]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ext4/inode.c
ext4: fix EFBIG edge case when writing to large non-extent file
[net-next-2.6.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
4c0425ff 40#include <linux/workqueue.h>
744692dc 41#include <linux/kernel.h>
5a0e3ad6 42#include <linux/slab.h>
9bffad1e 43
3dcf5451 44#include "ext4_jbd2.h"
ac27a0ec
DK
45#include "xattr.h"
46#include "acl.h"
d2a17637 47#include "ext4_extents.h"
ac27a0ec 48
9bffad1e
TT
49#include <trace/events/ext4.h>
50
a1d6cc56
AK
51#define MPAGE_DA_EXTENT_TAIL 0x01
52
678aaf48
JK
53static inline int ext4_begin_ordered_truncate(struct inode *inode,
54 loff_t new_size)
55{
7f5aa215
JK
56 return jbd2_journal_begin_ordered_truncate(
57 EXT4_SB(inode->i_sb)->s_journal,
58 &EXT4_I(inode)->jinode,
59 new_size);
678aaf48
JK
60}
61
64769240
AT
62static void ext4_invalidatepage(struct page *page, unsigned long offset);
63
ac27a0ec
DK
64/*
65 * Test whether an inode is a fast symlink.
66 */
617ba13b 67static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 68{
617ba13b 69 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
70 (inode->i_sb->s_blocksize >> 9) : 0;
71
72 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
73}
74
ac27a0ec
DK
75/*
76 * Work out how many blocks we need to proceed with the next chunk of a
77 * truncate transaction.
78 */
79static unsigned long blocks_for_truncate(struct inode *inode)
80{
725d26d3 81 ext4_lblk_t needed;
ac27a0ec
DK
82
83 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
84
85 /* Give ourselves just enough room to cope with inodes in which
86 * i_blocks is corrupt: we've seen disk corruptions in the past
87 * which resulted in random data in an inode which looked enough
617ba13b 88 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
89 * will go a bit crazy if that happens, but at least we should
90 * try not to panic the whole kernel. */
91 if (needed < 2)
92 needed = 2;
93
94 /* But we need to bound the transaction so we don't overflow the
95 * journal. */
617ba13b
MC
96 if (needed > EXT4_MAX_TRANS_DATA)
97 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 98
617ba13b 99 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
100}
101
102/*
103 * Truncate transactions can be complex and absolutely huge. So we need to
104 * be able to restart the transaction at a conventient checkpoint to make
105 * sure we don't overflow the journal.
106 *
107 * start_transaction gets us a new handle for a truncate transaction,
108 * and extend_transaction tries to extend the existing one a bit. If
109 * extend fails, we need to propagate the failure up and restart the
110 * transaction in the top-level truncate loop. --sct
111 */
112static handle_t *start_transaction(struct inode *inode)
113{
114 handle_t *result;
115
617ba13b 116 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
117 if (!IS_ERR(result))
118 return result;
119
617ba13b 120 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
121 return result;
122}
123
124/*
125 * Try to extend this transaction for the purposes of truncation.
126 *
127 * Returns 0 if we managed to create more room. If we can't create more
128 * room, and the transaction must be restarted we return 1.
129 */
130static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
131{
0390131b
FM
132 if (!ext4_handle_valid(handle))
133 return 0;
134 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
ac27a0ec 135 return 0;
617ba13b 136 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
137 return 0;
138 return 1;
139}
140
141/*
142 * Restart the transaction associated with *handle. This does a commit,
143 * so before we call here everything must be consistently dirtied against
144 * this transaction.
145 */
fa5d1113 146int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 147 int nblocks)
ac27a0ec 148{
487caeef
JK
149 int ret;
150
151 /*
e35fd660 152 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
153 * moment, get_block can be called only for blocks inside i_size since
154 * page cache has been already dropped and writes are blocked by
155 * i_mutex. So we can safely drop the i_data_sem here.
156 */
0390131b 157 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 158 jbd_debug(2, "restarting handle %p\n", handle);
487caeef
JK
159 up_write(&EXT4_I(inode)->i_data_sem);
160 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
161 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 162 ext4_discard_preallocations(inode);
487caeef
JK
163
164 return ret;
ac27a0ec
DK
165}
166
167/*
168 * Called at the last iput() if i_nlink is zero.
169 */
af5bc92d 170void ext4_delete_inode(struct inode *inode)
ac27a0ec
DK
171{
172 handle_t *handle;
bc965ab3 173 int err;
ac27a0ec 174
907f4554 175 if (!is_bad_inode(inode))
871a2931 176 dquot_initialize(inode);
907f4554 177
678aaf48
JK
178 if (ext4_should_order_data(inode))
179 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
180 truncate_inode_pages(&inode->i_data, 0);
181
182 if (is_bad_inode(inode))
183 goto no_delete;
184
bc965ab3 185 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 186 if (IS_ERR(handle)) {
bc965ab3 187 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
188 /*
189 * If we're going to skip the normal cleanup, we still need to
190 * make sure that the in-core orphan linked list is properly
191 * cleaned up.
192 */
617ba13b 193 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
194 goto no_delete;
195 }
196
197 if (IS_SYNC(inode))
0390131b 198 ext4_handle_sync(handle);
ac27a0ec 199 inode->i_size = 0;
bc965ab3
TT
200 err = ext4_mark_inode_dirty(handle, inode);
201 if (err) {
12062ddd 202 ext4_warning(inode->i_sb,
bc965ab3
TT
203 "couldn't mark inode dirty (err %d)", err);
204 goto stop_handle;
205 }
ac27a0ec 206 if (inode->i_blocks)
617ba13b 207 ext4_truncate(inode);
bc965ab3
TT
208
209 /*
210 * ext4_ext_truncate() doesn't reserve any slop when it
211 * restarts journal transactions; therefore there may not be
212 * enough credits left in the handle to remove the inode from
213 * the orphan list and set the dtime field.
214 */
0390131b 215 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
216 err = ext4_journal_extend(handle, 3);
217 if (err > 0)
218 err = ext4_journal_restart(handle, 3);
219 if (err != 0) {
12062ddd 220 ext4_warning(inode->i_sb,
bc965ab3
TT
221 "couldn't extend journal (err %d)", err);
222 stop_handle:
223 ext4_journal_stop(handle);
224 goto no_delete;
225 }
226 }
227
ac27a0ec 228 /*
617ba13b 229 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 230 * AKPM: I think this can be inside the above `if'.
617ba13b 231 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 232 * deletion of a non-existent orphan - this is because we don't
617ba13b 233 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
234 * (Well, we could do this if we need to, but heck - it works)
235 */
617ba13b
MC
236 ext4_orphan_del(handle, inode);
237 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
238
239 /*
240 * One subtle ordering requirement: if anything has gone wrong
241 * (transaction abort, IO errors, whatever), then we can still
242 * do these next steps (the fs will already have been marked as
243 * having errors), but we can't free the inode if the mark_dirty
244 * fails.
245 */
617ba13b 246 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
247 /* If that failed, just do the required in-core inode clear. */
248 clear_inode(inode);
249 else
617ba13b
MC
250 ext4_free_inode(handle, inode);
251 ext4_journal_stop(handle);
ac27a0ec
DK
252 return;
253no_delete:
254 clear_inode(inode); /* We must guarantee clearing of inode... */
255}
256
257typedef struct {
258 __le32 *p;
259 __le32 key;
260 struct buffer_head *bh;
261} Indirect;
262
263static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
264{
265 p->key = *(p->p = v);
266 p->bh = bh;
267}
268
ac27a0ec 269/**
617ba13b 270 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
271 * @inode: inode in question (we are only interested in its superblock)
272 * @i_block: block number to be parsed
273 * @offsets: array to store the offsets in
8c55e204
DK
274 * @boundary: set this non-zero if the referred-to block is likely to be
275 * followed (on disk) by an indirect block.
ac27a0ec 276 *
617ba13b 277 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
278 * for UNIX filesystems - tree of pointers anchored in the inode, with
279 * data blocks at leaves and indirect blocks in intermediate nodes.
280 * This function translates the block number into path in that tree -
281 * return value is the path length and @offsets[n] is the offset of
282 * pointer to (n+1)th node in the nth one. If @block is out of range
283 * (negative or too large) warning is printed and zero returned.
284 *
285 * Note: function doesn't find node addresses, so no IO is needed. All
286 * we need to know is the capacity of indirect blocks (taken from the
287 * inode->i_sb).
288 */
289
290/*
291 * Portability note: the last comparison (check that we fit into triple
292 * indirect block) is spelled differently, because otherwise on an
293 * architecture with 32-bit longs and 8Kb pages we might get into trouble
294 * if our filesystem had 8Kb blocks. We might use long long, but that would
295 * kill us on x86. Oh, well, at least the sign propagation does not matter -
296 * i_block would have to be negative in the very beginning, so we would not
297 * get there at all.
298 */
299
617ba13b 300static int ext4_block_to_path(struct inode *inode,
de9a55b8
TT
301 ext4_lblk_t i_block,
302 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 303{
617ba13b
MC
304 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
305 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
306 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
307 indirect_blocks = ptrs,
308 double_blocks = (1 << (ptrs_bits * 2));
309 int n = 0;
310 int final = 0;
311
c333e073 312 if (i_block < direct_blocks) {
ac27a0ec
DK
313 offsets[n++] = i_block;
314 final = direct_blocks;
af5bc92d 315 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 316 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
317 offsets[n++] = i_block;
318 final = ptrs;
319 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 320 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
321 offsets[n++] = i_block >> ptrs_bits;
322 offsets[n++] = i_block & (ptrs - 1);
323 final = ptrs;
324 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 325 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
326 offsets[n++] = i_block >> (ptrs_bits * 2);
327 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
328 offsets[n++] = i_block & (ptrs - 1);
329 final = ptrs;
330 } else {
12062ddd 331 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
de9a55b8
TT
332 i_block + direct_blocks +
333 indirect_blocks + double_blocks, inode->i_ino);
ac27a0ec
DK
334 }
335 if (boundary)
336 *boundary = final - 1 - (i_block & (ptrs - 1));
337 return n;
338}
339
c398eda0
TT
340static int __ext4_check_blockref(const char *function, unsigned int line,
341 struct inode *inode,
6fd058f7
TT
342 __le32 *p, unsigned int max)
343{
1c13d5c0 344 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
f73953c0 345 __le32 *bref = p;
6fd058f7
TT
346 unsigned int blk;
347
fe2c8191 348 while (bref < p+max) {
6fd058f7 349 blk = le32_to_cpu(*bref++);
de9a55b8
TT
350 if (blk &&
351 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
6fd058f7 352 blk, 1))) {
1c13d5c0 353 es->s_last_error_block = cpu_to_le64(blk);
c398eda0
TT
354 ext4_error_inode(inode, function, line, blk,
355 "invalid block");
de9a55b8
TT
356 return -EIO;
357 }
358 }
359 return 0;
fe2c8191
TN
360}
361
362
363#define ext4_check_indirect_blockref(inode, bh) \
c398eda0
TT
364 __ext4_check_blockref(__func__, __LINE__, inode, \
365 (__le32 *)(bh)->b_data, \
fe2c8191
TN
366 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
367
368#define ext4_check_inode_blockref(inode) \
c398eda0
TT
369 __ext4_check_blockref(__func__, __LINE__, inode, \
370 EXT4_I(inode)->i_data, \
fe2c8191
TN
371 EXT4_NDIR_BLOCKS)
372
ac27a0ec 373/**
617ba13b 374 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
375 * @inode: inode in question
376 * @depth: depth of the chain (1 - direct pointer, etc.)
377 * @offsets: offsets of pointers in inode/indirect blocks
378 * @chain: place to store the result
379 * @err: here we store the error value
380 *
381 * Function fills the array of triples <key, p, bh> and returns %NULL
382 * if everything went OK or the pointer to the last filled triple
383 * (incomplete one) otherwise. Upon the return chain[i].key contains
384 * the number of (i+1)-th block in the chain (as it is stored in memory,
385 * i.e. little-endian 32-bit), chain[i].p contains the address of that
386 * number (it points into struct inode for i==0 and into the bh->b_data
387 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
388 * block for i>0 and NULL for i==0. In other words, it holds the block
389 * numbers of the chain, addresses they were taken from (and where we can
390 * verify that chain did not change) and buffer_heads hosting these
391 * numbers.
392 *
393 * Function stops when it stumbles upon zero pointer (absent block)
394 * (pointer to last triple returned, *@err == 0)
395 * or when it gets an IO error reading an indirect block
396 * (ditto, *@err == -EIO)
ac27a0ec
DK
397 * or when it reads all @depth-1 indirect blocks successfully and finds
398 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
399 *
400 * Need to be called with
0e855ac8 401 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 402 */
725d26d3
AK
403static Indirect *ext4_get_branch(struct inode *inode, int depth,
404 ext4_lblk_t *offsets,
ac27a0ec
DK
405 Indirect chain[4], int *err)
406{
407 struct super_block *sb = inode->i_sb;
408 Indirect *p = chain;
409 struct buffer_head *bh;
410
411 *err = 0;
412 /* i_data is not going away, no lock needed */
af5bc92d 413 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
414 if (!p->key)
415 goto no_block;
416 while (--depth) {
fe2c8191
TN
417 bh = sb_getblk(sb, le32_to_cpu(p->key));
418 if (unlikely(!bh))
ac27a0ec 419 goto failure;
de9a55b8 420
fe2c8191
TN
421 if (!bh_uptodate_or_lock(bh)) {
422 if (bh_submit_read(bh) < 0) {
423 put_bh(bh);
424 goto failure;
425 }
426 /* validate block references */
427 if (ext4_check_indirect_blockref(inode, bh)) {
428 put_bh(bh);
429 goto failure;
430 }
431 }
de9a55b8 432
af5bc92d 433 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
434 /* Reader: end */
435 if (!p->key)
436 goto no_block;
437 }
438 return NULL;
439
ac27a0ec
DK
440failure:
441 *err = -EIO;
442no_block:
443 return p;
444}
445
446/**
617ba13b 447 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
448 * @inode: owner
449 * @ind: descriptor of indirect block.
450 *
1cc8dcf5 451 * This function returns the preferred place for block allocation.
ac27a0ec
DK
452 * It is used when heuristic for sequential allocation fails.
453 * Rules are:
454 * + if there is a block to the left of our position - allocate near it.
455 * + if pointer will live in indirect block - allocate near that block.
456 * + if pointer will live in inode - allocate in the same
457 * cylinder group.
458 *
459 * In the latter case we colour the starting block by the callers PID to
460 * prevent it from clashing with concurrent allocations for a different inode
461 * in the same block group. The PID is used here so that functionally related
462 * files will be close-by on-disk.
463 *
464 * Caller must make sure that @ind is valid and will stay that way.
465 */
617ba13b 466static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 467{
617ba13b 468 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 469 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 470 __le32 *p;
617ba13b 471 ext4_fsblk_t bg_start;
74d3487f 472 ext4_fsblk_t last_block;
617ba13b 473 ext4_grpblk_t colour;
a4912123
TT
474 ext4_group_t block_group;
475 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
ac27a0ec
DK
476
477 /* Try to find previous block */
478 for (p = ind->p - 1; p >= start; p--) {
479 if (*p)
480 return le32_to_cpu(*p);
481 }
482
483 /* No such thing, so let's try location of indirect block */
484 if (ind->bh)
485 return ind->bh->b_blocknr;
486
487 /*
488 * It is going to be referred to from the inode itself? OK, just put it
489 * into the same cylinder group then.
490 */
a4912123
TT
491 block_group = ei->i_block_group;
492 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
493 block_group &= ~(flex_size-1);
494 if (S_ISREG(inode->i_mode))
495 block_group++;
496 }
497 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
74d3487f
VC
498 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
499
a4912123
TT
500 /*
501 * If we are doing delayed allocation, we don't need take
502 * colour into account.
503 */
504 if (test_opt(inode->i_sb, DELALLOC))
505 return bg_start;
506
74d3487f
VC
507 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
508 colour = (current->pid % 16) *
617ba13b 509 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
510 else
511 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
512 return bg_start + colour;
513}
514
515/**
1cc8dcf5 516 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
517 * @inode: owner
518 * @block: block we want
ac27a0ec 519 * @partial: pointer to the last triple within a chain
ac27a0ec 520 *
1cc8dcf5 521 * Normally this function find the preferred place for block allocation,
fb01bfda 522 * returns it.
fb0a387d
ES
523 * Because this is only used for non-extent files, we limit the block nr
524 * to 32 bits.
ac27a0ec 525 */
725d26d3 526static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
de9a55b8 527 Indirect *partial)
ac27a0ec 528{
fb0a387d
ES
529 ext4_fsblk_t goal;
530
ac27a0ec 531 /*
c2ea3fde 532 * XXX need to get goal block from mballoc's data structures
ac27a0ec 533 */
ac27a0ec 534
fb0a387d
ES
535 goal = ext4_find_near(inode, partial);
536 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
537 return goal;
ac27a0ec
DK
538}
539
540/**
617ba13b 541 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
542 * of direct blocks need to be allocated for the given branch.
543 *
544 * @branch: chain of indirect blocks
545 * @k: number of blocks need for indirect blocks
546 * @blks: number of data blocks to be mapped.
547 * @blocks_to_boundary: the offset in the indirect block
548 *
549 * return the total number of blocks to be allocate, including the
550 * direct and indirect blocks.
551 */
498e5f24 552static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
de9a55b8 553 int blocks_to_boundary)
ac27a0ec 554{
498e5f24 555 unsigned int count = 0;
ac27a0ec
DK
556
557 /*
558 * Simple case, [t,d]Indirect block(s) has not allocated yet
559 * then it's clear blocks on that path have not allocated
560 */
561 if (k > 0) {
562 /* right now we don't handle cross boundary allocation */
563 if (blks < blocks_to_boundary + 1)
564 count += blks;
565 else
566 count += blocks_to_boundary + 1;
567 return count;
568 }
569
570 count++;
571 while (count < blks && count <= blocks_to_boundary &&
572 le32_to_cpu(*(branch[0].p + count)) == 0) {
573 count++;
574 }
575 return count;
576}
577
578/**
617ba13b 579 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
580 * @indirect_blks: the number of blocks need to allocate for indirect
581 * blocks
582 *
583 * @new_blocks: on return it will store the new block numbers for
584 * the indirect blocks(if needed) and the first direct block,
585 * @blks: on return it will store the total number of allocated
586 * direct blocks
587 */
617ba13b 588static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
589 ext4_lblk_t iblock, ext4_fsblk_t goal,
590 int indirect_blks, int blks,
591 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 592{
815a1130 593 struct ext4_allocation_request ar;
ac27a0ec 594 int target, i;
7061eba7 595 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 596 int index = 0;
617ba13b 597 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
598 int ret = 0;
599
600 /*
601 * Here we try to allocate the requested multiple blocks at once,
602 * on a best-effort basis.
603 * To build a branch, we should allocate blocks for
604 * the indirect blocks(if not allocated yet), and at least
605 * the first direct block of this branch. That's the
606 * minimum number of blocks need to allocate(required)
607 */
7061eba7
AK
608 /* first we try to allocate the indirect blocks */
609 target = indirect_blks;
610 while (target > 0) {
ac27a0ec
DK
611 count = target;
612 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
613 current_block = ext4_new_meta_blocks(handle, inode,
614 goal, &count, err);
ac27a0ec
DK
615 if (*err)
616 goto failed_out;
617
273df556
FM
618 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
619 EXT4_ERROR_INODE(inode,
620 "current_block %llu + count %lu > %d!",
621 current_block, count,
622 EXT4_MAX_BLOCK_FILE_PHYS);
623 *err = -EIO;
624 goto failed_out;
625 }
fb0a387d 626
ac27a0ec
DK
627 target -= count;
628 /* allocate blocks for indirect blocks */
629 while (index < indirect_blks && count) {
630 new_blocks[index++] = current_block++;
631 count--;
632 }
7061eba7
AK
633 if (count > 0) {
634 /*
635 * save the new block number
636 * for the first direct block
637 */
638 new_blocks[index] = current_block;
639 printk(KERN_INFO "%s returned more blocks than "
640 "requested\n", __func__);
641 WARN_ON(1);
ac27a0ec 642 break;
7061eba7 643 }
ac27a0ec
DK
644 }
645
7061eba7
AK
646 target = blks - count ;
647 blk_allocated = count;
648 if (!target)
649 goto allocated;
650 /* Now allocate data blocks */
815a1130
TT
651 memset(&ar, 0, sizeof(ar));
652 ar.inode = inode;
653 ar.goal = goal;
654 ar.len = target;
655 ar.logical = iblock;
656 if (S_ISREG(inode->i_mode))
657 /* enable in-core preallocation only for regular files */
658 ar.flags = EXT4_MB_HINT_DATA;
659
660 current_block = ext4_mb_new_blocks(handle, &ar, err);
273df556
FM
661 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
662 EXT4_ERROR_INODE(inode,
663 "current_block %llu + ar.len %d > %d!",
664 current_block, ar.len,
665 EXT4_MAX_BLOCK_FILE_PHYS);
666 *err = -EIO;
667 goto failed_out;
668 }
815a1130 669
7061eba7
AK
670 if (*err && (target == blks)) {
671 /*
672 * if the allocation failed and we didn't allocate
673 * any blocks before
674 */
675 goto failed_out;
676 }
677 if (!*err) {
678 if (target == blks) {
de9a55b8
TT
679 /*
680 * save the new block number
681 * for the first direct block
682 */
7061eba7
AK
683 new_blocks[index] = current_block;
684 }
815a1130 685 blk_allocated += ar.len;
7061eba7
AK
686 }
687allocated:
ac27a0ec 688 /* total number of blocks allocated for direct blocks */
7061eba7 689 ret = blk_allocated;
ac27a0ec
DK
690 *err = 0;
691 return ret;
692failed_out:
af5bc92d 693 for (i = 0; i < index; i++)
e6362609 694 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
ac27a0ec
DK
695 return ret;
696}
697
698/**
617ba13b 699 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
700 * @inode: owner
701 * @indirect_blks: number of allocated indirect blocks
702 * @blks: number of allocated direct blocks
703 * @offsets: offsets (in the blocks) to store the pointers to next.
704 * @branch: place to store the chain in.
705 *
706 * This function allocates blocks, zeroes out all but the last one,
707 * links them into chain and (if we are synchronous) writes them to disk.
708 * In other words, it prepares a branch that can be spliced onto the
709 * inode. It stores the information about that chain in the branch[], in
617ba13b 710 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
711 * we had read the existing part of chain and partial points to the last
712 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 713 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
714 * place chain is disconnected - *branch->p is still zero (we did not
715 * set the last link), but branch->key contains the number that should
716 * be placed into *branch->p to fill that gap.
717 *
718 * If allocation fails we free all blocks we've allocated (and forget
719 * their buffer_heads) and return the error value the from failed
617ba13b 720 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
721 * as described above and return 0.
722 */
617ba13b 723static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
724 ext4_lblk_t iblock, int indirect_blks,
725 int *blks, ext4_fsblk_t goal,
726 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
727{
728 int blocksize = inode->i_sb->s_blocksize;
729 int i, n = 0;
730 int err = 0;
731 struct buffer_head *bh;
732 int num;
617ba13b
MC
733 ext4_fsblk_t new_blocks[4];
734 ext4_fsblk_t current_block;
ac27a0ec 735
7061eba7 736 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
737 *blks, new_blocks, &err);
738 if (err)
739 return err;
740
741 branch[0].key = cpu_to_le32(new_blocks[0]);
742 /*
743 * metadata blocks and data blocks are allocated.
744 */
745 for (n = 1; n <= indirect_blks; n++) {
746 /*
747 * Get buffer_head for parent block, zero it out
748 * and set the pointer to new one, then send
749 * parent to disk.
750 */
751 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
752 branch[n].bh = bh;
753 lock_buffer(bh);
754 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 755 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec 756 if (err) {
6487a9d3
CW
757 /* Don't brelse(bh) here; it's done in
758 * ext4_journal_forget() below */
ac27a0ec 759 unlock_buffer(bh);
ac27a0ec
DK
760 goto failed;
761 }
762
763 memset(bh->b_data, 0, blocksize);
764 branch[n].p = (__le32 *) bh->b_data + offsets[n];
765 branch[n].key = cpu_to_le32(new_blocks[n]);
766 *branch[n].p = branch[n].key;
af5bc92d 767 if (n == indirect_blks) {
ac27a0ec
DK
768 current_block = new_blocks[n];
769 /*
770 * End of chain, update the last new metablock of
771 * the chain to point to the new allocated
772 * data blocks numbers
773 */
de9a55b8 774 for (i = 1; i < num; i++)
ac27a0ec
DK
775 *(branch[n].p + i) = cpu_to_le32(++current_block);
776 }
777 BUFFER_TRACE(bh, "marking uptodate");
778 set_buffer_uptodate(bh);
779 unlock_buffer(bh);
780
0390131b
FM
781 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
782 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
783 if (err)
784 goto failed;
785 }
786 *blks = num;
787 return err;
788failed:
789 /* Allocation failed, free what we already allocated */
e6362609 790 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
ac27a0ec 791 for (i = 1; i <= n ; i++) {
60e6679e 792 /*
e6362609
TT
793 * branch[i].bh is newly allocated, so there is no
794 * need to revoke the block, which is why we don't
795 * need to set EXT4_FREE_BLOCKS_METADATA.
b7e57e7c 796 */
e6362609
TT
797 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
798 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec 799 }
e6362609
TT
800 for (i = n+1; i < indirect_blks; i++)
801 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
ac27a0ec 802
e6362609 803 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
ac27a0ec
DK
804
805 return err;
806}
807
808/**
617ba13b 809 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
810 * @inode: owner
811 * @block: (logical) number of block we are adding
812 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 813 * ext4_alloc_branch)
ac27a0ec
DK
814 * @where: location of missing link
815 * @num: number of indirect blocks we are adding
816 * @blks: number of direct blocks we are adding
817 *
818 * This function fills the missing link and does all housekeeping needed in
819 * inode (->i_blocks, etc.). In case of success we end up with the full
820 * chain to new block and return 0.
