]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ext4/inode.c
ext4: Use our own write_cache_pages()
[net-next-2.6.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
4c0425ff 40#include <linux/workqueue.h>
744692dc 41#include <linux/kernel.h>
5a0e3ad6 42#include <linux/slab.h>
9bffad1e 43
3dcf5451 44#include "ext4_jbd2.h"
ac27a0ec
DK
45#include "xattr.h"
46#include "acl.h"
d2a17637 47#include "ext4_extents.h"
ac27a0ec 48
9bffad1e
TT
49#include <trace/events/ext4.h>
50
a1d6cc56
AK
51#define MPAGE_DA_EXTENT_TAIL 0x01
52
678aaf48
JK
53static inline int ext4_begin_ordered_truncate(struct inode *inode,
54 loff_t new_size)
55{
7f5aa215
JK
56 return jbd2_journal_begin_ordered_truncate(
57 EXT4_SB(inode->i_sb)->s_journal,
58 &EXT4_I(inode)->jinode,
59 new_size);
678aaf48
JK
60}
61
64769240
AT
62static void ext4_invalidatepage(struct page *page, unsigned long offset);
63
ac27a0ec
DK
64/*
65 * Test whether an inode is a fast symlink.
66 */
617ba13b 67static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 68{
617ba13b 69 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
70 (inode->i_sb->s_blocksize >> 9) : 0;
71
72 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
73}
74
ac27a0ec
DK
75/*
76 * Work out how many blocks we need to proceed with the next chunk of a
77 * truncate transaction.
78 */
79static unsigned long blocks_for_truncate(struct inode *inode)
80{
725d26d3 81 ext4_lblk_t needed;
ac27a0ec
DK
82
83 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
84
85 /* Give ourselves just enough room to cope with inodes in which
86 * i_blocks is corrupt: we've seen disk corruptions in the past
87 * which resulted in random data in an inode which looked enough
617ba13b 88 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
89 * will go a bit crazy if that happens, but at least we should
90 * try not to panic the whole kernel. */
91 if (needed < 2)
92 needed = 2;
93
94 /* But we need to bound the transaction so we don't overflow the
95 * journal. */
617ba13b
MC
96 if (needed > EXT4_MAX_TRANS_DATA)
97 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 98
617ba13b 99 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
100}
101
102/*
103 * Truncate transactions can be complex and absolutely huge. So we need to
104 * be able to restart the transaction at a conventient checkpoint to make
105 * sure we don't overflow the journal.
106 *
107 * start_transaction gets us a new handle for a truncate transaction,
108 * and extend_transaction tries to extend the existing one a bit. If
109 * extend fails, we need to propagate the failure up and restart the
110 * transaction in the top-level truncate loop. --sct
111 */
112static handle_t *start_transaction(struct inode *inode)
113{
114 handle_t *result;
115
617ba13b 116 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
117 if (!IS_ERR(result))
118 return result;
119
617ba13b 120 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
121 return result;
122}
123
124/*
125 * Try to extend this transaction for the purposes of truncation.
126 *
127 * Returns 0 if we managed to create more room. If we can't create more
128 * room, and the transaction must be restarted we return 1.
129 */
130static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
131{
0390131b
FM
132 if (!ext4_handle_valid(handle))
133 return 0;
134 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
ac27a0ec 135 return 0;
617ba13b 136 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
137 return 0;
138 return 1;
139}
140
141/*
142 * Restart the transaction associated with *handle. This does a commit,
143 * so before we call here everything must be consistently dirtied against
144 * this transaction.
145 */
fa5d1113 146int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 147 int nblocks)
ac27a0ec 148{
487caeef
JK
149 int ret;
150
151 /*
152 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
153 * moment, get_block can be called only for blocks inside i_size since
154 * page cache has been already dropped and writes are blocked by
155 * i_mutex. So we can safely drop the i_data_sem here.
156 */
0390131b 157 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 158 jbd_debug(2, "restarting handle %p\n", handle);
487caeef
JK
159 up_write(&EXT4_I(inode)->i_data_sem);
160 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
161 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 162 ext4_discard_preallocations(inode);
487caeef
JK
163
164 return ret;
ac27a0ec
DK
165}
166
167/*
168 * Called at the last iput() if i_nlink is zero.
169 */
af5bc92d 170void ext4_delete_inode(struct inode *inode)
ac27a0ec
DK
171{
172 handle_t *handle;
bc965ab3 173 int err;
ac27a0ec 174
907f4554 175 if (!is_bad_inode(inode))
871a2931 176 dquot_initialize(inode);
907f4554 177
678aaf48
JK
178 if (ext4_should_order_data(inode))
179 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
180 truncate_inode_pages(&inode->i_data, 0);
181
182 if (is_bad_inode(inode))
183 goto no_delete;
184
bc965ab3 185 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 186 if (IS_ERR(handle)) {
bc965ab3 187 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
188 /*
189 * If we're going to skip the normal cleanup, we still need to
190 * make sure that the in-core orphan linked list is properly
191 * cleaned up.
192 */
617ba13b 193 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
194 goto no_delete;
195 }
196
197 if (IS_SYNC(inode))
0390131b 198 ext4_handle_sync(handle);
ac27a0ec 199 inode->i_size = 0;
bc965ab3
TT
200 err = ext4_mark_inode_dirty(handle, inode);
201 if (err) {
12062ddd 202 ext4_warning(inode->i_sb,
bc965ab3
TT
203 "couldn't mark inode dirty (err %d)", err);
204 goto stop_handle;
205 }
ac27a0ec 206 if (inode->i_blocks)
617ba13b 207 ext4_truncate(inode);
bc965ab3
TT
208
209 /*
210 * ext4_ext_truncate() doesn't reserve any slop when it
211 * restarts journal transactions; therefore there may not be
212 * enough credits left in the handle to remove the inode from
213 * the orphan list and set the dtime field.
