]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ext4/inode.c
ext4: Fix different block exchange issue in EXT4_IOC_MOVE_EXT
[net-next-2.6.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
9bffad1e 40
3dcf5451 41#include "ext4_jbd2.h"
ac27a0ec
DK
42#include "xattr.h"
43#include "acl.h"
d2a17637 44#include "ext4_extents.h"
ac27a0ec 45
9bffad1e
TT
46#include <trace/events/ext4.h>
47
a1d6cc56
AK
48#define MPAGE_DA_EXTENT_TAIL 0x01
49
678aaf48
JK
50static inline int ext4_begin_ordered_truncate(struct inode *inode,
51 loff_t new_size)
52{
7f5aa215
JK
53 return jbd2_journal_begin_ordered_truncate(
54 EXT4_SB(inode->i_sb)->s_journal,
55 &EXT4_I(inode)->jinode,
56 new_size);
678aaf48
JK
57}
58
64769240
AT
59static void ext4_invalidatepage(struct page *page, unsigned long offset);
60
ac27a0ec
DK
61/*
62 * Test whether an inode is a fast symlink.
63 */
617ba13b 64static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 65{
617ba13b 66 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
67 (inode->i_sb->s_blocksize >> 9) : 0;
68
69 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
70}
71
72/*
617ba13b 73 * The ext4 forget function must perform a revoke if we are freeing data
ac27a0ec
DK
74 * which has been journaled. Metadata (eg. indirect blocks) must be
75 * revoked in all cases.
76 *
77 * "bh" may be NULL: a metadata block may have been freed from memory
78 * but there may still be a record of it in the journal, and that record
79 * still needs to be revoked.
0390131b 80 *
e6b5d301
CW
81 * If the handle isn't valid we're not journaling, but we still need to
82 * call into ext4_journal_revoke() to put the buffer head.
ac27a0ec 83 */
617ba13b 84int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
de9a55b8 85 struct buffer_head *bh, ext4_fsblk_t blocknr)
ac27a0ec
DK
86{
87 int err;
88
89 might_sleep();
90
91 BUFFER_TRACE(bh, "enter");
92
93 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
7f4520cc 94 "data mode %x\n",
ac27a0ec
DK
95 bh, is_metadata, inode->i_mode,
96 test_opt(inode->i_sb, DATA_FLAGS));
97
98 /* Never use the revoke function if we are doing full data
99 * journaling: there is no need to, and a V1 superblock won't
100 * support it. Otherwise, only skip the revoke on un-journaled
101 * data blocks. */
102
617ba13b
MC
103 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
104 (!is_metadata && !ext4_should_journal_data(inode))) {
ac27a0ec 105 if (bh) {
dab291af 106 BUFFER_TRACE(bh, "call jbd2_journal_forget");
617ba13b 107 return ext4_journal_forget(handle, bh);
ac27a0ec
DK
108 }
109 return 0;
110 }
111
112 /*
113 * data!=journal && (is_metadata || should_journal_data(inode))
114 */
617ba13b
MC
115 BUFFER_TRACE(bh, "call ext4_journal_revoke");
116 err = ext4_journal_revoke(handle, blocknr, bh);
ac27a0ec 117 if (err)
46e665e9 118 ext4_abort(inode->i_sb, __func__,
ac27a0ec
DK
119 "error %d when attempting revoke", err);
120 BUFFER_TRACE(bh, "exit");
121 return err;
122}
123
124/*
125 * Work out how many blocks we need to proceed with the next chunk of a
126 * truncate transaction.
127 */
128static unsigned long blocks_for_truncate(struct inode *inode)
129{
725d26d3 130 ext4_lblk_t needed;
ac27a0ec
DK
131
132 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
133
134 /* Give ourselves just enough room to cope with inodes in which
135 * i_blocks is corrupt: we've seen disk corruptions in the past
136 * which resulted in random data in an inode which looked enough
617ba13b 137 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
138 * will go a bit crazy if that happens, but at least we should
139 * try not to panic the whole kernel. */
140 if (needed < 2)
141 needed = 2;
142
143 /* But we need to bound the transaction so we don't overflow the
144 * journal. */
617ba13b
MC
145 if (needed > EXT4_MAX_TRANS_DATA)
146 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 147
617ba13b 148 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
149}
150
151/*
152 * Truncate transactions can be complex and absolutely huge. So we need to
153 * be able to restart the transaction at a conventient checkpoint to make
154 * sure we don't overflow the journal.
155 *
156 * start_transaction gets us a new handle for a truncate transaction,
157 * and extend_transaction tries to extend the existing one a bit. If
158 * extend fails, we need to propagate the failure up and restart the
159 * transaction in the top-level truncate loop. --sct
160 */
161static handle_t *start_transaction(struct inode *inode)
162{
163 handle_t *result;
164
617ba13b 165 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
166 if (!IS_ERR(result))
167 return result;
168
617ba13b 169 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
170 return result;
171}
172
173/*
174 * Try to extend this transaction for the purposes of truncation.
175 *
176 * Returns 0 if we managed to create more room. If we can't create more
177 * room, and the transaction must be restarted we return 1.
178 */
179static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
180{
0390131b
FM
181 if (!ext4_handle_valid(handle))
182 return 0;
183 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
ac27a0ec 184 return 0;
617ba13b 185 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
186 return 0;
187 return 1;
188}
189
190/*
191 * Restart the transaction associated with *handle. This does a commit,
192 * so before we call here everything must be consistently dirtied against
193 * this transaction.
194 */
487caeef
JK
195 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
196 int nblocks)
ac27a0ec 197{
487caeef
JK
198 int ret;
199
200 /*
201 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
202 * moment, get_block can be called only for blocks inside i_size since
203 * page cache has been already dropped and writes are blocked by
204 * i_mutex. So we can safely drop the i_data_sem here.
205 */
0390131b 206 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 207 jbd_debug(2, "restarting handle %p\n", handle);
487caeef
JK
208 up_write(&EXT4_I(inode)->i_data_sem);
209 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
210 down_write(&EXT4_I(inode)->i_data_sem);
211
212 return ret;
ac27a0ec
DK
213}
214
215/*
216 * Called at the last iput() if i_nlink is zero.
217 */
af5bc92d 218void ext4_delete_inode(struct inode *inode)
ac27a0ec
DK
219{
220 handle_t *handle;
bc965ab3 221 int err;
ac27a0ec 222
678aaf48
JK
223 if (ext4_should_order_data(inode))
224 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
225 truncate_inode_pages(&inode->i_data, 0);
226
227 if (is_bad_inode(inode))
228 goto no_delete;
229
bc965ab3 230 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 231 if (IS_ERR(handle)) {
bc965ab3 232 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
233 /*
234 * If we're going to skip the normal cleanup, we still need to
235 * make sure that the in-core orphan linked list is properly
236 * cleaned up.
237 */
617ba13b 238 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
239 goto no_delete;
240 }
241
242 if (IS_SYNC(inode))
0390131b 243 ext4_handle_sync(handle);
ac27a0ec 244 inode->i_size = 0;
bc965ab3
TT
245 err = ext4_mark_inode_dirty(handle, inode);
246 if (err) {
247 ext4_warning(inode->i_sb, __func__,
248 "couldn't mark inode dirty (err %d)", err);
249 goto stop_handle;
250 }
ac27a0ec 251 if (inode->i_blocks)
617ba13b 252 ext4_truncate(inode);
bc965ab3
TT
253
254 /*
255 * ext4_ext_truncate() doesn't reserve any slop when it
256 * restarts journal transactions; therefore there may not be
257 * enough credits left in the handle to remove the inode from
258 * the orphan list and set the dtime field.
259 */
0390131b 260 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
261 err = ext4_journal_extend(handle, 3);
262 if (err > 0)
263 err = ext4_journal_restart(handle, 3);
264 if (err != 0) {
265 ext4_warning(inode->i_sb, __func__,
266 "couldn't extend journal (err %d)", err);
267 stop_handle:
268 ext4_journal_stop(handle);
269 goto no_delete;
270 }
271 }
272
ac27a0ec 273 /*
617ba13b 274 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 275 * AKPM: I think this can be inside the above `if'.
617ba13b 276 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 277 * deletion of a non-existent orphan - this is because we don't
617ba13b 278 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
279 * (Well, we could do this if we need to, but heck - it works)
280 */
617ba13b
MC
281 ext4_orphan_del(handle, inode);
282 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
283
284 /*
285 * One subtle ordering requirement: if anything has gone wrong
286 * (transaction abort, IO errors, whatever), then we can still
287 * do these next steps (the fs will already have been marked as
288 * having errors), but we can't free the inode if the mark_dirty
289 * fails.
290 */
617ba13b 291 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
292 /* If that failed, just do the required in-core inode clear. */
293 clear_inode(inode);
294 else
617ba13b
MC
295 ext4_free_inode(handle, inode);
296 ext4_journal_stop(handle);
ac27a0ec
DK
297 return;
298no_delete:
299 clear_inode(inode); /* We must guarantee clearing of inode... */
300}
301
302typedef struct {
303 __le32 *p;
304 __le32 key;
305 struct buffer_head *bh;
306} Indirect;
307
308static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
309{
310 p->key = *(p->p = v);
311 p->bh = bh;
312}
313
ac27a0ec 314/**
617ba13b 315 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
316 * @inode: inode in question (we are only interested in its superblock)
317 * @i_block: block number to be parsed
318 * @offsets: array to store the offsets in
8c55e204
DK
319 * @boundary: set this non-zero if the referred-to block is likely to be
320 * followed (on disk) by an indirect block.
ac27a0ec 321 *
617ba13b 322 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
323 * for UNIX filesystems - tree of pointers anchored in the inode, with
324 * data blocks at leaves and indirect blocks in intermediate nodes.
325 * This function translates the block number into path in that tree -
326 * return value is the path length and @offsets[n] is the offset of
327 * pointer to (n+1)th node in the nth one. If @block is out of range
328 * (negative or too large) warning is printed and zero returned.
329 *
330 * Note: function doesn't find node addresses, so no IO is needed. All
331 * we need to know is the capacity of indirect blocks (taken from the
332 * inode->i_sb).
333 */
334
335/*
336 * Portability note: the last comparison (check that we fit into triple
337 * indirect block) is spelled differently, because otherwise on an
338 * architecture with 32-bit longs and 8Kb pages we might get into trouble
339 * if our filesystem had 8Kb blocks. We might use long long, but that would
340 * kill us on x86. Oh, well, at least the sign propagation does not matter -
341 * i_block would have to be negative in the very beginning, so we would not
342 * get there at all.
343 */
344
617ba13b 345static int ext4_block_to_path(struct inode *inode,
de9a55b8
TT
346 ext4_lblk_t i_block,
347 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 348{
617ba13b
MC
349 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
350 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
351 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
352 indirect_blocks = ptrs,
353 double_blocks = (1 << (ptrs_bits * 2));
354 int n = 0;
355 int final = 0;
356
c333e073 357 if (i_block < direct_blocks) {
ac27a0ec
DK
358 offsets[n++] = i_block;
359 final = direct_blocks;
af5bc92d 360 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 361 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
362 offsets[n++] = i_block;
363 final = ptrs;
364 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 365 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
366 offsets[n++] = i_block >> ptrs_bits;
367 offsets[n++] = i_block & (ptrs - 1);
368 final = ptrs;
369 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 370 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
371 offsets[n++] = i_block >> (ptrs_bits * 2);
372 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
373 offsets[n++] = i_block & (ptrs - 1);
374 final = ptrs;
375 } else {
e2b46574 376 ext4_warning(inode->i_sb, "ext4_block_to_path",
de9a55b8
TT
377 "block %lu > max in inode %lu",
378 i_block + direct_blocks +
379 indirect_blocks + double_blocks, inode->i_ino);
ac27a0ec
DK
380 }
381 if (boundary)
382 *boundary = final - 1 - (i_block & (ptrs - 1));
383 return n;
384}
385
fe2c8191 386static int __ext4_check_blockref(const char *function, struct inode *inode,
6fd058f7
TT
387 __le32 *p, unsigned int max)
388{
f73953c0 389 __le32 *bref = p;
6fd058f7
TT
390 unsigned int blk;
391
fe2c8191 392 while (bref < p+max) {
6fd058f7 393 blk = le32_to_cpu(*bref++);
de9a55b8
TT
394 if (blk &&
395 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
6fd058f7 396 blk, 1))) {
fe2c8191 397 ext4_error(inode->i_sb, function,
6fd058f7
TT
398 "invalid block reference %u "
399 "in inode #%lu", blk, inode->i_ino);
de9a55b8
TT
400 return -EIO;
401 }
402 }
403 return 0;
fe2c8191
TN
404}
405
406
407#define ext4_check_indirect_blockref(inode, bh) \
de9a55b8 408 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
fe2c8191
TN
409 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
410
411#define ext4_check_inode_blockref(inode) \
de9a55b8 412 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
fe2c8191
TN
413 EXT4_NDIR_BLOCKS)
414
ac27a0ec 415/**
617ba13b 416 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
417 * @inode: inode in question
418 * @depth: depth of the chain (1 - direct pointer, etc.)
419 * @offsets: offsets of pointers in inode/indirect blocks
420 * @chain: place to store the result
421 * @err: here we store the error value
422 *
423 * Function fills the array of triples <key, p, bh> and returns %NULL
424 * if everything went OK or the pointer to the last filled triple
425 * (incomplete one) otherwise. Upon the return chain[i].key contains
426 * the number of (i+1)-th block in the chain (as it is stored in memory,
427 * i.e. little-endian 32-bit), chain[i].p contains the address of that
428 * number (it points into struct inode for i==0 and into the bh->b_data
429 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
430 * block for i>0 and NULL for i==0. In other words, it holds the block
431 * numbers of the chain, addresses they were taken from (and where we can
432 * verify that chain did not change) and buffer_heads hosting these
433 * numbers.
434 *
435 * Function stops when it stumbles upon zero pointer (absent block)
436 * (pointer to last triple returned, *@err == 0)
437 * or when it gets an IO error reading an indirect block
438 * (ditto, *@err == -EIO)
ac27a0ec
DK
439 * or when it reads all @depth-1 indirect blocks successfully and finds
440 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
441 *
442 * Need to be called with
0e855ac8 443 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 444 */
725d26d3
AK
445static Indirect *ext4_get_branch(struct inode *inode, int depth,
446 ext4_lblk_t *offsets,
ac27a0ec
DK
447 Indirect chain[4], int *err)
448{
449 struct super_block *sb = inode->i_sb;
450 Indirect *p = chain;
451 struct buffer_head *bh;
452
453 *err = 0;
454 /* i_data is not going away, no lock needed */
af5bc92d 455 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
456 if (!p->key)
457 goto no_block;
458 while (--depth) {
fe2c8191
TN
459 bh = sb_getblk(sb, le32_to_cpu(p->key));
460 if (unlikely(!bh))
ac27a0ec 461 goto failure;
de9a55b8 462
fe2c8191
TN
463 if (!bh_uptodate_or_lock(bh)) {
464 if (bh_submit_read(bh) < 0) {
465 put_bh(bh);
466 goto failure;
467 }
468 /* validate block references */
469 if (ext4_check_indirect_blockref(inode, bh)) {
470 put_bh(bh);
471 goto failure;
472 }
473 }
de9a55b8 474
af5bc92d 475 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
476 /* Reader: end */
477 if (!p->key)
478 goto no_block;
479 }
480 return NULL;
481
ac27a0ec
DK
482failure:
483 *err = -EIO;
484no_block:
485 return p;
486}
487
488/**
617ba13b 489 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
490 * @inode: owner
491 * @ind: descriptor of indirect block.
492 *
1cc8dcf5 493 * This function returns the preferred place for block allocation.
ac27a0ec
DK
494 * It is used when heuristic for sequential allocation fails.
495 * Rules are:
496 * + if there is a block to the left of our position - allocate near it.
497 * + if pointer will live in indirect block - allocate near that block.
498 * + if pointer will live in inode - allocate in the same
499 * cylinder group.
500 *
501 * In the latter case we colour the starting block by the callers PID to
502 * prevent it from clashing with concurrent allocations for a different inode
503 * in the same block group. The PID is used here so that functionally related
504 * files will be close-by on-disk.
505 *
506 * Caller must make sure that @ind is valid and will stay that way.
507 */
617ba13b 508static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 509{
617ba13b 510 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 511 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 512 __le32 *p;
617ba13b 513 ext4_fsblk_t bg_start;
74d3487f 514 ext4_fsblk_t last_block;
617ba13b 515 ext4_grpblk_t colour;
a4912123
TT
516 ext4_group_t block_group;
517 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
ac27a0ec
DK
518
519 /* Try to find previous block */
520 for (p = ind->p - 1; p >= start; p--) {
521 if (*p)
522 return le32_to_cpu(*p);
523 }
524
525 /* No such thing, so let's try location of indirect block */
526 if (ind->bh)
527 return ind->bh->b_blocknr;
528
529 /*
530 * It is going to be referred to from the inode itself? OK, just put it
531 * into the same cylinder group then.
532 */
a4912123
TT
533 block_group = ei->i_block_group;
534 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
535 block_group &= ~(flex_size-1);
536 if (S_ISREG(inode->i_mode))
537 block_group++;
538 }
539 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
74d3487f
VC
540 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
541
a4912123
TT
542 /*
543 * If we are doing delayed allocation, we don't need take
544 * colour into account.
545 */
546 if (test_opt(inode->i_sb, DELALLOC))
547 return bg_start;
548
74d3487f
VC
549 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
550 colour = (current->pid % 16) *
617ba13b 551 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
552 else
553 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
554 return bg_start + colour;
555}
556
557/**
1cc8dcf5 558 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
559 * @inode: owner
560 * @block: block we want
ac27a0ec 561 * @partial: pointer to the last triple within a chain
ac27a0ec 562 *
1cc8dcf5 563 * Normally this function find the preferred place for block allocation,
fb01bfda 564 * returns it.
ac27a0ec 565 */
725d26d3 566static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
de9a55b8 567 Indirect *partial)
ac27a0ec 568{
ac27a0ec 569 /*
c2ea3fde 570 * XXX need to get goal block from mballoc's data structures
ac27a0ec 571 */
ac27a0ec 572
617ba13b 573 return ext4_find_near(inode, partial);
ac27a0ec
DK
574}
575
576/**
617ba13b 577 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
578 * of direct blocks need to be allocated for the given branch.
579 *
580 * @branch: chain of indirect blocks
581 * @k: number of blocks need for indirect blocks
582 * @blks: number of data blocks to be mapped.
583 * @blocks_to_boundary: the offset in the indirect block
584 *
585 * return the total number of blocks to be allocate, including the
586 * direct and indirect blocks.
587 */
498e5f24 588static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
de9a55b8 589 int blocks_to_boundary)
ac27a0ec 590{
498e5f24 591 unsigned int count = 0;
ac27a0ec
DK
592
593 /*
594 * Simple case, [t,d]Indirect block(s) has not allocated yet
595 * then it's clear blocks on that path have not allocated
596 */
597 if (k > 0) {
598 /* right now we don't handle cross boundary allocation */
599 if (blks < blocks_to_boundary + 1)
600 count += blks;
601 else
602 count += blocks_to_boundary + 1;
603 return count;
604 }
605
606 count++;
607 while (count < blks && count <= blocks_to_boundary &&
608 le32_to_cpu(*(branch[0].p + count)) == 0) {
609 count++;
610 }
611 return count;
612}
613
614/**
617ba13b 615 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
616 * @indirect_blks: the number of blocks need to allocate for indirect
617 * blocks
618 *
619 * @new_blocks: on return it will store the new block numbers for
620 * the indirect blocks(if needed) and the first direct block,
621 * @blks: on return it will store the total number of allocated
622 * direct blocks
623 */
617ba13b 624static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
625 ext4_lblk_t iblock, ext4_fsblk_t goal,
626 int indirect_blks, int blks,
627 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 628{
815a1130 629 struct ext4_allocation_request ar;
ac27a0ec 630 int target, i;
7061eba7 631 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 632 int index = 0;
617ba13b 633 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
634 int ret = 0;
635
636 /*
637 * Here we try to allocate the requested multiple blocks at once,
638 * on a best-effort basis.
639 * To build a branch, we should allocate blocks for
640 * the indirect blocks(if not allocated yet), and at least
641 * the first direct block of this branch. That's the
642 * minimum number of blocks need to allocate(required)
643 */
7061eba7
AK
644 /* first we try to allocate the indirect blocks */
645 target = indirect_blks;
646 while (target > 0) {
ac27a0ec
DK
647 count = target;
648 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
649 current_block = ext4_new_meta_blocks(handle, inode,
650 goal, &count, err);
ac27a0ec
DK
651 if (*err)
652 goto failed_out;
653
654 target -= count;
655 /* allocate blocks for indirect blocks */
656 while (index < indirect_blks && count) {
657 new_blocks[index++] = current_block++;
658 count--;
659 }
7061eba7
AK
660 if (count > 0) {
661 /*
662 * save the new block number
663 * for the first direct block
664 */
665 new_blocks[index] = current_block;
666 printk(KERN_INFO "%s returned more blocks than "
667 "requested\n", __func__);
668 WARN_ON(1);
ac27a0ec 669 break;
7061eba7 670 }
ac27a0ec
DK
671 }
672
7061eba7
AK
673 target = blks - count ;
674 blk_allocated = count;
675 if (!target)
676 goto allocated;
677 /* Now allocate data blocks */
815a1130
TT
678 memset(&ar, 0, sizeof(ar));
679 ar.inode = inode;
680 ar.goal = goal;
681 ar.len = target;
682 ar.logical = iblock;
683 if (S_ISREG(inode->i_mode))
684 /* enable in-core preallocation only for regular files */
685 ar.flags = EXT4_MB_HINT_DATA;
686
687 current_block = ext4_mb_new_blocks(handle, &ar, err);
688
7061eba7
AK
689 if (*err && (target == blks)) {
690 /*
691 * if the allocation failed and we didn't allocate
692 * any blocks before
693 */
694 goto failed_out;
695 }
696 if (!*err) {
697 if (target == blks) {
de9a55b8
TT
698 /*
699 * save the new block number
700 * for the first direct block
701 */
7061eba7
AK
702 new_blocks[index] = current_block;
703 }
815a1130 704 blk_allocated += ar.len;
7061eba7
AK
705 }
706allocated:
ac27a0ec 707 /* total number of blocks allocated for direct blocks */
7061eba7 708 ret = blk_allocated;
ac27a0ec
DK
709 *err = 0;
710 return ret;
711failed_out:
af5bc92d 712 for (i = 0; i < index; i++)
c9de560d 713 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec
DK
714 return ret;
715}
716
717/**
617ba13b 718 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
719 * @inode: owner
720 * @indirect_blks: number of allocated indirect blocks
721 * @blks: number of allocated direct blocks
722 * @offsets: offsets (in the blocks) to store the pointers to next.
