]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ext4/inode.c
ext4: move ext4_forget() to ext4_jbd2.c
[net-next-2.6.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
4c0425ff 40#include <linux/workqueue.h>
9bffad1e 41
3dcf5451 42#include "ext4_jbd2.h"
ac27a0ec
DK
43#include "xattr.h"
44#include "acl.h"
d2a17637 45#include "ext4_extents.h"
ac27a0ec 46
9bffad1e
TT
47#include <trace/events/ext4.h>
48
a1d6cc56
AK
49#define MPAGE_DA_EXTENT_TAIL 0x01
50
678aaf48
JK
51static inline int ext4_begin_ordered_truncate(struct inode *inode,
52 loff_t new_size)
53{
7f5aa215
JK
54 return jbd2_journal_begin_ordered_truncate(
55 EXT4_SB(inode->i_sb)->s_journal,
56 &EXT4_I(inode)->jinode,
57 new_size);
678aaf48
JK
58}
59
64769240
AT
60static void ext4_invalidatepage(struct page *page, unsigned long offset);
61
ac27a0ec
DK
62/*
63 * Test whether an inode is a fast symlink.
64 */
617ba13b 65static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 66{
617ba13b 67 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
68 (inode->i_sb->s_blocksize >> 9) : 0;
69
70 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
71}
72
ac27a0ec
DK
73/*
74 * Work out how many blocks we need to proceed with the next chunk of a
75 * truncate transaction.
76 */
77static unsigned long blocks_for_truncate(struct inode *inode)
78{
725d26d3 79 ext4_lblk_t needed;
ac27a0ec
DK
80
81 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
82
83 /* Give ourselves just enough room to cope with inodes in which
84 * i_blocks is corrupt: we've seen disk corruptions in the past
85 * which resulted in random data in an inode which looked enough
617ba13b 86 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
87 * will go a bit crazy if that happens, but at least we should
88 * try not to panic the whole kernel. */
89 if (needed < 2)
90 needed = 2;
91
92 /* But we need to bound the transaction so we don't overflow the
93 * journal. */
617ba13b
MC
94 if (needed > EXT4_MAX_TRANS_DATA)
95 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 96
617ba13b 97 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
98}
99
100/*
101 * Truncate transactions can be complex and absolutely huge. So we need to
102 * be able to restart the transaction at a conventient checkpoint to make
103 * sure we don't overflow the journal.
104 *
105 * start_transaction gets us a new handle for a truncate transaction,
106 * and extend_transaction tries to extend the existing one a bit. If
107 * extend fails, we need to propagate the failure up and restart the
108 * transaction in the top-level truncate loop. --sct
109 */
110static handle_t *start_transaction(struct inode *inode)
111{
112 handle_t *result;
113
617ba13b 114 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
115 if (!IS_ERR(result))
116 return result;
117
617ba13b 118 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
119 return result;
120}
121
122/*
123 * Try to extend this transaction for the purposes of truncation.
124 *
125 * Returns 0 if we managed to create more room. If we can't create more
126 * room, and the transaction must be restarted we return 1.
127 */
128static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
129{
0390131b
FM
130 if (!ext4_handle_valid(handle))
131 return 0;
132 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
ac27a0ec 133 return 0;
617ba13b 134 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
135 return 0;
136 return 1;
137}
138
139/*
140 * Restart the transaction associated with *handle. This does a commit,
141 * so before we call here everything must be consistently dirtied against
142 * this transaction.
143 */
fa5d1113 144int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 145 int nblocks)
ac27a0ec 146{
487caeef
JK
147 int ret;
148
149 /*
150 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
151 * moment, get_block can be called only for blocks inside i_size since
152 * page cache has been already dropped and writes are blocked by
153 * i_mutex. So we can safely drop the i_data_sem here.
154 */
0390131b 155 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 156 jbd_debug(2, "restarting handle %p\n", handle);
487caeef
JK
157 up_write(&EXT4_I(inode)->i_data_sem);
158 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
159 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 160 ext4_discard_preallocations(inode);
487caeef
JK
161
162 return ret;
ac27a0ec
DK
163}
164
165/*
166 * Called at the last iput() if i_nlink is zero.
167 */
af5bc92d 168void ext4_delete_inode(struct inode *inode)
ac27a0ec
DK
169{
170 handle_t *handle;
bc965ab3 171 int err;
ac27a0ec 172
678aaf48
JK
173 if (ext4_should_order_data(inode))
174 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
175 truncate_inode_pages(&inode->i_data, 0);
176
177 if (is_bad_inode(inode))
178 goto no_delete;
179
bc965ab3 180 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 181 if (IS_ERR(handle)) {
bc965ab3 182 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
183 /*
184 * If we're going to skip the normal cleanup, we still need to
185 * make sure that the in-core orphan linked list is properly
186 * cleaned up.
187 */
617ba13b 188 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
189 goto no_delete;
190 }
191
192 if (IS_SYNC(inode))
0390131b 193 ext4_handle_sync(handle);
ac27a0ec 194 inode->i_size = 0;
bc965ab3
TT
195 err = ext4_mark_inode_dirty(handle, inode);
196 if (err) {
197 ext4_warning(inode->i_sb, __func__,
198 "couldn't mark inode dirty (err %d)", err);
199 goto stop_handle;
200 }
ac27a0ec 201 if (inode->i_blocks)
617ba13b 202 ext4_truncate(inode);
bc965ab3
TT
203
204 /*
205 * ext4_ext_truncate() doesn't reserve any slop when it
206 * restarts journal transactions; therefore there may not be
207 * enough credits left in the handle to remove the inode from
208 * the orphan list and set the dtime field.
209 */
0390131b 210 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
211 err = ext4_journal_extend(handle, 3);
212 if (err > 0)
213 err = ext4_journal_restart(handle, 3);
214 if (err != 0) {
215 ext4_warning(inode->i_sb, __func__,
216 "couldn't extend journal (err %d)", err);
217 stop_handle:
218 ext4_journal_stop(handle);
219 goto no_delete;
220 }
221 }
222
ac27a0ec 223 /*
617ba13b 224 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 225 * AKPM: I think this can be inside the above `if'.
617ba13b 226 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 227 * deletion of a non-existent orphan - this is because we don't
617ba13b 228 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
229 * (Well, we could do this if we need to, but heck - it works)
230 */
617ba13b
MC
231 ext4_orphan_del(handle, inode);
232 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
233
234 /*
235 * One subtle ordering requirement: if anything has gone wrong
236 * (transaction abort, IO errors, whatever), then we can still
237 * do these next steps (the fs will already have been marked as
238 * having errors), but we can't free the inode if the mark_dirty
239 * fails.
240 */
617ba13b 241 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
242 /* If that failed, just do the required in-core inode clear. */
243 clear_inode(inode);
244 else
617ba13b
MC
245 ext4_free_inode(handle, inode);
246 ext4_journal_stop(handle);
ac27a0ec
DK
247 return;
248no_delete:
249 clear_inode(inode); /* We must guarantee clearing of inode... */
250}
251
252typedef struct {
253 __le32 *p;
254 __le32 key;
255 struct buffer_head *bh;
256} Indirect;
257
258static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
259{
260 p->key = *(p->p = v);
261 p->bh = bh;
262}
263
ac27a0ec 264/**
617ba13b 265 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
266 * @inode: inode in question (we are only interested in its superblock)
267 * @i_block: block number to be parsed
268 * @offsets: array to store the offsets in
8c55e204
DK
269 * @boundary: set this non-zero if the referred-to block is likely to be
270 * followed (on disk) by an indirect block.
ac27a0ec 271 *
617ba13b 272 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
273 * for UNIX filesystems - tree of pointers anchored in the inode, with
274 * data blocks at leaves and indirect blocks in intermediate nodes.
275 * This function translates the block number into path in that tree -
276 * return value is the path length and @offsets[n] is the offset of
277 * pointer to (n+1)th node in the nth one. If @block is out of range
278 * (negative or too large) warning is printed and zero returned.
279 *
280 * Note: function doesn't find node addresses, so no IO is needed. All
281 * we need to know is the capacity of indirect blocks (taken from the
282 * inode->i_sb).
283 */
284
285/*
286 * Portability note: the last comparison (check that we fit into triple
287 * indirect block) is spelled differently, because otherwise on an
288 * architecture with 32-bit longs and 8Kb pages we might get into trouble
289 * if our filesystem had 8Kb blocks. We might use long long, but that would
290 * kill us on x86. Oh, well, at least the sign propagation does not matter -
291 * i_block would have to be negative in the very beginning, so we would not
292 * get there at all.
293 */
294
617ba13b 295static int ext4_block_to_path(struct inode *inode,
de9a55b8
TT
296 ext4_lblk_t i_block,
297 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 298{
617ba13b
MC
299 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
300 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
301 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
302 indirect_blocks = ptrs,
303 double_blocks = (1 << (ptrs_bits * 2));
304 int n = 0;
305 int final = 0;
306
c333e073 307 if (i_block < direct_blocks) {
ac27a0ec
DK
308 offsets[n++] = i_block;
309 final = direct_blocks;
af5bc92d 310 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 311 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
312 offsets[n++] = i_block;
313 final = ptrs;
314 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 315 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
316 offsets[n++] = i_block >> ptrs_bits;
317 offsets[n++] = i_block & (ptrs - 1);
318 final = ptrs;
319 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 320 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
321 offsets[n++] = i_block >> (ptrs_bits * 2);
322 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
323 offsets[n++] = i_block & (ptrs - 1);
324 final = ptrs;
325 } else {
e2b46574 326 ext4_warning(inode->i_sb, "ext4_block_to_path",
de9a55b8
TT
327 "block %lu > max in inode %lu",
328 i_block + direct_blocks +
329 indirect_blocks + double_blocks, inode->i_ino);
ac27a0ec
DK
330 }
331 if (boundary)
332 *boundary = final - 1 - (i_block & (ptrs - 1));
333 return n;
334}
335
fe2c8191 336static int __ext4_check_blockref(const char *function, struct inode *inode,
6fd058f7
TT
337 __le32 *p, unsigned int max)
338{
f73953c0 339 __le32 *bref = p;
6fd058f7
TT
340 unsigned int blk;
341
fe2c8191 342 while (bref < p+max) {
6fd058f7 343 blk = le32_to_cpu(*bref++);
de9a55b8
TT
344 if (blk &&
345 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
6fd058f7 346 blk, 1))) {
fe2c8191 347 ext4_error(inode->i_sb, function,
6fd058f7
TT
348 "invalid block reference %u "
349 "in inode #%lu", blk, inode->i_ino);
de9a55b8
TT
350 return -EIO;
351 }
352 }
353 return 0;
fe2c8191
TN
354}
355
356
357#define ext4_check_indirect_blockref(inode, bh) \
de9a55b8 358 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
fe2c8191
TN
359 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
360
361#define ext4_check_inode_blockref(inode) \
de9a55b8 362 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
fe2c8191
TN
363 EXT4_NDIR_BLOCKS)
364
ac27a0ec 365/**
617ba13b 366 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
367 * @inode: inode in question
368 * @depth: depth of the chain (1 - direct pointer, etc.)
369 * @offsets: offsets of pointers in inode/indirect blocks
370 * @chain: place to store the result
371 * @err: here we store the error value
372 *
373 * Function fills the array of triples <key, p, bh> and returns %NULL
374 * if everything went OK or the pointer to the last filled triple
375 * (incomplete one) otherwise. Upon the return chain[i].key contains
376 * the number of (i+1)-th block in the chain (as it is stored in memory,
377 * i.e. little-endian 32-bit), chain[i].p contains the address of that
378 * number (it points into struct inode for i==0 and into the bh->b_data
379 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
380 * block for i>0 and NULL for i==0. In other words, it holds the block
381 * numbers of the chain, addresses they were taken from (and where we can
382 * verify that chain did not change) and buffer_heads hosting these
383 * numbers.
384 *
385 * Function stops when it stumbles upon zero pointer (absent block)
386 * (pointer to last triple returned, *@err == 0)
387 * or when it gets an IO error reading an indirect block
388 * (ditto, *@err == -EIO)
ac27a0ec
DK
389 * or when it reads all @depth-1 indirect blocks successfully and finds
390 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
391 *
392 * Need to be called with
0e855ac8 393 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 394 */
725d26d3
AK
395static Indirect *ext4_get_branch(struct inode *inode, int depth,
396 ext4_lblk_t *offsets,
ac27a0ec
DK
397 Indirect chain[4], int *err)
398{
399 struct super_block *sb = inode->i_sb;
400 Indirect *p = chain;
401 struct buffer_head *bh;
402
403 *err = 0;
404 /* i_data is not going away, no lock needed */
af5bc92d 405 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
406 if (!p->key)
407 goto no_block;
408 while (--depth) {
fe2c8191
TN
409 bh = sb_getblk(sb, le32_to_cpu(p->key));
410 if (unlikely(!bh))
ac27a0ec 411 goto failure;
de9a55b8 412
fe2c8191
TN
413 if (!bh_uptodate_or_lock(bh)) {
414 if (bh_submit_read(bh) < 0) {
415 put_bh(bh);
416 goto failure;
417 }
418 /* validate block references */
419 if (ext4_check_indirect_blockref(inode, bh)) {
420 put_bh(bh);
421 goto failure;
422 }
423 }
de9a55b8 424
af5bc92d 425 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
426 /* Reader: end */
427 if (!p->key)
428 goto no_block;
429 }
430 return NULL;
431
ac27a0ec
DK
432failure:
433 *err = -EIO;
434no_block:
435 return p;
436}
437
438/**
617ba13b 439 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
440 * @inode: owner
441 * @ind: descriptor of indirect block.
442 *
1cc8dcf5 443 * This function returns the preferred place for block allocation.
ac27a0ec
DK
444 * It is used when heuristic for sequential allocation fails.
445 * Rules are:
446 * + if there is a block to the left of our position - allocate near it.
447 * + if pointer will live in indirect block - allocate near that block.
448 * + if pointer will live in inode - allocate in the same
449 * cylinder group.
450 *
451 * In the latter case we colour the starting block by the callers PID to
452 * prevent it from clashing with concurrent allocations for a different inode
453 * in the same block group. The PID is used here so that functionally related
454 * files will be close-by on-disk.
455 *
456 * Caller must make sure that @ind is valid and will stay that way.
457 */
617ba13b 458static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 459{
617ba13b 460 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 461 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 462 __le32 *p;
617ba13b 463 ext4_fsblk_t bg_start;
74d3487f 464 ext4_fsblk_t last_block;
617ba13b 465 ext4_grpblk_t colour;
a4912123
TT
466 ext4_group_t block_group;
467 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
ac27a0ec
DK
468
469 /* Try to find previous block */
470 for (p = ind->p - 1; p >= start; p--) {
471 if (*p)
472 return le32_to_cpu(*p);
473 }
474
475 /* No such thing, so let's try location of indirect block */
476 if (ind->bh)
477 return ind->bh->b_blocknr;
478
479 /*
480 * It is going to be referred to from the inode itself? OK, just put it
481 * into the same cylinder group then.
482 */
a4912123
TT
483 block_group = ei->i_block_group;
484 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
485 block_group &= ~(flex_size-1);
486 if (S_ISREG(inode->i_mode))
487 block_group++;
488 }
489 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
74d3487f
VC
490 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
491
a4912123
TT
492 /*
493 * If we are doing delayed allocation, we don't need take
494 * colour into account.
495 */
496 if (test_opt(inode->i_sb, DELALLOC))
497 return bg_start;
498
74d3487f
VC
499 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
500 colour = (current->pid % 16) *
617ba13b 501 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
502 else
503 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
504 return bg_start + colour;
505}
506
507/**
1cc8dcf5 508 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
509 * @inode: owner
510 * @block: block we want
ac27a0ec 511 * @partial: pointer to the last triple within a chain
ac27a0ec 512 *
1cc8dcf5 513 * Normally this function find the preferred place for block allocation,
fb01bfda 514 * returns it.
fb0a387d
ES
515 * Because this is only used for non-extent files, we limit the block nr
516 * to 32 bits.
ac27a0ec 517 */
725d26d3 518static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
de9a55b8 519 Indirect *partial)
ac27a0ec 520{
fb0a387d
ES
521 ext4_fsblk_t goal;
522
ac27a0ec 523 /*
c2ea3fde 524 * XXX need to get goal block from mballoc's data structures
ac27a0ec 525 */
ac27a0ec 526
fb0a387d
ES
527 goal = ext4_find_near(inode, partial);
528 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
529 return goal;
ac27a0ec
DK
530}
531
532/**
617ba13b 533 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
534 * of direct blocks need to be allocated for the given branch.
535 *
536 * @branch: chain of indirect blocks
537 * @k: number of blocks need for indirect blocks
538 * @blks: number of data blocks to be mapped.
539 * @blocks_to_boundary: the offset in the indirect block
540 *
541 * return the total number of blocks to be allocate, including the
542 * direct and indirect blocks.
543 */
498e5f24 544static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
de9a55b8 545 int blocks_to_boundary)
ac27a0ec 546{
498e5f24 547 unsigned int count = 0;
ac27a0ec
DK
548
549 /*
550 * Simple case, [t,d]Indirect block(s) has not allocated yet
551 * then it's clear blocks on that path have not allocated
552 */
553 if (k > 0) {
554 /* right now we don't handle cross boundary allocation */
555 if (blks < blocks_to_boundary + 1)
556 count += blks;
557 else
558 count += blocks_to_boundary + 1;
559 return count;
560 }
561
562 count++;
563 while (count < blks && count <= blocks_to_boundary &&
564 le32_to_cpu(*(branch[0].p + count)) == 0) {
565 count++;
566 }
567 return count;
568}
569
570/**
617ba13b 571 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
572 * @indirect_blks: the number of blocks need to allocate for indirect
573 * blocks
574 *
575 * @new_blocks: on return it will store the new block numbers for
576 * the indirect blocks(if needed) and the first direct block,
577 * @blks: on return it will store the total number of allocated
578 * direct blocks
579 */
617ba13b 580static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
581 ext4_lblk_t iblock, ext4_fsblk_t goal,
582 int indirect_blks, int blks,
583 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 584{
815a1130 585 struct ext4_allocation_request ar;
ac27a0ec 586 int target, i;
7061eba7 587 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 588 int index = 0;
617ba13b 589 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
590 int ret = 0;
591
592 /*
593 * Here we try to allocate the requested multiple blocks at once,
594 * on a best-effort basis.
595 * To build a branch, we should allocate blocks for
596 * the indirect blocks(if not allocated yet), and at least
597 * the first direct block of this branch. That's the
598 * minimum number of blocks need to allocate(required)
599 */
7061eba7
AK
600 /* first we try to allocate the indirect blocks */
601 target = indirect_blks;
602 while (target > 0) {
ac27a0ec
DK
603 count = target;
604 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
605 current_block = ext4_new_meta_blocks(handle, inode,
606 goal, &count, err);
ac27a0ec
DK
607 if (*err)
608 goto failed_out;
609
fb0a387d
ES
610 BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
611
ac27a0ec
DK
612 target -= count;
613 /* allocate blocks for indirect blocks */
614 while (index < indirect_blks && count) {
615 new_blocks[index++] = current_block++;
616 count--;
617 }
7061eba7
AK
618 if (count > 0) {
619 /*
620 * save the new block number
621 * for the first direct block
622 */
623 new_blocks[index] = current_block;
624 printk(KERN_INFO "%s returned more blocks than "
625 "requested\n", __func__);
626 WARN_ON(1);
ac27a0ec 627 break;
7061eba7 628 }
ac27a0ec
DK
629 }
630
7061eba7
AK
631 target = blks - count ;
632 blk_allocated = count;
633 if (!target)
634 goto allocated;
635 /* Now allocate data blocks */
815a1130
TT
636 memset(&ar, 0, sizeof(ar));
637 ar.inode = inode;
638 ar.goal = goal;
639 ar.len = target;
640 ar.logical = iblock;
641 if (S_ISREG(inode->i_mode))
642 /* enable in-core preallocation only for regular files */
643 ar.flags = EXT4_MB_HINT_DATA;
644
645 current_block = ext4_mb_new_blocks(handle, &ar, err);
fb0a387d 646 BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
815a1130 647
7061eba7
AK
648 if (*err && (target == blks)) {
649 /*
650 * if the allocation failed and we didn't allocate
651 * any blocks before
652 */
653 goto failed_out;
654 }
655 if (!*err) {
656 if (target == blks) {
de9a55b8
TT
657 /*
658 * save the new block number
659 * for the first direct block
660 */
7061eba7
AK
661 new_blocks[index] = current_block;
662 }
815a1130 663 blk_allocated += ar.len;
7061eba7
AK
664 }
665allocated:
ac27a0ec 666 /* total number of blocks allocated for direct blocks */
7061eba7 667 ret = blk_allocated;
ac27a0ec
DK
668 *err = 0;
669 return ret;
670failed_out:
af5bc92d 671 for (i = 0; i < index; i++)
c9de560d 672 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec
DK
673 return ret;
674}
675
676/**
617ba13b 677 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
678 * @inode: owner
679 * @indirect_blks: number of allocated indirect blocks
680 * @blks: number of allocated direct blocks
681 * @offsets: offsets (in the blocks) to store the pointers to next.
682 * @branch: place to store the chain in.
683 *
684 * This function allocates blocks, zeroes out all but the last one,
685 * links them into chain and (if we are synchronous) writes them to disk.
686 * In other words, it prepares a branch that can be spliced onto the
687 * inode. It stores the information about that chain in the branch[], in
617ba13b 688 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
689 * we had read the existing part of chain and partial points to the last
690 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 691 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
692 * place chain is disconnected - *branch->p is still zero (we did not
693 * set the last link), but branch->key contains the number that should
694 * be placed into *branch->p to fill that gap.
695 *
696 * If allocation fails we free all blocks we've allocated (and forget
697 * their buffer_heads) and return the error value the from failed
617ba13b 698 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
699 * as described above and return 0.
700 */
617ba13b 701static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
702 ext4_lblk_t iblock, int indirect_blks,
703 int *blks, ext4_fsblk_t goal,
704 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
705{
706 int blocksize = inode->i_sb->s_blocksize;
707 int i, n = 0;
708 int err = 0;
709 struct buffer_head *bh;
710 int num;
617ba13b
MC
711 ext4_fsblk_t new_blocks[4];
712 ext4_fsblk_t current_block;
ac27a0ec 713
7061eba7 714 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
715 *blks, new_blocks, &err);
716 if (err)
717 return err;
718
719 branch[0].key = cpu_to_le32(new_blocks[0]);
720 /*
721 * metadata blocks and data blocks are allocated.
722 */
723 for (n = 1; n <= indirect_blks; n++) {
724 /*
725 * Get buffer_head for parent block, zero it out
726 * and set the pointer to new one, then send
727 * parent to disk.
728 */
729 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
730 branch[n].bh = bh;
731 lock_buffer(bh);
732 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 733 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec 734 if (err) {
6487a9d3
CW
735 /* Don't brelse(bh) here; it's done in
736 * ext4_journal_forget() below */
ac27a0ec 737 unlock_buffer(bh);
ac27a0ec
DK
738 goto failed;
739 }
740
741 memset(bh->b_data, 0, blocksize);
742 branch[n].p = (__le32 *) bh->b_data + offsets[n];
743 branch[n].key = cpu_to_le32(new_blocks[n]);
744 *branch[n].p = branch[n].key;
af5bc92d 745 if (n == indirect_blks) {
ac27a0ec
DK
746 current_block = new_blocks[n];
747 /*
748 * End of chain, update the last new metablock of
749 * the chain to point to the new allocated
750 * data blocks numbers
751 */
de9a55b8 752 for (i = 1; i < num; i++)
ac27a0ec
DK
753 *(branch[n].p + i) = cpu_to_le32(++current_block);
754 }
755 BUFFER_TRACE(bh, "marking uptodate");
756 set_buffer_uptodate(bh);
757 unlock_buffer(bh);
758
0390131b
FM
759 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
760 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
761 if (err)
762 goto failed;
763 }
764 *blks = num;
765 return err;
766failed:
767 /* Allocation failed, free what we already allocated */
768 for (i = 1; i <= n ; i++) {
dab291af 769 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
617ba13b 770 ext4_journal_forget(handle, branch[i].bh);
ac27a0ec 771 }
af5bc92d 772 for (i = 0; i < indirect_blks; i++)
c9de560d 773 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec 774
c9de560d 775 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
ac27a0ec
DK
776
777 return err;
778}
779
780/**
617ba13b 781 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
782 * @inode: owner
783 * @block: (logical) number of block we are adding
784 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 785 * ext4_alloc_branch)
ac27a0ec
DK
786 * @where: location of missing link
787 * @num: number of indirect blocks we are adding
788 * @blks: number of direct blocks we are adding
789 *
790 * This function fills the missing link and does all housekeeping needed in
791 * inode (->i_blocks, etc.). In case of success we end up with the full
792 * chain to new block and return 0.