214 */
0390131b 215 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
216 err = ext4_journal_extend(handle, 3);
217 if (err > 0)
218 err = ext4_journal_restart(handle, 3);
219 if (err != 0) {
12062ddd 220 ext4_warning(inode->i_sb,
bc965ab3
TT
221 "couldn't extend journal (err %d)", err);
222 stop_handle:
223 ext4_journal_stop(handle);
224 goto no_delete;
225 }
226 }
227
ac27a0ec 228 /*
617ba13b 229 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 230 * AKPM: I think this can be inside the above `if'.
617ba13b 231 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 232 * deletion of a non-existent orphan - this is because we don't
617ba13b 233 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
234 * (Well, we could do this if we need to, but heck - it works)
235 */
617ba13b
MC
236 ext4_orphan_del(handle, inode);
237 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
238
239 /*
240 * One subtle ordering requirement: if anything has gone wrong
241 * (transaction abort, IO errors, whatever), then we can still
242 * do these next steps (the fs will already have been marked as
243 * having errors), but we can't free the inode if the mark_dirty
244 * fails.
245 */
617ba13b 246 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
247 /* If that failed, just do the required in-core inode clear. */
248 clear_inode(inode);
249 else
617ba13b
MC
250 ext4_free_inode(handle, inode);
251 ext4_journal_stop(handle);
ac27a0ec
DK
252 return;
253no_delete:
254 clear_inode(inode); /* We must guarantee clearing of inode... */
255}
256
257typedef struct {
258 __le32 *p;
259 __le32 key;
260 struct buffer_head *bh;
261} Indirect;
262
263static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
264{
265 p->key = *(p->p = v);
266 p->bh = bh;
267}
268
ac27a0ec 269/**
617ba13b 270 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
271 * @inode: inode in question (we are only interested in its superblock)
272 * @i_block: block number to be parsed
273 * @offsets: array to store the offsets in
8c55e204
DK
274 * @boundary: set this non-zero if the referred-to block is likely to be
275 * followed (on disk) by an indirect block.
ac27a0ec 276 *
617ba13b 277 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
278 * for UNIX filesystems - tree of pointers anchored in the inode, with
279 * data blocks at leaves and indirect blocks in intermediate nodes.
280 * This function translates the block number into path in that tree -
281 * return value is the path length and @offsets[n] is the offset of
282 * pointer to (n+1)th node in the nth one. If @block is out of range
283 * (negative or too large) warning is printed and zero returned.
284 *
285 * Note: function doesn't find node addresses, so no IO is needed. All
286 * we need to know is the capacity of indirect blocks (taken from the
287 * inode->i_sb).
288 */
289
290/*
291 * Portability note: the last comparison (check that we fit into triple
292 * indirect block) is spelled differently, because otherwise on an
293 * architecture with 32-bit longs and 8Kb pages we might get into trouble
294 * if our filesystem had 8Kb blocks. We might use long long, but that would
295 * kill us on x86. Oh, well, at least the sign propagation does not matter -
296 * i_block would have to be negative in the very beginning, so we would not
297 * get there at all.
298 */
299
617ba13b 300static int ext4_block_to_path(struct inode *inode,
de9a55b8
TT
301 ext4_lblk_t i_block,
302 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 303{
617ba13b
MC
304 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
305 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
306 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
307 indirect_blocks = ptrs,
308 double_blocks = (1 << (ptrs_bits * 2));
309 int n = 0;
310 int final = 0;
311
c333e073 312 if (i_block < direct_blocks) {
ac27a0ec
DK
313 offsets[n++] = i_block;
314 final = direct_blocks;
af5bc92d 315 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 316 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
317 offsets[n++] = i_block;
318 final = ptrs;
319 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 320 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
321 offsets[n++] = i_block >> ptrs_bits;
322 offsets[n++] = i_block & (ptrs - 1);
323 final = ptrs;
324 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 325 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
326 offsets[n++] = i_block >> (ptrs_bits * 2);
327 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
328 offsets[n++] = i_block & (ptrs - 1);
329 final = ptrs;
330 } else {
12062ddd 331 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
de9a55b8
TT
332 i_block + direct_blocks +
333 indirect_blocks + double_blocks, inode->i_ino);
ac27a0ec
DK
334 }
335 if (boundary)
336 *boundary = final - 1 - (i_block & (ptrs - 1));
337 return n;
338}
339
fe2c8191 340static int __ext4_check_blockref(const char *function, struct inode *inode,
6fd058f7
TT
341 __le32 *p, unsigned int max)
342{
f73953c0 343 __le32 *bref = p;
6fd058f7
TT
344 unsigned int blk;
345
fe2c8191 346 while (bref < p+max) {
6fd058f7 347 blk = le32_to_cpu(*bref++);
de9a55b8
TT
348 if (blk &&
349 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
6fd058f7 350 blk, 1))) {
12062ddd 351 __ext4_error(inode->i_sb, function,
6fd058f7
TT
352 "invalid block reference %u "
353 "in inode #%lu", blk, inode->i_ino);
de9a55b8
TT
354 return -EIO;
355 }
356 }
357 return 0;
fe2c8191
TN
358}
359
360
361#define ext4_check_indirect_blockref(inode, bh) \
de9a55b8 362 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
fe2c8191
TN
363 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
364
365#define ext4_check_inode_blockref(inode) \
de9a55b8 366 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
fe2c8191
TN
367 EXT4_NDIR_BLOCKS)
368
ac27a0ec 369/**
617ba13b 370 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
371 * @inode: inode in question
372 * @depth: depth of the chain (1 - direct pointer, etc.)
