]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ext4/inode.c
ext4: Add BUG_ON debugging checks to noalloc_get_block_write()
[net-next-2.6.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
3dcf5451 40#include "ext4_jbd2.h"
ac27a0ec
DK
41#include "xattr.h"
42#include "acl.h"
d2a17637 43#include "ext4_extents.h"
ac27a0ec 44
a1d6cc56
AK
45#define MPAGE_DA_EXTENT_TAIL 0x01
46
678aaf48
JK
47static inline int ext4_begin_ordered_truncate(struct inode *inode,
48 loff_t new_size)
49{
7f5aa215
JK
50 return jbd2_journal_begin_ordered_truncate(
51 EXT4_SB(inode->i_sb)->s_journal,
52 &EXT4_I(inode)->jinode,
53 new_size);
678aaf48
JK
54}
55
64769240
AT
56static void ext4_invalidatepage(struct page *page, unsigned long offset);
57
ac27a0ec
DK
58/*
59 * Test whether an inode is a fast symlink.
60 */
617ba13b 61static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 62{
617ba13b 63 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
64 (inode->i_sb->s_blocksize >> 9) : 0;
65
66 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67}
68
69/*
617ba13b 70 * The ext4 forget function must perform a revoke if we are freeing data
ac27a0ec
DK
71 * which has been journaled. Metadata (eg. indirect blocks) must be
72 * revoked in all cases.
73 *
74 * "bh" may be NULL: a metadata block may have been freed from memory
75 * but there may still be a record of it in the journal, and that record
76 * still needs to be revoked.
0390131b
FM
77 *
78 * If the handle isn't valid we're not journaling so there's nothing to do.
ac27a0ec 79 */
617ba13b
MC
80int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
81 struct buffer_head *bh, ext4_fsblk_t blocknr)
ac27a0ec
DK
82{
83 int err;
84
0390131b
FM
85 if (!ext4_handle_valid(handle))
86 return 0;
87
ac27a0ec
DK
88 might_sleep();
89
90 BUFFER_TRACE(bh, "enter");
91
92 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
93 "data mode %lx\n",
94 bh, is_metadata, inode->i_mode,
95 test_opt(inode->i_sb, DATA_FLAGS));
96
97 /* Never use the revoke function if we are doing full data
98 * journaling: there is no need to, and a V1 superblock won't
99 * support it. Otherwise, only skip the revoke on un-journaled
100 * data blocks. */
101
617ba13b
MC
102 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
103 (!is_metadata && !ext4_should_journal_data(inode))) {
ac27a0ec 104 if (bh) {
dab291af 105 BUFFER_TRACE(bh, "call jbd2_journal_forget");
617ba13b 106 return ext4_journal_forget(handle, bh);
ac27a0ec
DK
107 }
108 return 0;
109 }
110
111 /*
112 * data!=journal && (is_metadata || should_journal_data(inode))
113 */
617ba13b
MC
114 BUFFER_TRACE(bh, "call ext4_journal_revoke");
115 err = ext4_journal_revoke(handle, blocknr, bh);
ac27a0ec 116 if (err)
46e665e9 117 ext4_abort(inode->i_sb, __func__,
ac27a0ec
DK
118 "error %d when attempting revoke", err);
119 BUFFER_TRACE(bh, "exit");
120 return err;
121}
122
123/*
124 * Work out how many blocks we need to proceed with the next chunk of a
125 * truncate transaction.
126 */
127static unsigned long blocks_for_truncate(struct inode *inode)
128{
725d26d3 129 ext4_lblk_t needed;
ac27a0ec
DK
130
131 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
132
133 /* Give ourselves just enough room to cope with inodes in which
134 * i_blocks is corrupt: we've seen disk corruptions in the past
135 * which resulted in random data in an inode which looked enough
617ba13b 136 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
137 * will go a bit crazy if that happens, but at least we should
138 * try not to panic the whole kernel. */
139 if (needed < 2)
140 needed = 2;
141
142 /* But we need to bound the transaction so we don't overflow the
143 * journal. */
617ba13b
MC
144 if (needed > EXT4_MAX_TRANS_DATA)
145 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 146
617ba13b 147 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
148}
149
150/*
151 * Truncate transactions can be complex and absolutely huge. So we need to
152 * be able to restart the transaction at a conventient checkpoint to make
153 * sure we don't overflow the journal.
154 *
155 * start_transaction gets us a new handle for a truncate transaction,
156 * and extend_transaction tries to extend the existing one a bit. If
157 * extend fails, we need to propagate the failure up and restart the
158 * transaction in the top-level truncate loop. --sct
159 */
160static handle_t *start_transaction(struct inode *inode)
161{
162 handle_t *result;
163
617ba13b 164 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
165 if (!IS_ERR(result))
166 return result;
167
617ba13b 168 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
169 return result;
170}
171
172/*
173 * Try to extend this transaction for the purposes of truncation.
174 *
175 * Returns 0 if we managed to create more room. If we can't create more
176 * room, and the transaction must be restarted we return 1.
177 */
178static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
179{
0390131b
FM
180 if (!ext4_handle_valid(handle))
181 return 0;
182 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
ac27a0ec 183 return 0;
617ba13b 184 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
185 return 0;
186 return 1;
187}
188
189/*
190 * Restart the transaction associated with *handle. This does a commit,
191 * so before we call here everything must be consistently dirtied against
192 * this transaction.
193 */
617ba13b 194static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
ac27a0ec 195{
0390131b 196 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 197 jbd_debug(2, "restarting handle %p\n", handle);
617ba13b 198 return ext4_journal_restart(handle, blocks_for_truncate(inode));
ac27a0ec
DK
199}
200
201/*
202 * Called at the last iput() if i_nlink is zero.
203 */
af5bc92d 204void ext4_delete_inode(struct inode *inode)
ac27a0ec
DK
205{
206 handle_t *handle;
bc965ab3 207 int err;
ac27a0ec 208
678aaf48
JK
209 if (ext4_should_order_data(inode))
210 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
211 truncate_inode_pages(&inode->i_data, 0);
212
213 if (is_bad_inode(inode))
214 goto no_delete;
215
bc965ab3 216 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 217 if (IS_ERR(handle)) {
bc965ab3 218 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
219 /*
220 * If we're going to skip the normal cleanup, we still need to
221 * make sure that the in-core orphan linked list is properly
222 * cleaned up.
223 */
617ba13b 224 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
225 goto no_delete;
226 }
227
228 if (IS_SYNC(inode))
0390131b 229 ext4_handle_sync(handle);
ac27a0ec 230 inode->i_size = 0;
bc965ab3
TT
231 err = ext4_mark_inode_dirty(handle, inode);
232 if (err) {
233 ext4_warning(inode->i_sb, __func__,
234 "couldn't mark inode dirty (err %d)", err);
235 goto stop_handle;
236 }
ac27a0ec 237 if (inode->i_blocks)
617ba13b 238 ext4_truncate(inode);
bc965ab3
TT
239
240 /*
241 * ext4_ext_truncate() doesn't reserve any slop when it
242 * restarts journal transactions; therefore there may not be
243 * enough credits left in the handle to remove the inode from
244 * the orphan list and set the dtime field.
245 */
0390131b 246 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
247 err = ext4_journal_extend(handle, 3);
248 if (err > 0)
249 err = ext4_journal_restart(handle, 3);
250 if (err != 0) {
251 ext4_warning(inode->i_sb, __func__,
252 "couldn't extend journal (err %d)", err);
253 stop_handle:
254 ext4_journal_stop(handle);
255 goto no_delete;
256 }
257 }
258
ac27a0ec 259 /*
617ba13b 260 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 261 * AKPM: I think this can be inside the above `if'.
617ba13b 262 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 263 * deletion of a non-existent orphan - this is because we don't
617ba13b 264 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
265 * (Well, we could do this if we need to, but heck - it works)
266 */
617ba13b
MC
267 ext4_orphan_del(handle, inode);
268 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
269
270 /*
271 * One subtle ordering requirement: if anything has gone wrong
272 * (transaction abort, IO errors, whatever), then we can still
273 * do these next steps (the fs will already have been marked as
274 * having errors), but we can't free the inode if the mark_dirty
275 * fails.
276 */
617ba13b 277 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
278 /* If that failed, just do the required in-core inode clear. */
279 clear_inode(inode);
280 else
617ba13b
MC
281 ext4_free_inode(handle, inode);
282 ext4_journal_stop(handle);
ac27a0ec
DK
283 return;
284no_delete:
285 clear_inode(inode); /* We must guarantee clearing of inode... */
286}
287
288typedef struct {
289 __le32 *p;
290 __le32 key;
291 struct buffer_head *bh;
292} Indirect;
293
294static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
295{
296 p->key = *(p->p = v);
297 p->bh = bh;
298}
299
ac27a0ec 300/**
617ba13b 301 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
302 * @inode: inode in question (we are only interested in its superblock)
303 * @i_block: block number to be parsed
304 * @offsets: array to store the offsets in
8c55e204
DK
305 * @boundary: set this non-zero if the referred-to block is likely to be
306 * followed (on disk) by an indirect block.
ac27a0ec 307 *
617ba13b 308 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
309 * for UNIX filesystems - tree of pointers anchored in the inode, with
310 * data blocks at leaves and indirect blocks in intermediate nodes.
311 * This function translates the block number into path in that tree -
312 * return value is the path length and @offsets[n] is the offset of
313 * pointer to (n+1)th node in the nth one. If @block is out of range
314 * (negative or too large) warning is printed and zero returned.
315 *
316 * Note: function doesn't find node addresses, so no IO is needed. All
317 * we need to know is the capacity of indirect blocks (taken from the
318 * inode->i_sb).
319 */
320
321/*
322 * Portability note: the last comparison (check that we fit into triple
323 * indirect block) is spelled differently, because otherwise on an
324 * architecture with 32-bit longs and 8Kb pages we might get into trouble
325 * if our filesystem had 8Kb blocks. We might use long long, but that would
326 * kill us on x86. Oh, well, at least the sign propagation does not matter -
327 * i_block would have to be negative in the very beginning, so we would not
328 * get there at all.
329 */
330
617ba13b 331static int ext4_block_to_path(struct inode *inode,
725d26d3
AK
332 ext4_lblk_t i_block,
333 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 334{
617ba13b
MC
335 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
336 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
337 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
338 indirect_blocks = ptrs,
339 double_blocks = (1 << (ptrs_bits * 2));
340 int n = 0;
341 int final = 0;
342
343 if (i_block < 0) {
af5bc92d 344 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
ac27a0ec
DK
345 } else if (i_block < direct_blocks) {
346 offsets[n++] = i_block;
347 final = direct_blocks;
af5bc92d 348 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 349 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
350 offsets[n++] = i_block;
351 final = ptrs;
352 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 353 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
354 offsets[n++] = i_block >> ptrs_bits;
355 offsets[n++] = i_block & (ptrs - 1);
356 final = ptrs;
357 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 358 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
359 offsets[n++] = i_block >> (ptrs_bits * 2);
360 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
361 offsets[n++] = i_block & (ptrs - 1);
362 final = ptrs;
363 } else {
e2b46574 364 ext4_warning(inode->i_sb, "ext4_block_to_path",
06a279d6 365 "block %lu > max in inode %lu",
e2b46574 366 i_block + direct_blocks +
06a279d6 367 indirect_blocks + double_blocks, inode->i_ino);
ac27a0ec
DK
368 }
369 if (boundary)
370 *boundary = final - 1 - (i_block & (ptrs - 1));
371 return n;
372}
373
fe2c8191 374static int __ext4_check_blockref(const char *function, struct inode *inode,
f73953c0 375 __le32 *p, unsigned int max) {
fe2c8191
TN
376
377 unsigned int maxblocks = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es);
f73953c0 378 __le32 *bref = p;
fe2c8191 379 while (bref < p+max) {
f73953c0 380 if (unlikely(le32_to_cpu(*bref) >= maxblocks)) {
fe2c8191
TN
381 ext4_error(inode->i_sb, function,
382 "block reference %u >= max (%u) "
383 "in inode #%lu, offset=%d",
f73953c0 384 le32_to_cpu(*bref), maxblocks,
fe2c8191
TN
385 inode->i_ino, (int)(bref-p));
386 return -EIO;
387 }
388 bref++;
389 }
390 return 0;
391}
392
393
394#define ext4_check_indirect_blockref(inode, bh) \
395 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
396 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
397
398#define ext4_check_inode_blockref(inode) \
399 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
400 EXT4_NDIR_BLOCKS)
401
ac27a0ec 402/**
617ba13b 403 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
404 * @inode: inode in question
405 * @depth: depth of the chain (1 - direct pointer, etc.)
406 * @offsets: offsets of pointers in inode/indirect blocks
407 * @chain: place to store the result
408 * @err: here we store the error value
409 *
410 * Function fills the array of triples <key, p, bh> and returns %NULL
411 * if everything went OK or the pointer to the last filled triple
412 * (incomplete one) otherwise. Upon the return chain[i].key contains
413 * the number of (i+1)-th block in the chain (as it is stored in memory,
414 * i.e. little-endian 32-bit), chain[i].p contains the address of that
415 * number (it points into struct inode for i==0 and into the bh->b_data
416 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
417 * block for i>0 and NULL for i==0. In other words, it holds the block
418 * numbers of the chain, addresses they were taken from (and where we can
419 * verify that chain did not change) and buffer_heads hosting these
420 * numbers.
421 *
422 * Function stops when it stumbles upon zero pointer (absent block)
423 * (pointer to last triple returned, *@err == 0)
424 * or when it gets an IO error reading an indirect block
425 * (ditto, *@err == -EIO)
ac27a0ec
DK
426 * or when it reads all @depth-1 indirect blocks successfully and finds
427 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
428 *
429 * Need to be called with
0e855ac8 430 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 431 */
725d26d3
AK
432static Indirect *ext4_get_branch(struct inode *inode, int depth,
433 ext4_lblk_t *offsets,
ac27a0ec
DK
434 Indirect chain[4], int *err)
435{
436 struct super_block *sb = inode->i_sb;
437 Indirect *p = chain;
438 struct buffer_head *bh;
439
440 *err = 0;
441 /* i_data is not going away, no lock needed */
af5bc92d 442 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
443 if (!p->key)
444 goto no_block;
445 while (--depth) {
fe2c8191
TN
446 bh = sb_getblk(sb, le32_to_cpu(p->key));
447 if (unlikely(!bh))
ac27a0ec 448 goto failure;
fe2c8191
TN
449
450 if (!bh_uptodate_or_lock(bh)) {
451 if (bh_submit_read(bh) < 0) {
452 put_bh(bh);
453 goto failure;
454 }
455 /* validate block references */
456 if (ext4_check_indirect_blockref(inode, bh)) {
457 put_bh(bh);
458 goto failure;
459 }
460 }
461
af5bc92d 462 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
463 /* Reader: end */
464 if (!p->key)
465 goto no_block;
466 }
467 return NULL;
468
ac27a0ec
DK
469failure:
470 *err = -EIO;
471no_block:
472 return p;
473}
474
475/**
617ba13b 476 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
477 * @inode: owner
478 * @ind: descriptor of indirect block.
479 *
1cc8dcf5 480 * This function returns the preferred place for block allocation.
ac27a0ec
DK
481 * It is used when heuristic for sequential allocation fails.
482 * Rules are:
483 * + if there is a block to the left of our position - allocate near it.
484 * + if pointer will live in indirect block - allocate near that block.
485 * + if pointer will live in inode - allocate in the same
486 * cylinder group.
487 *
488 * In the latter case we colour the starting block by the callers PID to
489 * prevent it from clashing with concurrent allocations for a different inode
490 * in the same block group. The PID is used here so that functionally related
491 * files will be close-by on-disk.
492 *
493 * Caller must make sure that @ind is valid and will stay that way.
494 */
617ba13b 495static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 496{
617ba13b 497 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 498 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 499 __le32 *p;
617ba13b 500 ext4_fsblk_t bg_start;
74d3487f 501 ext4_fsblk_t last_block;
617ba13b 502 ext4_grpblk_t colour;
a4912123
TT
503 ext4_group_t block_group;
504 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
ac27a0ec
DK
505
506 /* Try to find previous block */
507 for (p = ind->p - 1; p >= start; p--) {
508 if (*p)
509 return le32_to_cpu(*p);
510 }
511
512 /* No such thing, so let's try location of indirect block */
513 if (ind->bh)
514 return ind->bh->b_blocknr;
515
516 /*
517 * It is going to be referred to from the inode itself? OK, just put it
518 * into the same cylinder group then.
519 */
a4912123
TT
520 block_group = ei->i_block_group;
521 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
522 block_group &= ~(flex_size-1);
523 if (S_ISREG(inode->i_mode))
524 block_group++;
525 }
526 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
74d3487f
VC
527 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
528
a4912123
TT
529 /*
530 * If we are doing delayed allocation, we don't need take
531 * colour into account.
532 */
533 if (test_opt(inode->i_sb, DELALLOC))
534 return bg_start;
535
74d3487f
VC
536 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
537 colour = (current->pid % 16) *
617ba13b 538 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
539 else
540 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
541 return bg_start + colour;
542}
543
544/**
1cc8dcf5 545 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
546 * @inode: owner
547 * @block: block we want
ac27a0ec 548 * @partial: pointer to the last triple within a chain
ac27a0ec 549 *
1cc8dcf5 550 * Normally this function find the preferred place for block allocation,
fb01bfda 551 * returns it.
ac27a0ec 552 */
725d26d3 553static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
fb01bfda 554 Indirect *partial)
ac27a0ec 555{
ac27a0ec 556 /*
c2ea3fde 557 * XXX need to get goal block from mballoc's data structures
ac27a0ec 558 */
ac27a0ec 559
617ba13b 560 return ext4_find_near(inode, partial);
ac27a0ec
DK
561}
562
563/**
617ba13b 564 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
565 * of direct blocks need to be allocated for the given branch.
566 *
567 * @branch: chain of indirect blocks
568 * @k: number of blocks need for indirect blocks
569 * @blks: number of data blocks to be mapped.
570 * @blocks_to_boundary: the offset in the indirect block
571 *
572 * return the total number of blocks to be allocate, including the
573 * direct and indirect blocks.
574 */
498e5f24 575static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
ac27a0ec
DK
576 int blocks_to_boundary)
577{
498e5f24 578 unsigned int count = 0;
ac27a0ec
DK
579
580 /*
581 * Simple case, [t,d]Indirect block(s) has not allocated yet
582 * then it's clear blocks on that path have not allocated
583 */
584 if (k > 0) {
585 /* right now we don't handle cross boundary allocation */
586 if (blks < blocks_to_boundary + 1)
587 count += blks;
588 else
589 count += blocks_to_boundary + 1;
590 return count;
591 }
592
593 count++;
594 while (count < blks && count <= blocks_to_boundary &&
595 le32_to_cpu(*(branch[0].p + count)) == 0) {
596 count++;
597 }
598 return count;
599}
600
601/**
617ba13b 602 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
603 * @indirect_blks: the number of blocks need to allocate for indirect
604 * blocks
605 *
606 * @new_blocks: on return it will store the new block numbers for
607 * the indirect blocks(if needed) and the first direct block,
608 * @blks: on return it will store the total number of allocated
609 * direct blocks
610 */
617ba13b 611static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
7061eba7
AK
612 ext4_lblk_t iblock, ext4_fsblk_t goal,
613 int indirect_blks, int blks,
614 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 615{
815a1130 616 struct ext4_allocation_request ar;
ac27a0ec 617 int target, i;
7061eba7 618 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 619 int index = 0;
617ba13b 620 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
621 int ret = 0;
622
623 /*
624 * Here we try to allocate the requested multiple blocks at once,
625 * on a best-effort basis.
626 * To build a branch, we should allocate blocks for
627 * the indirect blocks(if not allocated yet), and at least
628 * the first direct block of this branch. That's the
629 * minimum number of blocks need to allocate(required)
630 */
7061eba7
AK
631 /* first we try to allocate the indirect blocks */
632 target = indirect_blks;
633 while (target > 0) {
ac27a0ec
DK
634 count = target;
635 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
636 current_block = ext4_new_meta_blocks(handle, inode,
637 goal, &count, err);
ac27a0ec
DK
638 if (*err)
639 goto failed_out;
640
641 target -= count;
642 /* allocate blocks for indirect blocks */
643 while (index < indirect_blks && count) {
644 new_blocks[index++] = current_block++;
645 count--;
646 }
7061eba7
AK
647 if (count > 0) {
648 /*
649 * save the new block number
650 * for the first direct block
651 */
652 new_blocks[index] = current_block;
653 printk(KERN_INFO "%s returned more blocks than "
654 "requested\n", __func__);
655 WARN_ON(1);
ac27a0ec 656 break;
7061eba7 657 }
ac27a0ec
DK
658 }
659
7061eba7
AK
660 target = blks - count ;
661 blk_allocated = count;
662 if (!target)
663 goto allocated;
664 /* Now allocate data blocks */
815a1130
TT
665 memset(&ar, 0, sizeof(ar));
666 ar.inode = inode;
667 ar.goal = goal;
668 ar.len = target;
669 ar.logical = iblock;
670 if (S_ISREG(inode->i_mode))
671 /* enable in-core preallocation only for regular files */
672 ar.flags = EXT4_MB_HINT_DATA;
673
674 current_block = ext4_mb_new_blocks(handle, &ar, err);
675
7061eba7
AK
676 if (*err && (target == blks)) {
677 /*
678 * if the allocation failed and we didn't allocate
679 * any blocks before
680 */
681 goto failed_out;
682 }
683 if (!*err) {
684 if (target == blks) {
685 /*
686 * save the new block number
687 * for the first direct block
688 */
689 new_blocks[index] = current_block;
690 }
815a1130 691 blk_allocated += ar.len;
7061eba7
AK
692 }
693allocated:
ac27a0ec 694 /* total number of blocks allocated for direct blocks */
7061eba7 695 ret = blk_allocated;
ac27a0ec
DK
696 *err = 0;
697 return ret;
698failed_out:
af5bc92d 699 for (i = 0; i < index; i++)
c9de560d 700 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec
DK
701 return ret;
702}
703
704/**
617ba13b 705 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
706 * @inode: owner
707 * @indirect_blks: number of allocated indirect blocks
708 * @blks: number of allocated direct blocks
709 * @offsets: offsets (in the blocks) to store the pointers to next.
710 * @branch: place to store the chain in.
711 *
712 * This function allocates blocks, zeroes out all but the last one,
713 * links them into chain and (if we are synchronous) writes them to disk.
714 * In other words, it prepares a branch that can be spliced onto the
715 * inode. It stores the information about that chain in the branch[], in
617ba13b 716 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
717 * we had read the existing part of chain and partial points to the last
718 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 719 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
720 * place chain is disconnected - *branch->p is still zero (we did not
721 * set the last link), but branch->key contains the number that should
722 * be placed into *branch->p to fill that gap.
723 *
724 * If allocation fails we free all blocks we've allocated (and forget
725 * their buffer_heads) and return the error value the from failed
617ba13b 726 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
727 * as described above and return 0.