723 * @branch: place to store the chain in.
724 *
725 * This function allocates blocks, zeroes out all but the last one,
726 * links them into chain and (if we are synchronous) writes them to disk.
727 * In other words, it prepares a branch that can be spliced onto the
728 * inode. It stores the information about that chain in the branch[], in
617ba13b 729 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
730 * we had read the existing part of chain and partial points to the last
731 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 732 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
733 * place chain is disconnected - *branch->p is still zero (we did not
734 * set the last link), but branch->key contains the number that should
735 * be placed into *branch->p to fill that gap.
736 *
737 * If allocation fails we free all blocks we've allocated (and forget
738 * their buffer_heads) and return the error value the from failed
617ba13b 739 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
740 * as described above and return 0.
741 */
617ba13b 742static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
743 ext4_lblk_t iblock, int indirect_blks,
744 int *blks, ext4_fsblk_t goal,
745 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
746{
747 int blocksize = inode->i_sb->s_blocksize;
748 int i, n = 0;
749 int err = 0;
750 struct buffer_head *bh;
751 int num;
617ba13b
MC
752 ext4_fsblk_t new_blocks[4];
753 ext4_fsblk_t current_block;
ac27a0ec 754
7061eba7 755 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
756 *blks, new_blocks, &err);
757 if (err)
758 return err;
759
760 branch[0].key = cpu_to_le32(new_blocks[0]);
761 /*
762 * metadata blocks and data blocks are allocated.
763 */
764 for (n = 1; n <= indirect_blks; n++) {
765 /*
766 * Get buffer_head for parent block, zero it out
767 * and set the pointer to new one, then send
768 * parent to disk.
769 */
770 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
771 branch[n].bh = bh;
772 lock_buffer(bh);
773 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 774 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec 775 if (err) {
6487a9d3
CW
776 /* Don't brelse(bh) here; it's done in
777 * ext4_journal_forget() below */
ac27a0ec 778 unlock_buffer(bh);
ac27a0ec
DK
779 goto failed;
780 }
781
782 memset(bh->b_data, 0, blocksize);
783 branch[n].p = (__le32 *) bh->b_data + offsets[n];
784 branch[n].key = cpu_to_le32(new_blocks[n]);
785 *branch[n].p = branch[n].key;
af5bc92d 786 if (n == indirect_blks) {
ac27a0ec
DK
787 current_block = new_blocks[n];
788 /*
789 * End of chain, update the last new metablock of
790 * the chain to point to the new allocated
791 * data blocks numbers
792 */
de9a55b8 793 for (i = 1; i < num; i++)
ac27a0ec
DK
794 *(branch[n].p + i) = cpu_to_le32(++current_block);
795 }
796 BUFFER_TRACE(bh, "marking uptodate");
797 set_buffer_uptodate(bh);
798 unlock_buffer(bh);
799
0390131b
FM
800 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
801 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
802 if (err)
803 goto failed;
804 }
805 *blks = num;
806 return err;
807failed:
808 /* Allocation failed, free what we already allocated */
809 for (i = 1; i <= n ; i++) {
dab291af 810 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
617ba13b 811 ext4_journal_forget(handle, branch[i].bh);
ac27a0ec 812 }
af5bc92d 813 for (i = 0; i < indirect_blks; i++)
c9de560d 814 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec 815
c9de560d 816 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
ac27a0ec
DK
817
818 return err;
819}
820
821/**
617ba13b 822 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
823 * @inode: owner
824 * @block: (logical) number of block we are adding
825 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 826 * ext4_alloc_branch)
ac27a0ec
DK
827 * @where: location of missing link
828 * @num: number of indirect blocks we are adding
829 * @blks: number of direct blocks we are adding
830 *
831 * This function fills the missing link and does all housekeeping needed in
832 * inode (->i_blocks, etc.). In case of success we end up with the full
833 * chain to new block and return 0.
834 */
617ba13b 835static int ext4_splice_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
836 ext4_lblk_t block, Indirect *where, int num,
837 int blks)
ac27a0ec
DK
838{
839 int i;
840 int err = 0;
617ba13b 841 ext4_fsblk_t current_block;
ac27a0ec 842
ac27a0ec
DK
843 /*
844 * If we're splicing into a [td]indirect block (as opposed to the
845 * inode) then we need to get write access to the [td]indirect block
846 * before the splice.
847 */
848 if (where->bh) {
849 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 850 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
851 if (err)
852 goto err_out;
853 }
854 /* That's it */
855
856 *where->p = where->key;
857
858 /*
859 * Update the host buffer_head or inode to point to more just allocated
860 * direct blocks blocks
861 */
862 if (num == 0 && blks > 1) {
863 current_block = le32_to_cpu(where->key) + 1;
864 for (i = 1; i < blks; i++)
af5bc92d 865 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
866 }
867
ac27a0ec 868 /* We are done with atomic stuff, now do the rest of housekeeping */
ac27a0ec
DK
869 /* had we spliced it onto indirect block? */
870 if (where->bh) {
871 /*
872 * If we spliced it onto an indirect block, we haven't
873 * altered the inode. Note however that if it is being spliced
874 * onto an indirect block at the very end of the file (the
875 * file is growing) then we *will* alter the inode to reflect
876 * the new i_size. But that is not done here - it is done in
617ba13b 877 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
878 */
879 jbd_debug(5, "splicing indirect only\n");
0390131b
FM
880 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
881 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
ac27a0ec
DK
882 if (err)
883 goto err_out;
884 } else {
885 /*
886 * OK, we spliced it into the inode itself on a direct block.
ac27a0ec 887 */
41591750 888 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
889 jbd_debug(5, "splicing direct\n");
890 }
891 return err;
892
893err_out:
894 for (i = 1; i <= num; i++) {
dab291af 895 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
617ba13b 896 ext4_journal_forget(handle, where[i].bh);
c9de560d
AT
897 ext4_free_blocks(handle, inode,
898 le32_to_cpu(where[i-1].key), 1, 0);
ac27a0ec 899 }
c9de560d 900 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
ac27a0ec
DK
901
902 return err;
903}
904
905/*
b920c755
TT
906 * The ext4_ind_get_blocks() function handles non-extents inodes
907 * (i.e., using the traditional indirect/double-indirect i_blocks
908 * scheme) for ext4_get_blocks().
909 *
ac27a0ec
DK
910 * Allocation strategy is simple: if we have to allocate something, we will
911 * have to go the whole way to leaf. So let's do it before attaching anything
912 * to tree, set linkage between the newborn blocks, write them if sync is
913 * required, recheck the path, free and repeat if check fails, otherwise
914 * set the last missing link (that will protect us from any truncate-generated
915 * removals - all blocks on the path are immune now) and possibly force the
916 * write on the parent block.
917 * That has a nice additional property: no special recovery from the failed
918 * allocations is needed - we simply release blocks and do not touch anything
919 * reachable from inode.
920 *
921 * `handle' can be NULL if create == 0.
922 *
ac27a0ec
DK
923 * return > 0, # of blocks mapped or allocated.
924 * return = 0, if plain lookup failed.
925 * return < 0, error case.
c278bfec 926 *
b920c755
TT
927 * The ext4_ind_get_blocks() function should be called with
928 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
929 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
930 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
931 * blocks.
ac27a0ec 932 */
e4d996ca 933static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
934 ext4_lblk_t iblock, unsigned int maxblocks,
935 struct buffer_head *bh_result,
936 int flags)
ac27a0ec
DK
937{
938 int err = -EIO;
725d26d3 939 ext4_lblk_t offsets[4];
ac27a0ec
DK
940 Indirect chain[4];
941 Indirect *partial;
617ba13b 942 ext4_fsblk_t goal;
ac27a0ec
DK
943 int indirect_blks;
944 int blocks_to_boundary = 0;
945 int depth;
ac27a0ec 946 int count = 0;
617ba13b 947 ext4_fsblk_t first_block = 0;
ac27a0ec 948
a86c6181 949 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
c2177057 950 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
725d26d3 951 depth = ext4_block_to_path(inode, iblock, offsets,
de9a55b8 952 &blocks_to_boundary);
ac27a0ec
DK
953
954 if (depth == 0)
955 goto out;
956
617ba13b 957 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
958
959 /* Simplest case - block found, no allocation needed */
960 if (!partial) {
961 first_block = le32_to_cpu(chain[depth - 1].key);
962 clear_buffer_new(bh_result);
963 count++;
964 /*map more blocks*/
965 while (count < maxblocks && count <= blocks_to_boundary) {
617ba13b 966 ext4_fsblk_t blk;
ac27a0ec 967
ac27a0ec
DK
968 blk = le32_to_cpu(*(chain[depth-1].p + count));
969
970 if (blk == first_block + count)
971 count++;
972 else
973 break;
974 }
c278bfec 975 goto got_it;
ac27a0ec
DK
976 }
977
978 /* Next simple case - plain lookup or failed read of indirect block */
c2177057 979 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
ac27a0ec
DK
980 goto cleanup;
981
ac27a0ec 982 /*
c2ea3fde 983 * Okay, we need to do block allocation.
ac27a0ec 984 */
fb01bfda 985 goal = ext4_find_goal(inode, iblock, partial);
ac27a0ec
DK
986
987 /* the number of blocks need to allocate for [d,t]indirect blocks */
988 indirect_blks = (chain + depth) - partial - 1;
989
990 /*
991 * Next look up the indirect map to count the totoal number of
992 * direct blocks to allocate for this branch.
993 */
617ba13b 994 count = ext4_blks_to_allocate(partial, indirect_blks,
ac27a0ec
DK
995 maxblocks, blocks_to_boundary);
996 /*
617ba13b 997 * Block out ext4_truncate while we alter the tree
ac27a0ec 998 */
7061eba7 999 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
de9a55b8
TT
1000 &count, goal,
1001 offsets + (partial - chain), partial);
ac27a0ec
DK
1002
1003 /*
617ba13b 1004 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
1005 * on the new chain if there is a failure, but that risks using
1006 * up transaction credits, especially for bitmaps where the
1007 * credits cannot be returned. Can we handle this somehow? We
1008 * may need to return -EAGAIN upwards in the worst case. --sct
1009 */
1010 if (!err)
617ba13b 1011 err = ext4_splice_branch(handle, inode, iblock,
de9a55b8
TT
1012 partial, indirect_blks, count);
1013 else
ac27a0ec
DK
1014 goto cleanup;
1015
1016 set_buffer_new(bh_result);
1017got_it:
1018 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1019 if (count > blocks_to_boundary)
1020 set_buffer_boundary(bh_result);
1021 err = count;
1022 /* Clean up and exit */
1023 partial = chain + depth - 1; /* the whole chain */
1024cleanup:
1025 while (partial > chain) {
1026 BUFFER_TRACE(partial->bh, "call brelse");
1027 brelse(partial->bh);
1028 partial--;
1029 }
1030 BUFFER_TRACE(bh_result, "returned");
1031out:
1032 return err;
1033}
1034
60e58e0f
MC
1035qsize_t ext4_get_reserved_space(struct inode *inode)
1036{
1037 unsigned long long total;
1038
1039 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1040 total = EXT4_I(inode)->i_reserved_data_blocks +
1041 EXT4_I(inode)->i_reserved_meta_blocks;
1042 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1043
1044 return total;
1045}
12219aea
AK
1046/*
1047 * Calculate the number of metadata blocks need to reserve
1048 * to allocate @blocks for non extent file based file
1049 */
1050static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1051{
1052 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1053 int ind_blks, dind_blks, tind_blks;
1054
1055 /* number of new indirect blocks needed */
1056 ind_blks = (blocks + icap - 1) / icap;
1057
1058 dind_blks = (ind_blks + icap - 1) / icap;
1059
1060 tind_blks = 1;
1061
1062 return ind_blks + dind_blks + tind_blks;
1063}
1064
1065/*
1066 * Calculate the number of metadata blocks need to reserve
1067 * to allocate given number of blocks
1068 */
1069static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1070{
cd213226
MC
1071 if (!blocks)
1072 return 0;
1073
12219aea
AK
1074 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1075 return ext4_ext_calc_metadata_amount(inode, blocks);
1076
1077 return ext4_indirect_calc_metadata_amount(inode, blocks);
1078}
1079
1080static void ext4_da_update_reserve_space(struct inode *inode, int used)
1081{
1082 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1083 int total, mdb, mdb_free;
1084
1085 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1086 /* recalculate the number of metablocks still need to be reserved */
1087 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1088 mdb = ext4_calc_metadata_amount(inode, total);
1089
1090 /* figure out how many metablocks to release */
1091 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1092 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1093
6bc6e63f
AK
1094 if (mdb_free) {
1095 /* Account for allocated meta_blocks */
1096 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1097
1098 /* update fs dirty blocks counter */
1099 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1100 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1101 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1102 }
12219aea
AK
1103
1104 /* update per-inode reservations */
1105 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1106 EXT4_I(inode)->i_reserved_data_blocks -= used;
12219aea 1107 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f
MC
1108
1109 /*
1110 * free those over-booking quota for metadata blocks
1111 */
60e58e0f
MC
1112 if (mdb_free)
1113 vfs_dq_release_reservation_block(inode, mdb_free);
d6014301
AK
1114
1115 /*
1116 * If we have done all the pending block allocations and if
1117 * there aren't any writers on the inode, we can discard the
1118 * inode's preallocations.
1119 */
1120 if (!total && (atomic_read(&inode->i_writecount) == 0))
1121 ext4_discard_preallocations(inode);
12219aea
AK
1122}
1123
80e42468
TT
1124static int check_block_validity(struct inode *inode, const char *msg,
1125 sector_t logical, sector_t phys, int len)
6fd058f7
TT
1126{
1127 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
80e42468 1128 ext4_error(inode->i_sb, msg,
6fd058f7
TT
1129 "inode #%lu logical block %llu mapped to %llu "
1130 "(size %d)", inode->i_ino,
1131 (unsigned long long) logical,
1132 (unsigned long long) phys, len);
6fd058f7
TT
1133 return -EIO;
1134 }
1135 return 0;
1136}
1137
f5ab0d1f 1138/*
12b7ac17 1139 * The ext4_get_blocks() function tries to look up the requested blocks,
2b2d6d01 1140 * and returns if the blocks are already mapped.
f5ab0d1f 1141 *
f5ab0d1f
MC
1142 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1143 * and store the allocated blocks in the result buffer head and mark it
1144 * mapped.
1145 *
1146 * If file type is extents based, it will call ext4_ext_get_blocks(),
e4d996ca 1147 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
f5ab0d1f
MC
1148 * based files
1149 *
1150 * On success, it returns the number of blocks being mapped or allocate.
1151 * if create==0 and the blocks are pre-allocated and uninitialized block,
1152 * the result buffer head is unmapped. If the create ==1, it will make sure
1153 * the buffer head is mapped.
1154 *
1155 * It returns 0 if plain look up failed (blocks have not been allocated), in
1156 * that casem, buffer head is unmapped
1157 *
1158 * It returns the error in case of allocation failure.
1159 */
12b7ac17
TT
1160int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1161 unsigned int max_blocks, struct buffer_head *bh,
c2177057 1162 int flags)
0e855ac8
AK
1163{
1164 int retval;
f5ab0d1f
MC
1165
1166 clear_buffer_mapped(bh);
2a8964d6 1167 clear_buffer_unwritten(bh);
f5ab0d1f 1168
4df3d265 1169 /*
b920c755
TT
1170 * Try to see if we can get the block without requesting a new
1171 * file system block.
4df3d265
AK
1172 */
1173 down_read((&EXT4_I(inode)->i_data_sem));
1174 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1175 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
c2177057 1176 bh, 0);
0e855ac8 1177 } else {
e4d996ca 1178 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
c2177057 1179 bh, 0);
0e855ac8 1180 }
4df3d265 1181 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 1182
6fd058f7 1183 if (retval > 0 && buffer_mapped(bh)) {
80e42468
TT
1184 int ret = check_block_validity(inode, "file system corruption",
1185 block, bh->b_blocknr, retval);
6fd058f7
TT
1186 if (ret != 0)
1187 return ret;
1188 }
1189
f5ab0d1f 1190 /* If it is only a block(s) look up */
c2177057 1191 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
1192 return retval;
1193
1194 /*
1195 * Returns if the blocks have already allocated
1196 *
1197 * Note that if blocks have been preallocated
1198 * ext4_ext_get_block() returns th create = 0
1199 * with buffer head unmapped.
1200 */
1201 if (retval > 0 && buffer_mapped(bh))
4df3d265
AK
1202 return retval;
1203
2a8964d6
AK
1204 /*
1205 * When we call get_blocks without the create flag, the
1206 * BH_Unwritten flag could have gotten set if the blocks
1207 * requested were part of a uninitialized extent. We need to
1208 * clear this flag now that we are committed to convert all or
1209 * part of the uninitialized extent to be an initialized
1210 * extent. This is because we need to avoid the combination
1211 * of BH_Unwritten and BH_Mapped flags being simultaneously
1212 * set on the buffer_head.
1213 */
1214 clear_buffer_unwritten(bh);
1215
4df3d265 1216 /*
f5ab0d1f
MC
1217 * New blocks allocate and/or writing to uninitialized extent
1218 * will possibly result in updating i_data, so we take
1219 * the write lock of i_data_sem, and call get_blocks()
1220 * with create == 1 flag.
4df3d265
AK
1221 */
1222 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1223
1224 /*
1225 * if the caller is from delayed allocation writeout path
1226 * we have already reserved fs blocks for allocation
1227 * let the underlying get_block() function know to
1228 * avoid double accounting
1229 */
c2177057 1230 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1231 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1232 /*
1233 * We need to check for EXT4 here because migrate
1234 * could have changed the inode type in between
1235 */
0e855ac8
AK
1236 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1237 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
c2177057 1238 bh, flags);
0e855ac8 1239 } else {
e4d996ca 1240 retval = ext4_ind_get_blocks(handle, inode, block,
c2177057 1241 max_blocks, bh, flags);
267e4db9
AK
1242
1243 if (retval > 0 && buffer_new(bh)) {
1244 /*
1245 * We allocated new blocks which will result in
1246 * i_data's format changing. Force the migrate
1247 * to fail by clearing migrate flags
1248 */
1249 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1250 ~EXT4_EXT_MIGRATE;
1251 }
0e855ac8 1252 }
d2a17637 1253
2ac3b6e0 1254 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1255 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
2ac3b6e0
TT
1256
1257 /*
1258 * Update reserved blocks/metadata blocks after successful
1259 * block allocation which had been deferred till now.
1260 */
1261 if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1262 ext4_da_update_reserve_space(inode, retval);
d2a17637 1263
4df3d265 1264 up_write((&EXT4_I(inode)->i_data_sem));
6fd058f7 1265 if (retval > 0 && buffer_mapped(bh)) {
80e42468
TT
1266 int ret = check_block_validity(inode, "file system "
1267 "corruption after allocation",
1268 block, bh->b_blocknr, retval);
6fd058f7
TT
1269 if (ret != 0)
1270 return ret;
1271 }
0e855ac8
AK
1272 return retval;
1273}
1274
f3bd1f3f
MC
1275/* Maximum number of blocks we map for direct IO at once. */
1276#define DIO_MAX_BLOCKS 4096
1277
6873fa0d
ES
1278int ext4_get_block(struct inode *inode, sector_t iblock,
1279 struct buffer_head *bh_result, int create)
ac27a0ec 1280{
3e4fdaf8 1281 handle_t *handle = ext4_journal_current_handle();
7fb5409d 1282 int ret = 0, started = 0;
ac27a0ec 1283 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
f3bd1f3f 1284 int dio_credits;
ac27a0ec 1285
7fb5409d
JK
1286 if (create && !handle) {
1287 /* Direct IO write... */
1288 if (max_blocks > DIO_MAX_BLOCKS)
1289 max_blocks = DIO_MAX_BLOCKS;
f3bd1f3f
MC
1290 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1291 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1292 if (IS_ERR(handle)) {
ac27a0ec 1293 ret = PTR_ERR(handle);
7fb5409d 1294 goto out;
ac27a0ec 1295 }
7fb5409d 1296 started = 1;
ac27a0ec
DK
1297 }
1298
12b7ac17 1299 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
c2177057 1300 create ? EXT4_GET_BLOCKS_CREATE : 0);
7fb5409d
JK
1301 if (ret > 0) {
1302 bh_result->b_size = (ret << inode->i_blkbits);
1303 ret = 0;
ac27a0ec 1304 }
7fb5409d
JK
1305 if (started)
1306 ext4_journal_stop(handle);
1307out:
ac27a0ec
DK
1308 return ret;
1309}
1310
1311/*
1312 * `handle' can be NULL if create is zero
1313 */
617ba13b 1314struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1315 ext4_lblk_t block, int create, int *errp)
ac27a0ec
DK
1316{
1317 struct buffer_head dummy;
1318 int fatal = 0, err;
03f5d8bc 1319 int flags = 0;
ac27a0ec
DK
1320
1321 J_ASSERT(handle != NULL || create == 0);
1322
1323 dummy.b_state = 0;
1324 dummy.b_blocknr = -1000;
1325 buffer_trace_init(&dummy.b_history);
c2177057
TT
1326 if (create)
1327 flags |= EXT4_GET_BLOCKS_CREATE;
1328 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
ac27a0ec 1329 /*
c2177057
TT
1330 * ext4_get_blocks() returns number of blocks mapped. 0 in
1331 * case of a HOLE.
ac27a0ec
DK
1332 */
1333 if (err > 0) {
1334 if (err > 1)
1335 WARN_ON(1);
1336 err = 0;
1337 }
1338 *errp = err;
1339 if (!err && buffer_mapped(&dummy)) {
1340 struct buffer_head *bh;
1341 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1342 if (!bh) {
1343 *errp = -EIO;
1344 goto err;
1345 }
1346 if (buffer_new(&dummy)) {
1347 J_ASSERT(create != 0);
ac39849d 1348 J_ASSERT(handle != NULL);
ac27a0ec
DK
1349
1350 /*
1351 * Now that we do not always journal data, we should
1352 * keep in mind whether this should always journal the
1353 * new buffer as metadata. For now, regular file
617ba13b 1354 * writes use ext4_get_block instead, so it's not a
ac27a0ec
DK
1355 * problem.