373 * @offsets: offsets of pointers in inode/indirect blocks
374 * @chain: place to store the result
375 * @err: here we store the error value
376 *
377 * Function fills the array of triples <key, p, bh> and returns %NULL
378 * if everything went OK or the pointer to the last filled triple
379 * (incomplete one) otherwise. Upon the return chain[i].key contains
380 * the number of (i+1)-th block in the chain (as it is stored in memory,
381 * i.e. little-endian 32-bit), chain[i].p contains the address of that
382 * number (it points into struct inode for i==0 and into the bh->b_data
383 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
384 * block for i>0 and NULL for i==0. In other words, it holds the block
385 * numbers of the chain, addresses they were taken from (and where we can
386 * verify that chain did not change) and buffer_heads hosting these
387 * numbers.
388 *
389 * Function stops when it stumbles upon zero pointer (absent block)
390 * (pointer to last triple returned, *@err == 0)
391 * or when it gets an IO error reading an indirect block
392 * (ditto, *@err == -EIO)
ac27a0ec
DK
393 * or when it reads all @depth-1 indirect blocks successfully and finds
394 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
395 *
396 * Need to be called with
0e855ac8 397 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 398 */
725d26d3
AK
399static Indirect *ext4_get_branch(struct inode *inode, int depth,
400 ext4_lblk_t *offsets,
ac27a0ec
DK
401 Indirect chain[4], int *err)
402{
403 struct super_block *sb = inode->i_sb;
404 Indirect *p = chain;
405 struct buffer_head *bh;
406
407 *err = 0;
408 /* i_data is not going away, no lock needed */
af5bc92d 409 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
410 if (!p->key)
411 goto no_block;
412 while (--depth) {
fe2c8191
TN
413 bh = sb_getblk(sb, le32_to_cpu(p->key));
414 if (unlikely(!bh))
ac27a0ec 415 goto failure;
de9a55b8 416
fe2c8191
TN
417 if (!bh_uptodate_or_lock(bh)) {
418 if (bh_submit_read(bh) < 0) {
419 put_bh(bh);
420 goto failure;
421 }
422 /* validate block references */
423 if (ext4_check_indirect_blockref(inode, bh)) {
424 put_bh(bh);
425 goto failure;
426 }
427 }
de9a55b8 428
af5bc92d 429 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
430 /* Reader: end */
431 if (!p->key)
432 goto no_block;
433 }
434 return NULL;
435
ac27a0ec
DK
436failure:
437 *err = -EIO;
438no_block:
439 return p;
440}
441
442/**
617ba13b 443 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
444 * @inode: owner
445 * @ind: descriptor of indirect block.
446 *
1cc8dcf5 447 * This function returns the preferred place for block allocation.
ac27a0ec
DK
448 * It is used when heuristic for sequential allocation fails.
449 * Rules are:
450 * + if there is a block to the left of our position - allocate near it.
451 * + if pointer will live in indirect block - allocate near that block.
452 * + if pointer will live in inode - allocate in the same
453 * cylinder group.
454 *
455 * In the latter case we colour the starting block by the callers PID to
456 * prevent it from clashing with concurrent allocations for a different inode
457 * in the same block group. The PID is used here so that functionally related
458 * files will be close-by on-disk.
459 *
460 * Caller must make sure that @ind is valid and will stay that way.
461 */
617ba13b 462static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 463{
617ba13b 464 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 465 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 466 __le32 *p;
617ba13b 467 ext4_fsblk_t bg_start;
74d3487f 468 ext4_fsblk_t last_block;
617ba13b 469 ext4_grpblk_t colour;
a4912123
TT
470 ext4_group_t block_group;
471 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
ac27a0ec
DK
472
473 /* Try to find previous block */
474 for (p = ind->p - 1; p >= start; p--) {
475 if (*p)
476 return le32_to_cpu(*p);
477 }
478
479 /* No such thing, so let's try location of indirect block */
480 if (ind->bh)
481 return ind->bh->b_blocknr;
482
483 /*
484 * It is going to be referred to from the inode itself? OK, just put it
485 * into the same cylinder group then.
486 */
a4912123
TT
487 block_group = ei->i_block_group;
488 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
489 block_group &= ~(flex_size-1);
490 if (S_ISREG(inode->i_mode))
491 block_group++;
492 }
493 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
74d3487f
VC
494 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
495
a4912123
TT
496 /*
497 * If we are doing delayed allocation, we don't need take
498 * colour into account.
499 */
500 if (test_opt(inode->i_sb, DELALLOC))
501 return bg_start;
502
74d3487f
VC
503 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
504 colour = (current->pid % 16) *
617ba13b 505 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
506 else
507 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
508 return bg_start + colour;
509}
510
511/**
1cc8dcf5 512 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
513 * @inode: owner
514 * @block: block we want
ac27a0ec 515 * @partial: pointer to the last triple within a chain
ac27a0ec 516 *
1cc8dcf5 517 * Normally this function find the preferred place for block allocation,
fb01bfda 518 * returns it.
fb0a387d
ES
519 * Because this is only used for non-extent files, we limit the block nr
520 * to 32 bits.
ac27a0ec 521 */
725d26d3 522static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
de9a55b8 523 Indirect *partial)
ac27a0ec 524{
fb0a387d
ES
525 ext4_fsblk_t goal;
526
ac27a0ec 527 /*
c2ea3fde 528 * XXX need to get goal block from mballoc's data structures
ac27a0ec 529 */
ac27a0ec 530
fb0a387d
ES
531 goal = ext4_find_near(inode, partial);
532 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
533 return goal;
ac27a0ec
DK
534}
535
536/**
617ba13b 537 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
538 * of direct blocks need to be allocated for the given branch.