728 */
617ba13b 729static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
7061eba7
AK
730 ext4_lblk_t iblock, int indirect_blks,
731 int *blks, ext4_fsblk_t goal,
732 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
733{
734 int blocksize = inode->i_sb->s_blocksize;
735 int i, n = 0;
736 int err = 0;
737 struct buffer_head *bh;
738 int num;
617ba13b
MC
739 ext4_fsblk_t new_blocks[4];
740 ext4_fsblk_t current_block;
ac27a0ec 741
7061eba7 742 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
743 *blks, new_blocks, &err);
744 if (err)
745 return err;
746
747 branch[0].key = cpu_to_le32(new_blocks[0]);
748 /*
749 * metadata blocks and data blocks are allocated.
750 */
751 for (n = 1; n <= indirect_blks; n++) {
752 /*
753 * Get buffer_head for parent block, zero it out
754 * and set the pointer to new one, then send
755 * parent to disk.
756 */
757 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
758 branch[n].bh = bh;
759 lock_buffer(bh);
760 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 761 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec
DK
762 if (err) {
763 unlock_buffer(bh);
764 brelse(bh);
765 goto failed;
766 }
767
768 memset(bh->b_data, 0, blocksize);
769 branch[n].p = (__le32 *) bh->b_data + offsets[n];
770 branch[n].key = cpu_to_le32(new_blocks[n]);
771 *branch[n].p = branch[n].key;
af5bc92d 772 if (n == indirect_blks) {
ac27a0ec
DK
773 current_block = new_blocks[n];
774 /*
775 * End of chain, update the last new metablock of
776 * the chain to point to the new allocated
777 * data blocks numbers
778 */
779 for (i=1; i < num; i++)
780 *(branch[n].p + i) = cpu_to_le32(++current_block);
781 }
782 BUFFER_TRACE(bh, "marking uptodate");
783 set_buffer_uptodate(bh);
784 unlock_buffer(bh);
785
0390131b
FM
786 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
787 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
788 if (err)
789 goto failed;
790 }
791 *blks = num;
792 return err;
793failed:
794 /* Allocation failed, free what we already allocated */
795 for (i = 1; i <= n ; i++) {
dab291af 796 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
617ba13b 797 ext4_journal_forget(handle, branch[i].bh);
ac27a0ec 798 }
af5bc92d 799 for (i = 0; i < indirect_blks; i++)
c9de560d 800 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec 801
c9de560d 802 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
ac27a0ec
DK
803
804 return err;
805}
806
807/**
617ba13b 808 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
809 * @inode: owner
810 * @block: (logical) number of block we are adding
811 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 812 * ext4_alloc_branch)
ac27a0ec
DK
813 * @where: location of missing link
814 * @num: number of indirect blocks we are adding
815 * @blks: number of direct blocks we are adding
816 *
817 * This function fills the missing link and does all housekeeping needed in
818 * inode (->i_blocks, etc.). In case of success we end up with the full
819 * chain to new block and return 0.
820 */
617ba13b 821static int ext4_splice_branch(handle_t *handle, struct inode *inode,
725d26d3 822 ext4_lblk_t block, Indirect *where, int num, int blks)
ac27a0ec
DK
823{
824 int i;
825 int err = 0;
617ba13b 826 ext4_fsblk_t current_block;
ac27a0ec 827
ac27a0ec
DK
828 /*
829 * If we're splicing into a [td]indirect block (as opposed to the
830 * inode) then we need to get write access to the [td]indirect block
831 * before the splice.
832 */
833 if (where->bh) {
834 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 835 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
836 if (err)
837 goto err_out;
838 }
839 /* That's it */
840
841 *where->p = where->key;
842
843 /*
844 * Update the host buffer_head or inode to point to more just allocated
845 * direct blocks blocks
846 */
847 if (num == 0 && blks > 1) {
848 current_block = le32_to_cpu(where->key) + 1;
849 for (i = 1; i < blks; i++)
af5bc92d 850 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
851 }
852
ac27a0ec
DK
853 /* We are done with atomic stuff, now do the rest of housekeeping */
854
ef7f3835 855 inode->i_ctime = ext4_current_time(inode);
617ba13b 856 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
857
858 /* had we spliced it onto indirect block? */
859 if (where->bh) {
860 /*
861 * If we spliced it onto an indirect block, we haven't
862 * altered the inode. Note however that if it is being spliced
863 * onto an indirect block at the very end of the file (the
864 * file is growing) then we *will* alter the inode to reflect
865 * the new i_size. But that is not done here - it is done in
617ba13b 866 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
867 */
868 jbd_debug(5, "splicing indirect only\n");
0390131b
FM
869 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
870 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
ac27a0ec
DK
871 if (err)
872 goto err_out;
873 } else {
874 /*
875 * OK, we spliced it into the inode itself on a direct block.
876 * Inode was dirtied above.
877 */
878 jbd_debug(5, "splicing direct\n");
879 }
880 return err;
881
882err_out:
883 for (i = 1; i <= num; i++) {
dab291af 884 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
617ba13b 885 ext4_journal_forget(handle, where[i].bh);
c9de560d
AT
886 ext4_free_blocks(handle, inode,
887 le32_to_cpu(where[i-1].key), 1, 0);
ac27a0ec 888 }
c9de560d 889 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
ac27a0ec
DK
890
891 return err;
892}
893
894/*
b920c755
TT
895 * The ext4_ind_get_blocks() function handles non-extents inodes
896 * (i.e., using the traditional indirect/double-indirect i_blocks
897 * scheme) for ext4_get_blocks().
898 *
ac27a0ec
DK
899 * Allocation strategy is simple: if we have to allocate something, we will
900 * have to go the whole way to leaf. So let's do it before attaching anything
901 * to tree, set linkage between the newborn blocks, write them if sync is
902 * required, recheck the path, free and repeat if check fails, otherwise
903 * set the last missing link (that will protect us from any truncate-generated
904 * removals - all blocks on the path are immune now) and possibly force the
905 * write on the parent block.
906 * That has a nice additional property: no special recovery from the failed
907 * allocations is needed - we simply release blocks and do not touch anything
908 * reachable from inode.
909 *
910 * `handle' can be NULL if create == 0.
911 *
ac27a0ec
DK
912 * return > 0, # of blocks mapped or allocated.
913 * return = 0, if plain lookup failed.
914 * return < 0, error case.
c278bfec 915 *
b920c755
TT
916 * The ext4_ind_get_blocks() function should be called with
917 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
918 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
919 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
920 * blocks.
ac27a0ec 921 */
e4d996ca 922static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
498e5f24
TT
923 ext4_lblk_t iblock, unsigned int maxblocks,
924 struct buffer_head *bh_result,
c2177057 925 int flags)
ac27a0ec
DK
926{
927 int err = -EIO;
725d26d3 928 ext4_lblk_t offsets[4];
ac27a0ec
DK
929 Indirect chain[4];
930 Indirect *partial;
617ba13b 931 ext4_fsblk_t goal;
ac27a0ec
DK
932 int indirect_blks;
933 int blocks_to_boundary = 0;
934 int depth;
617ba13b 935 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 936 int count = 0;
617ba13b 937 ext4_fsblk_t first_block = 0;
61628a3f 938 loff_t disksize;
ac27a0ec
DK
939
940
a86c6181 941 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
c2177057 942 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
725d26d3
AK
943 depth = ext4_block_to_path(inode, iblock, offsets,
944 &blocks_to_boundary);
ac27a0ec
DK
945
946 if (depth == 0)
947 goto out;
948
617ba13b 949 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
950
951 /* Simplest case - block found, no allocation needed */
952 if (!partial) {
953 first_block = le32_to_cpu(chain[depth - 1].key);
954 clear_buffer_new(bh_result);
955 count++;
956 /*map more blocks*/
957 while (count < maxblocks && count <= blocks_to_boundary) {
617ba13b 958 ext4_fsblk_t blk;
ac27a0ec 959
ac27a0ec
DK
960 blk = le32_to_cpu(*(chain[depth-1].p + count));
961
962 if (blk == first_block + count)
963 count++;
964 else
965 break;
966 }
c278bfec 967 goto got_it;
ac27a0ec
DK
968 }
969
970 /* Next simple case - plain lookup or failed read of indirect block */
c2177057 971 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
ac27a0ec
DK
972 goto cleanup;
973
ac27a0ec 974 /*
c2ea3fde 975 * Okay, we need to do block allocation.
ac27a0ec 976 */
fb01bfda 977 goal = ext4_find_goal(inode, iblock, partial);
ac27a0ec
DK
978
979 /* the number of blocks need to allocate for [d,t]indirect blocks */
980 indirect_blks = (chain + depth) - partial - 1;
981
982 /*
983 * Next look up the indirect map to count the totoal number of
984 * direct blocks to allocate for this branch.
985 */
617ba13b 986 count = ext4_blks_to_allocate(partial, indirect_blks,
ac27a0ec
DK
987 maxblocks, blocks_to_boundary);
988 /*
617ba13b 989 * Block out ext4_truncate while we alter the tree
ac27a0ec 990 */
7061eba7
AK
991 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
992 &count, goal,
993 offsets + (partial - chain), partial);
ac27a0ec
DK
994
995 /*
617ba13b 996 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
997 * on the new chain if there is a failure, but that risks using
998 * up transaction credits, especially for bitmaps where the
999 * credits cannot be returned. Can we handle this somehow? We
1000 * may need to return -EAGAIN upwards in the worst case. --sct
1001 */
1002 if (!err)
617ba13b 1003 err = ext4_splice_branch(handle, inode, iblock,
ac27a0ec
DK
1004 partial, indirect_blks, count);
1005 /*
0e855ac8 1006 * i_disksize growing is protected by i_data_sem. Don't forget to
ac27a0ec 1007 * protect it if you're about to implement concurrent
617ba13b 1008 * ext4_get_block() -bzzz
ac27a0ec 1009 */
c2177057 1010 if (!err && (flags & EXT4_GET_BLOCKS_EXTEND_DISKSIZE)) {
61628a3f
MC
1011 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
1012 if (disksize > i_size_read(inode))
1013 disksize = i_size_read(inode);
1014 if (disksize > ei->i_disksize)
1015 ei->i_disksize = disksize;
1016 }
ac27a0ec
DK
1017 if (err)
1018 goto cleanup;
1019
1020 set_buffer_new(bh_result);
1021got_it:
1022 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1023 if (count > blocks_to_boundary)
1024 set_buffer_boundary(bh_result);
1025 err = count;
1026 /* Clean up and exit */
1027 partial = chain + depth - 1; /* the whole chain */
1028cleanup:
1029 while (partial > chain) {
1030 BUFFER_TRACE(partial->bh, "call brelse");
1031 brelse(partial->bh);
1032 partial--;
1033 }
1034 BUFFER_TRACE(bh_result, "returned");
1035out:
1036 return err;
1037}
1038
60e58e0f
MC
1039qsize_t ext4_get_reserved_space(struct inode *inode)
1040{
1041 unsigned long long total;
1042
1043 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1044 total = EXT4_I(inode)->i_reserved_data_blocks +
1045 EXT4_I(inode)->i_reserved_meta_blocks;
1046 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1047
1048 return total;
1049}
12219aea
AK
1050/*
1051 * Calculate the number of metadata blocks need to reserve
1052 * to allocate @blocks for non extent file based file
1053 */
1054static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1055{
1056 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1057 int ind_blks, dind_blks, tind_blks;
1058
1059 /* number of new indirect blocks needed */
1060 ind_blks = (blocks + icap - 1) / icap;
1061
1062 dind_blks = (ind_blks + icap - 1) / icap;
1063
1064 tind_blks = 1;
1065
1066 return ind_blks + dind_blks + tind_blks;
1067}
1068
1069/*
1070 * Calculate the number of metadata blocks need to reserve
1071 * to allocate given number of blocks
1072 */
1073static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1074{
cd213226
MC
1075 if (!blocks)
1076 return 0;
1077
12219aea
AK
1078 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1079 return ext4_ext_calc_metadata_amount(inode, blocks);
1080
1081 return ext4_indirect_calc_metadata_amount(inode, blocks);
1082}
1083
1084static void ext4_da_update_reserve_space(struct inode *inode, int used)
1085{
1086 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1087 int total, mdb, mdb_free;
1088
1089 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1090 /* recalculate the number of metablocks still need to be reserved */
1091 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1092 mdb = ext4_calc_metadata_amount(inode, total);
1093
1094 /* figure out how many metablocks to release */
1095 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1096 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1097
6bc6e63f
AK
1098 if (mdb_free) {
1099 /* Account for allocated meta_blocks */
1100 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1101
1102 /* update fs dirty blocks counter */
1103 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1104 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1105 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1106 }
12219aea
AK
1107
1108 /* update per-inode reservations */
1109 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1110 EXT4_I(inode)->i_reserved_data_blocks -= used;
12219aea 1111 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f
MC
1112
1113 /*
1114 * free those over-booking quota for metadata blocks
1115 */
60e58e0f
MC
1116 if (mdb_free)
1117 vfs_dq_release_reservation_block(inode, mdb_free);
d6014301
AK
1118
1119 /*
1120 * If we have done all the pending block allocations and if
1121 * there aren't any writers on the inode, we can discard the
1122 * inode's preallocations.
1123 */
1124 if (!total && (atomic_read(&inode->i_writecount) == 0))
1125 ext4_discard_preallocations(inode);
12219aea
AK
1126}
1127
f5ab0d1f 1128/*
12b7ac17 1129 * The ext4_get_blocks() function tries to look up the requested blocks,
2b2d6d01 1130 * and returns if the blocks are already mapped.
f5ab0d1f 1131 *
f5ab0d1f
MC
1132 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1133 * and store the allocated blocks in the result buffer head and mark it
1134 * mapped.
1135 *
1136 * If file type is extents based, it will call ext4_ext_get_blocks(),
e4d996ca 1137 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
f5ab0d1f
MC
1138 * based files
1139 *
1140 * On success, it returns the number of blocks being mapped or allocate.
1141 * if create==0 and the blocks are pre-allocated and uninitialized block,
1142 * the result buffer head is unmapped. If the create ==1, it will make sure
1143 * the buffer head is mapped.
1144 *
1145 * It returns 0 if plain look up failed (blocks have not been allocated), in
1146 * that casem, buffer head is unmapped
1147 *
1148 * It returns the error in case of allocation failure.
1149 */
12b7ac17
TT
1150int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1151 unsigned int max_blocks, struct buffer_head *bh,
c2177057 1152 int flags)
0e855ac8
AK
1153{
1154 int retval;
f5ab0d1f
MC
1155
1156 clear_buffer_mapped(bh);
2a8964d6 1157 clear_buffer_unwritten(bh);
f5ab0d1f 1158
4df3d265 1159 /*
b920c755
TT
1160 * Try to see if we can get the block without requesting a new
1161 * file system block.
4df3d265
AK
1162 */
1163 down_read((&EXT4_I(inode)->i_data_sem));
1164 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1165 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
c2177057 1166 bh, 0);
0e855ac8 1167 } else {
e4d996ca 1168 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
c2177057 1169 bh, 0);
0e855ac8 1170 }
4df3d265 1171 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f
MC
1172
1173 /* If it is only a block(s) look up */
c2177057 1174 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
1175 return retval;
1176
1177 /*
1178 * Returns if the blocks have already allocated
1179 *
1180 * Note that if blocks have been preallocated
1181 * ext4_ext_get_block() returns th create = 0
1182 * with buffer head unmapped.
1183 */
1184 if (retval > 0 && buffer_mapped(bh))
4df3d265
AK
1185 return retval;
1186
2a8964d6
AK
1187 /*
1188 * When we call get_blocks without the create flag, the
1189 * BH_Unwritten flag could have gotten set if the blocks
1190 * requested were part of a uninitialized extent. We need to
1191 * clear this flag now that we are committed to convert all or
1192 * part of the uninitialized extent to be an initialized
1193 * extent. This is because we need to avoid the combination
1194 * of BH_Unwritten and BH_Mapped flags being simultaneously
1195 * set on the buffer_head.
1196 */
1197 clear_buffer_unwritten(bh);
1198
4df3d265 1199 /*
f5ab0d1f
MC
1200 * New blocks allocate and/or writing to uninitialized extent
1201 * will possibly result in updating i_data, so we take
1202 * the write lock of i_data_sem, and call get_blocks()
1203 * with create == 1 flag.
4df3d265
AK
1204 */
1205 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1206
1207 /*
1208 * if the caller is from delayed allocation writeout path
1209 * we have already reserved fs blocks for allocation
1210 * let the underlying get_block() function know to
1211 * avoid double accounting
1212 */
c2177057 1213 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1214 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1215 /*
1216 * We need to check for EXT4 here because migrate
1217 * could have changed the inode type in between
1218 */
0e855ac8
AK
1219 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1220 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
c2177057 1221 bh, flags);
0e855ac8 1222 } else {
e4d996ca 1223 retval = ext4_ind_get_blocks(handle, inode, block,
c2177057 1224 max_blocks, bh, flags);
267e4db9
AK
1225
1226 if (retval > 0 && buffer_new(bh)) {
1227 /*
1228 * We allocated new blocks which will result in
1229 * i_data's format changing. Force the migrate
1230 * to fail by clearing migrate flags
1231 */
1232 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1233 ~EXT4_EXT_MIGRATE;
1234 }
0e855ac8 1235 }
d2a17637 1236
c2177057 1237 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
d2a17637
MC
1238 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1239 /*
1240 * Update reserved blocks/metadata blocks
1241 * after successful block allocation
1242 * which were deferred till now
1243 */
1244 if ((retval > 0) && buffer_delay(bh))
12219aea 1245 ext4_da_update_reserve_space(inode, retval);
d2a17637
MC
1246 }
1247
4df3d265 1248 up_write((&EXT4_I(inode)->i_data_sem));
0e855ac8
AK
1249 return retval;
1250}
1251
f3bd1f3f
MC
1252/* Maximum number of blocks we map for direct IO at once. */
1253#define DIO_MAX_BLOCKS 4096
1254
6873fa0d
ES
1255int ext4_get_block(struct inode *inode, sector_t iblock,
1256 struct buffer_head *bh_result, int create)
ac27a0ec 1257{
3e4fdaf8 1258 handle_t *handle = ext4_journal_current_handle();
7fb5409d 1259 int ret = 0, started = 0;
ac27a0ec 1260 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
f3bd1f3f 1261 int dio_credits;
ac27a0ec 1262
7fb5409d
JK
1263 if (create && !handle) {
1264 /* Direct IO write... */
1265 if (max_blocks > DIO_MAX_BLOCKS)
1266 max_blocks = DIO_MAX_BLOCKS;
f3bd1f3f
MC
1267 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1268 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1269 if (IS_ERR(handle)) {
ac27a0ec 1270 ret = PTR_ERR(handle);
7fb5409d 1271 goto out;
ac27a0ec 1272 }
7fb5409d 1273 started = 1;
ac27a0ec
DK
1274 }
1275
12b7ac17 1276 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
c2177057 1277 create ? EXT4_GET_BLOCKS_CREATE : 0);
7fb5409d
JK
1278 if (ret > 0) {
1279 bh_result->b_size = (ret << inode->i_blkbits);
1280 ret = 0;
ac27a0ec 1281 }
7fb5409d
JK
1282 if (started)
1283 ext4_journal_stop(handle);
1284out:
ac27a0ec
DK
1285 return ret;
1286}
1287
1288/*
1289 * `handle' can be NULL if create is zero
1290 */
617ba13b 1291struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1292 ext4_lblk_t block, int create, int *errp)
ac27a0ec
DK
1293{
1294 struct buffer_head dummy;
1295 int fatal = 0, err;
c2177057 1296 int flags = EXT4_GET_BLOCKS_EXTEND_DISKSIZE;
ac27a0ec
DK
1297
1298 J_ASSERT(handle != NULL || create == 0);
1299
1300 dummy.b_state = 0;
1301 dummy.b_blocknr = -1000;
1302 buffer_trace_init(&dummy.b_history);
c2177057
TT
1303 if (create)
1304 flags |= EXT4_GET_BLOCKS_CREATE;
1305 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
ac27a0ec 1306 /*
c2177057
TT
1307 * ext4_get_blocks() returns number of blocks mapped. 0 in
1308 * case of a HOLE.
ac27a0ec
DK
1309 */
1310 if (err > 0) {
1311 if (err > 1)
1312 WARN_ON(1);
1313 err = 0;
1314 }
1315 *errp = err;
1316 if (!err && buffer_mapped(&dummy)) {
1317 struct buffer_head *bh;
1318 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1319 if (!bh) {
1320 *errp = -EIO;
1321 goto err;
1322 }
1323 if (buffer_new(&dummy)) {
1324 J_ASSERT(create != 0);
ac39849d 1325 J_ASSERT(handle != NULL);
ac27a0ec
DK
1326
1327 /*
1328 * Now that we do not always journal data, we should
1329 * keep in mind whether this should always journal the
1330 * new buffer as metadata. For now, regular file
617ba13b 1331 * writes use ext4_get_block instead, so it's not a
ac27a0ec
DK
1332 * problem.
1333 */
1334 lock_buffer(bh);
1335 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 1336 fatal = ext4_journal_get_create_access(handle, bh);
ac27a0ec 1337 if (!fatal && !buffer_uptodate(bh)) {
af5bc92d 1338 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
ac27a0ec
DK
1339 set_buffer_uptodate(bh);
1340 }
1341 unlock_buffer(bh);
0390131b
FM
1342 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1343 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
1344 if (!fatal)
1345 fatal = err;
1346 } else {
1347 BUFFER_TRACE(bh, "not a new buffer");
1348 }
1349 if (fatal) {
1350 *errp = fatal;
1351 brelse(bh);
1352 bh = NULL;
1353 }
1354 return bh;
1355 }
1356err:
1357 return NULL;
1358}
1359
617ba13b 1360struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1361 ext4_lblk_t block, int create, int *err)
ac27a0ec 1362{
af5bc92d 1363 struct buffer_head *bh;
ac27a0ec 1364
617ba13b 1365 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1366 if (!bh)
1367 return bh;
1368 if (buffer_uptodate(bh))
1369 return bh;
1370 ll_rw_block(READ_META, 1, &bh);
1371 wait_on_buffer(bh);
1372 if (buffer_uptodate(bh))
1373 return bh;
1374 put_bh(bh);
1375 *err = -EIO;
1376 return NULL;
1377}
1378
af5bc92d
TT
1379static int walk_page_buffers(handle_t *handle,
1380 struct buffer_head *head,
1381 unsigned from,
1382 unsigned to,
1383 int *partial,
1384 int (*fn)(handle_t *handle,
1385 struct buffer_head *bh))
ac27a0ec
DK
1386{
1387 struct buffer_head *bh;
1388 unsigned block_start, block_end;
1389 unsigned blocksize = head->b_size;
1390 int err, ret = 0;
1391 struct buffer_head *next;
1392
af5bc92d
TT
1393 for (bh = head, block_start = 0;
1394 ret == 0 && (bh != head || !block_start);
1395 block_start = block_end, bh = next)
ac27a0ec
DK
1396 {
1397 next = bh->b_this_page;
1398 block_end = block_start + blocksize;
1399 if (block_end <= from || block_start >= to) {
1400 if (partial && !buffer_uptodate(bh))
1401 *partial = 1;
1402 continue;
1403 }
1404 err = (*fn)(handle, bh);
1405 if (!ret)
1406 ret = err;
1407 }
1408 return ret;
1409}
1410
1411/*
1412 * To preserve ordering, it is essential that the hole instantiation and
1413 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1414 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1415 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1416 * prepare_write() is the right place.