1356 */
1357 lock_buffer(bh);
1358 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 1359 fatal = ext4_journal_get_create_access(handle, bh);
ac27a0ec 1360 if (!fatal && !buffer_uptodate(bh)) {
af5bc92d 1361 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
ac27a0ec
DK
1362 set_buffer_uptodate(bh);
1363 }
1364 unlock_buffer(bh);
0390131b
FM
1365 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1366 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
1367 if (!fatal)
1368 fatal = err;
1369 } else {
1370 BUFFER_TRACE(bh, "not a new buffer");
1371 }
1372 if (fatal) {
1373 *errp = fatal;
1374 brelse(bh);
1375 bh = NULL;
1376 }
1377 return bh;
1378 }
1379err:
1380 return NULL;
1381}
1382
617ba13b 1383struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1384 ext4_lblk_t block, int create, int *err)
ac27a0ec 1385{
af5bc92d 1386 struct buffer_head *bh;
ac27a0ec 1387
617ba13b 1388 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1389 if (!bh)
1390 return bh;
1391 if (buffer_uptodate(bh))
1392 return bh;
1393 ll_rw_block(READ_META, 1, &bh);
1394 wait_on_buffer(bh);
1395 if (buffer_uptodate(bh))
1396 return bh;
1397 put_bh(bh);
1398 *err = -EIO;
1399 return NULL;
1400}
1401
af5bc92d
TT
1402static int walk_page_buffers(handle_t *handle,
1403 struct buffer_head *head,
1404 unsigned from,
1405 unsigned to,
1406 int *partial,
1407 int (*fn)(handle_t *handle,
1408 struct buffer_head *bh))
ac27a0ec
DK
1409{
1410 struct buffer_head *bh;
1411 unsigned block_start, block_end;
1412 unsigned blocksize = head->b_size;
1413 int err, ret = 0;
1414 struct buffer_head *next;
1415
af5bc92d
TT
1416 for (bh = head, block_start = 0;
1417 ret == 0 && (bh != head || !block_start);
de9a55b8 1418 block_start = block_end, bh = next) {
ac27a0ec
DK
1419 next = bh->b_this_page;
1420 block_end = block_start + blocksize;
1421 if (block_end <= from || block_start >= to) {
1422 if (partial && !buffer_uptodate(bh))
1423 *partial = 1;
1424 continue;
1425 }
1426 err = (*fn)(handle, bh);
1427 if (!ret)
1428 ret = err;
1429 }
1430 return ret;
1431}
1432
1433/*
1434 * To preserve ordering, it is essential that the hole instantiation and
1435 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1436 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1437 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1438 * prepare_write() is the right place.
1439 *
617ba13b
MC
1440 * Also, this function can nest inside ext4_writepage() ->
1441 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1442 * has generated enough buffer credits to do the whole page. So we won't
1443 * block on the journal in that case, which is good, because the caller may
1444 * be PF_MEMALLOC.
1445 *
617ba13b 1446 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1447 * quota file writes. If we were to commit the transaction while thus
1448 * reentered, there can be a deadlock - we would be holding a quota
1449 * lock, and the commit would never complete if another thread had a
1450 * transaction open and was blocking on the quota lock - a ranking
1451 * violation.
1452 *
dab291af 1453 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1454 * will _not_ run commit under these circumstances because handle->h_ref
1455 * is elevated. We'll still have enough credits for the tiny quotafile
1456 * write.
1457 */
1458static int do_journal_get_write_access(handle_t *handle,
de9a55b8 1459 struct buffer_head *bh)
ac27a0ec
DK
1460{
1461 if (!buffer_mapped(bh) || buffer_freed(bh))
1462 return 0;
617ba13b 1463 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1464}
1465
bfc1af65 1466static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1467 loff_t pos, unsigned len, unsigned flags,
1468 struct page **pagep, void **fsdata)
ac27a0ec 1469{
af5bc92d 1470 struct inode *inode = mapping->host;
1938a150 1471 int ret, needed_blocks;
ac27a0ec
DK
1472 handle_t *handle;
1473 int retries = 0;
af5bc92d 1474 struct page *page;
de9a55b8 1475 pgoff_t index;
af5bc92d 1476 unsigned from, to;
bfc1af65 1477
9bffad1e 1478 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1479 /*
1480 * Reserve one block more for addition to orphan list in case
1481 * we allocate blocks but write fails for some reason
1482 */
1483 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 1484 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1485 from = pos & (PAGE_CACHE_SIZE - 1);
1486 to = from + len;
ac27a0ec
DK
1487
1488retry:
af5bc92d
TT
1489 handle = ext4_journal_start(inode, needed_blocks);
1490 if (IS_ERR(handle)) {
1491 ret = PTR_ERR(handle);
1492 goto out;
7479d2b9 1493 }
ac27a0ec 1494
ebd3610b
JK
1495 /* We cannot recurse into the filesystem as the transaction is already
1496 * started */
1497 flags |= AOP_FLAG_NOFS;
1498
54566b2c 1499 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1500 if (!page) {
1501 ext4_journal_stop(handle);
1502 ret = -ENOMEM;
1503 goto out;
1504 }
1505 *pagep = page;
1506
bfc1af65 1507 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
ebd3610b 1508 ext4_get_block);
bfc1af65
NP
1509
1510 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1511 ret = walk_page_buffers(handle, page_buffers(page),
1512 from, to, NULL, do_journal_get_write_access);
1513 }
bfc1af65
NP
1514
1515 if (ret) {
af5bc92d 1516 unlock_page(page);
af5bc92d 1517 page_cache_release(page);
ae4d5372
AK
1518 /*
1519 * block_write_begin may have instantiated a few blocks
1520 * outside i_size. Trim these off again. Don't need
1521 * i_size_read because we hold i_mutex.
1938a150
AK
1522 *
1523 * Add inode to orphan list in case we crash before
1524 * truncate finishes
ae4d5372 1525 */
ffacfa7a 1526 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1527 ext4_orphan_add(handle, inode);
1528
1529 ext4_journal_stop(handle);
1530 if (pos + len > inode->i_size) {
ffacfa7a 1531 ext4_truncate(inode);
de9a55b8 1532 /*
ffacfa7a 1533 * If truncate failed early the inode might
1938a150
AK
1534 * still be on the orphan list; we need to
1535 * make sure the inode is removed from the
1536 * orphan list in that case.
1537 */
1538 if (inode->i_nlink)
1539 ext4_orphan_del(NULL, inode);
1540 }
bfc1af65
NP
1541 }
1542
617ba13b 1543 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1544 goto retry;
7479d2b9 1545out:
ac27a0ec
DK
1546 return ret;
1547}
1548
bfc1af65
NP
1549/* For write_end() in data=journal mode */
1550static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1551{
1552 if (!buffer_mapped(bh) || buffer_freed(bh))
1553 return 0;
1554 set_buffer_uptodate(bh);
0390131b 1555 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1556}
1557
f8514083 1558static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
1559 struct address_space *mapping,
1560 loff_t pos, unsigned len, unsigned copied,
1561 struct page *page, void *fsdata)
f8514083
AK
1562{
1563 int i_size_changed = 0;
1564 struct inode *inode = mapping->host;
1565 handle_t *handle = ext4_journal_current_handle();
1566
1567 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1568
1569 /*
1570 * No need to use i_size_read() here, the i_size
1571 * cannot change under us because we hold i_mutex.
1572 *
1573 * But it's important to update i_size while still holding page lock:
1574 * page writeout could otherwise come in and zero beyond i_size.
1575 */
1576 if (pos + copied > inode->i_size) {
1577 i_size_write(inode, pos + copied);
1578 i_size_changed = 1;
1579 }
1580
1581 if (pos + copied > EXT4_I(inode)->i_disksize) {
1582 /* We need to mark inode dirty even if
1583 * new_i_size is less that inode->i_size
1584 * bu greater than i_disksize.(hint delalloc)
1585 */
1586 ext4_update_i_disksize(inode, (pos + copied));
1587 i_size_changed = 1;
1588 }
1589 unlock_page(page);
1590 page_cache_release(page);
1591
1592 /*
1593 * Don't mark the inode dirty under page lock. First, it unnecessarily
1594 * makes the holding time of page lock longer. Second, it forces lock
1595 * ordering of page lock and transaction start for journaling
1596 * filesystems.
1597 */
1598 if (i_size_changed)
1599 ext4_mark_inode_dirty(handle, inode);
1600
1601 return copied;
1602}
1603
ac27a0ec
DK
1604/*
1605 * We need to pick up the new inode size which generic_commit_write gave us
1606 * `file' can be NULL - eg, when called from page_symlink().
1607 *
617ba13b 1608 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1609 * buffers are managed internally.
1610 */
bfc1af65 1611static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
1612 struct address_space *mapping,
1613 loff_t pos, unsigned len, unsigned copied,
1614 struct page *page, void *fsdata)
ac27a0ec 1615{
617ba13b 1616 handle_t *handle = ext4_journal_current_handle();
cf108bca 1617 struct inode *inode = mapping->host;
ac27a0ec
DK
1618 int ret = 0, ret2;
1619
9bffad1e 1620 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 1621 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1622
1623 if (ret == 0) {
f8514083 1624 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1625 page, fsdata);
f8a87d89 1626 copied = ret2;
ffacfa7a 1627 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1628 /* if we have allocated more blocks and copied
1629 * less. We will have blocks allocated outside
1630 * inode->i_size. So truncate them
1631 */
1632 ext4_orphan_add(handle, inode);
f8a87d89
RK
1633 if (ret2 < 0)
1634 ret = ret2;
ac27a0ec 1635 }
617ba13b 1636 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1637 if (!ret)
1638 ret = ret2;
bfc1af65 1639
f8514083 1640 if (pos + len > inode->i_size) {
ffacfa7a 1641 ext4_truncate(inode);
de9a55b8 1642 /*
ffacfa7a 1643 * If truncate failed early the inode might still be
f8514083
AK
1644 * on the orphan list; we need to make sure the inode
1645 * is removed from the orphan list in that case.
1646 */
1647 if (inode->i_nlink)
1648 ext4_orphan_del(NULL, inode);
1649 }
1650
1651
bfc1af65 1652 return ret ? ret : copied;
ac27a0ec
DK
1653}
1654
bfc1af65 1655static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
1656 struct address_space *mapping,
1657 loff_t pos, unsigned len, unsigned copied,
1658 struct page *page, void *fsdata)
ac27a0ec 1659{
617ba13b 1660 handle_t *handle = ext4_journal_current_handle();
cf108bca 1661 struct inode *inode = mapping->host;
ac27a0ec 1662 int ret = 0, ret2;
ac27a0ec 1663
9bffad1e 1664 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 1665 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1666 page, fsdata);
f8a87d89 1667 copied = ret2;
ffacfa7a 1668 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1669 /* if we have allocated more blocks and copied
1670 * less. We will have blocks allocated outside
1671 * inode->i_size. So truncate them
1672 */
1673 ext4_orphan_add(handle, inode);
1674
f8a87d89
RK
1675 if (ret2 < 0)
1676 ret = ret2;
ac27a0ec 1677
617ba13b 1678 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1679 if (!ret)
1680 ret = ret2;
bfc1af65 1681
f8514083 1682 if (pos + len > inode->i_size) {
ffacfa7a 1683 ext4_truncate(inode);
de9a55b8 1684 /*
ffacfa7a 1685 * If truncate failed early the inode might still be
f8514083
AK
1686 * on the orphan list; we need to make sure the inode
1687 * is removed from the orphan list in that case.
1688 */
1689 if (inode->i_nlink)
1690 ext4_orphan_del(NULL, inode);
1691 }
1692
bfc1af65 1693 return ret ? ret : copied;
ac27a0ec
DK
1694}
1695
bfc1af65 1696static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1697 struct address_space *mapping,
1698 loff_t pos, unsigned len, unsigned copied,
1699 struct page *page, void *fsdata)
ac27a0ec 1700{
617ba13b 1701 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1702 struct inode *inode = mapping->host;
ac27a0ec
DK
1703 int ret = 0, ret2;
1704 int partial = 0;
bfc1af65 1705 unsigned from, to;
cf17fea6 1706 loff_t new_i_size;
ac27a0ec 1707
9bffad1e 1708 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1709 from = pos & (PAGE_CACHE_SIZE - 1);
1710 to = from + len;
1711
1712 if (copied < len) {
1713 if (!PageUptodate(page))
1714 copied = 0;
1715 page_zero_new_buffers(page, from+copied, to);
1716 }
ac27a0ec
DK
1717
1718 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1719 to, &partial, write_end_fn);
ac27a0ec
DK
1720 if (!partial)
1721 SetPageUptodate(page);
cf17fea6
AK
1722 new_i_size = pos + copied;
1723 if (new_i_size > inode->i_size)
bfc1af65 1724 i_size_write(inode, pos+copied);
617ba13b 1725 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
cf17fea6
AK
1726 if (new_i_size > EXT4_I(inode)->i_disksize) {
1727 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1728 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1729 if (!ret)
1730 ret = ret2;
1731 }
bfc1af65 1732
cf108bca 1733 unlock_page(page);
f8514083 1734 page_cache_release(page);
ffacfa7a 1735 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1736 /* if we have allocated more blocks and copied
1737 * less. We will have blocks allocated outside
1738 * inode->i_size. So truncate them
1739 */
1740 ext4_orphan_add(handle, inode);
1741
617ba13b 1742 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1743 if (!ret)
1744 ret = ret2;
f8514083 1745 if (pos + len > inode->i_size) {
ffacfa7a 1746 ext4_truncate(inode);
de9a55b8 1747 /*
ffacfa7a 1748 * If truncate failed early the inode might still be
f8514083
AK
1749 * on the orphan list; we need to make sure the inode
1750 * is removed from the orphan list in that case.
1751 */
1752 if (inode->i_nlink)
1753 ext4_orphan_del(NULL, inode);
1754 }
bfc1af65
NP
1755
1756 return ret ? ret : copied;
ac27a0ec 1757}
d2a17637
MC
1758
1759static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1760{
030ba6bc 1761 int retries = 0;
60e58e0f
MC
1762 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1763 unsigned long md_needed, mdblocks, total = 0;
d2a17637
MC
1764
1765 /*
1766 * recalculate the amount of metadata blocks to reserve
1767 * in order to allocate nrblocks
1768 * worse case is one extent per block
1769 */
030ba6bc 1770repeat:
d2a17637
MC
1771 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1772 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1773 mdblocks = ext4_calc_metadata_amount(inode, total);
1774 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1775
1776 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1777 total = md_needed + nrblocks;
1778
60e58e0f
MC
1779 /*
1780 * Make quota reservation here to prevent quota overflow
1781 * later. Real quota accounting is done at pages writeout
1782 * time.
1783 */
1784 if (vfs_dq_reserve_block(inode, total)) {
1785 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1786 return -EDQUOT;
1787 }
1788
a30d542a 1789 if (ext4_claim_free_blocks(sbi, total)) {
d2a17637 1790 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
030ba6bc
AK
1791 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1792 yield();
1793 goto repeat;
1794 }
60e58e0f 1795 vfs_dq_release_reservation_block(inode, total);
d2a17637
MC
1796 return -ENOSPC;
1797 }
d2a17637
MC
1798 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1799 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1800
1801 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1802 return 0; /* success */
1803}
1804
12219aea 1805static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1806{
1807 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1808 int total, mdb, mdb_free, release;
1809
cd213226
MC
1810 if (!to_free)
1811 return; /* Nothing to release, exit */
1812
d2a17637 1813 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226
MC
1814
1815 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1816 /*
1817 * if there is no reserved blocks, but we try to free some
1818 * then the counter is messed up somewhere.
1819 * but since this function is called from invalidate
1820 * page, it's harmless to return without any action
1821 */
1822 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1823 "blocks for inode %lu, but there is no reserved "
1824 "data blocks\n", to_free, inode->i_ino);
1825 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1826 return;
1827 }
1828
d2a17637 1829 /* recalculate the number of metablocks still need to be reserved */
12219aea 1830 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
d2a17637
MC
1831 mdb = ext4_calc_metadata_amount(inode, total);
1832
1833 /* figure out how many metablocks to release */
1834 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1835 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1836
d2a17637
MC
1837 release = to_free + mdb_free;
1838
6bc6e63f
AK
1839 /* update fs dirty blocks counter for truncate case */
1840 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
d2a17637
MC
1841
1842 /* update per-inode reservations */
12219aea
AK
1843 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1844 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
d2a17637
MC
1845
1846 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1847 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
d2a17637 1848 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f
MC
1849
1850 vfs_dq_release_reservation_block(inode, release);
d2a17637
MC
1851}
1852
1853static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1854 unsigned long offset)
d2a17637
MC
1855{
1856 int to_release = 0;
1857 struct buffer_head *head, *bh;
1858 unsigned int curr_off = 0;
1859
1860 head = page_buffers(page);
1861 bh = head;
1862 do {
1863 unsigned int next_off = curr_off + bh->b_size;
1864
1865 if ((offset <= curr_off) && (buffer_delay(bh))) {
1866 to_release++;
1867 clear_buffer_delay(bh);
1868 }
1869 curr_off = next_off;
1870 } while ((bh = bh->b_this_page) != head);
12219aea 1871 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1872}
ac27a0ec 1873
64769240
AT
1874/*
1875 * Delayed allocation stuff
1876 */
1877
64769240
AT
1878/*
1879 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1880 * them with writepage() call back
64769240
AT
1881 *
1882 * @mpd->inode: inode
1883 * @mpd->first_page: first page of the extent
1884 * @mpd->next_page: page after the last page of the extent
64769240
AT
1885 *
1886 * By the time mpage_da_submit_io() is called we expect all blocks
1887 * to be allocated. this may be wrong if allocation failed.
1888 *
1889 * As pages are already locked by write_cache_pages(), we can't use it
1890 */
1891static int mpage_da_submit_io(struct mpage_da_data *mpd)
1892{
22208ded 1893 long pages_skipped;
791b7f08
AK
1894 struct pagevec pvec;
1895 unsigned long index, end;
1896 int ret = 0, err, nr_pages, i;
1897 struct inode *inode = mpd->inode;
1898 struct address_space *mapping = inode->i_mapping;
64769240
AT
1899
1900 BUG_ON(mpd->next_page <= mpd->first_page);
791b7f08
AK
1901 /*
1902 * We need to start from the first_page to the next_page - 1
1903 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1904 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1905 * at the currently mapped buffer_heads.
1906 */
64769240
AT
1907 index = mpd->first_page;
1908 end = mpd->next_page - 1;
1909
791b7f08 1910 pagevec_init(&pvec, 0);
64769240 1911 while (index <= end) {
791b7f08 1912 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1913 if (nr_pages == 0)
1914 break;
1915 for (i = 0; i < nr_pages; i++) {
1916 struct page *page = pvec.pages[i];
1917
791b7f08
AK
1918 index = page->index;
1919 if (index > end)
1920 break;
1921 index++;
1922
1923 BUG_ON(!PageLocked(page));
1924 BUG_ON(PageWriteback(page));
1925
22208ded 1926 pages_skipped = mpd->wbc->pages_skipped;
a1d6cc56 1927 err = mapping->a_ops->writepage(page, mpd->wbc);
22208ded
AK
1928 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1929 /*
1930 * have successfully written the page
1931 * without skipping the same
1932 */
a1d6cc56 1933 mpd->pages_written++;
64769240
AT
1934 /*
1935 * In error case, we have to continue because
1936 * remaining pages are still locked
1937 * XXX: unlock and re-dirty them?
1938 */
1939 if (ret == 0)
1940 ret = err;
1941 }
1942 pagevec_release(&pvec);
1943 }
64769240
AT
1944 return ret;
1945}
1946
1947/*
1948 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1949 *
1950 * @mpd->inode - inode to walk through
1951 * @exbh->b_blocknr - first block on a disk
1952 * @exbh->b_size - amount of space in bytes
1953 * @logical - first logical block to start assignment with
1954 *
1955 * the function goes through all passed space and put actual disk
29fa89d0 1956 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
64769240
AT
1957 */
1958static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1959 struct buffer_head *exbh)
1960{
1961 struct inode *inode = mpd->inode;
1962 struct address_space *mapping = inode->i_mapping;
1963 int blocks = exbh->b_size >> inode->i_blkbits;
1964 sector_t pblock = exbh->b_blocknr, cur_logical;
1965 struct buffer_head *head, *bh;
a1d6cc56 1966 pgoff_t index, end;
64769240
AT
1967 struct pagevec pvec;
1968 int nr_pages, i;
1969
1970 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1971 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1972 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1973
1974 pagevec_init(&pvec, 0);
1975
1976 while (index <= end) {
1977 /* XXX: optimize tail */
1978 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1979 if (nr_pages == 0)
1980 break;
1981 for (i = 0; i < nr_pages; i++) {
1982 struct page *page = pvec.pages[i];
1983
1984 index = page->index;
1985 if (index > end)
1986 break;
1987 index++;
1988
1989 BUG_ON(!PageLocked(page));
1990 BUG_ON(PageWriteback(page));
1991 BUG_ON(!page_has_buffers(page));
1992
1993 bh = page_buffers(page);
1994 head = bh;
1995
1996 /* skip blocks out of the range */
1997 do {
1998 if (cur_logical >= logical)
1999 break;
2000 cur_logical++;
2001 } while ((bh = bh->b_this_page) != head);
2002
2003 do {
2004 if (cur_logical >= logical + blocks)
2005 break;
29fa89d0
AK
2006
2007 if (buffer_delay(bh) ||
2008 buffer_unwritten(bh)) {
2009
2010 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2011
2012 if (buffer_delay(bh)) {
2013 clear_buffer_delay(bh);
2014 bh->b_blocknr = pblock;
2015 } else {
2016 /*
2017 * unwritten already should have
2018 * blocknr assigned. Verify that
2019 */
2020 clear_buffer_unwritten(bh);
2021 BUG_ON(bh->b_blocknr != pblock);
2022 }
2023
61628a3f 2024 } else if (buffer_mapped(bh))
64769240 2025 BUG_ON(bh->b_blocknr != pblock);
64769240
AT
2026
2027 cur_logical++;
2028 pblock++;
2029 } while ((bh = bh->b_this_page) != head);
2030 }
2031 pagevec_release(&pvec);
2032 }
2033}
2034
2035
2036/*
2037 * __unmap_underlying_blocks - just a helper function to unmap
2038 * set of blocks described by @bh
2039 */
2040static inline void __unmap_underlying_blocks(struct inode *inode,
2041 struct buffer_head *bh)
2042{
2043 struct block_device *bdev = inode->i_sb->s_bdev;
2044 int blocks, i;
2045
2046 blocks = bh->b_size >> inode->i_blkbits;
2047 for (i = 0; i < blocks; i++)
2048 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2049}
2050
c4a0c46e
AK
2051static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2052 sector_t logical, long blk_cnt)
2053{
2054 int nr_pages, i;
2055 pgoff_t index, end;
2056 struct pagevec pvec;
2057 struct inode *inode = mpd->inode;
2058 struct address_space *mapping = inode->i_mapping;
2059
2060 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2061 end = (logical + blk_cnt - 1) >>
2062 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2063 while (index <= end) {
2064 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2065 if (nr_pages == 0)
2066 break;
2067 for (i = 0; i < nr_pages; i++) {
2068 struct page *page = pvec.pages[i];
2069 index = page->index;
2070 if (index > end)
2071 break;
2072 index++;
2073
2074 BUG_ON(!PageLocked(page));
2075 BUG_ON(PageWriteback(page));
2076 block_invalidatepage(page, 0);
2077 ClearPageUptodate(page);
2078 unlock_page(page);
2079 }
2080 }
2081 return;
2082}
2083
df22291f
AK
2084static void ext4_print_free_blocks(struct inode *inode)
2085{
2086 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2087 printk(KERN_EMERG "Total free blocks count %lld\n",
2088 ext4_count_free_blocks(inode->i_sb));
2089 printk(KERN_EMERG "Free/Dirty block details\n");
2090 printk(KERN_EMERG "free_blocks=%lld\n",
8f72fbdf 2091 (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
df22291f 2092 printk(KERN_EMERG "dirty_blocks=%lld\n",
8f72fbdf 2093 (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
df22291f 2094 printk(KERN_EMERG "Block reservation details\n");
498e5f24 2095 printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
df22291f 2096 EXT4_I(inode)->i_reserved_data_blocks);
498e5f24 2097 printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
df22291f
AK
2098 EXT4_I(inode)->i_reserved_meta_blocks);
2099 return;
2100}
2101
64769240
AT
2102/*
2103 * mpage_da_map_blocks - go through given space
2104 *
8dc207c0 2105 * @mpd - bh describing space
64769240
AT
2106 *
2107 * The function skips space we know is already mapped to disk blocks.
