committing_transaction;
5090 if (transaction)
5091 tid = transaction->t_tid;
5092 else
5093 tid = journal->j_commit_sequence;
5094 spin_unlock(&journal->j_state_lock);
5095 ei->i_sync_tid = tid;
5096 ei->i_datasync_tid = tid;
5097 }
5098
0040d987 5099 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 5100 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 5101 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 5102 EXT4_INODE_SIZE(inode->i_sb)) {
1d1fe1ee 5103 ret = -EIO;
ac27a0ec 5104 goto bad_inode;
e5d2861f 5105 }
ac27a0ec
DK
5106 if (ei->i_extra_isize == 0) {
5107 /* The extra space is currently unused. Use it. */
617ba13b
MC
5108 ei->i_extra_isize = sizeof(struct ext4_inode) -
5109 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
5110 } else {
5111 __le32 *magic = (void *)raw_inode +
617ba13b 5112 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 5113 ei->i_extra_isize;
617ba13b 5114 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
19f5fb7a 5115 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
ac27a0ec
DK
5116 }
5117 } else
5118 ei->i_extra_isize = 0;
5119
ef7f3835
KS
5120 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5121 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5122 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5123 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5124
25ec56b5
JNC
5125 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5126 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5127 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5128 inode->i_version |=
5129 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5130 }
5131
c4b5a614 5132 ret = 0;
485c26ec 5133 if (ei->i_file_acl &&
1032988c 5134 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
5135 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
5136 ei->i_file_acl);
485c26ec
TT
5137 ret = -EIO;
5138 goto bad_inode;
5139 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
c4b5a614
TT
5140 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5141 (S_ISLNK(inode->i_mode) &&
5142 !ext4_inode_is_fast_symlink(inode)))
5143 /* Validate extent which is part of inode */
5144 ret = ext4_ext_check_inode(inode);
de9a55b8 5145 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
fe2c8191
TN
5146 (S_ISLNK(inode->i_mode) &&
5147 !ext4_inode_is_fast_symlink(inode))) {
de9a55b8 5148 /* Validate block references which are part of inode */
fe2c8191
TN
5149 ret = ext4_check_inode_blockref(inode);
5150 }
567f3e9a 5151 if (ret)
de9a55b8 5152 goto bad_inode;
7a262f7c 5153
ac27a0ec 5154 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
5155 inode->i_op = &ext4_file_inode_operations;
5156 inode->i_fop = &ext4_file_operations;
5157 ext4_set_aops(inode);
ac27a0ec 5158 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
5159 inode->i_op = &ext4_dir_inode_operations;
5160 inode->i_fop = &ext4_dir_operations;
ac27a0ec 5161 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 5162 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 5163 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
5164 nd_terminate_link(ei->i_data, inode->i_size,
5165 sizeof(ei->i_data) - 1);
5166 } else {
617ba13b
MC
5167 inode->i_op = &ext4_symlink_inode_operations;
5168 ext4_set_aops(inode);
ac27a0ec 5169 }
563bdd61
TT
5170 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5171 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 5172 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
5173 if (raw_inode->i_block[0])
5174 init_special_inode(inode, inode->i_mode,
5175 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5176 else
5177 init_special_inode(inode, inode->i_mode,
5178 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 5179 } else {
563bdd61 5180 ret = -EIO;
24676da4 5181 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 5182 goto bad_inode;
ac27a0ec 5183 }
af5bc92d 5184 brelse(iloc.bh);
617ba13b 5185 ext4_set_inode_flags(inode);
1d1fe1ee
DH
5186 unlock_new_inode(inode);
5187 return inode;
ac27a0ec
DK
5188
5189bad_inode:
567f3e9a 5190 brelse(iloc.bh);
1d1fe1ee
DH
5191 iget_failed(inode);
5192 return ERR_PTR(ret);
ac27a0ec
DK
5193}
5194
0fc1b451
AK
5195static int ext4_inode_blocks_set(handle_t *handle,
5196 struct ext4_inode *raw_inode,
5197 struct ext4_inode_info *ei)
5198{
5199 struct inode *inode = &(ei->vfs_inode);