539 *
540 * @branch: chain of indirect blocks
541 * @k: number of blocks need for indirect blocks
542 * @blks: number of data blocks to be mapped.
543 * @blocks_to_boundary: the offset in the indirect block
544 *
545 * return the total number of blocks to be allocate, including the
546 * direct and indirect blocks.
547 */
498e5f24 548static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
de9a55b8 549 int blocks_to_boundary)
ac27a0ec 550{
498e5f24 551 unsigned int count = 0;
ac27a0ec
DK
552
553 /*
554 * Simple case, [t,d]Indirect block(s) has not allocated yet
555 * then it's clear blocks on that path have not allocated
556 */
557 if (k > 0) {
558 /* right now we don't handle cross boundary allocation */
559 if (blks < blocks_to_boundary + 1)
560 count += blks;
561 else
562 count += blocks_to_boundary + 1;
563 return count;
564 }
565
566 count++;
567 while (count < blks && count <= blocks_to_boundary &&
568 le32_to_cpu(*(branch[0].p + count)) == 0) {
569 count++;
570 }
571 return count;
572}
573
574/**
617ba13b 575 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
576 * @indirect_blks: the number of blocks need to allocate for indirect
577 * blocks
578 *
579 * @new_blocks: on return it will store the new block numbers for
580 * the indirect blocks(if needed) and the first direct block,
581 * @blks: on return it will store the total number of allocated
582 * direct blocks
583 */
617ba13b 584static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
585 ext4_lblk_t iblock, ext4_fsblk_t goal,
586 int indirect_blks, int blks,
587 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 588{
815a1130 589 struct ext4_allocation_request ar;
ac27a0ec 590 int target, i;
7061eba7 591 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 592 int index = 0;
617ba13b 593 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
594 int ret = 0;
595
596 /*
597 * Here we try to allocate the requested multiple blocks at once,
598 * on a best-effort basis.
599 * To build a branch, we should allocate blocks for
600 * the indirect blocks(if not allocated yet), and at least
601 * the first direct block of this branch. That's the
602 * minimum number of blocks need to allocate(required)
603 */
7061eba7
AK
604 /* first we try to allocate the indirect blocks */
605 target = indirect_blks;
606 while (target > 0) {
ac27a0ec
DK
607 count = target;
608 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
609 current_block = ext4_new_meta_blocks(handle, inode,
610 goal, &count, err);
ac27a0ec
DK
611 if (*err)
612 goto failed_out;
613
273df556
FM
614 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
615 EXT4_ERROR_INODE(inode,
616 "current_block %llu + count %lu > %d!",
617 current_block, count,
618 EXT4_MAX_BLOCK_FILE_PHYS);
619 *err = -EIO;
620 goto failed_out;
621 }
fb0a387d 622
ac27a0ec
DK
623 target -= count;
624 /* allocate blocks for indirect blocks */
625 while (index < indirect_blks && count) {
626 new_blocks[index++] = current_block++;
627 count--;
628 }
7061eba7
AK
629 if (count > 0) {
630 /*
631 * save the new block number
632 * for the first direct block
633 */
634 new_blocks[index] = current_block;
635 printk(KERN_INFO "%s returned more blocks than "
636 "requested\n", __func__);
637 WARN_ON(1);
ac27a0ec 638 break;
7061eba7 639 }
ac27a0ec
DK
640 }
641
7061eba7
AK
642 target = blks - count ;
643 blk_allocated = count;
644 if (!target)
645 goto allocated;
646 /* Now allocate data blocks */
815a1130
TT
647 memset(&ar, 0, sizeof(ar));
648 ar.inode = inode;
649 ar.goal = goal;
650 ar.len = target;
651 ar.logical = iblock;
652 if (S_ISREG(inode->i_mode))
653 /* enable in-core preallocation only for regular files */
654 ar.flags = EXT4_MB_HINT_DATA;
655
656 current_block = ext4_mb_new_blocks(handle, &ar, err);
273df556
FM
657 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
658 EXT4_ERROR_INODE(inode,
659 "current_block %llu + ar.len %d > %d!",
660 current_block, ar.len,
661 EXT4_MAX_BLOCK_FILE_PHYS);
662 *err = -EIO;
663 goto failed_out;
664 }
815a1130 665
7061eba7
AK
666 if (*err && (target == blks)) {
667 /*
668 * if the allocation failed and we didn't allocate
669 * any blocks before
670 */
671 goto failed_out;
672 }
673 if (!*err) {
674 if (target == blks) {
de9a55b8
TT
675 /*
676 * save the new block number
677 * for the first direct block
678 */
7061eba7
AK
679 new_blocks[index] = current_block;
680 }
815a1130 681 blk_allocated += ar.len;
7061eba7
AK
682 }
683allocated:
ac27a0ec 684 /* total number of blocks allocated for direct blocks */
7061eba7 685 ret = blk_allocated;
ac27a0ec
DK
686 *err = 0;
687 return ret;
688failed_out:
af5bc92d 689 for (i = 0; i < index; i++)
e6362609 690 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
ac27a0ec
DK
691 return ret;
692}
693
694/**
617ba13b 695 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
696 * @inode: owner
697 * @indirect_blks: number of allocated indirect blocks
698 * @blks: number of allocated direct blocks
699 * @offsets: offsets (in the blocks) to store the pointers to next.
700 * @branch: place to store the chain in.
701 *
702 * This function allocates blocks, zeroes out all but the last one,
703 * links them into chain and (if we are synchronous) writes them to disk.