821 */
617ba13b 822static int ext4_splice_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
823 ext4_lblk_t block, Indirect *where, int num,
824 int blks)
ac27a0ec
DK
825{
826 int i;
827 int err = 0;
617ba13b 828 ext4_fsblk_t current_block;
ac27a0ec 829
ac27a0ec
DK
830 /*
831 * If we're splicing into a [td]indirect block (as opposed to the
832 * inode) then we need to get write access to the [td]indirect block
833 * before the splice.
834 */
835 if (where->bh) {
836 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 837 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
838 if (err)
839 goto err_out;
840 }
841 /* That's it */
842
843 *where->p = where->key;
844
845 /*
846 * Update the host buffer_head or inode to point to more just allocated
847 * direct blocks blocks
848 */
849 if (num == 0 && blks > 1) {
850 current_block = le32_to_cpu(where->key) + 1;
851 for (i = 1; i < blks; i++)
af5bc92d 852 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
853 }
854
ac27a0ec 855 /* We are done with atomic stuff, now do the rest of housekeeping */
ac27a0ec
DK
856 /* had we spliced it onto indirect block? */
857 if (where->bh) {
858 /*
859 * If we spliced it onto an indirect block, we haven't
860 * altered the inode. Note however that if it is being spliced
861 * onto an indirect block at the very end of the file (the
862 * file is growing) then we *will* alter the inode to reflect
863 * the new i_size. But that is not done here - it is done in
617ba13b 864 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
865 */
866 jbd_debug(5, "splicing indirect only\n");
0390131b
FM
867 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
868 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
ac27a0ec
DK
869 if (err)
870 goto err_out;
871 } else {
872 /*
873 * OK, we spliced it into the inode itself on a direct block.
ac27a0ec 874 */
41591750 875 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
876 jbd_debug(5, "splicing direct\n");
877 }
878 return err;
879
880err_out:
881 for (i = 1; i <= num; i++) {
60e6679e 882 /*
e6362609
TT
883 * branch[i].bh is newly allocated, so there is no
884 * need to revoke the block, which is why we don't
885 * need to set EXT4_FREE_BLOCKS_METADATA.
b7e57e7c 886 */
e6362609
TT
887 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
888 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec 889 }
e6362609
TT
890 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
891 blks, 0);
ac27a0ec
DK
892
893 return err;
894}
895
896/*
e35fd660 897 * The ext4_ind_map_blocks() function handles non-extents inodes
b920c755 898 * (i.e., using the traditional indirect/double-indirect i_blocks
e35fd660 899 * scheme) for ext4_map_blocks().
b920c755 900 *
ac27a0ec
DK
901 * Allocation strategy is simple: if we have to allocate something, we will
902 * have to go the whole way to leaf. So let's do it before attaching anything
903 * to tree, set linkage between the newborn blocks, write them if sync is
904 * required, recheck the path, free and repeat if check fails, otherwise
905 * set the last missing link (that will protect us from any truncate-generated
906 * removals - all blocks on the path are immune now) and possibly force the
907 * write on the parent block.
908 * That has a nice additional property: no special recovery from the failed
909 * allocations is needed - we simply release blocks and do not touch anything
910 * reachable from inode.
911 *
912 * `handle' can be NULL if create == 0.
913 *
ac27a0ec
DK
914 * return > 0, # of blocks mapped or allocated.
915 * return = 0, if plain lookup failed.
916 * return < 0, error case.
c278bfec 917 *
b920c755
TT
918 * The ext4_ind_get_blocks() function should be called with
919 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
920 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
921 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
922 * blocks.
ac27a0ec 923 */
e35fd660
TT
924static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
925 struct ext4_map_blocks *map,
de9a55b8 926 int flags)
ac27a0ec
DK
927{
928 int err = -EIO;
725d26d3 929 ext4_lblk_t offsets[4];
ac27a0ec
DK
930 Indirect chain[4];
931 Indirect *partial;
617ba13b 932 ext4_fsblk_t goal;
ac27a0ec
DK
933 int indirect_blks;
934 int blocks_to_boundary = 0;
935 int depth;
ac27a0ec 936 int count = 0;
617ba13b 937 ext4_fsblk_t first_block = 0;
ac27a0ec 938
12e9b892 939 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
c2177057 940 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
e35fd660 941 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
de9a55b8 942 &blocks_to_boundary);
ac27a0ec
DK
943
944 if (depth == 0)
945 goto out;
946
617ba13b 947 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
948
949 /* Simplest case - block found, no allocation needed */
950 if (!partial) {
951 first_block = le32_to_cpu(chain[depth - 1].key);
ac27a0ec
DK
952 count++;
953 /*map more blocks*/
e35fd660 954 while (count < map->m_len && count <= blocks_to_boundary) {
617ba13b 955 ext4_fsblk_t blk;
ac27a0ec 956
ac27a0ec
DK
957 blk = le32_to_cpu(*(chain[depth-1].p + count));
958
959 if (blk == first_block + count)
960 count++;
961 else
962 break;
963 }
c278bfec 964 goto got_it;
ac27a0ec
DK
965 }
966
967 /* Next simple case - plain lookup or failed read of indirect block */
c2177057 968 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
ac27a0ec
DK
969 goto cleanup;
970
ac27a0ec 971 /*
c2ea3fde 972 * Okay, we need to do block allocation.
ac27a0ec 973 */
e35fd660 974 goal = ext4_find_goal(inode, map->m_lblk, partial);
ac27a0ec
DK
975
976 /* the number of blocks need to allocate for [d,t]indirect blocks */
977 indirect_blks = (chain + depth) - partial - 1;
978
979 /*
980 * Next look up the indirect map to count the totoal number of
981 * direct blocks to allocate for this branch.
982 */
617ba13b 983 count = ext4_blks_to_allocate(partial, indirect_blks,
e35fd660 984 map->m_len, blocks_to_boundary);
ac27a0ec 985 /*
617ba13b 986 * Block out ext4_truncate while we alter the tree
ac27a0ec 987 */
e35fd660 988 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
de9a55b8
TT
989 &count, goal,
990 offsets + (partial - chain), partial);
ac27a0ec
DK
991
992 /*
617ba13b 993 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
994 * on the new chain if there is a failure, but that risks using
995 * up transaction credits, especially for bitmaps where the
996 * credits cannot be returned. Can we handle this somehow? We
997 * may need to return -EAGAIN upwards in the worst case. --sct
998 */
999 if (!err)
e35fd660 1000 err = ext4_splice_branch(handle, inode, map->m_lblk,
de9a55b8 1001 partial, indirect_blks, count);
2bba702d 1002 if (err)
ac27a0ec
DK
1003 goto cleanup;
1004
e35fd660 1005 map->m_flags |= EXT4_MAP_NEW;
b436b9be
JK
1006
1007 ext4_update_inode_fsync_trans(handle, inode, 1);
ac27a0ec 1008got_it:
e35fd660
TT
1009 map->m_flags |= EXT4_MAP_MAPPED;
1010 map->m_pblk = le32_to_cpu(chain[depth-1].key);
1011 map->m_len = count;
ac27a0ec 1012 if (count > blocks_to_boundary)
e35fd660 1013 map->m_flags |= EXT4_MAP_BOUNDARY;
ac27a0ec
DK
1014 err = count;
1015 /* Clean up and exit */
1016 partial = chain + depth - 1; /* the whole chain */
1017cleanup:
1018 while (partial > chain) {
1019 BUFFER_TRACE(partial->bh, "call brelse");
1020 brelse(partial->bh);
1021 partial--;
1022 }
ac27a0ec
DK
1023out:
1024 return err;
1025}
1026
a9e7f447
DM
1027#ifdef CONFIG_QUOTA
1028qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 1029{
a9e7f447 1030 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 1031}
a9e7f447 1032#endif
9d0be502 1033
12219aea
AK
1034/*
1035 * Calculate the number of metadata blocks need to reserve
9d0be502 1036 * to allocate a new block at @lblocks for non extent file based file
12219aea 1037 */
9d0be502
TT
1038static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1039 sector_t lblock)
12219aea 1040{
9d0be502 1041 struct ext4_inode_info *ei = EXT4_I(inode);
d330a5be 1042 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
9d0be502 1043 int blk_bits;
12219aea 1044
9d0be502
TT
1045 if (lblock < EXT4_NDIR_BLOCKS)
1046 return 0;
12219aea 1047
9d0be502 1048 lblock -= EXT4_NDIR_BLOCKS;
12219aea 1049
9d0be502
TT
1050 if (ei->i_da_metadata_calc_len &&
1051 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1052 ei->i_da_metadata_calc_len++;
1053 return 0;
1054 }
1055 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1056 ei->i_da_metadata_calc_len = 1;
d330a5be 1057 blk_bits = order_base_2(lblock);
9d0be502 1058 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
12219aea
AK
1059}
1060
1061/*
1062 * Calculate the number of metadata blocks need to reserve
9d0be502 1063 * to allocate a block located at @lblock
12219aea 1064 */
9d0be502 1065static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
12219aea 1066{
12e9b892 1067 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 1068 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 1069
9d0be502 1070 return ext4_indirect_calc_metadata_amount(inode, lblock);
12219aea
AK
1071}
1072
0637c6f4
TT
1073/*
1074 * Called with i_data_sem down, which is important since we can call
1075 * ext4_discard_preallocations() from here.
1076 */
5f634d06
AK
1077void ext4_da_update_reserve_space(struct inode *inode,
1078 int used, int quota_claim)
12219aea
AK
1079{
1080 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1081 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
1082
1083 spin_lock(&ei->i_block_reservation_lock);
f8ec9d68 1084 trace_ext4_da_update_reserve_space(inode, used);
0637c6f4
TT
1085 if (unlikely(used > ei->i_reserved_data_blocks)) {
1086 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1087 "with only %d reserved data blocks\n",
1088 __func__, inode->i_ino, used,
1089 ei->i_reserved_data_blocks);
1090 WARN_ON(1);
1091 used = ei->i_reserved_data_blocks;
1092 }
12219aea 1093
0637c6f4
TT
1094 /* Update per-inode reservations */
1095 ei->i_reserved_data_blocks -= used;
0637c6f4 1096 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
72b8ab9d
ES
1097 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1098 used + ei->i_allocated_meta_blocks);
0637c6f4 1099 ei->i_allocated_meta_blocks = 0;
6bc6e63f 1100
0637c6f4
TT
1101 if (ei->i_reserved_data_blocks == 0) {
1102 /*
1103 * We can release all of the reserved metadata blocks
1104 * only when we have written all of the delayed
1105 * allocation blocks.
1106 */
72b8ab9d
ES
1107 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1108 ei->i_reserved_meta_blocks);
ee5f4d9c 1109 ei->i_reserved_meta_blocks = 0;
9d0be502 1110 ei->i_da_metadata_calc_len = 0;
6bc6e63f 1111 }
12219aea 1112 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1113
72b8ab9d
ES
1114 /* Update quota subsystem for data blocks */
1115 if (quota_claim)
5dd4056d 1116 dquot_claim_block(inode, used);
72b8ab9d 1117 else {
5f634d06
AK
1118 /*
1119 * We did fallocate with an offset that is already delayed
1120 * allocated. So on delayed allocated writeback we should
72b8ab9d 1121 * not re-claim the quota for fallocated blocks.
5f634d06 1122 */
72b8ab9d 1123 dquot_release_reservation_block(inode, used);
5f634d06 1124 }
d6014301
AK
1125
1126 /*
1127 * If we have done all the pending block allocations and if
1128 * there aren't any writers on the inode, we can discard the
1129 * inode's preallocations.
1130 */
0637c6f4
TT
1131 if ((ei->i_reserved_data_blocks == 0) &&
1132 (atomic_read(&inode->i_writecount) == 0))
d6014301 1133 ext4_discard_preallocations(inode);
12219aea
AK
1134}
1135
e29136f8 1136static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
1137 unsigned int line,
1138 struct ext4_map_blocks *map)
6fd058f7 1139{
24676da4
TT
1140 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1141 map->m_len)) {
c398eda0
TT
1142 ext4_error_inode(inode, func, line, map->m_pblk,
1143 "lblock %lu mapped to illegal pblock "
1144 "(length %d)", (unsigned long) map->m_lblk,
1145 map->m_len);
6fd058f7
TT
1146 return -EIO;
1147 }
1148 return 0;
1149}
1150
e29136f8 1151#define check_block_validity(inode, map) \
c398eda0 1152 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 1153
55138e0b 1154/*
1f94533d
TT
1155 * Return the number of contiguous dirty pages in a given inode
1156 * starting at page frame idx.
55138e0b
TT
1157 */
1158static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1159 unsigned int max_pages)
1160{
1161 struct address_space *mapping = inode->i_mapping;
1162 pgoff_t index;
1163 struct pagevec pvec;
1164 pgoff_t num = 0;
1165 int i, nr_pages, done = 0;
1166
1167 if (max_pages == 0)
1168 return 0;
1169 pagevec_init(&pvec, 0);
1170 while (!done) {
1171 index = idx;
1172 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1173 PAGECACHE_TAG_DIRTY,
1174 (pgoff_t)PAGEVEC_SIZE);
1175 if (nr_pages == 0)
1176 break;
1177 for (i = 0; i < nr_pages; i++) {
1178 struct page *page = pvec.pages[i];
1179 struct buffer_head *bh, *head;
1180
1181 lock_page(page);
1182 if (unlikely(page->mapping != mapping) ||
1183 !PageDirty(page) ||
1184 PageWriteback(page) ||
1185 page->index != idx) {
1186 done = 1;
1187 unlock_page(page);
1188 break;
1189 }
1f94533d
TT
1190 if (page_has_buffers(page)) {
1191 bh = head = page_buffers(page);
1192 do {
1193 if (!buffer_delay(bh) &&
1194 !buffer_unwritten(bh))
1195 done = 1;
1196 bh = bh->b_this_page;
1197 } while (!done && (bh != head));
1198 }
55138e0b
TT
1199 unlock_page(page);
1200 if (done)
1201 break;
1202 idx++;
1203 num++;
1204 if (num >= max_pages)
1205 break;
1206 }
1207 pagevec_release(&pvec);
1208 }
1209 return num;
1210}
1211
f5ab0d1f 1212/*
e35fd660 1213 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 1214 * and returns if the blocks are already mapped.
f5ab0d1f 1215 *
f5ab0d1f
MC
1216 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1217 * and store the allocated blocks in the result buffer head and mark it
1218 * mapped.
1219 *
e35fd660
TT
1220 * If file type is extents based, it will call ext4_ext_map_blocks(),
1221 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
1222 * based files
1223 *
1224 * On success, it returns the number of blocks being mapped or allocate.
1225 * if create==0 and the blocks are pre-allocated and uninitialized block,
1226 * the result buffer head is unmapped. If the create ==1, it will make sure
1227 * the buffer head is mapped.
1228 *
1229 * It returns 0 if plain look up failed (blocks have not been allocated), in
1230 * that casem, buffer head is unmapped
1231 *
1232 * It returns the error in case of allocation failure.
1233 */
e35fd660
TT
1234int ext4_map_blocks(handle_t *handle, struct inode *inode,
1235 struct ext4_map_blocks *map, int flags)
0e855ac8
AK
1236{
1237 int retval;
f5ab0d1f 1238
e35fd660
TT
1239 map->m_flags = 0;
1240 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1241 "logical block %lu\n", inode->i_ino, flags, map->m_len,
1242 (unsigned long) map->m_lblk);
4df3d265 1243 /*
b920c755
TT
1244 * Try to see if we can get the block without requesting a new
1245 * file system block.
4df3d265
AK
1246 */
1247 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 1248 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 1249 retval = ext4_ext_map_blocks(handle, inode, map, 0);
0e855ac8 1250 } else {
e35fd660 1251 retval = ext4_ind_map_blocks(handle, inode, map, 0);
0e855ac8 1252 }
4df3d265 1253 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 1254
e35fd660 1255 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 1256 int ret = check_block_validity(inode, map);
6fd058f7
TT
1257 if (ret != 0)
1258 return ret;
1259 }
1260
f5ab0d1f 1261 /* If it is only a block(s) look up */
c2177057 1262 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
1263 return retval;
1264
1265 /*
1266 * Returns if the blocks have already allocated
1267 *
1268 * Note that if blocks have been preallocated
1269 * ext4_ext_get_block() returns th create = 0
1270 * with buffer head unmapped.
1271 */
e35fd660 1272 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
1273 return retval;
1274
2a8964d6
AK
1275 /*
1276 * When we call get_blocks without the create flag, the
1277 * BH_Unwritten flag could have gotten set if the blocks
1278 * requested were part of a uninitialized extent. We need to
1279 * clear this flag now that we are committed to convert all or
1280 * part of the uninitialized extent to be an initialized
1281 * extent. This is because we need to avoid the combination
1282 * of BH_Unwritten and BH_Mapped flags being simultaneously
1283 * set on the buffer_head.
1284 */
e35fd660 1285 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
2a8964d6 1286
4df3d265 1287 /*
f5ab0d1f
MC
1288 * New blocks allocate and/or writing to uninitialized extent
1289 * will possibly result in updating i_data, so we take
1290 * the write lock of i_data_sem, and call get_blocks()
1291 * with create == 1 flag.
4df3d265
AK
1292 */
1293 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1294
1295 /*
1296 * if the caller is from delayed allocation writeout path
1297 * we have already reserved fs blocks for allocation
1298 * let the underlying get_block() function know to
1299 * avoid double accounting
1300 */
c2177057 1301 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1302 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1303 /*
1304 * We need to check for EXT4 here because migrate
1305 * could have changed the inode type in between
1306 */
12e9b892 1307 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 1308 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 1309 } else {
e35fd660 1310 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 1311
e35fd660 1312 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
1313 /*
1314 * We allocated new blocks which will result in
1315 * i_data's format changing. Force the migrate
1316 * to fail by clearing migrate flags
1317 */
19f5fb7a 1318 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 1319 }
d2a17637 1320
5f634d06
AK
1321 /*
1322 * Update reserved blocks/metadata blocks after successful
1323 * block allocation which had been deferred till now. We don't
1324 * support fallocate for non extent files. So we can update
1325 * reserve space here.
1326 */
1327 if ((retval > 0) &&
1296cc85 1328 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
1329 ext4_da_update_reserve_space(inode, retval, 1);
1330 }
2ac3b6e0 1331 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1332 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
2ac3b6e0 1333
4df3d265 1334 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 1335 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 1336 int ret = check_block_validity(inode, map);
6fd058f7
TT
1337 if (ret != 0)
1338 return ret;
1339 }
0e855ac8
AK
1340 return retval;
1341}
1342
f3bd1f3f
MC
1343/* Maximum number of blocks we map for direct IO at once. */
1344#define DIO_MAX_BLOCKS 4096
1345
2ed88685
TT
1346static int _ext4_get_block(struct inode *inode, sector_t iblock,
1347 struct buffer_head *bh, int flags)
ac27a0ec 1348{
3e4fdaf8 1349 handle_t *handle = ext4_journal_current_handle();
2ed88685 1350 struct ext4_map_blocks map;
7fb5409d 1351 int ret = 0, started = 0;
f3bd1f3f 1352 int dio_credits;
ac27a0ec 1353
2ed88685
TT
1354 map.m_lblk = iblock;
1355 map.m_len = bh->b_size >> inode->i_blkbits;
1356
1357 if (flags && !handle) {
7fb5409d 1358 /* Direct IO write... */
2ed88685
TT
1359 if (map.m_len > DIO_MAX_BLOCKS)
1360 map.m_len = DIO_MAX_BLOCKS;
1361 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
f3bd1f3f 1362 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1363 if (IS_ERR(handle)) {
ac27a0ec 1364 ret = PTR_ERR(handle);
2ed88685 1365 return ret;
ac27a0ec 1366 }
7fb5409d 1367 started = 1;
ac27a0ec
DK
1368 }
1369
2ed88685 1370 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 1371 if (ret > 0) {
2ed88685
TT
1372 map_bh(bh, inode->i_sb, map.m_pblk);
1373 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1374 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 1375 ret = 0;
ac27a0ec 1376 }
7fb5409d
JK
1377 if (started)
1378 ext4_journal_stop(handle);
ac27a0ec
DK
1379 return ret;
1380}
1381
2ed88685
TT
1382int ext4_get_block(struct inode *inode, sector_t iblock,
1383 struct buffer_head *bh, int create)
1384{
1385 return _ext4_get_block(inode, iblock, bh,
1386 create ? EXT4_GET_BLOCKS_CREATE : 0);
1387}
1388
ac27a0ec
DK
1389/*
1390 * `handle' can be NULL if create is zero
1391 */
617ba13b 1392struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1393 ext4_lblk_t block, int create, int *errp)
ac27a0ec 1394{
2ed88685
TT
1395 struct ext4_map_blocks map;
1396 struct buffer_head *bh;
ac27a0ec
DK
1397 int fatal = 0, err;
1398
1399 J_ASSERT(handle != NULL || create == 0);
1400
2ed88685
TT
1401 map.m_lblk = block;
1402 map.m_len = 1;
1403 err = ext4_map_blocks(handle, inode, &map,
1404 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 1405
2ed88685
TT
1406 if (err < 0)
1407 *errp = err;
1408 if (err <= 0)
1409 return NULL;
1410 *errp = 0;
1411
1412 bh = sb_getblk(inode->i_sb, map.m_pblk);
1413 if (!bh) {
1414 *errp = -EIO;
1415 return NULL;
ac27a0ec 1416 }
2ed88685
TT
1417 if (map.m_flags & EXT4_MAP_NEW) {
1418 J_ASSERT(create != 0);
1419 J_ASSERT(handle != NULL);
ac27a0ec 1420
2ed88685
TT
1421 /*
1422 * Now that we do not always journal data, we should
1423 * keep in mind whether this should always journal the
1424 * new buffer as metadata. For now, regular file
1425 * writes use ext4_get_block instead, so it's not a
1426 * problem.
1427 */
1428 lock_buffer(bh);
1429 BUFFER_TRACE(bh, "call get_create_access");
1430 fatal = ext4_journal_get_create_access(handle, bh);
1431 if (!fatal && !buffer_uptodate(bh)) {
1432 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1433 set_buffer_uptodate(bh);
ac27a0ec 1434 }
2ed88685
TT
1435 unlock_buffer(bh);
1436 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1437 err = ext4_handle_dirty_metadata(handle, inode, bh);
1438 if (!fatal)
1439 fatal = err;
1440 } else {
1441 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 1442 }
2ed88685
TT
1443 if (fatal) {
1444 *errp = fatal;
1445 brelse(bh);
1446 bh = NULL;
1447 }
1448 return bh;
ac27a0ec
DK
1449}
1450
617ba13b 1451struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1452 ext4_lblk_t block, int create, int *err)
ac27a0ec 1453{
af5bc92d 1454 struct buffer_head *bh;
ac27a0ec 1455
617ba13b 1456 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1457 if (!bh)
1458 return bh;
1459 if (buffer_uptodate(bh))
1460 return bh;
1461 ll_rw_block(READ_META, 1, &bh);
1462 wait_on_buffer(bh);
1463 if (buffer_uptodate(bh))
1464 return bh;
1465 put_bh(bh);
1466 *err = -EIO;
1467 return NULL;
1468}
1469
af5bc92d
TT
1470static int walk_page_buffers(handle_t *handle,
1471 struct buffer_head *head,
1472 unsigned from,
1473 unsigned to,
1474 int *partial,
1475 int (*fn)(handle_t *handle,
1476 struct buffer_head *bh))
ac27a0ec
DK
1477{
1478 struct buffer_head *bh;
1479 unsigned block_start, block_end;
1480 unsigned blocksize = head->b_size;
1481 int err, ret = 0;
1482 struct buffer_head *next;
1483
af5bc92d
TT
1484 for (bh = head, block_start = 0;
1485 ret == 0 && (bh != head || !block_start);
de9a55b8 1486 block_start = block_end, bh = next) {
ac27a0ec
DK
1487 next = bh->b_this_page;
1488 block_end = block_start + blocksize;
1489 if (block_end <= from || block_start >= to) {
1490 if (partial && !buffer_uptodate(bh))
1491 *partial = 1;
1492 continue;
1493 }
1494 err = (*fn)(handle, bh);
1495 if (!ret)
1496 ret = err;
1497 }
1498 return ret;
1499}
1500
1501/*
1502 * To preserve ordering, it is essential that the hole instantiation and
1503 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1504 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1505 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1506 * prepare_write() is the right place.
1507 *
617ba13b
MC
1508 * Also, this function can nest inside ext4_writepage() ->
1509 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1510 * has generated enough buffer credits to do the whole page. So we won't
1511 * block on the journal in that case, which is good, because the caller may
1512 * be PF_MEMALLOC.
1513 *
617ba13b 1514 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1515 * quota file writes. If we were to commit the transaction while thus
1516 * reentered, there can be a deadlock - we would be holding a quota
1517 * lock, and the commit would never complete if another thread had a
1518 * transaction open and was blocking on the quota lock - a ranking
1519 * violation.
1520 *
dab291af 1521 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1522 * will _not_ run commit under these circumstances because handle->h_ref
1523 * is elevated. We'll still have enough credits for the tiny quotafile
1524 * write.
1525 */
1526static int do_journal_get_write_access(handle_t *handle,
de9a55b8 1527 struct buffer_head *bh)
ac27a0ec
DK
1528{
1529 if (!buffer_mapped(bh) || buffer_freed(bh))
1530 return 0;
617ba13b 1531 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1532}
1533
b9a4207d
JK
1534/*
1535 * Truncate blocks that were not used by write. We have to truncate the
1536 * pagecache as well so that corresponding buffers get properly unmapped.