5200 u64 i_blocks = inode->i_blocks;
5201 struct super_block *sb = inode->i_sb;
0fc1b451
AK
5202
5203 if (i_blocks <= ~0U) {
5204 /*
5205 * i_blocks can be represnted in a 32 bit variable
5206 * as multiple of 512 bytes
5207 */
8180a562 5208 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5209 raw_inode->i_blocks_high = 0;
84a8dce2 5210 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
5211 return 0;
5212 }
5213 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5214 return -EFBIG;
5215
5216 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
5217 /*
5218 * i_blocks can be represented in a 48 bit variable
5219 * as multiple of 512 bytes
5220 */
8180a562 5221 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5222 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 5223 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 5224 } else {
84a8dce2 5225 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
5226 /* i_block is stored in file system block size */
5227 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5228 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5229 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 5230 }
f287a1a5 5231 return 0;
0fc1b451
AK
5232}
5233
ac27a0ec
DK
5234/*
5235 * Post the struct inode info into an on-disk inode location in the
5236 * buffer-cache. This gobbles the caller's reference to the
5237 * buffer_head in the inode location struct.
5238 *
5239 * The caller must have write access to iloc->bh.
5240 */
617ba13b 5241static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 5242 struct inode *inode,
830156c7 5243 struct ext4_iloc *iloc)
ac27a0ec 5244{
617ba13b
MC
5245 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5246 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
5247 struct buffer_head *bh = iloc->bh;
5248 int err = 0, rc, block;
5249
5250 /* For fields not not tracking in the in-memory inode,
5251 * initialise them to zero for new inodes. */
19f5fb7a 5252 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 5253 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 5254
ff9ddf7e 5255 ext4_get_inode_flags(ei);
ac27a0ec 5256 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 5257 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
5258 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5259 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5260/*
5261 * Fix up interoperability with old kernels. Otherwise, old inodes get
5262 * re-used with the upper 16 bits of the uid/gid intact
5263 */
af5bc92d 5264 if (!ei->i_dtime) {
ac27a0ec
DK
5265 raw_inode->i_uid_high =
5266 cpu_to_le16(high_16_bits(inode->i_uid));
5267 raw_inode->i_gid_high =
5268 cpu_to_le16(high_16_bits(inode->i_gid));
5269 } else {
5270 raw_inode->i_uid_high = 0;
5271 raw_inode->i_gid_high = 0;
5272 }
5273 } else {
5274 raw_inode->i_uid_low =
5275 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5276 raw_inode->i_gid_low =
5277 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5278 raw_inode->i_uid_high = 0;
5279 raw_inode->i_gid_high = 0;
5280 }
5281 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
5282
5283 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5284 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5285 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5286 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5287
0fc1b451
AK
5288 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5289 goto out_brelse;
ac27a0ec 5290 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1b9c12f4 5291 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
9b8f1f01
MC
5292 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5293 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
5294 raw_inode->i_file_acl_high =
5295 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 5296 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
5297 ext4_isize_set(raw_inode, ei->i_disksize);
5298 if (ei->i_disksize > 0x7fffffffULL) {
5299 struct super_block *sb = inode->i_sb;
5300 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5301 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5302 EXT4_SB(sb)->s_es->s_rev_level ==
5303 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5304 /* If this is the first large file
5305 * created, add a flag to the superblock.