2108 *
64769240 2109 */
ed5bde0b 2110static int mpage_da_map_blocks(struct mpage_da_data *mpd)
64769240 2111{
2ac3b6e0 2112 int err, blks, get_blocks_flags;
030ba6bc 2113 struct buffer_head new;
2fa3cdfb
TT
2114 sector_t next = mpd->b_blocknr;
2115 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2116 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2117 handle_t *handle = NULL;
64769240
AT
2118
2119 /*
2120 * We consider only non-mapped and non-allocated blocks
2121 */
8dc207c0 2122 if ((mpd->b_state & (1 << BH_Mapped)) &&
29fa89d0
AK
2123 !(mpd->b_state & (1 << BH_Delay)) &&
2124 !(mpd->b_state & (1 << BH_Unwritten)))
c4a0c46e 2125 return 0;
2fa3cdfb
TT
2126
2127 /*
2128 * If we didn't accumulate anything to write simply return
2129 */
2130 if (!mpd->b_size)
2131 return 0;
2132
2133 handle = ext4_journal_current_handle();
2134 BUG_ON(!handle);
2135
79ffab34 2136 /*
2ac3b6e0
TT
2137 * Call ext4_get_blocks() to allocate any delayed allocation
2138 * blocks, or to convert an uninitialized extent to be
2139 * initialized (in the case where we have written into
2140 * one or more preallocated blocks).
2141 *
2142 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2143 * indicate that we are on the delayed allocation path. This
2144 * affects functions in many different parts of the allocation
2145 * call path. This flag exists primarily because we don't
2146 * want to change *many* call functions, so ext4_get_blocks()
2147 * will set the magic i_delalloc_reserved_flag once the
2148 * inode's allocation semaphore is taken.
2149 *
2150 * If the blocks in questions were delalloc blocks, set
2151 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2152 * variables are updated after the blocks have been allocated.
79ffab34 2153 */
2ac3b6e0
TT
2154 new.b_state = 0;
2155 get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2156 EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2157 if (mpd->b_state & (1 << BH_Delay))
2158 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2fa3cdfb 2159 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2ac3b6e0 2160 &new, get_blocks_flags);
2fa3cdfb
TT
2161 if (blks < 0) {
2162 err = blks;
ed5bde0b
TT
2163 /*
2164 * If get block returns with error we simply
2165 * return. Later writepage will redirty the page and
2166 * writepages will find the dirty page again
c4a0c46e
AK
2167 */
2168 if (err == -EAGAIN)
2169 return 0;
df22291f
AK
2170
2171 if (err == -ENOSPC &&
ed5bde0b 2172 ext4_count_free_blocks(mpd->inode->i_sb)) {
df22291f
AK
2173 mpd->retval = err;
2174 return 0;
2175 }
2176
c4a0c46e 2177 /*
ed5bde0b
TT
2178 * get block failure will cause us to loop in
2179 * writepages, because a_ops->writepage won't be able
2180 * to make progress. The page will be redirtied by
2181 * writepage and writepages will again try to write
2182 * the same.
c4a0c46e
AK
2183 */
2184 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2185 "at logical offset %llu with max blocks "
2186 "%zd with error %d\n",
2187 __func__, mpd->inode->i_ino,
2188 (unsigned long long)next,
8dc207c0 2189 mpd->b_size >> mpd->inode->i_blkbits, err);
c4a0c46e
AK
2190 printk(KERN_EMERG "This should not happen.!! "
2191 "Data will be lost\n");
030ba6bc 2192 if (err == -ENOSPC) {
df22291f 2193 ext4_print_free_blocks(mpd->inode);
030ba6bc 2194 }
2fa3cdfb 2195 /* invalidate all the pages */
c4a0c46e 2196 ext4_da_block_invalidatepages(mpd, next,
8dc207c0 2197 mpd->b_size >> mpd->inode->i_blkbits);
c4a0c46e
AK
2198 return err;
2199 }
2fa3cdfb
TT
2200 BUG_ON(blks == 0);
2201
2202 new.b_size = (blks << mpd->inode->i_blkbits);
64769240 2203
a1d6cc56
AK
2204 if (buffer_new(&new))
2205 __unmap_underlying_blocks(mpd->inode, &new);
64769240 2206
a1d6cc56
AK
2207 /*
2208 * If blocks are delayed marked, we need to
2209 * put actual blocknr and drop delayed bit
2210 */
8dc207c0
TT
2211 if ((mpd->b_state & (1 << BH_Delay)) ||
2212 (mpd->b_state & (1 << BH_Unwritten)))
a1d6cc56 2213 mpage_put_bnr_to_bhs(mpd, next, &new);
64769240 2214
2fa3cdfb
TT
2215 if (ext4_should_order_data(mpd->inode)) {
2216 err = ext4_jbd2_file_inode(handle, mpd->inode);
2217 if (err)
2218 return err;
2219 }
2220
2221 /*
03f5d8bc 2222 * Update on-disk size along with block allocation.
2fa3cdfb
TT
2223 */
2224 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2225 if (disksize > i_size_read(mpd->inode))
2226 disksize = i_size_read(mpd->inode);
2227 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2228 ext4_update_i_disksize(mpd->inode, disksize);
2229 return ext4_mark_inode_dirty(handle, mpd->inode);
2230 }
2231
c4a0c46e 2232 return 0;
64769240
AT
2233}
2234
bf068ee2
AK
2235#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2236 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
2237
2238/*
2239 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2240 *
2241 * @mpd->lbh - extent of blocks
2242 * @logical - logical number of the block in the file
2243 * @bh - bh of the block (used to access block's state)
2244 *
2245 * the function is used to collect contig. blocks in same state
2246 */
2247static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
2248 sector_t logical, size_t b_size,
2249 unsigned long b_state)
64769240 2250{
64769240 2251 sector_t next;
8dc207c0 2252 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 2253
525f4ed8
MC
2254 /* check if thereserved journal credits might overflow */
2255 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2256 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2257 /*
2258 * With non-extent format we are limited by the journal
2259 * credit available. Total credit needed to insert
2260 * nrblocks contiguous blocks is dependent on the
2261 * nrblocks. So limit nrblocks.
2262 */
2263 goto flush_it;
2264 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2265 EXT4_MAX_TRANS_DATA) {
2266 /*
2267 * Adding the new buffer_head would make it cross the
2268 * allowed limit for which we have journal credit
2269 * reserved. So limit the new bh->b_size
2270 */
2271 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2272 mpd->inode->i_blkbits;
2273 /* we will do mpage_da_submit_io in the next loop */
2274 }
2275 }
64769240
AT
2276 /*
2277 * First block in the extent
2278 */
8dc207c0
TT
2279 if (mpd->b_size == 0) {
2280 mpd->b_blocknr = logical;
2281 mpd->b_size = b_size;
2282 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
2283 return;
2284 }
2285
8dc207c0 2286 next = mpd->b_blocknr + nrblocks;
64769240
AT
2287 /*
2288 * Can we merge the block to our big extent?
2289 */
8dc207c0
TT
2290 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2291 mpd->b_size += b_size;
64769240
AT
2292 return;
2293 }
2294
525f4ed8 2295flush_it:
64769240
AT
2296 /*
2297 * We couldn't merge the block to our extent, so we
2298 * need to flush current extent and start new one
2299 */
c4a0c46e
AK
2300 if (mpage_da_map_blocks(mpd) == 0)
2301 mpage_da_submit_io(mpd);
a1d6cc56
AK
2302 mpd->io_done = 1;
2303 return;
64769240
AT
2304}
2305
c364b22c 2306static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 2307{
c364b22c 2308 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
2309}
2310
64769240
AT
2311/*
2312 * __mpage_da_writepage - finds extent of pages and blocks
2313 *
2314 * @page: page to consider
2315 * @wbc: not used, we just follow rules
2316 * @data: context
2317 *
2318 * The function finds extents of pages and scan them for all blocks.
2319 */
2320static int __mpage_da_writepage(struct page *page,
2321 struct writeback_control *wbc, void *data)
2322{
2323 struct mpage_da_data *mpd = data;
2324 struct inode *inode = mpd->inode;
8dc207c0 2325 struct buffer_head *bh, *head;
64769240
AT
2326 sector_t logical;
2327
a1d6cc56
AK
2328 if (mpd->io_done) {
2329 /*
2330 * Rest of the page in the page_vec
2331 * redirty then and skip then. We will
2332 * try to to write them again after
2333 * starting a new transaction
2334 */
2335 redirty_page_for_writepage(wbc, page);
2336 unlock_page(page);
2337 return MPAGE_DA_EXTENT_TAIL;
2338 }
64769240
AT
2339 /*
2340 * Can we merge this page to current extent?
2341 */
2342 if (mpd->next_page != page->index) {
2343 /*
2344 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 2345 * and start IO on them using writepage()
64769240
AT
2346 */
2347 if (mpd->next_page != mpd->first_page) {
c4a0c46e
AK
2348 if (mpage_da_map_blocks(mpd) == 0)
2349 mpage_da_submit_io(mpd);
a1d6cc56
AK
2350 /*
2351 * skip rest of the page in the page_vec
2352 */
2353 mpd->io_done = 1;
2354 redirty_page_for_writepage(wbc, page);
2355 unlock_page(page);
2356 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2357 }
2358
2359 /*
2360 * Start next extent of pages ...
2361 */
2362 mpd->first_page = page->index;
2363
2364 /*
2365 * ... and blocks
2366 */
8dc207c0
TT
2367 mpd->b_size = 0;
2368 mpd->b_state = 0;
2369 mpd->b_blocknr = 0;
64769240
AT
2370 }
2371
2372 mpd->next_page = page->index + 1;
2373 logical = (sector_t) page->index <<
2374 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2375
2376 if (!page_has_buffers(page)) {
8dc207c0
TT
2377 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2378 (1 << BH_Dirty) | (1 << BH_Uptodate));
a1d6cc56
AK
2379 if (mpd->io_done)
2380 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2381 } else {
2382 /*
2383 * Page with regular buffer heads, just add all dirty ones
2384 */
2385 head = page_buffers(page);
2386 bh = head;
2387 do {
2388 BUG_ON(buffer_locked(bh));
791b7f08
AK
2389 /*
2390 * We need to try to allocate
2391 * unmapped blocks in the same page.
2392 * Otherwise we won't make progress
43ce1d23 2393 * with the page in ext4_writepage
791b7f08 2394 */
c364b22c 2395 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
8dc207c0
TT
2396 mpage_add_bh_to_extent(mpd, logical,
2397 bh->b_size,
2398 bh->b_state);
a1d6cc56
AK
2399 if (mpd->io_done)
2400 return MPAGE_DA_EXTENT_TAIL;
791b7f08
AK
2401 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2402 /*
2403 * mapped dirty buffer. We need to update
2404 * the b_state because we look at
2405 * b_state in mpage_da_map_blocks. We don't
2406 * update b_size because if we find an
2407 * unmapped buffer_head later we need to
2408 * use the b_state flag of that buffer_head.
2409 */
8dc207c0
TT
2410 if (mpd->b_size == 0)
2411 mpd->b_state = bh->b_state & BH_FLAGS;
a1d6cc56 2412 }
64769240
AT
2413 logical++;
2414 } while ((bh = bh->b_this_page) != head);
2415 }
2416
2417 return 0;
2418}
2419
64769240 2420/*
b920c755
TT
2421 * This is a special get_blocks_t callback which is used by
2422 * ext4_da_write_begin(). It will either return mapped block or
2423 * reserve space for a single block.
29fa89d0
AK
2424 *
2425 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2426 * We also have b_blocknr = -1 and b_bdev initialized properly
2427 *
2428 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2429 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2430 * initialized properly.
64769240
AT
2431 */
2432static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2433 struct buffer_head *bh_result, int create)
2434{
2435 int ret = 0;
33b9817e
AK
2436 sector_t invalid_block = ~((sector_t) 0xffff);
2437
2438 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2439 invalid_block = ~0;
64769240
AT
2440
2441 BUG_ON(create == 0);
2442 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2443
2444 /*
2445 * first, we need to know whether the block is allocated already
2446 * preallocated blocks are unmapped but should treated
2447 * the same as allocated blocks.
2448 */
c2177057 2449 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
d2a17637
MC
2450 if ((ret == 0) && !buffer_delay(bh_result)) {
2451 /* the block isn't (pre)allocated yet, let's reserve space */
64769240
AT
2452 /*
2453 * XXX: __block_prepare_write() unmaps passed block,
2454 * is it OK?
2455 */
d2a17637
MC
2456 ret = ext4_da_reserve_space(inode, 1);
2457 if (ret)
2458 /* not enough space to reserve */
2459 return ret;
2460
33b9817e 2461 map_bh(bh_result, inode->i_sb, invalid_block);
64769240
AT
2462 set_buffer_new(bh_result);
2463 set_buffer_delay(bh_result);
2464 } else if (ret > 0) {
2465 bh_result->b_size = (ret << inode->i_blkbits);
29fa89d0
AK
2466 if (buffer_unwritten(bh_result)) {
2467 /* A delayed write to unwritten bh should
2468 * be marked new and mapped. Mapped ensures
2469 * that we don't do get_block multiple times
2470 * when we write to the same offset and new
2471 * ensures that we do proper zero out for
2472 * partial write.
2473 */
9c1ee184 2474 set_buffer_new(bh_result);
29fa89d0
AK
2475 set_buffer_mapped(bh_result);
2476 }
64769240
AT
2477 ret = 0;
2478 }
2479
2480 return ret;
2481}
61628a3f 2482
b920c755
TT
2483/*
2484 * This function is used as a standard get_block_t calback function
2485 * when there is no desire to allocate any blocks. It is used as a
2486 * callback function for block_prepare_write(), nobh_writepage(), and
2487 * block_write_full_page(). These functions should only try to map a
2488 * single block at a time.
2489 *
2490 * Since this function doesn't do block allocations even if the caller
2491 * requests it by passing in create=1, it is critically important that
2492 * any caller checks to make sure that any buffer heads are returned
2493 * by this function are either all already mapped or marked for
2494 * delayed allocation before calling nobh_writepage() or
2495 * block_write_full_page(). Otherwise, b_blocknr could be left
2496 * unitialized, and the page write functions will be taken by
2497 * surprise.
2498 */
2499static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
2500 struct buffer_head *bh_result, int create)
2501{
2502 int ret = 0;
2503 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2504
a2dc52b5
TT
2505 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2506
f0e6c985
AK
2507 /*
2508 * we don't want to do block allocation in writepage
2509 * so call get_block_wrap with create = 0
2510 */
c2177057 2511 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
f0e6c985
AK
2512 if (ret > 0) {
2513 bh_result->b_size = (ret << inode->i_blkbits);
2514 ret = 0;
2515 }
2516 return ret;
61628a3f
MC
2517}
2518
62e086be
AK
2519static int bget_one(handle_t *handle, struct buffer_head *bh)
2520{
2521 get_bh(bh);
2522 return 0;
2523}
2524
2525static int bput_one(handle_t *handle, struct buffer_head *bh)
2526{
2527 put_bh(bh);
2528 return 0;
2529}
2530
2531static int __ext4_journalled_writepage(struct page *page,
2532 struct writeback_control *wbc,
2533 unsigned int len)
2534{
2535 struct address_space *mapping = page->mapping;
2536 struct inode *inode = mapping->host;
2537 struct buffer_head *page_bufs;
2538 handle_t *handle = NULL;
2539 int ret = 0;
2540 int err;
2541
2542 page_bufs = page_buffers(page);
2543 BUG_ON(!page_bufs);
2544 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2545 /* As soon as we unlock the page, it can go away, but we have
2546 * references to buffers so we are safe */
2547 unlock_page(page);
2548
2549 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2550 if (IS_ERR(handle)) {
2551 ret = PTR_ERR(handle);
2552 goto out;
2553 }
2554
2555 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2556 do_journal_get_write_access);
2557
2558 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2559 write_end_fn);
2560 if (ret == 0)
2561 ret = err;
2562 err = ext4_journal_stop(handle);
2563 if (!ret)
2564 ret = err;
2565
2566 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2567 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2568out:
2569 return ret;
2570}
2571
61628a3f 2572/*
43ce1d23
AK
2573 * Note that we don't need to start a transaction unless we're journaling data
2574 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2575 * need to file the inode to the transaction's list in ordered mode because if
2576 * we are writing back data added by write(), the inode is already there and if
2577 * we are writing back data modified via mmap(), noone guarantees in which
2578 * transaction the data will hit the disk. In case we are journaling data, we
2579 * cannot start transaction directly because transaction start ranks above page
2580 * lock so we have to do some magic.
2581 *
b920c755
TT
2582 * This function can get called via...
2583 * - ext4_da_writepages after taking page lock (have journal handle)
2584 * - journal_submit_inode_data_buffers (no journal handle)
2585 * - shrink_page_list via pdflush (no journal handle)
2586 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2587 *
2588 * We don't do any block allocation in this function. If we have page with
2589 * multiple blocks we need to write those buffer_heads that are mapped. This
2590 * is important for mmaped based write. So if we do with blocksize 1K
2591 * truncate(f, 1024);
2592 * a = mmap(f, 0, 4096);
2593 * a[0] = 'a';
2594 * truncate(f, 4096);
2595 * we have in the page first buffer_head mapped via page_mkwrite call back
2596 * but other bufer_heads would be unmapped but dirty(dirty done via the
2597 * do_wp_page). So writepage should write the first block. If we modify
2598 * the mmap area beyond 1024 we will again get a page_fault and the
2599 * page_mkwrite callback will do the block allocation and mark the
2600 * buffer_heads mapped.
2601 *
2602 * We redirty the page if we have any buffer_heads that is either delay or
2603 * unwritten in the page.
2604 *
2605 * We can get recursively called as show below.
2606 *
2607 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2608 * ext4_writepage()
2609 *
2610 * But since we don't do any block allocation we should not deadlock.
2611 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2612 */
43ce1d23 2613static int ext4_writepage(struct page *page,
62e086be 2614 struct writeback_control *wbc)
64769240 2615{
64769240 2616 int ret = 0;
61628a3f 2617 loff_t size;
498e5f24 2618 unsigned int len;
61628a3f
MC
2619 struct buffer_head *page_bufs;
2620 struct inode *inode = page->mapping->host;
2621
43ce1d23 2622 trace_ext4_writepage(inode, page);
f0e6c985
AK
2623 size = i_size_read(inode);
2624 if (page->index == size >> PAGE_CACHE_SHIFT)
2625 len = size & ~PAGE_CACHE_MASK;
2626 else
2627 len = PAGE_CACHE_SIZE;
64769240 2628
f0e6c985 2629 if (page_has_buffers(page)) {
61628a3f 2630 page_bufs = page_buffers(page);
f0e6c985 2631 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2632 ext4_bh_delay_or_unwritten)) {
61628a3f 2633 /*
f0e6c985
AK
2634 * We don't want to do block allocation
2635 * So redirty the page and return
cd1aac32
AK
2636 * We may reach here when we do a journal commit
2637 * via journal_submit_inode_data_buffers.
2638 * If we don't have mapping block we just ignore
f0e6c985
AK
2639 * them. We can also reach here via shrink_page_list
2640 */
2641 redirty_page_for_writepage(wbc, page);
2642 unlock_page(page);
2643 return 0;
2644 }
2645 } else {
2646 /*
2647 * The test for page_has_buffers() is subtle:
2648 * We know the page is dirty but it lost buffers. That means
2649 * that at some moment in time after write_begin()/write_end()
2650 * has been called all buffers have been clean and thus they
2651 * must have been written at least once. So they are all
2652 * mapped and we can happily proceed with mapping them
2653 * and writing the page.
2654 *
2655 * Try to initialize the buffer_heads and check whether
2656 * all are mapped and non delay. We don't want to
2657 * do block allocation here.
2658 */
b767e78a 2659 ret = block_prepare_write(page, 0, len,
b920c755 2660 noalloc_get_block_write);
f0e6c985
AK
2661 if (!ret) {
2662 page_bufs = page_buffers(page);
2663 /* check whether all are mapped and non delay */
2664 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2665 ext4_bh_delay_or_unwritten)) {
f0e6c985
AK
2666 redirty_page_for_writepage(wbc, page);
2667 unlock_page(page);
2668 return 0;
2669 }
2670 } else {
2671 /*
2672 * We can't do block allocation here
2673 * so just redity the page and unlock
2674 * and return
61628a3f 2675 */
61628a3f
MC
2676 redirty_page_for_writepage(wbc, page);
2677 unlock_page(page);
2678 return 0;
2679 }
ed9b3e33 2680 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 2681 block_commit_write(page, 0, len);
64769240
AT
2682 }
2683
43ce1d23
AK
2684 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2685 /*
2686 * It's mmapped pagecache. Add buffers and journal it. There
2687 * doesn't seem much point in redirtying the page here.