793 */
617ba13b 794static int ext4_splice_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
795 ext4_lblk_t block, Indirect *where, int num,
796 int blks)
ac27a0ec
DK
797{
798 int i;
799 int err = 0;
617ba13b 800 ext4_fsblk_t current_block;
ac27a0ec 801
ac27a0ec
DK
802 /*
803 * If we're splicing into a [td]indirect block (as opposed to the
804 * inode) then we need to get write access to the [td]indirect block
805 * before the splice.
806 */
807 if (where->bh) {
808 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 809 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
810 if (err)
811 goto err_out;
812 }
813 /* That's it */
814
815 *where->p = where->key;
816
817 /*
818 * Update the host buffer_head or inode to point to more just allocated
819 * direct blocks blocks
820 */
821 if (num == 0 && blks > 1) {
822 current_block = le32_to_cpu(where->key) + 1;
823 for (i = 1; i < blks; i++)
af5bc92d 824 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
825 }
826
ac27a0ec 827 /* We are done with atomic stuff, now do the rest of housekeeping */
ac27a0ec
DK
828 /* had we spliced it onto indirect block? */
829 if (where->bh) {
830 /*
831 * If we spliced it onto an indirect block, we haven't
832 * altered the inode. Note however that if it is being spliced
833 * onto an indirect block at the very end of the file (the
834 * file is growing) then we *will* alter the inode to reflect
835 * the new i_size. But that is not done here - it is done in
617ba13b 836 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
837 */
838 jbd_debug(5, "splicing indirect only\n");
0390131b
FM
839 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
840 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
ac27a0ec
DK
841 if (err)
842 goto err_out;
843 } else {
844 /*
845 * OK, we spliced it into the inode itself on a direct block.
ac27a0ec 846 */
41591750 847 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
848 jbd_debug(5, "splicing direct\n");
849 }
850 return err;
851
852err_out:
853 for (i = 1; i <= num; i++) {
dab291af 854 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
617ba13b 855 ext4_journal_forget(handle, where[i].bh);
c9de560d
AT
856 ext4_free_blocks(handle, inode,
857 le32_to_cpu(where[i-1].key), 1, 0);
ac27a0ec 858 }
c9de560d 859 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
ac27a0ec
DK
860
861 return err;
862}
863
864/*
b920c755
TT
865 * The ext4_ind_get_blocks() function handles non-extents inodes
866 * (i.e., using the traditional indirect/double-indirect i_blocks
867 * scheme) for ext4_get_blocks().
868 *
ac27a0ec
DK
869 * Allocation strategy is simple: if we have to allocate something, we will
870 * have to go the whole way to leaf. So let's do it before attaching anything
871 * to tree, set linkage between the newborn blocks, write them if sync is
872 * required, recheck the path, free and repeat if check fails, otherwise
873 * set the last missing link (that will protect us from any truncate-generated
874 * removals - all blocks on the path are immune now) and possibly force the
875 * write on the parent block.
876 * That has a nice additional property: no special recovery from the failed
877 * allocations is needed - we simply release blocks and do not touch anything
878 * reachable from inode.
879 *
880 * `handle' can be NULL if create == 0.
881 *
ac27a0ec
DK
882 * return > 0, # of blocks mapped or allocated.
883 * return = 0, if plain lookup failed.
884 * return < 0, error case.
c278bfec 885 *
b920c755
TT
886 * The ext4_ind_get_blocks() function should be called with
887 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
888 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
889 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
890 * blocks.
ac27a0ec 891 */
e4d996ca 892static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
893 ext4_lblk_t iblock, unsigned int maxblocks,
894 struct buffer_head *bh_result,
895 int flags)
ac27a0ec
DK
896{
897 int err = -EIO;
725d26d3 898 ext4_lblk_t offsets[4];
ac27a0ec
DK
899 Indirect chain[4];
900 Indirect *partial;
617ba13b 901 ext4_fsblk_t goal;
ac27a0ec
DK
902 int indirect_blks;
903 int blocks_to_boundary = 0;
904 int depth;
ac27a0ec 905 int count = 0;
617ba13b 906 ext4_fsblk_t first_block = 0;
ac27a0ec 907
a86c6181 908 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
c2177057 909 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
725d26d3 910 depth = ext4_block_to_path(inode, iblock, offsets,
de9a55b8 911 &blocks_to_boundary);
ac27a0ec
DK
912
913 if (depth == 0)
914 goto out;
915
617ba13b 916 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
917
918 /* Simplest case - block found, no allocation needed */
919 if (!partial) {
920 first_block = le32_to_cpu(chain[depth - 1].key);
921 clear_buffer_new(bh_result);
922 count++;
923 /*map more blocks*/
924 while (count < maxblocks && count <= blocks_to_boundary) {
617ba13b 925 ext4_fsblk_t blk;
ac27a0ec 926
ac27a0ec
DK
927 blk = le32_to_cpu(*(chain[depth-1].p + count));
928
929 if (blk == first_block + count)
930 count++;
931 else
932 break;
933 }
c278bfec 934 goto got_it;
ac27a0ec
DK
935 }
936
937 /* Next simple case - plain lookup or failed read of indirect block */
c2177057 938 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
ac27a0ec
DK
939 goto cleanup;
940
ac27a0ec 941 /*
c2ea3fde 942 * Okay, we need to do block allocation.
ac27a0ec 943 */
fb01bfda 944 goal = ext4_find_goal(inode, iblock, partial);
ac27a0ec
DK
945
946 /* the number of blocks need to allocate for [d,t]indirect blocks */
947 indirect_blks = (chain + depth) - partial - 1;
948
949 /*
950 * Next look up the indirect map to count the totoal number of
951 * direct blocks to allocate for this branch.
952 */
617ba13b 953 count = ext4_blks_to_allocate(partial, indirect_blks,
ac27a0ec
DK
954 maxblocks, blocks_to_boundary);
955 /*
617ba13b 956 * Block out ext4_truncate while we alter the tree
ac27a0ec 957 */
7061eba7 958 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
de9a55b8
TT
959 &count, goal,
960 offsets + (partial - chain), partial);
ac27a0ec
DK
961
962 /*
617ba13b 963 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
964 * on the new chain if there is a failure, but that risks using
965 * up transaction credits, especially for bitmaps where the
966 * credits cannot be returned. Can we handle this somehow? We
967 * may need to return -EAGAIN upwards in the worst case. --sct
968 */
969 if (!err)
617ba13b 970 err = ext4_splice_branch(handle, inode, iblock,
de9a55b8 971 partial, indirect_blks, count);
2bba702d 972 if (err)
ac27a0ec
DK
973 goto cleanup;
974
975 set_buffer_new(bh_result);
976got_it:
977 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
978 if (count > blocks_to_boundary)
979 set_buffer_boundary(bh_result);
980 err = count;
981 /* Clean up and exit */
982 partial = chain + depth - 1; /* the whole chain */
983cleanup:
984 while (partial > chain) {
985 BUFFER_TRACE(partial->bh, "call brelse");
986 brelse(partial->bh);
987 partial--;
988 }
989 BUFFER_TRACE(bh_result, "returned");
990out:
991 return err;
992}
993
60e58e0f
MC
994qsize_t ext4_get_reserved_space(struct inode *inode)
995{
996 unsigned long long total;
997
998 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
999 total = EXT4_I(inode)->i_reserved_data_blocks +
1000 EXT4_I(inode)->i_reserved_meta_blocks;
1001 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1002
1003 return total;
1004}
12219aea
AK
1005/*
1006 * Calculate the number of metadata blocks need to reserve
1007 * to allocate @blocks for non extent file based file
1008 */
1009static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1010{
1011 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1012 int ind_blks, dind_blks, tind_blks;
1013
1014 /* number of new indirect blocks needed */
1015 ind_blks = (blocks + icap - 1) / icap;
1016
1017 dind_blks = (ind_blks + icap - 1) / icap;
1018
1019 tind_blks = 1;
1020
1021 return ind_blks + dind_blks + tind_blks;
1022}
1023
1024/*
1025 * Calculate the number of metadata blocks need to reserve
1026 * to allocate given number of blocks
1027 */
1028static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1029{
cd213226
MC
1030 if (!blocks)
1031 return 0;
1032
12219aea
AK
1033 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1034 return ext4_ext_calc_metadata_amount(inode, blocks);
1035
1036 return ext4_indirect_calc_metadata_amount(inode, blocks);
1037}
1038
1039static void ext4_da_update_reserve_space(struct inode *inode, int used)
1040{
1041 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1042 int total, mdb, mdb_free;
1043
1044 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1045 /* recalculate the number of metablocks still need to be reserved */
1046 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1047 mdb = ext4_calc_metadata_amount(inode, total);
1048
1049 /* figure out how many metablocks to release */
1050 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1051 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1052
6bc6e63f
AK
1053 if (mdb_free) {
1054 /* Account for allocated meta_blocks */
1055 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1056
1057 /* update fs dirty blocks counter */
1058 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1059 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1060 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1061 }
12219aea
AK
1062
1063 /* update per-inode reservations */
1064 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1065 EXT4_I(inode)->i_reserved_data_blocks -= used;
12219aea 1066 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f
MC
1067
1068 /*
1069 * free those over-booking quota for metadata blocks
1070 */
60e58e0f
MC
1071 if (mdb_free)
1072 vfs_dq_release_reservation_block(inode, mdb_free);
d6014301
AK
1073
1074 /*
1075 * If we have done all the pending block allocations and if
1076 * there aren't any writers on the inode, we can discard the
1077 * inode's preallocations.
1078 */
1079 if (!total && (atomic_read(&inode->i_writecount) == 0))
1080 ext4_discard_preallocations(inode);
12219aea
AK
1081}
1082
80e42468
TT
1083static int check_block_validity(struct inode *inode, const char *msg,
1084 sector_t logical, sector_t phys, int len)
6fd058f7
TT
1085{
1086 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
80e42468 1087 ext4_error(inode->i_sb, msg,
6fd058f7
TT
1088 "inode #%lu logical block %llu mapped to %llu "
1089 "(size %d)", inode->i_ino,
1090 (unsigned long long) logical,
1091 (unsigned long long) phys, len);
6fd058f7
TT
1092 return -EIO;
1093 }
1094 return 0;
1095}
1096
55138e0b 1097/*
1f94533d
TT
1098 * Return the number of contiguous dirty pages in a given inode
1099 * starting at page frame idx.
55138e0b
TT
1100 */
1101static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1102 unsigned int max_pages)
1103{
1104 struct address_space *mapping = inode->i_mapping;
1105 pgoff_t index;
1106 struct pagevec pvec;
1107 pgoff_t num = 0;
1108 int i, nr_pages, done = 0;
1109
1110 if (max_pages == 0)
1111 return 0;
1112 pagevec_init(&pvec, 0);
1113 while (!done) {
1114 index = idx;
1115 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1116 PAGECACHE_TAG_DIRTY,
1117 (pgoff_t)PAGEVEC_SIZE);
1118 if (nr_pages == 0)
1119 break;
1120 for (i = 0; i < nr_pages; i++) {
1121 struct page *page = pvec.pages[i];
1122 struct buffer_head *bh, *head;
1123
1124 lock_page(page);
1125 if (unlikely(page->mapping != mapping) ||
1126 !PageDirty(page) ||
1127 PageWriteback(page) ||
1128 page->index != idx) {
1129 done = 1;
1130 unlock_page(page);
1131 break;
1132 }
1f94533d
TT
1133 if (page_has_buffers(page)) {
1134 bh = head = page_buffers(page);
1135 do {
1136 if (!buffer_delay(bh) &&
1137 !buffer_unwritten(bh))
1138 done = 1;
1139 bh = bh->b_this_page;
1140 } while (!done && (bh != head));
1141 }
55138e0b
TT
1142 unlock_page(page);
1143 if (done)
1144 break;
1145 idx++;
1146 num++;
1147 if (num >= max_pages)
1148 break;
1149 }
1150 pagevec_release(&pvec);
1151 }
1152 return num;
1153}
1154
f5ab0d1f 1155/*
12b7ac17 1156 * The ext4_get_blocks() function tries to look up the requested blocks,
2b2d6d01 1157 * and returns if the blocks are already mapped.
f5ab0d1f 1158 *
f5ab0d1f
MC
1159 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1160 * and store the allocated blocks in the result buffer head and mark it
1161 * mapped.
1162 *
1163 * If file type is extents based, it will call ext4_ext_get_blocks(),
e4d996ca 1164 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
f5ab0d1f
MC
1165 * based files
1166 *
1167 * On success, it returns the number of blocks being mapped or allocate.
1168 * if create==0 and the blocks are pre-allocated and uninitialized block,
1169 * the result buffer head is unmapped. If the create ==1, it will make sure
1170 * the buffer head is mapped.
1171 *
1172 * It returns 0 if plain look up failed (blocks have not been allocated), in
1173 * that casem, buffer head is unmapped
1174 *
1175 * It returns the error in case of allocation failure.
1176 */
12b7ac17
TT
1177int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1178 unsigned int max_blocks, struct buffer_head *bh,
c2177057 1179 int flags)
0e855ac8
AK
1180{
1181 int retval;
f5ab0d1f
MC
1182
1183 clear_buffer_mapped(bh);
2a8964d6 1184 clear_buffer_unwritten(bh);
f5ab0d1f 1185
0031462b
MC
1186 ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1187 "logical block %lu\n", inode->i_ino, flags, max_blocks,
1188 (unsigned long)block);
4df3d265 1189 /*
b920c755
TT
1190 * Try to see if we can get the block without requesting a new
1191 * file system block.
4df3d265
AK
1192 */
1193 down_read((&EXT4_I(inode)->i_data_sem));
1194 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1195 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
c2177057 1196 bh, 0);
0e855ac8 1197 } else {
e4d996ca 1198 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
c2177057 1199 bh, 0);
0e855ac8 1200 }
4df3d265 1201 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 1202
6fd058f7 1203 if (retval > 0 && buffer_mapped(bh)) {
80e42468
TT
1204 int ret = check_block_validity(inode, "file system corruption",
1205 block, bh->b_blocknr, retval);
6fd058f7
TT
1206 if (ret != 0)
1207 return ret;
1208 }
1209
f5ab0d1f 1210 /* If it is only a block(s) look up */
c2177057 1211 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
1212 return retval;
1213
1214 /*
1215 * Returns if the blocks have already allocated
1216 *
1217 * Note that if blocks have been preallocated
1218 * ext4_ext_get_block() returns th create = 0
1219 * with buffer head unmapped.
1220 */
1221 if (retval > 0 && buffer_mapped(bh))
4df3d265
AK
1222 return retval;
1223
2a8964d6
AK
1224 /*
1225 * When we call get_blocks without the create flag, the
1226 * BH_Unwritten flag could have gotten set if the blocks
1227 * requested were part of a uninitialized extent. We need to
1228 * clear this flag now that we are committed to convert all or
1229 * part of the uninitialized extent to be an initialized
1230 * extent. This is because we need to avoid the combination
1231 * of BH_Unwritten and BH_Mapped flags being simultaneously
1232 * set on the buffer_head.
1233 */
1234 clear_buffer_unwritten(bh);
1235
4df3d265 1236 /*
f5ab0d1f
MC
1237 * New blocks allocate and/or writing to uninitialized extent
1238 * will possibly result in updating i_data, so we take
1239 * the write lock of i_data_sem, and call get_blocks()
1240 * with create == 1 flag.
4df3d265
AK
1241 */
1242 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1243
1244 /*
1245 * if the caller is from delayed allocation writeout path
1246 * we have already reserved fs blocks for allocation
1247 * let the underlying get_block() function know to
1248 * avoid double accounting
1249 */
c2177057 1250 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1251 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1252 /*
1253 * We need to check for EXT4 here because migrate
1254 * could have changed the inode type in between
1255 */
0e855ac8
AK
1256 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1257 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
c2177057 1258 bh, flags);
0e855ac8 1259 } else {
e4d996ca 1260 retval = ext4_ind_get_blocks(handle, inode, block,
c2177057 1261 max_blocks, bh, flags);
267e4db9
AK
1262
1263 if (retval > 0 && buffer_new(bh)) {
1264 /*
1265 * We allocated new blocks which will result in
1266 * i_data's format changing. Force the migrate
1267 * to fail by clearing migrate flags
1268 */
1b9c12f4 1269 EXT4_I(inode)->i_state &= ~EXT4_STATE_EXT_MIGRATE;
267e4db9 1270 }
0e855ac8 1271 }
d2a17637 1272
2ac3b6e0 1273 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1274 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
2ac3b6e0
TT
1275
1276 /*
1277 * Update reserved blocks/metadata blocks after successful
1278 * block allocation which had been deferred till now.
1279 */
1280 if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1281 ext4_da_update_reserve_space(inode, retval);
d2a17637 1282
4df3d265 1283 up_write((&EXT4_I(inode)->i_data_sem));
6fd058f7 1284 if (retval > 0 && buffer_mapped(bh)) {
80e42468
TT
1285 int ret = check_block_validity(inode, "file system "
1286 "corruption after allocation",
1287 block, bh->b_blocknr, retval);
6fd058f7
TT
1288 if (ret != 0)
1289 return ret;
1290 }
0e855ac8
AK
1291 return retval;
1292}
1293
f3bd1f3f
MC
1294/* Maximum number of blocks we map for direct IO at once. */
1295#define DIO_MAX_BLOCKS 4096
1296
6873fa0d
ES
1297int ext4_get_block(struct inode *inode, sector_t iblock,
1298 struct buffer_head *bh_result, int create)
ac27a0ec 1299{
3e4fdaf8 1300 handle_t *handle = ext4_journal_current_handle();
7fb5409d 1301 int ret = 0, started = 0;
ac27a0ec 1302 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
f3bd1f3f 1303 int dio_credits;
ac27a0ec 1304
7fb5409d
JK
1305 if (create && !handle) {
1306 /* Direct IO write... */
1307 if (max_blocks > DIO_MAX_BLOCKS)
1308 max_blocks = DIO_MAX_BLOCKS;
f3bd1f3f
MC
1309 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1310 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1311 if (IS_ERR(handle)) {
ac27a0ec 1312 ret = PTR_ERR(handle);
7fb5409d 1313 goto out;
ac27a0ec 1314 }
7fb5409d 1315 started = 1;
ac27a0ec
DK
1316 }
1317
12b7ac17 1318 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
c2177057 1319 create ? EXT4_GET_BLOCKS_CREATE : 0);
7fb5409d
JK
1320 if (ret > 0) {
1321 bh_result->b_size = (ret << inode->i_blkbits);
1322 ret = 0;
ac27a0ec 1323 }
7fb5409d
JK
1324 if (started)
1325 ext4_journal_stop(handle);
1326out:
ac27a0ec
DK
1327 return ret;
1328}
1329
1330/*
1331 * `handle' can be NULL if create is zero
1332 */
617ba13b 1333struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1334 ext4_lblk_t block, int create, int *errp)
ac27a0ec
DK
1335{
1336 struct buffer_head dummy;
1337 int fatal = 0, err;
03f5d8bc 1338 int flags = 0;
ac27a0ec
DK
1339
1340 J_ASSERT(handle != NULL || create == 0);
1341
1342 dummy.b_state = 0;
1343 dummy.b_blocknr = -1000;
1344 buffer_trace_init(&dummy.b_history);
c2177057
TT
1345 if (create)
1346 flags |= EXT4_GET_BLOCKS_CREATE;
1347 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
ac27a0ec 1348 /*
c2177057
TT
1349 * ext4_get_blocks() returns number of blocks mapped. 0 in
1350 * case of a HOLE.
ac27a0ec
DK
1351 */
1352 if (err > 0) {
1353 if (err > 1)
1354 WARN_ON(1);
1355 err = 0;
1356 }
1357 *errp = err;
1358 if (!err && buffer_mapped(&dummy)) {
1359 struct buffer_head *bh;
1360 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1361 if (!bh) {
1362 *errp = -EIO;
1363 goto err;
1364 }
1365 if (buffer_new(&dummy)) {
1366 J_ASSERT(create != 0);
ac39849d 1367 J_ASSERT(handle != NULL);
ac27a0ec
DK
1368
1369 /*
1370 * Now that we do not always journal data, we should
1371 * keep in mind whether this should always journal the
1372 * new buffer as metadata. For now, regular file
617ba13b 1373 * writes use ext4_get_block instead, so it's not a
ac27a0ec
DK
1374 * problem.
1375 */
1376 lock_buffer(bh);
1377 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 1378 fatal = ext4_journal_get_create_access(handle, bh);
ac27a0ec 1379 if (!fatal && !buffer_uptodate(bh)) {
af5bc92d 1380 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
ac27a0ec
DK
1381 set_buffer_uptodate(bh);
1382 }
1383 unlock_buffer(bh);
0390131b
FM
1384 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1385 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
1386 if (!fatal)
1387 fatal = err;
1388 } else {
1389 BUFFER_TRACE(bh, "not a new buffer");
1390 }
1391 if (fatal) {
1392 *errp = fatal;
1393 brelse(bh);
1394 bh = NULL;
1395 }
1396 return bh;
1397 }
1398err:
1399 return NULL;
1400}
1401
617ba13b 1402struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1403 ext4_lblk_t block, int create, int *err)
ac27a0ec 1404{
af5bc92d 1405 struct buffer_head *bh;
ac27a0ec 1406
617ba13b 1407 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1408 if (!bh)
1409 return bh;
1410 if (buffer_uptodate(bh))
1411 return bh;
1412 ll_rw_block(READ_META, 1, &bh);
1413 wait_on_buffer(bh);
1414 if (buffer_uptodate(bh))
1415 return bh;
1416 put_bh(bh);
1417 *err = -EIO;
1418 return NULL;
1419}
1420
af5bc92d
TT
1421static int walk_page_buffers(handle_t *handle,
1422 struct buffer_head *head,
1423 unsigned from,
1424 unsigned to,
1425 int *partial,
1426 int (*fn)(handle_t *handle,
1427 struct buffer_head *bh))
ac27a0ec
DK
1428{
1429 struct buffer_head *bh;
1430 unsigned block_start, block_end;
1431 unsigned blocksize = head->b_size;
1432 int err, ret = 0;
1433 struct buffer_head *next;
1434
af5bc92d
TT
1435 for (bh = head, block_start = 0;
1436 ret == 0 && (bh != head || !block_start);
de9a55b8 1437 block_start = block_end, bh = next) {
ac27a0ec
DK
1438 next = bh->b_this_page;
1439 block_end = block_start + blocksize;
1440 if (block_end <= from || block_start >= to) {
1441 if (partial && !buffer_uptodate(bh))
1442 *partial = 1;
1443 continue;
1444 }
1445 err = (*fn)(handle, bh);
1446 if (!ret)
1447 ret = err;
1448 }
1449 return ret;
1450}
1451
1452/*
1453 * To preserve ordering, it is essential that the hole instantiation and
1454 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1455 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1456 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1457 * prepare_write() is the right place.
1458 *
617ba13b
MC
1459 * Also, this function can nest inside ext4_writepage() ->
1460 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1461 * has generated enough buffer credits to do the whole page. So we won't
1462 * block on the journal in that case, which is good, because the caller may
1463 * be PF_MEMALLOC.
1464 *
617ba13b 1465 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1466 * quota file writes. If we were to commit the transaction while thus
1467 * reentered, there can be a deadlock - we would be holding a quota
1468 * lock, and the commit would never complete if another thread had a
1469 * transaction open and was blocking on the quota lock - a ranking
1470 * violation.
1471 *
dab291af 1472 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1473 * will _not_ run commit under these circumstances because handle->h_ref
1474 * is elevated. We'll still have enough credits for the tiny quotafile
1475 * write.