1417 *
617ba13b
MC
1418 * Also, this function can nest inside ext4_writepage() ->
1419 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1420 * has generated enough buffer credits to do the whole page. So we won't
1421 * block on the journal in that case, which is good, because the caller may
1422 * be PF_MEMALLOC.
1423 *
617ba13b 1424 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1425 * quota file writes. If we were to commit the transaction while thus
1426 * reentered, there can be a deadlock - we would be holding a quota
1427 * lock, and the commit would never complete if another thread had a
1428 * transaction open and was blocking on the quota lock - a ranking
1429 * violation.
1430 *
dab291af 1431 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1432 * will _not_ run commit under these circumstances because handle->h_ref
1433 * is elevated. We'll still have enough credits for the tiny quotafile
1434 * write.
1435 */
1436static int do_journal_get_write_access(handle_t *handle,
1437 struct buffer_head *bh)
1438{
1439 if (!buffer_mapped(bh) || buffer_freed(bh))
1440 return 0;
617ba13b 1441 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1442}
1443
bfc1af65
NP
1444static int ext4_write_begin(struct file *file, struct address_space *mapping,
1445 loff_t pos, unsigned len, unsigned flags,
1446 struct page **pagep, void **fsdata)
ac27a0ec 1447{
af5bc92d 1448 struct inode *inode = mapping->host;
7479d2b9 1449 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
ac27a0ec
DK
1450 handle_t *handle;
1451 int retries = 0;
af5bc92d 1452 struct page *page;
bfc1af65 1453 pgoff_t index;
af5bc92d 1454 unsigned from, to;
bfc1af65 1455
ba80b101
TT
1456 trace_mark(ext4_write_begin,
1457 "dev %s ino %lu pos %llu len %u flags %u",
1458 inode->i_sb->s_id, inode->i_ino,
1459 (unsigned long long) pos, len, flags);
bfc1af65 1460 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1461 from = pos & (PAGE_CACHE_SIZE - 1);
1462 to = from + len;
ac27a0ec
DK
1463
1464retry:
af5bc92d
TT
1465 handle = ext4_journal_start(inode, needed_blocks);
1466 if (IS_ERR(handle)) {
1467 ret = PTR_ERR(handle);
1468 goto out;
7479d2b9 1469 }
ac27a0ec 1470
ebd3610b
JK
1471 /* We cannot recurse into the filesystem as the transaction is already
1472 * started */
1473 flags |= AOP_FLAG_NOFS;
1474
54566b2c 1475 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1476 if (!page) {
1477 ext4_journal_stop(handle);
1478 ret = -ENOMEM;
1479 goto out;
1480 }
1481 *pagep = page;
1482
bfc1af65 1483 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
ebd3610b 1484 ext4_get_block);
bfc1af65
NP
1485
1486 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1487 ret = walk_page_buffers(handle, page_buffers(page),
1488 from, to, NULL, do_journal_get_write_access);
1489 }
bfc1af65
NP
1490
1491 if (ret) {
af5bc92d 1492 unlock_page(page);
cf108bca 1493 ext4_journal_stop(handle);
af5bc92d 1494 page_cache_release(page);
ae4d5372
AK
1495 /*
1496 * block_write_begin may have instantiated a few blocks
1497 * outside i_size. Trim these off again. Don't need
1498 * i_size_read because we hold i_mutex.
1499 */
1500 if (pos + len > inode->i_size)
1501 vmtruncate(inode, inode->i_size);
bfc1af65
NP
1502 }
1503
617ba13b 1504 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1505 goto retry;
7479d2b9 1506out:
ac27a0ec
DK
1507 return ret;
1508}
1509
bfc1af65
NP
1510/* For write_end() in data=journal mode */
1511static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1512{
1513 if (!buffer_mapped(bh) || buffer_freed(bh))
1514 return 0;
1515 set_buffer_uptodate(bh);
0390131b 1516 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1517}
1518
1519/*
1520 * We need to pick up the new inode size which generic_commit_write gave us
1521 * `file' can be NULL - eg, when called from page_symlink().
1522 *
617ba13b 1523 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1524 * buffers are managed internally.
1525 */
bfc1af65
NP
1526static int ext4_ordered_write_end(struct file *file,
1527 struct address_space *mapping,
1528 loff_t pos, unsigned len, unsigned copied,
1529 struct page *page, void *fsdata)
ac27a0ec 1530{
617ba13b 1531 handle_t *handle = ext4_journal_current_handle();
cf108bca 1532 struct inode *inode = mapping->host;
ac27a0ec
DK
1533 int ret = 0, ret2;
1534
ba80b101
TT
1535 trace_mark(ext4_ordered_write_end,
1536 "dev %s ino %lu pos %llu len %u copied %u",
1537 inode->i_sb->s_id, inode->i_ino,
1538 (unsigned long long) pos, len, copied);
678aaf48 1539 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1540
1541 if (ret == 0) {
ac27a0ec
DK
1542 loff_t new_i_size;
1543
bfc1af65 1544 new_i_size = pos + copied;
cf17fea6
AK
1545 if (new_i_size > EXT4_I(inode)->i_disksize) {
1546 ext4_update_i_disksize(inode, new_i_size);
1547 /* We need to mark inode dirty even if
1548 * new_i_size is less that inode->i_size
1549 * bu greater than i_disksize.(hint delalloc)
1550 */
1551 ext4_mark_inode_dirty(handle, inode);
1552 }
1553
cf108bca 1554 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1555 page, fsdata);
f8a87d89
RK
1556 copied = ret2;
1557 if (ret2 < 0)
1558 ret = ret2;
ac27a0ec 1559 }
617ba13b 1560 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1561 if (!ret)
1562 ret = ret2;
bfc1af65
NP
1563
1564 return ret ? ret : copied;
ac27a0ec
DK
1565}
1566
bfc1af65
NP
1567static int ext4_writeback_write_end(struct file *file,
1568 struct address_space *mapping,
1569 loff_t pos, unsigned len, unsigned copied,
1570 struct page *page, void *fsdata)
ac27a0ec 1571{
617ba13b 1572 handle_t *handle = ext4_journal_current_handle();
cf108bca 1573 struct inode *inode = mapping->host;
ac27a0ec
DK
1574 int ret = 0, ret2;
1575 loff_t new_i_size;
1576
ba80b101
TT
1577 trace_mark(ext4_writeback_write_end,
1578 "dev %s ino %lu pos %llu len %u copied %u",
1579 inode->i_sb->s_id, inode->i_ino,
1580 (unsigned long long) pos, len, copied);
bfc1af65 1581 new_i_size = pos + copied;
cf17fea6
AK
1582 if (new_i_size > EXT4_I(inode)->i_disksize) {
1583 ext4_update_i_disksize(inode, new_i_size);
1584 /* We need to mark inode dirty even if
1585 * new_i_size is less that inode->i_size
1586 * bu greater than i_disksize.(hint delalloc)
1587 */
1588 ext4_mark_inode_dirty(handle, inode);
1589 }
ac27a0ec 1590
cf108bca 1591 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1592 page, fsdata);
f8a87d89
RK
1593 copied = ret2;
1594 if (ret2 < 0)
1595 ret = ret2;
ac27a0ec 1596
617ba13b 1597 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1598 if (!ret)
1599 ret = ret2;
bfc1af65
NP
1600
1601 return ret ? ret : copied;
ac27a0ec
DK
1602}
1603
bfc1af65
NP
1604static int ext4_journalled_write_end(struct file *file,
1605 struct address_space *mapping,
1606 loff_t pos, unsigned len, unsigned copied,
1607 struct page *page, void *fsdata)
ac27a0ec 1608{
617ba13b 1609 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1610 struct inode *inode = mapping->host;
ac27a0ec
DK
1611 int ret = 0, ret2;
1612 int partial = 0;
bfc1af65 1613 unsigned from, to;
cf17fea6 1614 loff_t new_i_size;
ac27a0ec 1615
ba80b101
TT
1616 trace_mark(ext4_journalled_write_end,
1617 "dev %s ino %lu pos %llu len %u copied %u",
1618 inode->i_sb->s_id, inode->i_ino,
1619 (unsigned long long) pos, len, copied);
bfc1af65
NP
1620 from = pos & (PAGE_CACHE_SIZE - 1);
1621 to = from + len;
1622
1623 if (copied < len) {
1624 if (!PageUptodate(page))
1625 copied = 0;
1626 page_zero_new_buffers(page, from+copied, to);
1627 }
ac27a0ec
DK
1628
1629 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1630 to, &partial, write_end_fn);
ac27a0ec
DK
1631 if (!partial)
1632 SetPageUptodate(page);
cf17fea6
AK
1633 new_i_size = pos + copied;
1634 if (new_i_size > inode->i_size)
bfc1af65 1635 i_size_write(inode, pos+copied);
617ba13b 1636 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
cf17fea6
AK
1637 if (new_i_size > EXT4_I(inode)->i_disksize) {
1638 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1639 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1640 if (!ret)
1641 ret = ret2;
1642 }
bfc1af65 1643
cf108bca 1644 unlock_page(page);
617ba13b 1645 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1646 if (!ret)
1647 ret = ret2;
bfc1af65
NP
1648 page_cache_release(page);
1649
1650 return ret ? ret : copied;
ac27a0ec 1651}
d2a17637
MC
1652
1653static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1654{
030ba6bc 1655 int retries = 0;
60e58e0f
MC
1656 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1657 unsigned long md_needed, mdblocks, total = 0;
d2a17637
MC
1658
1659 /*
1660 * recalculate the amount of metadata blocks to reserve
1661 * in order to allocate nrblocks
1662 * worse case is one extent per block
1663 */
030ba6bc 1664repeat:
d2a17637
MC
1665 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1666 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1667 mdblocks = ext4_calc_metadata_amount(inode, total);
1668 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1669
1670 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1671 total = md_needed + nrblocks;
1672
60e58e0f
MC
1673 /*
1674 * Make quota reservation here to prevent quota overflow
1675 * later. Real quota accounting is done at pages writeout
1676 * time.
1677 */
1678 if (vfs_dq_reserve_block(inode, total)) {
1679 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1680 return -EDQUOT;
1681 }
1682
a30d542a 1683 if (ext4_claim_free_blocks(sbi, total)) {
d2a17637 1684 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
030ba6bc
AK
1685 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1686 yield();
1687 goto repeat;
1688 }
60e58e0f 1689 vfs_dq_release_reservation_block(inode, total);
d2a17637
MC
1690 return -ENOSPC;
1691 }
d2a17637
MC
1692 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1693 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1694
1695 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1696 return 0; /* success */
1697}
1698
12219aea 1699static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1700{
1701 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1702 int total, mdb, mdb_free, release;
1703
cd213226
MC
1704 if (!to_free)
1705 return; /* Nothing to release, exit */
1706
d2a17637 1707 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226
MC
1708
1709 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1710 /*
1711 * if there is no reserved blocks, but we try to free some
1712 * then the counter is messed up somewhere.
1713 * but since this function is called from invalidate
1714 * page, it's harmless to return without any action
1715 */
1716 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1717 "blocks for inode %lu, but there is no reserved "
1718 "data blocks\n", to_free, inode->i_ino);
1719 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1720 return;
1721 }
1722
d2a17637 1723 /* recalculate the number of metablocks still need to be reserved */
12219aea 1724 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
d2a17637
MC
1725 mdb = ext4_calc_metadata_amount(inode, total);
1726
1727 /* figure out how many metablocks to release */
1728 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1729 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1730
d2a17637
MC
1731 release = to_free + mdb_free;
1732
6bc6e63f
AK
1733 /* update fs dirty blocks counter for truncate case */
1734 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
d2a17637
MC
1735
1736 /* update per-inode reservations */
12219aea
AK
1737 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1738 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
d2a17637
MC
1739
1740 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1741 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
d2a17637 1742 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f
MC
1743
1744 vfs_dq_release_reservation_block(inode, release);
d2a17637
MC
1745}
1746
1747static void ext4_da_page_release_reservation(struct page *page,
1748 unsigned long offset)
1749{
1750 int to_release = 0;
1751 struct buffer_head *head, *bh;
1752 unsigned int curr_off = 0;
1753
1754 head = page_buffers(page);
1755 bh = head;
1756 do {
1757 unsigned int next_off = curr_off + bh->b_size;
1758
1759 if ((offset <= curr_off) && (buffer_delay(bh))) {
1760 to_release++;
1761 clear_buffer_delay(bh);
1762 }
1763 curr_off = next_off;
1764 } while ((bh = bh->b_this_page) != head);
12219aea 1765 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1766}
ac27a0ec 1767
64769240
AT
1768/*
1769 * Delayed allocation stuff
1770 */
1771
1772struct mpage_da_data {
1773 struct inode *inode;
8dc207c0
TT
1774 sector_t b_blocknr; /* start block number of extent */
1775 size_t b_size; /* size of extent */
1776 unsigned long b_state; /* state of the extent */
64769240 1777 unsigned long first_page, next_page; /* extent of pages */
64769240 1778 struct writeback_control *wbc;
a1d6cc56 1779 int io_done;
498e5f24 1780 int pages_written;
df22291f 1781 int retval;
64769240
AT
1782};
1783
1784/*
1785 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1786 * them with writepage() call back
64769240
AT
1787 *
1788 * @mpd->inode: inode
1789 * @mpd->first_page: first page of the extent
1790 * @mpd->next_page: page after the last page of the extent
64769240
AT
1791 *
1792 * By the time mpage_da_submit_io() is called we expect all blocks
1793 * to be allocated. this may be wrong if allocation failed.
1794 *
1795 * As pages are already locked by write_cache_pages(), we can't use it
1796 */
1797static int mpage_da_submit_io(struct mpage_da_data *mpd)
1798{
22208ded 1799 long pages_skipped;
791b7f08
AK
1800 struct pagevec pvec;
1801 unsigned long index, end;
1802 int ret = 0, err, nr_pages, i;
1803 struct inode *inode = mpd->inode;
1804 struct address_space *mapping = inode->i_mapping;
64769240
AT
1805
1806 BUG_ON(mpd->next_page <= mpd->first_page);
791b7f08
AK
1807 /*
1808 * We need to start from the first_page to the next_page - 1
1809 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1810 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1811 * at the currently mapped buffer_heads.
1812 */
64769240
AT
1813 index = mpd->first_page;
1814 end = mpd->next_page - 1;
1815
791b7f08 1816 pagevec_init(&pvec, 0);
64769240 1817 while (index <= end) {
791b7f08 1818 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1819 if (nr_pages == 0)
1820 break;
1821 for (i = 0; i < nr_pages; i++) {
1822 struct page *page = pvec.pages[i];
1823
791b7f08
AK
1824 index = page->index;
1825 if (index > end)
1826 break;
1827 index++;
1828
1829 BUG_ON(!PageLocked(page));
1830 BUG_ON(PageWriteback(page));
1831
22208ded 1832 pages_skipped = mpd->wbc->pages_skipped;
a1d6cc56 1833 err = mapping->a_ops->writepage(page, mpd->wbc);
22208ded
AK
1834 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1835 /*
1836 * have successfully written the page
1837 * without skipping the same
1838 */
a1d6cc56 1839 mpd->pages_written++;
64769240
AT
1840 /*
1841 * In error case, we have to continue because
1842 * remaining pages are still locked
1843 * XXX: unlock and re-dirty them?
1844 */
1845 if (ret == 0)
1846 ret = err;
1847 }
1848 pagevec_release(&pvec);
1849 }
64769240
AT
1850 return ret;
1851}
1852
1853/*
1854 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1855 *
1856 * @mpd->inode - inode to walk through
1857 * @exbh->b_blocknr - first block on a disk
1858 * @exbh->b_size - amount of space in bytes
1859 * @logical - first logical block to start assignment with
1860 *
1861 * the function goes through all passed space and put actual disk
29fa89d0 1862 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
64769240
AT
1863 */
1864static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1865 struct buffer_head *exbh)
1866{
1867 struct inode *inode = mpd->inode;
1868 struct address_space *mapping = inode->i_mapping;
1869 int blocks = exbh->b_size >> inode->i_blkbits;
1870 sector_t pblock = exbh->b_blocknr, cur_logical;
1871 struct buffer_head *head, *bh;
a1d6cc56 1872 pgoff_t index, end;
64769240
AT
1873 struct pagevec pvec;
1874 int nr_pages, i;
1875
1876 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1877 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1878 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1879
1880 pagevec_init(&pvec, 0);
1881
1882 while (index <= end) {
1883 /* XXX: optimize tail */
1884 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1885 if (nr_pages == 0)
1886 break;
1887 for (i = 0; i < nr_pages; i++) {
1888 struct page *page = pvec.pages[i];
1889
1890 index = page->index;
1891 if (index > end)
1892 break;
1893 index++;
1894
1895 BUG_ON(!PageLocked(page));
1896 BUG_ON(PageWriteback(page));
1897 BUG_ON(!page_has_buffers(page));
1898
1899 bh = page_buffers(page);
1900 head = bh;
1901
1902 /* skip blocks out of the range */
1903 do {
1904 if (cur_logical >= logical)
1905 break;
1906 cur_logical++;
1907 } while ((bh = bh->b_this_page) != head);
1908
1909 do {
1910 if (cur_logical >= logical + blocks)
1911 break;
29fa89d0
AK
1912
1913 if (buffer_delay(bh) ||
1914 buffer_unwritten(bh)) {
1915
1916 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
1917
1918 if (buffer_delay(bh)) {
1919 clear_buffer_delay(bh);
1920 bh->b_blocknr = pblock;
1921 } else {
1922 /*
1923 * unwritten already should have
1924 * blocknr assigned. Verify that
1925 */
1926 clear_buffer_unwritten(bh);
1927 BUG_ON(bh->b_blocknr != pblock);
1928 }
1929
61628a3f 1930 } else if (buffer_mapped(bh))
64769240 1931 BUG_ON(bh->b_blocknr != pblock);
64769240
AT
1932
1933 cur_logical++;
1934 pblock++;
1935 } while ((bh = bh->b_this_page) != head);
1936 }
1937 pagevec_release(&pvec);
1938 }
1939}
1940
1941
1942/*
1943 * __unmap_underlying_blocks - just a helper function to unmap
1944 * set of blocks described by @bh
1945 */
1946static inline void __unmap_underlying_blocks(struct inode *inode,
1947 struct buffer_head *bh)
1948{
1949 struct block_device *bdev = inode->i_sb->s_bdev;
1950 int blocks, i;
1951
1952 blocks = bh->b_size >> inode->i_blkbits;
1953 for (i = 0; i < blocks; i++)
1954 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1955}
1956
c4a0c46e
AK
1957static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1958 sector_t logical, long blk_cnt)
1959{
1960 int nr_pages, i;
1961 pgoff_t index, end;
1962 struct pagevec pvec;
1963 struct inode *inode = mpd->inode;
1964 struct address_space *mapping = inode->i_mapping;
1965
1966 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1967 end = (logical + blk_cnt - 1) >>
1968 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1969 while (index <= end) {
1970 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1971 if (nr_pages == 0)
1972 break;
1973 for (i = 0; i < nr_pages; i++) {
1974 struct page *page = pvec.pages[i];
1975 index = page->index;
1976 if (index > end)
1977 break;
1978 index++;
1979
1980 BUG_ON(!PageLocked(page));
1981 BUG_ON(PageWriteback(page));
1982 block_invalidatepage(page, 0);
1983 ClearPageUptodate(page);
1984 unlock_page(page);
1985 }
1986 }
1987 return;
1988}
1989
df22291f
AK
1990static void ext4_print_free_blocks(struct inode *inode)
1991{
1992 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1993 printk(KERN_EMERG "Total free blocks count %lld\n",
1994 ext4_count_free_blocks(inode->i_sb));
1995 printk(KERN_EMERG "Free/Dirty block details\n");
1996 printk(KERN_EMERG "free_blocks=%lld\n",
8f72fbdf 1997 (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
df22291f 1998 printk(KERN_EMERG "dirty_blocks=%lld\n",
8f72fbdf 1999 (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
df22291f 2000 printk(KERN_EMERG "Block reservation details\n");
498e5f24 2001 printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
df22291f 2002 EXT4_I(inode)->i_reserved_data_blocks);
498e5f24 2003 printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
df22291f
AK
2004 EXT4_I(inode)->i_reserved_meta_blocks);
2005 return;
2006}
2007
b920c755
TT
2008/*
2009 * This function is used by mpage_da_map_blocks(). We separate it out
2010 * as a separate function just to make life easier, and because
2011 * mpage_da_map_blocks() used to be a generic function that took a
2012 * get_block_t.
2013 */
ed5bde0b 2014static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
f888e652 2015 struct buffer_head *bh_result)
ed5bde0b
TT
2016{
2017 int ret;
2018 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2019 loff_t disksize = EXT4_I(inode)->i_disksize;
2020 handle_t *handle = NULL;
2021
2022 handle = ext4_journal_current_handle();
2023 BUG_ON(!handle);
12b7ac17 2024 ret = ext4_get_blocks(handle, inode, iblock, max_blocks,
c2177057
TT
2025 bh_result, EXT4_GET_BLOCKS_CREATE|
2026 EXT4_GET_BLOCKS_DELALLOC_RESERVE);
ed5bde0b
TT
2027 if (ret <= 0)
2028 return ret;
2029
2030 bh_result->b_size = (ret << inode->i_blkbits);
2031
2032 if (ext4_should_order_data(inode)) {
2033 int retval;
2034 retval = ext4_jbd2_file_inode(handle, inode);
2035 if (retval)
2036 /*
2037 * Failed to add inode for ordered mode. Don't
2038 * update file size
2039 */
2040 return retval;
2041 }
2042
2043 /*
2044 * Update on-disk size along with block allocation we don't
b920c755
TT
2045 * use EXT4_GET_BLOCKS_EXTEND_DISKSIZE as size may change
2046 * within already allocated block -bzzz
ed5bde0b
TT
2047 */
2048 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2049 if (disksize > i_size_read(inode))
2050 disksize = i_size_read(inode);
2051 if (disksize > EXT4_I(inode)->i_disksize) {
2052 ext4_update_i_disksize(inode, disksize);
2053 ret = ext4_mark_inode_dirty(handle, inode);
2054 return ret;
2055 }
2056 return 0;
2057}
2058
64769240
AT
2059/*
2060 * mpage_da_map_blocks - go through given space
2061 *
8dc207c0 2062 * @mpd - bh describing space
64769240
AT
2063 *
2064 * The function skips space we know is already mapped to disk blocks.