5306 */
5307 err = ext4_journal_get_write_access(handle,
5308 EXT4_SB(sb)->s_sbh);
5309 if (err)
5310 goto out_brelse;
5311 ext4_update_dynamic_rev(sb);
5312 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 5313 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 5314 sb->s_dirt = 1;
0390131b 5315 ext4_handle_sync(handle);
73b50c1c 5316 err = ext4_handle_dirty_metadata(handle, NULL,
a48380f7 5317 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
5318 }
5319 }
5320 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5321 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5322 if (old_valid_dev(inode->i_rdev)) {
5323 raw_inode->i_block[0] =
5324 cpu_to_le32(old_encode_dev(inode->i_rdev));
5325 raw_inode->i_block[1] = 0;
5326 } else {
5327 raw_inode->i_block[0] = 0;
5328 raw_inode->i_block[1] =
5329 cpu_to_le32(new_encode_dev(inode->i_rdev));
5330 raw_inode->i_block[2] = 0;
5331 }
de9a55b8
TT
5332 } else
5333 for (block = 0; block < EXT4_N_BLOCKS; block++)
5334 raw_inode->i_block[block] = ei->i_data[block];
ac27a0ec 5335
25ec56b5
JNC
5336 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5337 if (ei->i_extra_isize) {
5338 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5339 raw_inode->i_version_hi =
5340 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 5341 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
5342 }
5343
830156c7 5344 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 5345 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
5346 if (!err)
5347 err = rc;
19f5fb7a 5348 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 5349
b436b9be 5350 ext4_update_inode_fsync_trans(handle, inode, 0);
ac27a0ec 5351out_brelse:
af5bc92d 5352 brelse(bh);
617ba13b 5353 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5354 return err;
5355}
5356
5357/*
617ba13b 5358 * ext4_write_inode()
ac27a0ec
DK
5359 *
5360 * We are called from a few places:
5361 *
5362 * - Within generic_file_write() for O_SYNC files.
5363 * Here, there will be no transaction running. We wait for any running
5364 * trasnaction to commit.
5365 *
5366 * - Within sys_sync(), kupdate and such.
5367 * We wait on commit, if tol to.
5368 *
5369 * - Within prune_icache() (PF_MEMALLOC == true)
5370 * Here we simply return. We can't afford to block kswapd on the
5371 * journal commit.
5372 *
5373 * In all cases it is actually safe for us to return without doing anything,
5374 * because the inode has been copied into a raw inode buffer in
617ba13b 5375 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
5376 * knfsd.
5377 *
5378 * Note that we are absolutely dependent upon all inode dirtiers doing the
5379 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5380 * which we are interested.
5381 *
5382 * It would be a bug for them to not do this. The code:
5383 *
5384 * mark_inode_dirty(inode)
5385 * stuff();
5386 * inode->i_size = expr;
5387 *
5388 * is in error because a kswapd-driven write_inode() could occur while
5389 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5390 * will no longer be on the superblock's dirty inode list.
5391 */
a9185b41 5392int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 5393{
91ac6f43
FM
5394 int err;
5395
ac27a0ec
DK
5396 if (current->flags & PF_MEMALLOC)
5397 return 0;
5398
91ac6f43
FM
5399 if (EXT4_SB(inode->i_sb)->s_journal) {
5400 if (ext4_journal_current_handle()) {
5401 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5402 dump_stack();
5403 return -EIO;
5404 }
ac27a0ec 5405
a9185b41 5406 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
5407 return 0;
5408
5409 err = ext4_force_commit(inode->i_sb);
5410 } else {
5411 struct ext4_iloc iloc;
ac27a0ec 5412
8b472d73 5413 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
5414 if (err)
5415 return err;
a9185b41 5416 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
5417 sync_dirty_buffer(iloc.bh);
5418 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
24676da4
TT
5419 EXT4_ERROR_INODE(inode,
5420 "IO error syncing inode (block=%llu)",
5421 (unsigned long long) iloc.bh->b_blocknr);
830156c7
FM
5422 err = -EIO;
5423 }
fd2dd9fb 5424 brelse(iloc.bh);
91ac6f43
FM
5425 }
5426 return err;
ac27a0ec
DK
5427}
5428
5429/*
617ba13b 5430 * ext4_setattr()
ac27a0ec
DK
5431 *
5432 * Called from notify_change.