1476 */
1477static int do_journal_get_write_access(handle_t *handle,
de9a55b8 1478 struct buffer_head *bh)
ac27a0ec
DK
1479{
1480 if (!buffer_mapped(bh) || buffer_freed(bh))
1481 return 0;
617ba13b 1482 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1483}
1484
bfc1af65 1485static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1486 loff_t pos, unsigned len, unsigned flags,
1487 struct page **pagep, void **fsdata)
ac27a0ec 1488{
af5bc92d 1489 struct inode *inode = mapping->host;
1938a150 1490 int ret, needed_blocks;
ac27a0ec
DK
1491 handle_t *handle;
1492 int retries = 0;
af5bc92d 1493 struct page *page;
de9a55b8 1494 pgoff_t index;
af5bc92d 1495 unsigned from, to;
bfc1af65 1496
9bffad1e 1497 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1498 /*
1499 * Reserve one block more for addition to orphan list in case
1500 * we allocate blocks but write fails for some reason
1501 */
1502 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 1503 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1504 from = pos & (PAGE_CACHE_SIZE - 1);
1505 to = from + len;
ac27a0ec
DK
1506
1507retry:
af5bc92d
TT
1508 handle = ext4_journal_start(inode, needed_blocks);
1509 if (IS_ERR(handle)) {
1510 ret = PTR_ERR(handle);
1511 goto out;
7479d2b9 1512 }
ac27a0ec 1513
ebd3610b
JK
1514 /* We cannot recurse into the filesystem as the transaction is already
1515 * started */
1516 flags |= AOP_FLAG_NOFS;
1517
54566b2c 1518 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1519 if (!page) {
1520 ext4_journal_stop(handle);
1521 ret = -ENOMEM;
1522 goto out;
1523 }
1524 *pagep = page;
1525
bfc1af65 1526 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
ebd3610b 1527 ext4_get_block);
bfc1af65
NP
1528
1529 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1530 ret = walk_page_buffers(handle, page_buffers(page),
1531 from, to, NULL, do_journal_get_write_access);
1532 }
bfc1af65
NP
1533
1534 if (ret) {
af5bc92d 1535 unlock_page(page);
af5bc92d 1536 page_cache_release(page);
ae4d5372
AK
1537 /*
1538 * block_write_begin may have instantiated a few blocks
1539 * outside i_size. Trim these off again. Don't need
1540 * i_size_read because we hold i_mutex.
1938a150
AK
1541 *
1542 * Add inode to orphan list in case we crash before
1543 * truncate finishes
ae4d5372 1544 */
ffacfa7a 1545 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1546 ext4_orphan_add(handle, inode);
1547
1548 ext4_journal_stop(handle);
1549 if (pos + len > inode->i_size) {
ffacfa7a 1550 ext4_truncate(inode);
de9a55b8 1551 /*
ffacfa7a 1552 * If truncate failed early the inode might
1938a150
AK
1553 * still be on the orphan list; we need to
1554 * make sure the inode is removed from the
1555 * orphan list in that case.
1556 */
1557 if (inode->i_nlink)
1558 ext4_orphan_del(NULL, inode);
1559 }
bfc1af65
NP
1560 }
1561
617ba13b 1562 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1563 goto retry;
7479d2b9 1564out:
ac27a0ec
DK
1565 return ret;
1566}
1567
bfc1af65
NP
1568/* For write_end() in data=journal mode */
1569static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1570{
1571 if (!buffer_mapped(bh) || buffer_freed(bh))
1572 return 0;
1573 set_buffer_uptodate(bh);
0390131b 1574 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1575}
1576
f8514083 1577static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
1578 struct address_space *mapping,
1579 loff_t pos, unsigned len, unsigned copied,
1580 struct page *page, void *fsdata)
f8514083
AK
1581{
1582 int i_size_changed = 0;
1583 struct inode *inode = mapping->host;
1584 handle_t *handle = ext4_journal_current_handle();
1585
1586 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1587
1588 /*
1589 * No need to use i_size_read() here, the i_size
1590 * cannot change under us because we hold i_mutex.
1591 *
1592 * But it's important to update i_size while still holding page lock:
1593 * page writeout could otherwise come in and zero beyond i_size.
1594 */
1595 if (pos + copied > inode->i_size) {
1596 i_size_write(inode, pos + copied);
1597 i_size_changed = 1;
1598 }
1599
1600 if (pos + copied > EXT4_I(inode)->i_disksize) {
1601 /* We need to mark inode dirty even if
1602 * new_i_size is less that inode->i_size
1603 * bu greater than i_disksize.(hint delalloc)
1604 */
1605 ext4_update_i_disksize(inode, (pos + copied));
1606 i_size_changed = 1;
1607 }
1608 unlock_page(page);
1609 page_cache_release(page);
1610
1611 /*
1612 * Don't mark the inode dirty under page lock. First, it unnecessarily
1613 * makes the holding time of page lock longer. Second, it forces lock
1614 * ordering of page lock and transaction start for journaling
1615 * filesystems.
1616 */
1617 if (i_size_changed)
1618 ext4_mark_inode_dirty(handle, inode);
1619
1620 return copied;
1621}
1622
ac27a0ec
DK
1623/*
1624 * We need to pick up the new inode size which generic_commit_write gave us
1625 * `file' can be NULL - eg, when called from page_symlink().
1626 *
617ba13b 1627 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1628 * buffers are managed internally.
1629 */
bfc1af65 1630static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
1631 struct address_space *mapping,
1632 loff_t pos, unsigned len, unsigned copied,
1633 struct page *page, void *fsdata)
ac27a0ec 1634{
617ba13b 1635 handle_t *handle = ext4_journal_current_handle();
cf108bca 1636 struct inode *inode = mapping->host;
ac27a0ec
DK
1637 int ret = 0, ret2;
1638
9bffad1e 1639 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 1640 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1641
1642 if (ret == 0) {
f8514083 1643 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1644 page, fsdata);
f8a87d89 1645 copied = ret2;
ffacfa7a 1646 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1647 /* if we have allocated more blocks and copied
1648 * less. We will have blocks allocated outside
1649 * inode->i_size. So truncate them
1650 */
1651 ext4_orphan_add(handle, inode);
f8a87d89
RK
1652 if (ret2 < 0)
1653 ret = ret2;
ac27a0ec 1654 }
617ba13b 1655 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1656 if (!ret)
1657 ret = ret2;
bfc1af65 1658
f8514083 1659 if (pos + len > inode->i_size) {
ffacfa7a 1660 ext4_truncate(inode);
de9a55b8 1661 /*
ffacfa7a 1662 * If truncate failed early the inode might still be
f8514083
AK
1663 * on the orphan list; we need to make sure the inode
1664 * is removed from the orphan list in that case.
1665 */
1666 if (inode->i_nlink)
1667 ext4_orphan_del(NULL, inode);
1668 }
1669
1670
bfc1af65 1671 return ret ? ret : copied;
ac27a0ec
DK
1672}
1673
bfc1af65 1674static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
1675 struct address_space *mapping,
1676 loff_t pos, unsigned len, unsigned copied,
1677 struct page *page, void *fsdata)
ac27a0ec 1678{
617ba13b 1679 handle_t *handle = ext4_journal_current_handle();
cf108bca 1680 struct inode *inode = mapping->host;
ac27a0ec 1681 int ret = 0, ret2;
ac27a0ec 1682
9bffad1e 1683 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 1684 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1685 page, fsdata);
f8a87d89 1686 copied = ret2;
ffacfa7a 1687 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1688 /* if we have allocated more blocks and copied
1689 * less. We will have blocks allocated outside
1690 * inode->i_size. So truncate them
1691 */
1692 ext4_orphan_add(handle, inode);
1693
f8a87d89
RK
1694 if (ret2 < 0)
1695 ret = ret2;
ac27a0ec 1696
617ba13b 1697 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1698 if (!ret)
1699 ret = ret2;
bfc1af65 1700
f8514083 1701 if (pos + len > inode->i_size) {
ffacfa7a 1702 ext4_truncate(inode);
de9a55b8 1703 /*
ffacfa7a 1704 * If truncate failed early the inode might still be
f8514083
AK
1705 * on the orphan list; we need to make sure the inode
1706 * is removed from the orphan list in that case.
1707 */
1708 if (inode->i_nlink)
1709 ext4_orphan_del(NULL, inode);
1710 }
1711
bfc1af65 1712 return ret ? ret : copied;
ac27a0ec
DK
1713}
1714
bfc1af65 1715static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1716 struct address_space *mapping,
1717 loff_t pos, unsigned len, unsigned copied,
1718 struct page *page, void *fsdata)
ac27a0ec 1719{
617ba13b 1720 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1721 struct inode *inode = mapping->host;
ac27a0ec
DK
1722 int ret = 0, ret2;
1723 int partial = 0;
bfc1af65 1724 unsigned from, to;
cf17fea6 1725 loff_t new_i_size;
ac27a0ec 1726
9bffad1e 1727 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1728 from = pos & (PAGE_CACHE_SIZE - 1);
1729 to = from + len;
1730
1731 if (copied < len) {
1732 if (!PageUptodate(page))
1733 copied = 0;
1734 page_zero_new_buffers(page, from+copied, to);
1735 }
ac27a0ec
DK
1736
1737 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1738 to, &partial, write_end_fn);
ac27a0ec
DK
1739 if (!partial)
1740 SetPageUptodate(page);
cf17fea6
AK
1741 new_i_size = pos + copied;
1742 if (new_i_size > inode->i_size)
bfc1af65 1743 i_size_write(inode, pos+copied);
617ba13b 1744 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
cf17fea6
AK
1745 if (new_i_size > EXT4_I(inode)->i_disksize) {
1746 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1747 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1748 if (!ret)
1749 ret = ret2;
1750 }
bfc1af65 1751
cf108bca 1752 unlock_page(page);
f8514083 1753 page_cache_release(page);
ffacfa7a 1754 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1755 /* if we have allocated more blocks and copied
1756 * less. We will have blocks allocated outside
1757 * inode->i_size. So truncate them
1758 */
1759 ext4_orphan_add(handle, inode);
1760
617ba13b 1761 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1762 if (!ret)
1763 ret = ret2;
f8514083 1764 if (pos + len > inode->i_size) {
ffacfa7a 1765 ext4_truncate(inode);
de9a55b8 1766 /*
ffacfa7a 1767 * If truncate failed early the inode might still be
f8514083
AK
1768 * on the orphan list; we need to make sure the inode
1769 * is removed from the orphan list in that case.
1770 */
1771 if (inode->i_nlink)
1772 ext4_orphan_del(NULL, inode);
1773 }
bfc1af65
NP
1774
1775 return ret ? ret : copied;
ac27a0ec 1776}
d2a17637
MC
1777
1778static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1779{
030ba6bc 1780 int retries = 0;
60e58e0f
MC
1781 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1782 unsigned long md_needed, mdblocks, total = 0;
d2a17637
MC
1783
1784 /*
1785 * recalculate the amount of metadata blocks to reserve
1786 * in order to allocate nrblocks
1787 * worse case is one extent per block
1788 */
030ba6bc 1789repeat:
d2a17637
MC
1790 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1791 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1792 mdblocks = ext4_calc_metadata_amount(inode, total);
1793 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1794
1795 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1796 total = md_needed + nrblocks;
1797
60e58e0f
MC
1798 /*
1799 * Make quota reservation here to prevent quota overflow
1800 * later. Real quota accounting is done at pages writeout
1801 * time.
1802 */
1803 if (vfs_dq_reserve_block(inode, total)) {
1804 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1805 return -EDQUOT;
1806 }
1807
a30d542a 1808 if (ext4_claim_free_blocks(sbi, total)) {
d2a17637 1809 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
9f0ccfd8 1810 vfs_dq_release_reservation_block(inode, total);
030ba6bc
AK
1811 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1812 yield();
1813 goto repeat;
1814 }
d2a17637
MC
1815 return -ENOSPC;
1816 }
d2a17637
MC
1817 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1818 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1819
1820 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1821 return 0; /* success */
1822}
1823
12219aea 1824static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1825{
1826 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1827 int total, mdb, mdb_free, release;
1828
cd213226
MC
1829 if (!to_free)
1830 return; /* Nothing to release, exit */
1831
d2a17637 1832 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226
MC
1833
1834 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1835 /*
1836 * if there is no reserved blocks, but we try to free some
1837 * then the counter is messed up somewhere.
1838 * but since this function is called from invalidate
1839 * page, it's harmless to return without any action
1840 */
1841 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1842 "blocks for inode %lu, but there is no reserved "
1843 "data blocks\n", to_free, inode->i_ino);
1844 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1845 return;
1846 }
1847
d2a17637 1848 /* recalculate the number of metablocks still need to be reserved */
12219aea 1849 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
d2a17637
MC
1850 mdb = ext4_calc_metadata_amount(inode, total);
1851
1852 /* figure out how many metablocks to release */
1853 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1854 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1855
d2a17637
MC
1856 release = to_free + mdb_free;
1857
6bc6e63f
AK
1858 /* update fs dirty blocks counter for truncate case */
1859 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
d2a17637
MC
1860
1861 /* update per-inode reservations */
12219aea
AK
1862 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1863 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
d2a17637
MC
1864
1865 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1866 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
d2a17637 1867 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f
MC
1868
1869 vfs_dq_release_reservation_block(inode, release);
d2a17637
MC
1870}
1871
1872static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1873 unsigned long offset)
d2a17637
MC
1874{
1875 int to_release = 0;
1876 struct buffer_head *head, *bh;
1877 unsigned int curr_off = 0;
1878
1879 head = page_buffers(page);
1880 bh = head;
1881 do {
1882 unsigned int next_off = curr_off + bh->b_size;
1883
1884 if ((offset <= curr_off) && (buffer_delay(bh))) {
1885 to_release++;
1886 clear_buffer_delay(bh);
1887 }
1888 curr_off = next_off;
1889 } while ((bh = bh->b_this_page) != head);
12219aea 1890 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1891}
ac27a0ec 1892
64769240
AT
1893/*
1894 * Delayed allocation stuff
1895 */
1896
64769240
AT
1897/*
1898 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1899 * them with writepage() call back
64769240
AT
1900 *
1901 * @mpd->inode: inode
1902 * @mpd->first_page: first page of the extent
1903 * @mpd->next_page: page after the last page of the extent
64769240
AT
1904 *
1905 * By the time mpage_da_submit_io() is called we expect all blocks
1906 * to be allocated. this may be wrong if allocation failed.
1907 *
1908 * As pages are already locked by write_cache_pages(), we can't use it
1909 */
1910static int mpage_da_submit_io(struct mpage_da_data *mpd)
1911{
22208ded 1912 long pages_skipped;
791b7f08
AK
1913 struct pagevec pvec;
1914 unsigned long index, end;
1915 int ret = 0, err, nr_pages, i;
1916 struct inode *inode = mpd->inode;
1917 struct address_space *mapping = inode->i_mapping;
64769240
AT
1918
1919 BUG_ON(mpd->next_page <= mpd->first_page);
791b7f08
AK
1920 /*
1921 * We need to start from the first_page to the next_page - 1
1922 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1923 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1924 * at the currently mapped buffer_heads.
1925 */
64769240
AT
1926 index = mpd->first_page;
1927 end = mpd->next_page - 1;
1928
791b7f08 1929 pagevec_init(&pvec, 0);
64769240 1930 while (index <= end) {
791b7f08 1931 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1932 if (nr_pages == 0)
1933 break;
1934 for (i = 0; i < nr_pages; i++) {
1935 struct page *page = pvec.pages[i];
1936
791b7f08
AK
1937 index = page->index;
1938 if (index > end)
1939 break;
1940 index++;
1941
1942 BUG_ON(!PageLocked(page));
1943 BUG_ON(PageWriteback(page));
1944
22208ded 1945 pages_skipped = mpd->wbc->pages_skipped;
a1d6cc56 1946 err = mapping->a_ops->writepage(page, mpd->wbc);
22208ded
AK
1947 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1948 /*
1949 * have successfully written the page
1950 * without skipping the same
1951 */
a1d6cc56 1952 mpd->pages_written++;
64769240
AT
1953 /*
1954 * In error case, we have to continue because
1955 * remaining pages are still locked
1956 * XXX: unlock and re-dirty them?
1957 */
1958 if (ret == 0)
1959 ret = err;
1960 }
1961 pagevec_release(&pvec);
1962 }
64769240
AT
1963 return ret;
1964}
1965
1966/*
1967 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1968 *
1969 * @mpd->inode - inode to walk through
1970 * @exbh->b_blocknr - first block on a disk
1971 * @exbh->b_size - amount of space in bytes
1972 * @logical - first logical block to start assignment with
1973 *
1974 * the function goes through all passed space and put actual disk
29fa89d0 1975 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
64769240
AT
1976 */
1977static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1978 struct buffer_head *exbh)
1979{
1980 struct inode *inode = mpd->inode;
1981 struct address_space *mapping = inode->i_mapping;
1982 int blocks = exbh->b_size >> inode->i_blkbits;
1983 sector_t pblock = exbh->b_blocknr, cur_logical;
1984 struct buffer_head *head, *bh;
a1d6cc56 1985 pgoff_t index, end;
64769240
AT
1986 struct pagevec pvec;
1987 int nr_pages, i;
1988
1989 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1990 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1991 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1992
1993 pagevec_init(&pvec, 0);
1994
1995 while (index <= end) {
1996 /* XXX: optimize tail */
1997 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1998 if (nr_pages == 0)
1999 break;
2000 for (i = 0; i < nr_pages; i++) {
2001 struct page *page = pvec.pages[i];
2002
2003 index = page->index;
2004 if (index > end)
2005 break;
2006 index++;
2007
2008 BUG_ON(!PageLocked(page));
2009 BUG_ON(PageWriteback(page));
2010 BUG_ON(!page_has_buffers(page));
2011
2012 bh = page_buffers(page);
2013 head = bh;
2014
2015 /* skip blocks out of the range */
2016 do {
2017 if (cur_logical >= logical)
2018 break;
2019 cur_logical++;
2020 } while ((bh = bh->b_this_page) != head);
2021
2022 do {
2023 if (cur_logical >= logical + blocks)
2024 break;
29fa89d0
AK
2025
2026 if (buffer_delay(bh) ||
2027 buffer_unwritten(bh)) {
2028
2029 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2030
2031 if (buffer_delay(bh)) {
2032 clear_buffer_delay(bh);
2033 bh->b_blocknr = pblock;
2034 } else {
2035 /*
2036 * unwritten already should have
2037 * blocknr assigned. Verify that
2038 */
2039 clear_buffer_unwritten(bh);
2040 BUG_ON(bh->b_blocknr != pblock);
2041 }
2042
61628a3f 2043 } else if (buffer_mapped(bh))
64769240 2044 BUG_ON(bh->b_blocknr != pblock);
64769240
AT
2045
2046 cur_logical++;
2047 pblock++;
2048 } while ((bh = bh->b_this_page) != head);
2049 }
2050 pagevec_release(&pvec);
2051 }
2052}
2053
2054
2055/*
2056 * __unmap_underlying_blocks - just a helper function to unmap
2057 * set of blocks described by @bh
2058 */
2059static inline void __unmap_underlying_blocks(struct inode *inode,
2060 struct buffer_head *bh)
2061{
2062 struct block_device *bdev = inode->i_sb->s_bdev;
2063 int blocks, i;
2064
2065 blocks = bh->b_size >> inode->i_blkbits;
2066 for (i = 0; i < blocks; i++)
2067 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2068}
2069
c4a0c46e
AK
2070static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2071 sector_t logical, long blk_cnt)
2072{
2073 int nr_pages, i;
2074 pgoff_t index, end;
2075 struct pagevec pvec;
2076 struct inode *inode = mpd->inode;
2077 struct address_space *mapping = inode->i_mapping;
2078
2079 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2080 end = (logical + blk_cnt - 1) >>
2081 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2082 while (index <= end) {
2083 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2084 if (nr_pages == 0)
2085 break;
2086 for (i = 0; i < nr_pages; i++) {
2087 struct page *page = pvec.pages[i];
2088 index = page->index;
2089 if (index > end)
2090 break;
2091 index++;
2092
2093 BUG_ON(!PageLocked(page));
2094 BUG_ON(PageWriteback(page));
2095 block_invalidatepage(page, 0);
2096 ClearPageUptodate(page);
2097 unlock_page(page);
2098 }
2099 }
2100 return;
2101}
2102
df22291f
AK
2103static void ext4_print_free_blocks(struct inode *inode)
2104{
2105 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1693918e
TT
2106 printk(KERN_CRIT "Total free blocks count %lld\n",
2107 ext4_count_free_blocks(inode->i_sb));
2108 printk(KERN_CRIT "Free/Dirty block details\n");
2109 printk(KERN_CRIT "free_blocks=%lld\n",
2110 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2111 printk(KERN_CRIT "dirty_blocks=%lld\n",
2112 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2113 printk(KERN_CRIT "Block reservation details\n");
2114 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2115 EXT4_I(inode)->i_reserved_data_blocks);
2116 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2117 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
2118 return;
2119}
2120
64769240
AT
2121/*
2122 * mpage_da_map_blocks - go through given space
2123 *
8dc207c0 2124 * @mpd - bh describing space
64769240
AT
2125 *
2126 * The function skips space we know is already mapped to disk blocks.
2127 *
64769240 2128 */
ed5bde0b 2129static int mpage_da_map_blocks(struct mpage_da_data *mpd)
64769240 2130{
2ac3b6e0 2131 int err, blks, get_blocks_flags;
030ba6bc 2132 struct buffer_head new;
2fa3cdfb
TT
2133 sector_t next = mpd->b_blocknr;
2134 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2135 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2136 handle_t *handle = NULL;
64769240
AT
2137
2138 /*
2139 * We consider only non-mapped and non-allocated blocks
2140 */
8dc207c0 2141 if ((mpd->b_state & (1 << BH_Mapped)) &&
29fa89d0
AK
2142 !(mpd->b_state & (1 << BH_Delay)) &&
2143 !(mpd->b_state & (1 << BH_Unwritten)))
c4a0c46e 2144 return 0;
2fa3cdfb
TT
2145
2146 /*
2147 * If we didn't accumulate anything to write simply return
2148 */
2149 if (!mpd->b_size)
2150 return 0;
2151
2152 handle = ext4_journal_current_handle();
2153 BUG_ON(!handle);
2154
79ffab34 2155 /*
2ac3b6e0
TT
2156 * Call ext4_get_blocks() to allocate any delayed allocation
2157 * blocks, or to convert an uninitialized extent to be
2158 * initialized (in the case where we have written into
2159 * one or more preallocated blocks).
2160 *
2161 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2162 * indicate that we are on the delayed allocation path. This
2163 * affects functions in many different parts of the allocation
2164 * call path. This flag exists primarily because we don't
2165 * want to change *many* call functions, so ext4_get_blocks()
2166 * will set the magic i_delalloc_reserved_flag once the
2167 * inode's allocation semaphore is taken.
2168 *
2169 * If the blocks in questions were delalloc blocks, set
2170 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2171 * variables are updated after the blocks have been allocated.