2065 *
64769240 2066 */
ed5bde0b 2067static int mpage_da_map_blocks(struct mpage_da_data *mpd)
64769240 2068{
a1d6cc56 2069 int err = 0;
030ba6bc 2070 struct buffer_head new;
df22291f 2071 sector_t next;
64769240
AT
2072
2073 /*
2074 * We consider only non-mapped and non-allocated blocks
2075 */
8dc207c0 2076 if ((mpd->b_state & (1 << BH_Mapped)) &&
29fa89d0
AK
2077 !(mpd->b_state & (1 << BH_Delay)) &&
2078 !(mpd->b_state & (1 << BH_Unwritten)))
c4a0c46e 2079 return 0;
79ffab34
AK
2080 /*
2081 * We need to make sure the BH_Delay flag is passed down to
c2177057
TT
2082 * ext4_da_get_block_write(), since it calls ext4_get_blocks()
2083 * with the EXT4_GET_BLOCKS_DELALLOC_RESERVE flag. This flag
2084 * causes ext4_get_blocks() to call
79ffab34
AK
2085 * ext4_da_update_reserve_space() if the passed buffer head
2086 * has the BH_Delay flag set. In the future, once we clean up
c2177057
TT
2087 * the interfaces to ext4_get_blocks(), we should pass in a
2088 * separate flag which requests that the delayed allocation
79ffab34
AK
2089 * statistics should be updated, instead of depending on the
2090 * state information getting passed down via the map_bh's
c2177057
TT
2091 * state bitmasks plus the magic
2092 * EXT4_GET_BLOCKS_DELALLOC_RESERVE flag.
79ffab34
AK
2093 */
2094 new.b_state = mpd->b_state & (1 << BH_Delay);
a1d6cc56 2095 new.b_blocknr = 0;
8dc207c0
TT
2096 new.b_size = mpd->b_size;
2097 next = mpd->b_blocknr;
a1d6cc56
AK
2098 /*
2099 * If we didn't accumulate anything
2100 * to write simply return
2101 */
2102 if (!new.b_size)
c4a0c46e 2103 return 0;
c4a0c46e 2104
f888e652 2105 err = ext4_da_get_block_write(mpd->inode, next, &new);
ed5bde0b
TT
2106 if (err) {
2107 /*
2108 * If get block returns with error we simply
2109 * return. Later writepage will redirty the page and
2110 * writepages will find the dirty page again
c4a0c46e
AK
2111 */
2112 if (err == -EAGAIN)
2113 return 0;
df22291f
AK
2114
2115 if (err == -ENOSPC &&
ed5bde0b 2116 ext4_count_free_blocks(mpd->inode->i_sb)) {
df22291f
AK
2117 mpd->retval = err;
2118 return 0;
2119 }
2120
c4a0c46e 2121 /*
ed5bde0b
TT
2122 * get block failure will cause us to loop in
2123 * writepages, because a_ops->writepage won't be able
2124 * to make progress. The page will be redirtied by
2125 * writepage and writepages will again try to write
2126 * the same.
c4a0c46e
AK
2127 */
2128 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2129 "at logical offset %llu with max blocks "
2130 "%zd with error %d\n",
2131 __func__, mpd->inode->i_ino,
2132 (unsigned long long)next,
8dc207c0 2133 mpd->b_size >> mpd->inode->i_blkbits, err);
c4a0c46e
AK
2134 printk(KERN_EMERG "This should not happen.!! "
2135 "Data will be lost\n");
030ba6bc 2136 if (err == -ENOSPC) {
df22291f 2137 ext4_print_free_blocks(mpd->inode);
030ba6bc 2138 }
c4a0c46e
AK
2139 /* invlaidate all the pages */
2140 ext4_da_block_invalidatepages(mpd, next,
8dc207c0 2141 mpd->b_size >> mpd->inode->i_blkbits);
c4a0c46e
AK
2142 return err;
2143 }
a1d6cc56 2144 BUG_ON(new.b_size == 0);
64769240 2145
a1d6cc56
AK
2146 if (buffer_new(&new))
2147 __unmap_underlying_blocks(mpd->inode, &new);
64769240 2148
a1d6cc56
AK
2149 /*
2150 * If blocks are delayed marked, we need to
2151 * put actual blocknr and drop delayed bit
2152 */
8dc207c0
TT
2153 if ((mpd->b_state & (1 << BH_Delay)) ||
2154 (mpd->b_state & (1 << BH_Unwritten)))
a1d6cc56 2155 mpage_put_bnr_to_bhs(mpd, next, &new);
64769240 2156
c4a0c46e 2157 return 0;
64769240
AT
2158}
2159
bf068ee2
AK
2160#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2161 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
2162
2163/*
2164 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2165 *
2166 * @mpd->lbh - extent of blocks
2167 * @logical - logical number of the block in the file
2168 * @bh - bh of the block (used to access block's state)
2169 *
2170 * the function is used to collect contig. blocks in same state
2171 */
2172static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
2173 sector_t logical, size_t b_size,
2174 unsigned long b_state)
64769240 2175{
64769240 2176 sector_t next;
8dc207c0 2177 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 2178
525f4ed8
MC
2179 /* check if thereserved journal credits might overflow */
2180 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2181 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2182 /*
2183 * With non-extent format we are limited by the journal
2184 * credit available. Total credit needed to insert
2185 * nrblocks contiguous blocks is dependent on the
2186 * nrblocks. So limit nrblocks.
2187 */
2188 goto flush_it;
2189 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2190 EXT4_MAX_TRANS_DATA) {
2191 /*
2192 * Adding the new buffer_head would make it cross the
2193 * allowed limit for which we have journal credit
2194 * reserved. So limit the new bh->b_size
2195 */
2196 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2197 mpd->inode->i_blkbits;
2198 /* we will do mpage_da_submit_io in the next loop */
2199 }
2200 }
64769240
AT
2201 /*
2202 * First block in the extent
2203 */
8dc207c0
TT
2204 if (mpd->b_size == 0) {
2205 mpd->b_blocknr = logical;
2206 mpd->b_size = b_size;
2207 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
2208 return;
2209 }
2210
8dc207c0 2211 next = mpd->b_blocknr + nrblocks;
64769240
AT
2212 /*
2213 * Can we merge the block to our big extent?
2214 */
8dc207c0
TT
2215 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2216 mpd->b_size += b_size;
64769240
AT
2217 return;
2218 }
2219
525f4ed8 2220flush_it:
64769240
AT
2221 /*
2222 * We couldn't merge the block to our extent, so we
2223 * need to flush current extent and start new one
2224 */
c4a0c46e
AK
2225 if (mpage_da_map_blocks(mpd) == 0)
2226 mpage_da_submit_io(mpd);
a1d6cc56
AK
2227 mpd->io_done = 1;
2228 return;
64769240
AT
2229}
2230
29fa89d0
AK
2231static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2232{
2233 /*
2234 * unmapped buffer is possible for holes.
2235 * delay buffer is possible with delayed allocation.
2236 * We also need to consider unwritten buffer as unmapped.
2237 */
2238 return (!buffer_mapped(bh) || buffer_delay(bh) ||
2239 buffer_unwritten(bh)) && buffer_dirty(bh);
2240}
2241
64769240
AT
2242/*
2243 * __mpage_da_writepage - finds extent of pages and blocks
2244 *
2245 * @page: page to consider
2246 * @wbc: not used, we just follow rules
2247 * @data: context
2248 *
2249 * The function finds extents of pages and scan them for all blocks.
2250 */
2251static int __mpage_da_writepage(struct page *page,
2252 struct writeback_control *wbc, void *data)
2253{
2254 struct mpage_da_data *mpd = data;
2255 struct inode *inode = mpd->inode;
8dc207c0 2256 struct buffer_head *bh, *head;
64769240
AT
2257 sector_t logical;
2258
a1d6cc56
AK
2259 if (mpd->io_done) {
2260 /*
2261 * Rest of the page in the page_vec
2262 * redirty then and skip then. We will
2263 * try to to write them again after
2264 * starting a new transaction
2265 */
2266 redirty_page_for_writepage(wbc, page);
2267 unlock_page(page);
2268 return MPAGE_DA_EXTENT_TAIL;
2269 }
64769240
AT
2270 /*
2271 * Can we merge this page to current extent?
2272 */
2273 if (mpd->next_page != page->index) {
2274 /*
2275 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 2276 * and start IO on them using writepage()
64769240
AT
2277 */
2278 if (mpd->next_page != mpd->first_page) {
c4a0c46e
AK
2279 if (mpage_da_map_blocks(mpd) == 0)
2280 mpage_da_submit_io(mpd);
a1d6cc56
AK
2281 /*
2282 * skip rest of the page in the page_vec
2283 */
2284 mpd->io_done = 1;
2285 redirty_page_for_writepage(wbc, page);
2286 unlock_page(page);
2287 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2288 }
2289
2290 /*
2291 * Start next extent of pages ...
2292 */
2293 mpd->first_page = page->index;
2294
2295 /*
2296 * ... and blocks
2297 */
8dc207c0
TT
2298 mpd->b_size = 0;
2299 mpd->b_state = 0;
2300 mpd->b_blocknr = 0;
64769240
AT
2301 }
2302
2303 mpd->next_page = page->index + 1;
2304 logical = (sector_t) page->index <<
2305 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2306
2307 if (!page_has_buffers(page)) {
8dc207c0
TT
2308 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2309 (1 << BH_Dirty) | (1 << BH_Uptodate));
a1d6cc56
AK
2310 if (mpd->io_done)
2311 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2312 } else {
2313 /*
2314 * Page with regular buffer heads, just add all dirty ones
2315 */
2316 head = page_buffers(page);
2317 bh = head;
2318 do {
2319 BUG_ON(buffer_locked(bh));
791b7f08
AK
2320 /*
2321 * We need to try to allocate
2322 * unmapped blocks in the same page.
2323 * Otherwise we won't make progress
2324 * with the page in ext4_da_writepage
2325 */
29fa89d0 2326 if (ext4_bh_unmapped_or_delay(NULL, bh)) {
8dc207c0
TT
2327 mpage_add_bh_to_extent(mpd, logical,
2328 bh->b_size,
2329 bh->b_state);
a1d6cc56
AK
2330 if (mpd->io_done)
2331 return MPAGE_DA_EXTENT_TAIL;
791b7f08
AK
2332 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2333 /*
2334 * mapped dirty buffer. We need to update
2335 * the b_state because we look at
2336 * b_state in mpage_da_map_blocks. We don't
2337 * update b_size because if we find an
2338 * unmapped buffer_head later we need to
2339 * use the b_state flag of that buffer_head.
2340 */
8dc207c0
TT
2341 if (mpd->b_size == 0)
2342 mpd->b_state = bh->b_state & BH_FLAGS;
a1d6cc56 2343 }
64769240
AT
2344 logical++;
2345 } while ((bh = bh->b_this_page) != head);
2346 }
2347
2348 return 0;
2349}
2350
64769240 2351/*
b920c755
TT
2352 * This is a special get_blocks_t callback which is used by
2353 * ext4_da_write_begin(). It will either return mapped block or
2354 * reserve space for a single block.
29fa89d0
AK
2355 *
2356 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2357 * We also have b_blocknr = -1 and b_bdev initialized properly
2358 *
2359 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2360 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2361 * initialized properly.
64769240
AT
2362 */
2363static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2364 struct buffer_head *bh_result, int create)
2365{
2366 int ret = 0;
33b9817e
AK
2367 sector_t invalid_block = ~((sector_t) 0xffff);
2368
2369 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2370 invalid_block = ~0;
64769240
AT
2371
2372 BUG_ON(create == 0);
2373 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2374
2375 /*
2376 * first, we need to know whether the block is allocated already
2377 * preallocated blocks are unmapped but should treated
2378 * the same as allocated blocks.
2379 */
c2177057 2380 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
d2a17637
MC
2381 if ((ret == 0) && !buffer_delay(bh_result)) {
2382 /* the block isn't (pre)allocated yet, let's reserve space */
64769240
AT
2383 /*
2384 * XXX: __block_prepare_write() unmaps passed block,
2385 * is it OK?
2386 */
d2a17637
MC
2387 ret = ext4_da_reserve_space(inode, 1);
2388 if (ret)
2389 /* not enough space to reserve */
2390 return ret;
2391
33b9817e 2392 map_bh(bh_result, inode->i_sb, invalid_block);
64769240
AT
2393 set_buffer_new(bh_result);
2394 set_buffer_delay(bh_result);
2395 } else if (ret > 0) {
2396 bh_result->b_size = (ret << inode->i_blkbits);
29fa89d0
AK
2397 if (buffer_unwritten(bh_result)) {
2398 /* A delayed write to unwritten bh should
2399 * be marked new and mapped. Mapped ensures
2400 * that we don't do get_block multiple times
2401 * when we write to the same offset and new
2402 * ensures that we do proper zero out for
2403 * partial write.
2404 */
9c1ee184 2405 set_buffer_new(bh_result);
29fa89d0
AK
2406 set_buffer_mapped(bh_result);
2407 }
64769240
AT
2408 ret = 0;
2409 }
2410
2411 return ret;
2412}
61628a3f 2413
b920c755
TT
2414/*
2415 * This function is used as a standard get_block_t calback function
2416 * when there is no desire to allocate any blocks. It is used as a
2417 * callback function for block_prepare_write(), nobh_writepage(), and
2418 * block_write_full_page(). These functions should only try to map a
2419 * single block at a time.
2420 *
2421 * Since this function doesn't do block allocations even if the caller
2422 * requests it by passing in create=1, it is critically important that
2423 * any caller checks to make sure that any buffer heads are returned
2424 * by this function are either all already mapped or marked for
2425 * delayed allocation before calling nobh_writepage() or
2426 * block_write_full_page(). Otherwise, b_blocknr could be left
2427 * unitialized, and the page write functions will be taken by
2428 * surprise.
2429 */
2430static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
2431 struct buffer_head *bh_result, int create)
2432{
2433 int ret = 0;
2434 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2435
a2dc52b5
TT
2436 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2437
f0e6c985
AK
2438 /*
2439 * we don't want to do block allocation in writepage
2440 * so call get_block_wrap with create = 0
2441 */
c2177057 2442 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
a2dc52b5 2443 BUG_ON(create && ret == 0);
f0e6c985
AK
2444 if (ret > 0) {
2445 bh_result->b_size = (ret << inode->i_blkbits);
2446 ret = 0;
2447 }
2448 return ret;
61628a3f
MC
2449}
2450
61628a3f 2451/*
b920c755
TT
2452 * This function can get called via...
2453 * - ext4_da_writepages after taking page lock (have journal handle)
2454 * - journal_submit_inode_data_buffers (no journal handle)
2455 * - shrink_page_list via pdflush (no journal handle)
2456 * - grab_page_cache when doing write_begin (have journal handle)
61628a3f 2457 */
64769240
AT
2458static int ext4_da_writepage(struct page *page,
2459 struct writeback_control *wbc)
2460{
64769240 2461 int ret = 0;
61628a3f 2462 loff_t size;
498e5f24 2463 unsigned int len;
61628a3f
MC
2464 struct buffer_head *page_bufs;
2465 struct inode *inode = page->mapping->host;
2466
ba80b101
TT
2467 trace_mark(ext4_da_writepage,
2468 "dev %s ino %lu page_index %lu",
2469 inode->i_sb->s_id, inode->i_ino, page->index);
f0e6c985
AK
2470 size = i_size_read(inode);
2471 if (page->index == size >> PAGE_CACHE_SHIFT)
2472 len = size & ~PAGE_CACHE_MASK;
2473 else
2474 len = PAGE_CACHE_SIZE;
64769240 2475
f0e6c985 2476 if (page_has_buffers(page)) {
61628a3f 2477 page_bufs = page_buffers(page);
f0e6c985
AK
2478 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2479 ext4_bh_unmapped_or_delay)) {
61628a3f 2480 /*
f0e6c985
AK
2481 * We don't want to do block allocation
2482 * So redirty the page and return
cd1aac32
AK
2483 * We may reach here when we do a journal commit
2484 * via journal_submit_inode_data_buffers.
2485 * If we don't have mapping block we just ignore
f0e6c985
AK
2486 * them. We can also reach here via shrink_page_list
2487 */
2488 redirty_page_for_writepage(wbc, page);
2489 unlock_page(page);
2490 return 0;
2491 }
2492 } else {
2493 /*
2494 * The test for page_has_buffers() is subtle:
2495 * We know the page is dirty but it lost buffers. That means
2496 * that at some moment in time after write_begin()/write_end()
2497 * has been called all buffers have been clean and thus they
2498 * must have been written at least once. So they are all
2499 * mapped and we can happily proceed with mapping them
2500 * and writing the page.
2501 *
2502 * Try to initialize the buffer_heads and check whether
2503 * all are mapped and non delay. We don't want to
2504 * do block allocation here.
2505 */
2506 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
b920c755 2507 noalloc_get_block_write);
f0e6c985
AK
2508 if (!ret) {
2509 page_bufs = page_buffers(page);
2510 /* check whether all are mapped and non delay */
2511 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2512 ext4_bh_unmapped_or_delay)) {
2513 redirty_page_for_writepage(wbc, page);
2514 unlock_page(page);
2515 return 0;
2516 }
2517 } else {
2518 /*
2519 * We can't do block allocation here
2520 * so just redity the page and unlock
2521 * and return
61628a3f 2522 */
61628a3f
MC
2523 redirty_page_for_writepage(wbc, page);
2524 unlock_page(page);
2525 return 0;
2526 }
ed9b3e33
AK
2527 /* now mark the buffer_heads as dirty and uptodate */
2528 block_commit_write(page, 0, PAGE_CACHE_SIZE);
64769240
AT
2529 }
2530
2531 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
b920c755 2532 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
64769240 2533 else
b920c755
TT
2534 ret = block_write_full_page(page, noalloc_get_block_write,
2535 wbc);
64769240 2536
64769240
AT
2537 return ret;
2538}
2539
61628a3f 2540/*
525f4ed8
MC
2541 * This is called via ext4_da_writepages() to
2542 * calulate the total number of credits to reserve to fit
2543 * a single extent allocation into a single transaction,
2544 * ext4_da_writpeages() will loop calling this before
2545 * the block allocation.
61628a3f 2546 */
525f4ed8
MC
2547
2548static int ext4_da_writepages_trans_blocks(struct inode *inode)
2549{
2550 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2551
2552 /*
2553 * With non-extent format the journal credit needed to
2554 * insert nrblocks contiguous block is dependent on
2555 * number of contiguous block. So we will limit
2556 * number of contiguous block to a sane value
2557 */
2558 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2559 (max_blocks > EXT4_MAX_TRANS_DATA))
2560 max_blocks = EXT4_MAX_TRANS_DATA;
2561
2562 return ext4_chunk_trans_blocks(inode, max_blocks);
2563}
61628a3f 2564
64769240 2565static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2566 struct writeback_control *wbc)
64769240 2567{
22208ded
AK
2568 pgoff_t index;
2569 int range_whole = 0;
61628a3f 2570 handle_t *handle = NULL;
df22291f 2571 struct mpage_da_data mpd;
5e745b04 2572 struct inode *inode = mapping->host;
22208ded 2573 int no_nrwrite_index_update;
498e5f24
TT
2574 int pages_written = 0;
2575 long pages_skipped;
2acf2c26 2576 int range_cyclic, cycled = 1, io_done = 0;
5e745b04 2577 int needed_blocks, ret = 0, nr_to_writebump = 0;
5e745b04 2578 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f 2579
ba80b101
TT
2580 trace_mark(ext4_da_writepages,
2581 "dev %s ino %lu nr_t_write %ld "
2582 "pages_skipped %ld range_start %llu "
2583 "range_end %llu nonblocking %d "
2584 "for_kupdate %d for_reclaim %d "
2585 "for_writepages %d range_cyclic %d",
2586 inode->i_sb->s_id, inode->i_ino,
2587 wbc->nr_to_write, wbc->pages_skipped,
2588 (unsigned long long) wbc->range_start,
2589 (unsigned long long) wbc->range_end,
2590 wbc->nonblocking, wbc->for_kupdate,
2591 wbc->for_reclaim, wbc->for_writepages,
2592 wbc->range_cyclic);
2593
61628a3f
MC
2594 /*
2595 * No pages to write? This is mainly a kludge to avoid starting
2596 * a transaction for special inodes like journal inode on last iput()
2597 * because that could violate lock ordering on umount
2598 */
a1d6cc56 2599 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2600 return 0;
2a21e37e
TT
2601
2602 /*
2603 * If the filesystem has aborted, it is read-only, so return
2604 * right away instead of dumping stack traces later on that
2605 * will obscure the real source of the problem. We test
2606 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2607 * the latter could be true if the filesystem is mounted
2608 * read-only, and in that case, ext4_da_writepages should
2609 * *never* be called, so if that ever happens, we would want
2610 * the stack trace.
2611 */
2612 if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2613 return -EROFS;
2614
5e745b04
AK
2615 /*
2616 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2617 * This make sure small files blocks are allocated in
2618 * single attempt. This ensure that small files
2619 * get less fragmented.
2620 */
2621 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2622 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2623 wbc->nr_to_write = sbi->s_mb_stream_request;
2624 }
22208ded
AK
2625 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2626 range_whole = 1;
61628a3f 2627
2acf2c26
AK
2628 range_cyclic = wbc->range_cyclic;
2629 if (wbc->range_cyclic) {
22208ded 2630 index = mapping->writeback_index;
2acf2c26
AK
2631 if (index)
2632 cycled = 0;
2633 wbc->range_start = index << PAGE_CACHE_SHIFT;
2634 wbc->range_end = LLONG_MAX;
2635 wbc->range_cyclic = 0;
2636 } else
22208ded 2637 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 2638
df22291f
AK
2639 mpd.wbc = wbc;
2640 mpd.inode = mapping->host;
2641
22208ded
AK
2642 /*
2643 * we don't want write_cache_pages to update
2644 * nr_to_write and writeback_index
2645 */
2646 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2647 wbc->no_nrwrite_index_update = 1;
2648 pages_skipped = wbc->pages_skipped;
2649
2acf2c26 2650retry:
22208ded 2651 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2652
2653 /*
2654 * we insert one extent at a time. So we need
2655 * credit needed for single extent allocation.
2656 * journalled mode is currently not supported
2657 * by delalloc
2658 */
2659 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2660 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2661
61628a3f
MC
2662 /* start a new transaction*/
2663 handle = ext4_journal_start(inode, needed_blocks);
2664 if (IS_ERR(handle)) {
2665 ret = PTR_ERR(handle);
2a21e37e 2666 printk(KERN_CRIT "%s: jbd2_start: "
a1d6cc56
AK
2667 "%ld pages, ino %lu; err %d\n", __func__,
2668 wbc->nr_to_write, inode->i_ino, ret);
2669 dump_stack();
61628a3f
MC
2670 goto out_writepages;
2671 }
f63e6005
TT
2672
2673 /*
2674 * Now call __mpage_da_writepage to find the next
2675 * contiguous region of logical blocks that need
2676 * blocks to be allocated by ext4. We don't actually
2677 * submit the blocks for I/O here, even though
2678 * write_cache_pages thinks it will, and will set the
2679 * pages as clean for write before calling
2680 * __mpage_da_writepage().
2681 */
2682 mpd.b_size = 0;
2683 mpd.b_state = 0;
2684 mpd.b_blocknr = 0;
2685 mpd.first_page = 0;
2686 mpd.next_page = 0;
2687 mpd.io_done = 0;
2688 mpd.pages_written = 0;
2689 mpd.retval = 0;
2690 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2691 &mpd);
2692 /*
2693 * If we have a contigous extent of pages and we
2694 * haven't done the I/O yet, map the blocks and submit
2695 * them for I/O.