2688 */
2689 ClearPageChecked(page);
2690 return __ext4_journalled_writepage(page, wbc, len);
2691 }
2692
64769240 2693 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
b920c755 2694 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
64769240 2695 else
b920c755
TT
2696 ret = block_write_full_page(page, noalloc_get_block_write,
2697 wbc);
64769240 2698
64769240
AT
2699 return ret;
2700}
2701
61628a3f 2702/*
525f4ed8
MC
2703 * This is called via ext4_da_writepages() to
2704 * calulate the total number of credits to reserve to fit
2705 * a single extent allocation into a single transaction,
2706 * ext4_da_writpeages() will loop calling this before
2707 * the block allocation.
61628a3f 2708 */
525f4ed8
MC
2709
2710static int ext4_da_writepages_trans_blocks(struct inode *inode)
2711{
2712 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2713
2714 /*
2715 * With non-extent format the journal credit needed to
2716 * insert nrblocks contiguous block is dependent on
2717 * number of contiguous block. So we will limit
2718 * number of contiguous block to a sane value
2719 */
2720 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2721 (max_blocks > EXT4_MAX_TRANS_DATA))
2722 max_blocks = EXT4_MAX_TRANS_DATA;
2723
2724 return ext4_chunk_trans_blocks(inode, max_blocks);
2725}
61628a3f 2726
64769240 2727static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2728 struct writeback_control *wbc)
64769240 2729{
22208ded
AK
2730 pgoff_t index;
2731 int range_whole = 0;
61628a3f 2732 handle_t *handle = NULL;
df22291f 2733 struct mpage_da_data mpd;
5e745b04 2734 struct inode *inode = mapping->host;
22208ded 2735 int no_nrwrite_index_update;
498e5f24
TT
2736 int pages_written = 0;
2737 long pages_skipped;
2acf2c26 2738 int range_cyclic, cycled = 1, io_done = 0;
5e745b04 2739 int needed_blocks, ret = 0, nr_to_writebump = 0;
de89de6e 2740 loff_t range_start = wbc->range_start;
5e745b04 2741 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f 2742
9bffad1e 2743 trace_ext4_da_writepages(inode, wbc);
ba80b101 2744
61628a3f
MC
2745 /*
2746 * No pages to write? This is mainly a kludge to avoid starting
2747 * a transaction for special inodes like journal inode on last iput()
2748 * because that could violate lock ordering on umount
2749 */
a1d6cc56 2750 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2751 return 0;
2a21e37e
TT
2752
2753 /*
2754 * If the filesystem has aborted, it is read-only, so return
2755 * right away instead of dumping stack traces later on that
2756 * will obscure the real source of the problem. We test
4ab2f15b 2757 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2758 * the latter could be true if the filesystem is mounted
2759 * read-only, and in that case, ext4_da_writepages should
2760 * *never* be called, so if that ever happens, we would want
2761 * the stack trace.
2762 */
4ab2f15b 2763 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2764 return -EROFS;
2765
5e745b04
AK
2766 /*
2767 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2768 * This make sure small files blocks are allocated in
2769 * single attempt. This ensure that small files
2770 * get less fragmented.
2771 */
2772 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2773 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2774 wbc->nr_to_write = sbi->s_mb_stream_request;
2775 }
22208ded
AK
2776 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2777 range_whole = 1;
61628a3f 2778
2acf2c26
AK
2779 range_cyclic = wbc->range_cyclic;
2780 if (wbc->range_cyclic) {
22208ded 2781 index = mapping->writeback_index;
2acf2c26
AK
2782 if (index)
2783 cycled = 0;
2784 wbc->range_start = index << PAGE_CACHE_SHIFT;
2785 wbc->range_end = LLONG_MAX;
2786 wbc->range_cyclic = 0;
2787 } else
22208ded 2788 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 2789
df22291f
AK
2790 mpd.wbc = wbc;
2791 mpd.inode = mapping->host;
2792
22208ded
AK
2793 /*
2794 * we don't want write_cache_pages to update
2795 * nr_to_write and writeback_index
2796 */
2797 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2798 wbc->no_nrwrite_index_update = 1;
2799 pages_skipped = wbc->pages_skipped;
2800
2acf2c26 2801retry:
22208ded 2802 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2803
2804 /*
2805 * we insert one extent at a time. So we need
2806 * credit needed for single extent allocation.
2807 * journalled mode is currently not supported
2808 * by delalloc
2809 */
2810 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2811 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2812
61628a3f
MC
2813 /* start a new transaction*/
2814 handle = ext4_journal_start(inode, needed_blocks);
2815 if (IS_ERR(handle)) {
2816 ret = PTR_ERR(handle);
2a21e37e 2817 printk(KERN_CRIT "%s: jbd2_start: "
a1d6cc56
AK
2818 "%ld pages, ino %lu; err %d\n", __func__,
2819 wbc->nr_to_write, inode->i_ino, ret);
2820 dump_stack();
61628a3f
MC
2821 goto out_writepages;
2822 }
f63e6005
TT
2823
2824 /*
2825 * Now call __mpage_da_writepage to find the next
2826 * contiguous region of logical blocks that need
2827 * blocks to be allocated by ext4. We don't actually
2828 * submit the blocks for I/O here, even though
2829 * write_cache_pages thinks it will, and will set the
2830 * pages as clean for write before calling
2831 * __mpage_da_writepage().
2832 */
2833 mpd.b_size = 0;
2834 mpd.b_state = 0;
2835 mpd.b_blocknr = 0;
2836 mpd.first_page = 0;
2837 mpd.next_page = 0;
2838 mpd.io_done = 0;
2839 mpd.pages_written = 0;
2840 mpd.retval = 0;
2841 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2842 &mpd);
2843 /*
2844 * If we have a contigous extent of pages and we
2845 * haven't done the I/O yet, map the blocks and submit
2846 * them for I/O.
2847 */
2848 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2849 if (mpage_da_map_blocks(&mpd) == 0)
2850 mpage_da_submit_io(&mpd);
2851 mpd.io_done = 1;
2852 ret = MPAGE_DA_EXTENT_TAIL;
2853 }
b3a3ca8c 2854 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 2855 wbc->nr_to_write -= mpd.pages_written;
df22291f 2856
61628a3f 2857 ext4_journal_stop(handle);
df22291f 2858
8f64b32e 2859 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2860 /* commit the transaction which would
2861 * free blocks released in the transaction
2862 * and try again
2863 */
df22291f 2864 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2865 wbc->pages_skipped = pages_skipped;
2866 ret = 0;
2867 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
2868 /*
2869 * got one extent now try with
2870 * rest of the pages
2871 */
22208ded
AK
2872 pages_written += mpd.pages_written;
2873 wbc->pages_skipped = pages_skipped;
a1d6cc56 2874 ret = 0;
2acf2c26 2875 io_done = 1;
22208ded 2876 } else if (wbc->nr_to_write)
61628a3f
MC
2877 /*
2878 * There is no more writeout needed
2879 * or we requested for a noblocking writeout
2880 * and we found the device congested
2881 */
61628a3f 2882 break;
a1d6cc56 2883 }
2acf2c26
AK
2884 if (!io_done && !cycled) {
2885 cycled = 1;
2886 index = 0;
2887 wbc->range_start = index << PAGE_CACHE_SHIFT;
2888 wbc->range_end = mapping->writeback_index - 1;
2889 goto retry;
2890 }
22208ded
AK
2891 if (pages_skipped != wbc->pages_skipped)
2892 printk(KERN_EMERG "This should not happen leaving %s "
2893 "with nr_to_write = %ld ret = %d\n",
2894 __func__, wbc->nr_to_write, ret);
2895
2896 /* Update index */
2897 index += pages_written;
2acf2c26 2898 wbc->range_cyclic = range_cyclic;
22208ded
AK
2899 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2900 /*
2901 * set the writeback_index so that range_cyclic
2902 * mode will write it back later
2903 */
2904 mapping->writeback_index = index;
a1d6cc56 2905
61628a3f 2906out_writepages:
22208ded
AK
2907 if (!no_nrwrite_index_update)
2908 wbc->no_nrwrite_index_update = 0;
2909 wbc->nr_to_write -= nr_to_writebump;
de89de6e 2910 wbc->range_start = range_start;
9bffad1e 2911 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 2912 return ret;
64769240
AT
2913}
2914
79f0be8d
AK
2915#define FALL_BACK_TO_NONDELALLOC 1
2916static int ext4_nonda_switch(struct super_block *sb)
2917{
2918 s64 free_blocks, dirty_blocks;
2919 struct ext4_sb_info *sbi = EXT4_SB(sb);
2920
2921 /*
2922 * switch to non delalloc mode if we are running low
2923 * on free block. The free block accounting via percpu
179f7ebf 2924 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2925 * accumulated on each CPU without updating global counters
2926 * Delalloc need an accurate free block accounting. So switch
2927 * to non delalloc when we are near to error range.
2928 */
2929 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2930 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2931 if (2 * free_blocks < 3 * dirty_blocks ||
2932 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2933 /*
2934 * free block count is less that 150% of dirty blocks
2935 * or free blocks is less that watermark
2936 */
2937 return 1;
2938 }
2939 return 0;
2940}
2941
64769240 2942static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2943 loff_t pos, unsigned len, unsigned flags,
2944 struct page **pagep, void **fsdata)
64769240 2945{
d2a17637 2946 int ret, retries = 0;
64769240
AT
2947 struct page *page;
2948 pgoff_t index;
2949 unsigned from, to;
2950 struct inode *inode = mapping->host;
2951 handle_t *handle;
2952
2953 index = pos >> PAGE_CACHE_SHIFT;
2954 from = pos & (PAGE_CACHE_SIZE - 1);
2955 to = from + len;
79f0be8d
AK
2956
2957 if (ext4_nonda_switch(inode->i_sb)) {
2958 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2959 return ext4_write_begin(file, mapping, pos,
2960 len, flags, pagep, fsdata);
2961 }
2962 *fsdata = (void *)0;
9bffad1e 2963 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 2964retry:
64769240
AT
2965 /*
2966 * With delayed allocation, we don't log the i_disksize update
2967 * if there is delayed block allocation. But we still need
2968 * to journalling the i_disksize update if writes to the end
2969 * of file which has an already mapped buffer.
2970 */
2971 handle = ext4_journal_start(inode, 1);
2972 if (IS_ERR(handle)) {
2973 ret = PTR_ERR(handle);
2974 goto out;
2975 }
ebd3610b
JK
2976 /* We cannot recurse into the filesystem as the transaction is already
2977 * started */
2978 flags |= AOP_FLAG_NOFS;
64769240 2979
54566b2c 2980 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
2981 if (!page) {
2982 ext4_journal_stop(handle);
2983 ret = -ENOMEM;
2984 goto out;
2985 }
64769240
AT
2986 *pagep = page;
2987
2988 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
b920c755 2989 ext4_da_get_block_prep);
64769240
AT
2990 if (ret < 0) {
2991 unlock_page(page);
2992 ext4_journal_stop(handle);
2993 page_cache_release(page);
ae4d5372
AK
2994 /*
2995 * block_write_begin may have instantiated a few blocks
2996 * outside i_size. Trim these off again. Don't need
2997 * i_size_read because we hold i_mutex.
2998 */
2999 if (pos + len > inode->i_size)
ffacfa7a 3000 ext4_truncate(inode);
64769240
AT
3001 }
3002
d2a17637
MC
3003 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3004 goto retry;
64769240
AT
3005out:
3006 return ret;
3007}
3008
632eaeab
MC
3009/*
3010 * Check if we should update i_disksize
3011 * when write to the end of file but not require block allocation
3012 */
3013static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3014 unsigned long offset)
632eaeab
MC
3015{
3016 struct buffer_head *bh;
3017 struct inode *inode = page->mapping->host;
3018 unsigned int idx;
3019 int i;
3020
3021 bh = page_buffers(page);
3022 idx = offset >> inode->i_blkbits;
3023
af5bc92d 3024 for (i = 0; i < idx; i++)
632eaeab
MC
3025 bh = bh->b_this_page;
3026
29fa89d0 3027 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3028 return 0;
3029 return 1;
3030}
3031
64769240 3032static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3033 struct address_space *mapping,
3034 loff_t pos, unsigned len, unsigned copied,
3035 struct page *page, void *fsdata)
64769240
AT
3036{
3037 struct inode *inode = mapping->host;
3038 int ret = 0, ret2;
3039 handle_t *handle = ext4_journal_current_handle();
3040 loff_t new_i_size;
632eaeab 3041 unsigned long start, end;
79f0be8d
AK
3042 int write_mode = (int)(unsigned long)fsdata;
3043
3044 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3045 if (ext4_should_order_data(inode)) {
3046 return ext4_ordered_write_end(file, mapping, pos,
3047 len, copied, page, fsdata);
3048 } else if (ext4_should_writeback_data(inode)) {
3049 return ext4_writeback_write_end(file, mapping, pos,
3050 len, copied, page, fsdata);
3051 } else {
3052 BUG();
3053 }
3054 }
632eaeab 3055
9bffad1e 3056 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 3057 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 3058 end = start + copied - 1;
64769240
AT
3059
3060 /*
3061 * generic_write_end() will run mark_inode_dirty() if i_size
3062 * changes. So let's piggyback the i_disksize mark_inode_dirty
3063 * into that.
3064 */
3065
3066 new_i_size = pos + copied;
632eaeab
MC
3067 if (new_i_size > EXT4_I(inode)->i_disksize) {
3068 if (ext4_da_should_update_i_disksize(page, end)) {
3069 down_write(&EXT4_I(inode)->i_data_sem);
3070 if (new_i_size > EXT4_I(inode)->i_disksize) {
3071 /*
3072 * Updating i_disksize when extending file
3073 * without needing block allocation
3074 */
3075 if (ext4_should_order_data(inode))
3076 ret = ext4_jbd2_file_inode(handle,
3077 inode);
64769240 3078
632eaeab
MC
3079 EXT4_I(inode)->i_disksize = new_i_size;
3080 }
3081 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
3082 /* We need to mark inode dirty even if
3083 * new_i_size is less that inode->i_size
3084 * bu greater than i_disksize.(hint delalloc)
3085 */
3086 ext4_mark_inode_dirty(handle, inode);
64769240 3087 }
632eaeab 3088 }
64769240
AT
3089 ret2 = generic_write_end(file, mapping, pos, len, copied,
3090 page, fsdata);
3091 copied = ret2;
3092 if (ret2 < 0)
3093 ret = ret2;
3094 ret2 = ext4_journal_stop(handle);
3095 if (!ret)
3096 ret = ret2;
3097
3098 return ret ? ret : copied;
3099}
3100
3101static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3102{
64769240
AT
3103 /*
3104 * Drop reserved blocks
3105 */
3106 BUG_ON(!PageLocked(page));
3107 if (!page_has_buffers(page))
3108 goto out;
3109
d2a17637 3110 ext4_da_page_release_reservation(page, offset);
64769240
AT
3111
3112out:
3113 ext4_invalidatepage(page, offset);
3114
3115 return;
3116}
3117
ccd2506b
TT
3118/*
3119 * Force all delayed allocation blocks to be allocated for a given inode.
3120 */
3121int ext4_alloc_da_blocks(struct inode *inode)
3122{
3123 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3124 !EXT4_I(inode)->i_reserved_meta_blocks)
3125 return 0;
3126
3127 /*
3128 * We do something simple for now. The filemap_flush() will
3129 * also start triggering a write of the data blocks, which is
3130 * not strictly speaking necessary (and for users of
3131 * laptop_mode, not even desirable). However, to do otherwise
3132 * would require replicating code paths in:
de9a55b8 3133 *
ccd2506b
TT
3134 * ext4_da_writepages() ->
3135 * write_cache_pages() ---> (via passed in callback function)
3136 * __mpage_da_writepage() -->
3137 * mpage_add_bh_to_extent()
3138 * mpage_da_map_blocks()
3139 *
3140 * The problem is that write_cache_pages(), located in
3141 * mm/page-writeback.c, marks pages clean in preparation for
3142 * doing I/O, which is not desirable if we're not planning on
3143 * doing I/O at all.
3144 *
3145 * We could call write_cache_pages(), and then redirty all of
3146 * the pages by calling redirty_page_for_writeback() but that
3147 * would be ugly in the extreme. So instead we would need to
3148 * replicate parts of the code in the above functions,
3149 * simplifying them becuase we wouldn't actually intend to
3150 * write out the pages, but rather only collect contiguous
3151 * logical block extents, call the multi-block allocator, and
3152 * then update the buffer heads with the block allocations.
de9a55b8 3153 *
ccd2506b
TT
3154 * For now, though, we'll cheat by calling filemap_flush(),
3155 * which will map the blocks, and start the I/O, but not
3156 * actually wait for the I/O to complete.
3157 */
3158 return filemap_flush(inode->i_mapping);
3159}
64769240 3160
ac27a0ec
DK
3161/*
3162 * bmap() is special. It gets used by applications such as lilo and by
3163 * the swapper to find the on-disk block of a specific piece of data.
3164 *
3165 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3166 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3167 * filesystem and enables swap, then they may get a nasty shock when the
3168 * data getting swapped to that swapfile suddenly gets overwritten by
3169 * the original zero's written out previously to the journal and
3170 * awaiting writeback in the kernel's buffer cache.
3171 *
3172 * So, if we see any bmap calls here on a modified, data-journaled file,
3173 * take extra steps to flush any blocks which might be in the cache.
3174 */
617ba13b 3175static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3176{
3177 struct inode *inode = mapping->host;
3178 journal_t *journal;
3179 int err;
3180
64769240
AT
3181 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3182 test_opt(inode->i_sb, DELALLOC)) {
3183 /*
3184 * With delalloc we want to sync the file
3185 * so that we can make sure we allocate
3186 * blocks for file
3187 */
3188 filemap_write_and_wait(mapping);
3189 }
3190
0390131b 3191 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
ac27a0ec
DK
3192 /*
3193 * This is a REALLY heavyweight approach, but the use of
3194 * bmap on dirty files is expected to be extremely rare:
3195 * only if we run lilo or swapon on a freshly made file
3196 * do we expect this to happen.
3197 *
3198 * (bmap requires CAP_SYS_RAWIO so this does not
3199 * represent an unprivileged user DOS attack --- we'd be
3200 * in trouble if mortal users could trigger this path at
3201 * will.)
3202 *
617ba13b 3203 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3204 * regular files. If somebody wants to bmap a directory
3205 * or symlink and gets confused because the buffer
3206 * hasn't yet been flushed to disk, they deserve
3207 * everything they get.
3208 */
3209
617ba13b
MC
3210 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3211 journal = EXT4_JOURNAL(inode);
dab291af
MC
3212 jbd2_journal_lock_updates(journal);
3213 err = jbd2_journal_flush(journal);
3214 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3215
3216 if (err)
3217 return 0;
3218 }
3219
af5bc92d 3220 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3221}
3222
617ba13b 3223static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3224{
617ba13b 3225 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
3226}
3227
3228static int
617ba13b 3229ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3230 struct list_head *pages, unsigned nr_pages)
3231{
617ba13b 3232 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3233}
3234
617ba13b 3235static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3236{
617ba13b 3237 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3238
3239 /*
3240 * If it's a full truncate we just forget about the pending dirtying
3241 */
3242 if (offset == 0)
3243 ClearPageChecked(page);
3244
0390131b
FM
3245 if (journal)
3246 jbd2_journal_invalidatepage(journal, page, offset);
3247 else
3248 block_invalidatepage(page, offset);
ac27a0ec
DK
3249}
3250
617ba13b 3251static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3252{
617ba13b 3253 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3254
3255 WARN_ON(PageChecked(page));
3256 if (!page_has_buffers(page))
3257 return 0;
0390131b
FM
3258 if (journal)
3259 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3260 else
3261 return try_to_free_buffers(page);
ac27a0ec
DK
3262}
3263
3264/*
3265 * If the O_DIRECT write will extend the file then add this inode to the
3266 * orphan list. So recovery will truncate it back to the original size
3267 * if the machine crashes during the write.
3268 *
3269 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3270 * crashes then stale disk data _may_ be exposed inside the file. But current
3271 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3272 */
617ba13b 3273static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
de9a55b8
TT
3274 const struct iovec *iov, loff_t offset,
3275 unsigned long nr_segs)
ac27a0ec
DK
3276{
3277 struct file *file = iocb->ki_filp;
3278 struct inode *inode = file->f_mapping->host;
617ba13b 3279 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3280 handle_t *handle;
ac27a0ec
DK
3281 ssize_t ret;
3282 int orphan = 0;
3283 size_t count = iov_length(iov, nr_segs);
3284
3285 if (rw == WRITE) {
3286 loff_t final_size = offset + count;
3287
ac27a0ec 3288 if (final_size > inode->i_size) {
7fb5409d
JK
3289 /* Credits for sb + inode write */
3290 handle = ext4_journal_start(inode, 2);
3291 if (IS_ERR(handle)) {
3292 ret = PTR_ERR(handle);
3293 goto out;
3294 }
617ba13b 3295 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3296 if (ret) {
3297 ext4_journal_stop(handle);
3298 goto out;
3299 }
ac27a0ec
DK
3300 orphan = 1;
3301 ei->i_disksize = inode->i_size;
7fb5409d 3302 ext4_journal_stop(handle);
ac27a0ec
DK
3303 }
3304 }
3305
3306 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3307 offset, nr_segs,
617ba13b 3308 ext4_get_block, NULL);
ac27a0ec 3309
7fb5409d 3310 if (orphan) {
ac27a0ec
DK
3311 int err;
3312
7fb5409d
JK
3313 /* Credits for sb + inode write */
3314 handle = ext4_journal_start(inode, 2);
3315 if (IS_ERR(handle)) {
3316 /* This is really bad luck. We've written the data
3317 * but cannot extend i_size. Bail out and pretend
3318 * the write failed... */
3319 ret = PTR_ERR(handle);
3320 goto out;
3321 }
3322 if (inode->i_nlink)
617ba13b 3323 ext4_orphan_del(handle, inode);
7fb5409d 3324 if (ret > 0) {
ac27a0ec
DK
3325 loff_t end = offset + ret;
3326 if (end > inode->i_size) {
3327 ei->i_disksize = end;
3328 i_size_write(inode, end);
3329 /*
3330 * We're going to return a positive `ret'
3331 * here due to non-zero-length I/O, so there's
3332 * no way of reporting error returns from
617ba13b 3333 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3334 * ignore it.