79ffab34 2172 */
2ac3b6e0
TT
2173 new.b_state = 0;
2174 get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2175 EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2176 if (mpd->b_state & (1 << BH_Delay))
2177 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2fa3cdfb 2178 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2ac3b6e0 2179 &new, get_blocks_flags);
2fa3cdfb
TT
2180 if (blks < 0) {
2181 err = blks;
ed5bde0b
TT
2182 /*
2183 * If get block returns with error we simply
2184 * return. Later writepage will redirty the page and
2185 * writepages will find the dirty page again
c4a0c46e
AK
2186 */
2187 if (err == -EAGAIN)
2188 return 0;
df22291f
AK
2189
2190 if (err == -ENOSPC &&
ed5bde0b 2191 ext4_count_free_blocks(mpd->inode->i_sb)) {
df22291f
AK
2192 mpd->retval = err;
2193 return 0;
2194 }
2195
c4a0c46e 2196 /*
ed5bde0b
TT
2197 * get block failure will cause us to loop in
2198 * writepages, because a_ops->writepage won't be able
2199 * to make progress. The page will be redirtied by
2200 * writepage and writepages will again try to write
2201 * the same.
c4a0c46e 2202 */
1693918e
TT
2203 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2204 "delayed block allocation failed for inode %lu at "
2205 "logical offset %llu with max blocks %zd with "
2206 "error %d\n", mpd->inode->i_ino,
2207 (unsigned long long) next,
2208 mpd->b_size >> mpd->inode->i_blkbits, err);
2209 printk(KERN_CRIT "This should not happen!! "
2210 "Data will be lost\n");
030ba6bc 2211 if (err == -ENOSPC) {
df22291f 2212 ext4_print_free_blocks(mpd->inode);
030ba6bc 2213 }
2fa3cdfb 2214 /* invalidate all the pages */
c4a0c46e 2215 ext4_da_block_invalidatepages(mpd, next,
8dc207c0 2216 mpd->b_size >> mpd->inode->i_blkbits);
c4a0c46e
AK
2217 return err;
2218 }
2fa3cdfb
TT
2219 BUG_ON(blks == 0);
2220
2221 new.b_size = (blks << mpd->inode->i_blkbits);
64769240 2222
a1d6cc56
AK
2223 if (buffer_new(&new))
2224 __unmap_underlying_blocks(mpd->inode, &new);
64769240 2225
a1d6cc56
AK
2226 /*
2227 * If blocks are delayed marked, we need to
2228 * put actual blocknr and drop delayed bit
2229 */
8dc207c0
TT
2230 if ((mpd->b_state & (1 << BH_Delay)) ||
2231 (mpd->b_state & (1 << BH_Unwritten)))
a1d6cc56 2232 mpage_put_bnr_to_bhs(mpd, next, &new);
64769240 2233
2fa3cdfb
TT
2234 if (ext4_should_order_data(mpd->inode)) {
2235 err = ext4_jbd2_file_inode(handle, mpd->inode);
2236 if (err)
2237 return err;
2238 }
2239
2240 /*
03f5d8bc 2241 * Update on-disk size along with block allocation.
2fa3cdfb
TT
2242 */
2243 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2244 if (disksize > i_size_read(mpd->inode))
2245 disksize = i_size_read(mpd->inode);
2246 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2247 ext4_update_i_disksize(mpd->inode, disksize);
2248 return ext4_mark_inode_dirty(handle, mpd->inode);
2249 }
2250
c4a0c46e 2251 return 0;
64769240
AT
2252}
2253
bf068ee2
AK
2254#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2255 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
2256
2257/*
2258 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2259 *
2260 * @mpd->lbh - extent of blocks
2261 * @logical - logical number of the block in the file
2262 * @bh - bh of the block (used to access block's state)
2263 *
2264 * the function is used to collect contig. blocks in same state
2265 */
2266static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
2267 sector_t logical, size_t b_size,
2268 unsigned long b_state)
64769240 2269{
64769240 2270 sector_t next;
8dc207c0 2271 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 2272
525f4ed8
MC
2273 /* check if thereserved journal credits might overflow */
2274 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2275 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2276 /*
2277 * With non-extent format we are limited by the journal
2278 * credit available. Total credit needed to insert
2279 * nrblocks contiguous blocks is dependent on the
2280 * nrblocks. So limit nrblocks.
2281 */
2282 goto flush_it;
2283 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2284 EXT4_MAX_TRANS_DATA) {
2285 /*
2286 * Adding the new buffer_head would make it cross the
2287 * allowed limit for which we have journal credit
2288 * reserved. So limit the new bh->b_size
2289 */
2290 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2291 mpd->inode->i_blkbits;
2292 /* we will do mpage_da_submit_io in the next loop */
2293 }
2294 }
64769240
AT
2295 /*
2296 * First block in the extent
2297 */
8dc207c0
TT
2298 if (mpd->b_size == 0) {
2299 mpd->b_blocknr = logical;
2300 mpd->b_size = b_size;
2301 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
2302 return;
2303 }
2304
8dc207c0 2305 next = mpd->b_blocknr + nrblocks;
64769240
AT
2306 /*
2307 * Can we merge the block to our big extent?
2308 */
8dc207c0
TT
2309 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2310 mpd->b_size += b_size;
64769240
AT
2311 return;
2312 }
2313
525f4ed8 2314flush_it:
64769240
AT
2315 /*
2316 * We couldn't merge the block to our extent, so we
2317 * need to flush current extent and start new one
2318 */
c4a0c46e
AK
2319 if (mpage_da_map_blocks(mpd) == 0)
2320 mpage_da_submit_io(mpd);
a1d6cc56
AK
2321 mpd->io_done = 1;
2322 return;
64769240
AT
2323}
2324
c364b22c 2325static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 2326{
c364b22c 2327 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
2328}
2329
64769240
AT
2330/*
2331 * __mpage_da_writepage - finds extent of pages and blocks
2332 *
2333 * @page: page to consider
2334 * @wbc: not used, we just follow rules
2335 * @data: context
2336 *
2337 * The function finds extents of pages and scan them for all blocks.
2338 */
2339static int __mpage_da_writepage(struct page *page,
2340 struct writeback_control *wbc, void *data)
2341{
2342 struct mpage_da_data *mpd = data;
2343 struct inode *inode = mpd->inode;
8dc207c0 2344 struct buffer_head *bh, *head;
64769240
AT
2345 sector_t logical;
2346
a1d6cc56
AK
2347 if (mpd->io_done) {
2348 /*
2349 * Rest of the page in the page_vec
2350 * redirty then and skip then. We will
fd589a8f 2351 * try to write them again after
a1d6cc56
AK
2352 * starting a new transaction
2353 */
2354 redirty_page_for_writepage(wbc, page);
2355 unlock_page(page);
2356 return MPAGE_DA_EXTENT_TAIL;
2357 }
64769240
AT
2358 /*
2359 * Can we merge this page to current extent?
2360 */
2361 if (mpd->next_page != page->index) {
2362 /*
2363 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 2364 * and start IO on them using writepage()
64769240
AT
2365 */
2366 if (mpd->next_page != mpd->first_page) {
c4a0c46e
AK
2367 if (mpage_da_map_blocks(mpd) == 0)
2368 mpage_da_submit_io(mpd);
a1d6cc56
AK
2369 /*
2370 * skip rest of the page in the page_vec
2371 */
2372 mpd->io_done = 1;
2373 redirty_page_for_writepage(wbc, page);
2374 unlock_page(page);
2375 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2376 }
2377
2378 /*
2379 * Start next extent of pages ...
2380 */
2381 mpd->first_page = page->index;
2382
2383 /*
2384 * ... and blocks
2385 */
8dc207c0
TT
2386 mpd->b_size = 0;
2387 mpd->b_state = 0;
2388 mpd->b_blocknr = 0;
64769240
AT
2389 }
2390
2391 mpd->next_page = page->index + 1;
2392 logical = (sector_t) page->index <<
2393 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2394
2395 if (!page_has_buffers(page)) {
8dc207c0
TT
2396 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2397 (1 << BH_Dirty) | (1 << BH_Uptodate));
a1d6cc56
AK
2398 if (mpd->io_done)
2399 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2400 } else {
2401 /*
2402 * Page with regular buffer heads, just add all dirty ones
2403 */
2404 head = page_buffers(page);
2405 bh = head;
2406 do {
2407 BUG_ON(buffer_locked(bh));
791b7f08
AK
2408 /*
2409 * We need to try to allocate
2410 * unmapped blocks in the same page.
2411 * Otherwise we won't make progress
43ce1d23 2412 * with the page in ext4_writepage
791b7f08 2413 */
c364b22c 2414 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
8dc207c0
TT
2415 mpage_add_bh_to_extent(mpd, logical,
2416 bh->b_size,
2417 bh->b_state);
a1d6cc56
AK
2418 if (mpd->io_done)
2419 return MPAGE_DA_EXTENT_TAIL;
791b7f08
AK
2420 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2421 /*
2422 * mapped dirty buffer. We need to update
2423 * the b_state because we look at
2424 * b_state in mpage_da_map_blocks. We don't
2425 * update b_size because if we find an
2426 * unmapped buffer_head later we need to
2427 * use the b_state flag of that buffer_head.
2428 */
8dc207c0
TT
2429 if (mpd->b_size == 0)
2430 mpd->b_state = bh->b_state & BH_FLAGS;
a1d6cc56 2431 }
64769240
AT
2432 logical++;
2433 } while ((bh = bh->b_this_page) != head);
2434 }
2435
2436 return 0;
2437}
2438
64769240 2439/*
b920c755
TT
2440 * This is a special get_blocks_t callback which is used by
2441 * ext4_da_write_begin(). It will either return mapped block or
2442 * reserve space for a single block.
29fa89d0
AK
2443 *
2444 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2445 * We also have b_blocknr = -1 and b_bdev initialized properly
2446 *
2447 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2448 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2449 * initialized properly.
64769240
AT
2450 */
2451static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2452 struct buffer_head *bh_result, int create)
2453{
2454 int ret = 0;
33b9817e
AK
2455 sector_t invalid_block = ~((sector_t) 0xffff);
2456
2457 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2458 invalid_block = ~0;
64769240
AT
2459
2460 BUG_ON(create == 0);
2461 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2462
2463 /*
2464 * first, we need to know whether the block is allocated already
2465 * preallocated blocks are unmapped but should treated
2466 * the same as allocated blocks.
2467 */
c2177057 2468 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
d2a17637
MC
2469 if ((ret == 0) && !buffer_delay(bh_result)) {
2470 /* the block isn't (pre)allocated yet, let's reserve space */
64769240
AT
2471 /*
2472 * XXX: __block_prepare_write() unmaps passed block,
2473 * is it OK?
2474 */
d2a17637
MC
2475 ret = ext4_da_reserve_space(inode, 1);
2476 if (ret)
2477 /* not enough space to reserve */
2478 return ret;
2479
33b9817e 2480 map_bh(bh_result, inode->i_sb, invalid_block);
64769240
AT
2481 set_buffer_new(bh_result);
2482 set_buffer_delay(bh_result);
2483 } else if (ret > 0) {
2484 bh_result->b_size = (ret << inode->i_blkbits);
29fa89d0
AK
2485 if (buffer_unwritten(bh_result)) {
2486 /* A delayed write to unwritten bh should
2487 * be marked new and mapped. Mapped ensures
2488 * that we don't do get_block multiple times
2489 * when we write to the same offset and new
2490 * ensures that we do proper zero out for
2491 * partial write.
2492 */
9c1ee184 2493 set_buffer_new(bh_result);
29fa89d0
AK
2494 set_buffer_mapped(bh_result);
2495 }
64769240
AT
2496 ret = 0;
2497 }
2498
2499 return ret;
2500}
61628a3f 2501
b920c755
TT
2502/*
2503 * This function is used as a standard get_block_t calback function
2504 * when there is no desire to allocate any blocks. It is used as a
2505 * callback function for block_prepare_write(), nobh_writepage(), and
2506 * block_write_full_page(). These functions should only try to map a
2507 * single block at a time.
2508 *
2509 * Since this function doesn't do block allocations even if the caller
2510 * requests it by passing in create=1, it is critically important that
2511 * any caller checks to make sure that any buffer heads are returned
2512 * by this function are either all already mapped or marked for
2513 * delayed allocation before calling nobh_writepage() or
2514 * block_write_full_page(). Otherwise, b_blocknr could be left
2515 * unitialized, and the page write functions will be taken by
2516 * surprise.
2517 */
2518static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
2519 struct buffer_head *bh_result, int create)
2520{
2521 int ret = 0;
2522 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2523
a2dc52b5
TT
2524 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2525
f0e6c985
AK
2526 /*
2527 * we don't want to do block allocation in writepage
2528 * so call get_block_wrap with create = 0
2529 */
c2177057 2530 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
f0e6c985
AK
2531 if (ret > 0) {
2532 bh_result->b_size = (ret << inode->i_blkbits);
2533 ret = 0;
2534 }
2535 return ret;
61628a3f
MC
2536}
2537
62e086be
AK
2538static int bget_one(handle_t *handle, struct buffer_head *bh)
2539{
2540 get_bh(bh);
2541 return 0;
2542}
2543
2544static int bput_one(handle_t *handle, struct buffer_head *bh)
2545{
2546 put_bh(bh);
2547 return 0;
2548}
2549
2550static int __ext4_journalled_writepage(struct page *page,
2551 struct writeback_control *wbc,
2552 unsigned int len)
2553{
2554 struct address_space *mapping = page->mapping;
2555 struct inode *inode = mapping->host;
2556 struct buffer_head *page_bufs;
2557 handle_t *handle = NULL;
2558 int ret = 0;
2559 int err;
2560
2561 page_bufs = page_buffers(page);
2562 BUG_ON(!page_bufs);
2563 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2564 /* As soon as we unlock the page, it can go away, but we have
2565 * references to buffers so we are safe */
2566 unlock_page(page);
2567
2568 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2569 if (IS_ERR(handle)) {
2570 ret = PTR_ERR(handle);
2571 goto out;
2572 }
2573
2574 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2575 do_journal_get_write_access);
2576
2577 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2578 write_end_fn);
2579 if (ret == 0)
2580 ret = err;
2581 err = ext4_journal_stop(handle);
2582 if (!ret)
2583 ret = err;
2584
2585 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2586 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2587out:
2588 return ret;
2589}
2590
61628a3f 2591/*
43ce1d23
AK
2592 * Note that we don't need to start a transaction unless we're journaling data
2593 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2594 * need to file the inode to the transaction's list in ordered mode because if
2595 * we are writing back data added by write(), the inode is already there and if
2596 * we are writing back data modified via mmap(), noone guarantees in which
2597 * transaction the data will hit the disk. In case we are journaling data, we
2598 * cannot start transaction directly because transaction start ranks above page
2599 * lock so we have to do some magic.
2600 *
b920c755
TT
2601 * This function can get called via...
2602 * - ext4_da_writepages after taking page lock (have journal handle)
2603 * - journal_submit_inode_data_buffers (no journal handle)
2604 * - shrink_page_list via pdflush (no journal handle)
2605 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2606 *
2607 * We don't do any block allocation in this function. If we have page with
2608 * multiple blocks we need to write those buffer_heads that are mapped. This
2609 * is important for mmaped based write. So if we do with blocksize 1K
2610 * truncate(f, 1024);
2611 * a = mmap(f, 0, 4096);
2612 * a[0] = 'a';
2613 * truncate(f, 4096);
2614 * we have in the page first buffer_head mapped via page_mkwrite call back
2615 * but other bufer_heads would be unmapped but dirty(dirty done via the
2616 * do_wp_page). So writepage should write the first block. If we modify
2617 * the mmap area beyond 1024 we will again get a page_fault and the
2618 * page_mkwrite callback will do the block allocation and mark the
2619 * buffer_heads mapped.
2620 *
2621 * We redirty the page if we have any buffer_heads that is either delay or
2622 * unwritten in the page.
2623 *
2624 * We can get recursively called as show below.
2625 *
2626 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2627 * ext4_writepage()
2628 *
2629 * But since we don't do any block allocation we should not deadlock.
2630 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2631 */
43ce1d23 2632static int ext4_writepage(struct page *page,
62e086be 2633 struct writeback_control *wbc)
64769240 2634{
64769240 2635 int ret = 0;
61628a3f 2636 loff_t size;
498e5f24 2637 unsigned int len;
61628a3f
MC
2638 struct buffer_head *page_bufs;
2639 struct inode *inode = page->mapping->host;
2640
43ce1d23 2641 trace_ext4_writepage(inode, page);
f0e6c985
AK
2642 size = i_size_read(inode);
2643 if (page->index == size >> PAGE_CACHE_SHIFT)
2644 len = size & ~PAGE_CACHE_MASK;
2645 else
2646 len = PAGE_CACHE_SIZE;
64769240 2647
f0e6c985 2648 if (page_has_buffers(page)) {
61628a3f 2649 page_bufs = page_buffers(page);
f0e6c985 2650 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2651 ext4_bh_delay_or_unwritten)) {
61628a3f 2652 /*
f0e6c985
AK
2653 * We don't want to do block allocation
2654 * So redirty the page and return
cd1aac32
AK
2655 * We may reach here when we do a journal commit
2656 * via journal_submit_inode_data_buffers.
2657 * If we don't have mapping block we just ignore
f0e6c985
AK
2658 * them. We can also reach here via shrink_page_list
2659 */
2660 redirty_page_for_writepage(wbc, page);
2661 unlock_page(page);
2662 return 0;
2663 }
2664 } else {
2665 /*
2666 * The test for page_has_buffers() is subtle:
2667 * We know the page is dirty but it lost buffers. That means
2668 * that at some moment in time after write_begin()/write_end()
2669 * has been called all buffers have been clean and thus they
2670 * must have been written at least once. So they are all
2671 * mapped and we can happily proceed with mapping them
2672 * and writing the page.
2673 *
2674 * Try to initialize the buffer_heads and check whether
2675 * all are mapped and non delay. We don't want to
2676 * do block allocation here.
2677 */
b767e78a 2678 ret = block_prepare_write(page, 0, len,
b920c755 2679 noalloc_get_block_write);
f0e6c985
AK
2680 if (!ret) {
2681 page_bufs = page_buffers(page);
2682 /* check whether all are mapped and non delay */
2683 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2684 ext4_bh_delay_or_unwritten)) {
f0e6c985
AK
2685 redirty_page_for_writepage(wbc, page);
2686 unlock_page(page);
2687 return 0;
2688 }
2689 } else {
2690 /*
2691 * We can't do block allocation here
2692 * so just redity the page and unlock
2693 * and return
61628a3f 2694 */
61628a3f
MC
2695 redirty_page_for_writepage(wbc, page);
2696 unlock_page(page);
2697 return 0;
2698 }
ed9b3e33 2699 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 2700 block_commit_write(page, 0, len);
64769240
AT
2701 }
2702
43ce1d23
AK
2703 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2704 /*
2705 * It's mmapped pagecache. Add buffers and journal it. There
2706 * doesn't seem much point in redirtying the page here.
2707 */
2708 ClearPageChecked(page);
2709 return __ext4_journalled_writepage(page, wbc, len);
2710 }
2711
64769240 2712 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
b920c755 2713 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
64769240 2714 else
b920c755
TT
2715 ret = block_write_full_page(page, noalloc_get_block_write,
2716 wbc);
64769240 2717
64769240
AT
2718 return ret;
2719}
2720
61628a3f 2721/*
525f4ed8
MC
2722 * This is called via ext4_da_writepages() to
2723 * calulate the total number of credits to reserve to fit
2724 * a single extent allocation into a single transaction,
2725 * ext4_da_writpeages() will loop calling this before
2726 * the block allocation.
61628a3f 2727 */
525f4ed8
MC
2728
2729static int ext4_da_writepages_trans_blocks(struct inode *inode)
2730{
2731 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2732
2733 /*
2734 * With non-extent format the journal credit needed to
2735 * insert nrblocks contiguous block is dependent on
2736 * number of contiguous block. So we will limit
2737 * number of contiguous block to a sane value
2738 */
30c6e07a 2739 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
525f4ed8
MC
2740 (max_blocks > EXT4_MAX_TRANS_DATA))
2741 max_blocks = EXT4_MAX_TRANS_DATA;
2742
2743 return ext4_chunk_trans_blocks(inode, max_blocks);
2744}
61628a3f 2745
64769240 2746static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2747 struct writeback_control *wbc)
64769240 2748{
22208ded
AK
2749 pgoff_t index;
2750 int range_whole = 0;
61628a3f 2751 handle_t *handle = NULL;
df22291f 2752 struct mpage_da_data mpd;
5e745b04 2753 struct inode *inode = mapping->host;
22208ded 2754 int no_nrwrite_index_update;
498e5f24
TT
2755 int pages_written = 0;
2756 long pages_skipped;
55138e0b 2757 unsigned int max_pages;
2acf2c26 2758 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2759 int needed_blocks, ret = 0;
2760 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2761 loff_t range_start = wbc->range_start;
5e745b04 2762 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f 2763
9bffad1e 2764 trace_ext4_da_writepages(inode, wbc);
ba80b101 2765
61628a3f
MC
2766 /*
2767 * No pages to write? This is mainly a kludge to avoid starting
2768 * a transaction for special inodes like journal inode on last iput()
2769 * because that could violate lock ordering on umount
2770 */
a1d6cc56 2771 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2772 return 0;
2a21e37e
TT
2773
2774 /*
2775 * If the filesystem has aborted, it is read-only, so return
2776 * right away instead of dumping stack traces later on that
2777 * will obscure the real source of the problem. We test
4ab2f15b 2778 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2779 * the latter could be true if the filesystem is mounted
2780 * read-only, and in that case, ext4_da_writepages should
2781 * *never* be called, so if that ever happens, we would want
2782 * the stack trace.
2783 */
4ab2f15b 2784 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2785 return -EROFS;
2786
22208ded
AK
2787 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2788 range_whole = 1;
61628a3f 2789
2acf2c26
AK
2790 range_cyclic = wbc->range_cyclic;
2791 if (wbc->range_cyclic) {
22208ded 2792 index = mapping->writeback_index;
2acf2c26
AK
2793 if (index)
2794 cycled = 0;
2795 wbc->range_start = index << PAGE_CACHE_SHIFT;
2796 wbc->range_end = LLONG_MAX;
2797 wbc->range_cyclic = 0;
2798 } else
22208ded 2799 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 2800
55138e0b
TT
2801 /*
2802 * This works around two forms of stupidity. The first is in
2803 * the writeback code, which caps the maximum number of pages
2804 * written to be 1024 pages. This is wrong on multiple
2805 * levels; different architectues have a different page size,
2806 * which changes the maximum amount of data which gets
2807 * written. Secondly, 4 megabytes is way too small. XFS
2808 * forces this value to be 16 megabytes by multiplying
2809 * nr_to_write parameter by four, and then relies on its
2810 * allocator to allocate larger extents to make them
2811 * contiguous. Unfortunately this brings us to the second
2812 * stupidity, which is that ext4's mballoc code only allocates
2813 * at most 2048 blocks. So we force contiguous writes up to
2814 * the number of dirty blocks in the inode, or
2815 * sbi->max_writeback_mb_bump whichever is smaller.
2816 */
2817 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2818 if (!range_cyclic && range_whole)
2819 desired_nr_to_write = wbc->nr_to_write * 8;
2820 else
2821 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2822 max_pages);
2823 if (desired_nr_to_write > max_pages)
2824 desired_nr_to_write = max_pages;
2825
2826 if (wbc->nr_to_write < desired_nr_to_write) {
2827 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2828 wbc->nr_to_write = desired_nr_to_write;
2829 }
2830
df22291f
AK
2831 mpd.wbc = wbc;
2832 mpd.inode = mapping->host;
2833
22208ded
AK
2834 /*
2835 * we don't want write_cache_pages to update
2836 * nr_to_write and writeback_index
2837 */
2838 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2839 wbc->no_nrwrite_index_update = 1;
2840 pages_skipped = wbc->pages_skipped;
2841
2acf2c26 2842retry:
22208ded 2843 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2844
2845 /*
2846 * we insert one extent at a time. So we need
2847 * credit needed for single extent allocation.
2848 * journalled mode is currently not supported
2849 * by delalloc
2850 */
2851 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2852 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2853
61628a3f
MC
2854 /* start a new transaction*/
2855 handle = ext4_journal_start(inode, needed_blocks);
2856 if (IS_ERR(handle)) {
2857 ret = PTR_ERR(handle);
1693918e 2858 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
a1d6cc56
AK
2859 "%ld pages, ino %lu; err %d\n", __func__,
2860 wbc->nr_to_write, inode->i_ino, ret);
61628a3f
MC
2861 goto out_writepages;
2862 }
f63e6005
TT
2863
2864 /*
2865 * Now call __mpage_da_writepage to find the next
2866 * contiguous region of logical blocks that need
2867 * blocks to be allocated by ext4. We don't actually
2868 * submit the blocks for I/O here, even though
2869 * write_cache_pages thinks it will, and will set the
2870 * pages as clean for write before calling
2871 * __mpage_da_writepage().
2872 */
2873 mpd.b_size = 0;
2874 mpd.b_state = 0;
2875 mpd.b_blocknr = 0;
2876 mpd.first_page = 0;
2877 mpd.next_page = 0;
2878 mpd.io_done = 0;
2879 mpd.pages_written = 0;
2880 mpd.retval = 0;
2881 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2882 &mpd);
2883 /*
2884 * If we have a contigous extent of pages and we
2885 * haven't done the I/O yet, map the blocks and submit
2886 * them for I/O.