704 * In other words, it prepares a branch that can be spliced onto the
705 * inode. It stores the information about that chain in the branch[], in
617ba13b 706 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
707 * we had read the existing part of chain and partial points to the last
708 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 709 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
710 * place chain is disconnected - *branch->p is still zero (we did not
711 * set the last link), but branch->key contains the number that should
712 * be placed into *branch->p to fill that gap.
713 *
714 * If allocation fails we free all blocks we've allocated (and forget
715 * their buffer_heads) and return the error value the from failed
617ba13b 716 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
717 * as described above and return 0.
718 */
617ba13b 719static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
720 ext4_lblk_t iblock, int indirect_blks,
721 int *blks, ext4_fsblk_t goal,
722 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
723{
724 int blocksize = inode->i_sb->s_blocksize;
725 int i, n = 0;
726 int err = 0;
727 struct buffer_head *bh;
728 int num;
617ba13b
MC
729 ext4_fsblk_t new_blocks[4];
730 ext4_fsblk_t current_block;
ac27a0ec 731
7061eba7 732 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
733 *blks, new_blocks, &err);
734 if (err)
735 return err;
736
737 branch[0].key = cpu_to_le32(new_blocks[0]);
738 /*
739 * metadata blocks and data blocks are allocated.
740 */
741 for (n = 1; n <= indirect_blks; n++) {
742 /*
743 * Get buffer_head for parent block, zero it out
744 * and set the pointer to new one, then send
745 * parent to disk.
746 */
747 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
748 branch[n].bh = bh;
749 lock_buffer(bh);
750 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 751 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec 752 if (err) {
6487a9d3
CW
753 /* Don't brelse(bh) here; it's done in
754 * ext4_journal_forget() below */
ac27a0ec 755 unlock_buffer(bh);
ac27a0ec
DK
756 goto failed;
757 }
758
759 memset(bh->b_data, 0, blocksize);
760 branch[n].p = (__le32 *) bh->b_data + offsets[n];
761 branch[n].key = cpu_to_le32(new_blocks[n]);
762 *branch[n].p = branch[n].key;
af5bc92d 763 if (n == indirect_blks) {
ac27a0ec
DK
764 current_block = new_blocks[n];
765 /*
766 * End of chain, update the last new metablock of
767 * the chain to point to the new allocated
768 * data blocks numbers
769 */
de9a55b8 770 for (i = 1; i < num; i++)
ac27a0ec
DK
771 *(branch[n].p + i) = cpu_to_le32(++current_block);
772 }
773 BUFFER_TRACE(bh, "marking uptodate");
774 set_buffer_uptodate(bh);
775 unlock_buffer(bh);
776
0390131b
FM
777 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
778 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
779 if (err)
780 goto failed;
781 }
782 *blks = num;
783 return err;
784failed:
785 /* Allocation failed, free what we already allocated */
e6362609 786 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
ac27a0ec 787 for (i = 1; i <= n ; i++) {
b7e57e7c 788 /*
e6362609
TT
789 * branch[i].bh is newly allocated, so there is no
790 * need to revoke the block, which is why we don't
791 * need to set EXT4_FREE_BLOCKS_METADATA.
b7e57e7c 792 */
e6362609
TT
793 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
794 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec 795 }
e6362609
TT
796 for (i = n+1; i < indirect_blks; i++)
797 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
ac27a0ec 798
e6362609 799 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
ac27a0ec
DK
800
801 return err;
802}
803
804/**
617ba13b 805 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
806 * @inode: owner
807 * @block: (logical) number of block we are adding
808 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 809 * ext4_alloc_branch)
ac27a0ec
DK
810 * @where: location of missing link
811 * @num: number of indirect blocks we are adding
812 * @blks: number of direct blocks we are adding
813 *
814 * This function fills the missing link and does all housekeeping needed in
815 * inode (->i_blocks, etc.). In case of success we end up with the full
816 * chain to new block and return 0.
817 */
617ba13b 818static int ext4_splice_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
819 ext4_lblk_t block, Indirect *where, int num,
820 int blks)
ac27a0ec
DK
821{
822 int i;
823 int err = 0;
617ba13b 824 ext4_fsblk_t current_block;
ac27a0ec 825
ac27a0ec
DK
826 /*
827 * If we're splicing into a [td]indirect block (as opposed to the
828 * inode) then we need to get write access to the [td]indirect block
829 * before the splice.
830 */
831 if (where->bh) {
832 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 833 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
834 if (err)
835 goto err_out;
836 }
837 /* That's it */
838
839 *where->p = where->key;
840
841 /*
842 * Update the host buffer_head or inode to point to more just allocated
843 * direct blocks blocks
844 */
845 if (num == 0 && blks > 1) {
846 current_block = le32_to_cpu(where->key) + 1;
847 for (i = 1; i < blks; i++)
af5bc92d 848 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
849 }
850
ac27a0ec 851 /* We are done with atomic stuff, now do the rest of housekeeping */
ac27a0ec
DK
852 /* had we spliced it onto indirect block? */
853 if (where->bh) {
854 /*
855 * If we spliced it onto an indirect block, we haven't
856 * altered the inode. Note however that if it is being spliced
857 * onto an indirect block at the very end of the file (the
858 * file is growing) then we *will* alter the inode to reflect
859 * the new i_size. But that is not done here - it is done in
617ba13b 860 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
861 */
862 jbd_debug(5, "splicing indirect only\n");
0390131b
FM
863 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
864 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
ac27a0ec
DK
865 if (err)
866 goto err_out;
867 } else {
868 /*
869 * OK, we spliced it into the inode itself on a direct block.
ac27a0ec 870 */
41591750 871 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
872 jbd_debug(5, "splicing direct\n");
873 }
874 return err;
875
876err_out:
877 for (i = 1; i <= num; i++) {
b7e57e7c 878 /*
e6362609
TT
879 * branch[i].bh is newly allocated, so there is no
880 * need to revoke the block, which is why we don't
881 * need to set EXT4_FREE_BLOCKS_METADATA.
b7e57e7c 882 */
e6362609
TT
883 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
884 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec 885 }
e6362609
TT
886 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
887 blks, 0);
ac27a0ec
DK
888
889 return err;
890}
891
892/*
b920c755
TT
893 * The ext4_ind_get_blocks() function handles non-extents inodes
894 * (i.e., using the traditional indirect/double-indirect i_blocks
895 * scheme) for ext4_get_blocks().