3335 */
617ba13b 3336 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3337 }
3338 }
617ba13b 3339 err = ext4_journal_stop(handle);
ac27a0ec
DK
3340 if (ret == 0)
3341 ret = err;
3342 }
3343out:
3344 return ret;
3345}
3346
3347/*
617ba13b 3348 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3349 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3350 * much here because ->set_page_dirty is called under VFS locks. The page is
3351 * not necessarily locked.
3352 *
3353 * We cannot just dirty the page and leave attached buffers clean, because the
3354 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3355 * or jbddirty because all the journalling code will explode.
3356 *
3357 * So what we do is to mark the page "pending dirty" and next time writepage
3358 * is called, propagate that into the buffers appropriately.
3359 */
617ba13b 3360static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3361{
3362 SetPageChecked(page);
3363 return __set_page_dirty_nobuffers(page);
3364}
3365
617ba13b 3366static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3367 .readpage = ext4_readpage,
3368 .readpages = ext4_readpages,
43ce1d23 3369 .writepage = ext4_writepage,
8ab22b9a
HH
3370 .sync_page = block_sync_page,
3371 .write_begin = ext4_write_begin,
3372 .write_end = ext4_ordered_write_end,
3373 .bmap = ext4_bmap,
3374 .invalidatepage = ext4_invalidatepage,
3375 .releasepage = ext4_releasepage,
3376 .direct_IO = ext4_direct_IO,
3377 .migratepage = buffer_migrate_page,
3378 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3379};
3380
617ba13b 3381static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3382 .readpage = ext4_readpage,
3383 .readpages = ext4_readpages,
43ce1d23 3384 .writepage = ext4_writepage,
8ab22b9a
HH
3385 .sync_page = block_sync_page,
3386 .write_begin = ext4_write_begin,
3387 .write_end = ext4_writeback_write_end,
3388 .bmap = ext4_bmap,
3389 .invalidatepage = ext4_invalidatepage,
3390 .releasepage = ext4_releasepage,
3391 .direct_IO = ext4_direct_IO,
3392 .migratepage = buffer_migrate_page,
3393 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3394};
3395
617ba13b 3396static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3397 .readpage = ext4_readpage,
3398 .readpages = ext4_readpages,
43ce1d23 3399 .writepage = ext4_writepage,
8ab22b9a
HH
3400 .sync_page = block_sync_page,
3401 .write_begin = ext4_write_begin,
3402 .write_end = ext4_journalled_write_end,
3403 .set_page_dirty = ext4_journalled_set_page_dirty,
3404 .bmap = ext4_bmap,
3405 .invalidatepage = ext4_invalidatepage,
3406 .releasepage = ext4_releasepage,
3407 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3408};
3409
64769240 3410static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3411 .readpage = ext4_readpage,
3412 .readpages = ext4_readpages,
43ce1d23 3413 .writepage = ext4_writepage,
8ab22b9a
HH
3414 .writepages = ext4_da_writepages,
3415 .sync_page = block_sync_page,
3416 .write_begin = ext4_da_write_begin,
3417 .write_end = ext4_da_write_end,
3418 .bmap = ext4_bmap,
3419 .invalidatepage = ext4_da_invalidatepage,
3420 .releasepage = ext4_releasepage,
3421 .direct_IO = ext4_direct_IO,
3422 .migratepage = buffer_migrate_page,
3423 .is_partially_uptodate = block_is_partially_uptodate,
64769240
AT
3424};
3425
617ba13b 3426void ext4_set_aops(struct inode *inode)
ac27a0ec 3427{
cd1aac32
AK
3428 if (ext4_should_order_data(inode) &&
3429 test_opt(inode->i_sb, DELALLOC))
3430 inode->i_mapping->a_ops = &ext4_da_aops;
3431 else if (ext4_should_order_data(inode))
617ba13b 3432 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
3433 else if (ext4_should_writeback_data(inode) &&
3434 test_opt(inode->i_sb, DELALLOC))
3435 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
3436 else if (ext4_should_writeback_data(inode))
3437 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 3438 else
617ba13b 3439 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
3440}
3441
3442/*
617ba13b 3443 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
3444 * up to the end of the block which corresponds to `from'.
3445 * This required during truncate. We need to physically zero the tail end
3446 * of that block so it doesn't yield old data if the file is later grown.
3447 */
cf108bca 3448int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
3449 struct address_space *mapping, loff_t from)
3450{
617ba13b 3451 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 3452 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
3453 unsigned blocksize, length, pos;
3454 ext4_lblk_t iblock;
ac27a0ec
DK
3455 struct inode *inode = mapping->host;
3456 struct buffer_head *bh;
cf108bca 3457 struct page *page;
ac27a0ec 3458 int err = 0;
ac27a0ec 3459
f4a01017
TT
3460 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3461 mapping_gfp_mask(mapping) & ~__GFP_FS);
cf108bca
JK
3462 if (!page)
3463 return -EINVAL;
3464
ac27a0ec
DK
3465 blocksize = inode->i_sb->s_blocksize;
3466 length = blocksize - (offset & (blocksize - 1));
3467 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3468
3469 /*
3470 * For "nobh" option, we can only work if we don't need to
3471 * read-in the page - otherwise we create buffers to do the IO.
3472 */
3473 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 3474 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 3475 zero_user(page, offset, length);
ac27a0ec
DK
3476 set_page_dirty(page);
3477 goto unlock;
3478 }
3479
3480 if (!page_has_buffers(page))
3481 create_empty_buffers(page, blocksize, 0);
3482
3483 /* Find the buffer that contains "offset" */
3484 bh = page_buffers(page);
3485 pos = blocksize;
3486 while (offset >= pos) {
3487 bh = bh->b_this_page;
3488 iblock++;
3489 pos += blocksize;
3490 }
3491
3492 err = 0;
3493 if (buffer_freed(bh)) {
3494 BUFFER_TRACE(bh, "freed: skip");
3495 goto unlock;
3496 }
3497
3498 if (!buffer_mapped(bh)) {
3499 BUFFER_TRACE(bh, "unmapped");
617ba13b 3500 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
3501 /* unmapped? It's a hole - nothing to do */
3502 if (!buffer_mapped(bh)) {
3503 BUFFER_TRACE(bh, "still unmapped");
3504 goto unlock;
3505 }
3506 }
3507
3508 /* Ok, it's mapped. Make sure it's up-to-date */
3509 if (PageUptodate(page))
3510 set_buffer_uptodate(bh);
3511
3512 if (!buffer_uptodate(bh)) {
3513 err = -EIO;
3514 ll_rw_block(READ, 1, &bh);
3515 wait_on_buffer(bh);
3516 /* Uhhuh. Read error. Complain and punt. */
3517 if (!buffer_uptodate(bh))
3518 goto unlock;
3519 }
3520
617ba13b 3521 if (ext4_should_journal_data(inode)) {
ac27a0ec 3522 BUFFER_TRACE(bh, "get write access");
617ba13b 3523 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3524 if (err)
3525 goto unlock;
3526 }
3527
eebd2aa3 3528 zero_user(page, offset, length);
ac27a0ec
DK
3529
3530 BUFFER_TRACE(bh, "zeroed end of block");
3531
3532 err = 0;
617ba13b 3533 if (ext4_should_journal_data(inode)) {
0390131b 3534 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3535 } else {
617ba13b 3536 if (ext4_should_order_data(inode))
678aaf48 3537 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
3538 mark_buffer_dirty(bh);
3539 }
3540
3541unlock:
3542 unlock_page(page);
3543 page_cache_release(page);
3544 return err;
3545}
3546
3547/*
3548 * Probably it should be a library function... search for first non-zero word
3549 * or memcmp with zero_page, whatever is better for particular architecture.
3550 * Linus?
3551 */
3552static inline int all_zeroes(__le32 *p, __le32 *q)
3553{
3554 while (p < q)
3555 if (*p++)
3556 return 0;
3557 return 1;
3558}
3559
3560/**
617ba13b 3561 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
3562 * @inode: inode in question
3563 * @depth: depth of the affected branch
617ba13b 3564 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
3565 * @chain: place to store the pointers to partial indirect blocks
3566 * @top: place to the (detached) top of branch
3567 *
617ba13b 3568 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
3569 *
3570 * When we do truncate() we may have to clean the ends of several
3571 * indirect blocks but leave the blocks themselves alive. Block is
3572 * partially truncated if some data below the new i_size is refered
3573 * from it (and it is on the path to the first completely truncated
3574 * data block, indeed). We have to free the top of that path along
3575 * with everything to the right of the path. Since no allocation
617ba13b 3576 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
3577 * finishes, we may safely do the latter, but top of branch may
3578 * require special attention - pageout below the truncation point
3579 * might try to populate it.
3580 *
3581 * We atomically detach the top of branch from the tree, store the
3582 * block number of its root in *@top, pointers to buffer_heads of
3583 * partially truncated blocks - in @chain[].bh and pointers to
3584 * their last elements that should not be removed - in
3585 * @chain[].p. Return value is the pointer to last filled element
3586 * of @chain.
3587 *
3588 * The work left to caller to do the actual freeing of subtrees:
3589 * a) free the subtree starting from *@top
3590 * b) free the subtrees whose roots are stored in
3591 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3592 * c) free the subtrees growing from the inode past the @chain[0].
3593 * (no partially truncated stuff there). */
3594
617ba13b 3595static Indirect *ext4_find_shared(struct inode *inode, int depth,
de9a55b8
TT
3596 ext4_lblk_t offsets[4], Indirect chain[4],
3597 __le32 *top)
ac27a0ec
DK
3598{
3599 Indirect *partial, *p;
3600 int k, err;
3601
3602 *top = 0;
3603 /* Make k index the deepest non-null offest + 1 */
3604 for (k = depth; k > 1 && !offsets[k-1]; k--)
3605 ;
617ba13b 3606 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
3607 /* Writer: pointers */
3608 if (!partial)
3609 partial = chain + k-1;
3610 /*
3611 * If the branch acquired continuation since we've looked at it -
3612 * fine, it should all survive and (new) top doesn't belong to us.
3613 */
3614 if (!partial->key && *partial->p)
3615 /* Writer: end */
3616 goto no_top;
af5bc92d 3617 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
3618 ;
3619 /*
3620 * OK, we've found the last block that must survive. The rest of our
3621 * branch should be detached before unlocking. However, if that rest
3622 * of branch is all ours and does not grow immediately from the inode
3623 * it's easier to cheat and just decrement partial->p.
3624 */
3625 if (p == chain + k - 1 && p > chain) {
3626 p->p--;
3627 } else {
3628 *top = *p->p;
617ba13b 3629 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
3630#if 0
3631 *p->p = 0;
3632#endif
3633 }
3634 /* Writer: end */
3635
af5bc92d 3636 while (partial > p) {
ac27a0ec
DK
3637 brelse(partial->bh);
3638 partial--;
3639 }
3640no_top:
3641 return partial;
3642}
3643
3644/*
3645 * Zero a number of block pointers in either an inode or an indirect block.
3646 * If we restart the transaction we must again get write access to the
3647 * indirect block for further modification.
3648 *
3649 * We release `count' blocks on disk, but (last - first) may be greater
3650 * than `count' because there can be holes in there.
3651 */
617ba13b 3652static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
3653 struct buffer_head *bh,
3654 ext4_fsblk_t block_to_free,
3655 unsigned long count, __le32 *first,
3656 __le32 *last)
ac27a0ec
DK
3657{
3658 __le32 *p;
3659 if (try_to_extend_transaction(handle, inode)) {
3660 if (bh) {
0390131b
FM
3661 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3662 ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3663 }
617ba13b 3664 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
3665 ext4_truncate_restart_trans(handle, inode,
3666 blocks_for_truncate(inode));
ac27a0ec
DK
3667 if (bh) {
3668 BUFFER_TRACE(bh, "retaking write access");
617ba13b 3669 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3670 }
3671 }
3672
3673 /*
de9a55b8
TT
3674 * Any buffers which are on the journal will be in memory. We
3675 * find them on the hash table so jbd2_journal_revoke() will
3676 * run jbd2_journal_forget() on them. We've already detached
3677 * each block from the file, so bforget() in
3678 * jbd2_journal_forget() should be safe.
ac27a0ec 3679 *
dab291af 3680 * AKPM: turn on bforget in jbd2_journal_forget()!!!
ac27a0ec
DK
3681 */
3682 for (p = first; p < last; p++) {
3683 u32 nr = le32_to_cpu(*p);
3684 if (nr) {
1d03ec98 3685 struct buffer_head *tbh;
ac27a0ec
DK
3686
3687 *p = 0;
1d03ec98
AK
3688 tbh = sb_find_get_block(inode->i_sb, nr);
3689 ext4_forget(handle, 0, inode, tbh, nr);
ac27a0ec
DK
3690 }
3691 }
3692
c9de560d 3693 ext4_free_blocks(handle, inode, block_to_free, count, 0);
ac27a0ec
DK
3694}
3695
3696/**
617ba13b 3697 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
3698 * @handle: handle for this transaction
3699 * @inode: inode we are dealing with
3700 * @this_bh: indirect buffer_head which contains *@first and *@last
3701 * @first: array of block numbers
3702 * @last: points immediately past the end of array
3703 *
3704 * We are freeing all blocks refered from that array (numbers are stored as
3705 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3706 *
3707 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3708 * blocks are contiguous then releasing them at one time will only affect one
3709 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3710 * actually use a lot of journal space.
3711 *
3712 * @this_bh will be %NULL if @first and @last point into the inode's direct
3713 * block pointers.
3714 */
617ba13b 3715static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3716 struct buffer_head *this_bh,
3717 __le32 *first, __le32 *last)
3718{
617ba13b 3719 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
3720 unsigned long count = 0; /* Number of blocks in the run */
3721 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3722 corresponding to
3723 block_to_free */
617ba13b 3724 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
3725 __le32 *p; /* Pointer into inode/ind
3726 for current block */
3727 int err;
3728
3729 if (this_bh) { /* For indirect block */
3730 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 3731 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
3732 /* Important: if we can't update the indirect pointers
3733 * to the blocks, we can't free them. */
3734 if (err)
3735 return;
3736 }
3737
3738 for (p = first; p < last; p++) {
3739 nr = le32_to_cpu(*p);
3740 if (nr) {
3741 /* accumulate blocks to free if they're contiguous */
3742 if (count == 0) {
3743 block_to_free = nr;
3744 block_to_free_p = p;
3745 count = 1;
3746 } else if (nr == block_to_free + count) {
3747 count++;
3748 } else {
617ba13b 3749 ext4_clear_blocks(handle, inode, this_bh,
ac27a0ec
DK
3750 block_to_free,
3751 count, block_to_free_p, p);
3752 block_to_free = nr;
3753 block_to_free_p = p;
3754 count = 1;
3755 }
3756 }
3757 }
3758
3759 if (count > 0)
617ba13b 3760 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
3761 count, block_to_free_p, p);
3762
3763 if (this_bh) {
0390131b 3764 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
71dc8fbc
DG
3765
3766 /*
3767 * The buffer head should have an attached journal head at this
3768 * point. However, if the data is corrupted and an indirect
3769 * block pointed to itself, it would have been detached when
3770 * the block was cleared. Check for this instead of OOPSing.
3771 */
e7f07968 3772 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
0390131b 3773 ext4_handle_dirty_metadata(handle, inode, this_bh);
71dc8fbc
DG
3774 else
3775 ext4_error(inode->i_sb, __func__,
3776 "circular indirect block detected, "
3777 "inode=%lu, block=%llu",
3778 inode->i_ino,
3779 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
3780 }
3781}
3782
3783/**
617ba13b 3784 * ext4_free_branches - free an array of branches
ac27a0ec
DK
3785 * @handle: JBD handle for this transaction
3786 * @inode: inode we are dealing with
3787 * @parent_bh: the buffer_head which contains *@first and *@last
3788 * @first: array of block numbers
3789 * @last: pointer immediately past the end of array
3790 * @depth: depth of the branches to free
3791 *
3792 * We are freeing all blocks refered from these branches (numbers are
3793 * stored as little-endian 32-bit) and updating @inode->i_blocks
3794 * appropriately.
3795 */
617ba13b 3796static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3797 struct buffer_head *parent_bh,
3798 __le32 *first, __le32 *last, int depth)
3799{
617ba13b 3800 ext4_fsblk_t nr;
ac27a0ec
DK
3801 __le32 *p;
3802
0390131b 3803 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
3804 return;
3805
3806 if (depth--) {
3807 struct buffer_head *bh;
617ba13b 3808 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
3809 p = last;
3810 while (--p >= first) {
3811 nr = le32_to_cpu(*p);
3812 if (!nr)
3813 continue; /* A hole */
3814
3815 /* Go read the buffer for the next level down */
3816 bh = sb_bread(inode->i_sb, nr);
3817
3818 /*
3819 * A read failure? Report error and clear slot
3820 * (should be rare).
3821 */
3822 if (!bh) {
617ba13b 3823 ext4_error(inode->i_sb, "ext4_free_branches",
2ae02107 3824 "Read failure, inode=%lu, block=%llu",
ac27a0ec
DK
3825 inode->i_ino, nr);
3826 continue;
3827 }
3828
3829 /* This zaps the entire block. Bottom up. */
3830 BUFFER_TRACE(bh, "free child branches");
617ba13b 3831 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
3832 (__le32 *) bh->b_data,
3833 (__le32 *) bh->b_data + addr_per_block,
3834 depth);
ac27a0ec
DK
3835
3836 /*
3837 * We've probably journalled the indirect block several
3838 * times during the truncate. But it's no longer
3839 * needed and we now drop it from the transaction via
dab291af 3840 * jbd2_journal_revoke().
ac27a0ec
DK
3841 *
3842 * That's easy if it's exclusively part of this
3843 * transaction. But if it's part of the committing
dab291af 3844 * transaction then jbd2_journal_forget() will simply
ac27a0ec 3845 * brelse() it. That means that if the underlying
617ba13b 3846 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
3847 * unmap_underlying_metadata() will find this block
3848 * and will try to get rid of it. damn, damn.
3849 *
3850 * If this block has already been committed to the
3851 * journal, a revoke record will be written. And
3852 * revoke records must be emitted *before* clearing
3853 * this block's bit in the bitmaps.
3854 */
617ba13b 3855 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
3856
3857 /*
3858 * Everything below this this pointer has been
3859 * released. Now let this top-of-subtree go.
3860 *
3861 * We want the freeing of this indirect block to be
3862 * atomic in the journal with the updating of the
3863 * bitmap block which owns it. So make some room in
3864 * the journal.
3865 *
3866 * We zero the parent pointer *after* freeing its
3867 * pointee in the bitmaps, so if extend_transaction()
3868 * for some reason fails to put the bitmap changes and
3869 * the release into the same transaction, recovery
3870 * will merely complain about releasing a free block,
3871 * rather than leaking blocks.
3872 */
0390131b 3873 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
3874 return;
3875 if (try_to_extend_transaction(handle, inode)) {
617ba13b 3876 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
3877 ext4_truncate_restart_trans(handle, inode,
3878 blocks_for_truncate(inode));
ac27a0ec
DK
3879 }
3880
c9de560d 3881 ext4_free_blocks(handle, inode, nr, 1, 1);
ac27a0ec
DK
3882
3883 if (parent_bh) {
3884 /*
3885 * The block which we have just freed is
3886 * pointed to by an indirect block: journal it
3887 */
3888 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 3889 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
3890 parent_bh)){
3891 *p = 0;
3892 BUFFER_TRACE(parent_bh,
0390131b
FM
3893 "call ext4_handle_dirty_metadata");
3894 ext4_handle_dirty_metadata(handle,
3895 inode,
3896 parent_bh);
ac27a0ec
DK
3897 }
3898 }
3899 }
3900 } else {
3901 /* We have reached the bottom of the tree. */
3902 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 3903 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
3904 }
3905}
3906
91ef4caf
DG
3907int ext4_can_truncate(struct inode *inode)
3908{
3909 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3910 return 0;
3911 if (S_ISREG(inode->i_mode))
3912 return 1;
3913 if (S_ISDIR(inode->i_mode))
3914 return 1;
3915 if (S_ISLNK(inode->i_mode))
3916 return !ext4_inode_is_fast_symlink(inode);
3917 return 0;
3918}
3919
ac27a0ec 3920/*
617ba13b 3921 * ext4_truncate()
ac27a0ec 3922 *
617ba13b
MC
3923 * We block out ext4_get_block() block instantiations across the entire
3924 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3925 * simultaneously on behalf of the same inode.
3926 *
3927 * As we work through the truncate and commmit bits of it to the journal there
3928 * is one core, guiding principle: the file's tree must always be consistent on
3929 * disk. We must be able to restart the truncate after a crash.
3930 *
3931 * The file's tree may be transiently inconsistent in memory (although it
3932 * probably isn't), but whenever we close off and commit a journal transaction,
3933 * the contents of (the filesystem + the journal) must be consistent and
3934 * restartable. It's pretty simple, really: bottom up, right to left (although
3935 * left-to-right works OK too).
3936 *
3937 * Note that at recovery time, journal replay occurs *before* the restart of
3938 * truncate against the orphan inode list.
3939 *
3940 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3941 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3942 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3943 * ext4_truncate() to have another go. So there will be instantiated blocks
3944 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3945 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3946 * ext4_truncate() run will find them and release them.
ac27a0ec 3947 */
617ba13b 3948void ext4_truncate(struct inode *inode)
ac27a0ec
DK
3949{
3950 handle_t *handle;
617ba13b 3951 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 3952 __le32 *i_data = ei->i_data;
617ba13b 3953 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 3954 struct address_space *mapping = inode->i_mapping;
725d26d3 3955 ext4_lblk_t offsets[4];
ac27a0ec
DK
3956 Indirect chain[4];
3957 Indirect *partial;
3958 __le32 nr = 0;
3959 int n;
725d26d3 3960 ext4_lblk_t last_block;
ac27a0ec 3961 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 3962
91ef4caf 3963 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3964 return;
3965
0eab9282
TT
3966 if (ei->i_disksize && inode->i_size == 0 &&
3967 !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
7d8f9f7d
TT
3968 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
3969
1d03ec98 3970 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
cf108bca 3971 ext4_ext_truncate(inode);
1d03ec98
AK
3972 return;
3973 }
a86c6181 3974
ac27a0ec 3975 handle = start_transaction(inode);
cf108bca 3976 if (IS_ERR(handle))
ac27a0ec 3977 return; /* AKPM: return what? */
ac27a0ec
DK
3978
3979 last_block = (inode->i_size + blocksize-1)
617ba13b 3980 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 3981
cf108bca
JK
3982 if (inode->i_size & (blocksize - 1))
3983 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3984 goto out_stop;
ac27a0ec 3985
617ba13b 3986 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
3987 if (n == 0)
3988 goto out_stop; /* error */
3989
3990 /*
3991 * OK. This truncate is going to happen. We add the inode to the
3992 * orphan list, so that if this truncate spans multiple transactions,
3993 * and we crash, we will resume the truncate when the filesystem
3994 * recovers. It also marks the inode dirty, to catch the new size.