1537 */
1538static void ext4_truncate_failed_write(struct inode *inode)
1539{
1540 truncate_inode_pages(inode->i_mapping, inode->i_size);
1541 ext4_truncate(inode);
1542}
1543
744692dc
JZ
1544static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1545 struct buffer_head *bh_result, int create);
bfc1af65 1546static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1547 loff_t pos, unsigned len, unsigned flags,
1548 struct page **pagep, void **fsdata)
ac27a0ec 1549{
af5bc92d 1550 struct inode *inode = mapping->host;
1938a150 1551 int ret, needed_blocks;
ac27a0ec
DK
1552 handle_t *handle;
1553 int retries = 0;
af5bc92d 1554 struct page *page;
de9a55b8 1555 pgoff_t index;
af5bc92d 1556 unsigned from, to;
bfc1af65 1557
9bffad1e 1558 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1559 /*
1560 * Reserve one block more for addition to orphan list in case
1561 * we allocate blocks but write fails for some reason
1562 */
1563 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 1564 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1565 from = pos & (PAGE_CACHE_SIZE - 1);
1566 to = from + len;
ac27a0ec
DK
1567
1568retry:
af5bc92d
TT
1569 handle = ext4_journal_start(inode, needed_blocks);
1570 if (IS_ERR(handle)) {
1571 ret = PTR_ERR(handle);
1572 goto out;
7479d2b9 1573 }
ac27a0ec 1574
ebd3610b
JK
1575 /* We cannot recurse into the filesystem as the transaction is already
1576 * started */
1577 flags |= AOP_FLAG_NOFS;
1578
54566b2c 1579 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1580 if (!page) {
1581 ext4_journal_stop(handle);
1582 ret = -ENOMEM;
1583 goto out;
1584 }
1585 *pagep = page;
1586
744692dc
JZ
1587 if (ext4_should_dioread_nolock(inode))
1588 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1589 fsdata, ext4_get_block_write);
1590 else
1591 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1592 fsdata, ext4_get_block);
bfc1af65
NP
1593
1594 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1595 ret = walk_page_buffers(handle, page_buffers(page),
1596 from, to, NULL, do_journal_get_write_access);
1597 }
bfc1af65
NP
1598
1599 if (ret) {
af5bc92d 1600 unlock_page(page);
af5bc92d 1601 page_cache_release(page);
ae4d5372
AK
1602 /*
1603 * block_write_begin may have instantiated a few blocks
1604 * outside i_size. Trim these off again. Don't need
1605 * i_size_read because we hold i_mutex.
1938a150
AK
1606 *
1607 * Add inode to orphan list in case we crash before
1608 * truncate finishes
ae4d5372 1609 */
ffacfa7a 1610 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1611 ext4_orphan_add(handle, inode);
1612
1613 ext4_journal_stop(handle);
1614 if (pos + len > inode->i_size) {
b9a4207d 1615 ext4_truncate_failed_write(inode);
de9a55b8 1616 /*
ffacfa7a 1617 * If truncate failed early the inode might
1938a150
AK
1618 * still be on the orphan list; we need to
1619 * make sure the inode is removed from the
1620 * orphan list in that case.
1621 */
1622 if (inode->i_nlink)
1623 ext4_orphan_del(NULL, inode);
1624 }
bfc1af65
NP
1625 }
1626
617ba13b 1627 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1628 goto retry;
7479d2b9 1629out:
ac27a0ec
DK
1630 return ret;
1631}
1632
bfc1af65
NP
1633/* For write_end() in data=journal mode */
1634static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1635{
1636 if (!buffer_mapped(bh) || buffer_freed(bh))
1637 return 0;
1638 set_buffer_uptodate(bh);
0390131b 1639 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1640}
1641
f8514083 1642static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
1643 struct address_space *mapping,
1644 loff_t pos, unsigned len, unsigned copied,
1645 struct page *page, void *fsdata)
f8514083
AK
1646{
1647 int i_size_changed = 0;
1648 struct inode *inode = mapping->host;
1649 handle_t *handle = ext4_journal_current_handle();
1650
1651 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1652
1653 /*
1654 * No need to use i_size_read() here, the i_size
1655 * cannot change under us because we hold i_mutex.
1656 *
1657 * But it's important to update i_size while still holding page lock:
1658 * page writeout could otherwise come in and zero beyond i_size.
1659 */
1660 if (pos + copied > inode->i_size) {
1661 i_size_write(inode, pos + copied);
1662 i_size_changed = 1;
1663 }
1664
1665 if (pos + copied > EXT4_I(inode)->i_disksize) {
1666 /* We need to mark inode dirty even if
1667 * new_i_size is less that inode->i_size
1668 * bu greater than i_disksize.(hint delalloc)
1669 */
1670 ext4_update_i_disksize(inode, (pos + copied));
1671 i_size_changed = 1;
1672 }
1673 unlock_page(page);
1674 page_cache_release(page);
1675
1676 /*
1677 * Don't mark the inode dirty under page lock. First, it unnecessarily
1678 * makes the holding time of page lock longer. Second, it forces lock
1679 * ordering of page lock and transaction start for journaling
1680 * filesystems.
1681 */
1682 if (i_size_changed)
1683 ext4_mark_inode_dirty(handle, inode);
1684
1685 return copied;
1686}
1687
ac27a0ec
DK
1688/*
1689 * We need to pick up the new inode size which generic_commit_write gave us
1690 * `file' can be NULL - eg, when called from page_symlink().
1691 *
617ba13b 1692 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1693 * buffers are managed internally.
1694 */
bfc1af65 1695static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
1696 struct address_space *mapping,
1697 loff_t pos, unsigned len, unsigned copied,
1698 struct page *page, void *fsdata)
ac27a0ec 1699{
617ba13b 1700 handle_t *handle = ext4_journal_current_handle();
cf108bca 1701 struct inode *inode = mapping->host;
ac27a0ec
DK
1702 int ret = 0, ret2;
1703
9bffad1e 1704 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 1705 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1706
1707 if (ret == 0) {
f8514083 1708 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1709 page, fsdata);
f8a87d89 1710 copied = ret2;
ffacfa7a 1711 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1712 /* if we have allocated more blocks and copied
1713 * less. We will have blocks allocated outside
1714 * inode->i_size. So truncate them
1715 */
1716 ext4_orphan_add(handle, inode);
f8a87d89
RK
1717 if (ret2 < 0)
1718 ret = ret2;
ac27a0ec 1719 }
617ba13b 1720 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1721 if (!ret)
1722 ret = ret2;
bfc1af65 1723
f8514083 1724 if (pos + len > inode->i_size) {
b9a4207d 1725 ext4_truncate_failed_write(inode);
de9a55b8 1726 /*
ffacfa7a 1727 * If truncate failed early the inode might still be
f8514083
AK
1728 * on the orphan list; we need to make sure the inode
1729 * is removed from the orphan list in that case.
1730 */
1731 if (inode->i_nlink)
1732 ext4_orphan_del(NULL, inode);
1733 }
1734
1735
bfc1af65 1736 return ret ? ret : copied;
ac27a0ec
DK
1737}
1738
bfc1af65 1739static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
1740 struct address_space *mapping,
1741 loff_t pos, unsigned len, unsigned copied,
1742 struct page *page, void *fsdata)
ac27a0ec 1743{
617ba13b 1744 handle_t *handle = ext4_journal_current_handle();
cf108bca 1745 struct inode *inode = mapping->host;
ac27a0ec 1746 int ret = 0, ret2;
ac27a0ec 1747
9bffad1e 1748 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 1749 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1750 page, fsdata);
f8a87d89 1751 copied = ret2;
ffacfa7a 1752 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1753 /* if we have allocated more blocks and copied
1754 * less. We will have blocks allocated outside
1755 * inode->i_size. So truncate them
1756 */
1757 ext4_orphan_add(handle, inode);
1758
f8a87d89
RK
1759 if (ret2 < 0)
1760 ret = ret2;
ac27a0ec 1761
617ba13b 1762 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1763 if (!ret)
1764 ret = ret2;
bfc1af65 1765
f8514083 1766 if (pos + len > inode->i_size) {
b9a4207d 1767 ext4_truncate_failed_write(inode);
de9a55b8 1768 /*
ffacfa7a 1769 * If truncate failed early the inode might still be
f8514083
AK
1770 * on the orphan list; we need to make sure the inode
1771 * is removed from the orphan list in that case.
1772 */
1773 if (inode->i_nlink)
1774 ext4_orphan_del(NULL, inode);
1775 }
1776
bfc1af65 1777 return ret ? ret : copied;
ac27a0ec
DK
1778}
1779
bfc1af65 1780static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1781 struct address_space *mapping,
1782 loff_t pos, unsigned len, unsigned copied,
1783 struct page *page, void *fsdata)
ac27a0ec 1784{
617ba13b 1785 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1786 struct inode *inode = mapping->host;
ac27a0ec
DK
1787 int ret = 0, ret2;
1788 int partial = 0;
bfc1af65 1789 unsigned from, to;
cf17fea6 1790 loff_t new_i_size;
ac27a0ec 1791
9bffad1e 1792 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1793 from = pos & (PAGE_CACHE_SIZE - 1);
1794 to = from + len;
1795
1796 if (copied < len) {
1797 if (!PageUptodate(page))
1798 copied = 0;
1799 page_zero_new_buffers(page, from+copied, to);
1800 }
ac27a0ec
DK
1801
1802 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1803 to, &partial, write_end_fn);
ac27a0ec
DK
1804 if (!partial)
1805 SetPageUptodate(page);
cf17fea6
AK
1806 new_i_size = pos + copied;
1807 if (new_i_size > inode->i_size)
bfc1af65 1808 i_size_write(inode, pos+copied);
19f5fb7a 1809 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
cf17fea6
AK
1810 if (new_i_size > EXT4_I(inode)->i_disksize) {
1811 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1812 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1813 if (!ret)
1814 ret = ret2;
1815 }
bfc1af65 1816
cf108bca 1817 unlock_page(page);
f8514083 1818 page_cache_release(page);
ffacfa7a 1819 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1820 /* if we have allocated more blocks and copied
1821 * less. We will have blocks allocated outside
1822 * inode->i_size. So truncate them
1823 */
1824 ext4_orphan_add(handle, inode);
1825
617ba13b 1826 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1827 if (!ret)
1828 ret = ret2;
f8514083 1829 if (pos + len > inode->i_size) {
b9a4207d 1830 ext4_truncate_failed_write(inode);
de9a55b8 1831 /*
ffacfa7a 1832 * If truncate failed early the inode might still be
f8514083
AK
1833 * on the orphan list; we need to make sure the inode
1834 * is removed from the orphan list in that case.
1835 */
1836 if (inode->i_nlink)
1837 ext4_orphan_del(NULL, inode);
1838 }
bfc1af65
NP
1839
1840 return ret ? ret : copied;
ac27a0ec 1841}
d2a17637 1842
9d0be502
TT
1843/*
1844 * Reserve a single block located at lblock
1845 */
1846static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
d2a17637 1847{
030ba6bc 1848 int retries = 0;
60e58e0f 1849 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1850 struct ext4_inode_info *ei = EXT4_I(inode);
72b8ab9d 1851 unsigned long md_needed;
5dd4056d 1852 int ret;
d2a17637
MC
1853
1854 /*
1855 * recalculate the amount of metadata blocks to reserve
1856 * in order to allocate nrblocks
1857 * worse case is one extent per block
1858 */
030ba6bc 1859repeat:
0637c6f4 1860 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1861 md_needed = ext4_calc_metadata_amount(inode, lblock);
f8ec9d68 1862 trace_ext4_da_reserve_space(inode, md_needed);
0637c6f4 1863 spin_unlock(&ei->i_block_reservation_lock);
d2a17637 1864
60e58e0f 1865 /*
72b8ab9d
ES
1866 * We will charge metadata quota at writeout time; this saves
1867 * us from metadata over-estimation, though we may go over by
1868 * a small amount in the end. Here we just reserve for data.
60e58e0f 1869 */
72b8ab9d 1870 ret = dquot_reserve_block(inode, 1);
5dd4056d
CH
1871 if (ret)
1872 return ret;
72b8ab9d
ES
1873 /*
1874 * We do still charge estimated metadata to the sb though;
1875 * we cannot afford to run out of free blocks.
1876 */
9d0be502 1877 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
72b8ab9d 1878 dquot_release_reservation_block(inode, 1);
030ba6bc
AK
1879 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1880 yield();
1881 goto repeat;
1882 }
d2a17637
MC
1883 return -ENOSPC;
1884 }
0637c6f4 1885 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1886 ei->i_reserved_data_blocks++;
0637c6f4
TT
1887 ei->i_reserved_meta_blocks += md_needed;
1888 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1889
d2a17637
MC
1890 return 0; /* success */
1891}
1892
12219aea 1893static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1894{
1895 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1896 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1897
cd213226
MC
1898 if (!to_free)
1899 return; /* Nothing to release, exit */
1900
d2a17637 1901 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1902
5a58ec87 1903 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1904 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1905 /*
0637c6f4
TT
1906 * if there aren't enough reserved blocks, then the
1907 * counter is messed up somewhere. Since this
1908 * function is called from invalidate page, it's
1909 * harmless to return without any action.
cd213226 1910 */
0637c6f4
TT
1911 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1912 "ino %lu, to_free %d with only %d reserved "
1913 "data blocks\n", inode->i_ino, to_free,
1914 ei->i_reserved_data_blocks);
1915 WARN_ON(1);
1916 to_free = ei->i_reserved_data_blocks;
cd213226 1917 }
0637c6f4 1918 ei->i_reserved_data_blocks -= to_free;
cd213226 1919
0637c6f4
TT
1920 if (ei->i_reserved_data_blocks == 0) {
1921 /*
1922 * We can release all of the reserved metadata blocks
1923 * only when we have written all of the delayed
1924 * allocation blocks.
1925 */
72b8ab9d
ES
1926 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1927 ei->i_reserved_meta_blocks);
ee5f4d9c 1928 ei->i_reserved_meta_blocks = 0;
9d0be502 1929 ei->i_da_metadata_calc_len = 0;
0637c6f4 1930 }
d2a17637 1931
72b8ab9d 1932 /* update fs dirty data blocks counter */
0637c6f4 1933 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
d2a17637 1934
d2a17637 1935 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1936
5dd4056d 1937 dquot_release_reservation_block(inode, to_free);
d2a17637
MC
1938}
1939
1940static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1941 unsigned long offset)
d2a17637
MC
1942{
1943 int to_release = 0;
1944 struct buffer_head *head, *bh;
1945 unsigned int curr_off = 0;
1946
1947 head = page_buffers(page);
1948 bh = head;
1949 do {
1950 unsigned int next_off = curr_off + bh->b_size;
1951
1952 if ((offset <= curr_off) && (buffer_delay(bh))) {
1953 to_release++;
1954 clear_buffer_delay(bh);
1955 }
1956 curr_off = next_off;
1957 } while ((bh = bh->b_this_page) != head);
12219aea 1958 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1959}
ac27a0ec 1960
64769240
AT
1961/*
1962 * Delayed allocation stuff
1963 */
1964
64769240
AT
1965/*
1966 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1967 * them with writepage() call back
64769240
AT
1968 *
1969 * @mpd->inode: inode
1970 * @mpd->first_page: first page of the extent
1971 * @mpd->next_page: page after the last page of the extent
64769240
AT
1972 *
1973 * By the time mpage_da_submit_io() is called we expect all blocks
1974 * to be allocated. this may be wrong if allocation failed.
1975 *
1976 * As pages are already locked by write_cache_pages(), we can't use it
1977 */
1978static int mpage_da_submit_io(struct mpage_da_data *mpd)
1979{
22208ded 1980 long pages_skipped;
791b7f08
AK
1981 struct pagevec pvec;
1982 unsigned long index, end;
1983 int ret = 0, err, nr_pages, i;
1984 struct inode *inode = mpd->inode;
1985 struct address_space *mapping = inode->i_mapping;
64769240
AT
1986
1987 BUG_ON(mpd->next_page <= mpd->first_page);
791b7f08
AK
1988 /*
1989 * We need to start from the first_page to the next_page - 1
1990 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1991 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1992 * at the currently mapped buffer_heads.
1993 */
64769240
AT
1994 index = mpd->first_page;
1995 end = mpd->next_page - 1;
1996
791b7f08 1997 pagevec_init(&pvec, 0);
64769240 1998 while (index <= end) {
791b7f08 1999 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
2000 if (nr_pages == 0)
2001 break;
2002 for (i = 0; i < nr_pages; i++) {
2003 struct page *page = pvec.pages[i];
2004
791b7f08
AK
2005 index = page->index;
2006 if (index > end)
2007 break;
2008 index++;
2009
2010 BUG_ON(!PageLocked(page));
2011 BUG_ON(PageWriteback(page));
2012
22208ded 2013 pages_skipped = mpd->wbc->pages_skipped;
a1d6cc56 2014 err = mapping->a_ops->writepage(page, mpd->wbc);
22208ded
AK
2015 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2016 /*
2017 * have successfully written the page
2018 * without skipping the same
2019 */
a1d6cc56 2020 mpd->pages_written++;
64769240
AT
2021 /*
2022 * In error case, we have to continue because
2023 * remaining pages are still locked
2024 * XXX: unlock and re-dirty them?
2025 */
2026 if (ret == 0)
2027 ret = err;
2028 }
2029 pagevec_release(&pvec);
2030 }
64769240
AT
2031 return ret;
2032}
2033
2034/*
2035 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2036 *
64769240 2037 * the function goes through all passed space and put actual disk
29fa89d0 2038 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
64769240 2039 */
2ed88685
TT
2040static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd,
2041 struct ext4_map_blocks *map)
64769240
AT
2042{
2043 struct inode *inode = mpd->inode;
2044 struct address_space *mapping = inode->i_mapping;
2ed88685
TT
2045 int blocks = map->m_len;
2046 sector_t pblock = map->m_pblk, cur_logical;
64769240 2047 struct buffer_head *head, *bh;
a1d6cc56 2048 pgoff_t index, end;
64769240
AT
2049 struct pagevec pvec;
2050 int nr_pages, i;
2051
2ed88685
TT
2052 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2053 end = (map->m_lblk + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
64769240
AT
2054 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2055
2056 pagevec_init(&pvec, 0);
2057
2058 while (index <= end) {
2059 /* XXX: optimize tail */
2060 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2061 if (nr_pages == 0)
2062 break;
2063 for (i = 0; i < nr_pages; i++) {
2064 struct page *page = pvec.pages[i];
2065
2066 index = page->index;
2067 if (index > end)
2068 break;
2069 index++;
2070
2071 BUG_ON(!PageLocked(page));
2072 BUG_ON(PageWriteback(page));
2073 BUG_ON(!page_has_buffers(page));
2074
2075 bh = page_buffers(page);
2076 head = bh;
2077
2078 /* skip blocks out of the range */
2079 do {
2ed88685 2080 if (cur_logical >= map->m_lblk)
64769240
AT
2081 break;
2082 cur_logical++;
2083 } while ((bh = bh->b_this_page) != head);
2084
2085 do {
2ed88685 2086 if (cur_logical >= map->m_lblk + blocks)
64769240 2087 break;
29fa89d0 2088
2ed88685 2089 if (buffer_delay(bh) || buffer_unwritten(bh)) {
29fa89d0
AK
2090
2091 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2092
2093 if (buffer_delay(bh)) {
2094 clear_buffer_delay(bh);
2095 bh->b_blocknr = pblock;
2096 } else {
2097 /*
2098 * unwritten already should have
2099 * blocknr assigned. Verify that
2100 */
2101 clear_buffer_unwritten(bh);
2102 BUG_ON(bh->b_blocknr != pblock);
2103 }
2104
61628a3f 2105 } else if (buffer_mapped(bh))
64769240 2106 BUG_ON(bh->b_blocknr != pblock);
64769240 2107
2ed88685 2108 if (map->m_flags & EXT4_MAP_UNINIT)
744692dc 2109 set_buffer_uninit(bh);
64769240
AT
2110 cur_logical++;
2111 pblock++;
2112 } while ((bh = bh->b_this_page) != head);
2113 }
2114 pagevec_release(&pvec);
2115 }
2116}
2117
2118
c4a0c46e
AK
2119static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2120 sector_t logical, long blk_cnt)
2121{
2122 int nr_pages, i;
2123 pgoff_t index, end;
2124 struct pagevec pvec;
2125 struct inode *inode = mpd->inode;
2126 struct address_space *mapping = inode->i_mapping;
2127
2128 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2129 end = (logical + blk_cnt - 1) >>
2130 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2131 while (index <= end) {
2132 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2133 if (nr_pages == 0)
2134 break;
2135 for (i = 0; i < nr_pages; i++) {
2136 struct page *page = pvec.pages[i];
9b1d0998 2137 if (page->index > end)
c4a0c46e 2138 break;
c4a0c46e
AK
2139 BUG_ON(!PageLocked(page));
2140 BUG_ON(PageWriteback(page));
2141 block_invalidatepage(page, 0);
2142 ClearPageUptodate(page);
2143 unlock_page(page);
2144 }
9b1d0998
JK
2145 index = pvec.pages[nr_pages - 1]->index + 1;
2146 pagevec_release(&pvec);
c4a0c46e
AK
2147 }
2148 return;
2149}
2150
df22291f
AK
2151static void ext4_print_free_blocks(struct inode *inode)
2152{
2153 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1693918e
TT
2154 printk(KERN_CRIT "Total free blocks count %lld\n",
2155 ext4_count_free_blocks(inode->i_sb));
2156 printk(KERN_CRIT "Free/Dirty block details\n");
2157 printk(KERN_CRIT "free_blocks=%lld\n",
2158 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2159 printk(KERN_CRIT "dirty_blocks=%lld\n",
2160 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2161 printk(KERN_CRIT "Block reservation details\n");
2162 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2163 EXT4_I(inode)->i_reserved_data_blocks);
2164 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2165 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
2166 return;
2167}
2168
64769240
AT
2169/*
2170 * mpage_da_map_blocks - go through given space
2171 *
8dc207c0 2172 * @mpd - bh describing space
64769240
AT
2173 *
2174 * The function skips space we know is already mapped to disk blocks.
2175 *
64769240 2176 */
ed5bde0b 2177static int mpage_da_map_blocks(struct mpage_da_data *mpd)
64769240 2178{
2ac3b6e0 2179 int err, blks, get_blocks_flags;
2ed88685 2180 struct ext4_map_blocks map;
2fa3cdfb
TT
2181 sector_t next = mpd->b_blocknr;
2182 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2183 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2184 handle_t *handle = NULL;
64769240
AT
2185
2186 /*
2187 * We consider only non-mapped and non-allocated blocks
2188 */
8dc207c0 2189 if ((mpd->b_state & (1 << BH_Mapped)) &&
29fa89d0
AK
2190 !(mpd->b_state & (1 << BH_Delay)) &&
2191 !(mpd->b_state & (1 << BH_Unwritten)))
c4a0c46e 2192 return 0;
2fa3cdfb
TT
2193
2194 /*
2195 * If we didn't accumulate anything to write simply return
2196 */
2197 if (!mpd->b_size)
2198 return 0;
2199
2200 handle = ext4_journal_current_handle();
2201 BUG_ON(!handle);
2202
79ffab34 2203 /*
79e83036 2204 * Call ext4_map_blocks() to allocate any delayed allocation
2ac3b6e0
TT
2205 * blocks, or to convert an uninitialized extent to be
2206 * initialized (in the case where we have written into
2207 * one or more preallocated blocks).
2208 *
2209 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2210 * indicate that we are on the delayed allocation path. This
2211 * affects functions in many different parts of the allocation
2212 * call path. This flag exists primarily because we don't
79e83036 2213 * want to change *many* call functions, so ext4_map_blocks()
2ac3b6e0
TT
2214 * will set the magic i_delalloc_reserved_flag once the
2215 * inode's allocation semaphore is taken.
2216 *
2217 * If the blocks in questions were delalloc blocks, set
2218 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2219 * variables are updated after the blocks have been allocated.
79ffab34 2220 */
2ed88685
TT
2221 map.m_lblk = next;
2222 map.m_len = max_blocks;
1296cc85 2223 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
744692dc
JZ
2224 if (ext4_should_dioread_nolock(mpd->inode))
2225 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 2226 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
2227 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2228
2ed88685 2229 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb
TT
2230 if (blks < 0) {
2231 err = blks;
ed5bde0b
TT
2232 /*
2233 * If get block returns with error we simply
2234 * return. Later writepage will redirty the page and
2235 * writepages will find the dirty page again
c4a0c46e
AK
2236 */
2237 if (err == -EAGAIN)
2238 return 0;
df22291f
AK
2239
2240 if (err == -ENOSPC &&
ed5bde0b 2241 ext4_count_free_blocks(mpd->inode->i_sb)) {
df22291f
AK
2242 mpd->retval = err;
2243 return 0;
2244 }
2245
c4a0c46e 2246 /*
ed5bde0b
TT
2247 * get block failure will cause us to loop in
2248 * writepages, because a_ops->writepage won't be able
2249 * to make progress. The page will be redirtied by
2250 * writepage and writepages will again try to write
2251 * the same.
c4a0c46e 2252 */
1693918e
TT
2253 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2254 "delayed block allocation failed for inode %lu at "
2255 "logical offset %llu with max blocks %zd with "
fbe845dd 2256 "error %d", mpd->inode->i_ino,
1693918e
TT
2257 (unsigned long long) next,
2258 mpd->b_size >> mpd->inode->i_blkbits, err);
2259 printk(KERN_CRIT "This should not happen!! "
2260 "Data will be lost\n");
030ba6bc 2261 if (err == -ENOSPC) {
df22291f 2262 ext4_print_free_blocks(mpd->inode);
030ba6bc 2263 }
2fa3cdfb 2264 /* invalidate all the pages */
c4a0c46e 2265 ext4_da_block_invalidatepages(mpd, next,
8dc207c0 2266 mpd->b_size >> mpd->inode->i_blkbits);
c4a0c46e
AK
2267 return err;
2268 }
2fa3cdfb
TT
2269 BUG_ON(blks == 0);
2270
2ed88685
TT
2271 if (map.m_flags & EXT4_MAP_NEW) {
2272 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2273 int i;
64769240 2274
2ed88685
TT
2275 for (i = 0; i < map.m_len; i++)
2276 unmap_underlying_metadata(bdev, map.m_pblk + i);
2277 }
64769240 2278
a1d6cc56
AK
2279 /*
2280 * If blocks are delayed marked, we need to
2281 * put actual blocknr and drop delayed bit
2282 */
8dc207c0
TT
2283 if ((mpd->b_state & (1 << BH_Delay)) ||
2284 (mpd->b_state & (1 << BH_Unwritten)))
2ed88685 2285 mpage_put_bnr_to_bhs(mpd, &map);
64769240 2286
2fa3cdfb
TT
2287 if (ext4_should_order_data(mpd->inode)) {
2288 err = ext4_jbd2_file_inode(handle, mpd->inode);
2289 if (err)
2290 return err;
2291 }
2292
2293 /*
03f5d8bc 2294 * Update on-disk size along with block allocation.