2887 */
2888 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2889 if (mpage_da_map_blocks(&mpd) == 0)
2890 mpage_da_submit_io(&mpd);
2891 mpd.io_done = 1;
2892 ret = MPAGE_DA_EXTENT_TAIL;
2893 }
b3a3ca8c 2894 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 2895 wbc->nr_to_write -= mpd.pages_written;
df22291f 2896
61628a3f 2897 ext4_journal_stop(handle);
df22291f 2898
8f64b32e 2899 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2900 /* commit the transaction which would
2901 * free blocks released in the transaction
2902 * and try again
2903 */
df22291f 2904 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2905 wbc->pages_skipped = pages_skipped;
2906 ret = 0;
2907 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
2908 /*
2909 * got one extent now try with
2910 * rest of the pages
2911 */
22208ded
AK
2912 pages_written += mpd.pages_written;
2913 wbc->pages_skipped = pages_skipped;
a1d6cc56 2914 ret = 0;
2acf2c26 2915 io_done = 1;
22208ded 2916 } else if (wbc->nr_to_write)
61628a3f
MC
2917 /*
2918 * There is no more writeout needed
2919 * or we requested for a noblocking writeout
2920 * and we found the device congested
2921 */
61628a3f 2922 break;
a1d6cc56 2923 }
2acf2c26
AK
2924 if (!io_done && !cycled) {
2925 cycled = 1;
2926 index = 0;
2927 wbc->range_start = index << PAGE_CACHE_SHIFT;
2928 wbc->range_end = mapping->writeback_index - 1;
2929 goto retry;
2930 }
22208ded 2931 if (pages_skipped != wbc->pages_skipped)
1693918e
TT
2932 ext4_msg(inode->i_sb, KERN_CRIT,
2933 "This should not happen leaving %s "
2934 "with nr_to_write = %ld ret = %d\n",
2935 __func__, wbc->nr_to_write, ret);
22208ded
AK
2936
2937 /* Update index */
2938 index += pages_written;
2acf2c26 2939 wbc->range_cyclic = range_cyclic;
22208ded
AK
2940 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2941 /*
2942 * set the writeback_index so that range_cyclic
2943 * mode will write it back later
2944 */
2945 mapping->writeback_index = index;
a1d6cc56 2946
61628a3f 2947out_writepages:
22208ded
AK
2948 if (!no_nrwrite_index_update)
2949 wbc->no_nrwrite_index_update = 0;
55138e0b
TT
2950 if (wbc->nr_to_write > nr_to_writebump)
2951 wbc->nr_to_write -= nr_to_writebump;
de89de6e 2952 wbc->range_start = range_start;
9bffad1e 2953 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 2954 return ret;
64769240
AT
2955}
2956
79f0be8d
AK
2957#define FALL_BACK_TO_NONDELALLOC 1
2958static int ext4_nonda_switch(struct super_block *sb)
2959{
2960 s64 free_blocks, dirty_blocks;
2961 struct ext4_sb_info *sbi = EXT4_SB(sb);
2962
2963 /*
2964 * switch to non delalloc mode if we are running low
2965 * on free block. The free block accounting via percpu
179f7ebf 2966 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2967 * accumulated on each CPU without updating global counters
2968 * Delalloc need an accurate free block accounting. So switch
2969 * to non delalloc when we are near to error range.
2970 */
2971 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2972 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2973 if (2 * free_blocks < 3 * dirty_blocks ||
2974 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2975 /*
2976 * free block count is less that 150% of dirty blocks
2977 * or free blocks is less that watermark
2978 */
2979 return 1;
2980 }
2981 return 0;
2982}
2983
64769240 2984static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2985 loff_t pos, unsigned len, unsigned flags,
2986 struct page **pagep, void **fsdata)
64769240 2987{
d2a17637 2988 int ret, retries = 0;
64769240
AT
2989 struct page *page;
2990 pgoff_t index;
2991 unsigned from, to;
2992 struct inode *inode = mapping->host;
2993 handle_t *handle;
2994
2995 index = pos >> PAGE_CACHE_SHIFT;
2996 from = pos & (PAGE_CACHE_SIZE - 1);
2997 to = from + len;
79f0be8d
AK
2998
2999 if (ext4_nonda_switch(inode->i_sb)) {
3000 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3001 return ext4_write_begin(file, mapping, pos,
3002 len, flags, pagep, fsdata);
3003 }
3004 *fsdata = (void *)0;
9bffad1e 3005 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 3006retry:
64769240
AT
3007 /*
3008 * With delayed allocation, we don't log the i_disksize update
3009 * if there is delayed block allocation. But we still need
3010 * to journalling the i_disksize update if writes to the end
3011 * of file which has an already mapped buffer.
3012 */
3013 handle = ext4_journal_start(inode, 1);
3014 if (IS_ERR(handle)) {
3015 ret = PTR_ERR(handle);
3016 goto out;
3017 }
ebd3610b
JK
3018 /* We cannot recurse into the filesystem as the transaction is already
3019 * started */
3020 flags |= AOP_FLAG_NOFS;
64769240 3021
54566b2c 3022 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
3023 if (!page) {
3024 ext4_journal_stop(handle);
3025 ret = -ENOMEM;
3026 goto out;
3027 }
64769240
AT
3028 *pagep = page;
3029
3030 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
b920c755 3031 ext4_da_get_block_prep);
64769240
AT
3032 if (ret < 0) {
3033 unlock_page(page);
3034 ext4_journal_stop(handle);
3035 page_cache_release(page);
ae4d5372
AK
3036 /*
3037 * block_write_begin may have instantiated a few blocks
3038 * outside i_size. Trim these off again. Don't need
3039 * i_size_read because we hold i_mutex.
3040 */
3041 if (pos + len > inode->i_size)
ffacfa7a 3042 ext4_truncate(inode);
64769240
AT
3043 }
3044
d2a17637
MC
3045 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3046 goto retry;
64769240
AT
3047out:
3048 return ret;
3049}
3050
632eaeab
MC
3051/*
3052 * Check if we should update i_disksize
3053 * when write to the end of file but not require block allocation
3054 */
3055static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3056 unsigned long offset)
632eaeab
MC
3057{
3058 struct buffer_head *bh;
3059 struct inode *inode = page->mapping->host;
3060 unsigned int idx;
3061 int i;
3062
3063 bh = page_buffers(page);
3064 idx = offset >> inode->i_blkbits;
3065
af5bc92d 3066 for (i = 0; i < idx; i++)
632eaeab
MC
3067 bh = bh->b_this_page;
3068
29fa89d0 3069 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3070 return 0;
3071 return 1;
3072}
3073
64769240 3074static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3075 struct address_space *mapping,
3076 loff_t pos, unsigned len, unsigned copied,
3077 struct page *page, void *fsdata)
64769240
AT
3078{
3079 struct inode *inode = mapping->host;
3080 int ret = 0, ret2;
3081 handle_t *handle = ext4_journal_current_handle();
3082 loff_t new_i_size;
632eaeab 3083 unsigned long start, end;
79f0be8d
AK
3084 int write_mode = (int)(unsigned long)fsdata;
3085
3086 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3087 if (ext4_should_order_data(inode)) {
3088 return ext4_ordered_write_end(file, mapping, pos,
3089 len, copied, page, fsdata);
3090 } else if (ext4_should_writeback_data(inode)) {
3091 return ext4_writeback_write_end(file, mapping, pos,
3092 len, copied, page, fsdata);
3093 } else {
3094 BUG();
3095 }
3096 }
632eaeab 3097
9bffad1e 3098 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 3099 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 3100 end = start + copied - 1;
64769240
AT
3101
3102 /*
3103 * generic_write_end() will run mark_inode_dirty() if i_size
3104 * changes. So let's piggyback the i_disksize mark_inode_dirty
3105 * into that.
3106 */
3107
3108 new_i_size = pos + copied;
632eaeab
MC
3109 if (new_i_size > EXT4_I(inode)->i_disksize) {
3110 if (ext4_da_should_update_i_disksize(page, end)) {
3111 down_write(&EXT4_I(inode)->i_data_sem);
3112 if (new_i_size > EXT4_I(inode)->i_disksize) {
3113 /*
3114 * Updating i_disksize when extending file
3115 * without needing block allocation
3116 */
3117 if (ext4_should_order_data(inode))
3118 ret = ext4_jbd2_file_inode(handle,
3119 inode);
64769240 3120
632eaeab
MC
3121 EXT4_I(inode)->i_disksize = new_i_size;
3122 }
3123 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
3124 /* We need to mark inode dirty even if
3125 * new_i_size is less that inode->i_size
3126 * bu greater than i_disksize.(hint delalloc)
3127 */
3128 ext4_mark_inode_dirty(handle, inode);
64769240 3129 }
632eaeab 3130 }
64769240
AT
3131 ret2 = generic_write_end(file, mapping, pos, len, copied,
3132 page, fsdata);
3133 copied = ret2;
3134 if (ret2 < 0)
3135 ret = ret2;
3136 ret2 = ext4_journal_stop(handle);
3137 if (!ret)
3138 ret = ret2;
3139
3140 return ret ? ret : copied;
3141}
3142
3143static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3144{
64769240
AT
3145 /*
3146 * Drop reserved blocks
3147 */
3148 BUG_ON(!PageLocked(page));
3149 if (!page_has_buffers(page))
3150 goto out;
3151
d2a17637 3152 ext4_da_page_release_reservation(page, offset);
64769240
AT
3153
3154out:
3155 ext4_invalidatepage(page, offset);
3156
3157 return;
3158}
3159
ccd2506b
TT
3160/*
3161 * Force all delayed allocation blocks to be allocated for a given inode.
3162 */
3163int ext4_alloc_da_blocks(struct inode *inode)
3164{
fb40ba0d
TT
3165 trace_ext4_alloc_da_blocks(inode);
3166
ccd2506b
TT
3167 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3168 !EXT4_I(inode)->i_reserved_meta_blocks)
3169 return 0;
3170
3171 /*
3172 * We do something simple for now. The filemap_flush() will
3173 * also start triggering a write of the data blocks, which is
3174 * not strictly speaking necessary (and for users of
3175 * laptop_mode, not even desirable). However, to do otherwise
3176 * would require replicating code paths in:
de9a55b8 3177 *
ccd2506b
TT
3178 * ext4_da_writepages() ->
3179 * write_cache_pages() ---> (via passed in callback function)
3180 * __mpage_da_writepage() -->
3181 * mpage_add_bh_to_extent()
3182 * mpage_da_map_blocks()
3183 *
3184 * The problem is that write_cache_pages(), located in
3185 * mm/page-writeback.c, marks pages clean in preparation for
3186 * doing I/O, which is not desirable if we're not planning on
3187 * doing I/O at all.
3188 *
3189 * We could call write_cache_pages(), and then redirty all of
3190 * the pages by calling redirty_page_for_writeback() but that
3191 * would be ugly in the extreme. So instead we would need to
3192 * replicate parts of the code in the above functions,
3193 * simplifying them becuase we wouldn't actually intend to
3194 * write out the pages, but rather only collect contiguous
3195 * logical block extents, call the multi-block allocator, and
3196 * then update the buffer heads with the block allocations.
de9a55b8 3197 *
ccd2506b
TT
3198 * For now, though, we'll cheat by calling filemap_flush(),
3199 * which will map the blocks, and start the I/O, but not
3200 * actually wait for the I/O to complete.
3201 */
3202 return filemap_flush(inode->i_mapping);
3203}
64769240 3204
ac27a0ec
DK
3205/*
3206 * bmap() is special. It gets used by applications such as lilo and by
3207 * the swapper to find the on-disk block of a specific piece of data.
3208 *
3209 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3210 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3211 * filesystem and enables swap, then they may get a nasty shock when the
3212 * data getting swapped to that swapfile suddenly gets overwritten by
3213 * the original zero's written out previously to the journal and
3214 * awaiting writeback in the kernel's buffer cache.
3215 *
3216 * So, if we see any bmap calls here on a modified, data-journaled file,
3217 * take extra steps to flush any blocks which might be in the cache.
3218 */
617ba13b 3219static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3220{
3221 struct inode *inode = mapping->host;
3222 journal_t *journal;
3223 int err;
3224
64769240
AT
3225 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3226 test_opt(inode->i_sb, DELALLOC)) {
3227 /*
3228 * With delalloc we want to sync the file
3229 * so that we can make sure we allocate
3230 * blocks for file
3231 */
3232 filemap_write_and_wait(mapping);
3233 }
3234
0390131b 3235 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
ac27a0ec
DK
3236 /*
3237 * This is a REALLY heavyweight approach, but the use of
3238 * bmap on dirty files is expected to be extremely rare:
3239 * only if we run lilo or swapon on a freshly made file
3240 * do we expect this to happen.
3241 *
3242 * (bmap requires CAP_SYS_RAWIO so this does not
3243 * represent an unprivileged user DOS attack --- we'd be
3244 * in trouble if mortal users could trigger this path at
3245 * will.)
3246 *
617ba13b 3247 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3248 * regular files. If somebody wants to bmap a directory
3249 * or symlink and gets confused because the buffer
3250 * hasn't yet been flushed to disk, they deserve
3251 * everything they get.
3252 */
3253
617ba13b
MC
3254 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3255 journal = EXT4_JOURNAL(inode);
dab291af
MC
3256 jbd2_journal_lock_updates(journal);
3257 err = jbd2_journal_flush(journal);
3258 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3259
3260 if (err)
3261 return 0;
3262 }
3263
af5bc92d 3264 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3265}
3266
617ba13b 3267static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3268{
617ba13b 3269 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
3270}
3271
3272static int
617ba13b 3273ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3274 struct list_head *pages, unsigned nr_pages)
3275{
617ba13b 3276 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3277}
3278
617ba13b 3279static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3280{
617ba13b 3281 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3282
3283 /*
3284 * If it's a full truncate we just forget about the pending dirtying
3285 */
3286 if (offset == 0)
3287 ClearPageChecked(page);
3288
0390131b
FM
3289 if (journal)
3290 jbd2_journal_invalidatepage(journal, page, offset);
3291 else
3292 block_invalidatepage(page, offset);
ac27a0ec
DK
3293}
3294
617ba13b 3295static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3296{
617ba13b 3297 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3298
3299 WARN_ON(PageChecked(page));
3300 if (!page_has_buffers(page))
3301 return 0;
0390131b
FM
3302 if (journal)
3303 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3304 else
3305 return try_to_free_buffers(page);
ac27a0ec
DK
3306}
3307
3308/*
4c0425ff
MC
3309 * O_DIRECT for ext3 (or indirect map) based files
3310 *
ac27a0ec
DK
3311 * If the O_DIRECT write will extend the file then add this inode to the
3312 * orphan list. So recovery will truncate it back to the original size
3313 * if the machine crashes during the write.
3314 *
3315 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3316 * crashes then stale disk data _may_ be exposed inside the file. But current
3317 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3318 */
4c0425ff 3319static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
de9a55b8
TT
3320 const struct iovec *iov, loff_t offset,
3321 unsigned long nr_segs)
ac27a0ec
DK
3322{
3323 struct file *file = iocb->ki_filp;
3324 struct inode *inode = file->f_mapping->host;
617ba13b 3325 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3326 handle_t *handle;
ac27a0ec
DK
3327 ssize_t ret;
3328 int orphan = 0;
3329 size_t count = iov_length(iov, nr_segs);
fbbf6945 3330 int retries = 0;
ac27a0ec
DK
3331
3332 if (rw == WRITE) {
3333 loff_t final_size = offset + count;
3334
ac27a0ec 3335 if (final_size > inode->i_size) {
7fb5409d
JK
3336 /* Credits for sb + inode write */
3337 handle = ext4_journal_start(inode, 2);
3338 if (IS_ERR(handle)) {
3339 ret = PTR_ERR(handle);
3340 goto out;
3341 }
617ba13b 3342 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3343 if (ret) {
3344 ext4_journal_stop(handle);
3345 goto out;
3346 }
ac27a0ec
DK
3347 orphan = 1;
3348 ei->i_disksize = inode->i_size;
7fb5409d 3349 ext4_journal_stop(handle);
ac27a0ec
DK
3350 }
3351 }
3352
fbbf6945 3353retry:
ac27a0ec
DK
3354 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3355 offset, nr_segs,
617ba13b 3356 ext4_get_block, NULL);
fbbf6945
ES
3357 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3358 goto retry;
ac27a0ec 3359
7fb5409d 3360 if (orphan) {
ac27a0ec
DK
3361 int err;
3362
7fb5409d
JK
3363 /* Credits for sb + inode write */
3364 handle = ext4_journal_start(inode, 2);
3365 if (IS_ERR(handle)) {
3366 /* This is really bad luck. We've written the data
3367 * but cannot extend i_size. Bail out and pretend
3368 * the write failed... */
3369 ret = PTR_ERR(handle);
3370 goto out;
3371 }
3372 if (inode->i_nlink)
617ba13b 3373 ext4_orphan_del(handle, inode);
7fb5409d 3374 if (ret > 0) {
ac27a0ec
DK
3375 loff_t end = offset + ret;
3376 if (end > inode->i_size) {
3377 ei->i_disksize = end;
3378 i_size_write(inode, end);
3379 /*
3380 * We're going to return a positive `ret'
3381 * here due to non-zero-length I/O, so there's
3382 * no way of reporting error returns from
617ba13b 3383 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3384 * ignore it.
3385 */
617ba13b 3386 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3387 }
3388 }
617ba13b 3389 err = ext4_journal_stop(handle);
ac27a0ec
DK
3390 if (ret == 0)
3391 ret = err;
3392 }
3393out:
3394 return ret;
3395}
3396
4c0425ff
MC
3397static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock,
3398 struct buffer_head *bh_result, int create)
3399{
3400 handle_t *handle = NULL;
3401 int ret = 0;
3402 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3403 int dio_credits;
3404
8d5d02e6
MC
3405 ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
3406 inode->i_ino, create);
4c0425ff
MC
3407 /*
3408 * DIO VFS code passes create = 0 flag for write to
3409 * the middle of file. It does this to avoid block
3410 * allocation for holes, to prevent expose stale data
3411 * out when there is parallel buffered read (which does
3412 * not hold the i_mutex lock) while direct IO write has
3413 * not completed. DIO request on holes finally falls back
3414 * to buffered IO for this reason.
3415 *
3416 * For ext4 extent based file, since we support fallocate,
3417 * new allocated extent as uninitialized, for holes, we
3418 * could fallocate blocks for holes, thus parallel
3419 * buffered IO read will zero out the page when read on
3420 * a hole while parallel DIO write to the hole has not completed.
3421 *
3422 * when we come here, we know it's a direct IO write to
3423 * to the middle of file (<i_size)
3424 * so it's safe to override the create flag from VFS.
3425 */
3426 create = EXT4_GET_BLOCKS_DIO_CREATE_EXT;
3427
3428 if (max_blocks > DIO_MAX_BLOCKS)
3429 max_blocks = DIO_MAX_BLOCKS;
3430 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3431 handle = ext4_journal_start(inode, dio_credits);
3432 if (IS_ERR(handle)) {
3433 ret = PTR_ERR(handle);
3434 goto out;
3435 }
3436 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3437 create);
3438 if (ret > 0) {
3439 bh_result->b_size = (ret << inode->i_blkbits);
3440 ret = 0;
3441 }
3442 ext4_journal_stop(handle);
3443out:
3444 return ret;
3445}
3446
4c0425ff
MC
3447static void ext4_free_io_end(ext4_io_end_t *io)
3448{
8d5d02e6
MC
3449 BUG_ON(!io);
3450 iput(io->inode);
4c0425ff
MC
3451 kfree(io);
3452}
8d5d02e6
MC
3453static void dump_aio_dio_list(struct inode * inode)
3454{
3455#ifdef EXT4_DEBUG
3456 struct list_head *cur, *before, *after;
3457 ext4_io_end_t *io, *io0, *io1;
3458
3459 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3460 ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino);
3461 return;
3462 }
3463
3464 ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino);
3465 list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){
3466 cur = &io->list;
3467 before = cur->prev;
3468 io0 = container_of(before, ext4_io_end_t, list);
3469 after = cur->next;
3470 io1 = container_of(after, ext4_io_end_t, list);
3471
3472 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3473 io, inode->i_ino, io0, io1);
3474 }
3475#endif
3476}
4c0425ff
MC
3477
3478/*
4c0425ff
MC
3479 * check a range of space and convert unwritten extents to written.
3480 */
8d5d02e6 3481static int ext4_end_aio_dio_nolock(ext4_io_end_t *io)
4c0425ff 3482{
4c0425ff
MC
3483 struct inode *inode = io->inode;
3484 loff_t offset = io->offset;
3485 size_t size = io->size;
3486 int ret = 0;
4c0425ff 3487
8d5d02e6
MC
3488 ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
3489 "list->prev 0x%p\n",
3490 io, inode->i_ino, io->list.next, io->list.prev);
3491
3492 if (list_empty(&io->list))
3493 return ret;
3494
3495 if (io->flag != DIO_AIO_UNWRITTEN)
3496 return ret;
3497
4c0425ff
MC
3498 if (offset + size <= i_size_read(inode))
3499 ret = ext4_convert_unwritten_extents(inode, offset, size);
3500
8d5d02e6 3501 if (ret < 0) {
4c0425ff 3502 printk(KERN_EMERG "%s: failed to convert unwritten"
8d5d02e6
MC
3503 "extents to written extents, error is %d"
3504 " io is still on inode %lu aio dio list\n",
3505 __func__, ret, inode->i_ino);
3506 return ret;
3507 }
4c0425ff 3508
8d5d02e6
MC
3509 /* clear the DIO AIO unwritten flag */
3510 io->flag = 0;
3511 return ret;
4c0425ff 3512}
8d5d02e6
MC
3513/*
3514 * work on completed aio dio IO, to convert unwritten extents to extents
3515 */
3516static void ext4_end_aio_dio_work(struct work_struct *work)
3517{
3518 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3519 struct inode *inode = io->inode;
3520 int ret = 0;
4c0425ff 3521
8d5d02e6
MC
3522 mutex_lock(&inode->i_mutex);
3523 ret = ext4_end_aio_dio_nolock(io);
3524 if (ret >= 0) {
3525 if (!list_empty(&io->list))
3526 list_del_init(&io->list);
3527 ext4_free_io_end(io);
3528 }
3529 mutex_unlock(&inode->i_mutex);
3530}
3531/*
3532 * This function is called from ext4_sync_file().
3533 *
3534 * When AIO DIO IO is completed, the work to convert unwritten
3535 * extents to written is queued on workqueue but may not get immediately
3536 * scheduled. When fsync is called, we need to ensure the
3537 * conversion is complete before fsync returns.
3538 * The inode keeps track of a list of completed AIO from DIO path
3539 * that might needs to do the conversion. This function walks through
3540 * the list and convert the related unwritten extents to written.
3541 */
3542int flush_aio_dio_completed_IO(struct inode *inode)
3543{
3544 ext4_io_end_t *io;
3545 int ret = 0;
3546 int ret2 = 0;
3547
3548 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list))
3549 return ret;
3550
3551 dump_aio_dio_list(inode);
3552 while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3553 io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next,
3554 ext4_io_end_t, list);
3555 /*
3556 * Calling ext4_end_aio_dio_nolock() to convert completed
3557 * IO to written.
3558 *
3559 * When ext4_sync_file() is called, run_queue() may already
3560 * about to flush the work corresponding to this io structure.
3561 * It will be upset if it founds the io structure related
3562 * to the work-to-be schedule is freed.
3563 *
3564 * Thus we need to keep the io structure still valid here after
3565 * convertion finished. The io structure has a flag to
3566 * avoid double converting from both fsync and background work
3567 * queue work.