896 *
ac27a0ec
DK
897 * Allocation strategy is simple: if we have to allocate something, we will
898 * have to go the whole way to leaf. So let's do it before attaching anything
899 * to tree, set linkage between the newborn blocks, write them if sync is
900 * required, recheck the path, free and repeat if check fails, otherwise
901 * set the last missing link (that will protect us from any truncate-generated
902 * removals - all blocks on the path are immune now) and possibly force the
903 * write on the parent block.
904 * That has a nice additional property: no special recovery from the failed
905 * allocations is needed - we simply release blocks and do not touch anything
906 * reachable from inode.
907 *
908 * `handle' can be NULL if create == 0.
909 *
ac27a0ec
DK
910 * return > 0, # of blocks mapped or allocated.
911 * return = 0, if plain lookup failed.
912 * return < 0, error case.
c278bfec 913 *
b920c755
TT
914 * The ext4_ind_get_blocks() function should be called with
915 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
916 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
917 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
918 * blocks.
ac27a0ec 919 */
e4d996ca 920static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
921 ext4_lblk_t iblock, unsigned int maxblocks,
922 struct buffer_head *bh_result,
923 int flags)
ac27a0ec
DK
924{
925 int err = -EIO;
725d26d3 926 ext4_lblk_t offsets[4];
ac27a0ec
DK
927 Indirect chain[4];
928 Indirect *partial;
617ba13b 929 ext4_fsblk_t goal;
ac27a0ec
DK
930 int indirect_blks;
931 int blocks_to_boundary = 0;
932 int depth;
ac27a0ec 933 int count = 0;
617ba13b 934 ext4_fsblk_t first_block = 0;
ac27a0ec 935
a86c6181 936 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
c2177057 937 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
725d26d3 938 depth = ext4_block_to_path(inode, iblock, offsets,
de9a55b8 939 &blocks_to_boundary);
ac27a0ec
DK
940
941 if (depth == 0)
942 goto out;
943
617ba13b 944 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
945
946 /* Simplest case - block found, no allocation needed */
947 if (!partial) {
948 first_block = le32_to_cpu(chain[depth - 1].key);
949 clear_buffer_new(bh_result);
950 count++;
951 /*map more blocks*/
952 while (count < maxblocks && count <= blocks_to_boundary) {
617ba13b 953 ext4_fsblk_t blk;
ac27a0ec 954
ac27a0ec
DK
955 blk = le32_to_cpu(*(chain[depth-1].p + count));
956
957 if (blk == first_block + count)
958 count++;
959 else
960 break;
961 }
c278bfec 962 goto got_it;
ac27a0ec
DK
963 }
964
965 /* Next simple case - plain lookup or failed read of indirect block */
c2177057 966 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
ac27a0ec
DK
967 goto cleanup;
968
ac27a0ec 969 /*
c2ea3fde 970 * Okay, we need to do block allocation.
ac27a0ec 971 */
fb01bfda 972 goal = ext4_find_goal(inode, iblock, partial);
ac27a0ec
DK
973
974 /* the number of blocks need to allocate for [d,t]indirect blocks */
975 indirect_blks = (chain + depth) - partial - 1;
976
977 /*
978 * Next look up the indirect map to count the totoal number of
979 * direct blocks to allocate for this branch.