5433 *
5434 * We want to trap VFS attempts to truncate the file as soon as
5435 * possible. In particular, we want to make sure that when the VFS
5436 * shrinks i_size, we put the inode on the orphan list and modify
5437 * i_disksize immediately, so that during the subsequent flushing of
5438 * dirty pages and freeing of disk blocks, we can guarantee that any
5439 * commit will leave the blocks being flushed in an unused state on
5440 * disk. (On recovery, the inode will get truncated and the blocks will
5441 * be freed, so we have a strong guarantee that no future commit will
5442 * leave these blocks visible to the user.)
5443 *
678aaf48
JK
5444 * Another thing we have to assure is that if we are in ordered mode
5445 * and inode is still attached to the committing transaction, we must
5446 * we start writeout of all the dirty pages which are being truncated.
5447 * This way we are sure that all the data written in the previous
5448 * transaction are already on disk (truncate waits for pages under
5449 * writeback).
5450 *
5451 * Called with inode->i_mutex down.
ac27a0ec 5452 */
617ba13b 5453int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
5454{
5455 struct inode *inode = dentry->d_inode;
5456 int error, rc = 0;
5457 const unsigned int ia_valid = attr->ia_valid;
5458
5459 error = inode_change_ok(inode, attr);
5460 if (error)
5461 return error;
5462
12755627 5463 if (is_quota_modification(inode, attr))
871a2931 5464 dquot_initialize(inode);
ac27a0ec
DK
5465 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5466 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5467 handle_t *handle;
5468
5469 /* (user+group)*(old+new) structure, inode write (sb,
5470 * inode block, ? - but truncate inode update has it) */
5aca07eb 5471 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
194074ac 5472 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
5473 if (IS_ERR(handle)) {
5474 error = PTR_ERR(handle);
5475 goto err_out;
5476 }
b43fa828 5477 error = dquot_transfer(inode, attr);
ac27a0ec 5478 if (error) {
617ba13b 5479 ext4_journal_stop(handle);
ac27a0ec
DK
5480 return error;
5481 }
5482 /* Update corresponding info in inode so that everything is in
5483 * one transaction */
5484 if (attr->ia_valid & ATTR_UID)
5485 inode->i_uid = attr->ia_uid;
5486 if (attr->ia_valid & ATTR_GID)
5487 inode->i_gid = attr->ia_gid;
617ba13b
MC
5488 error = ext4_mark_inode_dirty(handle, inode);
5489 ext4_journal_stop(handle);
ac27a0ec
DK
5490 }
5491
e2b46574 5492 if (attr->ia_valid & ATTR_SIZE) {
12e9b892 5493 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
5494 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5495
5496 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5497 error = -EFBIG;
5498 goto err_out;
5499 }
5500 }
5501 }
5502
ac27a0ec 5503 if (S_ISREG(inode->i_mode) &&
c8d46e41
JZ
5504 attr->ia_valid & ATTR_SIZE &&
5505 (attr->ia_size < inode->i_size ||
12e9b892 5506 (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
ac27a0ec
DK
5507 handle_t *handle;
5508
617ba13b 5509 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
5510 if (IS_ERR(handle)) {
5511 error = PTR_ERR(handle);
5512 goto err_out;
5513 }
5514
617ba13b
MC
5515 error = ext4_orphan_add(handle, inode);
5516 EXT4_I(inode)->i_disksize = attr->ia_size;
5517 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
5518 if (!error)
5519 error = rc;
617ba13b 5520 ext4_journal_stop(handle);
678aaf48
JK
5521
5522 if (ext4_should_order_data(inode)) {
5523 error = ext4_begin_ordered_truncate(inode,
5524 attr->ia_size);
5525 if (error) {
5526 /* Do as much error cleanup as possible */
5527 handle = ext4_journal_start(inode, 3);
5528 if (IS_ERR(handle)) {
5529 ext4_orphan_del(NULL, inode);
5530 goto err_out;
5531 }
5532 ext4_orphan_del(handle, inode);
5533 ext4_journal_stop(handle);
5534 goto err_out;
5535 }
5536 }
c8d46e41 5537 /* ext4_truncate will clear the flag */
12e9b892 5538 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
c8d46e41 5539 ext4_truncate(inode);
ac27a0ec
DK
5540 }
5541
5542 rc = inode_setattr(inode, attr);
5543
617ba13b 5544 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
5545 * transaction handle at all, we need to clean up the in-core
5546 * orphan list manually. */
5547 if (inode->i_nlink)
617ba13b 5548 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
5549
5550 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 5551 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
5552
5553err_out:
617ba13b 5554 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5555 if (!error)
5556 error = rc;
5557 return error;
5558}
5559
3e3398a0
MC
5560int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5561 struct kstat *stat)
5562{
5563 struct inode *inode;
5564 unsigned long delalloc_blocks;
5565
5566 inode = dentry->d_inode;
5567 generic_fillattr(inode, stat);
5568
5569 /*
5570 * We can't update i_blocks if the block allocation is delayed
5571 * otherwise in the case of system crash before the real block
5572 * allocation is done, we will have i_blocks inconsistent with
5573 * on-disk file blocks.