3568 */
3569 ret = ext4_end_aio_dio_nolock(io);
3570 if (ret < 0)
3571 ret2 = ret;
3572 else
3573 list_del_init(&io->list);
3574 }
3575 return (ret2 < 0) ? ret2 : 0;
3576}
3577
3578static ext4_io_end_t *ext4_init_io_end (struct inode *inode)
4c0425ff
MC
3579{
3580 ext4_io_end_t *io = NULL;
3581
3582 io = kmalloc(sizeof(*io), GFP_NOFS);
3583
3584 if (io) {
8d5d02e6 3585 igrab(inode);
4c0425ff 3586 io->inode = inode;
8d5d02e6 3587 io->flag = 0;
4c0425ff
MC
3588 io->offset = 0;
3589 io->size = 0;
3590 io->error = 0;
8d5d02e6
MC
3591 INIT_WORK(&io->work, ext4_end_aio_dio_work);
3592 INIT_LIST_HEAD(&io->list);
4c0425ff
MC
3593 }
3594
3595 return io;
3596}
3597
3598static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3599 ssize_t size, void *private)
3600{
3601 ext4_io_end_t *io_end = iocb->private;
3602 struct workqueue_struct *wq;
3603
4b70df18
M
3604 /* if not async direct IO or dio with 0 bytes write, just return */
3605 if (!io_end || !size)
3606 return;
3607
8d5d02e6
MC
3608 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3609 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3610 iocb->private, io_end->inode->i_ino, iocb, offset,
3611 size);
8d5d02e6
MC
3612
3613 /* if not aio dio with unwritten extents, just free io and return */
3614 if (io_end->flag != DIO_AIO_UNWRITTEN){
3615 ext4_free_io_end(io_end);
3616 iocb->private = NULL;
4c0425ff 3617 return;
8d5d02e6
MC
3618 }
3619
4c0425ff
MC
3620 io_end->offset = offset;
3621 io_end->size = size;
3622 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3623
8d5d02e6 3624 /* queue the work to convert unwritten extents to written */
4c0425ff
MC
3625 queue_work(wq, &io_end->work);
3626
8d5d02e6
MC
3627 /* Add the io_end to per-inode completed aio dio list*/
3628 list_add_tail(&io_end->list,
3629 &EXT4_I(io_end->inode)->i_aio_dio_complete_list);
4c0425ff
MC
3630 iocb->private = NULL;
3631}
3632/*
3633 * For ext4 extent files, ext4 will do direct-io write to holes,
3634 * preallocated extents, and those write extend the file, no need to
3635 * fall back to buffered IO.
3636 *
3637 * For holes, we fallocate those blocks, mark them as unintialized
3638 * If those blocks were preallocated, we mark sure they are splited, but
3639 * still keep the range to write as unintialized.
3640 *
8d5d02e6
MC
3641 * The unwrritten extents will be converted to written when DIO is completed.
3642 * For async direct IO, since the IO may still pending when return, we
3643 * set up an end_io call back function, which will do the convertion
3644 * when async direct IO completed.
4c0425ff
MC
3645 *
3646 * If the O_DIRECT write will extend the file then add this inode to the
3647 * orphan list. So recovery will truncate it back to the original size
3648 * if the machine crashes during the write.
3649 *
3650 */
3651static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3652 const struct iovec *iov, loff_t offset,
3653 unsigned long nr_segs)
3654{
3655 struct file *file = iocb->ki_filp;
3656 struct inode *inode = file->f_mapping->host;
3657 ssize_t ret;
3658 size_t count = iov_length(iov, nr_segs);
3659
3660 loff_t final_size = offset + count;
3661 if (rw == WRITE && final_size <= inode->i_size) {
3662 /*
8d5d02e6
MC
3663 * We could direct write to holes and fallocate.
3664 *
3665 * Allocated blocks to fill the hole are marked as uninitialized
4c0425ff
MC
3666 * to prevent paralel buffered read to expose the stale data
3667 * before DIO complete the data IO.
8d5d02e6
MC
3668 *
3669 * As to previously fallocated extents, ext4 get_block
4c0425ff
MC
3670 * will just simply mark the buffer mapped but still
3671 * keep the extents uninitialized.
3672 *
8d5d02e6
MC
3673 * for non AIO case, we will convert those unwritten extents
3674 * to written after return back from blockdev_direct_IO.
3675 *
3676 * for async DIO, the conversion needs to be defered when
3677 * the IO is completed. The ext4 end_io callback function
3678 * will be called to take care of the conversion work.
3679 * Here for async case, we allocate an io_end structure to
3680 * hook to the iocb.
4c0425ff 3681 */
8d5d02e6
MC
3682 iocb->private = NULL;
3683 EXT4_I(inode)->cur_aio_dio = NULL;
3684 if (!is_sync_kiocb(iocb)) {
3685 iocb->private = ext4_init_io_end(inode);
3686 if (!iocb->private)
3687 return -ENOMEM;
3688 /*
3689 * we save the io structure for current async
3690 * direct IO, so that later ext4_get_blocks()
3691 * could flag the io structure whether there
3692 * is a unwritten extents needs to be converted
3693 * when IO is completed.
3694 */
3695 EXT4_I(inode)->cur_aio_dio = iocb->private;
3696 }
3697
4c0425ff
MC
3698 ret = blockdev_direct_IO(rw, iocb, inode,
3699 inode->i_sb->s_bdev, iov,
3700 offset, nr_segs,
3701 ext4_get_block_dio_write,
3702 ext4_end_io_dio);
8d5d02e6
MC
3703 if (iocb->private)
3704 EXT4_I(inode)->cur_aio_dio = NULL;
3705 /*
3706 * The io_end structure takes a reference to the inode,
3707 * that structure needs to be destroyed and the
3708 * reference to the inode need to be dropped, when IO is
3709 * complete, even with 0 byte write, or failed.
3710 *
3711 * In the successful AIO DIO case, the io_end structure will be
3712 * desctroyed and the reference to the inode will be dropped
3713 * after the end_io call back function is called.
3714 *
3715 * In the case there is 0 byte write, or error case, since
3716 * VFS direct IO won't invoke the end_io call back function,
3717 * we need to free the end_io structure here.
3718 */
3719 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3720 ext4_free_io_end(iocb->private);
3721 iocb->private = NULL;
5f524950
M
3722 } else if (ret > 0 && (EXT4_I(inode)->i_state &
3723 EXT4_STATE_DIO_UNWRITTEN)) {
109f5565 3724 int err;
8d5d02e6
MC
3725 /*
3726 * for non AIO case, since the IO is already
3727 * completed, we could do the convertion right here
3728 */
109f5565
M
3729 err = ext4_convert_unwritten_extents(inode,
3730 offset, ret);
3731 if (err < 0)
3732 ret = err;
5f524950 3733 EXT4_I(inode)->i_state &= ~EXT4_STATE_DIO_UNWRITTEN;
109f5565 3734 }
4c0425ff
MC
3735 return ret;
3736 }
8d5d02e6
MC
3737
3738 /* for write the the end of file case, we fall back to old way */
4c0425ff
MC
3739 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3740}
3741
3742static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3743 const struct iovec *iov, loff_t offset,
3744 unsigned long nr_segs)
3745{
3746 struct file *file = iocb->ki_filp;
3747 struct inode *inode = file->f_mapping->host;
3748
3749 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3750 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3751
3752 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3753}
3754
ac27a0ec 3755/*
617ba13b 3756 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3757 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3758 * much here because ->set_page_dirty is called under VFS locks. The page is
3759 * not necessarily locked.
3760 *
3761 * We cannot just dirty the page and leave attached buffers clean, because the
3762 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3763 * or jbddirty because all the journalling code will explode.
3764 *
3765 * So what we do is to mark the page "pending dirty" and next time writepage
3766 * is called, propagate that into the buffers appropriately.
3767 */
617ba13b 3768static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3769{
3770 SetPageChecked(page);
3771 return __set_page_dirty_nobuffers(page);
3772}
3773
617ba13b 3774static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3775 .readpage = ext4_readpage,
3776 .readpages = ext4_readpages,
43ce1d23 3777 .writepage = ext4_writepage,
8ab22b9a
HH
3778 .sync_page = block_sync_page,
3779 .write_begin = ext4_write_begin,
3780 .write_end = ext4_ordered_write_end,
3781 .bmap = ext4_bmap,
3782 .invalidatepage = ext4_invalidatepage,
3783 .releasepage = ext4_releasepage,
3784 .direct_IO = ext4_direct_IO,
3785 .migratepage = buffer_migrate_page,
3786 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3787 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3788};
3789
617ba13b 3790static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3791 .readpage = ext4_readpage,
3792 .readpages = ext4_readpages,
43ce1d23 3793 .writepage = ext4_writepage,
8ab22b9a
HH
3794 .sync_page = block_sync_page,
3795 .write_begin = ext4_write_begin,
3796 .write_end = ext4_writeback_write_end,
3797 .bmap = ext4_bmap,
3798 .invalidatepage = ext4_invalidatepage,
3799 .releasepage = ext4_releasepage,
3800 .direct_IO = ext4_direct_IO,
3801 .migratepage = buffer_migrate_page,
3802 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3803 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3804};
3805
617ba13b 3806static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3807 .readpage = ext4_readpage,
3808 .readpages = ext4_readpages,
43ce1d23 3809 .writepage = ext4_writepage,
8ab22b9a
HH
3810 .sync_page = block_sync_page,
3811 .write_begin = ext4_write_begin,
3812 .write_end = ext4_journalled_write_end,
3813 .set_page_dirty = ext4_journalled_set_page_dirty,
3814 .bmap = ext4_bmap,
3815 .invalidatepage = ext4_invalidatepage,
3816 .releasepage = ext4_releasepage,
3817 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3818 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3819};
3820
64769240 3821static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3822 .readpage = ext4_readpage,
3823 .readpages = ext4_readpages,
43ce1d23 3824 .writepage = ext4_writepage,
8ab22b9a
HH
3825 .writepages = ext4_da_writepages,
3826 .sync_page = block_sync_page,
3827 .write_begin = ext4_da_write_begin,
3828 .write_end = ext4_da_write_end,
3829 .bmap = ext4_bmap,
3830 .invalidatepage = ext4_da_invalidatepage,
3831 .releasepage = ext4_releasepage,
3832 .direct_IO = ext4_direct_IO,
3833 .migratepage = buffer_migrate_page,
3834 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3835 .error_remove_page = generic_error_remove_page,
64769240
AT
3836};
3837
617ba13b 3838void ext4_set_aops(struct inode *inode)
ac27a0ec 3839{
cd1aac32
AK
3840 if (ext4_should_order_data(inode) &&
3841 test_opt(inode->i_sb, DELALLOC))
3842 inode->i_mapping->a_ops = &ext4_da_aops;
3843 else if (ext4_should_order_data(inode))
617ba13b 3844 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
3845 else if (ext4_should_writeback_data(inode) &&
3846 test_opt(inode->i_sb, DELALLOC))
3847 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
3848 else if (ext4_should_writeback_data(inode))
3849 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 3850 else
617ba13b 3851 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
3852}
3853
3854/*
617ba13b 3855 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
3856 * up to the end of the block which corresponds to `from'.
3857 * This required during truncate. We need to physically zero the tail end
3858 * of that block so it doesn't yield old data if the file is later grown.
3859 */
cf108bca 3860int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
3861 struct address_space *mapping, loff_t from)
3862{
617ba13b 3863 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 3864 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
3865 unsigned blocksize, length, pos;
3866 ext4_lblk_t iblock;
ac27a0ec
DK
3867 struct inode *inode = mapping->host;
3868 struct buffer_head *bh;
cf108bca 3869 struct page *page;
ac27a0ec 3870 int err = 0;
ac27a0ec 3871
f4a01017
TT
3872 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3873 mapping_gfp_mask(mapping) & ~__GFP_FS);
cf108bca
JK
3874 if (!page)
3875 return -EINVAL;
3876
ac27a0ec
DK
3877 blocksize = inode->i_sb->s_blocksize;
3878 length = blocksize - (offset & (blocksize - 1));
3879 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3880
3881 /*
3882 * For "nobh" option, we can only work if we don't need to
3883 * read-in the page - otherwise we create buffers to do the IO.
3884 */
3885 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 3886 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 3887 zero_user(page, offset, length);
ac27a0ec
DK
3888 set_page_dirty(page);
3889 goto unlock;
3890 }
3891
3892 if (!page_has_buffers(page))
3893 create_empty_buffers(page, blocksize, 0);
3894
3895 /* Find the buffer that contains "offset" */
3896 bh = page_buffers(page);
3897 pos = blocksize;
3898 while (offset >= pos) {
3899 bh = bh->b_this_page;
3900 iblock++;
3901 pos += blocksize;
3902 }
3903
3904 err = 0;
3905 if (buffer_freed(bh)) {
3906 BUFFER_TRACE(bh, "freed: skip");
3907 goto unlock;
3908 }
3909
3910 if (!buffer_mapped(bh)) {
3911 BUFFER_TRACE(bh, "unmapped");
617ba13b 3912 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
3913 /* unmapped? It's a hole - nothing to do */
3914 if (!buffer_mapped(bh)) {
3915 BUFFER_TRACE(bh, "still unmapped");
3916 goto unlock;
3917 }
3918 }
3919
3920 /* Ok, it's mapped. Make sure it's up-to-date */
3921 if (PageUptodate(page))
3922 set_buffer_uptodate(bh);
3923
3924 if (!buffer_uptodate(bh)) {
3925 err = -EIO;
3926 ll_rw_block(READ, 1, &bh);
3927 wait_on_buffer(bh);
3928 /* Uhhuh. Read error. Complain and punt. */
3929 if (!buffer_uptodate(bh))
3930 goto unlock;
3931 }
3932
617ba13b 3933 if (ext4_should_journal_data(inode)) {
ac27a0ec 3934 BUFFER_TRACE(bh, "get write access");
617ba13b 3935 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3936 if (err)
3937 goto unlock;
3938 }
3939
eebd2aa3 3940 zero_user(page, offset, length);
ac27a0ec
DK
3941
3942 BUFFER_TRACE(bh, "zeroed end of block");
3943
3944 err = 0;
617ba13b 3945 if (ext4_should_journal_data(inode)) {
0390131b 3946 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3947 } else {
617ba13b 3948 if (ext4_should_order_data(inode))
678aaf48 3949 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
3950 mark_buffer_dirty(bh);
3951 }
3952
3953unlock:
3954 unlock_page(page);
3955 page_cache_release(page);
3956 return err;
3957}
3958
3959/*
3960 * Probably it should be a library function... search for first non-zero word
3961 * or memcmp with zero_page, whatever is better for particular architecture.
3962 * Linus?
3963 */
3964static inline int all_zeroes(__le32 *p, __le32 *q)
3965{
3966 while (p < q)
3967 if (*p++)
3968 return 0;
3969 return 1;
3970}
3971
3972/**
617ba13b 3973 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
3974 * @inode: inode in question
3975 * @depth: depth of the affected branch
617ba13b 3976 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
3977 * @chain: place to store the pointers to partial indirect blocks
3978 * @top: place to the (detached) top of branch
3979 *
617ba13b 3980 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
3981 *
3982 * When we do truncate() we may have to clean the ends of several
3983 * indirect blocks but leave the blocks themselves alive. Block is
3984 * partially truncated if some data below the new i_size is refered
3985 * from it (and it is on the path to the first completely truncated
3986 * data block, indeed). We have to free the top of that path along
3987 * with everything to the right of the path. Since no allocation
617ba13b 3988 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
3989 * finishes, we may safely do the latter, but top of branch may
3990 * require special attention - pageout below the truncation point
3991 * might try to populate it.
3992 *
3993 * We atomically detach the top of branch from the tree, store the
3994 * block number of its root in *@top, pointers to buffer_heads of
3995 * partially truncated blocks - in @chain[].bh and pointers to
3996 * their last elements that should not be removed - in
3997 * @chain[].p. Return value is the pointer to last filled element
3998 * of @chain.
3999 *
4000 * The work left to caller to do the actual freeing of subtrees:
4001 * a) free the subtree starting from *@top
4002 * b) free the subtrees whose roots are stored in
4003 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4004 * c) free the subtrees growing from the inode past the @chain[0].
4005 * (no partially truncated stuff there). */
4006
617ba13b 4007static Indirect *ext4_find_shared(struct inode *inode, int depth,
de9a55b8
TT
4008 ext4_lblk_t offsets[4], Indirect chain[4],
4009 __le32 *top)
ac27a0ec
DK
4010{
4011 Indirect *partial, *p;
4012 int k, err;
4013
4014 *top = 0;
4015 /* Make k index the deepest non-null offest + 1 */
4016 for (k = depth; k > 1 && !offsets[k-1]; k--)
4017 ;
617ba13b 4018 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
4019 /* Writer: pointers */
4020 if (!partial)
4021 partial = chain + k-1;
4022 /*
4023 * If the branch acquired continuation since we've looked at it -
4024 * fine, it should all survive and (new) top doesn't belong to us.
4025 */
4026 if (!partial->key && *partial->p)
4027 /* Writer: end */
4028 goto no_top;
af5bc92d 4029 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
4030 ;
4031 /*
4032 * OK, we've found the last block that must survive. The rest of our
4033 * branch should be detached before unlocking. However, if that rest
4034 * of branch is all ours and does not grow immediately from the inode
4035 * it's easier to cheat and just decrement partial->p.
4036 */
4037 if (p == chain + k - 1 && p > chain) {
4038 p->p--;
4039 } else {
4040 *top = *p->p;
617ba13b 4041 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
4042#if 0
4043 *p->p = 0;
4044#endif
4045 }
4046 /* Writer: end */
4047
af5bc92d 4048 while (partial > p) {
ac27a0ec
DK
4049 brelse(partial->bh);
4050 partial--;
4051 }
4052no_top:
4053 return partial;
4054}
4055
4056/*
4057 * Zero a number of block pointers in either an inode or an indirect block.
4058 * If we restart the transaction we must again get write access to the
4059 * indirect block for further modification.
4060 *
4061 * We release `count' blocks on disk, but (last - first) may be greater
4062 * than `count' because there can be holes in there.
4063 */
617ba13b 4064static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
4065 struct buffer_head *bh,
4066 ext4_fsblk_t block_to_free,
4067 unsigned long count, __le32 *first,
4068 __le32 *last)
ac27a0ec
DK
4069{
4070 __le32 *p;
50689696
TT
4071 int is_metadata = S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode);
4072
ac27a0ec
DK
4073 if (try_to_extend_transaction(handle, inode)) {
4074 if (bh) {
0390131b
FM
4075 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4076 ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 4077 }
617ba13b 4078 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4079 ext4_truncate_restart_trans(handle, inode,
4080 blocks_for_truncate(inode));
ac27a0ec
DK
4081 if (bh) {
4082 BUFFER_TRACE(bh, "retaking write access");
617ba13b 4083 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
4084 }
4085 }
4086
4087 /*
de9a55b8
TT
4088 * Any buffers which are on the journal will be in memory. We
4089 * find them on the hash table so jbd2_journal_revoke() will
4090 * run jbd2_journal_forget() on them. We've already detached
4091 * each block from the file, so bforget() in
4092 * jbd2_journal_forget() should be safe.
ac27a0ec 4093 *
dab291af 4094 * AKPM: turn on bforget in jbd2_journal_forget()!!!
ac27a0ec
DK
4095 */
4096 for (p = first; p < last; p++) {
4097 u32 nr = le32_to_cpu(*p);
4098 if (nr) {
1d03ec98 4099 struct buffer_head *tbh;
ac27a0ec
DK
4100
4101 *p = 0;
1d03ec98 4102 tbh = sb_find_get_block(inode->i_sb, nr);
50689696 4103 ext4_forget(handle, is_metadata, inode, tbh, nr);
ac27a0ec
DK
4104 }
4105 }
4106
50689696 4107 ext4_free_blocks(handle, inode, block_to_free, count, is_metadata);
ac27a0ec
DK
4108}
4109
4110/**
617ba13b 4111 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
4112 * @handle: handle for this transaction
4113 * @inode: inode we are dealing with
4114 * @this_bh: indirect buffer_head which contains *@first and *@last
4115 * @first: array of block numbers
4116 * @last: points immediately past the end of array
4117 *
4118 * We are freeing all blocks refered from that array (numbers are stored as
4119 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4120 *
4121 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4122 * blocks are contiguous then releasing them at one time will only affect one
4123 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4124 * actually use a lot of journal space.
4125 *
4126 * @this_bh will be %NULL if @first and @last point into the inode's direct
4127 * block pointers.
4128 */
617ba13b 4129static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4130 struct buffer_head *this_bh,
4131 __le32 *first, __le32 *last)
4132{
617ba13b 4133 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
4134 unsigned long count = 0; /* Number of blocks in the run */
4135 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4136 corresponding to
4137 block_to_free */
617ba13b 4138 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
4139 __le32 *p; /* Pointer into inode/ind
4140 for current block */
4141 int err;
4142
4143 if (this_bh) { /* For indirect block */
4144 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 4145 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
4146 /* Important: if we can't update the indirect pointers
4147 * to the blocks, we can't free them. */
4148 if (err)
4149 return;
4150 }
4151
4152 for (p = first; p < last; p++) {
4153 nr = le32_to_cpu(*p);
4154 if (nr) {
4155 /* accumulate blocks to free if they're contiguous */
4156 if (count == 0) {
4157 block_to_free = nr;
4158 block_to_free_p = p;
4159 count = 1;
4160 } else if (nr == block_to_free + count) {
4161 count++;
4162 } else {
617ba13b 4163 ext4_clear_blocks(handle, inode, this_bh,
ac27a0ec
DK
4164 block_to_free,
4165 count, block_to_free_p, p);
4166 block_to_free = nr;
4167 block_to_free_p = p;
4168 count = 1;
4169 }
4170 }
4171 }
4172
4173 if (count > 0)
617ba13b 4174 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
4175 count, block_to_free_p, p);
4176
4177 if (this_bh) {
0390131b 4178 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
71dc8fbc
DG
4179
4180 /*
4181 * The buffer head should have an attached journal head at this
4182 * point. However, if the data is corrupted and an indirect
4183 * block pointed to itself, it would have been detached when
4184 * the block was cleared. Check for this instead of OOPSing.
4185 */
e7f07968 4186 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
0390131b 4187 ext4_handle_dirty_metadata(handle, inode, this_bh);
71dc8fbc
DG
4188 else
4189 ext4_error(inode->i_sb, __func__,
4190 "circular indirect block detected, "
4191 "inode=%lu, block=%llu",
4192 inode->i_ino,
4193 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
4194 }
4195}
4196
4197/**
617ba13b 4198 * ext4_free_branches - free an array of branches
ac27a0ec
DK
4199 * @handle: JBD handle for this transaction
4200 * @inode: inode we are dealing with
4201 * @parent_bh: the buffer_head which contains *@first and *@last
4202 * @first: array of block numbers
4203 * @last: pointer immediately past the end of array
4204 * @depth: depth of the branches to free
4205 *
4206 * We are freeing all blocks refered from these branches (numbers are
4207 * stored as little-endian 32-bit) and updating @inode->i_blocks
4208 * appropriately.
4209 */
617ba13b 4210static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4211 struct buffer_head *parent_bh,
4212 __le32 *first, __le32 *last, int depth)
4213{
617ba13b 4214 ext4_fsblk_t nr;
ac27a0ec
DK
4215 __le32 *p;
4216
0390131b 4217 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4218 return;
4219
4220 if (depth--) {
4221 struct buffer_head *bh;
617ba13b 4222 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
4223 p = last;
4224 while (--p >= first) {
4225 nr = le32_to_cpu(*p);
4226 if (!nr)
4227 continue; /* A hole */
4228
4229 /* Go read the buffer for the next level down */
4230 bh = sb_bread(inode->i_sb, nr);
4231
4232 /*
4233 * A read failure? Report error and clear slot
4234 * (should be rare).
4235 */
4236 if (!bh) {
617ba13b 4237 ext4_error(inode->i_sb, "ext4_free_branches",
2ae02107 4238 "Read failure, inode=%lu, block=%llu",
ac27a0ec
DK
4239 inode->i_ino, nr);
4240 continue;
4241 }
4242
4243 /* This zaps the entire block. Bottom up. */
4244 BUFFER_TRACE(bh, "free child branches");
617ba13b 4245 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
4246 (__le32 *) bh->b_data,
4247 (__le32 *) bh->b_data + addr_per_block,
4248 depth);
ac27a0ec
DK
4249
4250 /*
4251 * We've probably journalled the indirect block several
4252 * times during the truncate. But it's no longer
4253 * needed and we now drop it from the transaction via
dab291af 4254 * jbd2_journal_revoke().
ac27a0ec
DK
4255 *
4256 * That's easy if it's exclusively part of this
4257 * transaction. But if it's part of the committing
dab291af 4258 * transaction then jbd2_journal_forget() will simply
ac27a0ec 4259 * brelse() it. That means that if the underlying
617ba13b 4260 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
4261 * unmap_underlying_metadata() will find this block
4262 * and will try to get rid of it. damn, damn.