980 */
617ba13b 981 count = ext4_blks_to_allocate(partial, indirect_blks,
ac27a0ec
DK
982 maxblocks, blocks_to_boundary);
983 /*
617ba13b 984 * Block out ext4_truncate while we alter the tree
ac27a0ec 985 */
7061eba7 986 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
de9a55b8
TT
987 &count, goal,
988 offsets + (partial - chain), partial);
ac27a0ec
DK
989
990 /*
617ba13b 991 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
992 * on the new chain if there is a failure, but that risks using
993 * up transaction credits, especially for bitmaps where the
994 * credits cannot be returned. Can we handle this somehow? We
995 * may need to return -EAGAIN upwards in the worst case. --sct
996 */
997 if (!err)
617ba13b 998 err = ext4_splice_branch(handle, inode, iblock,
de9a55b8 999 partial, indirect_blks, count);
2bba702d 1000 if (err)
ac27a0ec
DK
1001 goto cleanup;
1002
1003 set_buffer_new(bh_result);
b436b9be
JK
1004
1005 ext4_update_inode_fsync_trans(handle, inode, 1);
ac27a0ec
DK
1006got_it:
1007 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1008 if (count > blocks_to_boundary)
1009 set_buffer_boundary(bh_result);
1010 err = count;
1011 /* Clean up and exit */
1012 partial = chain + depth - 1; /* the whole chain */
1013cleanup:
1014 while (partial > chain) {
1015 BUFFER_TRACE(partial->bh, "call brelse");
1016 brelse(partial->bh);
1017 partial--;
1018 }
1019 BUFFER_TRACE(bh_result, "returned");
1020out:
1021 return err;
1022}
1023
a9e7f447
DM
1024#ifdef CONFIG_QUOTA
1025qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 1026{
a9e7f447 1027 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 1028}
a9e7f447 1029#endif
9d0be502 1030
12219aea
AK
1031/*
1032 * Calculate the number of metadata blocks need to reserve
9d0be502 1033 * to allocate a new block at @lblocks for non extent file based file
12219aea 1034 */
9d0be502
TT
1035static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1036 sector_t lblock)
12219aea 1037{
9d0be502 1038 struct ext4_inode_info *ei = EXT4_I(inode);
d330a5be 1039 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
9d0be502 1040 int blk_bits;
12219aea 1041
9d0be502
TT
1042 if (lblock < EXT4_NDIR_BLOCKS)
1043 return 0;
12219aea 1044
9d0be502 1045 lblock -= EXT4_NDIR_BLOCKS;
12219aea 1046
9d0be502
TT
1047 if (ei->i_da_metadata_calc_len &&
1048 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1049 ei->i_da_metadata_calc_len++;
1050 return 0;
1051 }
1052 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1053 ei->i_da_metadata_calc_len = 1;
d330a5be 1054 blk_bits = order_base_2(lblock);
9d0be502 1055 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
12219aea
AK
1056}
1057
1058/*
1059 * Calculate the number of metadata blocks need to reserve
9d0be502 1060 * to allocate a block located at @lblock
12219aea 1061 */
9d0be502 1062static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
12219aea
AK
1063{
1064 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
9d0be502 1065 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 1066
9d0be502 1067 return ext4_indirect_calc_metadata_amount(inode, lblock);
12219aea
AK
1068}
1069
0637c6f4
TT
1070/*
1071 * Called with i_data_sem down, which is important since we can call
1072 * ext4_discard_preallocations() from here.
1073 */
5f634d06
AK
1074void ext4_da_update_reserve_space(struct inode *inode,
1075 int used, int quota_claim)
12219aea
AK
1076{
1077 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1078 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
1079
1080 spin_lock(&ei->i_block_reservation_lock);
f8ec9d68 1081 trace_ext4_da_update_reserve_space(inode, used);
0637c6f4
TT
1082 if (unlikely(used > ei->i_reserved_data_blocks)) {
1083 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1084 "with only %d reserved data blocks\n",
1085 __func__, inode->i_ino, used,
1086 ei->i_reserved_data_blocks);
1087 WARN_ON(1);
1088 used = ei->i_reserved_data_blocks;
1089 }
12219aea 1090
0637c6f4
TT
1091 /* Update per-inode reservations */
1092 ei->i_reserved_data_blocks -= used;
0637c6f4 1093 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
72b8ab9d
ES
1094 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1095 used + ei->i_allocated_meta_blocks);
0637c6f4 1096 ei->i_allocated_meta_blocks = 0;
6bc6e63f 1097
0637c6f4
TT
1098 if (ei->i_reserved_data_blocks == 0) {
1099 /*
1100 * We can release all of the reserved metadata blocks
1101 * only when we have written all of the delayed
1102 * allocation blocks.
1103 */
72b8ab9d
ES
1104 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1105 ei->i_reserved_meta_blocks);
ee5f4d9c 1106 ei->i_reserved_meta_blocks = 0;
9d0be502 1107 ei->i_da_metadata_calc_len = 0;
6bc6e63f 1108 }
12219aea 1109 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1110
72b8ab9d
ES
1111 /* Update quota subsystem for data blocks */
1112 if (quota_claim)
5dd4056d 1113 dquot_claim_block(inode, used);
72b8ab9d 1114 else {
5f634d06
AK
1115 /*
1116 * We did fallocate with an offset that is already delayed
1117 * allocated. So on delayed allocated writeback we should
72b8ab9d 1118 * not re-claim the quota for fallocated blocks.
5f634d06 1119 */
72b8ab9d 1120 dquot_release_reservation_block(inode, used);
5f634d06 1121 }
d6014301
AK
1122
1123 /*
1124 * If we have done all the pending block allocations and if
1125 * there aren't any writers on the inode, we can discard the
1126 * inode's preallocations.
1127 */
0637c6f4
TT
1128 if ((ei->i_reserved_data_blocks == 0) &&
1129 (atomic_read(&inode->i_writecount) == 0))
d6014301 1130 ext4_discard_preallocations(inode);
12219aea
AK
1131}
1132
80e42468
TT
1133static int check_block_validity(struct inode *inode, const char *msg,
1134 sector_t logical, sector_t phys, int len)
6fd058f7
TT
1135{
1136 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
12062ddd 1137 __ext4_error(inode->i_sb, msg,
6fd058f7
TT
1138 "inode #%lu logical block %llu mapped to %llu "
1139 "(size %d)", inode->i_ino,
1140 (unsigned long long) logical,
1141 (unsigned long long) phys, len);
6fd058f7
TT
1142 return -EIO;
1143 }
1144 return 0;
1145}
1146
55138e0b 1147/*
1f94533d
TT
1148 * Return the number of contiguous dirty pages in a given inode
1149 * starting at page frame idx.