3995 *
3996 * Implication: the file must always be in a sane, consistent
3997 * truncatable state while each transaction commits.
3998 */
617ba13b 3999 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
4000 goto out_stop;
4001
632eaeab
MC
4002 /*
4003 * From here we block out all ext4_get_block() callers who want to
4004 * modify the block allocation tree.
4005 */
4006 down_write(&ei->i_data_sem);
b4df2030 4007
c2ea3fde 4008 ext4_discard_preallocations(inode);
b4df2030 4009
ac27a0ec
DK
4010 /*
4011 * The orphan list entry will now protect us from any crash which
4012 * occurs before the truncate completes, so it is now safe to propagate
4013 * the new, shorter inode size (held for now in i_size) into the
4014 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 4015 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
4016 */
4017 ei->i_disksize = inode->i_size;
4018
ac27a0ec 4019 if (n == 1) { /* direct blocks */
617ba13b
MC
4020 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4021 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
4022 goto do_indirects;
4023 }
4024
617ba13b 4025 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
4026 /* Kill the top of shared branch (not detached) */
4027 if (nr) {
4028 if (partial == chain) {
4029 /* Shared branch grows from the inode */
617ba13b 4030 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
4031 &nr, &nr+1, (chain+n-1) - partial);
4032 *partial->p = 0;
4033 /*
4034 * We mark the inode dirty prior to restart,
4035 * and prior to stop. No need for it here.
4036 */
4037 } else {
4038 /* Shared branch grows from an indirect block */
4039 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 4040 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
4041 partial->p,
4042 partial->p+1, (chain+n-1) - partial);
4043 }
4044 }
4045 /* Clear the ends of indirect blocks on the shared branch */
4046 while (partial > chain) {
617ba13b 4047 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
4048 (__le32*)partial->bh->b_data+addr_per_block,
4049 (chain+n-1) - partial);
4050 BUFFER_TRACE(partial->bh, "call brelse");
de9a55b8 4051 brelse(partial->bh);
ac27a0ec
DK
4052 partial--;
4053 }
4054do_indirects:
4055 /* Kill the remaining (whole) subtrees */
4056 switch (offsets[0]) {
4057 default:
617ba13b 4058 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 4059 if (nr) {
617ba13b
MC
4060 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4061 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 4062 }
617ba13b
MC
4063 case EXT4_IND_BLOCK:
4064 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 4065 if (nr) {
617ba13b
MC
4066 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4067 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 4068 }
617ba13b
MC
4069 case EXT4_DIND_BLOCK:
4070 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 4071 if (nr) {
617ba13b
MC
4072 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4073 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 4074 }
617ba13b 4075 case EXT4_TIND_BLOCK:
ac27a0ec
DK
4076 ;
4077 }
4078
0e855ac8 4079 up_write(&ei->i_data_sem);
ef7f3835 4080 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 4081 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4082
4083 /*
4084 * In a multi-transaction truncate, we only make the final transaction
4085 * synchronous
4086 */
4087 if (IS_SYNC(inode))
0390131b 4088 ext4_handle_sync(handle);
ac27a0ec
DK
4089out_stop:
4090 /*
4091 * If this was a simple ftruncate(), and the file will remain alive
4092 * then we need to clear up the orphan record which we created above.
4093 * However, if this was a real unlink then we were called by
617ba13b 4094 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
4095 * orphan info for us.
4096 */
4097 if (inode->i_nlink)
617ba13b 4098 ext4_orphan_del(handle, inode);
ac27a0ec 4099
617ba13b 4100 ext4_journal_stop(handle);
ac27a0ec
DK
4101}
4102
ac27a0ec 4103/*
617ba13b 4104 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4105 * underlying buffer_head on success. If 'in_mem' is true, we have all
4106 * data in memory that is needed to recreate the on-disk version of this
4107 * inode.
4108 */
617ba13b
MC
4109static int __ext4_get_inode_loc(struct inode *inode,
4110 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4111{
240799cd
TT
4112 struct ext4_group_desc *gdp;
4113 struct buffer_head *bh;
4114 struct super_block *sb = inode->i_sb;
4115 ext4_fsblk_t block;
4116 int inodes_per_block, inode_offset;
4117
3a06d778 4118 iloc->bh = NULL;
240799cd
TT
4119 if (!ext4_valid_inum(sb, inode->i_ino))
4120 return -EIO;
ac27a0ec 4121
240799cd
TT
4122 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4123 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4124 if (!gdp)
ac27a0ec
DK
4125 return -EIO;
4126
240799cd
TT
4127 /*
4128 * Figure out the offset within the block group inode table
4129 */
4130 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4131 inode_offset = ((inode->i_ino - 1) %
4132 EXT4_INODES_PER_GROUP(sb));
4133 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4134 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4135
4136 bh = sb_getblk(sb, block);
ac27a0ec 4137 if (!bh) {
240799cd
TT
4138 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4139 "inode block - inode=%lu, block=%llu",
4140 inode->i_ino, block);
ac27a0ec
DK
4141 return -EIO;
4142 }
4143 if (!buffer_uptodate(bh)) {
4144 lock_buffer(bh);
9c83a923
HK
4145
4146 /*
4147 * If the buffer has the write error flag, we have failed
4148 * to write out another inode in the same block. In this
4149 * case, we don't have to read the block because we may
4150 * read the old inode data successfully.
4151 */
4152 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4153 set_buffer_uptodate(bh);
4154
ac27a0ec
DK
4155 if (buffer_uptodate(bh)) {
4156 /* someone brought it uptodate while we waited */
4157 unlock_buffer(bh);
4158 goto has_buffer;
4159 }
4160
4161 /*
4162 * If we have all information of the inode in memory and this
4163 * is the only valid inode in the block, we need not read the
4164 * block.
4165 */
4166 if (in_mem) {
4167 struct buffer_head *bitmap_bh;
240799cd 4168 int i, start;
ac27a0ec 4169
240799cd 4170 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4171
240799cd
TT
4172 /* Is the inode bitmap in cache? */
4173 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
4174 if (!bitmap_bh)
4175 goto make_io;
4176
4177 /*
4178 * If the inode bitmap isn't in cache then the
4179 * optimisation may end up performing two reads instead
4180 * of one, so skip it.
4181 */
4182 if (!buffer_uptodate(bitmap_bh)) {
4183 brelse(bitmap_bh);
4184 goto make_io;
4185 }
240799cd 4186 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4187 if (i == inode_offset)
4188 continue;
617ba13b 4189 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4190 break;
4191 }
4192 brelse(bitmap_bh);
240799cd 4193 if (i == start + inodes_per_block) {
ac27a0ec
DK
4194 /* all other inodes are free, so skip I/O */
4195 memset(bh->b_data, 0, bh->b_size);
4196 set_buffer_uptodate(bh);
4197 unlock_buffer(bh);
4198 goto has_buffer;
4199 }
4200 }
4201
4202make_io:
240799cd
TT
4203 /*
4204 * If we need to do any I/O, try to pre-readahead extra
4205 * blocks from the inode table.
4206 */
4207 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4208 ext4_fsblk_t b, end, table;
4209 unsigned num;
4210
4211 table = ext4_inode_table(sb, gdp);
b713a5ec 4212 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
4213 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4214 if (table > b)
4215 b = table;
4216 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4217 num = EXT4_INODES_PER_GROUP(sb);
4218 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4219 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 4220 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4221 table += num / inodes_per_block;
4222 if (end > table)
4223 end = table;
4224 while (b <= end)
4225 sb_breadahead(sb, b++);
4226 }
4227
ac27a0ec
DK
4228 /*
4229 * There are other valid inodes in the buffer, this inode
4230 * has in-inode xattrs, or we don't have this inode in memory.
4231 * Read the block from disk.
4232 */
4233 get_bh(bh);
4234 bh->b_end_io = end_buffer_read_sync;
4235 submit_bh(READ_META, bh);
4236 wait_on_buffer(bh);
4237 if (!buffer_uptodate(bh)) {
240799cd
TT
4238 ext4_error(sb, __func__,
4239 "unable to read inode block - inode=%lu, "
4240 "block=%llu", inode->i_ino, block);
ac27a0ec
DK
4241 brelse(bh);
4242 return -EIO;
4243 }
4244 }
4245has_buffer:
4246 iloc->bh = bh;
4247 return 0;
4248}
4249
617ba13b 4250int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4251{
4252 /* We have all inode data except xattrs in memory here. */
617ba13b
MC
4253 return __ext4_get_inode_loc(inode, iloc,
4254 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
ac27a0ec
DK
4255}
4256
617ba13b 4257void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4258{
617ba13b 4259 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4260
4261 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4262 if (flags & EXT4_SYNC_FL)
ac27a0ec 4263 inode->i_flags |= S_SYNC;
617ba13b 4264 if (flags & EXT4_APPEND_FL)
ac27a0ec 4265 inode->i_flags |= S_APPEND;
617ba13b 4266 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4267 inode->i_flags |= S_IMMUTABLE;
617ba13b 4268 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4269 inode->i_flags |= S_NOATIME;
617ba13b 4270 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4271 inode->i_flags |= S_DIRSYNC;
4272}
4273
ff9ddf7e
JK
4274/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4275void ext4_get_inode_flags(struct ext4_inode_info *ei)
4276{
4277 unsigned int flags = ei->vfs_inode.i_flags;
4278
4279 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4280 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4281 if (flags & S_SYNC)
4282 ei->i_flags |= EXT4_SYNC_FL;
4283 if (flags & S_APPEND)
4284 ei->i_flags |= EXT4_APPEND_FL;
4285 if (flags & S_IMMUTABLE)
4286 ei->i_flags |= EXT4_IMMUTABLE_FL;
4287 if (flags & S_NOATIME)
4288 ei->i_flags |= EXT4_NOATIME_FL;
4289 if (flags & S_DIRSYNC)
4290 ei->i_flags |= EXT4_DIRSYNC_FL;
4291}
de9a55b8 4292
0fc1b451 4293static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4294 struct ext4_inode_info *ei)
0fc1b451
AK
4295{
4296 blkcnt_t i_blocks ;
8180a562
AK
4297 struct inode *inode = &(ei->vfs_inode);
4298 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4299
4300 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4301 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4302 /* we are using combined 48 bit field */
4303 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4304 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
4305 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4306 /* i_blocks represent file system block size */
4307 return i_blocks << (inode->i_blkbits - 9);
4308 } else {
4309 return i_blocks;
4310 }
0fc1b451
AK
4311 } else {
4312 return le32_to_cpu(raw_inode->i_blocks_lo);
4313 }
4314}
ff9ddf7e 4315
1d1fe1ee 4316struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4317{
617ba13b
MC
4318 struct ext4_iloc iloc;
4319 struct ext4_inode *raw_inode;
1d1fe1ee 4320 struct ext4_inode_info *ei;
ac27a0ec 4321 struct buffer_head *bh;
1d1fe1ee
DH
4322 struct inode *inode;
4323 long ret;
ac27a0ec
DK
4324 int block;
4325
1d1fe1ee
DH
4326 inode = iget_locked(sb, ino);
4327 if (!inode)
4328 return ERR_PTR(-ENOMEM);
4329 if (!(inode->i_state & I_NEW))
4330 return inode;
4331
4332 ei = EXT4_I(inode);
ac27a0ec 4333
1d1fe1ee
DH
4334 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4335 if (ret < 0)
ac27a0ec
DK
4336 goto bad_inode;
4337 bh = iloc.bh;
617ba13b 4338 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
4339 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4340 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4341 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4342 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4343 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4344 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4345 }
4346 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec
DK
4347
4348 ei->i_state = 0;
4349 ei->i_dir_start_lookup = 0;
4350 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4351 /* We now have enough fields to check if the inode was active or not.
4352 * This is needed because nfsd might try to access dead inodes
4353 * the test is that same one that e2fsck uses
4354 * NeilBrown 1999oct15
4355 */
4356 if (inode->i_nlink == 0) {
4357 if (inode->i_mode == 0 ||
617ba13b 4358 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 4359 /* this inode is deleted */
af5bc92d 4360 brelse(bh);
1d1fe1ee 4361 ret = -ESTALE;
ac27a0ec
DK
4362 goto bad_inode;
4363 }
4364 /* The only unlinked inodes we let through here have
4365 * valid i_mode and are being read by the orphan
4366 * recovery code: that's fine, we're about to complete
4367 * the process of deleting those. */
4368 }
ac27a0ec 4369 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4370 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4371 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4372 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4373 ei->i_file_acl |=
4374 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4375 inode->i_size = ext4_isize(raw_inode);
ac27a0ec
DK
4376 ei->i_disksize = inode->i_size;
4377 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4378 ei->i_block_group = iloc.block_group;
a4912123 4379 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4380 /*
4381 * NOTE! The in-memory inode i_data array is in little-endian order
4382 * even on big-endian machines: we do NOT byteswap the block numbers!
4383 */
617ba13b 4384 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4385 ei->i_data[block] = raw_inode->i_block[block];
4386 INIT_LIST_HEAD(&ei->i_orphan);
4387
0040d987 4388 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 4389 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 4390 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 4391 EXT4_INODE_SIZE(inode->i_sb)) {
af5bc92d 4392 brelse(bh);
1d1fe1ee 4393 ret = -EIO;
ac27a0ec 4394 goto bad_inode;
e5d2861f 4395 }
ac27a0ec
DK
4396 if (ei->i_extra_isize == 0) {
4397 /* The extra space is currently unused. Use it. */
617ba13b
MC
4398 ei->i_extra_isize = sizeof(struct ext4_inode) -
4399 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
4400 } else {
4401 __le32 *magic = (void *)raw_inode +
617ba13b 4402 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 4403 ei->i_extra_isize;
617ba13b 4404 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
de9a55b8 4405 ei->i_state |= EXT4_STATE_XATTR;
ac27a0ec
DK
4406 }
4407 } else
4408 ei->i_extra_isize = 0;
4409
ef7f3835
KS
4410 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4411 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4412 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4413 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4414
25ec56b5
JNC
4415 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4416 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4417 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4418 inode->i_version |=
4419 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4420 }
4421
c4b5a614 4422 ret = 0;
485c26ec 4423 if (ei->i_file_acl &&
de9a55b8 4424 ((ei->i_file_acl <
485c26ec
TT
4425 (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4426 EXT4_SB(sb)->s_gdb_count)) ||
4427 (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4428 ext4_error(sb, __func__,
4429 "bad extended attribute block %llu in inode #%lu",
4430 ei->i_file_acl, inode->i_ino);
4431 ret = -EIO;
4432 goto bad_inode;
4433 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
c4b5a614
TT
4434 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4435 (S_ISLNK(inode->i_mode) &&
4436 !ext4_inode_is_fast_symlink(inode)))
4437 /* Validate extent which is part of inode */
4438 ret = ext4_ext_check_inode(inode);
de9a55b8 4439 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
fe2c8191
TN
4440 (S_ISLNK(inode->i_mode) &&
4441 !ext4_inode_is_fast_symlink(inode))) {
de9a55b8 4442 /* Validate block references which are part of inode */
fe2c8191
TN
4443 ret = ext4_check_inode_blockref(inode);
4444 }
4445 if (ret) {
de9a55b8
TT
4446 brelse(bh);
4447 goto bad_inode;
7a262f7c
AK
4448 }
4449
ac27a0ec 4450 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4451 inode->i_op = &ext4_file_inode_operations;
4452 inode->i_fop = &ext4_file_operations;
4453 ext4_set_aops(inode);
ac27a0ec 4454 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4455 inode->i_op = &ext4_dir_inode_operations;
4456 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4457 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4458 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4459 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4460 nd_terminate_link(ei->i_data, inode->i_size,
4461 sizeof(ei->i_data) - 1);
4462 } else {
617ba13b
MC
4463 inode->i_op = &ext4_symlink_inode_operations;
4464 ext4_set_aops(inode);
ac27a0ec 4465 }
563bdd61
TT
4466 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4467 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4468 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4469 if (raw_inode->i_block[0])
4470 init_special_inode(inode, inode->i_mode,
4471 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4472 else
4473 init_special_inode(inode, inode->i_mode,
4474 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61
TT
4475 } else {
4476 brelse(bh);
4477 ret = -EIO;
de9a55b8 4478 ext4_error(inode->i_sb, __func__,
563bdd61
TT
4479 "bogus i_mode (%o) for inode=%lu",
4480 inode->i_mode, inode->i_ino);
4481 goto bad_inode;
ac27a0ec 4482 }
af5bc92d 4483 brelse(iloc.bh);
617ba13b 4484 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4485 unlock_new_inode(inode);
4486 return inode;
ac27a0ec
DK
4487
4488bad_inode:
1d1fe1ee
DH
4489 iget_failed(inode);
4490 return ERR_PTR(ret);
ac27a0ec
DK
4491}
4492
0fc1b451
AK
4493static int ext4_inode_blocks_set(handle_t *handle,
4494 struct ext4_inode *raw_inode,
4495 struct ext4_inode_info *ei)
4496{
4497 struct inode *inode = &(ei->vfs_inode);
4498 u64 i_blocks = inode->i_blocks;
4499 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4500
4501 if (i_blocks <= ~0U) {
4502 /*
4503 * i_blocks can be represnted in a 32 bit variable
4504 * as multiple of 512 bytes
4505 */
8180a562 4506 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4507 raw_inode->i_blocks_high = 0;
8180a562 4508 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
f287a1a5
TT
4509 return 0;
4510 }
4511 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4512 return -EFBIG;
4513
4514 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4515 /*
4516 * i_blocks can be represented in a 48 bit variable
4517 * as multiple of 512 bytes
4518 */
8180a562 4519 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4520 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 4521 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 4522 } else {
8180a562
AK
4523 ei->i_flags |= EXT4_HUGE_FILE_FL;
4524 /* i_block is stored in file system block size */
4525 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4526 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4527 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4528 }
f287a1a5 4529 return 0;
0fc1b451
AK
4530}
4531
ac27a0ec
DK
4532/*
4533 * Post the struct inode info into an on-disk inode location in the
4534 * buffer-cache. This gobbles the caller's reference to the
4535 * buffer_head in the inode location struct.
4536 *
4537 * The caller must have write access to iloc->bh.
4538 */
617ba13b 4539static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4540 struct inode *inode,
91ac6f43
FM
4541 struct ext4_iloc *iloc,
4542 int do_sync)
ac27a0ec 4543{
617ba13b
MC
4544 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4545 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4546 struct buffer_head *bh = iloc->bh;
4547 int err = 0, rc, block;
4548
4549 /* For fields not not tracking in the in-memory inode,
4550 * initialise them to zero for new inodes. */
617ba13b
MC
4551 if (ei->i_state & EXT4_STATE_NEW)
4552 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4553
ff9ddf7e 4554 ext4_get_inode_flags(ei);
ac27a0ec 4555 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 4556 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4557 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4558 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4559/*
4560 * Fix up interoperability with old kernels. Otherwise, old inodes get
4561 * re-used with the upper 16 bits of the uid/gid intact
4562 */
af5bc92d 4563 if (!ei->i_dtime) {
ac27a0ec
DK
4564 raw_inode->i_uid_high =
4565 cpu_to_le16(high_16_bits(inode->i_uid));
4566 raw_inode->i_gid_high =
4567 cpu_to_le16(high_16_bits(inode->i_gid));
4568 } else {
4569 raw_inode->i_uid_high = 0;
4570 raw_inode->i_gid_high = 0;
4571 }
4572 } else {
4573 raw_inode->i_uid_low =
4574 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4575 raw_inode->i_gid_low =
4576 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4577 raw_inode->i_uid_high = 0;
4578 raw_inode->i_gid_high = 0;
4579 }
4580 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4581
4582 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4583 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4584 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4585 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4586
0fc1b451
AK
4587 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4588 goto out_brelse;
ac27a0ec 4589 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
267e4db9
AK
4590 /* clear the migrate flag in the raw_inode */
4591 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
9b8f1f01
MC
4592 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4593 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4594 raw_inode->i_file_acl_high =
4595 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4596 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
4597 ext4_isize_set(raw_inode, ei->i_disksize);
4598 if (ei->i_disksize > 0x7fffffffULL) {
4599 struct super_block *sb = inode->i_sb;
4600 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4601 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4602 EXT4_SB(sb)->s_es->s_rev_level ==
4603 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4604 /* If this is the first large file
4605 * created, add a flag to the superblock.
4606 */
4607 err = ext4_journal_get_write_access(handle,
4608 EXT4_SB(sb)->s_sbh);
4609 if (err)
4610 goto out_brelse;
4611 ext4_update_dynamic_rev(sb);
4612 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4613 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 4614 sb->s_dirt = 1;
0390131b
FM
4615 ext4_handle_sync(handle);
4616 err = ext4_handle_dirty_metadata(handle, inode,
a48380f7 4617 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
4618 }
4619 }
4620 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4621 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4622 if (old_valid_dev(inode->i_rdev)) {
4623 raw_inode->i_block[0] =
4624 cpu_to_le32(old_encode_dev(inode->i_rdev));
4625 raw_inode->i_block[1] = 0;
4626 } else {
4627 raw_inode->i_block[0] = 0;
4628 raw_inode->i_block[1] =
4629 cpu_to_le32(new_encode_dev(inode->i_rdev));
4630 raw_inode->i_block[2] = 0;
4631 }
de9a55b8
TT
4632 } else
4633 for (block = 0; block < EXT4_N_BLOCKS; block++)
4634 raw_inode->i_block[block] = ei->i_data[block];
ac27a0ec 4635
25ec56b5
JNC
4636 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4637 if (ei->i_extra_isize) {
4638 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4639 raw_inode->i_version_hi =
4640 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4641 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4642 }
4643
91ac6f43
FM
4644 /*
4645 * If we're not using a journal and we were called from
4646 * ext4_write_inode() to sync the inode (making do_sync true),
4647 * we can just use sync_dirty_buffer() directly to do our dirty
4648 * work. Testing s_journal here is a bit redundant but it's
4649 * worth it to avoid potential future trouble.