4263 *
4264 * If this block has already been committed to the
4265 * journal, a revoke record will be written. And
4266 * revoke records must be emitted *before* clearing
4267 * this block's bit in the bitmaps.
4268 */
617ba13b 4269 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
4270
4271 /*
4272 * Everything below this this pointer has been
4273 * released. Now let this top-of-subtree go.
4274 *
4275 * We want the freeing of this indirect block to be
4276 * atomic in the journal with the updating of the
4277 * bitmap block which owns it. So make some room in
4278 * the journal.
4279 *
4280 * We zero the parent pointer *after* freeing its
4281 * pointee in the bitmaps, so if extend_transaction()
4282 * for some reason fails to put the bitmap changes and
4283 * the release into the same transaction, recovery
4284 * will merely complain about releasing a free block,
4285 * rather than leaking blocks.
4286 */
0390131b 4287 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4288 return;
4289 if (try_to_extend_transaction(handle, inode)) {
617ba13b 4290 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4291 ext4_truncate_restart_trans(handle, inode,
4292 blocks_for_truncate(inode));
ac27a0ec
DK
4293 }
4294
c9de560d 4295 ext4_free_blocks(handle, inode, nr, 1, 1);
ac27a0ec
DK
4296
4297 if (parent_bh) {
4298 /*
4299 * The block which we have just freed is
4300 * pointed to by an indirect block: journal it
4301 */
4302 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 4303 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
4304 parent_bh)){
4305 *p = 0;
4306 BUFFER_TRACE(parent_bh,
0390131b
FM
4307 "call ext4_handle_dirty_metadata");
4308 ext4_handle_dirty_metadata(handle,
4309 inode,
4310 parent_bh);
ac27a0ec
DK
4311 }
4312 }
4313 }
4314 } else {
4315 /* We have reached the bottom of the tree. */
4316 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 4317 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
4318 }
4319}
4320
91ef4caf
DG
4321int ext4_can_truncate(struct inode *inode)
4322{
4323 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4324 return 0;
4325 if (S_ISREG(inode->i_mode))
4326 return 1;
4327 if (S_ISDIR(inode->i_mode))
4328 return 1;
4329 if (S_ISLNK(inode->i_mode))
4330 return !ext4_inode_is_fast_symlink(inode);
4331 return 0;
4332}
4333
ac27a0ec 4334/*
617ba13b 4335 * ext4_truncate()
ac27a0ec 4336 *
617ba13b
MC
4337 * We block out ext4_get_block() block instantiations across the entire
4338 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4339 * simultaneously on behalf of the same inode.
4340 *
4341 * As we work through the truncate and commmit bits of it to the journal there
4342 * is one core, guiding principle: the file's tree must always be consistent on
4343 * disk. We must be able to restart the truncate after a crash.
4344 *
4345 * The file's tree may be transiently inconsistent in memory (although it
4346 * probably isn't), but whenever we close off and commit a journal transaction,
4347 * the contents of (the filesystem + the journal) must be consistent and
4348 * restartable. It's pretty simple, really: bottom up, right to left (although
4349 * left-to-right works OK too).
4350 *
4351 * Note that at recovery time, journal replay occurs *before* the restart of
4352 * truncate against the orphan inode list.
4353 *
4354 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4355 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4356 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4357 * ext4_truncate() to have another go. So there will be instantiated blocks
4358 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4359 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4360 * ext4_truncate() run will find them and release them.
ac27a0ec 4361 */
617ba13b 4362void ext4_truncate(struct inode *inode)
ac27a0ec
DK
4363{
4364 handle_t *handle;
617ba13b 4365 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4366 __le32 *i_data = ei->i_data;
617ba13b 4367 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 4368 struct address_space *mapping = inode->i_mapping;
725d26d3 4369 ext4_lblk_t offsets[4];
ac27a0ec
DK
4370 Indirect chain[4];
4371 Indirect *partial;
4372 __le32 nr = 0;
4373 int n;
725d26d3 4374 ext4_lblk_t last_block;
ac27a0ec 4375 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 4376
91ef4caf 4377 if (!ext4_can_truncate(inode))
ac27a0ec
DK
4378 return;
4379
5534fb5b 4380 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
7d8f9f7d
TT
4381 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4382
1d03ec98 4383 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
cf108bca 4384 ext4_ext_truncate(inode);
1d03ec98
AK
4385 return;
4386 }
a86c6181 4387
ac27a0ec 4388 handle = start_transaction(inode);
cf108bca 4389 if (IS_ERR(handle))
ac27a0ec 4390 return; /* AKPM: return what? */
ac27a0ec
DK
4391
4392 last_block = (inode->i_size + blocksize-1)
617ba13b 4393 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 4394
cf108bca
JK
4395 if (inode->i_size & (blocksize - 1))
4396 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4397 goto out_stop;
ac27a0ec 4398
617ba13b 4399 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
4400 if (n == 0)
4401 goto out_stop; /* error */
4402
4403 /*
4404 * OK. This truncate is going to happen. We add the inode to the
4405 * orphan list, so that if this truncate spans multiple transactions,
4406 * and we crash, we will resume the truncate when the filesystem
4407 * recovers. It also marks the inode dirty, to catch the new size.
4408 *
4409 * Implication: the file must always be in a sane, consistent
4410 * truncatable state while each transaction commits.
4411 */
617ba13b 4412 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
4413 goto out_stop;
4414
632eaeab
MC
4415 /*
4416 * From here we block out all ext4_get_block() callers who want to
4417 * modify the block allocation tree.
4418 */
4419 down_write(&ei->i_data_sem);
b4df2030 4420
c2ea3fde 4421 ext4_discard_preallocations(inode);
b4df2030 4422
ac27a0ec
DK
4423 /*
4424 * The orphan list entry will now protect us from any crash which
4425 * occurs before the truncate completes, so it is now safe to propagate
4426 * the new, shorter inode size (held for now in i_size) into the
4427 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 4428 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
4429 */
4430 ei->i_disksize = inode->i_size;
4431
ac27a0ec 4432 if (n == 1) { /* direct blocks */
617ba13b
MC
4433 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4434 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
4435 goto do_indirects;
4436 }
4437
617ba13b 4438 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
4439 /* Kill the top of shared branch (not detached) */
4440 if (nr) {
4441 if (partial == chain) {
4442 /* Shared branch grows from the inode */
617ba13b 4443 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
4444 &nr, &nr+1, (chain+n-1) - partial);
4445 *partial->p = 0;
4446 /*
4447 * We mark the inode dirty prior to restart,
4448 * and prior to stop. No need for it here.
4449 */
4450 } else {
4451 /* Shared branch grows from an indirect block */
4452 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 4453 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
4454 partial->p,
4455 partial->p+1, (chain+n-1) - partial);
4456 }
4457 }
4458 /* Clear the ends of indirect blocks on the shared branch */
4459 while (partial > chain) {
617ba13b 4460 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
4461 (__le32*)partial->bh->b_data+addr_per_block,
4462 (chain+n-1) - partial);
4463 BUFFER_TRACE(partial->bh, "call brelse");
de9a55b8 4464 brelse(partial->bh);
ac27a0ec
DK
4465 partial--;
4466 }
4467do_indirects:
4468 /* Kill the remaining (whole) subtrees */
4469 switch (offsets[0]) {
4470 default:
617ba13b 4471 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 4472 if (nr) {
617ba13b
MC
4473 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4474 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 4475 }
617ba13b
MC
4476 case EXT4_IND_BLOCK:
4477 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 4478 if (nr) {
617ba13b
MC
4479 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4480 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 4481 }
617ba13b
MC
4482 case EXT4_DIND_BLOCK:
4483 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 4484 if (nr) {
617ba13b
MC
4485 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4486 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 4487 }
617ba13b 4488 case EXT4_TIND_BLOCK:
ac27a0ec
DK
4489 ;
4490 }
4491
0e855ac8 4492 up_write(&ei->i_data_sem);
ef7f3835 4493 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 4494 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4495
4496 /*
4497 * In a multi-transaction truncate, we only make the final transaction
4498 * synchronous
4499 */
4500 if (IS_SYNC(inode))
0390131b 4501 ext4_handle_sync(handle);
ac27a0ec
DK
4502out_stop:
4503 /*
4504 * If this was a simple ftruncate(), and the file will remain alive
4505 * then we need to clear up the orphan record which we created above.
4506 * However, if this was a real unlink then we were called by
617ba13b 4507 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
4508 * orphan info for us.
4509 */
4510 if (inode->i_nlink)
617ba13b 4511 ext4_orphan_del(handle, inode);
ac27a0ec 4512
617ba13b 4513 ext4_journal_stop(handle);
ac27a0ec
DK
4514}
4515
ac27a0ec 4516/*
617ba13b 4517 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4518 * underlying buffer_head on success. If 'in_mem' is true, we have all
4519 * data in memory that is needed to recreate the on-disk version of this
4520 * inode.
4521 */
617ba13b
MC
4522static int __ext4_get_inode_loc(struct inode *inode,
4523 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4524{
240799cd
TT
4525 struct ext4_group_desc *gdp;
4526 struct buffer_head *bh;
4527 struct super_block *sb = inode->i_sb;
4528 ext4_fsblk_t block;
4529 int inodes_per_block, inode_offset;
4530
3a06d778 4531 iloc->bh = NULL;
240799cd
TT
4532 if (!ext4_valid_inum(sb, inode->i_ino))
4533 return -EIO;
ac27a0ec 4534
240799cd
TT
4535 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4536 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4537 if (!gdp)
ac27a0ec
DK
4538 return -EIO;
4539
240799cd
TT
4540 /*
4541 * Figure out the offset within the block group inode table
4542 */
4543 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4544 inode_offset = ((inode->i_ino - 1) %
4545 EXT4_INODES_PER_GROUP(sb));
4546 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4547 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4548
4549 bh = sb_getblk(sb, block);
ac27a0ec 4550 if (!bh) {
240799cd
TT
4551 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4552 "inode block - inode=%lu, block=%llu",
4553 inode->i_ino, block);
ac27a0ec
DK
4554 return -EIO;
4555 }
4556 if (!buffer_uptodate(bh)) {
4557 lock_buffer(bh);
9c83a923
HK
4558
4559 /*
4560 * If the buffer has the write error flag, we have failed
4561 * to write out another inode in the same block. In this
4562 * case, we don't have to read the block because we may
4563 * read the old inode data successfully.
4564 */
4565 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4566 set_buffer_uptodate(bh);
4567
ac27a0ec
DK
4568 if (buffer_uptodate(bh)) {
4569 /* someone brought it uptodate while we waited */
4570 unlock_buffer(bh);
4571 goto has_buffer;
4572 }
4573
4574 /*
4575 * If we have all information of the inode in memory and this
4576 * is the only valid inode in the block, we need not read the
4577 * block.
4578 */
4579 if (in_mem) {
4580 struct buffer_head *bitmap_bh;
240799cd 4581 int i, start;
ac27a0ec 4582
240799cd 4583 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4584
240799cd
TT
4585 /* Is the inode bitmap in cache? */
4586 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
4587 if (!bitmap_bh)
4588 goto make_io;
4589
4590 /*
4591 * If the inode bitmap isn't in cache then the
4592 * optimisation may end up performing two reads instead
4593 * of one, so skip it.
4594 */
4595 if (!buffer_uptodate(bitmap_bh)) {
4596 brelse(bitmap_bh);
4597 goto make_io;
4598 }
240799cd 4599 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4600 if (i == inode_offset)
4601 continue;
617ba13b 4602 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4603 break;
4604 }
4605 brelse(bitmap_bh);
240799cd 4606 if (i == start + inodes_per_block) {
ac27a0ec
DK
4607 /* all other inodes are free, so skip I/O */
4608 memset(bh->b_data, 0, bh->b_size);
4609 set_buffer_uptodate(bh);
4610 unlock_buffer(bh);
4611 goto has_buffer;
4612 }
4613 }
4614
4615make_io:
240799cd
TT
4616 /*
4617 * If we need to do any I/O, try to pre-readahead extra
4618 * blocks from the inode table.
4619 */
4620 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4621 ext4_fsblk_t b, end, table;
4622 unsigned num;
4623
4624 table = ext4_inode_table(sb, gdp);
b713a5ec 4625 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
4626 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4627 if (table > b)
4628 b = table;
4629 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4630 num = EXT4_INODES_PER_GROUP(sb);
4631 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4632 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 4633 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4634 table += num / inodes_per_block;
4635 if (end > table)
4636 end = table;
4637 while (b <= end)
4638 sb_breadahead(sb, b++);
4639 }
4640
ac27a0ec
DK
4641 /*
4642 * There are other valid inodes in the buffer, this inode
4643 * has in-inode xattrs, or we don't have this inode in memory.
4644 * Read the block from disk.
4645 */
4646 get_bh(bh);
4647 bh->b_end_io = end_buffer_read_sync;
4648 submit_bh(READ_META, bh);
4649 wait_on_buffer(bh);
4650 if (!buffer_uptodate(bh)) {
240799cd
TT
4651 ext4_error(sb, __func__,
4652 "unable to read inode block - inode=%lu, "
4653 "block=%llu", inode->i_ino, block);
ac27a0ec
DK
4654 brelse(bh);
4655 return -EIO;
4656 }
4657 }
4658has_buffer:
4659 iloc->bh = bh;
4660 return 0;
4661}
4662
617ba13b 4663int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4664{
4665 /* We have all inode data except xattrs in memory here. */
617ba13b
MC
4666 return __ext4_get_inode_loc(inode, iloc,
4667 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
ac27a0ec
DK
4668}
4669
617ba13b 4670void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4671{
617ba13b 4672 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4673
4674 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4675 if (flags & EXT4_SYNC_FL)
ac27a0ec 4676 inode->i_flags |= S_SYNC;
617ba13b 4677 if (flags & EXT4_APPEND_FL)
ac27a0ec 4678 inode->i_flags |= S_APPEND;
617ba13b 4679 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4680 inode->i_flags |= S_IMMUTABLE;
617ba13b 4681 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4682 inode->i_flags |= S_NOATIME;
617ba13b 4683 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4684 inode->i_flags |= S_DIRSYNC;
4685}
4686
ff9ddf7e
JK
4687/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4688void ext4_get_inode_flags(struct ext4_inode_info *ei)
4689{
4690 unsigned int flags = ei->vfs_inode.i_flags;
4691
4692 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4693 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4694 if (flags & S_SYNC)
4695 ei->i_flags |= EXT4_SYNC_FL;
4696 if (flags & S_APPEND)
4697 ei->i_flags |= EXT4_APPEND_FL;
4698 if (flags & S_IMMUTABLE)
4699 ei->i_flags |= EXT4_IMMUTABLE_FL;
4700 if (flags & S_NOATIME)
4701 ei->i_flags |= EXT4_NOATIME_FL;
4702 if (flags & S_DIRSYNC)
4703 ei->i_flags |= EXT4_DIRSYNC_FL;
4704}
de9a55b8 4705
0fc1b451 4706static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4707 struct ext4_inode_info *ei)
0fc1b451
AK
4708{
4709 blkcnt_t i_blocks ;
8180a562
AK
4710 struct inode *inode = &(ei->vfs_inode);
4711 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4712
4713 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4714 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4715 /* we are using combined 48 bit field */
4716 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4717 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
4718 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4719 /* i_blocks represent file system block size */
4720 return i_blocks << (inode->i_blkbits - 9);
4721 } else {
4722 return i_blocks;
4723 }
0fc1b451
AK
4724 } else {
4725 return le32_to_cpu(raw_inode->i_blocks_lo);
4726 }
4727}
ff9ddf7e 4728
1d1fe1ee 4729struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4730{
617ba13b
MC
4731 struct ext4_iloc iloc;
4732 struct ext4_inode *raw_inode;
1d1fe1ee 4733 struct ext4_inode_info *ei;
1d1fe1ee
DH
4734 struct inode *inode;
4735 long ret;
ac27a0ec
DK
4736 int block;
4737
1d1fe1ee
DH
4738 inode = iget_locked(sb, ino);
4739 if (!inode)
4740 return ERR_PTR(-ENOMEM);
4741 if (!(inode->i_state & I_NEW))
4742 return inode;
4743
4744 ei = EXT4_I(inode);
567f3e9a 4745 iloc.bh = 0;
ac27a0ec 4746
1d1fe1ee
DH
4747 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4748 if (ret < 0)
ac27a0ec 4749 goto bad_inode;
617ba13b 4750 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
4751 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4752 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4753 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4754 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4755 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4756 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4757 }
4758 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec
DK
4759
4760 ei->i_state = 0;
4761 ei->i_dir_start_lookup = 0;
4762 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4763 /* We now have enough fields to check if the inode was active or not.
4764 * This is needed because nfsd might try to access dead inodes
4765 * the test is that same one that e2fsck uses
4766 * NeilBrown 1999oct15
4767 */
4768 if (inode->i_nlink == 0) {
4769 if (inode->i_mode == 0 ||
617ba13b 4770 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 4771 /* this inode is deleted */
1d1fe1ee 4772 ret = -ESTALE;
ac27a0ec
DK
4773 goto bad_inode;
4774 }
4775 /* The only unlinked inodes we let through here have
4776 * valid i_mode and are being read by the orphan
4777 * recovery code: that's fine, we're about to complete
4778 * the process of deleting those. */
4779 }
ac27a0ec 4780 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4781 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4782 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4783 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4784 ei->i_file_acl |=
4785 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4786 inode->i_size = ext4_isize(raw_inode);
ac27a0ec
DK
4787 ei->i_disksize = inode->i_size;
4788 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4789 ei->i_block_group = iloc.block_group;
a4912123 4790 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4791 /*
4792 * NOTE! The in-memory inode i_data array is in little-endian order
4793 * even on big-endian machines: we do NOT byteswap the block numbers!
4794 */
617ba13b 4795 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4796 ei->i_data[block] = raw_inode->i_block[block];
4797 INIT_LIST_HEAD(&ei->i_orphan);
4798
0040d987 4799 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 4800 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 4801 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 4802 EXT4_INODE_SIZE(inode->i_sb)) {
1d1fe1ee 4803 ret = -EIO;
ac27a0ec 4804 goto bad_inode;
e5d2861f 4805 }
ac27a0ec
DK
4806 if (ei->i_extra_isize == 0) {
4807 /* The extra space is currently unused. Use it. */
617ba13b
MC
4808 ei->i_extra_isize = sizeof(struct ext4_inode) -
4809 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
4810 } else {
4811 __le32 *magic = (void *)raw_inode +
617ba13b 4812 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 4813 ei->i_extra_isize;
617ba13b 4814 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
de9a55b8 4815 ei->i_state |= EXT4_STATE_XATTR;
ac27a0ec
DK
4816 }
4817 } else
4818 ei->i_extra_isize = 0;
4819
ef7f3835
KS
4820 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4821 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4822 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4823 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4824
25ec56b5
JNC
4825 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4826 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4827 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4828 inode->i_version |=
4829 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4830 }
4831
c4b5a614 4832 ret = 0;
485c26ec 4833 if (ei->i_file_acl &&
1032988c 4834 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
485c26ec
TT
4835 ext4_error(sb, __func__,
4836 "bad extended attribute block %llu in inode #%lu",
4837 ei->i_file_acl, inode->i_ino);
4838 ret = -EIO;
4839 goto bad_inode;
4840 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
c4b5a614
TT
4841 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4842 (S_ISLNK(inode->i_mode) &&
4843 !ext4_inode_is_fast_symlink(inode)))
4844 /* Validate extent which is part of inode */
4845 ret = ext4_ext_check_inode(inode);
de9a55b8 4846 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
fe2c8191
TN
4847 (S_ISLNK(inode->i_mode) &&
4848 !ext4_inode_is_fast_symlink(inode))) {
de9a55b8 4849 /* Validate block references which are part of inode */
fe2c8191
TN
4850 ret = ext4_check_inode_blockref(inode);
4851 }
567f3e9a 4852 if (ret)
de9a55b8 4853 goto bad_inode;
7a262f7c 4854
ac27a0ec 4855 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4856 inode->i_op = &ext4_file_inode_operations;
4857 inode->i_fop = &ext4_file_operations;
4858 ext4_set_aops(inode);
ac27a0ec 4859 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4860 inode->i_op = &ext4_dir_inode_operations;
4861 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4862 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4863 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4864 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4865 nd_terminate_link(ei->i_data, inode->i_size,
4866 sizeof(ei->i_data) - 1);
4867 } else {
617ba13b
MC
4868 inode->i_op = &ext4_symlink_inode_operations;
4869 ext4_set_aops(inode);
ac27a0ec 4870 }
563bdd61
TT
4871 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4872 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4873 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4874 if (raw_inode->i_block[0])
4875 init_special_inode(inode, inode->i_mode,
4876 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4877 else
4878 init_special_inode(inode, inode->i_mode,
4879 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 4880 } else {
563bdd61 4881 ret = -EIO;
de9a55b8 4882 ext4_error(inode->i_sb, __func__,
563bdd61
TT
4883 "bogus i_mode (%o) for inode=%lu",
4884 inode->i_mode, inode->i_ino);
4885 goto bad_inode;
ac27a0ec 4886 }
af5bc92d 4887 brelse(iloc.bh);
617ba13b 4888 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4889 unlock_new_inode(inode);
4890 return inode;
ac27a0ec
DK
4891
4892bad_inode:
567f3e9a 4893 brelse(iloc.bh);
1d1fe1ee
DH
4894 iget_failed(inode);
4895 return ERR_PTR(ret);
ac27a0ec
DK
4896}
4897
0fc1b451
AK
4898static int ext4_inode_blocks_set(handle_t *handle,
4899 struct ext4_inode *raw_inode,
4900 struct ext4_inode_info *ei)
4901{
4902 struct inode *inode = &(ei->vfs_inode);
4903 u64 i_blocks = inode->i_blocks;
4904 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4905
4906 if (i_blocks <= ~0U) {
4907 /*
4908 * i_blocks can be represnted in a 32 bit variable
4909 * as multiple of 512 bytes
4910 */
8180a562 4911 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4912 raw_inode->i_blocks_high = 0;
8180a562 4913 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
f287a1a5
TT
4914 return 0;
4915 }
4916 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4917 return -EFBIG;
4918
4919 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4920 /*
4921 * i_blocks can be represented in a 48 bit variable
4922 * as multiple of 512 bytes
4923 */
8180a562 4924 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4925 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 4926 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 4927 } else {
8180a562
AK
4928 ei->i_flags |= EXT4_HUGE_FILE_FL;
4929 /* i_block is stored in file system block size */
4930 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4931 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4932 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4933 }
f287a1a5 4934 return 0;
0fc1b451
AK
4935}
4936
ac27a0ec
DK
4937/*
4938 * Post the struct inode info into an on-disk inode location in the
4939 * buffer-cache. This gobbles the caller's reference to the
4940 * buffer_head in the inode location struct.
4941 *
4942 * The caller must have write access to iloc->bh.
4943 */
617ba13b 4944static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4945 struct inode *inode,
830156c7 4946 struct ext4_iloc *iloc)
ac27a0ec 4947{
617ba13b
MC
4948 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4949 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4950 struct buffer_head *bh = iloc->bh;
4951 int err = 0, rc, block;
4952
4953 /* For fields not not tracking in the in-memory inode,
4954 * initialise them to zero for new inodes. */
617ba13b
MC
4955 if (ei->i_state & EXT4_STATE_NEW)
4956 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4957
ff9ddf7e 4958 ext4_get_inode_flags(ei);
ac27a0ec 4959 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 4960 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4961 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4962 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4963/*
4964 * Fix up interoperability with old kernels. Otherwise, old inodes get
4965 * re-used with the upper 16 bits of the uid/gid intact
4966 */
af5bc92d 4967 if (!ei->i_dtime) {
ac27a0ec
DK
4968 raw_inode->i_uid_high =
4969 cpu_to_le16(high_16_bits(inode->i_uid));
4970 raw_inode->i_gid_high =
4971 cpu_to_le16(high_16_bits(inode->i_gid));
4972 } else {
4973 raw_inode->i_uid_high = 0;
4974 raw_inode->i_gid_high = 0;
4975 }
4976 } else {
4977 raw_inode->i_uid_low =
4978 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4979 raw_inode->i_gid_low =
4980 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4981 raw_inode->i_uid_high = 0;
4982 raw_inode->i_gid_high = 0;
4983 }
4984 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4985
4986 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4987 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4988 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4989 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4990
0fc1b451
AK
4991 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4992 goto out_brelse;
ac27a0ec 4993 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1b9c12f4 4994 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
9b8f1f01
MC
4995 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4996 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4997 raw_inode->i_file_acl_high =
4998 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4999 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
5000 ext4_isize_set(raw_inode, ei->i_disksize);
5001 if (ei->i_disksize > 0x7fffffffULL) {
5002 struct super_block *sb = inode->i_sb;
5003 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5004 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5005 EXT4_SB(sb)->s_es->s_rev_level ==
5006 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5007 /* If this is the first large file
5008 * created, add a flag to the superblock.