2fa3cdfb
TT
2295 */
2296 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2297 if (disksize > i_size_read(mpd->inode))
2298 disksize = i_size_read(mpd->inode);
2299 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2300 ext4_update_i_disksize(mpd->inode, disksize);
2301 return ext4_mark_inode_dirty(handle, mpd->inode);
2302 }
2303
c4a0c46e 2304 return 0;
64769240
AT
2305}
2306
bf068ee2
AK
2307#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2308 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
2309
2310/*
2311 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2312 *
2313 * @mpd->lbh - extent of blocks
2314 * @logical - logical number of the block in the file
2315 * @bh - bh of the block (used to access block's state)
2316 *
2317 * the function is used to collect contig. blocks in same state
2318 */
2319static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
2320 sector_t logical, size_t b_size,
2321 unsigned long b_state)
64769240 2322{
64769240 2323 sector_t next;
8dc207c0 2324 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 2325
c445e3e0
ES
2326 /*
2327 * XXX Don't go larger than mballoc is willing to allocate
2328 * This is a stopgap solution. We eventually need to fold
2329 * mpage_da_submit_io() into this function and then call
79e83036 2330 * ext4_map_blocks() multiple times in a loop
c445e3e0
ES
2331 */
2332 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2333 goto flush_it;
2334
525f4ed8 2335 /* check if thereserved journal credits might overflow */
12e9b892 2336 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
525f4ed8
MC
2337 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2338 /*
2339 * With non-extent format we are limited by the journal
2340 * credit available. Total credit needed to insert
2341 * nrblocks contiguous blocks is dependent on the
2342 * nrblocks. So limit nrblocks.
2343 */
2344 goto flush_it;
2345 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2346 EXT4_MAX_TRANS_DATA) {
2347 /*
2348 * Adding the new buffer_head would make it cross the
2349 * allowed limit for which we have journal credit
2350 * reserved. So limit the new bh->b_size
2351 */
2352 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2353 mpd->inode->i_blkbits;
2354 /* we will do mpage_da_submit_io in the next loop */
2355 }
2356 }
64769240
AT
2357 /*
2358 * First block in the extent
2359 */
8dc207c0
TT
2360 if (mpd->b_size == 0) {
2361 mpd->b_blocknr = logical;
2362 mpd->b_size = b_size;
2363 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
2364 return;
2365 }
2366
8dc207c0 2367 next = mpd->b_blocknr + nrblocks;
64769240
AT
2368 /*
2369 * Can we merge the block to our big extent?
2370 */
8dc207c0
TT
2371 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2372 mpd->b_size += b_size;
64769240
AT
2373 return;
2374 }
2375
525f4ed8 2376flush_it:
64769240
AT
2377 /*
2378 * We couldn't merge the block to our extent, so we
2379 * need to flush current extent and start new one
2380 */
c4a0c46e
AK
2381 if (mpage_da_map_blocks(mpd) == 0)
2382 mpage_da_submit_io(mpd);
a1d6cc56
AK
2383 mpd->io_done = 1;
2384 return;
64769240
AT
2385}
2386
c364b22c 2387static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 2388{
c364b22c 2389 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
2390}
2391
64769240
AT
2392/*
2393 * __mpage_da_writepage - finds extent of pages and blocks
2394 *
2395 * @page: page to consider
2396 * @wbc: not used, we just follow rules
2397 * @data: context
2398 *
2399 * The function finds extents of pages and scan them for all blocks.
2400 */
2401static int __mpage_da_writepage(struct page *page,
2402 struct writeback_control *wbc, void *data)
2403{
2404 struct mpage_da_data *mpd = data;
2405 struct inode *inode = mpd->inode;
8dc207c0 2406 struct buffer_head *bh, *head;
64769240
AT
2407 sector_t logical;
2408
2409 /*
2410 * Can we merge this page to current extent?
2411 */
2412 if (mpd->next_page != page->index) {
2413 /*
2414 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 2415 * and start IO on them using writepage()
64769240
AT
2416 */
2417 if (mpd->next_page != mpd->first_page) {
c4a0c46e
AK
2418 if (mpage_da_map_blocks(mpd) == 0)
2419 mpage_da_submit_io(mpd);
a1d6cc56
AK
2420 /*
2421 * skip rest of the page in the page_vec
2422 */
2423 mpd->io_done = 1;
2424 redirty_page_for_writepage(wbc, page);
2425 unlock_page(page);
2426 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2427 }
2428
2429 /*
2430 * Start next extent of pages ...
2431 */
2432 mpd->first_page = page->index;
2433
2434 /*
2435 * ... and blocks
2436 */
8dc207c0
TT
2437 mpd->b_size = 0;
2438 mpd->b_state = 0;
2439 mpd->b_blocknr = 0;
64769240
AT
2440 }
2441
2442 mpd->next_page = page->index + 1;
2443 logical = (sector_t) page->index <<
2444 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2445
2446 if (!page_has_buffers(page)) {
8dc207c0
TT
2447 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2448 (1 << BH_Dirty) | (1 << BH_Uptodate));
a1d6cc56
AK
2449 if (mpd->io_done)
2450 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2451 } else {
2452 /*
2453 * Page with regular buffer heads, just add all dirty ones
2454 */
2455 head = page_buffers(page);
2456 bh = head;
2457 do {
2458 BUG_ON(buffer_locked(bh));
791b7f08
AK
2459 /*
2460 * We need to try to allocate
2461 * unmapped blocks in the same page.
2462 * Otherwise we won't make progress
43ce1d23 2463 * with the page in ext4_writepage
791b7f08 2464 */
c364b22c 2465 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
8dc207c0
TT
2466 mpage_add_bh_to_extent(mpd, logical,
2467 bh->b_size,
2468 bh->b_state);
a1d6cc56
AK
2469 if (mpd->io_done)
2470 return MPAGE_DA_EXTENT_TAIL;
791b7f08
AK
2471 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2472 /*
2473 * mapped dirty buffer. We need to update
2474 * the b_state because we look at
2475 * b_state in mpage_da_map_blocks. We don't
2476 * update b_size because if we find an
2477 * unmapped buffer_head later we need to
2478 * use the b_state flag of that buffer_head.
2479 */
8dc207c0
TT
2480 if (mpd->b_size == 0)
2481 mpd->b_state = bh->b_state & BH_FLAGS;
a1d6cc56 2482 }
64769240
AT
2483 logical++;
2484 } while ((bh = bh->b_this_page) != head);
2485 }
2486
2487 return 0;
2488}
2489
64769240 2490/*
b920c755
TT
2491 * This is a special get_blocks_t callback which is used by
2492 * ext4_da_write_begin(). It will either return mapped block or
2493 * reserve space for a single block.
29fa89d0
AK
2494 *
2495 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2496 * We also have b_blocknr = -1 and b_bdev initialized properly
2497 *
2498 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2499 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2500 * initialized properly.
64769240
AT
2501 */
2502static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2ed88685 2503 struct buffer_head *bh, int create)
64769240 2504{
2ed88685 2505 struct ext4_map_blocks map;
64769240 2506 int ret = 0;
33b9817e
AK
2507 sector_t invalid_block = ~((sector_t) 0xffff);
2508
2509 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2510 invalid_block = ~0;
64769240
AT
2511
2512 BUG_ON(create == 0);
2ed88685
TT
2513 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2514
2515 map.m_lblk = iblock;
2516 map.m_len = 1;
64769240
AT
2517
2518 /*
2519 * first, we need to know whether the block is allocated already
2520 * preallocated blocks are unmapped but should treated
2521 * the same as allocated blocks.
2522 */
2ed88685
TT
2523 ret = ext4_map_blocks(NULL, inode, &map, 0);
2524 if (ret < 0)
2525 return ret;
2526 if (ret == 0) {
2527 if (buffer_delay(bh))
2528 return 0; /* Not sure this could or should happen */
64769240
AT
2529 /*
2530 * XXX: __block_prepare_write() unmaps passed block,
2531 * is it OK?
2532 */
9d0be502 2533 ret = ext4_da_reserve_space(inode, iblock);
d2a17637
MC
2534 if (ret)
2535 /* not enough space to reserve */
2536 return ret;
2537
2ed88685
TT
2538 map_bh(bh, inode->i_sb, invalid_block);
2539 set_buffer_new(bh);
2540 set_buffer_delay(bh);
2541 return 0;
64769240
AT
2542 }
2543
2ed88685
TT
2544 map_bh(bh, inode->i_sb, map.m_pblk);
2545 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2546
2547 if (buffer_unwritten(bh)) {
2548 /* A delayed write to unwritten bh should be marked
2549 * new and mapped. Mapped ensures that we don't do
2550 * get_block multiple times when we write to the same
2551 * offset and new ensures that we do proper zero out
2552 * for partial write.
2553 */
2554 set_buffer_new(bh);
2555 set_buffer_mapped(bh);
2556 }
2557 return 0;
64769240 2558}
61628a3f 2559
b920c755
TT
2560/*
2561 * This function is used as a standard get_block_t calback function
2562 * when there is no desire to allocate any blocks. It is used as a
206f7ab4
CH
2563 * callback function for block_prepare_write() and block_write_full_page().
2564 * These functions should only try to map a single block at a time.
b920c755
TT
2565 *
2566 * Since this function doesn't do block allocations even if the caller
2567 * requests it by passing in create=1, it is critically important that
2568 * any caller checks to make sure that any buffer heads are returned
2569 * by this function are either all already mapped or marked for
206f7ab4
CH
2570 * delayed allocation before calling block_write_full_page(). Otherwise,
2571 * b_blocknr could be left unitialized, and the page write functions will
2572 * be taken by surprise.
b920c755
TT
2573 */
2574static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
2575 struct buffer_head *bh_result, int create)
2576{
a2dc52b5 2577 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2ed88685 2578 return _ext4_get_block(inode, iblock, bh_result, 0);
61628a3f
MC
2579}
2580
62e086be
AK
2581static int bget_one(handle_t *handle, struct buffer_head *bh)
2582{
2583 get_bh(bh);
2584 return 0;
2585}
2586
2587static int bput_one(handle_t *handle, struct buffer_head *bh)
2588{
2589 put_bh(bh);
2590 return 0;
2591}
2592
2593static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
2594 unsigned int len)
2595{
2596 struct address_space *mapping = page->mapping;
2597 struct inode *inode = mapping->host;
2598 struct buffer_head *page_bufs;
2599 handle_t *handle = NULL;
2600 int ret = 0;
2601 int err;
2602
2603 page_bufs = page_buffers(page);
2604 BUG_ON(!page_bufs);
2605 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2606 /* As soon as we unlock the page, it can go away, but we have
2607 * references to buffers so we are safe */
2608 unlock_page(page);
2609
2610 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2611 if (IS_ERR(handle)) {
2612 ret = PTR_ERR(handle);
2613 goto out;
2614 }
2615
2616 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2617 do_journal_get_write_access);
2618
2619 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2620 write_end_fn);
2621 if (ret == 0)
2622 ret = err;
2623 err = ext4_journal_stop(handle);
2624 if (!ret)
2625 ret = err;
2626
2627 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
19f5fb7a 2628 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be
AK
2629out:
2630 return ret;
2631}
2632
744692dc
JZ
2633static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2634static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2635
61628a3f 2636/*
43ce1d23
AK
2637 * Note that we don't need to start a transaction unless we're journaling data
2638 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2639 * need to file the inode to the transaction's list in ordered mode because if
2640 * we are writing back data added by write(), the inode is already there and if
2641 * we are writing back data modified via mmap(), noone guarantees in which
2642 * transaction the data will hit the disk. In case we are journaling data, we
2643 * cannot start transaction directly because transaction start ranks above page
2644 * lock so we have to do some magic.
2645 *
b920c755
TT
2646 * This function can get called via...
2647 * - ext4_da_writepages after taking page lock (have journal handle)
2648 * - journal_submit_inode_data_buffers (no journal handle)
2649 * - shrink_page_list via pdflush (no journal handle)
2650 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2651 *
2652 * We don't do any block allocation in this function. If we have page with
2653 * multiple blocks we need to write those buffer_heads that are mapped. This
2654 * is important for mmaped based write. So if we do with blocksize 1K
2655 * truncate(f, 1024);
2656 * a = mmap(f, 0, 4096);
2657 * a[0] = 'a';
2658 * truncate(f, 4096);
2659 * we have in the page first buffer_head mapped via page_mkwrite call back
2660 * but other bufer_heads would be unmapped but dirty(dirty done via the
2661 * do_wp_page). So writepage should write the first block. If we modify
2662 * the mmap area beyond 1024 we will again get a page_fault and the
2663 * page_mkwrite callback will do the block allocation and mark the
2664 * buffer_heads mapped.
2665 *
2666 * We redirty the page if we have any buffer_heads that is either delay or
2667 * unwritten in the page.
2668 *
2669 * We can get recursively called as show below.
2670 *
2671 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2672 * ext4_writepage()
2673 *
2674 * But since we don't do any block allocation we should not deadlock.
2675 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2676 */
43ce1d23 2677static int ext4_writepage(struct page *page,
62e086be 2678 struct writeback_control *wbc)
64769240 2679{
64769240 2680 int ret = 0;
61628a3f 2681 loff_t size;
498e5f24 2682 unsigned int len;
744692dc 2683 struct buffer_head *page_bufs = NULL;
61628a3f
MC
2684 struct inode *inode = page->mapping->host;
2685
43ce1d23 2686 trace_ext4_writepage(inode, page);
f0e6c985
AK
2687 size = i_size_read(inode);
2688 if (page->index == size >> PAGE_CACHE_SHIFT)
2689 len = size & ~PAGE_CACHE_MASK;
2690 else
2691 len = PAGE_CACHE_SIZE;
64769240 2692
f0e6c985 2693 if (page_has_buffers(page)) {
61628a3f 2694 page_bufs = page_buffers(page);
f0e6c985 2695 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2696 ext4_bh_delay_or_unwritten)) {
61628a3f 2697 /*
f0e6c985
AK
2698 * We don't want to do block allocation
2699 * So redirty the page and return
cd1aac32
AK
2700 * We may reach here when we do a journal commit
2701 * via journal_submit_inode_data_buffers.
2702 * If we don't have mapping block we just ignore
f0e6c985
AK
2703 * them. We can also reach here via shrink_page_list
2704 */
2705 redirty_page_for_writepage(wbc, page);
2706 unlock_page(page);
2707 return 0;
2708 }
2709 } else {
2710 /*
2711 * The test for page_has_buffers() is subtle:
2712 * We know the page is dirty but it lost buffers. That means
2713 * that at some moment in time after write_begin()/write_end()
2714 * has been called all buffers have been clean and thus they
2715 * must have been written at least once. So they are all
2716 * mapped and we can happily proceed with mapping them
2717 * and writing the page.
2718 *
2719 * Try to initialize the buffer_heads and check whether
2720 * all are mapped and non delay. We don't want to
2721 * do block allocation here.
2722 */
b767e78a 2723 ret = block_prepare_write(page, 0, len,
b920c755 2724 noalloc_get_block_write);
f0e6c985
AK
2725 if (!ret) {
2726 page_bufs = page_buffers(page);
2727 /* check whether all are mapped and non delay */
2728 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2729 ext4_bh_delay_or_unwritten)) {
f0e6c985
AK
2730 redirty_page_for_writepage(wbc, page);
2731 unlock_page(page);
2732 return 0;
2733 }
2734 } else {
2735 /*
2736 * We can't do block allocation here
2737 * so just redity the page and unlock
2738 * and return
61628a3f 2739 */
61628a3f
MC
2740 redirty_page_for_writepage(wbc, page);
2741 unlock_page(page);
2742 return 0;
2743 }
ed9b3e33 2744 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 2745 block_commit_write(page, 0, len);
64769240
AT
2746 }
2747
43ce1d23
AK
2748 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2749 /*
2750 * It's mmapped pagecache. Add buffers and journal it. There
2751 * doesn't seem much point in redirtying the page here.
2752 */
2753 ClearPageChecked(page);
3f0ca309 2754 return __ext4_journalled_writepage(page, len);
43ce1d23
AK
2755 }
2756
206f7ab4 2757 if (page_bufs && buffer_uninit(page_bufs)) {
744692dc
JZ
2758 ext4_set_bh_endio(page_bufs, inode);
2759 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2760 wbc, ext4_end_io_buffer_write);
2761 } else
b920c755
TT
2762 ret = block_write_full_page(page, noalloc_get_block_write,
2763 wbc);
64769240 2764
64769240
AT
2765 return ret;
2766}
2767
61628a3f 2768/*
525f4ed8
MC
2769 * This is called via ext4_da_writepages() to
2770 * calulate the total number of credits to reserve to fit
2771 * a single extent allocation into a single transaction,
2772 * ext4_da_writpeages() will loop calling this before
2773 * the block allocation.
61628a3f 2774 */
525f4ed8
MC
2775
2776static int ext4_da_writepages_trans_blocks(struct inode *inode)
2777{
2778 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2779
2780 /*
2781 * With non-extent format the journal credit needed to
2782 * insert nrblocks contiguous block is dependent on
2783 * number of contiguous block. So we will limit
2784 * number of contiguous block to a sane value
2785 */
12e9b892 2786 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
2787 (max_blocks > EXT4_MAX_TRANS_DATA))
2788 max_blocks = EXT4_MAX_TRANS_DATA;
2789
2790 return ext4_chunk_trans_blocks(inode, max_blocks);
2791}
61628a3f 2792
8e48dcfb
TT
2793/*
2794 * write_cache_pages_da - walk the list of dirty pages of the given
2795 * address space and call the callback function (which usually writes
2796 * the pages).
2797 *
2798 * This is a forked version of write_cache_pages(). Differences:
2799 * Range cyclic is ignored.
2800 * no_nrwrite_index_update is always presumed true
2801 */
2802static int write_cache_pages_da(struct address_space *mapping,
2803 struct writeback_control *wbc,
2804 struct mpage_da_data *mpd)
2805{
2806 int ret = 0;
2807 int done = 0;
2808 struct pagevec pvec;
2809 int nr_pages;
2810 pgoff_t index;
2811 pgoff_t end; /* Inclusive */
2812 long nr_to_write = wbc->nr_to_write;
2813
2814 pagevec_init(&pvec, 0);
2815 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2816 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2817
2818 while (!done && (index <= end)) {
2819 int i;
2820
2821 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2822 PAGECACHE_TAG_DIRTY,
2823 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2824 if (nr_pages == 0)
2825 break;
2826
2827 for (i = 0; i < nr_pages; i++) {
2828 struct page *page = pvec.pages[i];
2829
2830 /*
2831 * At this point, the page may be truncated or
2832 * invalidated (changing page->mapping to NULL), or
2833 * even swizzled back from swapper_space to tmpfs file
2834 * mapping. However, page->index will not change
2835 * because we have a reference on the page.
2836 */
2837 if (page->index > end) {
2838 done = 1;
2839 break;
2840 }
2841
2842 lock_page(page);
2843
2844 /*
2845 * Page truncated or invalidated. We can freely skip it
2846 * then, even for data integrity operations: the page
2847 * has disappeared concurrently, so there could be no
2848 * real expectation of this data interity operation
2849 * even if there is now a new, dirty page at the same
2850 * pagecache address.
2851 */
2852 if (unlikely(page->mapping != mapping)) {
2853continue_unlock:
2854 unlock_page(page);
2855 continue;
2856 }
2857
2858 if (!PageDirty(page)) {
2859 /* someone wrote it for us */
2860 goto continue_unlock;
2861 }
2862
2863 if (PageWriteback(page)) {
2864 if (wbc->sync_mode != WB_SYNC_NONE)
2865 wait_on_page_writeback(page);
2866 else
2867 goto continue_unlock;
2868 }
2869
2870 BUG_ON(PageWriteback(page));
2871 if (!clear_page_dirty_for_io(page))
2872 goto continue_unlock;
2873
2874 ret = __mpage_da_writepage(page, wbc, mpd);
2875 if (unlikely(ret)) {
2876 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2877 unlock_page(page);
2878 ret = 0;
2879 } else {
2880 done = 1;
2881 break;
2882 }
2883 }
2884
2885 if (nr_to_write > 0) {
2886 nr_to_write--;
2887 if (nr_to_write == 0 &&
2888 wbc->sync_mode == WB_SYNC_NONE) {
2889 /*
2890 * We stop writing back only if we are
2891 * not doing integrity sync. In case of
2892 * integrity sync we have to keep going
2893 * because someone may be concurrently
2894 * dirtying pages, and we might have
2895 * synced a lot of newly appeared dirty
2896 * pages, but have not synced all of the
2897 * old dirty pages.
2898 */
2899 done = 1;
2900 break;
2901 }
2902 }
2903 }
2904 pagevec_release(&pvec);
2905 cond_resched();
2906 }
2907 return ret;
2908}
2909
2910
64769240 2911static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2912 struct writeback_control *wbc)
64769240 2913{
22208ded
AK
2914 pgoff_t index;
2915 int range_whole = 0;
61628a3f 2916 handle_t *handle = NULL;
df22291f 2917 struct mpage_da_data mpd;
5e745b04 2918 struct inode *inode = mapping->host;
498e5f24
TT
2919 int pages_written = 0;
2920 long pages_skipped;
55138e0b 2921 unsigned int max_pages;
2acf2c26 2922 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2923 int needed_blocks, ret = 0;
2924 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2925 loff_t range_start = wbc->range_start;
5e745b04 2926 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f 2927
9bffad1e 2928 trace_ext4_da_writepages(inode, wbc);
ba80b101 2929
61628a3f
MC
2930 /*
2931 * No pages to write? This is mainly a kludge to avoid starting
2932 * a transaction for special inodes like journal inode on last iput()
2933 * because that could violate lock ordering on umount
2934 */
a1d6cc56 2935 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2936 return 0;
2a21e37e
TT
2937
2938 /*
2939 * If the filesystem has aborted, it is read-only, so return
2940 * right away instead of dumping stack traces later on that
2941 * will obscure the real source of the problem. We test
4ab2f15b 2942 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2943 * the latter could be true if the filesystem is mounted
2944 * read-only, and in that case, ext4_da_writepages should
2945 * *never* be called, so if that ever happens, we would want
2946 * the stack trace.
2947 */
4ab2f15b 2948 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2949 return -EROFS;
2950
22208ded
AK
2951 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2952 range_whole = 1;
61628a3f 2953
2acf2c26
AK
2954 range_cyclic = wbc->range_cyclic;
2955 if (wbc->range_cyclic) {
22208ded 2956 index = mapping->writeback_index;
2acf2c26
AK
2957 if (index)
2958 cycled = 0;
2959 wbc->range_start = index << PAGE_CACHE_SHIFT;
2960 wbc->range_end = LLONG_MAX;
2961 wbc->range_cyclic = 0;
2962 } else
22208ded 2963 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 2964
55138e0b
TT
2965 /*
2966 * This works around two forms of stupidity. The first is in
2967 * the writeback code, which caps the maximum number of pages
2968 * written to be 1024 pages. This is wrong on multiple
2969 * levels; different architectues have a different page size,
2970 * which changes the maximum amount of data which gets
2971 * written. Secondly, 4 megabytes is way too small. XFS
2972 * forces this value to be 16 megabytes by multiplying
2973 * nr_to_write parameter by four, and then relies on its
2974 * allocator to allocate larger extents to make them
2975 * contiguous. Unfortunately this brings us to the second
2976 * stupidity, which is that ext4's mballoc code only allocates
2977 * at most 2048 blocks. So we force contiguous writes up to
2978 * the number of dirty blocks in the inode, or
2979 * sbi->max_writeback_mb_bump whichever is smaller.
2980 */
2981 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2982 if (!range_cyclic && range_whole)
2983 desired_nr_to_write = wbc->nr_to_write * 8;
2984 else
2985 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2986 max_pages);
2987 if (desired_nr_to_write > max_pages)
2988 desired_nr_to_write = max_pages;
2989
2990 if (wbc->nr_to_write < desired_nr_to_write) {
2991 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2992 wbc->nr_to_write = desired_nr_to_write;
2993 }
2994
df22291f
AK
2995 mpd.wbc = wbc;
2996 mpd.inode = mapping->host;
2997
22208ded
AK
2998 pages_skipped = wbc->pages_skipped;
2999
2acf2c26 3000retry:
22208ded 3001 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
3002
3003 /*
3004 * we insert one extent at a time. So we need
3005 * credit needed for single extent allocation.