4650 */
4651 if (EXT4_SB(inode->i_sb)->s_journal == NULL && do_sync) {
4652 BUFFER_TRACE(bh, "call sync_dirty_buffer");
4653 sync_dirty_buffer(bh);
4654 } else {
4655 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4656 rc = ext4_handle_dirty_metadata(handle, inode, bh);
4657 if (!err)
4658 err = rc;
4659 }
617ba13b 4660 ei->i_state &= ~EXT4_STATE_NEW;
ac27a0ec
DK
4661
4662out_brelse:
af5bc92d 4663 brelse(bh);
617ba13b 4664 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4665 return err;
4666}
4667
4668/*
617ba13b 4669 * ext4_write_inode()
ac27a0ec
DK
4670 *
4671 * We are called from a few places:
4672 *
4673 * - Within generic_file_write() for O_SYNC files.
4674 * Here, there will be no transaction running. We wait for any running
4675 * trasnaction to commit.
4676 *
4677 * - Within sys_sync(), kupdate and such.
4678 * We wait on commit, if tol to.
4679 *
4680 * - Within prune_icache() (PF_MEMALLOC == true)
4681 * Here we simply return. We can't afford to block kswapd on the
4682 * journal commit.
4683 *
4684 * In all cases it is actually safe for us to return without doing anything,
4685 * because the inode has been copied into a raw inode buffer in
617ba13b 4686 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4687 * knfsd.
4688 *
4689 * Note that we are absolutely dependent upon all inode dirtiers doing the
4690 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4691 * which we are interested.
4692 *
4693 * It would be a bug for them to not do this. The code:
4694 *
4695 * mark_inode_dirty(inode)
4696 * stuff();
4697 * inode->i_size = expr;
4698 *
4699 * is in error because a kswapd-driven write_inode() could occur while
4700 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4701 * will no longer be on the superblock's dirty inode list.
4702 */
617ba13b 4703int ext4_write_inode(struct inode *inode, int wait)
ac27a0ec 4704{
91ac6f43
FM
4705 int err;
4706
ac27a0ec
DK
4707 if (current->flags & PF_MEMALLOC)
4708 return 0;
4709
91ac6f43
FM
4710 if (EXT4_SB(inode->i_sb)->s_journal) {
4711 if (ext4_journal_current_handle()) {
4712 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4713 dump_stack();
4714 return -EIO;
4715 }
ac27a0ec 4716
91ac6f43
FM
4717 if (!wait)
4718 return 0;
4719
4720 err = ext4_force_commit(inode->i_sb);
4721 } else {
4722 struct ext4_iloc iloc;
ac27a0ec 4723
91ac6f43
FM
4724 err = ext4_get_inode_loc(inode, &iloc);
4725 if (err)
4726 return err;
4727 err = ext4_do_update_inode(EXT4_NOJOURNAL_HANDLE,
4728 inode, &iloc, wait);
4729 }
4730 return err;
ac27a0ec
DK
4731}
4732
4733/*
617ba13b 4734 * ext4_setattr()
ac27a0ec
DK
4735 *
4736 * Called from notify_change.
4737 *
4738 * We want to trap VFS attempts to truncate the file as soon as
4739 * possible. In particular, we want to make sure that when the VFS
4740 * shrinks i_size, we put the inode on the orphan list and modify
4741 * i_disksize immediately, so that during the subsequent flushing of
4742 * dirty pages and freeing of disk blocks, we can guarantee that any
4743 * commit will leave the blocks being flushed in an unused state on
4744 * disk. (On recovery, the inode will get truncated and the blocks will
4745 * be freed, so we have a strong guarantee that no future commit will
4746 * leave these blocks visible to the user.)
4747 *
678aaf48
JK
4748 * Another thing we have to assure is that if we are in ordered mode
4749 * and inode is still attached to the committing transaction, we must
4750 * we start writeout of all the dirty pages which are being truncated.
4751 * This way we are sure that all the data written in the previous
4752 * transaction are already on disk (truncate waits for pages under
4753 * writeback).
4754 *
4755 * Called with inode->i_mutex down.
ac27a0ec 4756 */
617ba13b 4757int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4758{
4759 struct inode *inode = dentry->d_inode;
4760 int error, rc = 0;
4761 const unsigned int ia_valid = attr->ia_valid;
4762
4763 error = inode_change_ok(inode, attr);
4764 if (error)
4765 return error;
4766
4767 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4768 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4769 handle_t *handle;
4770
4771 /* (user+group)*(old+new) structure, inode write (sb,
4772 * inode block, ? - but truncate inode update has it) */
617ba13b
MC
4773 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4774 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4775 if (IS_ERR(handle)) {
4776 error = PTR_ERR(handle);
4777 goto err_out;
4778 }
a269eb18 4779 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
ac27a0ec 4780 if (error) {
617ba13b 4781 ext4_journal_stop(handle);
ac27a0ec
DK
4782 return error;
4783 }
4784 /* Update corresponding info in inode so that everything is in
4785 * one transaction */
4786 if (attr->ia_valid & ATTR_UID)
4787 inode->i_uid = attr->ia_uid;
4788 if (attr->ia_valid & ATTR_GID)
4789 inode->i_gid = attr->ia_gid;
617ba13b
MC
4790 error = ext4_mark_inode_dirty(handle, inode);
4791 ext4_journal_stop(handle);
ac27a0ec
DK
4792 }
4793
e2b46574
ES
4794 if (attr->ia_valid & ATTR_SIZE) {
4795 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4796 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4797
4798 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4799 error = -EFBIG;
4800 goto err_out;
4801 }
4802 }
4803 }
4804
ac27a0ec
DK
4805 if (S_ISREG(inode->i_mode) &&
4806 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4807 handle_t *handle;
4808
617ba13b 4809 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4810 if (IS_ERR(handle)) {
4811 error = PTR_ERR(handle);
4812 goto err_out;
4813 }
4814
617ba13b
MC
4815 error = ext4_orphan_add(handle, inode);
4816 EXT4_I(inode)->i_disksize = attr->ia_size;
4817 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4818 if (!error)
4819 error = rc;
617ba13b 4820 ext4_journal_stop(handle);
678aaf48
JK
4821
4822 if (ext4_should_order_data(inode)) {
4823 error = ext4_begin_ordered_truncate(inode,
4824 attr->ia_size);
4825 if (error) {
4826 /* Do as much error cleanup as possible */
4827 handle = ext4_journal_start(inode, 3);
4828 if (IS_ERR(handle)) {
4829 ext4_orphan_del(NULL, inode);
4830 goto err_out;
4831 }
4832 ext4_orphan_del(handle, inode);
4833 ext4_journal_stop(handle);
4834 goto err_out;
4835 }
4836 }
ac27a0ec
DK
4837 }
4838
4839 rc = inode_setattr(inode, attr);
4840
617ba13b 4841 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
4842 * transaction handle at all, we need to clean up the in-core
4843 * orphan list manually. */
4844 if (inode->i_nlink)
617ba13b 4845 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4846
4847 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4848 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4849
4850err_out:
617ba13b 4851 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4852 if (!error)
4853 error = rc;
4854 return error;
4855}
4856
3e3398a0
MC
4857int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4858 struct kstat *stat)
4859{
4860 struct inode *inode;
4861 unsigned long delalloc_blocks;
4862
4863 inode = dentry->d_inode;
4864 generic_fillattr(inode, stat);
4865
4866 /*
4867 * We can't update i_blocks if the block allocation is delayed
4868 * otherwise in the case of system crash before the real block
4869 * allocation is done, we will have i_blocks inconsistent with
4870 * on-disk file blocks.
4871 * We always keep i_blocks updated together with real
4872 * allocation. But to not confuse with user, stat
4873 * will return the blocks that include the delayed allocation
4874 * blocks for this file.
4875 */
4876 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4877 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4878 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4879
4880 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4881 return 0;
4882}
ac27a0ec 4883
a02908f1
MC
4884static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4885 int chunk)
4886{
4887 int indirects;
4888
4889 /* if nrblocks are contiguous */
4890 if (chunk) {
4891 /*
4892 * With N contiguous data blocks, it need at most
4893 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4894 * 2 dindirect blocks
4895 * 1 tindirect block
4896 */
4897 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4898 return indirects + 3;
4899 }
4900 /*
4901 * if nrblocks are not contiguous, worse case, each block touch
4902 * a indirect block, and each indirect block touch a double indirect
4903 * block, plus a triple indirect block
4904 */
4905 indirects = nrblocks * 2 + 1;
4906 return indirects;
4907}
4908
4909static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4910{
4911 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
ac51d837
TT
4912 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4913 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4914}
ac51d837 4915
ac27a0ec 4916/*
a02908f1
MC
4917 * Account for index blocks, block groups bitmaps and block group
4918 * descriptor blocks if modify datablocks and index blocks
4919 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4920 *
a02908f1
MC
4921 * If datablocks are discontiguous, they are possible to spread over
4922 * different block groups too. If they are contiugous, with flexbg,
4923 * they could still across block group boundary.
ac27a0ec 4924 *
a02908f1
MC
4925 * Also account for superblock, inode, quota and xattr blocks
4926 */
4927int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4928{
8df9675f
TT
4929 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4930 int gdpblocks;
a02908f1
MC
4931 int idxblocks;
4932 int ret = 0;
4933
4934 /*
4935 * How many index blocks need to touch to modify nrblocks?
4936 * The "Chunk" flag indicating whether the nrblocks is
4937 * physically contiguous on disk
4938 *
4939 * For Direct IO and fallocate, they calls get_block to allocate
4940 * one single extent at a time, so they could set the "Chunk" flag
4941 */
4942 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4943
4944 ret = idxblocks;
4945
4946 /*
4947 * Now let's see how many group bitmaps and group descriptors need
4948 * to account
4949 */
4950 groups = idxblocks;
4951 if (chunk)
4952 groups += 1;
4953 else
4954 groups += nrblocks;
4955
4956 gdpblocks = groups;
8df9675f
TT
4957 if (groups > ngroups)
4958 groups = ngroups;
a02908f1
MC
4959 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4960 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4961
4962 /* bitmaps and block group descriptor blocks */
4963 ret += groups + gdpblocks;
4964
4965 /* Blocks for super block, inode, quota and xattr blocks */
4966 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4967
4968 return ret;
4969}
4970
4971/*
4972 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
4973 * the modification of a single pages into a single transaction,
4974 * which may include multiple chunks of block allocations.
ac27a0ec 4975 *
525f4ed8 4976 * This could be called via ext4_write_begin()
ac27a0ec 4977 *
525f4ed8 4978 * We need to consider the worse case, when
a02908f1 4979 * one new block per extent.
ac27a0ec 4980 */
a86c6181 4981int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4982{
617ba13b 4983 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4984 int ret;
4985
a02908f1 4986 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4987
a02908f1 4988 /* Account for data blocks for journalled mode */
617ba13b 4989 if (ext4_should_journal_data(inode))
a02908f1 4990 ret += bpp;
ac27a0ec
DK
4991 return ret;
4992}
f3bd1f3f
MC
4993
4994/*
4995 * Calculate the journal credits for a chunk of data modification.
4996 *
4997 * This is called from DIO, fallocate or whoever calling
12b7ac17 4998 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
f3bd1f3f
MC
4999 *
5000 * journal buffers for data blocks are not included here, as DIO
5001 * and fallocate do no need to journal data buffers.
5002 */
5003int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5004{
5005 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5006}
5007
ac27a0ec 5008/*
617ba13b 5009 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5010 * Give this, we know that the caller already has write access to iloc->bh.
5011 */
617ba13b 5012int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5013 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5014{
5015 int err = 0;
5016
25ec56b5
JNC
5017 if (test_opt(inode->i_sb, I_VERSION))
5018 inode_inc_iversion(inode);
5019
ac27a0ec
DK
5020 /* the do_update_inode consumes one bh->b_count */
5021 get_bh(iloc->bh);
5022
dab291af 5023 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
91ac6f43 5024 err = ext4_do_update_inode(handle, inode, iloc, 0);
ac27a0ec
DK
5025 put_bh(iloc->bh);
5026 return err;
5027}
5028
5029/*
5030 * On success, We end up with an outstanding reference count against
5031 * iloc->bh. This _must_ be cleaned up later.
5032 */
5033
5034int
617ba13b
MC
5035ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5036 struct ext4_iloc *iloc)
ac27a0ec 5037{
0390131b
FM
5038 int err;
5039
5040 err = ext4_get_inode_loc(inode, iloc);
5041 if (!err) {
5042 BUFFER_TRACE(iloc->bh, "get_write_access");
5043 err = ext4_journal_get_write_access(handle, iloc->bh);
5044 if (err) {
5045 brelse(iloc->bh);
5046 iloc->bh = NULL;
ac27a0ec
DK
5047 }
5048 }
617ba13b 5049 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5050 return err;
5051}
5052
6dd4ee7c
KS
5053/*
5054 * Expand an inode by new_extra_isize bytes.
5055 * Returns 0 on success or negative error number on failure.
5056 */
1d03ec98
AK
5057static int ext4_expand_extra_isize(struct inode *inode,
5058 unsigned int new_extra_isize,
5059 struct ext4_iloc iloc,
5060 handle_t *handle)
6dd4ee7c
KS
5061{
5062 struct ext4_inode *raw_inode;
5063 struct ext4_xattr_ibody_header *header;
5064 struct ext4_xattr_entry *entry;
5065
5066 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5067 return 0;
5068
5069 raw_inode = ext4_raw_inode(&iloc);
5070
5071 header = IHDR(inode, raw_inode);
5072 entry = IFIRST(header);
5073
5074 /* No extended attributes present */
5075 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5076 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5077 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5078 new_extra_isize);
5079 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5080 return 0;
5081 }
5082
5083 /* try to expand with EAs present */
5084 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5085 raw_inode, handle);
5086}
5087
ac27a0ec
DK
5088/*
5089 * What we do here is to mark the in-core inode as clean with respect to inode
5090 * dirtiness (it may still be data-dirty).
5091 * This means that the in-core inode may be reaped by prune_icache
5092 * without having to perform any I/O. This is a very good thing,
5093 * because *any* task may call prune_icache - even ones which
5094 * have a transaction open against a different journal.
5095 *
5096 * Is this cheating? Not really. Sure, we haven't written the
5097 * inode out, but prune_icache isn't a user-visible syncing function.
5098 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5099 * we start and wait on commits.
5100 *
5101 * Is this efficient/effective? Well, we're being nice to the system
5102 * by cleaning up our inodes proactively so they can be reaped
5103 * without I/O. But we are potentially leaving up to five seconds'
5104 * worth of inodes floating about which prune_icache wants us to
5105 * write out. One way to fix that would be to get prune_icache()
5106 * to do a write_super() to free up some memory. It has the desired
5107 * effect.
5108 */
617ba13b 5109int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5110{
617ba13b 5111 struct ext4_iloc iloc;
6dd4ee7c
KS
5112 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5113 static unsigned int mnt_count;
5114 int err, ret;
ac27a0ec
DK
5115
5116 might_sleep();
617ba13b 5117 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5118 if (ext4_handle_valid(handle) &&
5119 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
6dd4ee7c
KS
5120 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5121 /*
5122 * We need extra buffer credits since we may write into EA block
5123 * with this same handle. If journal_extend fails, then it will
5124 * only result in a minor loss of functionality for that inode.
5125 * If this is felt to be critical, then e2fsck should be run to
5126 * force a large enough s_min_extra_isize.
5127 */
5128 if ((jbd2_journal_extend(handle,
5129 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5130 ret = ext4_expand_extra_isize(inode,
5131 sbi->s_want_extra_isize,
5132 iloc, handle);
5133 if (ret) {
5134 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
c1bddad9
AK
5135 if (mnt_count !=
5136 le16_to_cpu(sbi->s_es->s_mnt_count)) {
46e665e9 5137 ext4_warning(inode->i_sb, __func__,
6dd4ee7c
KS
5138 "Unable to expand inode %lu. Delete"
5139 " some EAs or run e2fsck.",
5140 inode->i_ino);
c1bddad9
AK
5141 mnt_count =
5142 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5143 }
5144 }
5145 }
5146 }
ac27a0ec 5147 if (!err)
617ba13b 5148 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5149 return err;
5150}
5151
5152/*
617ba13b 5153 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5154 *
5155 * We're really interested in the case where a file is being extended.
5156 * i_size has been changed by generic_commit_write() and we thus need
5157 * to include the updated inode in the current transaction.
5158 *
a269eb18 5159 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5160 * are allocated to the file.
5161 *
5162 * If the inode is marked synchronous, we don't honour that here - doing
5163 * so would cause a commit on atime updates, which we don't bother doing.
5164 * We handle synchronous inodes at the highest possible level.
5165 */
617ba13b 5166void ext4_dirty_inode(struct inode *inode)
ac27a0ec 5167{
617ba13b 5168 handle_t *current_handle = ext4_journal_current_handle();
ac27a0ec
DK
5169 handle_t *handle;
5170
0390131b
FM
5171 if (!ext4_handle_valid(current_handle)) {
5172 ext4_mark_inode_dirty(current_handle, inode);
5173 return;
5174 }
5175
617ba13b 5176 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
5177 if (IS_ERR(handle))
5178 goto out;
5179 if (current_handle &&
5180 current_handle->h_transaction != handle->h_transaction) {
5181 /* This task has a transaction open against a different fs */
5182 printk(KERN_EMERG "%s: transactions do not match!\n",
46e665e9 5183 __func__);
ac27a0ec
DK
5184 } else {
5185 jbd_debug(5, "marking dirty. outer handle=%p\n",
5186 current_handle);
617ba13b 5187 ext4_mark_inode_dirty(handle, inode);
ac27a0ec 5188 }
617ba13b 5189 ext4_journal_stop(handle);
ac27a0ec
DK
5190out:
5191 return;
5192}
5193
5194#if 0
5195/*
5196 * Bind an inode's backing buffer_head into this transaction, to prevent
5197 * it from being flushed to disk early. Unlike
617ba13b 5198 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5199 * returns no iloc structure, so the caller needs to repeat the iloc
5200 * lookup to mark the inode dirty later.
5201 */
617ba13b 5202static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5203{
617ba13b 5204 struct ext4_iloc iloc;
ac27a0ec
DK
5205
5206 int err = 0;
5207 if (handle) {
617ba13b 5208 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5209 if (!err) {
5210 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5211 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5212 if (!err)
0390131b
FM
5213 err = ext4_handle_dirty_metadata(handle,
5214 inode,
5215 iloc.bh);
ac27a0ec
DK
5216 brelse(iloc.bh);
5217 }
5218 }
617ba13b 5219 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5220 return err;
5221}
5222#endif
5223
617ba13b 5224int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5225{
5226 journal_t *journal;
5227 handle_t *handle;
5228 int err;
5229
5230 /*
5231 * We have to be very careful here: changing a data block's
5232 * journaling status dynamically is dangerous. If we write a
5233 * data block to the journal, change the status and then delete
5234 * that block, we risk forgetting to revoke the old log record
5235 * from the journal and so a subsequent replay can corrupt data.
5236 * So, first we make sure that the journal is empty and that
5237 * nobody is changing anything.
5238 */
5239
617ba13b 5240 journal = EXT4_JOURNAL(inode);
0390131b
FM
5241 if (!journal)
5242 return 0;
d699594d 5243 if (is_journal_aborted(journal))
ac27a0ec
DK
5244 return -EROFS;
5245
dab291af
MC
5246 jbd2_journal_lock_updates(journal);
5247 jbd2_journal_flush(journal);
ac27a0ec
DK
5248
5249 /*
5250 * OK, there are no updates running now, and all cached data is
5251 * synced to disk. We are now in a completely consistent state
5252 * which doesn't have anything in the journal, and we know that
5253 * no filesystem updates are running, so it is safe to modify
5254 * the inode's in-core data-journaling state flag now.
5255 */
5256
5257 if (val)
617ba13b 5258 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
ac27a0ec 5259 else
617ba13b
MC
5260 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5261 ext4_set_aops(inode);
ac27a0ec 5262
dab291af 5263 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
5264
5265 /* Finally we can mark the inode as dirty. */
5266
617ba13b 5267 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
5268 if (IS_ERR(handle))
5269 return PTR_ERR(handle);
5270
617ba13b 5271 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5272 ext4_handle_sync(handle);
617ba13b
MC
5273 ext4_journal_stop(handle);
5274 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5275
5276 return err;
5277}
2e9ee850
AK
5278
5279static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5280{
5281 return !buffer_mapped(bh);
5282}
5283
c2ec175c 5284int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5285{
c2ec175c 5286 struct page *page = vmf->page;
2e9ee850
AK
5287 loff_t size;
5288 unsigned long len;
5289 int ret = -EINVAL;
79f0be8d 5290 void *fsdata;
2e9ee850
AK
5291 struct file *file = vma->vm_file;
5292 struct inode *inode = file->f_path.dentry->d_inode;
5293 struct address_space *mapping = inode->i_mapping;
5294
5295 /*
5296 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5297 * get i_mutex because we are already holding mmap_sem.
5298 */
5299 down_read(&inode->i_alloc_sem);
5300 size = i_size_read(inode);
5301 if (page->mapping != mapping || size <= page_offset(page)
5302 || !PageUptodate(page)) {
5303 /* page got truncated from under us? */
5304 goto out_unlock;
5305 }
5306 ret = 0;
5307 if (PageMappedToDisk(page))
5308 goto out_unlock;
5309
5310 if (page->index == size >> PAGE_CACHE_SHIFT)
5311 len = size & ~PAGE_CACHE_MASK;
5312 else
5313 len = PAGE_CACHE_SIZE;
5314
a827eaff
AK
5315 lock_page(page);
5316 /*
5317 * return if we have all the buffers mapped. This avoid
5318 * the need to call write_begin/write_end which does a
5319 * journal_start/journal_stop which can block and take
5320 * long time
5321 */
2e9ee850 5322 if (page_has_buffers(page)) {
2e9ee850 5323 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
a827eaff
AK
5324 ext4_bh_unmapped)) {
5325 unlock_page(page);
2e9ee850 5326 goto out_unlock;
a827eaff 5327 }
2e9ee850 5328 }
a827eaff 5329 unlock_page(page);
2e9ee850
AK
5330 /*
5331 * OK, we need to fill the hole... Do write_begin write_end
5332 * to do block allocation/reservation.We are not holding
5333 * inode.i__mutex here. That allow * parallel write_begin,
5334 * write_end call. lock_page prevent this from happening
5335 * on the same page though
5336 */
5337 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 5338 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
5339 if (ret < 0)
5340 goto out_unlock;
5341 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 5342 len, len, page, fsdata);
2e9ee850
AK
5343 if (ret < 0)
5344 goto out_unlock;
5345 ret = 0;
5346out_unlock:
c2ec175c
NP
5347 if (ret)
5348 ret = VM_FAULT_SIGBUS;
2e9ee850
AK
5349 up_read(&inode->i_alloc_sem);
5350 return ret;
5351}