5009 */
5010 err = ext4_journal_get_write_access(handle,
5011 EXT4_SB(sb)->s_sbh);
5012 if (err)
5013 goto out_brelse;
5014 ext4_update_dynamic_rev(sb);
5015 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 5016 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 5017 sb->s_dirt = 1;
0390131b
FM
5018 ext4_handle_sync(handle);
5019 err = ext4_handle_dirty_metadata(handle, inode,
a48380f7 5020 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
5021 }
5022 }
5023 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5024 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5025 if (old_valid_dev(inode->i_rdev)) {
5026 raw_inode->i_block[0] =
5027 cpu_to_le32(old_encode_dev(inode->i_rdev));
5028 raw_inode->i_block[1] = 0;
5029 } else {
5030 raw_inode->i_block[0] = 0;
5031 raw_inode->i_block[1] =
5032 cpu_to_le32(new_encode_dev(inode->i_rdev));
5033 raw_inode->i_block[2] = 0;
5034 }
de9a55b8
TT
5035 } else
5036 for (block = 0; block < EXT4_N_BLOCKS; block++)
5037 raw_inode->i_block[block] = ei->i_data[block];
ac27a0ec 5038
25ec56b5
JNC
5039 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5040 if (ei->i_extra_isize) {
5041 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5042 raw_inode->i_version_hi =
5043 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 5044 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
5045 }
5046
830156c7
FM
5047 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5048 rc = ext4_handle_dirty_metadata(handle, inode, bh);
5049 if (!err)
5050 err = rc;
617ba13b 5051 ei->i_state &= ~EXT4_STATE_NEW;
ac27a0ec
DK
5052
5053out_brelse:
af5bc92d 5054 brelse(bh);
617ba13b 5055 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5056 return err;
5057}
5058
5059/*
617ba13b 5060 * ext4_write_inode()
ac27a0ec
DK
5061 *
5062 * We are called from a few places:
5063 *
5064 * - Within generic_file_write() for O_SYNC files.
5065 * Here, there will be no transaction running. We wait for any running
5066 * trasnaction to commit.
5067 *
5068 * - Within sys_sync(), kupdate and such.
5069 * We wait on commit, if tol to.
5070 *
5071 * - Within prune_icache() (PF_MEMALLOC == true)
5072 * Here we simply return. We can't afford to block kswapd on the
5073 * journal commit.
5074 *
5075 * In all cases it is actually safe for us to return without doing anything,
5076 * because the inode has been copied into a raw inode buffer in
617ba13b 5077 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
5078 * knfsd.
5079 *
5080 * Note that we are absolutely dependent upon all inode dirtiers doing the
5081 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5082 * which we are interested.
5083 *
5084 * It would be a bug for them to not do this. The code:
5085 *
5086 * mark_inode_dirty(inode)
5087 * stuff();
5088 * inode->i_size = expr;
5089 *
5090 * is in error because a kswapd-driven write_inode() could occur while
5091 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5092 * will no longer be on the superblock's dirty inode list.
5093 */
617ba13b 5094int ext4_write_inode(struct inode *inode, int wait)
ac27a0ec 5095{
91ac6f43
FM
5096 int err;
5097
ac27a0ec
DK
5098 if (current->flags & PF_MEMALLOC)
5099 return 0;
5100
91ac6f43
FM
5101 if (EXT4_SB(inode->i_sb)->s_journal) {
5102 if (ext4_journal_current_handle()) {
5103 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5104 dump_stack();
5105 return -EIO;
5106 }
ac27a0ec 5107
91ac6f43
FM
5108 if (!wait)
5109 return 0;
5110
5111 err = ext4_force_commit(inode->i_sb);
5112 } else {
5113 struct ext4_iloc iloc;
ac27a0ec 5114
91ac6f43
FM
5115 err = ext4_get_inode_loc(inode, &iloc);
5116 if (err)
5117 return err;
830156c7
FM
5118 if (wait)
5119 sync_dirty_buffer(iloc.bh);
5120 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5121 ext4_error(inode->i_sb, __func__,
5122 "IO error syncing inode, "
5123 "inode=%lu, block=%llu",
5124 inode->i_ino,
5125 (unsigned long long)iloc.bh->b_blocknr);
5126 err = -EIO;
5127 }
91ac6f43
FM
5128 }
5129 return err;
ac27a0ec
DK
5130}
5131
5132/*
617ba13b 5133 * ext4_setattr()
ac27a0ec
DK
5134 *
5135 * Called from notify_change.
5136 *
5137 * We want to trap VFS attempts to truncate the file as soon as
5138 * possible. In particular, we want to make sure that when the VFS
5139 * shrinks i_size, we put the inode on the orphan list and modify
5140 * i_disksize immediately, so that during the subsequent flushing of
5141 * dirty pages and freeing of disk blocks, we can guarantee that any
5142 * commit will leave the blocks being flushed in an unused state on
5143 * disk. (On recovery, the inode will get truncated and the blocks will
5144 * be freed, so we have a strong guarantee that no future commit will
5145 * leave these blocks visible to the user.)
5146 *
678aaf48
JK
5147 * Another thing we have to assure is that if we are in ordered mode
5148 * and inode is still attached to the committing transaction, we must
5149 * we start writeout of all the dirty pages which are being truncated.
5150 * This way we are sure that all the data written in the previous
5151 * transaction are already on disk (truncate waits for pages under
5152 * writeback).
5153 *
5154 * Called with inode->i_mutex down.
ac27a0ec 5155 */
617ba13b 5156int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
5157{
5158 struct inode *inode = dentry->d_inode;
5159 int error, rc = 0;
5160 const unsigned int ia_valid = attr->ia_valid;
5161
5162 error = inode_change_ok(inode, attr);
5163 if (error)
5164 return error;
5165
5166 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5167 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5168 handle_t *handle;
5169
5170 /* (user+group)*(old+new) structure, inode write (sb,
5171 * inode block, ? - but truncate inode update has it) */
617ba13b
MC
5172 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
5173 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
5174 if (IS_ERR(handle)) {
5175 error = PTR_ERR(handle);
5176 goto err_out;
5177 }
a269eb18 5178 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
ac27a0ec 5179 if (error) {
617ba13b 5180 ext4_journal_stop(handle);
ac27a0ec
DK
5181 return error;
5182 }
5183 /* Update corresponding info in inode so that everything is in
5184 * one transaction */
5185 if (attr->ia_valid & ATTR_UID)
5186 inode->i_uid = attr->ia_uid;
5187 if (attr->ia_valid & ATTR_GID)
5188 inode->i_gid = attr->ia_gid;
617ba13b
MC
5189 error = ext4_mark_inode_dirty(handle, inode);
5190 ext4_journal_stop(handle);
ac27a0ec
DK
5191 }
5192
e2b46574
ES
5193 if (attr->ia_valid & ATTR_SIZE) {
5194 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5195 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5196
5197 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5198 error = -EFBIG;
5199 goto err_out;
5200 }
5201 }
5202 }
5203
ac27a0ec
DK
5204 if (S_ISREG(inode->i_mode) &&
5205 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
5206 handle_t *handle;
5207
617ba13b 5208 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
5209 if (IS_ERR(handle)) {
5210 error = PTR_ERR(handle);
5211 goto err_out;
5212 }
5213
617ba13b
MC
5214 error = ext4_orphan_add(handle, inode);
5215 EXT4_I(inode)->i_disksize = attr->ia_size;
5216 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
5217 if (!error)
5218 error = rc;
617ba13b 5219 ext4_journal_stop(handle);
678aaf48
JK
5220
5221 if (ext4_should_order_data(inode)) {
5222 error = ext4_begin_ordered_truncate(inode,
5223 attr->ia_size);
5224 if (error) {
5225 /* Do as much error cleanup as possible */
5226 handle = ext4_journal_start(inode, 3);
5227 if (IS_ERR(handle)) {
5228 ext4_orphan_del(NULL, inode);
5229 goto err_out;
5230 }
5231 ext4_orphan_del(handle, inode);
5232 ext4_journal_stop(handle);
5233 goto err_out;
5234 }
5235 }
ac27a0ec
DK
5236 }
5237
5238 rc = inode_setattr(inode, attr);
5239
617ba13b 5240 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
5241 * transaction handle at all, we need to clean up the in-core
5242 * orphan list manually. */
5243 if (inode->i_nlink)
617ba13b 5244 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
5245
5246 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 5247 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
5248
5249err_out:
617ba13b 5250 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5251 if (!error)
5252 error = rc;
5253 return error;
5254}
5255
3e3398a0
MC
5256int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5257 struct kstat *stat)
5258{
5259 struct inode *inode;
5260 unsigned long delalloc_blocks;
5261
5262 inode = dentry->d_inode;
5263 generic_fillattr(inode, stat);
5264
5265 /*
5266 * We can't update i_blocks if the block allocation is delayed
5267 * otherwise in the case of system crash before the real block
5268 * allocation is done, we will have i_blocks inconsistent with
5269 * on-disk file blocks.
5270 * We always keep i_blocks updated together with real
5271 * allocation. But to not confuse with user, stat
5272 * will return the blocks that include the delayed allocation
5273 * blocks for this file.
5274 */
5275 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5276 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5277 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5278
5279 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5280 return 0;
5281}
ac27a0ec 5282
a02908f1
MC
5283static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5284 int chunk)
5285{
5286 int indirects;
5287
5288 /* if nrblocks are contiguous */
5289 if (chunk) {
5290 /*
5291 * With N contiguous data blocks, it need at most
5292 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5293 * 2 dindirect blocks
5294 * 1 tindirect block
5295 */
5296 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5297 return indirects + 3;
5298 }
5299 /*
5300 * if nrblocks are not contiguous, worse case, each block touch
5301 * a indirect block, and each indirect block touch a double indirect
5302 * block, plus a triple indirect block
5303 */
5304 indirects = nrblocks * 2 + 1;
5305 return indirects;
5306}
5307
5308static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5309{
5310 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
ac51d837
TT
5311 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5312 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 5313}
ac51d837 5314
ac27a0ec 5315/*
a02908f1
MC
5316 * Account for index blocks, block groups bitmaps and block group
5317 * descriptor blocks if modify datablocks and index blocks
5318 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5319 *
a02908f1
MC
5320 * If datablocks are discontiguous, they are possible to spread over
5321 * different block groups too. If they are contiugous, with flexbg,
5322 * they could still across block group boundary.
ac27a0ec 5323 *
a02908f1
MC
5324 * Also account for superblock, inode, quota and xattr blocks
5325 */
5326int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5327{
8df9675f
TT
5328 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5329 int gdpblocks;
a02908f1
MC
5330 int idxblocks;
5331 int ret = 0;
5332
5333 /*
5334 * How many index blocks need to touch to modify nrblocks?
5335 * The "Chunk" flag indicating whether the nrblocks is
5336 * physically contiguous on disk
5337 *
5338 * For Direct IO and fallocate, they calls get_block to allocate
5339 * one single extent at a time, so they could set the "Chunk" flag
5340 */
5341 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5342
5343 ret = idxblocks;
5344
5345 /*
5346 * Now let's see how many group bitmaps and group descriptors need
5347 * to account
5348 */
5349 groups = idxblocks;
5350 if (chunk)
5351 groups += 1;
5352 else
5353 groups += nrblocks;
5354
5355 gdpblocks = groups;
8df9675f
TT
5356 if (groups > ngroups)
5357 groups = ngroups;
a02908f1
MC
5358 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5359 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5360
5361 /* bitmaps and block group descriptor blocks */
5362 ret += groups + gdpblocks;
5363
5364 /* Blocks for super block, inode, quota and xattr blocks */
5365 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5366
5367 return ret;
5368}
5369
5370/*
5371 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
5372 * the modification of a single pages into a single transaction,
5373 * which may include multiple chunks of block allocations.
ac27a0ec 5374 *
525f4ed8 5375 * This could be called via ext4_write_begin()
ac27a0ec 5376 *
525f4ed8 5377 * We need to consider the worse case, when
a02908f1 5378 * one new block per extent.
ac27a0ec 5379 */
a86c6181 5380int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5381{
617ba13b 5382 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5383 int ret;
5384
a02908f1 5385 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 5386
a02908f1 5387 /* Account for data blocks for journalled mode */
617ba13b 5388 if (ext4_should_journal_data(inode))
a02908f1 5389 ret += bpp;
ac27a0ec
DK
5390 return ret;
5391}
f3bd1f3f
MC
5392
5393/*
5394 * Calculate the journal credits for a chunk of data modification.
5395 *
5396 * This is called from DIO, fallocate or whoever calling
12b7ac17 5397 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
f3bd1f3f
MC
5398 *
5399 * journal buffers for data blocks are not included here, as DIO
5400 * and fallocate do no need to journal data buffers.
5401 */
5402int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5403{
5404 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5405}
5406
ac27a0ec 5407/*
617ba13b 5408 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5409 * Give this, we know that the caller already has write access to iloc->bh.
5410 */
617ba13b 5411int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5412 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5413{
5414 int err = 0;
5415
25ec56b5
JNC
5416 if (test_opt(inode->i_sb, I_VERSION))
5417 inode_inc_iversion(inode);
5418
ac27a0ec
DK
5419 /* the do_update_inode consumes one bh->b_count */
5420 get_bh(iloc->bh);
5421
dab291af 5422 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5423 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5424 put_bh(iloc->bh);
5425 return err;
5426}
5427
5428/*
5429 * On success, We end up with an outstanding reference count against
5430 * iloc->bh. This _must_ be cleaned up later.
5431 */
5432
5433int
617ba13b
MC
5434ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5435 struct ext4_iloc *iloc)
ac27a0ec 5436{
0390131b
FM
5437 int err;
5438
5439 err = ext4_get_inode_loc(inode, iloc);
5440 if (!err) {
5441 BUFFER_TRACE(iloc->bh, "get_write_access");
5442 err = ext4_journal_get_write_access(handle, iloc->bh);
5443 if (err) {
5444 brelse(iloc->bh);
5445 iloc->bh = NULL;
ac27a0ec
DK
5446 }
5447 }
617ba13b 5448 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5449 return err;
5450}
5451
6dd4ee7c
KS
5452/*
5453 * Expand an inode by new_extra_isize bytes.
5454 * Returns 0 on success or negative error number on failure.
5455 */
1d03ec98
AK
5456static int ext4_expand_extra_isize(struct inode *inode,
5457 unsigned int new_extra_isize,
5458 struct ext4_iloc iloc,
5459 handle_t *handle)
6dd4ee7c
KS
5460{
5461 struct ext4_inode *raw_inode;
5462 struct ext4_xattr_ibody_header *header;
5463 struct ext4_xattr_entry *entry;
5464
5465 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5466 return 0;
5467
5468 raw_inode = ext4_raw_inode(&iloc);
5469
5470 header = IHDR(inode, raw_inode);
5471 entry = IFIRST(header);
5472
5473 /* No extended attributes present */
5474 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5475 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5476 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5477 new_extra_isize);
5478 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5479 return 0;
5480 }
5481
5482 /* try to expand with EAs present */
5483 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5484 raw_inode, handle);
5485}
5486
ac27a0ec
DK
5487/*
5488 * What we do here is to mark the in-core inode as clean with respect to inode
5489 * dirtiness (it may still be data-dirty).
5490 * This means that the in-core inode may be reaped by prune_icache
5491 * without having to perform any I/O. This is a very good thing,
5492 * because *any* task may call prune_icache - even ones which
5493 * have a transaction open against a different journal.
5494 *
5495 * Is this cheating? Not really. Sure, we haven't written the
5496 * inode out, but prune_icache isn't a user-visible syncing function.
5497 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5498 * we start and wait on commits.
5499 *
5500 * Is this efficient/effective? Well, we're being nice to the system
5501 * by cleaning up our inodes proactively so they can be reaped
5502 * without I/O. But we are potentially leaving up to five seconds'
5503 * worth of inodes floating about which prune_icache wants us to
5504 * write out. One way to fix that would be to get prune_icache()
5505 * to do a write_super() to free up some memory. It has the desired
5506 * effect.
5507 */
617ba13b 5508int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5509{
617ba13b 5510 struct ext4_iloc iloc;
6dd4ee7c
KS
5511 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5512 static unsigned int mnt_count;
5513 int err, ret;
ac27a0ec
DK
5514
5515 might_sleep();
617ba13b 5516 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5517 if (ext4_handle_valid(handle) &&
5518 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
6dd4ee7c
KS
5519 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5520 /*
5521 * We need extra buffer credits since we may write into EA block
5522 * with this same handle. If journal_extend fails, then it will
5523 * only result in a minor loss of functionality for that inode.
5524 * If this is felt to be critical, then e2fsck should be run to
5525 * force a large enough s_min_extra_isize.
5526 */
5527 if ((jbd2_journal_extend(handle,
5528 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5529 ret = ext4_expand_extra_isize(inode,
5530 sbi->s_want_extra_isize,
5531 iloc, handle);
5532 if (ret) {
5533 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
c1bddad9
AK
5534 if (mnt_count !=
5535 le16_to_cpu(sbi->s_es->s_mnt_count)) {
46e665e9 5536 ext4_warning(inode->i_sb, __func__,
6dd4ee7c
KS
5537 "Unable to expand inode %lu. Delete"
5538 " some EAs or run e2fsck.",
5539 inode->i_ino);
c1bddad9
AK
5540 mnt_count =
5541 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5542 }
5543 }
5544 }
5545 }
ac27a0ec 5546 if (!err)
617ba13b 5547 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5548 return err;
5549}
5550
5551/*
617ba13b 5552 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5553 *
5554 * We're really interested in the case where a file is being extended.
5555 * i_size has been changed by generic_commit_write() and we thus need
5556 * to include the updated inode in the current transaction.
5557 *
a269eb18 5558 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5559 * are allocated to the file.
5560 *
5561 * If the inode is marked synchronous, we don't honour that here - doing
5562 * so would cause a commit on atime updates, which we don't bother doing.
5563 * We handle synchronous inodes at the highest possible level.
5564 */
617ba13b 5565void ext4_dirty_inode(struct inode *inode)
ac27a0ec 5566{
ac27a0ec
DK
5567 handle_t *handle;
5568
617ba13b 5569 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
5570 if (IS_ERR(handle))
5571 goto out;
f3dc272f 5572
f3dc272f
CW
5573 ext4_mark_inode_dirty(handle, inode);
5574
617ba13b 5575 ext4_journal_stop(handle);
ac27a0ec
DK
5576out:
5577 return;
5578}
5579
5580#if 0
5581/*
5582 * Bind an inode's backing buffer_head into this transaction, to prevent
5583 * it from being flushed to disk early. Unlike
617ba13b 5584 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5585 * returns no iloc structure, so the caller needs to repeat the iloc
5586 * lookup to mark the inode dirty later.
5587 */
617ba13b 5588static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5589{
617ba13b 5590 struct ext4_iloc iloc;
ac27a0ec
DK
5591
5592 int err = 0;
5593 if (handle) {
617ba13b 5594 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5595 if (!err) {
5596 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5597 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5598 if (!err)
0390131b
FM
5599 err = ext4_handle_dirty_metadata(handle,
5600 inode,
5601 iloc.bh);
ac27a0ec
DK
5602 brelse(iloc.bh);
5603 }
5604 }
617ba13b 5605 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5606 return err;
5607}
5608#endif
5609
617ba13b 5610int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5611{
5612 journal_t *journal;
5613 handle_t *handle;
5614 int err;
5615
5616 /*
5617 * We have to be very careful here: changing a data block's
5618 * journaling status dynamically is dangerous. If we write a
5619 * data block to the journal, change the status and then delete
5620 * that block, we risk forgetting to revoke the old log record
5621 * from the journal and so a subsequent replay can corrupt data.
5622 * So, first we make sure that the journal is empty and that
5623 * nobody is changing anything.
5624 */
5625
617ba13b 5626 journal = EXT4_JOURNAL(inode);
0390131b
FM
5627 if (!journal)
5628 return 0;
d699594d 5629 if (is_journal_aborted(journal))
ac27a0ec
DK
5630 return -EROFS;
5631
dab291af
MC
5632 jbd2_journal_lock_updates(journal);
5633 jbd2_journal_flush(journal);
ac27a0ec
DK
5634
5635 /*
5636 * OK, there are no updates running now, and all cached data is
5637 * synced to disk. We are now in a completely consistent state
5638 * which doesn't have anything in the journal, and we know that
5639 * no filesystem updates are running, so it is safe to modify
5640 * the inode's in-core data-journaling state flag now.
5641 */
5642
5643 if (val)
617ba13b 5644 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
ac27a0ec 5645 else
617ba13b
MC
5646 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5647 ext4_set_aops(inode);
ac27a0ec 5648
dab291af 5649 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
5650
5651 /* Finally we can mark the inode as dirty. */
5652
617ba13b 5653 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
5654 if (IS_ERR(handle))
5655 return PTR_ERR(handle);
5656
617ba13b 5657 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5658 ext4_handle_sync(handle);
617ba13b
MC
5659 ext4_journal_stop(handle);
5660 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5661
5662 return err;
5663}
2e9ee850
AK
5664
5665static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5666{
5667 return !buffer_mapped(bh);
5668}
5669
c2ec175c 5670int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5671{
c2ec175c 5672 struct page *page = vmf->page;
2e9ee850
AK
5673 loff_t size;
5674 unsigned long len;
5675 int ret = -EINVAL;
79f0be8d 5676 void *fsdata;
2e9ee850
AK
5677 struct file *file = vma->vm_file;
5678 struct inode *inode = file->f_path.dentry->d_inode;
5679 struct address_space *mapping = inode->i_mapping;
5680
5681 /*
5682 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5683 * get i_mutex because we are already holding mmap_sem.
5684 */
5685 down_read(&inode->i_alloc_sem);
5686 size = i_size_read(inode);
5687 if (page->mapping != mapping || size <= page_offset(page)
5688 || !PageUptodate(page)) {
5689 /* page got truncated from under us? */
5690 goto out_unlock;
5691 }
5692 ret = 0;
5693 if (PageMappedToDisk(page))
5694 goto out_unlock;
5695
5696 if (page->index == size >> PAGE_CACHE_SHIFT)
5697 len = size & ~PAGE_CACHE_MASK;
5698 else
5699 len = PAGE_CACHE_SIZE;
5700
a827eaff
AK
5701 lock_page(page);
5702 /*
5703 * return if we have all the buffers mapped. This avoid
5704 * the need to call write_begin/write_end which does a
5705 * journal_start/journal_stop which can block and take
5706 * long time
5707 */
2e9ee850 5708 if (page_has_buffers(page)) {
2e9ee850 5709 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
a827eaff
AK
5710 ext4_bh_unmapped)) {
5711 unlock_page(page);
2e9ee850 5712 goto out_unlock;
a827eaff 5713 }
2e9ee850 5714 }
a827eaff 5715 unlock_page(page);
2e9ee850
AK
5716 /*
5717 * OK, we need to fill the hole... Do write_begin write_end
5718 * to do block allocation/reservation.We are not holding
5719 * inode.i__mutex here. That allow * parallel write_begin,
5720 * write_end call. lock_page prevent this from happening
5721 * on the same page though
5722 */
5723 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 5724 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
5725 if (ret < 0)
5726 goto out_unlock;
5727 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 5728 len, len, page, fsdata);
2e9ee850
AK
5729 if (ret < 0)
5730 goto out_unlock;
5731 ret = 0;
5732out_unlock:
c2ec175c
NP
5733 if (ret)
5734 ret = VM_FAULT_SIGBUS;
2e9ee850
AK
5735 up_read(&inode->i_alloc_sem);
5736 return ret;
5737}