3006 * journalled mode is currently not supported
3007 * by delalloc
3008 */
3009 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 3010 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 3011
61628a3f
MC
3012 /* start a new transaction*/
3013 handle = ext4_journal_start(inode, needed_blocks);
3014 if (IS_ERR(handle)) {
3015 ret = PTR_ERR(handle);
1693918e 3016 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 3017 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 3018 wbc->nr_to_write, inode->i_ino, ret);
61628a3f
MC
3019 goto out_writepages;
3020 }
f63e6005
TT
3021
3022 /*
3023 * Now call __mpage_da_writepage to find the next
3024 * contiguous region of logical blocks that need
3025 * blocks to be allocated by ext4. We don't actually
3026 * submit the blocks for I/O here, even though
3027 * write_cache_pages thinks it will, and will set the
3028 * pages as clean for write before calling
3029 * __mpage_da_writepage().
3030 */
3031 mpd.b_size = 0;
3032 mpd.b_state = 0;
3033 mpd.b_blocknr = 0;
3034 mpd.first_page = 0;
3035 mpd.next_page = 0;
3036 mpd.io_done = 0;
3037 mpd.pages_written = 0;
3038 mpd.retval = 0;
8e48dcfb 3039 ret = write_cache_pages_da(mapping, wbc, &mpd);
f63e6005 3040 /*
af901ca1 3041 * If we have a contiguous extent of pages and we
f63e6005
TT
3042 * haven't done the I/O yet, map the blocks and submit
3043 * them for I/O.
3044 */
3045 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3046 if (mpage_da_map_blocks(&mpd) == 0)
3047 mpage_da_submit_io(&mpd);
3048 mpd.io_done = 1;
3049 ret = MPAGE_DA_EXTENT_TAIL;
3050 }
b3a3ca8c 3051 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 3052 wbc->nr_to_write -= mpd.pages_written;
df22291f 3053
61628a3f 3054 ext4_journal_stop(handle);
df22291f 3055
8f64b32e 3056 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
3057 /* commit the transaction which would
3058 * free blocks released in the transaction
3059 * and try again
3060 */
df22291f 3061 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
3062 wbc->pages_skipped = pages_skipped;
3063 ret = 0;
3064 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
3065 /*
3066 * got one extent now try with
3067 * rest of the pages
3068 */
22208ded
AK
3069 pages_written += mpd.pages_written;
3070 wbc->pages_skipped = pages_skipped;
a1d6cc56 3071 ret = 0;
2acf2c26 3072 io_done = 1;
22208ded 3073 } else if (wbc->nr_to_write)
61628a3f
MC
3074 /*
3075 * There is no more writeout needed
3076 * or we requested for a noblocking writeout
3077 * and we found the device congested
3078 */
61628a3f 3079 break;
a1d6cc56 3080 }
2acf2c26
AK
3081 if (!io_done && !cycled) {
3082 cycled = 1;
3083 index = 0;
3084 wbc->range_start = index << PAGE_CACHE_SHIFT;
3085 wbc->range_end = mapping->writeback_index - 1;
3086 goto retry;
3087 }
22208ded 3088 if (pages_skipped != wbc->pages_skipped)
1693918e
TT
3089 ext4_msg(inode->i_sb, KERN_CRIT,
3090 "This should not happen leaving %s "
fbe845dd 3091 "with nr_to_write = %ld ret = %d",
1693918e 3092 __func__, wbc->nr_to_write, ret);
22208ded
AK
3093
3094 /* Update index */
3095 index += pages_written;
2acf2c26 3096 wbc->range_cyclic = range_cyclic;
22208ded
AK
3097 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3098 /*
3099 * set the writeback_index so that range_cyclic
3100 * mode will write it back later
3101 */
3102 mapping->writeback_index = index;
a1d6cc56 3103
61628a3f 3104out_writepages:
2faf2e19 3105 wbc->nr_to_write -= nr_to_writebump;
de89de6e 3106 wbc->range_start = range_start;
9bffad1e 3107 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 3108 return ret;
64769240
AT
3109}
3110
79f0be8d
AK
3111#define FALL_BACK_TO_NONDELALLOC 1
3112static int ext4_nonda_switch(struct super_block *sb)
3113{
3114 s64 free_blocks, dirty_blocks;
3115 struct ext4_sb_info *sbi = EXT4_SB(sb);
3116
3117 /*
3118 * switch to non delalloc mode if we are running low
3119 * on free block. The free block accounting via percpu
179f7ebf 3120 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
3121 * accumulated on each CPU without updating global counters
3122 * Delalloc need an accurate free block accounting. So switch
3123 * to non delalloc when we are near to error range.
3124 */
3125 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3126 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3127 if (2 * free_blocks < 3 * dirty_blocks ||
3128 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3129 /*
c8afb446
ES
3130 * free block count is less than 150% of dirty blocks
3131 * or free blocks is less than watermark
79f0be8d
AK
3132 */
3133 return 1;
3134 }
c8afb446
ES
3135 /*
3136 * Even if we don't switch but are nearing capacity,
3137 * start pushing delalloc when 1/2 of free blocks are dirty.
3138 */
3139 if (free_blocks < 2 * dirty_blocks)
3140 writeback_inodes_sb_if_idle(sb);
3141
79f0be8d
AK
3142 return 0;
3143}
3144
64769240 3145static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
3146 loff_t pos, unsigned len, unsigned flags,
3147 struct page **pagep, void **fsdata)
64769240 3148{
72b8ab9d 3149 int ret, retries = 0;
64769240
AT
3150 struct page *page;
3151 pgoff_t index;
64769240
AT
3152 struct inode *inode = mapping->host;
3153 handle_t *handle;
3154
3155 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
3156
3157 if (ext4_nonda_switch(inode->i_sb)) {
3158 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3159 return ext4_write_begin(file, mapping, pos,
3160 len, flags, pagep, fsdata);
3161 }
3162 *fsdata = (void *)0;
9bffad1e 3163 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 3164retry:
64769240
AT
3165 /*
3166 * With delayed allocation, we don't log the i_disksize update
3167 * if there is delayed block allocation. But we still need
3168 * to journalling the i_disksize update if writes to the end
3169 * of file which has an already mapped buffer.
3170 */
3171 handle = ext4_journal_start(inode, 1);
3172 if (IS_ERR(handle)) {
3173 ret = PTR_ERR(handle);
3174 goto out;
3175 }
ebd3610b
JK
3176 /* We cannot recurse into the filesystem as the transaction is already
3177 * started */
3178 flags |= AOP_FLAG_NOFS;
64769240 3179
54566b2c 3180 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
3181 if (!page) {
3182 ext4_journal_stop(handle);
3183 ret = -ENOMEM;
3184 goto out;
3185 }
64769240
AT
3186 *pagep = page;
3187
3188 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
b920c755 3189 ext4_da_get_block_prep);
64769240
AT
3190 if (ret < 0) {
3191 unlock_page(page);
3192 ext4_journal_stop(handle);
3193 page_cache_release(page);
ae4d5372
AK
3194 /*
3195 * block_write_begin may have instantiated a few blocks
3196 * outside i_size. Trim these off again. Don't need
3197 * i_size_read because we hold i_mutex.
3198 */
3199 if (pos + len > inode->i_size)
b9a4207d 3200 ext4_truncate_failed_write(inode);
64769240
AT
3201 }
3202
d2a17637
MC
3203 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3204 goto retry;
64769240
AT
3205out:
3206 return ret;
3207}
3208
632eaeab
MC
3209/*
3210 * Check if we should update i_disksize
3211 * when write to the end of file but not require block allocation
3212 */
3213static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3214 unsigned long offset)
632eaeab
MC
3215{
3216 struct buffer_head *bh;
3217 struct inode *inode = page->mapping->host;
3218 unsigned int idx;
3219 int i;
3220
3221 bh = page_buffers(page);
3222 idx = offset >> inode->i_blkbits;
3223
af5bc92d 3224 for (i = 0; i < idx; i++)
632eaeab
MC
3225 bh = bh->b_this_page;
3226
29fa89d0 3227 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3228 return 0;
3229 return 1;
3230}
3231
64769240 3232static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3233 struct address_space *mapping,
3234 loff_t pos, unsigned len, unsigned copied,
3235 struct page *page, void *fsdata)
64769240
AT
3236{
3237 struct inode *inode = mapping->host;
3238 int ret = 0, ret2;
3239 handle_t *handle = ext4_journal_current_handle();
3240 loff_t new_i_size;
632eaeab 3241 unsigned long start, end;
79f0be8d
AK
3242 int write_mode = (int)(unsigned long)fsdata;
3243
3244 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3245 if (ext4_should_order_data(inode)) {
3246 return ext4_ordered_write_end(file, mapping, pos,
3247 len, copied, page, fsdata);
3248 } else if (ext4_should_writeback_data(inode)) {
3249 return ext4_writeback_write_end(file, mapping, pos,
3250 len, copied, page, fsdata);
3251 } else {
3252 BUG();
3253 }
3254 }
632eaeab 3255
9bffad1e 3256 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 3257 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 3258 end = start + copied - 1;
64769240
AT
3259
3260 /*
3261 * generic_write_end() will run mark_inode_dirty() if i_size
3262 * changes. So let's piggyback the i_disksize mark_inode_dirty
3263 * into that.
3264 */
3265
3266 new_i_size = pos + copied;
632eaeab
MC
3267 if (new_i_size > EXT4_I(inode)->i_disksize) {
3268 if (ext4_da_should_update_i_disksize(page, end)) {
3269 down_write(&EXT4_I(inode)->i_data_sem);
3270 if (new_i_size > EXT4_I(inode)->i_disksize) {
3271 /*
3272 * Updating i_disksize when extending file
3273 * without needing block allocation
3274 */
3275 if (ext4_should_order_data(inode))
3276 ret = ext4_jbd2_file_inode(handle,
3277 inode);
64769240 3278
632eaeab
MC
3279 EXT4_I(inode)->i_disksize = new_i_size;
3280 }
3281 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
3282 /* We need to mark inode dirty even if
3283 * new_i_size is less that inode->i_size
3284 * bu greater than i_disksize.(hint delalloc)
3285 */
3286 ext4_mark_inode_dirty(handle, inode);
64769240 3287 }
632eaeab 3288 }
64769240
AT
3289 ret2 = generic_write_end(file, mapping, pos, len, copied,
3290 page, fsdata);
3291 copied = ret2;
3292 if (ret2 < 0)
3293 ret = ret2;
3294 ret2 = ext4_journal_stop(handle);
3295 if (!ret)
3296 ret = ret2;
3297
3298 return ret ? ret : copied;
3299}
3300
3301static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3302{
64769240
AT
3303 /*
3304 * Drop reserved blocks
3305 */
3306 BUG_ON(!PageLocked(page));
3307 if (!page_has_buffers(page))
3308 goto out;
3309
d2a17637 3310 ext4_da_page_release_reservation(page, offset);
64769240
AT
3311
3312out:
3313 ext4_invalidatepage(page, offset);
3314
3315 return;
3316}
3317
ccd2506b
TT
3318/*
3319 * Force all delayed allocation blocks to be allocated for a given inode.
3320 */
3321int ext4_alloc_da_blocks(struct inode *inode)
3322{
fb40ba0d
TT
3323 trace_ext4_alloc_da_blocks(inode);
3324
ccd2506b
TT
3325 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3326 !EXT4_I(inode)->i_reserved_meta_blocks)
3327 return 0;
3328
3329 /*
3330 * We do something simple for now. The filemap_flush() will
3331 * also start triggering a write of the data blocks, which is
3332 * not strictly speaking necessary (and for users of
3333 * laptop_mode, not even desirable). However, to do otherwise
3334 * would require replicating code paths in:
de9a55b8 3335 *
ccd2506b
TT
3336 * ext4_da_writepages() ->
3337 * write_cache_pages() ---> (via passed in callback function)
3338 * __mpage_da_writepage() -->
3339 * mpage_add_bh_to_extent()
3340 * mpage_da_map_blocks()
3341 *
3342 * The problem is that write_cache_pages(), located in
3343 * mm/page-writeback.c, marks pages clean in preparation for
3344 * doing I/O, which is not desirable if we're not planning on
3345 * doing I/O at all.
3346 *
3347 * We could call write_cache_pages(), and then redirty all of
3348 * the pages by calling redirty_page_for_writeback() but that
3349 * would be ugly in the extreme. So instead we would need to
3350 * replicate parts of the code in the above functions,
3351 * simplifying them becuase we wouldn't actually intend to
3352 * write out the pages, but rather only collect contiguous
3353 * logical block extents, call the multi-block allocator, and
3354 * then update the buffer heads with the block allocations.
de9a55b8 3355 *
ccd2506b
TT
3356 * For now, though, we'll cheat by calling filemap_flush(),
3357 * which will map the blocks, and start the I/O, but not
3358 * actually wait for the I/O to complete.
3359 */
3360 return filemap_flush(inode->i_mapping);
3361}
64769240 3362
ac27a0ec
DK
3363/*
3364 * bmap() is special. It gets used by applications such as lilo and by
3365 * the swapper to find the on-disk block of a specific piece of data.
3366 *
3367 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3368 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3369 * filesystem and enables swap, then they may get a nasty shock when the
3370 * data getting swapped to that swapfile suddenly gets overwritten by
3371 * the original zero's written out previously to the journal and
3372 * awaiting writeback in the kernel's buffer cache.
3373 *
3374 * So, if we see any bmap calls here on a modified, data-journaled file,
3375 * take extra steps to flush any blocks which might be in the cache.
3376 */
617ba13b 3377static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3378{
3379 struct inode *inode = mapping->host;
3380 journal_t *journal;
3381 int err;
3382
64769240
AT
3383 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3384 test_opt(inode->i_sb, DELALLOC)) {
3385 /*
3386 * With delalloc we want to sync the file
3387 * so that we can make sure we allocate
3388 * blocks for file
3389 */
3390 filemap_write_and_wait(mapping);
3391 }
3392
19f5fb7a
TT
3393 if (EXT4_JOURNAL(inode) &&
3394 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
3395 /*
3396 * This is a REALLY heavyweight approach, but the use of
3397 * bmap on dirty files is expected to be extremely rare:
3398 * only if we run lilo or swapon on a freshly made file
3399 * do we expect this to happen.
3400 *
3401 * (bmap requires CAP_SYS_RAWIO so this does not
3402 * represent an unprivileged user DOS attack --- we'd be
3403 * in trouble if mortal users could trigger this path at
3404 * will.)
3405 *
617ba13b 3406 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3407 * regular files. If somebody wants to bmap a directory
3408 * or symlink and gets confused because the buffer
3409 * hasn't yet been flushed to disk, they deserve
3410 * everything they get.
3411 */
3412
19f5fb7a 3413 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 3414 journal = EXT4_JOURNAL(inode);
dab291af
MC
3415 jbd2_journal_lock_updates(journal);
3416 err = jbd2_journal_flush(journal);
3417 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3418
3419 if (err)
3420 return 0;
3421 }
3422
af5bc92d 3423 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3424}
3425
617ba13b 3426static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3427{
617ba13b 3428 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
3429}
3430
3431static int
617ba13b 3432ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3433 struct list_head *pages, unsigned nr_pages)
3434{
617ba13b 3435 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3436}
3437
744692dc
JZ
3438static void ext4_free_io_end(ext4_io_end_t *io)
3439{
3440 BUG_ON(!io);
3441 if (io->page)
3442 put_page(io->page);
3443 iput(io->inode);
3444 kfree(io);
3445}
3446
3447static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3448{
3449 struct buffer_head *head, *bh;
3450 unsigned int curr_off = 0;
3451
3452 if (!page_has_buffers(page))
3453 return;
3454 head = bh = page_buffers(page);
3455 do {
3456 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3457 && bh->b_private) {
3458 ext4_free_io_end(bh->b_private);
3459 bh->b_private = NULL;
3460 bh->b_end_io = NULL;
3461 }
3462 curr_off = curr_off + bh->b_size;
3463 bh = bh->b_this_page;
3464 } while (bh != head);
3465}
3466
617ba13b 3467static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3468{
617ba13b 3469 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3470
744692dc
JZ
3471 /*
3472 * free any io_end structure allocated for buffers to be discarded
3473 */
3474 if (ext4_should_dioread_nolock(page->mapping->host))
3475 ext4_invalidatepage_free_endio(page, offset);
ac27a0ec
DK
3476 /*
3477 * If it's a full truncate we just forget about the pending dirtying
3478 */
3479 if (offset == 0)
3480 ClearPageChecked(page);
3481
0390131b
FM
3482 if (journal)
3483 jbd2_journal_invalidatepage(journal, page, offset);
3484 else
3485 block_invalidatepage(page, offset);
ac27a0ec
DK
3486}
3487
617ba13b 3488static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3489{
617ba13b 3490 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3491
3492 WARN_ON(PageChecked(page));
3493 if (!page_has_buffers(page))
3494 return 0;
0390131b
FM
3495 if (journal)
3496 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3497 else
3498 return try_to_free_buffers(page);
ac27a0ec
DK
3499}
3500
3501/*
4c0425ff
MC
3502 * O_DIRECT for ext3 (or indirect map) based files
3503 *
ac27a0ec
DK
3504 * If the O_DIRECT write will extend the file then add this inode to the
3505 * orphan list. So recovery will truncate it back to the original size
3506 * if the machine crashes during the write.
3507 *
3508 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3509 * crashes then stale disk data _may_ be exposed inside the file. But current
3510 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3511 */
4c0425ff 3512static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
de9a55b8
TT
3513 const struct iovec *iov, loff_t offset,
3514 unsigned long nr_segs)
ac27a0ec
DK
3515{
3516 struct file *file = iocb->ki_filp;
3517 struct inode *inode = file->f_mapping->host;
617ba13b 3518 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3519 handle_t *handle;
ac27a0ec
DK
3520 ssize_t ret;
3521 int orphan = 0;
3522 size_t count = iov_length(iov, nr_segs);
fbbf6945 3523 int retries = 0;
ac27a0ec
DK
3524
3525 if (rw == WRITE) {
3526 loff_t final_size = offset + count;
3527
ac27a0ec 3528 if (final_size > inode->i_size) {
7fb5409d
JK
3529 /* Credits for sb + inode write */
3530 handle = ext4_journal_start(inode, 2);
3531 if (IS_ERR(handle)) {
3532 ret = PTR_ERR(handle);
3533 goto out;
3534 }
617ba13b 3535 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3536 if (ret) {
3537 ext4_journal_stop(handle);
3538 goto out;
3539 }
ac27a0ec
DK
3540 orphan = 1;
3541 ei->i_disksize = inode->i_size;
7fb5409d 3542 ext4_journal_stop(handle);
ac27a0ec
DK
3543 }
3544 }
3545
fbbf6945 3546retry:
b7adc1f3
JZ
3547 if (rw == READ && ext4_should_dioread_nolock(inode))
3548 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
3549 inode->i_sb->s_bdev, iov,
3550 offset, nr_segs,
3551 ext4_get_block, NULL);
3552 else
3553 ret = blockdev_direct_IO(rw, iocb, inode,
3554 inode->i_sb->s_bdev, iov,
ac27a0ec 3555 offset, nr_segs,
617ba13b 3556 ext4_get_block, NULL);
fbbf6945
ES
3557 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3558 goto retry;
ac27a0ec 3559
7fb5409d 3560 if (orphan) {
ac27a0ec
DK
3561 int err;
3562
7fb5409d
JK
3563 /* Credits for sb + inode write */
3564 handle = ext4_journal_start(inode, 2);
3565 if (IS_ERR(handle)) {
3566 /* This is really bad luck. We've written the data
3567 * but cannot extend i_size. Bail out and pretend
3568 * the write failed... */
3569 ret = PTR_ERR(handle);
da1dafca
DM
3570 if (inode->i_nlink)
3571 ext4_orphan_del(NULL, inode);
3572
7fb5409d
JK
3573 goto out;
3574 }
3575 if (inode->i_nlink)
617ba13b 3576 ext4_orphan_del(handle, inode);
7fb5409d 3577 if (ret > 0) {
ac27a0ec
DK
3578 loff_t end = offset + ret;
3579 if (end > inode->i_size) {
3580 ei->i_disksize = end;
3581 i_size_write(inode, end);
3582 /*
3583 * We're going to return a positive `ret'
3584 * here due to non-zero-length I/O, so there's
3585 * no way of reporting error returns from
617ba13b 3586 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3587 * ignore it.
3588 */
617ba13b 3589 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3590 }
3591 }
617ba13b 3592 err = ext4_journal_stop(handle);
ac27a0ec
DK
3593 if (ret == 0)
3594 ret = err;
3595 }
3596out:
3597 return ret;
3598}
3599
2ed88685
TT
3600/*
3601 * ext4_get_block used when preparing for a DIO write or buffer write.
3602 * We allocate an uinitialized extent if blocks haven't been allocated.
3603 * The extent will be converted to initialized after the IO is complete.
3604 */
c7064ef1 3605static int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
3606 struct buffer_head *bh_result, int create)
3607{
c7064ef1 3608 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 3609 inode->i_ino, create);
2ed88685
TT
3610 return _ext4_get_block(inode, iblock, bh_result,
3611 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
3612}
3613
c7064ef1 3614static void dump_completed_IO(struct inode * inode)
8d5d02e6
MC
3615{
3616#ifdef EXT4_DEBUG
3617 struct list_head *cur, *before, *after;
3618 ext4_io_end_t *io, *io0, *io1;
744692dc 3619 unsigned long flags;
8d5d02e6 3620
c7064ef1
JZ
3621 if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
3622 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
8d5d02e6
MC
3623 return;
3624 }
3625
c7064ef1 3626 ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
744692dc 3627 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
c7064ef1 3628 list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
8d5d02e6
MC
3629 cur = &io->list;
3630 before = cur->prev;
3631 io0 = container_of(before, ext4_io_end_t, list);
3632 after = cur->next;
3633 io1 = container_of(after, ext4_io_end_t, list);
3634
3635 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3636 io, inode->i_ino, io0, io1);
3637 }
744692dc 3638 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
8d5d02e6
MC
3639#endif
3640}
4c0425ff
MC
3641
3642/*
4c0425ff
MC
3643 * check a range of space and convert unwritten extents to written.
3644 */
c7064ef1 3645static int ext4_end_io_nolock(ext4_io_end_t *io)
4c0425ff 3646{
4c0425ff
MC
3647 struct inode *inode = io->inode;
3648 loff_t offset = io->offset;
a1de02dc 3649 ssize_t size = io->size;
4c0425ff 3650 int ret = 0;
4c0425ff 3651
c7064ef1 3652 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
8d5d02e6
MC
3653 "list->prev 0x%p\n",
3654 io, inode->i_ino, io->list.next, io->list.prev);
3655
3656 if (list_empty(&io->list))
3657 return ret;
3658
c7064ef1 3659 if (io->flag != EXT4_IO_UNWRITTEN)
8d5d02e6
MC
3660 return ret;
3661
744692dc 3662 ret = ext4_convert_unwritten_extents(inode, offset, size);
8d5d02e6 3663 if (ret < 0) {
4c0425ff 3664 printk(KERN_EMERG "%s: failed to convert unwritten"
8d5d02e6
MC
3665 "extents to written extents, error is %d"
3666 " io is still on inode %lu aio dio list\n",
3667 __func__, ret, inode->i_ino);
3668 return ret;
3669 }
4c0425ff 3670
5b3ff237
JZ
3671 if (io->iocb)
3672 aio_complete(io->iocb, io->result, 0);
8d5d02e6
MC
3673 /* clear the DIO AIO unwritten flag */
3674 io->flag = 0;
3675 return ret;
4c0425ff 3676}
c7064ef1 3677
8d5d02e6
MC
3678/*
3679 * work on completed aio dio IO, to convert unwritten extents to extents
3680 */
c7064ef1 3681static void ext4_end_io_work(struct work_struct *work)
8d5d02e6 3682{
744692dc
JZ
3683 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3684 struct inode *inode = io->inode;
3685 struct ext4_inode_info *ei = EXT4_I(inode);
3686 unsigned long flags;
3687 int ret;
4c0425ff 3688
8d5d02e6 3689 mutex_lock(&inode->i_mutex);
c7064ef1 3690 ret = ext4_end_io_nolock(io);
744692dc
JZ
3691 if (ret < 0) {
3692 mutex_unlock(&inode->i_mutex);
3693 return;
8d5d02e6 3694 }
744692dc
JZ
3695
3696 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3697 if (!list_empty(&io->list))
3698 list_del_init(&io->list);
3699 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
8d5d02e6 3700 mutex_unlock(&inode->i_mutex);
744692dc 3701 ext4_free_io_end(io);
8d5d02e6 3702}
c7064ef1 3703
8d5d02e6
MC
3704/*
3705 * This function is called from ext4_sync_file().
3706 *
c7064ef1
JZ
3707 * When IO is completed, the work to convert unwritten extents to
3708 * written is queued on workqueue but may not get immediately
8d5d02e6
MC
3709 * scheduled. When fsync is called, we need to ensure the
3710 * conversion is complete before fsync returns.
c7064ef1
JZ
3711 * The inode keeps track of a list of pending/completed IO that
3712 * might needs to do the conversion. This function walks through
3713 * the list and convert the related unwritten extents for completed IO
3714 * to written.
3715 * The function return the number of pending IOs on success.