2696 */
2697 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2698 if (mpage_da_map_blocks(&mpd) == 0)
2699 mpage_da_submit_io(&mpd);
2700 mpd.io_done = 1;
2701 ret = MPAGE_DA_EXTENT_TAIL;
2702 }
2703 wbc->nr_to_write -= mpd.pages_written;
df22291f 2704
61628a3f 2705 ext4_journal_stop(handle);
df22291f 2706
8f64b32e 2707 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2708 /* commit the transaction which would
2709 * free blocks released in the transaction
2710 * and try again
2711 */
df22291f 2712 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2713 wbc->pages_skipped = pages_skipped;
2714 ret = 0;
2715 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
2716 /*
2717 * got one extent now try with
2718 * rest of the pages
2719 */
22208ded
AK
2720 pages_written += mpd.pages_written;
2721 wbc->pages_skipped = pages_skipped;
a1d6cc56 2722 ret = 0;
2acf2c26 2723 io_done = 1;
22208ded 2724 } else if (wbc->nr_to_write)
61628a3f
MC
2725 /*
2726 * There is no more writeout needed
2727 * or we requested for a noblocking writeout
2728 * and we found the device congested
2729 */
61628a3f 2730 break;
a1d6cc56 2731 }
2acf2c26
AK
2732 if (!io_done && !cycled) {
2733 cycled = 1;
2734 index = 0;
2735 wbc->range_start = index << PAGE_CACHE_SHIFT;
2736 wbc->range_end = mapping->writeback_index - 1;
2737 goto retry;
2738 }
22208ded
AK
2739 if (pages_skipped != wbc->pages_skipped)
2740 printk(KERN_EMERG "This should not happen leaving %s "
2741 "with nr_to_write = %ld ret = %d\n",
2742 __func__, wbc->nr_to_write, ret);
2743
2744 /* Update index */
2745 index += pages_written;
2acf2c26 2746 wbc->range_cyclic = range_cyclic;
22208ded
AK
2747 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2748 /*
2749 * set the writeback_index so that range_cyclic
2750 * mode will write it back later
2751 */
2752 mapping->writeback_index = index;
a1d6cc56 2753
61628a3f 2754out_writepages:
22208ded
AK
2755 if (!no_nrwrite_index_update)
2756 wbc->no_nrwrite_index_update = 0;
2757 wbc->nr_to_write -= nr_to_writebump;
ba80b101
TT
2758 trace_mark(ext4_da_writepage_result,
2759 "dev %s ino %lu ret %d pages_written %d "
2760 "pages_skipped %ld congestion %d "
2761 "more_io %d no_nrwrite_index_update %d",
2762 inode->i_sb->s_id, inode->i_ino, ret,
2763 pages_written, wbc->pages_skipped,
2764 wbc->encountered_congestion, wbc->more_io,
2765 wbc->no_nrwrite_index_update);
61628a3f 2766 return ret;
64769240
AT
2767}
2768
79f0be8d
AK
2769#define FALL_BACK_TO_NONDELALLOC 1
2770static int ext4_nonda_switch(struct super_block *sb)
2771{
2772 s64 free_blocks, dirty_blocks;
2773 struct ext4_sb_info *sbi = EXT4_SB(sb);
2774
2775 /*
2776 * switch to non delalloc mode if we are running low
2777 * on free block. The free block accounting via percpu
179f7ebf 2778 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2779 * accumulated on each CPU without updating global counters
2780 * Delalloc need an accurate free block accounting. So switch
2781 * to non delalloc when we are near to error range.
2782 */
2783 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2784 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2785 if (2 * free_blocks < 3 * dirty_blocks ||
2786 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2787 /*
2788 * free block count is less that 150% of dirty blocks
2789 * or free blocks is less that watermark
2790 */
2791 return 1;
2792 }
2793 return 0;
2794}
2795
64769240
AT
2796static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2797 loff_t pos, unsigned len, unsigned flags,
2798 struct page **pagep, void **fsdata)
2799{
d2a17637 2800 int ret, retries = 0;
64769240
AT
2801 struct page *page;
2802 pgoff_t index;
2803 unsigned from, to;
2804 struct inode *inode = mapping->host;
2805 handle_t *handle;
2806
2807 index = pos >> PAGE_CACHE_SHIFT;
2808 from = pos & (PAGE_CACHE_SIZE - 1);
2809 to = from + len;
79f0be8d
AK
2810
2811 if (ext4_nonda_switch(inode->i_sb)) {
2812 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2813 return ext4_write_begin(file, mapping, pos,
2814 len, flags, pagep, fsdata);
2815 }
2816 *fsdata = (void *)0;
ba80b101
TT
2817
2818 trace_mark(ext4_da_write_begin,
2819 "dev %s ino %lu pos %llu len %u flags %u",
2820 inode->i_sb->s_id, inode->i_ino,
2821 (unsigned long long) pos, len, flags);
d2a17637 2822retry:
64769240
AT
2823 /*
2824 * With delayed allocation, we don't log the i_disksize update
2825 * if there is delayed block allocation. But we still need
2826 * to journalling the i_disksize update if writes to the end
2827 * of file which has an already mapped buffer.
2828 */
2829 handle = ext4_journal_start(inode, 1);
2830 if (IS_ERR(handle)) {
2831 ret = PTR_ERR(handle);
2832 goto out;
2833 }
ebd3610b
JK
2834 /* We cannot recurse into the filesystem as the transaction is already
2835 * started */
2836 flags |= AOP_FLAG_NOFS;
64769240 2837
54566b2c 2838 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
2839 if (!page) {
2840 ext4_journal_stop(handle);
2841 ret = -ENOMEM;
2842 goto out;
2843 }
64769240
AT
2844 *pagep = page;
2845
2846 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
b920c755 2847 ext4_da_get_block_prep);
64769240
AT
2848 if (ret < 0) {
2849 unlock_page(page);
2850 ext4_journal_stop(handle);
2851 page_cache_release(page);
ae4d5372
AK
2852 /*
2853 * block_write_begin may have instantiated a few blocks
2854 * outside i_size. Trim these off again. Don't need
2855 * i_size_read because we hold i_mutex.
2856 */
2857 if (pos + len > inode->i_size)
2858 vmtruncate(inode, inode->i_size);
64769240
AT
2859 }
2860
d2a17637
MC
2861 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2862 goto retry;
64769240
AT
2863out:
2864 return ret;
2865}
2866
632eaeab
MC
2867/*
2868 * Check if we should update i_disksize
2869 * when write to the end of file but not require block allocation
2870 */
2871static int ext4_da_should_update_i_disksize(struct page *page,
2872 unsigned long offset)
2873{
2874 struct buffer_head *bh;
2875 struct inode *inode = page->mapping->host;
2876 unsigned int idx;
2877 int i;
2878
2879 bh = page_buffers(page);
2880 idx = offset >> inode->i_blkbits;
2881
af5bc92d 2882 for (i = 0; i < idx; i++)
632eaeab
MC
2883 bh = bh->b_this_page;
2884
29fa89d0 2885 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2886 return 0;
2887 return 1;
2888}
2889
64769240
AT
2890static int ext4_da_write_end(struct file *file,
2891 struct address_space *mapping,
2892 loff_t pos, unsigned len, unsigned copied,
2893 struct page *page, void *fsdata)
2894{
2895 struct inode *inode = mapping->host;
2896 int ret = 0, ret2;
2897 handle_t *handle = ext4_journal_current_handle();
2898 loff_t new_i_size;
632eaeab 2899 unsigned long start, end;
79f0be8d
AK
2900 int write_mode = (int)(unsigned long)fsdata;
2901
2902 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2903 if (ext4_should_order_data(inode)) {
2904 return ext4_ordered_write_end(file, mapping, pos,
2905 len, copied, page, fsdata);
2906 } else if (ext4_should_writeback_data(inode)) {
2907 return ext4_writeback_write_end(file, mapping, pos,
2908 len, copied, page, fsdata);
2909 } else {
2910 BUG();
2911 }
2912 }
632eaeab 2913
ba80b101
TT
2914 trace_mark(ext4_da_write_end,
2915 "dev %s ino %lu pos %llu len %u copied %u",
2916 inode->i_sb->s_id, inode->i_ino,
2917 (unsigned long long) pos, len, copied);
632eaeab 2918 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2919 end = start + copied - 1;
64769240
AT
2920
2921 /*
2922 * generic_write_end() will run mark_inode_dirty() if i_size
2923 * changes. So let's piggyback the i_disksize mark_inode_dirty
2924 * into that.
2925 */
2926
2927 new_i_size = pos + copied;
632eaeab
MC
2928 if (new_i_size > EXT4_I(inode)->i_disksize) {
2929 if (ext4_da_should_update_i_disksize(page, end)) {
2930 down_write(&EXT4_I(inode)->i_data_sem);
2931 if (new_i_size > EXT4_I(inode)->i_disksize) {
2932 /*
2933 * Updating i_disksize when extending file
2934 * without needing block allocation
2935 */
2936 if (ext4_should_order_data(inode))
2937 ret = ext4_jbd2_file_inode(handle,
2938 inode);
64769240 2939
632eaeab
MC
2940 EXT4_I(inode)->i_disksize = new_i_size;
2941 }
2942 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2943 /* We need to mark inode dirty even if
2944 * new_i_size is less that inode->i_size
2945 * bu greater than i_disksize.(hint delalloc)
2946 */
2947 ext4_mark_inode_dirty(handle, inode);
64769240 2948 }
632eaeab 2949 }
64769240
AT
2950 ret2 = generic_write_end(file, mapping, pos, len, copied,
2951 page, fsdata);
2952 copied = ret2;
2953 if (ret2 < 0)
2954 ret = ret2;
2955 ret2 = ext4_journal_stop(handle);
2956 if (!ret)
2957 ret = ret2;
2958
2959 return ret ? ret : copied;
2960}
2961
2962static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2963{
64769240
AT
2964 /*
2965 * Drop reserved blocks
2966 */
2967 BUG_ON(!PageLocked(page));
2968 if (!page_has_buffers(page))
2969 goto out;
2970
d2a17637 2971 ext4_da_page_release_reservation(page, offset);
64769240
AT
2972
2973out:
2974 ext4_invalidatepage(page, offset);
2975
2976 return;
2977}
2978
ccd2506b
TT
2979/*
2980 * Force all delayed allocation blocks to be allocated for a given inode.
2981 */
2982int ext4_alloc_da_blocks(struct inode *inode)
2983{
2984 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2985 !EXT4_I(inode)->i_reserved_meta_blocks)
2986 return 0;
2987
2988 /*
2989 * We do something simple for now. The filemap_flush() will
2990 * also start triggering a write of the data blocks, which is
2991 * not strictly speaking necessary (and for users of
2992 * laptop_mode, not even desirable). However, to do otherwise
2993 * would require replicating code paths in:
2994 *
2995 * ext4_da_writepages() ->
2996 * write_cache_pages() ---> (via passed in callback function)
2997 * __mpage_da_writepage() -->
2998 * mpage_add_bh_to_extent()
2999 * mpage_da_map_blocks()
3000 *
3001 * The problem is that write_cache_pages(), located in
3002 * mm/page-writeback.c, marks pages clean in preparation for
3003 * doing I/O, which is not desirable if we're not planning on
3004 * doing I/O at all.
3005 *
3006 * We could call write_cache_pages(), and then redirty all of
3007 * the pages by calling redirty_page_for_writeback() but that
3008 * would be ugly in the extreme. So instead we would need to
3009 * replicate parts of the code in the above functions,
3010 * simplifying them becuase we wouldn't actually intend to
3011 * write out the pages, but rather only collect contiguous
3012 * logical block extents, call the multi-block allocator, and
3013 * then update the buffer heads with the block allocations.
3014 *
3015 * For now, though, we'll cheat by calling filemap_flush(),
3016 * which will map the blocks, and start the I/O, but not
3017 * actually wait for the I/O to complete.
3018 */
3019 return filemap_flush(inode->i_mapping);
3020}
64769240 3021
ac27a0ec
DK
3022/*
3023 * bmap() is special. It gets used by applications such as lilo and by
3024 * the swapper to find the on-disk block of a specific piece of data.
3025 *
3026 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3027 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3028 * filesystem and enables swap, then they may get a nasty shock when the
3029 * data getting swapped to that swapfile suddenly gets overwritten by
3030 * the original zero's written out previously to the journal and
3031 * awaiting writeback in the kernel's buffer cache.
3032 *
3033 * So, if we see any bmap calls here on a modified, data-journaled file,
3034 * take extra steps to flush any blocks which might be in the cache.
3035 */
617ba13b 3036static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3037{
3038 struct inode *inode = mapping->host;
3039 journal_t *journal;
3040 int err;
3041
64769240
AT
3042 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3043 test_opt(inode->i_sb, DELALLOC)) {
3044 /*
3045 * With delalloc we want to sync the file
3046 * so that we can make sure we allocate
3047 * blocks for file
3048 */
3049 filemap_write_and_wait(mapping);
3050 }
3051
0390131b 3052 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
ac27a0ec
DK
3053 /*
3054 * This is a REALLY heavyweight approach, but the use of
3055 * bmap on dirty files is expected to be extremely rare:
3056 * only if we run lilo or swapon on a freshly made file
3057 * do we expect this to happen.
3058 *
3059 * (bmap requires CAP_SYS_RAWIO so this does not
3060 * represent an unprivileged user DOS attack --- we'd be
3061 * in trouble if mortal users could trigger this path at
3062 * will.)
3063 *
617ba13b 3064 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3065 * regular files. If somebody wants to bmap a directory
3066 * or symlink and gets confused because the buffer
3067 * hasn't yet been flushed to disk, they deserve
3068 * everything they get.
3069 */
3070
617ba13b
MC
3071 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3072 journal = EXT4_JOURNAL(inode);
dab291af
MC
3073 jbd2_journal_lock_updates(journal);
3074 err = jbd2_journal_flush(journal);
3075 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3076
3077 if (err)
3078 return 0;
3079 }
3080
af5bc92d 3081 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3082}
3083
3084static int bget_one(handle_t *handle, struct buffer_head *bh)
3085{
3086 get_bh(bh);
3087 return 0;
3088}
3089
3090static int bput_one(handle_t *handle, struct buffer_head *bh)
3091{
3092 put_bh(bh);
3093 return 0;
3094}
3095
ac27a0ec 3096/*
678aaf48
JK
3097 * Note that we don't need to start a transaction unless we're journaling data
3098 * because we should have holes filled from ext4_page_mkwrite(). We even don't
3099 * need to file the inode to the transaction's list in ordered mode because if
3100 * we are writing back data added by write(), the inode is already there and if
3101 * we are writing back data modified via mmap(), noone guarantees in which
3102 * transaction the data will hit the disk. In case we are journaling data, we
3103 * cannot start transaction directly because transaction start ranks above page
3104 * lock so we have to do some magic.
ac27a0ec 3105 *
678aaf48 3106 * In all journaling modes block_write_full_page() will start the I/O.
ac27a0ec
DK
3107 *
3108 * Problem:
3109 *
617ba13b
MC
3110 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
3111 * ext4_writepage()
ac27a0ec
DK
3112 *
3113 * Similar for:
3114 *
617ba13b 3115 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
ac27a0ec 3116 *
617ba13b 3117 * Same applies to ext4_get_block(). We will deadlock on various things like
0e855ac8 3118 * lock_journal and i_data_sem
ac27a0ec
DK
3119 *
3120 * Setting PF_MEMALLOC here doesn't work - too many internal memory
3121 * allocations fail.
3122 *
3123 * 16May01: If we're reentered then journal_current_handle() will be
3124 * non-zero. We simply *return*.
3125 *
3126 * 1 July 2001: @@@ FIXME:
3127 * In journalled data mode, a data buffer may be metadata against the
3128 * current transaction. But the same file is part of a shared mapping
3129 * and someone does a writepage() on it.
3130 *
3131 * We will move the buffer onto the async_data list, but *after* it has
3132 * been dirtied. So there's a small window where we have dirty data on
3133 * BJ_Metadata.
3134 *
3135 * Note that this only applies to the last partial page in the file. The
3136 * bit which block_write_full_page() uses prepare/commit for. (That's
3137 * broken code anyway: it's wrong for msync()).
3138 *
3139 * It's a rare case: affects the final partial page, for journalled data
3140 * where the file is subject to bith write() and writepage() in the same
3141 * transction. To fix it we'll need a custom block_write_full_page().
3142 * We'll probably need that anyway for journalling writepage() output.
3143 *
3144 * We don't honour synchronous mounts for writepage(). That would be
3145 * disastrous. Any write() or metadata operation will sync the fs for
3146 * us.
3147 *
ac27a0ec 3148 */
678aaf48 3149static int __ext4_normal_writepage(struct page *page,
cf108bca
JK
3150 struct writeback_control *wbc)
3151{
3152 struct inode *inode = page->mapping->host;
3153
3154 if (test_opt(inode->i_sb, NOBH))
b920c755 3155 return nobh_writepage(page, noalloc_get_block_write, wbc);
cf108bca 3156 else
b920c755
TT
3157 return block_write_full_page(page, noalloc_get_block_write,
3158 wbc);
cf108bca
JK
3159}
3160
678aaf48 3161static int ext4_normal_writepage(struct page *page,
ac27a0ec
DK
3162 struct writeback_control *wbc)
3163{
3164 struct inode *inode = page->mapping->host;
cf108bca
JK
3165 loff_t size = i_size_read(inode);
3166 loff_t len;
3167
ba80b101
TT
3168 trace_mark(ext4_normal_writepage,
3169 "dev %s ino %lu page_index %lu",
3170 inode->i_sb->s_id, inode->i_ino, page->index);
cf108bca 3171 J_ASSERT(PageLocked(page));
cf108bca
JK
3172 if (page->index == size >> PAGE_CACHE_SHIFT)
3173 len = size & ~PAGE_CACHE_MASK;
3174 else
3175 len = PAGE_CACHE_SIZE;
f0e6c985
AK
3176
3177 if (page_has_buffers(page)) {
3178 /* if page has buffers it should all be mapped
3179 * and allocated. If there are not buffers attached
3180 * to the page we know the page is dirty but it lost
3181 * buffers. That means that at some moment in time
3182 * after write_begin() / write_end() has been called
3183 * all buffers have been clean and thus they must have been
3184 * written at least once. So they are all mapped and we can
3185 * happily proceed with mapping them and writing the page.
3186 */
3187 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3188 ext4_bh_unmapped_or_delay));
3189 }
cf108bca
JK
3190
3191 if (!ext4_journal_current_handle())
678aaf48 3192 return __ext4_normal_writepage(page, wbc);
cf108bca
JK
3193
3194 redirty_page_for_writepage(wbc, page);
3195 unlock_page(page);
3196 return 0;
3197}
3198
3199static int __ext4_journalled_writepage(struct page *page,
3200 struct writeback_control *wbc)
3201{
3202 struct address_space *mapping = page->mapping;
3203 struct inode *inode = mapping->host;
3204 struct buffer_head *page_bufs;
ac27a0ec
DK
3205 handle_t *handle = NULL;
3206 int ret = 0;
3207 int err;
3208
f0e6c985 3209 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
b920c755 3210 noalloc_get_block_write);
cf108bca
JK
3211 if (ret != 0)
3212 goto out_unlock;
3213
3214 page_bufs = page_buffers(page);
3215 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3216 bget_one);
3217 /* As soon as we unlock the page, it can go away, but we have
3218 * references to buffers so we are safe */
3219 unlock_page(page);
ac27a0ec 3220
617ba13b 3221 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
ac27a0ec
DK
3222 if (IS_ERR(handle)) {
3223 ret = PTR_ERR(handle);
cf108bca 3224 goto out;
ac27a0ec
DK
3225 }
3226
cf108bca
JK
3227 ret = walk_page_buffers(handle, page_bufs, 0,
3228 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
ac27a0ec 3229
cf108bca
JK
3230 err = walk_page_buffers(handle, page_bufs, 0,
3231 PAGE_CACHE_SIZE, NULL, write_end_fn);
3232 if (ret == 0)
3233 ret = err;
617ba13b 3234 err = ext4_journal_stop(handle);
ac27a0ec
DK
3235 if (!ret)
3236 ret = err;
ac27a0ec 3237
cf108bca
JK
3238 walk_page_buffers(handle, page_bufs, 0,
3239 PAGE_CACHE_SIZE, NULL, bput_one);
3240 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3241 goto out;
3242
3243out_unlock:
ac27a0ec 3244 unlock_page(page);
cf108bca 3245out:
ac27a0ec
DK
3246 return ret;
3247}
3248
617ba13b 3249static int ext4_journalled_writepage(struct page *page,
ac27a0ec
DK
3250 struct writeback_control *wbc)
3251{
3252 struct inode *inode = page->mapping->host;
cf108bca
JK
3253 loff_t size = i_size_read(inode);
3254 loff_t len;
ac27a0ec 3255
ba80b101
TT
3256 trace_mark(ext4_journalled_writepage,
3257 "dev %s ino %lu page_index %lu",
3258 inode->i_sb->s_id, inode->i_ino, page->index);
cf108bca 3259 J_ASSERT(PageLocked(page));
cf108bca
JK
3260 if (page->index == size >> PAGE_CACHE_SHIFT)
3261 len = size & ~PAGE_CACHE_MASK;
3262 else
3263 len = PAGE_CACHE_SIZE;
f0e6c985
AK
3264
3265 if (page_has_buffers(page)) {
3266 /* if page has buffers it should all be mapped
3267 * and allocated. If there are not buffers attached
3268 * to the page we know the page is dirty but it lost
3269 * buffers. That means that at some moment in time
3270 * after write_begin() / write_end() has been called
3271 * all buffers have been clean and thus they must have been
3272 * written at least once. So they are all mapped and we can
3273 * happily proceed with mapping them and writing the page.
3274 */
3275 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3276 ext4_bh_unmapped_or_delay));
3277 }
ac27a0ec 3278
cf108bca 3279 if (ext4_journal_current_handle())
ac27a0ec 3280 goto no_write;
ac27a0ec 3281
cf108bca 3282 if (PageChecked(page)) {
ac27a0ec
DK
3283 /*
3284 * It's mmapped pagecache. Add buffers and journal it. There
3285 * doesn't seem much point in redirtying the page here.
3286 */
3287 ClearPageChecked(page);
cf108bca 3288 return __ext4_journalled_writepage(page, wbc);
ac27a0ec
DK
3289 } else {
3290 /*
3291 * It may be a page full of checkpoint-mode buffers. We don't
3292 * really know unless we go poke around in the buffer_heads.
3293 * But block_write_full_page will do the right thing.