5574 * We always keep i_blocks updated together with real
5575 * allocation. But to not confuse with user, stat
5576 * will return the blocks that include the delayed allocation
5577 * blocks for this file.
5578 */
5579 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5580 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5581 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5582
5583 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5584 return 0;
5585}
ac27a0ec 5586
a02908f1
MC
5587static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5588 int chunk)
5589{
5590 int indirects;
5591
5592 /* if nrblocks are contiguous */
5593 if (chunk) {
5594 /*
5595 * With N contiguous data blocks, it need at most
5596 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5597 * 2 dindirect blocks
5598 * 1 tindirect block
5599 */
5600 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5601 return indirects + 3;
5602 }
5603 /*
5604 * if nrblocks are not contiguous, worse case, each block touch
5605 * a indirect block, and each indirect block touch a double indirect
5606 * block, plus a triple indirect block
5607 */
5608 indirects = nrblocks * 2 + 1;
5609 return indirects;
5610}
5611
5612static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5613{
12e9b892 5614 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
ac51d837
TT
5615 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5616 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 5617}
ac51d837 5618
ac27a0ec 5619/*
a02908f1
MC
5620 * Account for index blocks, block groups bitmaps and block group
5621 * descriptor blocks if modify datablocks and index blocks
5622 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5623 *
a02908f1 5624 * If datablocks are discontiguous, they are possible to spread over
af901ca1 5625 * different block groups too. If they are contiuguous, with flexbg,
a02908f1 5626 * they could still across block group boundary.
ac27a0ec 5627 *
a02908f1
MC
5628 * Also account for superblock, inode, quota and xattr blocks
5629 */
5630int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5631{
8df9675f
TT
5632 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5633 int gdpblocks;
a02908f1
MC
5634 int idxblocks;
5635 int ret = 0;
5636
5637 /*
5638 * How many index blocks need to touch to modify nrblocks?
5639 * The "Chunk" flag indicating whether the nrblocks is
5640 * physically contiguous on disk
5641 *
5642 * For Direct IO and fallocate, they calls get_block to allocate
5643 * one single extent at a time, so they could set the "Chunk" flag
5644 */
5645 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5646
5647 ret = idxblocks;
5648
5649 /*
5650 * Now let's see how many group bitmaps and group descriptors need
5651 * to account
5652 */
5653 groups = idxblocks;
5654 if (chunk)
5655 groups += 1;
5656 else
5657 groups += nrblocks;
5658
5659 gdpblocks = groups;
8df9675f
TT
5660 if (groups > ngroups)
5661 groups = ngroups;
a02908f1
MC
5662 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5663 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5664
5665 /* bitmaps and block group descriptor blocks */
5666 ret += groups + gdpblocks;
5667
5668 /* Blocks for super block, inode, quota and xattr blocks */
5669 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5670
5671 return ret;
5672}
5673
5674/*
5675 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
5676 * the modification of a single pages into a single transaction,
5677 * which may include multiple chunks of block allocations.
ac27a0ec 5678 *
525f4ed8 5679 * This could be called via ext4_write_begin()
ac27a0ec 5680 *
525f4ed8 5681 * We need to consider the worse case, when
a02908f1 5682 * one new block per extent.