8d5d02e6 3716 */
c7064ef1 3717int flush_completed_IO(struct inode *inode)
8d5d02e6
MC
3718{
3719 ext4_io_end_t *io;
744692dc
JZ
3720 struct ext4_inode_info *ei = EXT4_I(inode);
3721 unsigned long flags;
8d5d02e6
MC
3722 int ret = 0;
3723 int ret2 = 0;
3724
744692dc 3725 if (list_empty(&ei->i_completed_io_list))
8d5d02e6
MC
3726 return ret;
3727
c7064ef1 3728 dump_completed_IO(inode);
744692dc
JZ
3729 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3730 while (!list_empty(&ei->i_completed_io_list)){
3731 io = list_entry(ei->i_completed_io_list.next,
8d5d02e6
MC
3732 ext4_io_end_t, list);
3733 /*
c7064ef1 3734 * Calling ext4_end_io_nolock() to convert completed
8d5d02e6
MC
3735 * IO to written.
3736 *
3737 * When ext4_sync_file() is called, run_queue() may already
3738 * about to flush the work corresponding to this io structure.
3739 * It will be upset if it founds the io structure related
3740 * to the work-to-be schedule is freed.
3741 *
3742 * Thus we need to keep the io structure still valid here after
3743 * convertion finished. The io structure has a flag to
3744 * avoid double converting from both fsync and background work
3745 * queue work.
3746 */
744692dc 3747 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
c7064ef1 3748 ret = ext4_end_io_nolock(io);
744692dc 3749 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
8d5d02e6
MC
3750 if (ret < 0)
3751 ret2 = ret;
3752 else
3753 list_del_init(&io->list);
3754 }
744692dc 3755 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
8d5d02e6
MC
3756 return (ret2 < 0) ? ret2 : 0;
3757}
3758
744692dc 3759static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
4c0425ff
MC
3760{
3761 ext4_io_end_t *io = NULL;
3762
744692dc 3763 io = kmalloc(sizeof(*io), flags);
4c0425ff
MC
3764
3765 if (io) {
8d5d02e6 3766 igrab(inode);
4c0425ff 3767 io->inode = inode;
8d5d02e6 3768 io->flag = 0;
4c0425ff
MC
3769 io->offset = 0;
3770 io->size = 0;
744692dc 3771 io->page = NULL;
5b3ff237
JZ
3772 io->iocb = NULL;
3773 io->result = 0;
c7064ef1 3774 INIT_WORK(&io->work, ext4_end_io_work);
8d5d02e6 3775 INIT_LIST_HEAD(&io->list);
4c0425ff
MC
3776 }
3777
3778 return io;
3779}
3780
3781static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
3782 ssize_t size, void *private, int ret,
3783 bool is_async)
4c0425ff
MC
3784{
3785 ext4_io_end_t *io_end = iocb->private;
3786 struct workqueue_struct *wq;
744692dc
JZ
3787 unsigned long flags;
3788 struct ext4_inode_info *ei;
4c0425ff 3789
4b70df18
M
3790 /* if not async direct IO or dio with 0 bytes write, just return */
3791 if (!io_end || !size)
552ef802 3792 goto out;
4b70df18 3793
8d5d02e6
MC
3794 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3795 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3796 iocb->private, io_end->inode->i_ino, iocb, offset,
3797 size);
8d5d02e6
MC
3798
3799 /* if not aio dio with unwritten extents, just free io and return */
c7064ef1 3800 if (io_end->flag != EXT4_IO_UNWRITTEN){
8d5d02e6
MC
3801 ext4_free_io_end(io_end);
3802 iocb->private = NULL;
5b3ff237
JZ
3803out:
3804 if (is_async)
3805 aio_complete(iocb, ret, 0);
3806 return;
8d5d02e6
MC
3807 }
3808
4c0425ff
MC
3809 io_end->offset = offset;
3810 io_end->size = size;
5b3ff237
JZ
3811 if (is_async) {
3812 io_end->iocb = iocb;
3813 io_end->result = ret;
3814 }
4c0425ff
MC
3815 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3816
8d5d02e6 3817 /* queue the work to convert unwritten extents to written */
4c0425ff
MC
3818 queue_work(wq, &io_end->work);
3819
8d5d02e6 3820 /* Add the io_end to per-inode completed aio dio list*/
744692dc
JZ
3821 ei = EXT4_I(io_end->inode);
3822 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3823 list_add_tail(&io_end->list, &ei->i_completed_io_list);
3824 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
4c0425ff
MC
3825 iocb->private = NULL;
3826}
c7064ef1 3827
744692dc
JZ
3828static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3829{
3830 ext4_io_end_t *io_end = bh->b_private;
3831 struct workqueue_struct *wq;
3832 struct inode *inode;
3833 unsigned long flags;
3834
3835 if (!test_clear_buffer_uninit(bh) || !io_end)
3836 goto out;
3837
3838 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3839 printk("sb umounted, discard end_io request for inode %lu\n",
3840 io_end->inode->i_ino);
3841 ext4_free_io_end(io_end);
3842 goto out;
3843 }
3844
3845 io_end->flag = EXT4_IO_UNWRITTEN;
3846 inode = io_end->inode;
3847
3848 /* Add the io_end to per-inode completed io list*/
3849 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3850 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3851 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3852
3853 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3854 /* queue the work to convert unwritten extents to written */
3855 queue_work(wq, &io_end->work);
3856out:
3857 bh->b_private = NULL;
3858 bh->b_end_io = NULL;
3859 clear_buffer_uninit(bh);
3860 end_buffer_async_write(bh, uptodate);
3861}
3862
3863static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3864{
3865 ext4_io_end_t *io_end;
3866 struct page *page = bh->b_page;
3867 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3868 size_t size = bh->b_size;
3869
3870retry:
3871 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3872 if (!io_end) {
3873 if (printk_ratelimit())
3874 printk(KERN_WARNING "%s: allocation fail\n", __func__);
3875 schedule();
3876 goto retry;
3877 }
3878 io_end->offset = offset;
3879 io_end->size = size;
3880 /*
3881 * We need to hold a reference to the page to make sure it
3882 * doesn't get evicted before ext4_end_io_work() has a chance
3883 * to convert the extent from written to unwritten.
3884 */
3885 io_end->page = page;
3886 get_page(io_end->page);
3887
3888 bh->b_private = io_end;
3889 bh->b_end_io = ext4_end_io_buffer_write;
3890 return 0;
3891}
3892
4c0425ff
MC
3893/*
3894 * For ext4 extent files, ext4 will do direct-io write to holes,
3895 * preallocated extents, and those write extend the file, no need to
3896 * fall back to buffered IO.
3897 *
3898 * For holes, we fallocate those blocks, mark them as unintialized
3899 * If those blocks were preallocated, we mark sure they are splited, but
3900 * still keep the range to write as unintialized.
3901 *
8d5d02e6
MC
3902 * The unwrritten extents will be converted to written when DIO is completed.
3903 * For async direct IO, since the IO may still pending when return, we
3904 * set up an end_io call back function, which will do the convertion
3905 * when async direct IO completed.
4c0425ff
MC
3906 *
3907 * If the O_DIRECT write will extend the file then add this inode to the
3908 * orphan list. So recovery will truncate it back to the original size
3909 * if the machine crashes during the write.
3910 *
3911 */
3912static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3913 const struct iovec *iov, loff_t offset,
3914 unsigned long nr_segs)
3915{
3916 struct file *file = iocb->ki_filp;
3917 struct inode *inode = file->f_mapping->host;
3918 ssize_t ret;
3919 size_t count = iov_length(iov, nr_segs);
3920
3921 loff_t final_size = offset + count;
3922 if (rw == WRITE && final_size <= inode->i_size) {
3923 /*
8d5d02e6
MC
3924 * We could direct write to holes and fallocate.
3925 *
3926 * Allocated blocks to fill the hole are marked as uninitialized
4c0425ff
MC
3927 * to prevent paralel buffered read to expose the stale data
3928 * before DIO complete the data IO.
8d5d02e6
MC
3929 *
3930 * As to previously fallocated extents, ext4 get_block
4c0425ff
MC
3931 * will just simply mark the buffer mapped but still
3932 * keep the extents uninitialized.
3933 *
8d5d02e6
MC
3934 * for non AIO case, we will convert those unwritten extents
3935 * to written after return back from blockdev_direct_IO.
3936 *
3937 * for async DIO, the conversion needs to be defered when
3938 * the IO is completed. The ext4 end_io callback function
3939 * will be called to take care of the conversion work.
3940 * Here for async case, we allocate an io_end structure to
3941 * hook to the iocb.
4c0425ff 3942 */
8d5d02e6
MC
3943 iocb->private = NULL;
3944 EXT4_I(inode)->cur_aio_dio = NULL;
3945 if (!is_sync_kiocb(iocb)) {
744692dc 3946 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
8d5d02e6
MC
3947 if (!iocb->private)
3948 return -ENOMEM;
3949 /*
3950 * we save the io structure for current async
79e83036 3951 * direct IO, so that later ext4_map_blocks()
8d5d02e6
MC
3952 * could flag the io structure whether there
3953 * is a unwritten extents needs to be converted
3954 * when IO is completed.
3955 */
3956 EXT4_I(inode)->cur_aio_dio = iocb->private;
3957 }
3958
4c0425ff
MC
3959 ret = blockdev_direct_IO(rw, iocb, inode,
3960 inode->i_sb->s_bdev, iov,
3961 offset, nr_segs,
c7064ef1 3962 ext4_get_block_write,
4c0425ff 3963 ext4_end_io_dio);
8d5d02e6
MC
3964 if (iocb->private)
3965 EXT4_I(inode)->cur_aio_dio = NULL;
3966 /*
3967 * The io_end structure takes a reference to the inode,
3968 * that structure needs to be destroyed and the
3969 * reference to the inode need to be dropped, when IO is
3970 * complete, even with 0 byte write, or failed.
3971 *
3972 * In the successful AIO DIO case, the io_end structure will be
3973 * desctroyed and the reference to the inode will be dropped
3974 * after the end_io call back function is called.
3975 *
3976 * In the case there is 0 byte write, or error case, since
3977 * VFS direct IO won't invoke the end_io call back function,
3978 * we need to free the end_io structure here.
3979 */
3980 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3981 ext4_free_io_end(iocb->private);
3982 iocb->private = NULL;
19f5fb7a
TT
3983 } else if (ret > 0 && ext4_test_inode_state(inode,
3984 EXT4_STATE_DIO_UNWRITTEN)) {
109f5565 3985 int err;
8d5d02e6
MC
3986 /*
3987 * for non AIO case, since the IO is already
3988 * completed, we could do the convertion right here
3989 */
109f5565
M
3990 err = ext4_convert_unwritten_extents(inode,
3991 offset, ret);
3992 if (err < 0)
3993 ret = err;
19f5fb7a 3994 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
109f5565 3995 }
4c0425ff
MC
3996 return ret;
3997 }
8d5d02e6
MC
3998
3999 /* for write the the end of file case, we fall back to old way */
4c0425ff
MC
4000 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4001}
4002
4003static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
4004 const struct iovec *iov, loff_t offset,
4005 unsigned long nr_segs)
4006{
4007 struct file *file = iocb->ki_filp;
4008 struct inode *inode = file->f_mapping->host;
4009
12e9b892 4010 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4c0425ff
MC
4011 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
4012
4013 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4014}
4015
ac27a0ec 4016/*
617ba13b 4017 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
4018 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
4019 * much here because ->set_page_dirty is called under VFS locks. The page is
4020 * not necessarily locked.
4021 *
4022 * We cannot just dirty the page and leave attached buffers clean, because the
4023 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
4024 * or jbddirty because all the journalling code will explode.
4025 *
4026 * So what we do is to mark the page "pending dirty" and next time writepage
4027 * is called, propagate that into the buffers appropriately.
4028 */
617ba13b 4029static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
4030{
4031 SetPageChecked(page);
4032 return __set_page_dirty_nobuffers(page);
4033}
4034
617ba13b 4035static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
4036 .readpage = ext4_readpage,
4037 .readpages = ext4_readpages,
43ce1d23 4038 .writepage = ext4_writepage,
8ab22b9a
HH
4039 .sync_page = block_sync_page,
4040 .write_begin = ext4_write_begin,
4041 .write_end = ext4_ordered_write_end,
4042 .bmap = ext4_bmap,
4043 .invalidatepage = ext4_invalidatepage,
4044 .releasepage = ext4_releasepage,
4045 .direct_IO = ext4_direct_IO,
4046 .migratepage = buffer_migrate_page,
4047 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4048 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
4049};
4050
617ba13b 4051static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
4052 .readpage = ext4_readpage,
4053 .readpages = ext4_readpages,
43ce1d23 4054 .writepage = ext4_writepage,
8ab22b9a
HH
4055 .sync_page = block_sync_page,
4056 .write_begin = ext4_write_begin,
4057 .write_end = ext4_writeback_write_end,
4058 .bmap = ext4_bmap,
4059 .invalidatepage = ext4_invalidatepage,
4060 .releasepage = ext4_releasepage,
4061 .direct_IO = ext4_direct_IO,
4062 .migratepage = buffer_migrate_page,
4063 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4064 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
4065};
4066
617ba13b 4067static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
4068 .readpage = ext4_readpage,
4069 .readpages = ext4_readpages,
43ce1d23 4070 .writepage = ext4_writepage,
8ab22b9a
HH
4071 .sync_page = block_sync_page,
4072 .write_begin = ext4_write_begin,
4073 .write_end = ext4_journalled_write_end,
4074 .set_page_dirty = ext4_journalled_set_page_dirty,
4075 .bmap = ext4_bmap,
4076 .invalidatepage = ext4_invalidatepage,
4077 .releasepage = ext4_releasepage,
4078 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4079 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
4080};
4081
64769240 4082static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
4083 .readpage = ext4_readpage,
4084 .readpages = ext4_readpages,
43ce1d23 4085 .writepage = ext4_writepage,
8ab22b9a
HH
4086 .writepages = ext4_da_writepages,
4087 .sync_page = block_sync_page,
4088 .write_begin = ext4_da_write_begin,
4089 .write_end = ext4_da_write_end,
4090 .bmap = ext4_bmap,
4091 .invalidatepage = ext4_da_invalidatepage,
4092 .releasepage = ext4_releasepage,
4093 .direct_IO = ext4_direct_IO,
4094 .migratepage = buffer_migrate_page,
4095 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4096 .error_remove_page = generic_error_remove_page,
64769240
AT
4097};
4098
617ba13b 4099void ext4_set_aops(struct inode *inode)
ac27a0ec 4100{
cd1aac32
AK
4101 if (ext4_should_order_data(inode) &&
4102 test_opt(inode->i_sb, DELALLOC))
4103 inode->i_mapping->a_ops = &ext4_da_aops;
4104 else if (ext4_should_order_data(inode))
617ba13b 4105 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
4106 else if (ext4_should_writeback_data(inode) &&
4107 test_opt(inode->i_sb, DELALLOC))
4108 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
4109 else if (ext4_should_writeback_data(inode))
4110 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 4111 else
617ba13b 4112 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
4113}
4114
4115/*
617ba13b 4116 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
4117 * up to the end of the block which corresponds to `from'.
4118 * This required during truncate. We need to physically zero the tail end
4119 * of that block so it doesn't yield old data if the file is later grown.
4120 */
cf108bca 4121int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
4122 struct address_space *mapping, loff_t from)
4123{
617ba13b 4124 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 4125 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
4126 unsigned blocksize, length, pos;
4127 ext4_lblk_t iblock;
ac27a0ec
DK
4128 struct inode *inode = mapping->host;
4129 struct buffer_head *bh;
cf108bca 4130 struct page *page;
ac27a0ec 4131 int err = 0;
ac27a0ec 4132
f4a01017
TT
4133 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4134 mapping_gfp_mask(mapping) & ~__GFP_FS);
cf108bca
JK
4135 if (!page)
4136 return -EINVAL;
4137
ac27a0ec
DK
4138 blocksize = inode->i_sb->s_blocksize;
4139 length = blocksize - (offset & (blocksize - 1));
4140 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4141
ac27a0ec
DK
4142 if (!page_has_buffers(page))
4143 create_empty_buffers(page, blocksize, 0);
4144
4145 /* Find the buffer that contains "offset" */
4146 bh = page_buffers(page);
4147 pos = blocksize;
4148 while (offset >= pos) {
4149 bh = bh->b_this_page;
4150 iblock++;
4151 pos += blocksize;
4152 }
4153
4154 err = 0;
4155 if (buffer_freed(bh)) {
4156 BUFFER_TRACE(bh, "freed: skip");
4157 goto unlock;
4158 }
4159
4160 if (!buffer_mapped(bh)) {
4161 BUFFER_TRACE(bh, "unmapped");
617ba13b 4162 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
4163 /* unmapped? It's a hole - nothing to do */
4164 if (!buffer_mapped(bh)) {
4165 BUFFER_TRACE(bh, "still unmapped");
4166 goto unlock;
4167 }
4168 }
4169
4170 /* Ok, it's mapped. Make sure it's up-to-date */
4171 if (PageUptodate(page))
4172 set_buffer_uptodate(bh);
4173
4174 if (!buffer_uptodate(bh)) {
4175 err = -EIO;
4176 ll_rw_block(READ, 1, &bh);
4177 wait_on_buffer(bh);
4178 /* Uhhuh. Read error. Complain and punt. */
4179 if (!buffer_uptodate(bh))
4180 goto unlock;
4181 }
4182
617ba13b 4183 if (ext4_should_journal_data(inode)) {
ac27a0ec 4184 BUFFER_TRACE(bh, "get write access");
617ba13b 4185 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
4186 if (err)
4187 goto unlock;
4188 }
4189
eebd2aa3 4190 zero_user(page, offset, length);
ac27a0ec
DK
4191
4192 BUFFER_TRACE(bh, "zeroed end of block");
4193
4194 err = 0;
617ba13b 4195 if (ext4_should_journal_data(inode)) {
0390131b 4196 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 4197 } else {
617ba13b 4198 if (ext4_should_order_data(inode))
678aaf48 4199 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
4200 mark_buffer_dirty(bh);
4201 }
4202
4203unlock:
4204 unlock_page(page);
4205 page_cache_release(page);
4206 return err;
4207}
4208
4209/*
4210 * Probably it should be a library function... search for first non-zero word
4211 * or memcmp with zero_page, whatever is better for particular architecture.
4212 * Linus?
4213 */
4214static inline int all_zeroes(__le32 *p, __le32 *q)
4215{
4216 while (p < q)
4217 if (*p++)
4218 return 0;
4219 return 1;
4220}
4221
4222/**
617ba13b 4223 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
4224 * @inode: inode in question
4225 * @depth: depth of the affected branch
617ba13b 4226 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
4227 * @chain: place to store the pointers to partial indirect blocks
4228 * @top: place to the (detached) top of branch
4229 *
617ba13b 4230 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
4231 *
4232 * When we do truncate() we may have to clean the ends of several
4233 * indirect blocks but leave the blocks themselves alive. Block is
4234 * partially truncated if some data below the new i_size is refered
4235 * from it (and it is on the path to the first completely truncated
4236 * data block, indeed). We have to free the top of that path along
4237 * with everything to the right of the path. Since no allocation
617ba13b 4238 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
4239 * finishes, we may safely do the latter, but top of branch may
4240 * require special attention - pageout below the truncation point
4241 * might try to populate it.
4242 *
4243 * We atomically detach the top of branch from the tree, store the
4244 * block number of its root in *@top, pointers to buffer_heads of
4245 * partially truncated blocks - in @chain[].bh and pointers to
4246 * their last elements that should not be removed - in
4247 * @chain[].p. Return value is the pointer to last filled element
4248 * of @chain.
4249 *
4250 * The work left to caller to do the actual freeing of subtrees:
4251 * a) free the subtree starting from *@top
4252 * b) free the subtrees whose roots are stored in
4253 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4254 * c) free the subtrees growing from the inode past the @chain[0].
4255 * (no partially truncated stuff there). */
4256
617ba13b 4257static Indirect *ext4_find_shared(struct inode *inode, int depth,
de9a55b8
TT
4258 ext4_lblk_t offsets[4], Indirect chain[4],
4259 __le32 *top)
ac27a0ec
DK
4260{
4261 Indirect *partial, *p;
4262 int k, err;
4263
4264 *top = 0;
bf48aabb 4265 /* Make k index the deepest non-null offset + 1 */
ac27a0ec
DK
4266 for (k = depth; k > 1 && !offsets[k-1]; k--)
4267 ;
617ba13b 4268 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
4269 /* Writer: pointers */
4270 if (!partial)
4271 partial = chain + k-1;
4272 /*
4273 * If the branch acquired continuation since we've looked at it -
4274 * fine, it should all survive and (new) top doesn't belong to us.
4275 */
4276 if (!partial->key && *partial->p)
4277 /* Writer: end */
4278 goto no_top;
af5bc92d 4279 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
4280 ;
4281 /*
4282 * OK, we've found the last block that must survive. The rest of our
4283 * branch should be detached before unlocking. However, if that rest
4284 * of branch is all ours and does not grow immediately from the inode
4285 * it's easier to cheat and just decrement partial->p.
4286 */
4287 if (p == chain + k - 1 && p > chain) {
4288 p->p--;
4289 } else {
4290 *top = *p->p;
617ba13b 4291 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
4292#if 0
4293 *p->p = 0;
4294#endif
4295 }
4296 /* Writer: end */
4297
af5bc92d 4298 while (partial > p) {
ac27a0ec
DK
4299 brelse(partial->bh);
4300 partial--;
4301 }
4302no_top:
4303 return partial;
4304}
4305
4306/*
4307 * Zero a number of block pointers in either an inode or an indirect block.
4308 * If we restart the transaction we must again get write access to the
4309 * indirect block for further modification.
4310 *
4311 * We release `count' blocks on disk, but (last - first) may be greater
4312 * than `count' because there can be holes in there.
4313 */
1f2acb60
TT
4314static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4315 struct buffer_head *bh,
4316 ext4_fsblk_t block_to_free,
4317 unsigned long count, __le32 *first,
4318 __le32 *last)
ac27a0ec
DK
4319{
4320 __le32 *p;
1f2acb60 4321 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
e6362609
TT
4322
4323 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4324 flags |= EXT4_FREE_BLOCKS_METADATA;
50689696 4325
1f2acb60
TT
4326 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4327 count)) {
24676da4
TT
4328 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4329 "blocks %llu len %lu",
4330 (unsigned long long) block_to_free, count);
1f2acb60
TT
4331 return 1;
4332 }
4333
ac27a0ec
DK
4334 if (try_to_extend_transaction(handle, inode)) {
4335 if (bh) {
0390131b
FM
4336 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4337 ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 4338 }
617ba13b 4339 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4340 ext4_truncate_restart_trans(handle, inode,
4341 blocks_for_truncate(inode));
ac27a0ec
DK
4342 if (bh) {
4343 BUFFER_TRACE(bh, "retaking write access");
617ba13b 4344 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
4345 }
4346 }
4347
e6362609
TT
4348 for (p = first; p < last; p++)
4349 *p = 0;
ac27a0ec 4350
e6362609 4351 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
1f2acb60 4352 return 0;
ac27a0ec
DK
4353}
4354
4355/**
617ba13b 4356 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
4357 * @handle: handle for this transaction
4358 * @inode: inode we are dealing with
4359 * @this_bh: indirect buffer_head which contains *@first and *@last
4360 * @first: array of block numbers
4361 * @last: points immediately past the end of array
4362 *
4363 * We are freeing all blocks refered from that array (numbers are stored as
4364 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4365 *
4366 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4367 * blocks are contiguous then releasing them at one time will only affect one
4368 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4369 * actually use a lot of journal space.
4370 *
4371 * @this_bh will be %NULL if @first and @last point into the inode's direct
4372 * block pointers.
4373 */
617ba13b 4374static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4375 struct buffer_head *this_bh,
4376 __le32 *first, __le32 *last)
4377{
617ba13b 4378 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
4379 unsigned long count = 0; /* Number of blocks in the run */
4380 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4381 corresponding to
4382 block_to_free */
617ba13b 4383 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
4384 __le32 *p; /* Pointer into inode/ind
4385 for current block */
4386 int err;
4387
4388 if (this_bh) { /* For indirect block */
4389 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 4390 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
4391 /* Important: if we can't update the indirect pointers
4392 * to the blocks, we can't free them. */
4393 if (err)
4394 return;
4395 }
4396
4397 for (p = first; p < last; p++) {
4398 nr = le32_to_cpu(*p);
4399 if (nr) {
4400 /* accumulate blocks to free if they're contiguous */
4401 if (count == 0) {
4402 block_to_free = nr;
4403 block_to_free_p = p;
4404 count = 1;
4405 } else if (nr == block_to_free + count) {
4406 count++;
4407 } else {
1f2acb60
TT
4408 if (ext4_clear_blocks(handle, inode, this_bh,
4409 block_to_free, count,
4410 block_to_free_p, p))
4411 break;
ac27a0ec
DK
4412 block_to_free = nr;
4413 block_to_free_p = p;
4414 count = 1;
4415 }
4416 }
4417 }
4418
4419 if (count > 0)
617ba13b 4420 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
4421 count, block_to_free_p, p);
4422
4423 if (this_bh) {
0390131b 4424 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
71dc8fbc
DG
4425
4426 /*
4427 * The buffer head should have an attached journal head at this
4428 * point. However, if the data is corrupted and an indirect
4429 * block pointed to itself, it would have been detached when
4430 * the block was cleared. Check for this instead of OOPSing.
4431 */
e7f07968 4432 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
0390131b 4433 ext4_handle_dirty_metadata(handle, inode, this_bh);
71dc8fbc 4434 else
24676da4
TT
4435 EXT4_ERROR_INODE(inode,
4436 "circular indirect block detected at "
4437 "block %llu",
4438 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
4439 }
4440}
4441
4442/**
617ba13b 4443 * ext4_free_branches - free an array of branches
ac27a0ec
DK
4444 * @handle: JBD handle for this transaction
4445 * @inode: inode we are dealing with
4446 * @parent_bh: the buffer_head which contains *@first and *@last
4447 * @first: array of block numbers
4448 * @last: pointer immediately past the end of array
4449 * @depth: depth of the branches to free
4450 *
4451 * We are freeing all blocks refered from these branches (numbers are
4452 * stored as little-endian 32-bit) and updating @inode->i_blocks
4453 * appropriately.