3294 */
b920c755
TT
3295 return block_write_full_page(page, noalloc_get_block_write,
3296 wbc);
ac27a0ec 3297 }
ac27a0ec
DK
3298no_write:
3299 redirty_page_for_writepage(wbc, page);
ac27a0ec 3300 unlock_page(page);
cf108bca 3301 return 0;
ac27a0ec
DK
3302}
3303
617ba13b 3304static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3305{
617ba13b 3306 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
3307}
3308
3309static int
617ba13b 3310ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3311 struct list_head *pages, unsigned nr_pages)
3312{
617ba13b 3313 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3314}
3315
617ba13b 3316static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3317{
617ba13b 3318 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3319
3320 /*
3321 * If it's a full truncate we just forget about the pending dirtying
3322 */
3323 if (offset == 0)
3324 ClearPageChecked(page);
3325
0390131b
FM
3326 if (journal)
3327 jbd2_journal_invalidatepage(journal, page, offset);
3328 else
3329 block_invalidatepage(page, offset);
ac27a0ec
DK
3330}
3331
617ba13b 3332static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3333{
617ba13b 3334 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3335
3336 WARN_ON(PageChecked(page));
3337 if (!page_has_buffers(page))
3338 return 0;
0390131b
FM
3339 if (journal)
3340 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3341 else
3342 return try_to_free_buffers(page);
ac27a0ec
DK
3343}
3344
3345/*
3346 * If the O_DIRECT write will extend the file then add this inode to the
3347 * orphan list. So recovery will truncate it back to the original size
3348 * if the machine crashes during the write.
3349 *
3350 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3351 * crashes then stale disk data _may_ be exposed inside the file. But current
3352 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3353 */
617ba13b 3354static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
ac27a0ec
DK
3355 const struct iovec *iov, loff_t offset,
3356 unsigned long nr_segs)
3357{
3358 struct file *file = iocb->ki_filp;
3359 struct inode *inode = file->f_mapping->host;
617ba13b 3360 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3361 handle_t *handle;
ac27a0ec
DK
3362 ssize_t ret;
3363 int orphan = 0;
3364 size_t count = iov_length(iov, nr_segs);
3365
3366 if (rw == WRITE) {
3367 loff_t final_size = offset + count;
3368
ac27a0ec 3369 if (final_size > inode->i_size) {
7fb5409d
JK
3370 /* Credits for sb + inode write */
3371 handle = ext4_journal_start(inode, 2);
3372 if (IS_ERR(handle)) {
3373 ret = PTR_ERR(handle);
3374 goto out;
3375 }
617ba13b 3376 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3377 if (ret) {
3378 ext4_journal_stop(handle);
3379 goto out;
3380 }
ac27a0ec
DK
3381 orphan = 1;
3382 ei->i_disksize = inode->i_size;
7fb5409d 3383 ext4_journal_stop(handle);
ac27a0ec
DK
3384 }
3385 }
3386
3387 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3388 offset, nr_segs,
617ba13b 3389 ext4_get_block, NULL);
ac27a0ec 3390
7fb5409d 3391 if (orphan) {
ac27a0ec
DK
3392 int err;
3393
7fb5409d
JK
3394 /* Credits for sb + inode write */
3395 handle = ext4_journal_start(inode, 2);
3396 if (IS_ERR(handle)) {
3397 /* This is really bad luck. We've written the data
3398 * but cannot extend i_size. Bail out and pretend
3399 * the write failed... */
3400 ret = PTR_ERR(handle);
3401 goto out;
3402 }
3403 if (inode->i_nlink)
617ba13b 3404 ext4_orphan_del(handle, inode);
7fb5409d 3405 if (ret > 0) {
ac27a0ec
DK
3406 loff_t end = offset + ret;
3407 if (end > inode->i_size) {
3408 ei->i_disksize = end;
3409 i_size_write(inode, end);
3410 /*
3411 * We're going to return a positive `ret'
3412 * here due to non-zero-length I/O, so there's
3413 * no way of reporting error returns from
617ba13b 3414 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3415 * ignore it.
3416 */
617ba13b 3417 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3418 }
3419 }
617ba13b 3420 err = ext4_journal_stop(handle);
ac27a0ec
DK
3421 if (ret == 0)
3422 ret = err;
3423 }
3424out:
3425 return ret;
3426}
3427
3428/*
617ba13b 3429 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3430 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3431 * much here because ->set_page_dirty is called under VFS locks. The page is
3432 * not necessarily locked.
3433 *
3434 * We cannot just dirty the page and leave attached buffers clean, because the
3435 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3436 * or jbddirty because all the journalling code will explode.
3437 *
3438 * So what we do is to mark the page "pending dirty" and next time writepage
3439 * is called, propagate that into the buffers appropriately.
3440 */
617ba13b 3441static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3442{
3443 SetPageChecked(page);
3444 return __set_page_dirty_nobuffers(page);
3445}
3446
617ba13b 3447static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3448 .readpage = ext4_readpage,
3449 .readpages = ext4_readpages,
3450 .writepage = ext4_normal_writepage,
3451 .sync_page = block_sync_page,
3452 .write_begin = ext4_write_begin,
3453 .write_end = ext4_ordered_write_end,
3454 .bmap = ext4_bmap,
3455 .invalidatepage = ext4_invalidatepage,
3456 .releasepage = ext4_releasepage,
3457 .direct_IO = ext4_direct_IO,
3458 .migratepage = buffer_migrate_page,
3459 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3460};
3461
617ba13b 3462static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3463 .readpage = ext4_readpage,
3464 .readpages = ext4_readpages,
3465 .writepage = ext4_normal_writepage,
3466 .sync_page = block_sync_page,
3467 .write_begin = ext4_write_begin,
3468 .write_end = ext4_writeback_write_end,
3469 .bmap = ext4_bmap,
3470 .invalidatepage = ext4_invalidatepage,
3471 .releasepage = ext4_releasepage,
3472 .direct_IO = ext4_direct_IO,
3473 .migratepage = buffer_migrate_page,
3474 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3475};
3476
617ba13b 3477static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3478 .readpage = ext4_readpage,
3479 .readpages = ext4_readpages,
3480 .writepage = ext4_journalled_writepage,
3481 .sync_page = block_sync_page,
3482 .write_begin = ext4_write_begin,
3483 .write_end = ext4_journalled_write_end,
3484 .set_page_dirty = ext4_journalled_set_page_dirty,
3485 .bmap = ext4_bmap,
3486 .invalidatepage = ext4_invalidatepage,
3487 .releasepage = ext4_releasepage,
3488 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3489};
3490
64769240 3491static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3492 .readpage = ext4_readpage,
3493 .readpages = ext4_readpages,
3494 .writepage = ext4_da_writepage,
3495 .writepages = ext4_da_writepages,
3496 .sync_page = block_sync_page,
3497 .write_begin = ext4_da_write_begin,
3498 .write_end = ext4_da_write_end,
3499 .bmap = ext4_bmap,
3500 .invalidatepage = ext4_da_invalidatepage,
3501 .releasepage = ext4_releasepage,
3502 .direct_IO = ext4_direct_IO,
3503 .migratepage = buffer_migrate_page,
3504 .is_partially_uptodate = block_is_partially_uptodate,
64769240
AT
3505};
3506
617ba13b 3507void ext4_set_aops(struct inode *inode)
ac27a0ec 3508{
cd1aac32
AK
3509 if (ext4_should_order_data(inode) &&
3510 test_opt(inode->i_sb, DELALLOC))
3511 inode->i_mapping->a_ops = &ext4_da_aops;
3512 else if (ext4_should_order_data(inode))
617ba13b 3513 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
3514 else if (ext4_should_writeback_data(inode) &&
3515 test_opt(inode->i_sb, DELALLOC))
3516 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
3517 else if (ext4_should_writeback_data(inode))
3518 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 3519 else
617ba13b 3520 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
3521}
3522
3523/*
617ba13b 3524 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
3525 * up to the end of the block which corresponds to `from'.
3526 * This required during truncate. We need to physically zero the tail end
3527 * of that block so it doesn't yield old data if the file is later grown.
3528 */
cf108bca 3529int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
3530 struct address_space *mapping, loff_t from)
3531{
617ba13b 3532 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 3533 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
3534 unsigned blocksize, length, pos;
3535 ext4_lblk_t iblock;
ac27a0ec
DK
3536 struct inode *inode = mapping->host;
3537 struct buffer_head *bh;
cf108bca 3538 struct page *page;
ac27a0ec 3539 int err = 0;
ac27a0ec 3540
cf108bca
JK
3541 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3542 if (!page)
3543 return -EINVAL;
3544
ac27a0ec
DK
3545 blocksize = inode->i_sb->s_blocksize;
3546 length = blocksize - (offset & (blocksize - 1));
3547 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3548
3549 /*
3550 * For "nobh" option, we can only work if we don't need to
3551 * read-in the page - otherwise we create buffers to do the IO.
3552 */
3553 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 3554 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 3555 zero_user(page, offset, length);
ac27a0ec
DK
3556 set_page_dirty(page);
3557 goto unlock;
3558 }
3559
3560 if (!page_has_buffers(page))
3561 create_empty_buffers(page, blocksize, 0);
3562
3563 /* Find the buffer that contains "offset" */
3564 bh = page_buffers(page);
3565 pos = blocksize;
3566 while (offset >= pos) {
3567 bh = bh->b_this_page;
3568 iblock++;
3569 pos += blocksize;
3570 }
3571
3572 err = 0;
3573 if (buffer_freed(bh)) {
3574 BUFFER_TRACE(bh, "freed: skip");
3575 goto unlock;
3576 }
3577
3578 if (!buffer_mapped(bh)) {
3579 BUFFER_TRACE(bh, "unmapped");
617ba13b 3580 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
3581 /* unmapped? It's a hole - nothing to do */
3582 if (!buffer_mapped(bh)) {
3583 BUFFER_TRACE(bh, "still unmapped");
3584 goto unlock;
3585 }
3586 }
3587
3588 /* Ok, it's mapped. Make sure it's up-to-date */
3589 if (PageUptodate(page))
3590 set_buffer_uptodate(bh);
3591
3592 if (!buffer_uptodate(bh)) {
3593 err = -EIO;
3594 ll_rw_block(READ, 1, &bh);
3595 wait_on_buffer(bh);
3596 /* Uhhuh. Read error. Complain and punt. */
3597 if (!buffer_uptodate(bh))
3598 goto unlock;
3599 }
3600
617ba13b 3601 if (ext4_should_journal_data(inode)) {
ac27a0ec 3602 BUFFER_TRACE(bh, "get write access");
617ba13b 3603 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3604 if (err)
3605 goto unlock;
3606 }
3607
eebd2aa3 3608 zero_user(page, offset, length);
ac27a0ec
DK
3609
3610 BUFFER_TRACE(bh, "zeroed end of block");
3611
3612 err = 0;
617ba13b 3613 if (ext4_should_journal_data(inode)) {
0390131b 3614 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3615 } else {
617ba13b 3616 if (ext4_should_order_data(inode))
678aaf48 3617 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
3618 mark_buffer_dirty(bh);
3619 }
3620
3621unlock:
3622 unlock_page(page);
3623 page_cache_release(page);
3624 return err;
3625}
3626
3627/*
3628 * Probably it should be a library function... search for first non-zero word
3629 * or memcmp with zero_page, whatever is better for particular architecture.
3630 * Linus?
3631 */
3632static inline int all_zeroes(__le32 *p, __le32 *q)
3633{
3634 while (p < q)
3635 if (*p++)
3636 return 0;
3637 return 1;
3638}
3639
3640/**
617ba13b 3641 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
3642 * @inode: inode in question
3643 * @depth: depth of the affected branch
617ba13b 3644 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
3645 * @chain: place to store the pointers to partial indirect blocks
3646 * @top: place to the (detached) top of branch
3647 *
617ba13b 3648 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
3649 *
3650 * When we do truncate() we may have to clean the ends of several
3651 * indirect blocks but leave the blocks themselves alive. Block is
3652 * partially truncated if some data below the new i_size is refered
3653 * from it (and it is on the path to the first completely truncated
3654 * data block, indeed). We have to free the top of that path along
3655 * with everything to the right of the path. Since no allocation
617ba13b 3656 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
3657 * finishes, we may safely do the latter, but top of branch may
3658 * require special attention - pageout below the truncation point
3659 * might try to populate it.
3660 *
3661 * We atomically detach the top of branch from the tree, store the
3662 * block number of its root in *@top, pointers to buffer_heads of
3663 * partially truncated blocks - in @chain[].bh and pointers to
3664 * their last elements that should not be removed - in
3665 * @chain[].p. Return value is the pointer to last filled element
3666 * of @chain.
3667 *
3668 * The work left to caller to do the actual freeing of subtrees:
3669 * a) free the subtree starting from *@top
3670 * b) free the subtrees whose roots are stored in
3671 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3672 * c) free the subtrees growing from the inode past the @chain[0].
3673 * (no partially truncated stuff there). */
3674
617ba13b 3675static Indirect *ext4_find_shared(struct inode *inode, int depth,
725d26d3 3676 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
ac27a0ec
DK
3677{
3678 Indirect *partial, *p;
3679 int k, err;
3680
3681 *top = 0;
3682 /* Make k index the deepest non-null offest + 1 */
3683 for (k = depth; k > 1 && !offsets[k-1]; k--)
3684 ;
617ba13b 3685 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
3686 /* Writer: pointers */
3687 if (!partial)
3688 partial = chain + k-1;
3689 /*
3690 * If the branch acquired continuation since we've looked at it -
3691 * fine, it should all survive and (new) top doesn't belong to us.
3692 */
3693 if (!partial->key && *partial->p)
3694 /* Writer: end */
3695 goto no_top;
af5bc92d 3696 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
3697 ;
3698 /*
3699 * OK, we've found the last block that must survive. The rest of our
3700 * branch should be detached before unlocking. However, if that rest
3701 * of branch is all ours and does not grow immediately from the inode
3702 * it's easier to cheat and just decrement partial->p.
3703 */
3704 if (p == chain + k - 1 && p > chain) {
3705 p->p--;
3706 } else {
3707 *top = *p->p;
617ba13b 3708 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
3709#if 0
3710 *p->p = 0;
3711#endif
3712 }
3713 /* Writer: end */
3714
af5bc92d 3715 while (partial > p) {
ac27a0ec
DK
3716 brelse(partial->bh);
3717 partial--;
3718 }
3719no_top:
3720 return partial;
3721}
3722
3723/*
3724 * Zero a number of block pointers in either an inode or an indirect block.
3725 * If we restart the transaction we must again get write access to the
3726 * indirect block for further modification.
3727 *
3728 * We release `count' blocks on disk, but (last - first) may be greater
3729 * than `count' because there can be holes in there.
3730 */
617ba13b
MC
3731static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3732 struct buffer_head *bh, ext4_fsblk_t block_to_free,
ac27a0ec
DK
3733 unsigned long count, __le32 *first, __le32 *last)
3734{
3735 __le32 *p;
3736 if (try_to_extend_transaction(handle, inode)) {
3737 if (bh) {
0390131b
FM
3738 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3739 ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3740 }
617ba13b
MC
3741 ext4_mark_inode_dirty(handle, inode);
3742 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3743 if (bh) {
3744 BUFFER_TRACE(bh, "retaking write access");
617ba13b 3745 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3746 }
3747 }
3748
3749 /*
3750 * Any buffers which are on the journal will be in memory. We find
dab291af 3751 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
ac27a0ec 3752 * on them. We've already detached each block from the file, so
dab291af 3753 * bforget() in jbd2_journal_forget() should be safe.
ac27a0ec 3754 *
dab291af 3755 * AKPM: turn on bforget in jbd2_journal_forget()!!!
ac27a0ec
DK
3756 */
3757 for (p = first; p < last; p++) {
3758 u32 nr = le32_to_cpu(*p);
3759 if (nr) {
1d03ec98 3760 struct buffer_head *tbh;
ac27a0ec
DK
3761
3762 *p = 0;
1d03ec98
AK
3763 tbh = sb_find_get_block(inode->i_sb, nr);
3764 ext4_forget(handle, 0, inode, tbh, nr);
ac27a0ec
DK
3765 }
3766 }
3767
c9de560d 3768 ext4_free_blocks(handle, inode, block_to_free, count, 0);
ac27a0ec
DK
3769}
3770
3771/**
617ba13b 3772 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
3773 * @handle: handle for this transaction
3774 * @inode: inode we are dealing with
3775 * @this_bh: indirect buffer_head which contains *@first and *@last
3776 * @first: array of block numbers
3777 * @last: points immediately past the end of array
3778 *
3779 * We are freeing all blocks refered from that array (numbers are stored as
3780 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3781 *
3782 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3783 * blocks are contiguous then releasing them at one time will only affect one
3784 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3785 * actually use a lot of journal space.
3786 *
3787 * @this_bh will be %NULL if @first and @last point into the inode's direct
3788 * block pointers.
3789 */
617ba13b 3790static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3791 struct buffer_head *this_bh,
3792 __le32 *first, __le32 *last)
3793{
617ba13b 3794 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
3795 unsigned long count = 0; /* Number of blocks in the run */
3796 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3797 corresponding to
3798 block_to_free */
617ba13b 3799 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
3800 __le32 *p; /* Pointer into inode/ind
3801 for current block */
3802 int err;
3803
3804 if (this_bh) { /* For indirect block */
3805 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 3806 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
3807 /* Important: if we can't update the indirect pointers
3808 * to the blocks, we can't free them. */
3809 if (err)
3810 return;
3811 }
3812
3813 for (p = first; p < last; p++) {
3814 nr = le32_to_cpu(*p);
3815 if (nr) {
3816 /* accumulate blocks to free if they're contiguous */
3817 if (count == 0) {
3818 block_to_free = nr;
3819 block_to_free_p = p;
3820 count = 1;
3821 } else if (nr == block_to_free + count) {
3822 count++;
3823 } else {
617ba13b 3824 ext4_clear_blocks(handle, inode, this_bh,
ac27a0ec
DK
3825 block_to_free,
3826 count, block_to_free_p, p);
3827 block_to_free = nr;
3828 block_to_free_p = p;
3829 count = 1;
3830 }
3831 }
3832 }
3833
3834 if (count > 0)
617ba13b 3835 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
3836 count, block_to_free_p, p);
3837
3838 if (this_bh) {
0390131b 3839 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
71dc8fbc
DG
3840
3841 /*
3842 * The buffer head should have an attached journal head at this
3843 * point. However, if the data is corrupted and an indirect
3844 * block pointed to itself, it would have been detached when
3845 * the block was cleared. Check for this instead of OOPSing.
3846 */
e7f07968 3847 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
0390131b 3848 ext4_handle_dirty_metadata(handle, inode, this_bh);
71dc8fbc
DG
3849 else
3850 ext4_error(inode->i_sb, __func__,
3851 "circular indirect block detected, "
3852 "inode=%lu, block=%llu",
3853 inode->i_ino,
3854 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
3855 }
3856}
3857
3858/**
617ba13b 3859 * ext4_free_branches - free an array of branches
ac27a0ec
DK
3860 * @handle: JBD handle for this transaction
3861 * @inode: inode we are dealing with
3862 * @parent_bh: the buffer_head which contains *@first and *@last
3863 * @first: array of block numbers
3864 * @last: pointer immediately past the end of array
3865 * @depth: depth of the branches to free
3866 *
3867 * We are freeing all blocks refered from these branches (numbers are
3868 * stored as little-endian 32-bit) and updating @inode->i_blocks
3869 * appropriately.
3870 */
617ba13b 3871static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3872 struct buffer_head *parent_bh,
3873 __le32 *first, __le32 *last, int depth)
3874{
617ba13b 3875 ext4_fsblk_t nr;
ac27a0ec
DK
3876 __le32 *p;
3877
0390131b 3878 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
3879 return;
3880
3881 if (depth--) {
3882 struct buffer_head *bh;
617ba13b 3883 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
3884 p = last;
3885 while (--p >= first) {
3886 nr = le32_to_cpu(*p);
3887 if (!nr)
3888 continue; /* A hole */
3889
3890 /* Go read the buffer for the next level down */
3891 bh = sb_bread(inode->i_sb, nr);
3892
3893 /*
3894 * A read failure? Report error and clear slot
3895 * (should be rare).
3896 */
3897 if (!bh) {
617ba13b 3898 ext4_error(inode->i_sb, "ext4_free_branches",
2ae02107 3899 "Read failure, inode=%lu, block=%llu",
ac27a0ec
DK
3900 inode->i_ino, nr);
3901 continue;
3902 }
3903
3904 /* This zaps the entire block. Bottom up. */
3905 BUFFER_TRACE(bh, "free child branches");
617ba13b 3906 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
3907 (__le32 *) bh->b_data,
3908 (__le32 *) bh->b_data + addr_per_block,
3909 depth);
ac27a0ec
DK
3910
3911 /*
3912 * We've probably journalled the indirect block several
3913 * times during the truncate. But it's no longer
3914 * needed and we now drop it from the transaction via
dab291af 3915 * jbd2_journal_revoke().
ac27a0ec
DK
3916 *
3917 * That's easy if it's exclusively part of this
3918 * transaction. But if it's part of the committing
dab291af 3919 * transaction then jbd2_journal_forget() will simply
ac27a0ec 3920 * brelse() it. That means that if the underlying
617ba13b 3921 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
3922 * unmap_underlying_metadata() will find this block
3923 * and will try to get rid of it. damn, damn.
3924 *
3925 * If this block has already been committed to the
3926 * journal, a revoke record will be written. And
3927 * revoke records must be emitted *before* clearing
3928 * this block's bit in the bitmaps.
3929 */
617ba13b 3930 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
3931
3932 /*
3933 * Everything below this this pointer has been
3934 * released. Now let this top-of-subtree go.
3935 *
3936 * We want the freeing of this indirect block to be
3937 * atomic in the journal with the updating of the
3938 * bitmap block which owns it. So make some room in
3939 * the journal.
3940 *
3941 * We zero the parent pointer *after* freeing its
3942 * pointee in the bitmaps, so if extend_transaction()
3943 * for some reason fails to put the bitmap changes and
3944 * the release into the same transaction, recovery
3945 * will merely complain about releasing a free block,
3946 * rather than leaking blocks.
3947 */
0390131b 3948 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
3949 return;
3950 if (try_to_extend_transaction(handle, inode)) {
617ba13b
MC
3951 ext4_mark_inode_dirty(handle, inode);
3952 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3953 }
3954
c9de560d 3955 ext4_free_blocks(handle, inode, nr, 1, 1);
ac27a0ec
DK
3956
3957 if (parent_bh) {
3958 /*
3959 * The block which we have just freed is
3960 * pointed to by an indirect block: journal it
3961 */
3962 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 3963 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
3964 parent_bh)){
3965 *p = 0;
3966 BUFFER_TRACE(parent_bh,
0390131b
FM
3967 "call ext4_handle_dirty_metadata");
3968 ext4_handle_dirty_metadata(handle,
3969 inode,
3970 parent_bh);
ac27a0ec
DK
3971 }
3972 }
3973 }
3974 } else {
3975 /* We have reached the bottom of the tree. */
3976 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 3977 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
3978 }
3979}
3980
91ef4caf
DG
3981int ext4_can_truncate(struct inode *inode)
3982{
3983 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3984 return 0;
3985 if (S_ISREG(inode->i_mode))
3986 return 1;
3987 if (S_ISDIR(inode->i_mode))
3988 return 1;
3989 if (S_ISLNK(inode->i_mode))
3990 return !ext4_inode_is_fast_symlink(inode);
3991 return 0;
3992}
3993
ac27a0ec 3994/*
617ba13b 3995 * ext4_truncate()
ac27a0ec 3996 *
617ba13b
MC
3997 * We block out ext4_get_block() block instantiations across the entire
3998 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3999 * simultaneously on behalf of the same inode.