ac27a0ec 5683 */
a86c6181 5684int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5685{
617ba13b 5686 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5687 int ret;
5688
a02908f1 5689 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 5690
a02908f1 5691 /* Account for data blocks for journalled mode */
617ba13b 5692 if (ext4_should_journal_data(inode))
a02908f1 5693 ret += bpp;
ac27a0ec
DK
5694 return ret;
5695}
f3bd1f3f
MC
5696
5697/*
5698 * Calculate the journal credits for a chunk of data modification.
5699 *
5700 * This is called from DIO, fallocate or whoever calling
af901ca1 5701 * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5702 *
5703 * journal buffers for data blocks are not included here, as DIO
5704 * and fallocate do no need to journal data buffers.
5705 */
5706int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5707{
5708 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5709}
5710
ac27a0ec 5711/*
617ba13b 5712 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5713 * Give this, we know that the caller already has write access to iloc->bh.
5714 */
617ba13b 5715int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5716 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5717{
5718 int err = 0;
5719
25ec56b5
JNC
5720 if (test_opt(inode->i_sb, I_VERSION))
5721 inode_inc_iversion(inode);
5722
ac27a0ec
DK
5723 /* the do_update_inode consumes one bh->b_count */
5724 get_bh(iloc->bh);
5725
dab291af 5726 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5727 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5728 put_bh(iloc->bh);
5729 return err;
5730}
5731
5732/*
5733 * On success, We end up with an outstanding reference count against
5734 * iloc->bh. This _must_ be cleaned up later.
5735 */
5736
5737int
617ba13b
MC
5738ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5739 struct ext4_iloc *iloc)
ac27a0ec 5740{
0390131b
FM
5741 int err;
5742
5743 err = ext4_get_inode_loc(inode, iloc);
5744 if (!err) {
5745 BUFFER_TRACE(iloc->bh, "get_write_access");
5746 err = ext4_journal_get_write_access(handle, iloc->bh);
5747 if (err) {
5748 brelse(iloc->bh);
5749 iloc->bh = NULL;
ac27a0ec
DK
5750 }
5751 }
617ba13b 5752 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5753 return err;
5754}
5755
6dd4ee7c
KS
5756/*
5757 * Expand an inode by new_extra_isize bytes.
5758 * Returns 0 on success or negative error number on failure.
5759 */
1d03ec98
AK
5760static int ext4_expand_extra_isize(struct inode *inode,
5761 unsigned int new_extra_isize,
5762 struct ext4_iloc iloc,
5763 handle_t *handle)
6dd4ee7c
KS
5764{
5765 struct ext4_inode *raw_inode;
5766 struct ext4_xattr_ibody_header *header;
5767 struct ext4_xattr_entry *entry;
5768
5769 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5770 return 0;
5771
5772 raw_inode = ext4_raw_inode(&iloc);
5773
5774 header = IHDR(inode, raw_inode);
5775 entry = IFIRST(header);
5776
5777 /* No extended attributes present */
19f5fb7a
TT
5778 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5779 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
5780 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5781 new_extra_isize);
5782 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5783 return 0;
5784 }
5785
5786 /* try to expand with EAs present */
5787 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5788 raw_inode, handle);
5789}
5790
ac27a0ec
DK
5791/*
5792 * What we do here is to mark the in-core inode as clean with respect to inode
5793 * dirtiness (it may still be data-dirty).
5794 * This means that the in-core inode may be reaped by prune_icache
5795 * without having to perform any I/O. This is a very good thing,
5796 * because *any* task may call prune_icache - even ones which
5797 * have a transaction open against a different journal.
5798 *
5799 * Is this cheating? Not really. Sure, we haven't written the
5800 * inode out, but prune_icache isn't a user-visible syncing function.
5801 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5802 * we start and wait on commits.