4454 */
617ba13b 4455static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4456 struct buffer_head *parent_bh,
4457 __le32 *first, __le32 *last, int depth)
4458{
617ba13b 4459 ext4_fsblk_t nr;
ac27a0ec
DK
4460 __le32 *p;
4461
0390131b 4462 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4463 return;
4464
4465 if (depth--) {
4466 struct buffer_head *bh;
617ba13b 4467 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
4468 p = last;
4469 while (--p >= first) {
4470 nr = le32_to_cpu(*p);
4471 if (!nr)
4472 continue; /* A hole */
4473
1f2acb60
TT
4474 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4475 nr, 1)) {
24676da4
TT
4476 EXT4_ERROR_INODE(inode,
4477 "invalid indirect mapped "
4478 "block %lu (level %d)",
4479 (unsigned long) nr, depth);
1f2acb60
TT
4480 break;
4481 }
4482
ac27a0ec
DK
4483 /* Go read the buffer for the next level down */
4484 bh = sb_bread(inode->i_sb, nr);
4485
4486 /*
4487 * A read failure? Report error and clear slot
4488 * (should be rare).
4489 */
4490 if (!bh) {
c398eda0
TT
4491 EXT4_ERROR_INODE_BLOCK(inode, nr,
4492 "Read failure");
ac27a0ec
DK
4493 continue;
4494 }
4495
4496 /* This zaps the entire block. Bottom up. */
4497 BUFFER_TRACE(bh, "free child branches");
617ba13b 4498 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
4499 (__le32 *) bh->b_data,
4500 (__le32 *) bh->b_data + addr_per_block,
4501 depth);
ac27a0ec 4502
ac27a0ec
DK
4503 /*
4504 * Everything below this this pointer has been
4505 * released. Now let this top-of-subtree go.
4506 *
4507 * We want the freeing of this indirect block to be
4508 * atomic in the journal with the updating of the
4509 * bitmap block which owns it. So make some room in
4510 * the journal.
4511 *
4512 * We zero the parent pointer *after* freeing its
4513 * pointee in the bitmaps, so if extend_transaction()
4514 * for some reason fails to put the bitmap changes and
4515 * the release into the same transaction, recovery
4516 * will merely complain about releasing a free block,
4517 * rather than leaking blocks.
4518 */
0390131b 4519 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4520 return;
4521 if (try_to_extend_transaction(handle, inode)) {
617ba13b 4522 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4523 ext4_truncate_restart_trans(handle, inode,
4524 blocks_for_truncate(inode));
ac27a0ec
DK
4525 }
4526
40389687
A
4527 /*
4528 * The forget flag here is critical because if
4529 * we are journaling (and not doing data
4530 * journaling), we have to make sure a revoke
4531 * record is written to prevent the journal
4532 * replay from overwriting the (former)
4533 * indirect block if it gets reallocated as a
4534 * data block. This must happen in the same
4535 * transaction where the data blocks are
4536 * actually freed.
4537 */
e6362609 4538 ext4_free_blocks(handle, inode, 0, nr, 1,
40389687
A
4539 EXT4_FREE_BLOCKS_METADATA|
4540 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec
DK
4541
4542 if (parent_bh) {
4543 /*
4544 * The block which we have just freed is
4545 * pointed to by an indirect block: journal it
4546 */
4547 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 4548 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
4549 parent_bh)){
4550 *p = 0;
4551 BUFFER_TRACE(parent_bh,
0390131b
FM
4552 "call ext4_handle_dirty_metadata");
4553 ext4_handle_dirty_metadata(handle,
4554 inode,
4555 parent_bh);
ac27a0ec
DK
4556 }
4557 }
4558 }
4559 } else {
4560 /* We have reached the bottom of the tree. */
4561 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 4562 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
4563 }
4564}
4565
91ef4caf
DG
4566int ext4_can_truncate(struct inode *inode)
4567{
4568 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4569 return 0;
4570 if (S_ISREG(inode->i_mode))
4571 return 1;
4572 if (S_ISDIR(inode->i_mode))
4573 return 1;
4574 if (S_ISLNK(inode->i_mode))
4575 return !ext4_inode_is_fast_symlink(inode);
4576 return 0;
4577}
4578
ac27a0ec 4579/*
617ba13b 4580 * ext4_truncate()
ac27a0ec 4581 *
617ba13b
MC
4582 * We block out ext4_get_block() block instantiations across the entire
4583 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4584 * simultaneously on behalf of the same inode.
4585 *
4586 * As we work through the truncate and commmit bits of it to the journal there
4587 * is one core, guiding principle: the file's tree must always be consistent on
4588 * disk. We must be able to restart the truncate after a crash.
4589 *
4590 * The file's tree may be transiently inconsistent in memory (although it
4591 * probably isn't), but whenever we close off and commit a journal transaction,
4592 * the contents of (the filesystem + the journal) must be consistent and
4593 * restartable. It's pretty simple, really: bottom up, right to left (although
4594 * left-to-right works OK too).
4595 *
4596 * Note that at recovery time, journal replay occurs *before* the restart of
4597 * truncate against the orphan inode list.
4598 *
4599 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4600 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4601 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4602 * ext4_truncate() to have another go. So there will be instantiated blocks
4603 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4604 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4605 * ext4_truncate() run will find them and release them.
ac27a0ec 4606 */
617ba13b 4607void ext4_truncate(struct inode *inode)
ac27a0ec
DK
4608{
4609 handle_t *handle;
617ba13b 4610 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4611 __le32 *i_data = ei->i_data;
617ba13b 4612 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 4613 struct address_space *mapping = inode->i_mapping;
725d26d3 4614 ext4_lblk_t offsets[4];
ac27a0ec
DK
4615 Indirect chain[4];
4616 Indirect *partial;
4617 __le32 nr = 0;
4618 int n;
725d26d3 4619 ext4_lblk_t last_block;
ac27a0ec 4620 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 4621
91ef4caf 4622 if (!ext4_can_truncate(inode))
ac27a0ec
DK
4623 return;
4624
12e9b892 4625 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 4626
5534fb5b 4627 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 4628 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 4629
12e9b892 4630 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
cf108bca 4631 ext4_ext_truncate(inode);
1d03ec98
AK
4632 return;
4633 }
a86c6181 4634
ac27a0ec 4635 handle = start_transaction(inode);
cf108bca 4636 if (IS_ERR(handle))
ac27a0ec 4637 return; /* AKPM: return what? */
ac27a0ec
DK
4638
4639 last_block = (inode->i_size + blocksize-1)
617ba13b 4640 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 4641
cf108bca
JK
4642 if (inode->i_size & (blocksize - 1))
4643 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4644 goto out_stop;
ac27a0ec 4645
617ba13b 4646 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
4647 if (n == 0)
4648 goto out_stop; /* error */
4649
4650 /*
4651 * OK. This truncate is going to happen. We add the inode to the
4652 * orphan list, so that if this truncate spans multiple transactions,
4653 * and we crash, we will resume the truncate when the filesystem
4654 * recovers. It also marks the inode dirty, to catch the new size.
4655 *
4656 * Implication: the file must always be in a sane, consistent
4657 * truncatable state while each transaction commits.
4658 */
617ba13b 4659 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
4660 goto out_stop;
4661
632eaeab
MC
4662 /*
4663 * From here we block out all ext4_get_block() callers who want to
4664 * modify the block allocation tree.
4665 */
4666 down_write(&ei->i_data_sem);
b4df2030 4667
c2ea3fde 4668 ext4_discard_preallocations(inode);
b4df2030 4669
ac27a0ec
DK
4670 /*
4671 * The orphan list entry will now protect us from any crash which
4672 * occurs before the truncate completes, so it is now safe to propagate
4673 * the new, shorter inode size (held for now in i_size) into the
4674 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 4675 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
4676 */
4677 ei->i_disksize = inode->i_size;
4678
ac27a0ec 4679 if (n == 1) { /* direct blocks */
617ba13b
MC
4680 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4681 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
4682 goto do_indirects;
4683 }
4684
617ba13b 4685 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
4686 /* Kill the top of shared branch (not detached) */
4687 if (nr) {
4688 if (partial == chain) {
4689 /* Shared branch grows from the inode */
617ba13b 4690 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
4691 &nr, &nr+1, (chain+n-1) - partial);
4692 *partial->p = 0;
4693 /*
4694 * We mark the inode dirty prior to restart,
4695 * and prior to stop. No need for it here.
4696 */
4697 } else {
4698 /* Shared branch grows from an indirect block */
4699 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 4700 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
4701 partial->p,
4702 partial->p+1, (chain+n-1) - partial);
4703 }
4704 }
4705 /* Clear the ends of indirect blocks on the shared branch */
4706 while (partial > chain) {
617ba13b 4707 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
4708 (__le32*)partial->bh->b_data+addr_per_block,
4709 (chain+n-1) - partial);
4710 BUFFER_TRACE(partial->bh, "call brelse");
de9a55b8 4711 brelse(partial->bh);
ac27a0ec
DK
4712 partial--;
4713 }
4714do_indirects:
4715 /* Kill the remaining (whole) subtrees */
4716 switch (offsets[0]) {
4717 default:
617ba13b 4718 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 4719 if (nr) {
617ba13b
MC
4720 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4721 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 4722 }
617ba13b
MC
4723 case EXT4_IND_BLOCK:
4724 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 4725 if (nr) {
617ba13b
MC
4726 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4727 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 4728 }
617ba13b
MC
4729 case EXT4_DIND_BLOCK:
4730 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 4731 if (nr) {
617ba13b
MC
4732 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4733 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 4734 }
617ba13b 4735 case EXT4_TIND_BLOCK:
ac27a0ec
DK
4736 ;
4737 }
4738
0e855ac8 4739 up_write(&ei->i_data_sem);
ef7f3835 4740 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 4741 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4742
4743 /*
4744 * In a multi-transaction truncate, we only make the final transaction
4745 * synchronous
4746 */
4747 if (IS_SYNC(inode))
0390131b 4748 ext4_handle_sync(handle);
ac27a0ec
DK
4749out_stop:
4750 /*
4751 * If this was a simple ftruncate(), and the file will remain alive
4752 * then we need to clear up the orphan record which we created above.
4753 * However, if this was a real unlink then we were called by
617ba13b 4754 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
4755 * orphan info for us.
4756 */
4757 if (inode->i_nlink)
617ba13b 4758 ext4_orphan_del(handle, inode);
ac27a0ec 4759
617ba13b 4760 ext4_journal_stop(handle);
ac27a0ec
DK
4761}
4762
ac27a0ec 4763/*
617ba13b 4764 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4765 * underlying buffer_head on success. If 'in_mem' is true, we have all
4766 * data in memory that is needed to recreate the on-disk version of this
4767 * inode.
4768 */
617ba13b
MC
4769static int __ext4_get_inode_loc(struct inode *inode,
4770 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4771{
240799cd
TT
4772 struct ext4_group_desc *gdp;
4773 struct buffer_head *bh;
4774 struct super_block *sb = inode->i_sb;
4775 ext4_fsblk_t block;
4776 int inodes_per_block, inode_offset;
4777
3a06d778 4778 iloc->bh = NULL;
240799cd
TT
4779 if (!ext4_valid_inum(sb, inode->i_ino))
4780 return -EIO;
ac27a0ec 4781
240799cd
TT
4782 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4783 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4784 if (!gdp)
ac27a0ec
DK
4785 return -EIO;
4786
240799cd
TT
4787 /*
4788 * Figure out the offset within the block group inode table
4789 */
4790 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4791 inode_offset = ((inode->i_ino - 1) %
4792 EXT4_INODES_PER_GROUP(sb));
4793 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4794 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4795
4796 bh = sb_getblk(sb, block);
ac27a0ec 4797 if (!bh) {
c398eda0
TT
4798 EXT4_ERROR_INODE_BLOCK(inode, block,
4799 "unable to read itable block");
ac27a0ec
DK
4800 return -EIO;
4801 }
4802 if (!buffer_uptodate(bh)) {
4803 lock_buffer(bh);
9c83a923
HK
4804
4805 /*
4806 * If the buffer has the write error flag, we have failed
4807 * to write out another inode in the same block. In this
4808 * case, we don't have to read the block because we may
4809 * read the old inode data successfully.
4810 */
4811 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4812 set_buffer_uptodate(bh);
4813
ac27a0ec
DK
4814 if (buffer_uptodate(bh)) {
4815 /* someone brought it uptodate while we waited */
4816 unlock_buffer(bh);
4817 goto has_buffer;
4818 }
4819
4820 /*
4821 * If we have all information of the inode in memory and this
4822 * is the only valid inode in the block, we need not read the
4823 * block.
4824 */
4825 if (in_mem) {
4826 struct buffer_head *bitmap_bh;
240799cd 4827 int i, start;
ac27a0ec 4828
240799cd 4829 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4830
240799cd
TT
4831 /* Is the inode bitmap in cache? */
4832 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
4833 if (!bitmap_bh)
4834 goto make_io;
4835
4836 /*
4837 * If the inode bitmap isn't in cache then the
4838 * optimisation may end up performing two reads instead
4839 * of one, so skip it.
4840 */
4841 if (!buffer_uptodate(bitmap_bh)) {
4842 brelse(bitmap_bh);
4843 goto make_io;
4844 }
240799cd 4845 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4846 if (i == inode_offset)
4847 continue;
617ba13b 4848 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4849 break;
4850 }
4851 brelse(bitmap_bh);
240799cd 4852 if (i == start + inodes_per_block) {
ac27a0ec
DK
4853 /* all other inodes are free, so skip I/O */
4854 memset(bh->b_data, 0, bh->b_size);
4855 set_buffer_uptodate(bh);
4856 unlock_buffer(bh);
4857 goto has_buffer;
4858 }
4859 }
4860
4861make_io:
240799cd
TT
4862 /*
4863 * If we need to do any I/O, try to pre-readahead extra
4864 * blocks from the inode table.
4865 */
4866 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4867 ext4_fsblk_t b, end, table;
4868 unsigned num;
4869
4870 table = ext4_inode_table(sb, gdp);
b713a5ec 4871 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
4872 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4873 if (table > b)
4874 b = table;
4875 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4876 num = EXT4_INODES_PER_GROUP(sb);
4877 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4878 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 4879 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4880 table += num / inodes_per_block;
4881 if (end > table)
4882 end = table;
4883 while (b <= end)
4884 sb_breadahead(sb, b++);
4885 }
4886
ac27a0ec
DK
4887 /*
4888 * There are other valid inodes in the buffer, this inode
4889 * has in-inode xattrs, or we don't have this inode in memory.
4890 * Read the block from disk.
4891 */
4892 get_bh(bh);
4893 bh->b_end_io = end_buffer_read_sync;
4894 submit_bh(READ_META, bh);
4895 wait_on_buffer(bh);
4896 if (!buffer_uptodate(bh)) {
c398eda0
TT
4897 EXT4_ERROR_INODE_BLOCK(inode, block,
4898 "unable to read itable block");
ac27a0ec
DK
4899 brelse(bh);
4900 return -EIO;
4901 }
4902 }
4903has_buffer:
4904 iloc->bh = bh;
4905 return 0;
4906}
4907
617ba13b 4908int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4909{
4910 /* We have all inode data except xattrs in memory here. */
617ba13b 4911 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4912 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4913}
4914
617ba13b 4915void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4916{
617ba13b 4917 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4918
4919 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4920 if (flags & EXT4_SYNC_FL)
ac27a0ec 4921 inode->i_flags |= S_SYNC;
617ba13b 4922 if (flags & EXT4_APPEND_FL)
ac27a0ec 4923 inode->i_flags |= S_APPEND;
617ba13b 4924 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4925 inode->i_flags |= S_IMMUTABLE;
617ba13b 4926 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4927 inode->i_flags |= S_NOATIME;
617ba13b 4928 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4929 inode->i_flags |= S_DIRSYNC;
4930}
4931
ff9ddf7e
JK
4932/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4933void ext4_get_inode_flags(struct ext4_inode_info *ei)
4934{
84a8dce2
DM
4935 unsigned int vfs_fl;
4936 unsigned long old_fl, new_fl;
4937
4938 do {
4939 vfs_fl = ei->vfs_inode.i_flags;
4940 old_fl = ei->i_flags;
4941 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4942 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4943 EXT4_DIRSYNC_FL);
4944 if (vfs_fl & S_SYNC)
4945 new_fl |= EXT4_SYNC_FL;
4946 if (vfs_fl & S_APPEND)
4947 new_fl |= EXT4_APPEND_FL;
4948 if (vfs_fl & S_IMMUTABLE)
4949 new_fl |= EXT4_IMMUTABLE_FL;
4950 if (vfs_fl & S_NOATIME)
4951 new_fl |= EXT4_NOATIME_FL;
4952 if (vfs_fl & S_DIRSYNC)
4953 new_fl |= EXT4_DIRSYNC_FL;
4954 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 4955}
de9a55b8 4956
0fc1b451 4957static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4958 struct ext4_inode_info *ei)
0fc1b451
AK
4959{
4960 blkcnt_t i_blocks ;
8180a562
AK
4961 struct inode *inode = &(ei->vfs_inode);
4962 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4963
4964 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4965 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4966 /* we are using combined 48 bit field */
4967 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4968 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4969 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4970 /* i_blocks represent file system block size */
4971 return i_blocks << (inode->i_blkbits - 9);
4972 } else {
4973 return i_blocks;
4974 }
0fc1b451
AK
4975 } else {
4976 return le32_to_cpu(raw_inode->i_blocks_lo);
4977 }
4978}
ff9ddf7e 4979
1d1fe1ee 4980struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4981{
617ba13b
MC
4982 struct ext4_iloc iloc;
4983 struct ext4_inode *raw_inode;
1d1fe1ee 4984 struct ext4_inode_info *ei;
1d1fe1ee 4985 struct inode *inode;
b436b9be 4986 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4987 long ret;
ac27a0ec
DK
4988 int block;
4989
1d1fe1ee
DH
4990 inode = iget_locked(sb, ino);
4991 if (!inode)
4992 return ERR_PTR(-ENOMEM);
4993 if (!(inode->i_state & I_NEW))
4994 return inode;
4995
4996 ei = EXT4_I(inode);
567f3e9a 4997 iloc.bh = 0;
ac27a0ec 4998
1d1fe1ee
DH
4999 ret = __ext4_get_inode_loc(inode, &iloc, 0);
5000 if (ret < 0)
ac27a0ec 5001 goto bad_inode;
617ba13b 5002 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
5003 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
5004 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
5005 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 5006 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
5007 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
5008 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
5009 }
5010 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec 5011
19f5fb7a 5012 ei->i_state_flags = 0;
ac27a0ec
DK
5013 ei->i_dir_start_lookup = 0;
5014 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
5015 /* We now have enough fields to check if the inode was active or not.
5016 * This is needed because nfsd might try to access dead inodes
5017 * the test is that same one that e2fsck uses
5018 * NeilBrown 1999oct15
5019 */
5020 if (inode->i_nlink == 0) {
5021 if (inode->i_mode == 0 ||
617ba13b 5022 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 5023 /* this inode is deleted */
1d1fe1ee 5024 ret = -ESTALE;
ac27a0ec
DK
5025 goto bad_inode;
5026 }
5027 /* The only unlinked inodes we let through here have
5028 * valid i_mode and are being read by the orphan
5029 * recovery code: that's fine, we're about to complete
5030 * the process of deleting those. */
5031 }
ac27a0ec 5032 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 5033 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 5034 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 5035 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
5036 ei->i_file_acl |=
5037 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 5038 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 5039 ei->i_disksize = inode->i_size;
a9e7f447
DM
5040#ifdef CONFIG_QUOTA
5041 ei->i_reserved_quota = 0;
5042#endif
ac27a0ec
DK
5043 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5044 ei->i_block_group = iloc.block_group;
a4912123 5045 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
5046 /*
5047 * NOTE! The in-memory inode i_data array is in little-endian order
5048 * even on big-endian machines: we do NOT byteswap the block numbers!
5049 */
617ba13b 5050 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
5051 ei->i_data[block] = raw_inode->i_block[block];
5052 INIT_LIST_HEAD(&ei->i_orphan);
5053
b436b9be
JK
5054 /*
5055 * Set transaction id's of transactions that have to be committed
5056 * to finish f[data]sync. We set them to currently running transaction
5057 * as we cannot be sure that the inode or some of its metadata isn't
5058 * part of the transaction - the inode could have been reclaimed and
5059 * now it is reread from disk.
5060 */
5061 if (journal) {
5062 transaction_t *transaction;
5063 tid_t tid;
5064
5065 spin_lock(&journal->j_state_lock);
5066 if (journal->j_running_transaction)
5067 transaction = journal->j_running_transaction;
5068 else
5069 transaction = journal->j_committing_transaction;
5070 if (transaction)
5071 tid = transaction->t_tid;
5072 else
5073 tid = journal->j_commit_sequence;
5074 spin_unlock(&journal->j_state_lock);
5075 ei->i_sync_tid = tid;
5076 ei->i_datasync_tid = tid;
5077 }
5078
0040d987 5079 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 5080 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 5081 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 5082 EXT4_INODE_SIZE(inode->i_sb)) {
1d1fe1ee 5083 ret = -EIO;
ac27a0ec 5084 goto bad_inode;
e5d2861f 5085 }
ac27a0ec
DK
5086 if (ei->i_extra_isize == 0) {
5087 /* The extra space is currently unused. Use it. */
617ba13b
MC
5088 ei->i_extra_isize = sizeof(struct ext4_inode) -
5089 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
5090 } else {
5091 __le32 *magic = (void *)raw_inode +
617ba13b 5092 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 5093 ei->i_extra_isize;
617ba13b 5094 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
19f5fb7a 5095 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
ac27a0ec
DK
5096 }
5097 } else
5098 ei->i_extra_isize = 0;
5099
ef7f3835
KS
5100 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5101 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5102 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5103 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5104
25ec56b5
JNC
5105 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5106 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5107 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5108 inode->i_version |=
5109 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5110 }
5111
c4b5a614 5112 ret = 0;
485c26ec 5113 if (ei->i_file_acl &&
1032988c 5114 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
5115 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
5116 ei->i_file_acl);
485c26ec
TT
5117 ret = -EIO;
5118 goto bad_inode;
07a03824 5119 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
c4b5a614
TT
5120 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5121 (S_ISLNK(inode->i_mode) &&
5122 !ext4_inode_is_fast_symlink(inode)))
5123 /* Validate extent which is part of inode */
5124 ret = ext4_ext_check_inode(inode);
de9a55b8 5125 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
fe2c8191
TN
5126 (S_ISLNK(inode->i_mode) &&
5127 !ext4_inode_is_fast_symlink(inode))) {
de9a55b8 5128 /* Validate block references which are part of inode */
fe2c8191
TN
5129 ret = ext4_check_inode_blockref(inode);
5130 }
567f3e9a 5131 if (ret)
de9a55b8 5132 goto bad_inode;
7a262f7c 5133
ac27a0ec 5134 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
5135 inode->i_op = &ext4_file_inode_operations;
5136 inode->i_fop = &ext4_file_operations;
5137 ext4_set_aops(inode);
ac27a0ec 5138 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
5139 inode->i_op = &ext4_dir_inode_operations;
5140 inode->i_fop = &ext4_dir_operations;
ac27a0ec 5141 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 5142 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 5143 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
5144 nd_terminate_link(ei->i_data, inode->i_size,
5145 sizeof(ei->i_data) - 1);
5146 } else {
617ba13b
MC
5147 inode->i_op = &ext4_symlink_inode_operations;
5148 ext4_set_aops(inode);
ac27a0ec 5149 }
563bdd61
TT
5150 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5151 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 5152 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
5153 if (raw_inode->i_block[0])
5154 init_special_inode(inode, inode->i_mode,
5155 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5156 else
5157 init_special_inode(inode, inode->i_mode,
5158 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 5159 } else {
563bdd61 5160 ret = -EIO;
24676da4 5161 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 5162 goto bad_inode;
ac27a0ec 5163 }
af5bc92d 5164 brelse(iloc.bh);
617ba13b 5165 ext4_set_inode_flags(inode);
1d1fe1ee
DH
5166 unlock_new_inode(inode);
5167 return inode;
ac27a0ec
DK
5168
5169bad_inode:
567f3e9a 5170 brelse(iloc.bh);
1d1fe1ee
DH
5171 iget_failed(inode);
5172 return ERR_PTR(ret);
ac27a0ec
DK
5173}
5174
0fc1b451
AK
5175static int ext4_inode_blocks_set(handle_t *handle,
5176 struct ext4_inode *raw_inode,
5177 struct ext4_inode_info *ei)
5178{
5179 struct inode *inode = &(ei->vfs_inode);
5180 u64 i_blocks = inode->i_blocks;
5181 struct super_block *sb = inode->i_sb;
0fc1b451
AK
5182
5183 if (i_blocks <= ~0U) {
5184 /*
5185 * i_blocks can be represnted in a 32 bit variable
5186 * as multiple of 512 bytes
5187 */
8180a562 5188 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5189 raw_inode->i_blocks_high = 0;
84a8dce2 5190 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
5191 return 0;
5192 }
5193 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5194 return -EFBIG;
5195
5196 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
5197 /*
5198 * i_blocks can be represented in a 48 bit variable
5199 * as multiple of 512 bytes
5200 */
8180a562 5201 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5202 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 5203 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 5204 } else {
84a8dce2 5205 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
5206 /* i_block is stored in file system block size */
5207 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5208 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5209 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 5210 }
f287a1a5 5211 return 0;
0fc1b451
AK
5212}
5213
ac27a0ec
DK
5214/*
5215 * Post the struct inode info into an on-disk inode location in the
5216 * buffer-cache. This gobbles the caller's reference to the
5217 * buffer_head in the inode location struct.