4000 *
4001 * As we work through the truncate and commmit bits of it to the journal there
4002 * is one core, guiding principle: the file's tree must always be consistent on
4003 * disk. We must be able to restart the truncate after a crash.
4004 *
4005 * The file's tree may be transiently inconsistent in memory (although it
4006 * probably isn't), but whenever we close off and commit a journal transaction,
4007 * the contents of (the filesystem + the journal) must be consistent and
4008 * restartable. It's pretty simple, really: bottom up, right to left (although
4009 * left-to-right works OK too).
4010 *
4011 * Note that at recovery time, journal replay occurs *before* the restart of
4012 * truncate against the orphan inode list.
4013 *
4014 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4015 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4016 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4017 * ext4_truncate() to have another go. So there will be instantiated blocks
4018 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4019 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4020 * ext4_truncate() run will find them and release them.
ac27a0ec 4021 */
617ba13b 4022void ext4_truncate(struct inode *inode)
ac27a0ec
DK
4023{
4024 handle_t *handle;
617ba13b 4025 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4026 __le32 *i_data = ei->i_data;
617ba13b 4027 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 4028 struct address_space *mapping = inode->i_mapping;
725d26d3 4029 ext4_lblk_t offsets[4];
ac27a0ec
DK
4030 Indirect chain[4];
4031 Indirect *partial;
4032 __le32 nr = 0;
4033 int n;
725d26d3 4034 ext4_lblk_t last_block;
ac27a0ec 4035 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 4036
91ef4caf 4037 if (!ext4_can_truncate(inode))
ac27a0ec
DK
4038 return;
4039
afd4672d 4040 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
7d8f9f7d
TT
4041 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4042
1d03ec98 4043 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
cf108bca 4044 ext4_ext_truncate(inode);
1d03ec98
AK
4045 return;
4046 }
a86c6181 4047
ac27a0ec 4048 handle = start_transaction(inode);
cf108bca 4049 if (IS_ERR(handle))
ac27a0ec 4050 return; /* AKPM: return what? */
ac27a0ec
DK
4051
4052 last_block = (inode->i_size + blocksize-1)
617ba13b 4053 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 4054
cf108bca
JK
4055 if (inode->i_size & (blocksize - 1))
4056 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4057 goto out_stop;
ac27a0ec 4058
617ba13b 4059 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
4060 if (n == 0)
4061 goto out_stop; /* error */
4062
4063 /*
4064 * OK. This truncate is going to happen. We add the inode to the
4065 * orphan list, so that if this truncate spans multiple transactions,
4066 * and we crash, we will resume the truncate when the filesystem
4067 * recovers. It also marks the inode dirty, to catch the new size.
4068 *
4069 * Implication: the file must always be in a sane, consistent
4070 * truncatable state while each transaction commits.
4071 */
617ba13b 4072 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
4073 goto out_stop;
4074
632eaeab
MC
4075 /*
4076 * From here we block out all ext4_get_block() callers who want to
4077 * modify the block allocation tree.
4078 */
4079 down_write(&ei->i_data_sem);
b4df2030 4080
c2ea3fde 4081 ext4_discard_preallocations(inode);
b4df2030 4082
ac27a0ec
DK
4083 /*
4084 * The orphan list entry will now protect us from any crash which
4085 * occurs before the truncate completes, so it is now safe to propagate
4086 * the new, shorter inode size (held for now in i_size) into the
4087 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 4088 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
4089 */
4090 ei->i_disksize = inode->i_size;
4091
ac27a0ec 4092 if (n == 1) { /* direct blocks */
617ba13b
MC
4093 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4094 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
4095 goto do_indirects;
4096 }
4097
617ba13b 4098 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
4099 /* Kill the top of shared branch (not detached) */
4100 if (nr) {
4101 if (partial == chain) {
4102 /* Shared branch grows from the inode */
617ba13b 4103 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
4104 &nr, &nr+1, (chain+n-1) - partial);
4105 *partial->p = 0;
4106 /*
4107 * We mark the inode dirty prior to restart,
4108 * and prior to stop. No need for it here.
4109 */
4110 } else {
4111 /* Shared branch grows from an indirect block */
4112 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 4113 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
4114 partial->p,
4115 partial->p+1, (chain+n-1) - partial);
4116 }
4117 }
4118 /* Clear the ends of indirect blocks on the shared branch */
4119 while (partial > chain) {
617ba13b 4120 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
4121 (__le32*)partial->bh->b_data+addr_per_block,
4122 (chain+n-1) - partial);
4123 BUFFER_TRACE(partial->bh, "call brelse");
4124 brelse (partial->bh);
4125 partial--;
4126 }
4127do_indirects:
4128 /* Kill the remaining (whole) subtrees */
4129 switch (offsets[0]) {
4130 default:
617ba13b 4131 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 4132 if (nr) {
617ba13b
MC
4133 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4134 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 4135 }
617ba13b
MC
4136 case EXT4_IND_BLOCK:
4137 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 4138 if (nr) {
617ba13b
MC
4139 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4140 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 4141 }
617ba13b
MC
4142 case EXT4_DIND_BLOCK:
4143 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 4144 if (nr) {
617ba13b
MC
4145 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4146 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 4147 }
617ba13b 4148 case EXT4_TIND_BLOCK:
ac27a0ec
DK
4149 ;
4150 }
4151
0e855ac8 4152 up_write(&ei->i_data_sem);
ef7f3835 4153 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 4154 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4155
4156 /*
4157 * In a multi-transaction truncate, we only make the final transaction
4158 * synchronous
4159 */
4160 if (IS_SYNC(inode))
0390131b 4161 ext4_handle_sync(handle);
ac27a0ec
DK
4162out_stop:
4163 /*
4164 * If this was a simple ftruncate(), and the file will remain alive
4165 * then we need to clear up the orphan record which we created above.
4166 * However, if this was a real unlink then we were called by
617ba13b 4167 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
4168 * orphan info for us.
4169 */
4170 if (inode->i_nlink)
617ba13b 4171 ext4_orphan_del(handle, inode);
ac27a0ec 4172
617ba13b 4173 ext4_journal_stop(handle);
ac27a0ec
DK
4174}
4175
ac27a0ec 4176/*
617ba13b 4177 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4178 * underlying buffer_head on success. If 'in_mem' is true, we have all
4179 * data in memory that is needed to recreate the on-disk version of this
4180 * inode.
4181 */
617ba13b
MC
4182static int __ext4_get_inode_loc(struct inode *inode,
4183 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4184{
240799cd
TT
4185 struct ext4_group_desc *gdp;
4186 struct buffer_head *bh;
4187 struct super_block *sb = inode->i_sb;
4188 ext4_fsblk_t block;
4189 int inodes_per_block, inode_offset;
4190
3a06d778 4191 iloc->bh = NULL;
240799cd
TT
4192 if (!ext4_valid_inum(sb, inode->i_ino))
4193 return -EIO;
ac27a0ec 4194
240799cd
TT
4195 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4196 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4197 if (!gdp)
ac27a0ec
DK
4198 return -EIO;
4199
240799cd
TT
4200 /*
4201 * Figure out the offset within the block group inode table
4202 */
4203 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4204 inode_offset = ((inode->i_ino - 1) %
4205 EXT4_INODES_PER_GROUP(sb));
4206 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4207 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4208
4209 bh = sb_getblk(sb, block);
ac27a0ec 4210 if (!bh) {
240799cd
TT
4211 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4212 "inode block - inode=%lu, block=%llu",
4213 inode->i_ino, block);
ac27a0ec
DK
4214 return -EIO;
4215 }
4216 if (!buffer_uptodate(bh)) {
4217 lock_buffer(bh);
9c83a923
HK
4218
4219 /*
4220 * If the buffer has the write error flag, we have failed
4221 * to write out another inode in the same block. In this
4222 * case, we don't have to read the block because we may
4223 * read the old inode data successfully.
4224 */
4225 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4226 set_buffer_uptodate(bh);
4227
ac27a0ec
DK
4228 if (buffer_uptodate(bh)) {
4229 /* someone brought it uptodate while we waited */
4230 unlock_buffer(bh);
4231 goto has_buffer;
4232 }
4233
4234 /*
4235 * If we have all information of the inode in memory and this
4236 * is the only valid inode in the block, we need not read the
4237 * block.
4238 */
4239 if (in_mem) {
4240 struct buffer_head *bitmap_bh;
240799cd 4241 int i, start;
ac27a0ec 4242
240799cd 4243 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4244
240799cd
TT
4245 /* Is the inode bitmap in cache? */
4246 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
4247 if (!bitmap_bh)
4248 goto make_io;
4249
4250 /*
4251 * If the inode bitmap isn't in cache then the
4252 * optimisation may end up performing two reads instead
4253 * of one, so skip it.
4254 */
4255 if (!buffer_uptodate(bitmap_bh)) {
4256 brelse(bitmap_bh);
4257 goto make_io;
4258 }
240799cd 4259 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4260 if (i == inode_offset)
4261 continue;
617ba13b 4262 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4263 break;
4264 }
4265 brelse(bitmap_bh);
240799cd 4266 if (i == start + inodes_per_block) {
ac27a0ec
DK
4267 /* all other inodes are free, so skip I/O */
4268 memset(bh->b_data, 0, bh->b_size);
4269 set_buffer_uptodate(bh);
4270 unlock_buffer(bh);
4271 goto has_buffer;
4272 }
4273 }
4274
4275make_io:
240799cd
TT
4276 /*
4277 * If we need to do any I/O, try to pre-readahead extra
4278 * blocks from the inode table.
4279 */
4280 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4281 ext4_fsblk_t b, end, table;
4282 unsigned num;
4283
4284 table = ext4_inode_table(sb, gdp);
b713a5ec 4285 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
4286 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4287 if (table > b)
4288 b = table;
4289 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4290 num = EXT4_INODES_PER_GROUP(sb);
4291 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4292 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 4293 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4294 table += num / inodes_per_block;
4295 if (end > table)
4296 end = table;
4297 while (b <= end)
4298 sb_breadahead(sb, b++);
4299 }
4300
ac27a0ec
DK
4301 /*
4302 * There are other valid inodes in the buffer, this inode
4303 * has in-inode xattrs, or we don't have this inode in memory.
4304 * Read the block from disk.
4305 */
4306 get_bh(bh);
4307 bh->b_end_io = end_buffer_read_sync;
4308 submit_bh(READ_META, bh);
4309 wait_on_buffer(bh);
4310 if (!buffer_uptodate(bh)) {
240799cd
TT
4311 ext4_error(sb, __func__,
4312 "unable to read inode block - inode=%lu, "
4313 "block=%llu", inode->i_ino, block);
ac27a0ec
DK
4314 brelse(bh);
4315 return -EIO;
4316 }
4317 }
4318has_buffer:
4319 iloc->bh = bh;
4320 return 0;
4321}
4322
617ba13b 4323int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4324{
4325 /* We have all inode data except xattrs in memory here. */
617ba13b
MC
4326 return __ext4_get_inode_loc(inode, iloc,
4327 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
ac27a0ec
DK
4328}
4329
617ba13b 4330void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4331{
617ba13b 4332 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4333
4334 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4335 if (flags & EXT4_SYNC_FL)
ac27a0ec 4336 inode->i_flags |= S_SYNC;
617ba13b 4337 if (flags & EXT4_APPEND_FL)
ac27a0ec 4338 inode->i_flags |= S_APPEND;
617ba13b 4339 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4340 inode->i_flags |= S_IMMUTABLE;
617ba13b 4341 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4342 inode->i_flags |= S_NOATIME;
617ba13b 4343 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4344 inode->i_flags |= S_DIRSYNC;
4345}
4346
ff9ddf7e
JK
4347/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4348void ext4_get_inode_flags(struct ext4_inode_info *ei)
4349{
4350 unsigned int flags = ei->vfs_inode.i_flags;
4351
4352 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4353 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4354 if (flags & S_SYNC)
4355 ei->i_flags |= EXT4_SYNC_FL;
4356 if (flags & S_APPEND)
4357 ei->i_flags |= EXT4_APPEND_FL;
4358 if (flags & S_IMMUTABLE)
4359 ei->i_flags |= EXT4_IMMUTABLE_FL;
4360 if (flags & S_NOATIME)
4361 ei->i_flags |= EXT4_NOATIME_FL;
4362 if (flags & S_DIRSYNC)
4363 ei->i_flags |= EXT4_DIRSYNC_FL;
4364}
0fc1b451
AK
4365static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4366 struct ext4_inode_info *ei)
4367{
4368 blkcnt_t i_blocks ;
8180a562
AK
4369 struct inode *inode = &(ei->vfs_inode);
4370 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4371
4372 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4373 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4374 /* we are using combined 48 bit field */
4375 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4376 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
4377 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4378 /* i_blocks represent file system block size */
4379 return i_blocks << (inode->i_blkbits - 9);
4380 } else {
4381 return i_blocks;
4382 }
0fc1b451
AK
4383 } else {
4384 return le32_to_cpu(raw_inode->i_blocks_lo);
4385 }
4386}
ff9ddf7e 4387
1d1fe1ee 4388struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4389{
617ba13b
MC
4390 struct ext4_iloc iloc;
4391 struct ext4_inode *raw_inode;
1d1fe1ee 4392 struct ext4_inode_info *ei;
ac27a0ec 4393 struct buffer_head *bh;
1d1fe1ee
DH
4394 struct inode *inode;
4395 long ret;
ac27a0ec
DK
4396 int block;
4397
1d1fe1ee
DH
4398 inode = iget_locked(sb, ino);
4399 if (!inode)
4400 return ERR_PTR(-ENOMEM);
4401 if (!(inode->i_state & I_NEW))
4402 return inode;
4403
4404 ei = EXT4_I(inode);
03010a33 4405#ifdef CONFIG_EXT4_FS_POSIX_ACL
617ba13b
MC
4406 ei->i_acl = EXT4_ACL_NOT_CACHED;
4407 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
ac27a0ec 4408#endif
ac27a0ec 4409
1d1fe1ee
DH
4410 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4411 if (ret < 0)
ac27a0ec
DK
4412 goto bad_inode;
4413 bh = iloc.bh;
617ba13b 4414 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
4415 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4416 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4417 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4418 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4419 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4420 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4421 }
4422 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec
DK
4423
4424 ei->i_state = 0;
4425 ei->i_dir_start_lookup = 0;
4426 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4427 /* We now have enough fields to check if the inode was active or not.
4428 * This is needed because nfsd might try to access dead inodes
4429 * the test is that same one that e2fsck uses
4430 * NeilBrown 1999oct15
4431 */
4432 if (inode->i_nlink == 0) {
4433 if (inode->i_mode == 0 ||
617ba13b 4434 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 4435 /* this inode is deleted */
af5bc92d 4436 brelse(bh);
1d1fe1ee 4437 ret = -ESTALE;
ac27a0ec
DK
4438 goto bad_inode;
4439 }
4440 /* The only unlinked inodes we let through here have
4441 * valid i_mode and are being read by the orphan
4442 * recovery code: that's fine, we're about to complete
4443 * the process of deleting those. */
4444 }
ac27a0ec 4445 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4446 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4447 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4448 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4449 ei->i_file_acl |=
4450 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4451 inode->i_size = ext4_isize(raw_inode);
ac27a0ec
DK
4452 ei->i_disksize = inode->i_size;
4453 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4454 ei->i_block_group = iloc.block_group;
a4912123 4455 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4456 /*
4457 * NOTE! The in-memory inode i_data array is in little-endian order
4458 * even on big-endian machines: we do NOT byteswap the block numbers!
4459 */
617ba13b 4460 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4461 ei->i_data[block] = raw_inode->i_block[block];
4462 INIT_LIST_HEAD(&ei->i_orphan);
4463
0040d987 4464 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 4465 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 4466 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 4467 EXT4_INODE_SIZE(inode->i_sb)) {
af5bc92d 4468 brelse(bh);
1d1fe1ee 4469 ret = -EIO;
ac27a0ec 4470 goto bad_inode;
e5d2861f 4471 }
ac27a0ec
DK
4472 if (ei->i_extra_isize == 0) {
4473 /* The extra space is currently unused. Use it. */
617ba13b
MC
4474 ei->i_extra_isize = sizeof(struct ext4_inode) -
4475 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
4476 } else {
4477 __le32 *magic = (void *)raw_inode +
617ba13b 4478 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 4479 ei->i_extra_isize;
617ba13b
MC
4480 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4481 ei->i_state |= EXT4_STATE_XATTR;
ac27a0ec
DK
4482 }
4483 } else
4484 ei->i_extra_isize = 0;
4485
ef7f3835
KS
4486 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4487 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4488 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4489 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4490
25ec56b5
JNC
4491 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4492 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4493 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4494 inode->i_version |=
4495 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4496 }
4497
c4b5a614 4498 ret = 0;
485c26ec
TT
4499 if (ei->i_file_acl &&
4500 ((ei->i_file_acl <
4501 (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4502 EXT4_SB(sb)->s_gdb_count)) ||
4503 (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4504 ext4_error(sb, __func__,
4505 "bad extended attribute block %llu in inode #%lu",
4506 ei->i_file_acl, inode->i_ino);
4507 ret = -EIO;
4508 goto bad_inode;
4509 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
c4b5a614
TT
4510 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4511 (S_ISLNK(inode->i_mode) &&
4512 !ext4_inode_is_fast_symlink(inode)))
4513 /* Validate extent which is part of inode */
4514 ret = ext4_ext_check_inode(inode);
fe2c8191
TN
4515 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4516 (S_ISLNK(inode->i_mode) &&
4517 !ext4_inode_is_fast_symlink(inode))) {
4518 /* Validate block references which are part of inode */
4519 ret = ext4_check_inode_blockref(inode);
4520 }
4521 if (ret) {
4522 brelse(bh);
4523 goto bad_inode;
7a262f7c
AK
4524 }
4525
ac27a0ec 4526 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4527 inode->i_op = &ext4_file_inode_operations;
4528 inode->i_fop = &ext4_file_operations;
4529 ext4_set_aops(inode);
ac27a0ec 4530 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4531 inode->i_op = &ext4_dir_inode_operations;
4532 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4533 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4534 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4535 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4536 nd_terminate_link(ei->i_data, inode->i_size,
4537 sizeof(ei->i_data) - 1);
4538 } else {
617ba13b
MC
4539 inode->i_op = &ext4_symlink_inode_operations;
4540 ext4_set_aops(inode);
ac27a0ec 4541 }
563bdd61
TT
4542 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4543 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4544 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4545 if (raw_inode->i_block[0])
4546 init_special_inode(inode, inode->i_mode,
4547 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4548 else
4549 init_special_inode(inode, inode->i_mode,
4550 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61
TT
4551 } else {
4552 brelse(bh);
4553 ret = -EIO;
4554 ext4_error(inode->i_sb, __func__,
4555 "bogus i_mode (%o) for inode=%lu",
4556 inode->i_mode, inode->i_ino);
4557 goto bad_inode;
ac27a0ec 4558 }
af5bc92d 4559 brelse(iloc.bh);
617ba13b 4560 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4561 unlock_new_inode(inode);
4562 return inode;
ac27a0ec
DK
4563
4564bad_inode:
1d1fe1ee
DH
4565 iget_failed(inode);
4566 return ERR_PTR(ret);
ac27a0ec
DK
4567}
4568
0fc1b451
AK
4569static int ext4_inode_blocks_set(handle_t *handle,
4570 struct ext4_inode *raw_inode,
4571 struct ext4_inode_info *ei)
4572{
4573 struct inode *inode = &(ei->vfs_inode);
4574 u64 i_blocks = inode->i_blocks;
4575 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4576
4577 if (i_blocks <= ~0U) {
4578 /*
4579 * i_blocks can be represnted in a 32 bit variable
4580 * as multiple of 512 bytes
4581 */
8180a562 4582 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4583 raw_inode->i_blocks_high = 0;
8180a562 4584 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
f287a1a5
TT
4585 return 0;
4586 }
4587 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4588 return -EFBIG;
4589
4590 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4591 /*
4592 * i_blocks can be represented in a 48 bit variable
4593 * as multiple of 512 bytes
4594 */
8180a562 4595 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4596 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 4597 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 4598 } else {
8180a562
AK
4599 ei->i_flags |= EXT4_HUGE_FILE_FL;
4600 /* i_block is stored in file system block size */
4601 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4602 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4603 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4604 }
f287a1a5 4605 return 0;
0fc1b451
AK
4606}
4607
ac27a0ec
DK
4608/*
4609 * Post the struct inode info into an on-disk inode location in the
4610 * buffer-cache. This gobbles the caller's reference to the
4611 * buffer_head in the inode location struct.
4612 *
4613 * The caller must have write access to iloc->bh.
4614 */
617ba13b 4615static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4616 struct inode *inode,
617ba13b 4617 struct ext4_iloc *iloc)
ac27a0ec 4618{
617ba13b
MC
4619 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4620 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4621 struct buffer_head *bh = iloc->bh;
4622 int err = 0, rc, block;
4623
4624 /* For fields not not tracking in the in-memory inode,
4625 * initialise them to zero for new inodes. */
617ba13b
MC
4626 if (ei->i_state & EXT4_STATE_NEW)
4627 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4628
ff9ddf7e 4629 ext4_get_inode_flags(ei);
ac27a0ec 4630 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 4631 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4632 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4633 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4634/*
4635 * Fix up interoperability with old kernels. Otherwise, old inodes get
4636 * re-used with the upper 16 bits of the uid/gid intact
4637 */
af5bc92d 4638 if (!ei->i_dtime) {
ac27a0ec
DK
4639 raw_inode->i_uid_high =
4640 cpu_to_le16(high_16_bits(inode->i_uid));
4641 raw_inode->i_gid_high =
4642 cpu_to_le16(high_16_bits(inode->i_gid));
4643 } else {
4644 raw_inode->i_uid_high = 0;
4645 raw_inode->i_gid_high = 0;
4646 }
4647 } else {
4648 raw_inode->i_uid_low =
4649 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4650 raw_inode->i_gid_low =
4651 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4652 raw_inode->i_uid_high = 0;
4653 raw_inode->i_gid_high = 0;
4654 }
4655 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4656
4657 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4658 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4659 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4660 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4661
0fc1b451
AK
4662 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4663 goto out_brelse;
ac27a0ec 4664 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
267e4db9
AK
4665 /* clear the migrate flag in the raw_inode */
4666 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
9b8f1f01
MC
4667 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4668 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4669 raw_inode->i_file_acl_high =
4670 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4671 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
4672 ext4_isize_set(raw_inode, ei->i_disksize);
4673 if (ei->i_disksize > 0x7fffffffULL) {
4674 struct super_block *sb = inode->i_sb;
4675 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4676 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4677 EXT4_SB(sb)->s_es->s_rev_level ==
4678 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4679 /* If this is the first large file
4680 * created, add a flag to the superblock.