5803 *
5804 * Is this efficient/effective? Well, we're being nice to the system
5805 * by cleaning up our inodes proactively so they can be reaped
5806 * without I/O. But we are potentially leaving up to five seconds'
5807 * worth of inodes floating about which prune_icache wants us to
5808 * write out. One way to fix that would be to get prune_icache()
5809 * to do a write_super() to free up some memory. It has the desired
5810 * effect.
5811 */
617ba13b 5812int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5813{
617ba13b 5814 struct ext4_iloc iloc;
6dd4ee7c
KS
5815 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5816 static unsigned int mnt_count;
5817 int err, ret;
ac27a0ec
DK
5818
5819 might_sleep();
617ba13b 5820 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5821 if (ext4_handle_valid(handle) &&
5822 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5823 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
5824 /*
5825 * We need extra buffer credits since we may write into EA block
5826 * with this same handle. If journal_extend fails, then it will
5827 * only result in a minor loss of functionality for that inode.
5828 * If this is felt to be critical, then e2fsck should be run to
5829 * force a large enough s_min_extra_isize.
5830 */
5831 if ((jbd2_journal_extend(handle,
5832 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5833 ret = ext4_expand_extra_isize(inode,
5834 sbi->s_want_extra_isize,
5835 iloc, handle);
5836 if (ret) {
19f5fb7a
TT
5837 ext4_set_inode_state(inode,
5838 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
5839 if (mnt_count !=
5840 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5841 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5842 "Unable to expand inode %lu. Delete"
5843 " some EAs or run e2fsck.",
5844 inode->i_ino);
c1bddad9
AK
5845 mnt_count =
5846 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5847 }
5848 }
5849 }
5850 }
ac27a0ec 5851 if (!err)
617ba13b 5852 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5853 return err;
5854}
5855
5856/*
617ba13b 5857 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5858 *
5859 * We're really interested in the case where a file is being extended.
5860 * i_size has been changed by generic_commit_write() and we thus need
5861 * to include the updated inode in the current transaction.
5862 *
5dd4056d 5863 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5864 * are allocated to the file.
5865 *
5866 * If the inode is marked synchronous, we don't honour that here - doing
5867 * so would cause a commit on atime updates, which we don't bother doing.
5868 * We handle synchronous inodes at the highest possible level.
5869 */
617ba13b 5870void ext4_dirty_inode(struct inode *inode)
ac27a0ec 5871{
ac27a0ec
DK
5872 handle_t *handle;
5873
617ba13b 5874 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
5875 if (IS_ERR(handle))
5876 goto out;
f3dc272f 5877
f3dc272f
CW
5878 ext4_mark_inode_dirty(handle, inode);
5879
617ba13b 5880 ext4_journal_stop(handle);
ac27a0ec
DK
5881out:
5882 return;
5883}
5884
5885#if 0
5886/*
5887 * Bind an inode's backing buffer_head into this transaction, to prevent
5888 * it from being flushed to disk early. Unlike
617ba13b 5889 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5890 * returns no iloc structure, so the caller needs to repeat the iloc
5891 * lookup to mark the inode dirty later.
5892 */
617ba13b 5893static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5894{
617ba13b 5895 struct ext4_iloc iloc;
ac27a0ec
DK
5896
5897 int err = 0;
5898 if (handle) {
617ba13b 5899 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5900 if (!err) {
5901 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5902 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5903 if (!err)
0390131b 5904 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5905 NULL,
0390131b 5906 iloc.bh);
ac27a0ec
DK
5907 brelse(iloc.bh);
5908 }
5909 }
617ba13b 5910 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5911 return err;
5912}
5913#endif
5914
617ba13b 5915int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5916{
5917 journal_t *journal;
5918 handle_t *handle;
5919 int err;
5920
5921 /*
5922 * We have to be very careful here: changing a data block's
5923 * journaling status dynamically is dangerous. If we write a
5924 * data block to the journal, change the status and then delete
5925 * that block, we risk forgetting to revoke the old log record
5926 * from the journal and so a subsequent replay can corrupt data.
5927 * So, first we make sure that the journal is empty and that
5928 * nobody is changing anything.