5218 *
5219 * The caller must have write access to iloc->bh.
5220 */
617ba13b 5221static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 5222 struct inode *inode,
830156c7 5223 struct ext4_iloc *iloc)
ac27a0ec 5224{
617ba13b
MC
5225 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5226 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
5227 struct buffer_head *bh = iloc->bh;
5228 int err = 0, rc, block;
5229
5230 /* For fields not not tracking in the in-memory inode,
5231 * initialise them to zero for new inodes. */
19f5fb7a 5232 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 5233 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 5234
ff9ddf7e 5235 ext4_get_inode_flags(ei);
ac27a0ec 5236 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 5237 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
5238 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5239 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5240/*
5241 * Fix up interoperability with old kernels. Otherwise, old inodes get
5242 * re-used with the upper 16 bits of the uid/gid intact
5243 */
af5bc92d 5244 if (!ei->i_dtime) {
ac27a0ec
DK
5245 raw_inode->i_uid_high =
5246 cpu_to_le16(high_16_bits(inode->i_uid));
5247 raw_inode->i_gid_high =
5248 cpu_to_le16(high_16_bits(inode->i_gid));
5249 } else {
5250 raw_inode->i_uid_high = 0;
5251 raw_inode->i_gid_high = 0;
5252 }
5253 } else {
5254 raw_inode->i_uid_low =
5255 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5256 raw_inode->i_gid_low =
5257 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5258 raw_inode->i_uid_high = 0;
5259 raw_inode->i_gid_high = 0;
5260 }
5261 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
5262
5263 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5264 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5265 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5266 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5267
0fc1b451
AK
5268 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5269 goto out_brelse;
ac27a0ec 5270 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1b9c12f4 5271 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
9b8f1f01
MC
5272 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5273 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
5274 raw_inode->i_file_acl_high =
5275 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 5276 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
5277 ext4_isize_set(raw_inode, ei->i_disksize);
5278 if (ei->i_disksize > 0x7fffffffULL) {
5279 struct super_block *sb = inode->i_sb;
5280 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5281 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5282 EXT4_SB(sb)->s_es->s_rev_level ==
5283 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5284 /* If this is the first large file
5285 * created, add a flag to the superblock.
5286 */
5287 err = ext4_journal_get_write_access(handle,
5288 EXT4_SB(sb)->s_sbh);
5289 if (err)
5290 goto out_brelse;
5291 ext4_update_dynamic_rev(sb);
5292 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 5293 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 5294 sb->s_dirt = 1;
0390131b 5295 ext4_handle_sync(handle);
73b50c1c 5296 err = ext4_handle_dirty_metadata(handle, NULL,
a48380f7 5297 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
5298 }
5299 }
5300 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5301 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5302 if (old_valid_dev(inode->i_rdev)) {
5303 raw_inode->i_block[0] =
5304 cpu_to_le32(old_encode_dev(inode->i_rdev));
5305 raw_inode->i_block[1] = 0;
5306 } else {
5307 raw_inode->i_block[0] = 0;
5308 raw_inode->i_block[1] =
5309 cpu_to_le32(new_encode_dev(inode->i_rdev));
5310 raw_inode->i_block[2] = 0;
5311 }
de9a55b8
TT
5312 } else
5313 for (block = 0; block < EXT4_N_BLOCKS; block++)
5314 raw_inode->i_block[block] = ei->i_data[block];
ac27a0ec 5315
25ec56b5
JNC
5316 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5317 if (ei->i_extra_isize) {
5318 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5319 raw_inode->i_version_hi =
5320 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 5321 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
5322 }
5323
830156c7 5324 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 5325 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
5326 if (!err)
5327 err = rc;
19f5fb7a 5328 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 5329
b436b9be 5330 ext4_update_inode_fsync_trans(handle, inode, 0);
ac27a0ec 5331out_brelse:
af5bc92d 5332 brelse(bh);
617ba13b 5333 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5334 return err;
5335}
5336
5337/*
617ba13b 5338 * ext4_write_inode()
ac27a0ec
DK
5339 *
5340 * We are called from a few places:
5341 *
5342 * - Within generic_file_write() for O_SYNC files.
5343 * Here, there will be no transaction running. We wait for any running
5344 * trasnaction to commit.
5345 *
5346 * - Within sys_sync(), kupdate and such.
5347 * We wait on commit, if tol to.
5348 *
5349 * - Within prune_icache() (PF_MEMALLOC == true)
5350 * Here we simply return. We can't afford to block kswapd on the
5351 * journal commit.
5352 *
5353 * In all cases it is actually safe for us to return without doing anything,
5354 * because the inode has been copied into a raw inode buffer in
617ba13b 5355 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
5356 * knfsd.
5357 *
5358 * Note that we are absolutely dependent upon all inode dirtiers doing the
5359 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5360 * which we are interested.
5361 *
5362 * It would be a bug for them to not do this. The code:
5363 *
5364 * mark_inode_dirty(inode)
5365 * stuff();
5366 * inode->i_size = expr;
5367 *
5368 * is in error because a kswapd-driven write_inode() could occur while
5369 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5370 * will no longer be on the superblock's dirty inode list.
5371 */
a9185b41 5372int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 5373{
91ac6f43
FM
5374 int err;
5375
ac27a0ec
DK
5376 if (current->flags & PF_MEMALLOC)
5377 return 0;
5378
91ac6f43
FM
5379 if (EXT4_SB(inode->i_sb)->s_journal) {
5380 if (ext4_journal_current_handle()) {
5381 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5382 dump_stack();
5383 return -EIO;
5384 }
ac27a0ec 5385
a9185b41 5386 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
5387 return 0;
5388
5389 err = ext4_force_commit(inode->i_sb);
5390 } else {
5391 struct ext4_iloc iloc;
ac27a0ec 5392
8b472d73 5393 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
5394 if (err)
5395 return err;
a9185b41 5396 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
5397 sync_dirty_buffer(iloc.bh);
5398 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
5399 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5400 "IO error syncing inode");
830156c7
FM
5401 err = -EIO;
5402 }
fd2dd9fb 5403 brelse(iloc.bh);
91ac6f43
FM
5404 }
5405 return err;
ac27a0ec
DK
5406}
5407
5408/*
617ba13b 5409 * ext4_setattr()
ac27a0ec
DK
5410 *
5411 * Called from notify_change.
5412 *
5413 * We want to trap VFS attempts to truncate the file as soon as
5414 * possible. In particular, we want to make sure that when the VFS
5415 * shrinks i_size, we put the inode on the orphan list and modify
5416 * i_disksize immediately, so that during the subsequent flushing of
5417 * dirty pages and freeing of disk blocks, we can guarantee that any
5418 * commit will leave the blocks being flushed in an unused state on
5419 * disk. (On recovery, the inode will get truncated and the blocks will
5420 * be freed, so we have a strong guarantee that no future commit will
5421 * leave these blocks visible to the user.)
5422 *
678aaf48
JK
5423 * Another thing we have to assure is that if we are in ordered mode
5424 * and inode is still attached to the committing transaction, we must
5425 * we start writeout of all the dirty pages which are being truncated.
5426 * This way we are sure that all the data written in the previous
5427 * transaction are already on disk (truncate waits for pages under
5428 * writeback).
5429 *
5430 * Called with inode->i_mutex down.
ac27a0ec 5431 */
617ba13b 5432int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
5433{
5434 struct inode *inode = dentry->d_inode;
5435 int error, rc = 0;
5436 const unsigned int ia_valid = attr->ia_valid;
5437
5438 error = inode_change_ok(inode, attr);
5439 if (error)
5440 return error;
5441
12755627 5442 if (is_quota_modification(inode, attr))
871a2931 5443 dquot_initialize(inode);
ac27a0ec
DK
5444 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5445 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5446 handle_t *handle;
5447
5448 /* (user+group)*(old+new) structure, inode write (sb,
5449 * inode block, ? - but truncate inode update has it) */
5aca07eb 5450 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
194074ac 5451 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
5452 if (IS_ERR(handle)) {
5453 error = PTR_ERR(handle);
5454 goto err_out;
5455 }
b43fa828 5456 error = dquot_transfer(inode, attr);
ac27a0ec 5457 if (error) {
617ba13b 5458 ext4_journal_stop(handle);
ac27a0ec
DK
5459 return error;
5460 }
5461 /* Update corresponding info in inode so that everything is in
5462 * one transaction */
5463 if (attr->ia_valid & ATTR_UID)
5464 inode->i_uid = attr->ia_uid;
5465 if (attr->ia_valid & ATTR_GID)
5466 inode->i_gid = attr->ia_gid;
617ba13b
MC
5467 error = ext4_mark_inode_dirty(handle, inode);
5468 ext4_journal_stop(handle);
ac27a0ec
DK
5469 }
5470
e2b46574 5471 if (attr->ia_valid & ATTR_SIZE) {
12e9b892 5472 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
5473 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5474
0c095c7f
TT
5475 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5476 return -EFBIG;
e2b46574
ES
5477 }
5478 }
5479
ac27a0ec 5480 if (S_ISREG(inode->i_mode) &&
c8d46e41
JZ
5481 attr->ia_valid & ATTR_SIZE &&
5482 (attr->ia_size < inode->i_size ||
12e9b892 5483 (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
ac27a0ec
DK
5484 handle_t *handle;
5485
617ba13b 5486 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
5487 if (IS_ERR(handle)) {
5488 error = PTR_ERR(handle);
5489 goto err_out;
5490 }
5491
617ba13b
MC
5492 error = ext4_orphan_add(handle, inode);
5493 EXT4_I(inode)->i_disksize = attr->ia_size;
5494 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
5495 if (!error)
5496 error = rc;
617ba13b 5497 ext4_journal_stop(handle);
678aaf48
JK
5498
5499 if (ext4_should_order_data(inode)) {
5500 error = ext4_begin_ordered_truncate(inode,
5501 attr->ia_size);
5502 if (error) {
5503 /* Do as much error cleanup as possible */
5504 handle = ext4_journal_start(inode, 3);
5505 if (IS_ERR(handle)) {
5506 ext4_orphan_del(NULL, inode);
5507 goto err_out;
5508 }
5509 ext4_orphan_del(handle, inode);
5510 ext4_journal_stop(handle);
5511 goto err_out;
5512 }
5513 }
c8d46e41 5514 /* ext4_truncate will clear the flag */
12e9b892 5515 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
c8d46e41 5516 ext4_truncate(inode);
ac27a0ec
DK
5517 }
5518
5519 rc = inode_setattr(inode, attr);
5520
617ba13b 5521 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
5522 * transaction handle at all, we need to clean up the in-core
5523 * orphan list manually. */
5524 if (inode->i_nlink)
617ba13b 5525 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
5526
5527 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 5528 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
5529
5530err_out:
617ba13b 5531 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5532 if (!error)
5533 error = rc;
5534 return error;
5535}
5536
3e3398a0
MC
5537int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5538 struct kstat *stat)
5539{
5540 struct inode *inode;
5541 unsigned long delalloc_blocks;
5542
5543 inode = dentry->d_inode;
5544 generic_fillattr(inode, stat);
5545
5546 /*
5547 * We can't update i_blocks if the block allocation is delayed
5548 * otherwise in the case of system crash before the real block
5549 * allocation is done, we will have i_blocks inconsistent with
5550 * on-disk file blocks.
5551 * We always keep i_blocks updated together with real
5552 * allocation. But to not confuse with user, stat
5553 * will return the blocks that include the delayed allocation
5554 * blocks for this file.
5555 */
5556 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5557 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5558 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5559
5560 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5561 return 0;
5562}
ac27a0ec 5563
a02908f1
MC
5564static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5565 int chunk)
5566{
5567 int indirects;
5568
5569 /* if nrblocks are contiguous */
5570 if (chunk) {
5571 /*
5572 * With N contiguous data blocks, it need at most
5573 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5574 * 2 dindirect blocks
5575 * 1 tindirect block
5576 */
5577 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5578 return indirects + 3;
5579 }
5580 /*
5581 * if nrblocks are not contiguous, worse case, each block touch
5582 * a indirect block, and each indirect block touch a double indirect
5583 * block, plus a triple indirect block
5584 */
5585 indirects = nrblocks * 2 + 1;
5586 return indirects;
5587}
5588
5589static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5590{
12e9b892 5591 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
ac51d837
TT
5592 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5593 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 5594}
ac51d837 5595
ac27a0ec 5596/*
a02908f1
MC
5597 * Account for index blocks, block groups bitmaps and block group
5598 * descriptor blocks if modify datablocks and index blocks
5599 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5600 *
a02908f1 5601 * If datablocks are discontiguous, they are possible to spread over
af901ca1 5602 * different block groups too. If they are contiuguous, with flexbg,
a02908f1 5603 * they could still across block group boundary.
ac27a0ec 5604 *
a02908f1
MC
5605 * Also account for superblock, inode, quota and xattr blocks
5606 */
5607int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5608{
8df9675f
TT
5609 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5610 int gdpblocks;
a02908f1
MC
5611 int idxblocks;
5612 int ret = 0;
5613
5614 /*
5615 * How many index blocks need to touch to modify nrblocks?
5616 * The "Chunk" flag indicating whether the nrblocks is
5617 * physically contiguous on disk
5618 *
5619 * For Direct IO and fallocate, they calls get_block to allocate
5620 * one single extent at a time, so they could set the "Chunk" flag
5621 */
5622 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5623
5624 ret = idxblocks;
5625
5626 /*
5627 * Now let's see how many group bitmaps and group descriptors need
5628 * to account
5629 */
5630 groups = idxblocks;
5631 if (chunk)
5632 groups += 1;
5633 else
5634 groups += nrblocks;
5635
5636 gdpblocks = groups;
8df9675f
TT
5637 if (groups > ngroups)
5638 groups = ngroups;
a02908f1
MC
5639 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5640 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5641
5642 /* bitmaps and block group descriptor blocks */
5643 ret += groups + gdpblocks;
5644
5645 /* Blocks for super block, inode, quota and xattr blocks */
5646 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5647
5648 return ret;
5649}
5650
5651/*
5652 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
5653 * the modification of a single pages into a single transaction,
5654 * which may include multiple chunks of block allocations.
ac27a0ec 5655 *
525f4ed8 5656 * This could be called via ext4_write_begin()
ac27a0ec 5657 *
525f4ed8 5658 * We need to consider the worse case, when
a02908f1 5659 * one new block per extent.
ac27a0ec 5660 */
a86c6181 5661int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5662{
617ba13b 5663 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5664 int ret;
5665
a02908f1 5666 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 5667
a02908f1 5668 /* Account for data blocks for journalled mode */
617ba13b 5669 if (ext4_should_journal_data(inode))
a02908f1 5670 ret += bpp;
ac27a0ec
DK
5671 return ret;
5672}
f3bd1f3f
MC
5673
5674/*
5675 * Calculate the journal credits for a chunk of data modification.
5676 *
5677 * This is called from DIO, fallocate or whoever calling
79e83036 5678 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5679 *
5680 * journal buffers for data blocks are not included here, as DIO
5681 * and fallocate do no need to journal data buffers.
5682 */
5683int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5684{
5685 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5686}
5687
ac27a0ec 5688/*
617ba13b 5689 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5690 * Give this, we know that the caller already has write access to iloc->bh.
5691 */
617ba13b 5692int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5693 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5694{
5695 int err = 0;
5696
25ec56b5
JNC
5697 if (test_opt(inode->i_sb, I_VERSION))
5698 inode_inc_iversion(inode);
5699
ac27a0ec
DK
5700 /* the do_update_inode consumes one bh->b_count */
5701 get_bh(iloc->bh);
5702
dab291af 5703 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5704 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5705 put_bh(iloc->bh);
5706 return err;
5707}
5708
5709/*
5710 * On success, We end up with an outstanding reference count against
5711 * iloc->bh. This _must_ be cleaned up later.
5712 */
5713
5714int
617ba13b
MC
5715ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5716 struct ext4_iloc *iloc)
ac27a0ec 5717{
0390131b
FM
5718 int err;
5719
5720 err = ext4_get_inode_loc(inode, iloc);
5721 if (!err) {
5722 BUFFER_TRACE(iloc->bh, "get_write_access");
5723 err = ext4_journal_get_write_access(handle, iloc->bh);
5724 if (err) {
5725 brelse(iloc->bh);
5726 iloc->bh = NULL;
ac27a0ec
DK
5727 }
5728 }
617ba13b 5729 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5730 return err;
5731}
5732
6dd4ee7c
KS
5733/*
5734 * Expand an inode by new_extra_isize bytes.
5735 * Returns 0 on success or negative error number on failure.
5736 */
1d03ec98
AK
5737static int ext4_expand_extra_isize(struct inode *inode,
5738 unsigned int new_extra_isize,
5739 struct ext4_iloc iloc,
5740 handle_t *handle)
6dd4ee7c
KS
5741{
5742 struct ext4_inode *raw_inode;
5743 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
5744
5745 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5746 return 0;
5747
5748 raw_inode = ext4_raw_inode(&iloc);
5749
5750 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
5751
5752 /* No extended attributes present */
19f5fb7a
TT
5753 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5754 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
5755 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5756 new_extra_isize);
5757 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5758 return 0;
5759 }
5760
5761 /* try to expand with EAs present */
5762 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5763 raw_inode, handle);
5764}
5765
ac27a0ec
DK
5766/*
5767 * What we do here is to mark the in-core inode as clean with respect to inode
5768 * dirtiness (it may still be data-dirty).
5769 * This means that the in-core inode may be reaped by prune_icache
5770 * without having to perform any I/O. This is a very good thing,
5771 * because *any* task may call prune_icache - even ones which
5772 * have a transaction open against a different journal.
5773 *
5774 * Is this cheating? Not really. Sure, we haven't written the
5775 * inode out, but prune_icache isn't a user-visible syncing function.
5776 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5777 * we start and wait on commits.
5778 *
5779 * Is this efficient/effective? Well, we're being nice to the system
5780 * by cleaning up our inodes proactively so they can be reaped
5781 * without I/O. But we are potentially leaving up to five seconds'
5782 * worth of inodes floating about which prune_icache wants us to
5783 * write out. One way to fix that would be to get prune_icache()
5784 * to do a write_super() to free up some memory. It has the desired
5785 * effect.
5786 */
617ba13b 5787int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5788{
617ba13b 5789 struct ext4_iloc iloc;
6dd4ee7c
KS
5790 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5791 static unsigned int mnt_count;
5792 int err, ret;
ac27a0ec
DK
5793
5794 might_sleep();
617ba13b 5795 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5796 if (ext4_handle_valid(handle) &&
5797 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5798 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
5799 /*
5800 * We need extra buffer credits since we may write into EA block
5801 * with this same handle. If journal_extend fails, then it will
5802 * only result in a minor loss of functionality for that inode.
5803 * If this is felt to be critical, then e2fsck should be run to
5804 * force a large enough s_min_extra_isize.
5805 */
5806 if ((jbd2_journal_extend(handle,
5807 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5808 ret = ext4_expand_extra_isize(inode,
5809 sbi->s_want_extra_isize,
5810 iloc, handle);
5811 if (ret) {
19f5fb7a
TT
5812 ext4_set_inode_state(inode,
5813 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
5814 if (mnt_count !=
5815 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5816 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5817 "Unable to expand inode %lu. Delete"
5818 " some EAs or run e2fsck.",
5819 inode->i_ino);
c1bddad9
AK
5820 mnt_count =
5821 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5822 }
5823 }
5824 }
5825 }
ac27a0ec 5826 if (!err)
617ba13b 5827 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5828 return err;
5829}
5830
5831/*
617ba13b 5832 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5833 *
5834 * We're really interested in the case where a file is being extended.
5835 * i_size has been changed by generic_commit_write() and we thus need
5836 * to include the updated inode in the current transaction.
5837 *
5dd4056d 5838 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5839 * are allocated to the file.
5840 *
5841 * If the inode is marked synchronous, we don't honour that here - doing
5842 * so would cause a commit on atime updates, which we don't bother doing.
5843 * We handle synchronous inodes at the highest possible level.
5844 */
617ba13b 5845void ext4_dirty_inode(struct inode *inode)
ac27a0ec 5846{
ac27a0ec
DK
5847 handle_t *handle;
5848
617ba13b 5849 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
5850 if (IS_ERR(handle))
5851 goto out;
f3dc272f 5852
f3dc272f
CW
5853 ext4_mark_inode_dirty(handle, inode);
5854
617ba13b 5855 ext4_journal_stop(handle);
ac27a0ec
DK
5856out:
5857 return;
5858}
5859
5860#if 0
5861/*
5862 * Bind an inode's backing buffer_head into this transaction, to prevent
5863 * it from being flushed to disk early. Unlike
617ba13b 5864 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5865 * returns no iloc structure, so the caller needs to repeat the iloc
5866 * lookup to mark the inode dirty later.
5867 */
617ba13b 5868static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5869{
617ba13b 5870 struct ext4_iloc iloc;
ac27a0ec
DK
5871
5872 int err = 0;
5873 if (handle) {
617ba13b 5874 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5875 if (!err) {
5876 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5877 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5878 if (!err)
0390131b 5879 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5880 NULL,
0390131b 5881 iloc.bh);
ac27a0ec
DK
5882 brelse(iloc.bh);
5883 }
5884 }
617ba13b 5885 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5886 return err;
5887}
5888#endif
5889
617ba13b 5890int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5891{
5892 journal_t *journal;
5893 handle_t *handle;
5894 int err;
5895
5896 /*
5897 * We have to be very careful here: changing a data block's
5898 * journaling status dynamically is dangerous. If we write a
5899 * data block to the journal, change the status and then delete
5900 * that block, we risk forgetting to revoke the old log record
5901 * from the journal and so a subsequent replay can corrupt data.
5902 * So, first we make sure that the journal is empty and that
5903 * nobody is changing anything.
5904 */
5905
617ba13b 5906 journal = EXT4_JOURNAL(inode);
0390131b
FM
5907 if (!journal)
5908 return 0;
d699594d 5909 if (is_journal_aborted(journal))
ac27a0ec
DK
5910 return -EROFS;
5911
dab291af
MC
5912 jbd2_journal_lock_updates(journal);
5913 jbd2_journal_flush(journal);
ac27a0ec
DK
5914
5915 /*
5916 * OK, there are no updates running now, and all cached data is
5917 * synced to disk. We are now in a completely consistent state
5918 * which doesn't have anything in the journal, and we know that
5919 * no filesystem updates are running, so it is safe to modify
5920 * the inode's in-core data-journaling state flag now.
5921 */
5922
5923 if (val)
12e9b892 5924 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
ac27a0ec 5925 else
12e9b892 5926 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
617ba13b 5927 ext4_set_aops(inode);
ac27a0ec 5928
dab291af 5929 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
5930
5931 /* Finally we can mark the inode as dirty. */
5932
617ba13b 5933 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
5934 if (IS_ERR(handle))
5935 return PTR_ERR(handle);
5936
617ba13b 5937 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5938 ext4_handle_sync(handle);
617ba13b
MC
5939 ext4_journal_stop(handle);
5940 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5941
5942 return err;
5943}
2e9ee850
AK
5944
5945static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5946{
5947 return !buffer_mapped(bh);
5948}
5949
c2ec175c 5950int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5951{
c2ec175c 5952 struct page *page = vmf->page;
2e9ee850
AK
5953 loff_t size;
5954 unsigned long len;
5955 int ret = -EINVAL;
79f0be8d 5956 void *fsdata;
2e9ee850
AK
5957 struct file *file = vma->vm_file;
5958 struct inode *inode = file->f_path.dentry->d_inode;
5959 struct address_space *mapping = inode->i_mapping;
5960
5961 /*
5962 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5963 * get i_mutex because we are already holding mmap_sem.
5964 */
5965 down_read(&inode->i_alloc_sem);
5966 size = i_size_read(inode);
5967 if (page->mapping != mapping || size <= page_offset(page)
5968 || !PageUptodate(page)) {
5969 /* page got truncated from under us? */
5970 goto out_unlock;
5971 }
5972 ret = 0;
5973 if (PageMappedToDisk(page))
5974 goto out_unlock;
5975
5976 if (page->index == size >> PAGE_CACHE_SHIFT)
5977 len = size & ~PAGE_CACHE_MASK;
5978 else
5979 len = PAGE_CACHE_SIZE;
5980
a827eaff
AK
5981 lock_page(page);
5982 /*
5983 * return if we have all the buffers mapped. This avoid
5984 * the need to call write_begin/write_end which does a
5985 * journal_start/journal_stop which can block and take
5986 * long time
5987 */
2e9ee850 5988 if (page_has_buffers(page)) {
2e9ee850 5989 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
a827eaff
AK
5990 ext4_bh_unmapped)) {
5991 unlock_page(page);
2e9ee850 5992 goto out_unlock;
a827eaff 5993 }
2e9ee850 5994 }
a827eaff 5995 unlock_page(page);
2e9ee850
AK
5996 /*
5997 * OK, we need to fill the hole... Do write_begin write_end
5998 * to do block allocation/reservation.We are not holding
5999 * inode.i__mutex here. That allow * parallel write_begin,
6000 * write_end call. lock_page prevent this from happening
6001 * on the same page though
6002 */
6003 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 6004 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
6005 if (ret < 0)
6006 goto out_unlock;
6007 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 6008 len, len, page, fsdata);
2e9ee850
AK
6009 if (ret < 0)
6010 goto out_unlock;
6011 ret = 0;
6012out_unlock:
c2ec175c
NP
6013 if (ret)
6014 ret = VM_FAULT_SIGBUS;
2e9ee850
AK
6015 up_read(&inode->i_alloc_sem);
6016 return ret;
6017}