4681 */
4682 err = ext4_journal_get_write_access(handle,
4683 EXT4_SB(sb)->s_sbh);
4684 if (err)
4685 goto out_brelse;
4686 ext4_update_dynamic_rev(sb);
4687 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4688 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 4689 sb->s_dirt = 1;
0390131b
FM
4690 ext4_handle_sync(handle);
4691 err = ext4_handle_dirty_metadata(handle, inode,
a48380f7 4692 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
4693 }
4694 }
4695 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4696 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4697 if (old_valid_dev(inode->i_rdev)) {
4698 raw_inode->i_block[0] =
4699 cpu_to_le32(old_encode_dev(inode->i_rdev));
4700 raw_inode->i_block[1] = 0;
4701 } else {
4702 raw_inode->i_block[0] = 0;
4703 raw_inode->i_block[1] =
4704 cpu_to_le32(new_encode_dev(inode->i_rdev));
4705 raw_inode->i_block[2] = 0;
4706 }
617ba13b 4707 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4708 raw_inode->i_block[block] = ei->i_data[block];
4709
25ec56b5
JNC
4710 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4711 if (ei->i_extra_isize) {
4712 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4713 raw_inode->i_version_hi =
4714 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4715 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4716 }
4717
0390131b
FM
4718 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4719 rc = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
4720 if (!err)
4721 err = rc;
617ba13b 4722 ei->i_state &= ~EXT4_STATE_NEW;
ac27a0ec
DK
4723
4724out_brelse:
af5bc92d 4725 brelse(bh);
617ba13b 4726 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4727 return err;
4728}
4729
4730/*
617ba13b 4731 * ext4_write_inode()
ac27a0ec
DK
4732 *
4733 * We are called from a few places:
4734 *
4735 * - Within generic_file_write() for O_SYNC files.
4736 * Here, there will be no transaction running. We wait for any running
4737 * trasnaction to commit.
4738 *
4739 * - Within sys_sync(), kupdate and such.
4740 * We wait on commit, if tol to.
4741 *
4742 * - Within prune_icache() (PF_MEMALLOC == true)
4743 * Here we simply return. We can't afford to block kswapd on the
4744 * journal commit.
4745 *
4746 * In all cases it is actually safe for us to return without doing anything,
4747 * because the inode has been copied into a raw inode buffer in
617ba13b 4748 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4749 * knfsd.
4750 *
4751 * Note that we are absolutely dependent upon all inode dirtiers doing the
4752 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4753 * which we are interested.
4754 *
4755 * It would be a bug for them to not do this. The code:
4756 *
4757 * mark_inode_dirty(inode)
4758 * stuff();
4759 * inode->i_size = expr;
4760 *
4761 * is in error because a kswapd-driven write_inode() could occur while
4762 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4763 * will no longer be on the superblock's dirty inode list.
4764 */
617ba13b 4765int ext4_write_inode(struct inode *inode, int wait)
ac27a0ec
DK
4766{
4767 if (current->flags & PF_MEMALLOC)
4768 return 0;
4769
617ba13b 4770 if (ext4_journal_current_handle()) {
b38bd33a 4771 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
ac27a0ec
DK
4772 dump_stack();
4773 return -EIO;
4774 }
4775
4776 if (!wait)
4777 return 0;
4778
617ba13b 4779 return ext4_force_commit(inode->i_sb);
ac27a0ec
DK
4780}
4781
0390131b
FM
4782int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
4783{
4784 int err = 0;
4785
4786 mark_buffer_dirty(bh);
4787 if (inode && inode_needs_sync(inode)) {
4788 sync_dirty_buffer(bh);
4789 if (buffer_req(bh) && !buffer_uptodate(bh)) {
4790 ext4_error(inode->i_sb, __func__,
4791 "IO error syncing inode, "
4792 "inode=%lu, block=%llu",
4793 inode->i_ino,
4794 (unsigned long long)bh->b_blocknr);
4795 err = -EIO;
4796 }
4797 }
4798 return err;
4799}
4800
ac27a0ec 4801/*
617ba13b 4802 * ext4_setattr()
ac27a0ec
DK
4803 *
4804 * Called from notify_change.
4805 *
4806 * We want to trap VFS attempts to truncate the file as soon as
4807 * possible. In particular, we want to make sure that when the VFS
4808 * shrinks i_size, we put the inode on the orphan list and modify
4809 * i_disksize immediately, so that during the subsequent flushing of
4810 * dirty pages and freeing of disk blocks, we can guarantee that any
4811 * commit will leave the blocks being flushed in an unused state on
4812 * disk. (On recovery, the inode will get truncated and the blocks will
4813 * be freed, so we have a strong guarantee that no future commit will
4814 * leave these blocks visible to the user.)
4815 *
678aaf48
JK
4816 * Another thing we have to assure is that if we are in ordered mode
4817 * and inode is still attached to the committing transaction, we must
4818 * we start writeout of all the dirty pages which are being truncated.
4819 * This way we are sure that all the data written in the previous
4820 * transaction are already on disk (truncate waits for pages under
4821 * writeback).
4822 *
4823 * Called with inode->i_mutex down.
ac27a0ec 4824 */
617ba13b 4825int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4826{
4827 struct inode *inode = dentry->d_inode;
4828 int error, rc = 0;
4829 const unsigned int ia_valid = attr->ia_valid;
4830
4831 error = inode_change_ok(inode, attr);
4832 if (error)
4833 return error;
4834
4835 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4836 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4837 handle_t *handle;
4838
4839 /* (user+group)*(old+new) structure, inode write (sb,
4840 * inode block, ? - but truncate inode update has it) */
617ba13b
MC
4841 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4842 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4843 if (IS_ERR(handle)) {
4844 error = PTR_ERR(handle);
4845 goto err_out;
4846 }
a269eb18 4847 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
ac27a0ec 4848 if (error) {
617ba13b 4849 ext4_journal_stop(handle);
ac27a0ec
DK
4850 return error;
4851 }
4852 /* Update corresponding info in inode so that everything is in
4853 * one transaction */
4854 if (attr->ia_valid & ATTR_UID)
4855 inode->i_uid = attr->ia_uid;
4856 if (attr->ia_valid & ATTR_GID)
4857 inode->i_gid = attr->ia_gid;
617ba13b
MC
4858 error = ext4_mark_inode_dirty(handle, inode);
4859 ext4_journal_stop(handle);
ac27a0ec
DK
4860 }
4861
e2b46574
ES
4862 if (attr->ia_valid & ATTR_SIZE) {
4863 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4864 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4865
4866 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4867 error = -EFBIG;
4868 goto err_out;
4869 }
4870 }
4871 }
4872
ac27a0ec
DK
4873 if (S_ISREG(inode->i_mode) &&
4874 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4875 handle_t *handle;
4876
617ba13b 4877 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4878 if (IS_ERR(handle)) {
4879 error = PTR_ERR(handle);
4880 goto err_out;
4881 }
4882
617ba13b
MC
4883 error = ext4_orphan_add(handle, inode);
4884 EXT4_I(inode)->i_disksize = attr->ia_size;
4885 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4886 if (!error)
4887 error = rc;
617ba13b 4888 ext4_journal_stop(handle);
678aaf48
JK
4889
4890 if (ext4_should_order_data(inode)) {
4891 error = ext4_begin_ordered_truncate(inode,
4892 attr->ia_size);
4893 if (error) {
4894 /* Do as much error cleanup as possible */
4895 handle = ext4_journal_start(inode, 3);
4896 if (IS_ERR(handle)) {
4897 ext4_orphan_del(NULL, inode);
4898 goto err_out;
4899 }
4900 ext4_orphan_del(handle, inode);
4901 ext4_journal_stop(handle);
4902 goto err_out;
4903 }
4904 }
ac27a0ec
DK
4905 }
4906
4907 rc = inode_setattr(inode, attr);
4908
617ba13b 4909 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
4910 * transaction handle at all, we need to clean up the in-core
4911 * orphan list manually. */
4912 if (inode->i_nlink)
617ba13b 4913 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4914
4915 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4916 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4917
4918err_out:
617ba13b 4919 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4920 if (!error)
4921 error = rc;
4922 return error;
4923}
4924
3e3398a0
MC
4925int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4926 struct kstat *stat)
4927{
4928 struct inode *inode;
4929 unsigned long delalloc_blocks;
4930
4931 inode = dentry->d_inode;
4932 generic_fillattr(inode, stat);
4933
4934 /*
4935 * We can't update i_blocks if the block allocation is delayed
4936 * otherwise in the case of system crash before the real block
4937 * allocation is done, we will have i_blocks inconsistent with
4938 * on-disk file blocks.
4939 * We always keep i_blocks updated together with real
4940 * allocation. But to not confuse with user, stat
4941 * will return the blocks that include the delayed allocation
4942 * blocks for this file.
4943 */
4944 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4945 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4946 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4947
4948 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4949 return 0;
4950}
ac27a0ec 4951
a02908f1
MC
4952static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4953 int chunk)
4954{
4955 int indirects;
4956
4957 /* if nrblocks are contiguous */
4958 if (chunk) {
4959 /*
4960 * With N contiguous data blocks, it need at most
4961 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4962 * 2 dindirect blocks
4963 * 1 tindirect block
4964 */
4965 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4966 return indirects + 3;
4967 }
4968 /*
4969 * if nrblocks are not contiguous, worse case, each block touch
4970 * a indirect block, and each indirect block touch a double indirect
4971 * block, plus a triple indirect block
4972 */
4973 indirects = nrblocks * 2 + 1;
4974 return indirects;
4975}
4976
4977static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4978{
4979 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
ac51d837
TT
4980 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4981 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4982}
ac51d837 4983
ac27a0ec 4984/*
a02908f1
MC
4985 * Account for index blocks, block groups bitmaps and block group
4986 * descriptor blocks if modify datablocks and index blocks
4987 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4988 *
a02908f1
MC
4989 * If datablocks are discontiguous, they are possible to spread over
4990 * different block groups too. If they are contiugous, with flexbg,
4991 * they could still across block group boundary.
ac27a0ec 4992 *
a02908f1
MC
4993 * Also account for superblock, inode, quota and xattr blocks
4994 */
4995int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4996{
8df9675f
TT
4997 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4998 int gdpblocks;
a02908f1
MC
4999 int idxblocks;
5000 int ret = 0;
5001
5002 /*
5003 * How many index blocks need to touch to modify nrblocks?
5004 * The "Chunk" flag indicating whether the nrblocks is
5005 * physically contiguous on disk
5006 *
5007 * For Direct IO and fallocate, they calls get_block to allocate
5008 * one single extent at a time, so they could set the "Chunk" flag
5009 */
5010 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5011
5012 ret = idxblocks;
5013
5014 /*
5015 * Now let's see how many group bitmaps and group descriptors need
5016 * to account
5017 */
5018 groups = idxblocks;
5019 if (chunk)
5020 groups += 1;
5021 else
5022 groups += nrblocks;
5023
5024 gdpblocks = groups;
8df9675f
TT
5025 if (groups > ngroups)
5026 groups = ngroups;
a02908f1
MC
5027 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5028 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5029
5030 /* bitmaps and block group descriptor blocks */
5031 ret += groups + gdpblocks;
5032
5033 /* Blocks for super block, inode, quota and xattr blocks */
5034 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5035
5036 return ret;
5037}
5038
5039/*
5040 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
5041 * the modification of a single pages into a single transaction,
5042 * which may include multiple chunks of block allocations.
ac27a0ec 5043 *
525f4ed8 5044 * This could be called via ext4_write_begin()
ac27a0ec 5045 *
525f4ed8 5046 * We need to consider the worse case, when
a02908f1 5047 * one new block per extent.
ac27a0ec 5048 */
a86c6181 5049int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5050{
617ba13b 5051 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5052 int ret;
5053
a02908f1 5054 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 5055
a02908f1 5056 /* Account for data blocks for journalled mode */
617ba13b 5057 if (ext4_should_journal_data(inode))
a02908f1 5058 ret += bpp;
ac27a0ec
DK
5059 return ret;
5060}
f3bd1f3f
MC
5061
5062/*
5063 * Calculate the journal credits for a chunk of data modification.
5064 *
5065 * This is called from DIO, fallocate or whoever calling
12b7ac17 5066 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
f3bd1f3f
MC
5067 *
5068 * journal buffers for data blocks are not included here, as DIO
5069 * and fallocate do no need to journal data buffers.
5070 */
5071int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5072{
5073 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5074}
5075
ac27a0ec 5076/*
617ba13b 5077 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5078 * Give this, we know that the caller already has write access to iloc->bh.
5079 */
617ba13b
MC
5080int ext4_mark_iloc_dirty(handle_t *handle,
5081 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5082{
5083 int err = 0;
5084
25ec56b5
JNC
5085 if (test_opt(inode->i_sb, I_VERSION))
5086 inode_inc_iversion(inode);
5087
ac27a0ec
DK
5088 /* the do_update_inode consumes one bh->b_count */
5089 get_bh(iloc->bh);
5090
dab291af 5091 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
617ba13b 5092 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5093 put_bh(iloc->bh);
5094 return err;
5095}
5096
5097/*
5098 * On success, We end up with an outstanding reference count against
5099 * iloc->bh. This _must_ be cleaned up later.
5100 */
5101
5102int
617ba13b
MC
5103ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5104 struct ext4_iloc *iloc)
ac27a0ec 5105{
0390131b
FM
5106 int err;
5107
5108 err = ext4_get_inode_loc(inode, iloc);
5109 if (!err) {
5110 BUFFER_TRACE(iloc->bh, "get_write_access");
5111 err = ext4_journal_get_write_access(handle, iloc->bh);
5112 if (err) {
5113 brelse(iloc->bh);
5114 iloc->bh = NULL;
ac27a0ec
DK
5115 }
5116 }
617ba13b 5117 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5118 return err;
5119}
5120
6dd4ee7c
KS
5121/*
5122 * Expand an inode by new_extra_isize bytes.
5123 * Returns 0 on success or negative error number on failure.
5124 */
1d03ec98
AK
5125static int ext4_expand_extra_isize(struct inode *inode,
5126 unsigned int new_extra_isize,
5127 struct ext4_iloc iloc,
5128 handle_t *handle)
6dd4ee7c
KS
5129{
5130 struct ext4_inode *raw_inode;
5131 struct ext4_xattr_ibody_header *header;
5132 struct ext4_xattr_entry *entry;
5133
5134 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5135 return 0;
5136
5137 raw_inode = ext4_raw_inode(&iloc);
5138
5139 header = IHDR(inode, raw_inode);
5140 entry = IFIRST(header);
5141
5142 /* No extended attributes present */
5143 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5144 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5145 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5146 new_extra_isize);
5147 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5148 return 0;
5149 }
5150
5151 /* try to expand with EAs present */
5152 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5153 raw_inode, handle);
5154}
5155
ac27a0ec
DK
5156/*
5157 * What we do here is to mark the in-core inode as clean with respect to inode
5158 * dirtiness (it may still be data-dirty).
5159 * This means that the in-core inode may be reaped by prune_icache
5160 * without having to perform any I/O. This is a very good thing,
5161 * because *any* task may call prune_icache - even ones which
5162 * have a transaction open against a different journal.
5163 *
5164 * Is this cheating? Not really. Sure, we haven't written the
5165 * inode out, but prune_icache isn't a user-visible syncing function.
5166 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5167 * we start and wait on commits.
5168 *
5169 * Is this efficient/effective? Well, we're being nice to the system
5170 * by cleaning up our inodes proactively so they can be reaped
5171 * without I/O. But we are potentially leaving up to five seconds'
5172 * worth of inodes floating about which prune_icache wants us to
5173 * write out. One way to fix that would be to get prune_icache()
5174 * to do a write_super() to free up some memory. It has the desired
5175 * effect.
5176 */
617ba13b 5177int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5178{
617ba13b 5179 struct ext4_iloc iloc;
6dd4ee7c
KS
5180 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5181 static unsigned int mnt_count;
5182 int err, ret;
ac27a0ec
DK
5183
5184 might_sleep();
617ba13b 5185 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5186 if (ext4_handle_valid(handle) &&
5187 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
6dd4ee7c
KS
5188 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5189 /*
5190 * We need extra buffer credits since we may write into EA block
5191 * with this same handle. If journal_extend fails, then it will
5192 * only result in a minor loss of functionality for that inode.
5193 * If this is felt to be critical, then e2fsck should be run to
5194 * force a large enough s_min_extra_isize.
5195 */
5196 if ((jbd2_journal_extend(handle,
5197 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5198 ret = ext4_expand_extra_isize(inode,
5199 sbi->s_want_extra_isize,
5200 iloc, handle);
5201 if (ret) {
5202 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
c1bddad9
AK
5203 if (mnt_count !=
5204 le16_to_cpu(sbi->s_es->s_mnt_count)) {
46e665e9 5205 ext4_warning(inode->i_sb, __func__,
6dd4ee7c
KS
5206 "Unable to expand inode %lu. Delete"
5207 " some EAs or run e2fsck.",
5208 inode->i_ino);
c1bddad9
AK
5209 mnt_count =
5210 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5211 }
5212 }
5213 }
5214 }
ac27a0ec 5215 if (!err)
617ba13b 5216 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5217 return err;
5218}
5219
5220/*
617ba13b 5221 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5222 *
5223 * We're really interested in the case where a file is being extended.
5224 * i_size has been changed by generic_commit_write() and we thus need
5225 * to include the updated inode in the current transaction.
5226 *
a269eb18 5227 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5228 * are allocated to the file.
5229 *
5230 * If the inode is marked synchronous, we don't honour that here - doing
5231 * so would cause a commit on atime updates, which we don't bother doing.
5232 * We handle synchronous inodes at the highest possible level.
5233 */
617ba13b 5234void ext4_dirty_inode(struct inode *inode)
ac27a0ec 5235{
617ba13b 5236 handle_t *current_handle = ext4_journal_current_handle();
ac27a0ec
DK
5237 handle_t *handle;
5238
0390131b
FM
5239 if (!ext4_handle_valid(current_handle)) {
5240 ext4_mark_inode_dirty(current_handle, inode);
5241 return;
5242 }
5243
617ba13b 5244 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
5245 if (IS_ERR(handle))
5246 goto out;
5247 if (current_handle &&
5248 current_handle->h_transaction != handle->h_transaction) {
5249 /* This task has a transaction open against a different fs */
5250 printk(KERN_EMERG "%s: transactions do not match!\n",
46e665e9 5251 __func__);
ac27a0ec
DK
5252 } else {
5253 jbd_debug(5, "marking dirty. outer handle=%p\n",
5254 current_handle);
617ba13b 5255 ext4_mark_inode_dirty(handle, inode);
ac27a0ec 5256 }
617ba13b 5257 ext4_journal_stop(handle);
ac27a0ec
DK
5258out:
5259 return;
5260}
5261
5262#if 0
5263/*
5264 * Bind an inode's backing buffer_head into this transaction, to prevent
5265 * it from being flushed to disk early. Unlike
617ba13b 5266 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5267 * returns no iloc structure, so the caller needs to repeat the iloc
5268 * lookup to mark the inode dirty later.
5269 */
617ba13b 5270static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5271{
617ba13b 5272 struct ext4_iloc iloc;
ac27a0ec
DK
5273
5274 int err = 0;
5275 if (handle) {
617ba13b 5276 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5277 if (!err) {
5278 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5279 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5280 if (!err)
0390131b
FM
5281 err = ext4_handle_dirty_metadata(handle,
5282 inode,
5283 iloc.bh);
ac27a0ec
DK
5284 brelse(iloc.bh);
5285 }
5286 }
617ba13b 5287 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5288 return err;
5289}
5290#endif
5291
617ba13b 5292int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5293{
5294 journal_t *journal;
5295 handle_t *handle;
5296 int err;
5297
5298 /*
5299 * We have to be very careful here: changing a data block's
5300 * journaling status dynamically is dangerous. If we write a
5301 * data block to the journal, change the status and then delete
5302 * that block, we risk forgetting to revoke the old log record
5303 * from the journal and so a subsequent replay can corrupt data.
5304 * So, first we make sure that the journal is empty and that
5305 * nobody is changing anything.
5306 */
5307
617ba13b 5308 journal = EXT4_JOURNAL(inode);
0390131b
FM
5309 if (!journal)
5310 return 0;
d699594d 5311 if (is_journal_aborted(journal))
ac27a0ec
DK
5312 return -EROFS;
5313
dab291af
MC
5314 jbd2_journal_lock_updates(journal);
5315 jbd2_journal_flush(journal);
ac27a0ec
DK
5316
5317 /*
5318 * OK, there are no updates running now, and all cached data is
5319 * synced to disk. We are now in a completely consistent state
5320 * which doesn't have anything in the journal, and we know that
5321 * no filesystem updates are running, so it is safe to modify
5322 * the inode's in-core data-journaling state flag now.
5323 */
5324
5325 if (val)
617ba13b 5326 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
ac27a0ec 5327 else
617ba13b
MC
5328 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5329 ext4_set_aops(inode);
ac27a0ec 5330
dab291af 5331 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
5332
5333 /* Finally we can mark the inode as dirty. */
5334
617ba13b 5335 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
5336 if (IS_ERR(handle))
5337 return PTR_ERR(handle);
5338
617ba13b 5339 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5340 ext4_handle_sync(handle);
617ba13b
MC
5341 ext4_journal_stop(handle);
5342 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5343
5344 return err;
5345}
2e9ee850
AK
5346
5347static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5348{
5349 return !buffer_mapped(bh);
5350}
5351
c2ec175c 5352int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5353{
c2ec175c 5354 struct page *page = vmf->page;
2e9ee850
AK
5355 loff_t size;
5356 unsigned long len;
5357 int ret = -EINVAL;
79f0be8d 5358 void *fsdata;
2e9ee850
AK
5359 struct file *file = vma->vm_file;
5360 struct inode *inode = file->f_path.dentry->d_inode;
5361 struct address_space *mapping = inode->i_mapping;
5362
5363 /*
5364 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5365 * get i_mutex because we are already holding mmap_sem.
5366 */
5367 down_read(&inode->i_alloc_sem);
5368 size = i_size_read(inode);
5369 if (page->mapping != mapping || size <= page_offset(page)
5370 || !PageUptodate(page)) {
5371 /* page got truncated from under us? */
5372 goto out_unlock;
5373 }
5374 ret = 0;
5375 if (PageMappedToDisk(page))
5376 goto out_unlock;
5377
5378 if (page->index == size >> PAGE_CACHE_SHIFT)
5379 len = size & ~PAGE_CACHE_MASK;
5380 else
5381 len = PAGE_CACHE_SIZE;
5382
5383 if (page_has_buffers(page)) {
5384 /* return if we have all the buffers mapped */
5385 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5386 ext4_bh_unmapped))
5387 goto out_unlock;
5388 }
5389 /*
5390 * OK, we need to fill the hole... Do write_begin write_end
5391 * to do block allocation/reservation.We are not holding
5392 * inode.i__mutex here. That allow * parallel write_begin,
5393 * write_end call. lock_page prevent this from happening
5394 * on the same page though
5395 */
5396 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 5397 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
5398 if (ret < 0)
5399 goto out_unlock;
5400 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 5401 len, len, page, fsdata);
2e9ee850
AK
5402 if (ret < 0)
5403 goto out_unlock;
5404 ret = 0;
5405out_unlock:
c2ec175c
NP
5406 if (ret)
5407 ret = VM_FAULT_SIGBUS;
2e9ee850
AK
5408 up_read(&inode->i_alloc_sem);
5409 return ret;
5410}