5929 */
5930
617ba13b 5931 journal = EXT4_JOURNAL(inode);
0390131b
FM
5932 if (!journal)
5933 return 0;
d699594d 5934 if (is_journal_aborted(journal))
ac27a0ec
DK
5935 return -EROFS;
5936
dab291af
MC
5937 jbd2_journal_lock_updates(journal);
5938 jbd2_journal_flush(journal);
ac27a0ec
DK
5939
5940 /*
5941 * OK, there are no updates running now, and all cached data is
5942 * synced to disk. We are now in a completely consistent state
5943 * which doesn't have anything in the journal, and we know that
5944 * no filesystem updates are running, so it is safe to modify
5945 * the inode's in-core data-journaling state flag now.
5946 */
5947
5948 if (val)
12e9b892 5949 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
ac27a0ec 5950 else
12e9b892 5951 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
617ba13b 5952 ext4_set_aops(inode);
ac27a0ec 5953
dab291af 5954 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
5955
5956 /* Finally we can mark the inode as dirty. */
5957
617ba13b 5958 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
5959 if (IS_ERR(handle))
5960 return PTR_ERR(handle);
5961
617ba13b 5962 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5963 ext4_handle_sync(handle);
617ba13b
MC
5964 ext4_journal_stop(handle);
5965 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5966
5967 return err;
5968}
2e9ee850
AK
5969
5970static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5971{
5972 return !buffer_mapped(bh);
5973}
5974
c2ec175c 5975int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5976{
c2ec175c 5977 struct page *page = vmf->page;
2e9ee850
AK
5978 loff_t size;
5979 unsigned long len;
5980 int ret = -EINVAL;
79f0be8d 5981 void *fsdata;
2e9ee850
AK
5982 struct file *file = vma->vm_file;
5983 struct inode *inode = file->f_path.dentry->d_inode;
5984 struct address_space *mapping = inode->i_mapping;
5985
5986 /*
5987 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5988 * get i_mutex because we are already holding mmap_sem.
5989 */
5990 down_read(&inode->i_alloc_sem);
5991 size = i_size_read(inode);
5992 if (page->mapping != mapping || size <= page_offset(page)
5993 || !PageUptodate(page)) {
5994 /* page got truncated from under us? */
5995 goto out_unlock;
5996 }
5997 ret = 0;
5998 if (PageMappedToDisk(page))
5999 goto out_unlock;
6000
6001 if (page->index == size >> PAGE_CACHE_SHIFT)
6002 len = size & ~PAGE_CACHE_MASK;
6003 else
6004 len = PAGE_CACHE_SIZE;
6005
a827eaff
AK
6006 lock_page(page);
6007 /*
6008 * return if we have all the buffers mapped. This avoid
6009 * the need to call write_begin/write_end which does a
6010 * journal_start/journal_stop which can block and take
6011 * long time
6012 */
2e9ee850 6013 if (page_has_buffers(page)) {
2e9ee850 6014 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
a827eaff
AK
6015 ext4_bh_unmapped)) {
6016 unlock_page(page);
2e9ee850 6017 goto out_unlock;
a827eaff 6018 }
2e9ee850 6019 }
a827eaff 6020 unlock_page(page);
2e9ee850
AK
6021 /*
6022 * OK, we need to fill the hole... Do write_begin write_end
6023 * to do block allocation/reservation.We are not holding
6024 * inode.i__mutex here. That allow * parallel write_begin,
6025 * write_end call. lock_page prevent this from happening
6026 * on the same page though
6027 */
6028 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 6029 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
6030 if (ret < 0)
6031 goto out_unlock;
6032 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 6033 len, len, page, fsdata);
2e9ee850
AK
6034 if (ret < 0)
6035 goto out_unlock;
6036 ret = 0;
6037out_unlock:
c2ec175c
NP
6038 if (ret)
6039 ret = VM_FAULT_SIGBUS;
2e9ee850
AK
6040 up_read(&inode->i_alloc_sem);
6041 return ret;
6042}