55138e0b
TT
1150 */
1151static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1152 unsigned int max_pages)
1153{
1154 struct address_space *mapping = inode->i_mapping;
1155 pgoff_t index;
1156 struct pagevec pvec;
1157 pgoff_t num = 0;
1158 int i, nr_pages, done = 0;
1159
1160 if (max_pages == 0)
1161 return 0;
1162 pagevec_init(&pvec, 0);
1163 while (!done) {
1164 index = idx;
1165 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1166 PAGECACHE_TAG_DIRTY,
1167 (pgoff_t)PAGEVEC_SIZE);
1168 if (nr_pages == 0)
1169 break;
1170 for (i = 0; i < nr_pages; i++) {
1171 struct page *page = pvec.pages[i];
1172 struct buffer_head *bh, *head;
1173
1174 lock_page(page);
1175 if (unlikely(page->mapping != mapping) ||
1176 !PageDirty(page) ||
1177 PageWriteback(page) ||
1178 page->index != idx) {
1179 done = 1;
1180 unlock_page(page);
1181 break;
1182 }
1f94533d
TT
1183 if (page_has_buffers(page)) {
1184 bh = head = page_buffers(page);
1185 do {
1186 if (!buffer_delay(bh) &&
1187 !buffer_unwritten(bh))
1188 done = 1;
1189 bh = bh->b_this_page;
1190 } while (!done && (bh != head));
1191 }
55138e0b
TT
1192 unlock_page(page);
1193 if (done)
1194 break;
1195 idx++;
1196 num++;
1197 if (num >= max_pages)
1198 break;
1199 }
1200 pagevec_release(&pvec);
1201 }
1202 return num;
1203}
1204
f5ab0d1f 1205/*
12b7ac17 1206 * The ext4_get_blocks() function tries to look up the requested blocks,
2b2d6d01 1207 * and returns if the blocks are already mapped.
f5ab0d1f 1208 *
f5ab0d1f
MC
1209 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1210 * and store the allocated blocks in the result buffer head and mark it
1211 * mapped.
1212 *
1213 * If file type is extents based, it will call ext4_ext_get_blocks(),
e4d996ca 1214 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
f5ab0d1f
MC
1215 * based files
1216 *
1217 * On success, it returns the number of blocks being mapped or allocate.
1218 * if create==0 and the blocks are pre-allocated and uninitialized block,
1219 * the result buffer head is unmapped. If the create ==1, it will make sure
1220 * the buffer head is mapped.
1221 *
1222 * It returns 0 if plain look up failed (blocks have not been allocated), in
1223 * that casem, buffer head is unmapped
1224 *
1225 * It returns the error in case of allocation failure.
1226 */
12b7ac17
TT
1227int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1228 unsigned int max_blocks, struct buffer_head *bh,
c2177057 1229 int flags)
0e855ac8
AK
1230{
1231 int retval;
f5ab0d1f
MC
1232
1233 clear_buffer_mapped(bh);
2a8964d6 1234 clear_buffer_unwritten(bh);
f5ab0d1f 1235
0031462b
MC
1236 ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1237 "logical block %lu\n", inode->i_ino, flags, max_blocks,
1238 (unsigned long)block);
4df3d265 1239 /*
b920c755
TT
1240 * Try to see if we can get the block without requesting a new
1241 * file system block.
4df3d265
AK
1242 */
1243 down_read((&EXT4_I(inode)->i_data_sem));
1244 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1245 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
c2177057 1246 bh, 0);
0e855ac8 1247 } else {
e4d996ca 1248 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
c2177057 1249 bh, 0);
0e855ac8 1250 }
4df3d265 1251 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 1252
6fd058f7 1253 if (retval > 0 && buffer_mapped(bh)) {
80e42468
TT
1254 int ret = check_block_validity(inode, "file system corruption",
1255 block, bh->b_blocknr, retval);
6fd058f7
TT
1256 if (ret != 0)
1257 return ret;
1258 }
1259
f5ab0d1f 1260 /* If it is only a block(s) look up */
c2177057 1261 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
1262 return retval;
1263
1264 /*
1265 * Returns if the blocks have already allocated
1266 *
1267 * Note that if blocks have been preallocated
1268 * ext4_ext_get_block() returns th create = 0
1269 * with buffer head unmapped.
1270 */
1271 if (retval > 0 && buffer_mapped(bh))
4df3d265
AK
1272 return retval;
1273
2a8964d6
AK
1274 /*
1275 * When we call get_blocks without the create flag, the
1276 * BH_Unwritten flag could have gotten set if the blocks
1277 * requested were part of a uninitialized extent. We need to
1278 * clear this flag now that we are committed to convert all or
1279 * part of the uninitialized extent to be an initialized
1280 * extent. This is because we need to avoid the combination
1281 * of BH_Unwritten and BH_Mapped flags being simultaneously
1282 * set on the buffer_head.
1283 */
1284 clear_buffer_unwritten(bh);
1285
4df3d265 1286 /*
f5ab0d1f
MC
1287 * New blocks allocate and/or writing to uninitialized extent
1288 * will possibly result in updating i_data, so we take
1289 * the write lock of i_data_sem, and call get_blocks()
1290 * with create == 1 flag.
4df3d265
AK
1291 */
1292 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1293
1294 /*
1295 * if the caller is from delayed allocation writeout path
1296 * we have already reserved fs blocks for allocation
1297 * let the underlying get_block() function know to
1298 * avoid double accounting
1299 */
c2177057 1300 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1301 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1302 /*
1303 * We need to check for EXT4 here because migrate
1304 * could have changed the inode type in between
1305 */
0e855ac8
AK
1306 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1307 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
c2177057 1308 bh, flags);
0e855ac8 1309 } else {
e4d996ca 1310 retval = ext4_ind_get_blocks(handle, inode, block,
c2177057 1311 max_blocks, bh, flags);
267e4db9
AK
1312
1313 if (retval > 0 && buffer_new(bh)) {
1314 /*
1315 * We allocated new blocks which will result in
1316 * i_data's format changing. Force the migrate
1317 * to fail by clearing migrate flags
1318 */
19f5fb7a 1319 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 1320 }
d2a17637 1321
5f634d06
AK
1322 /*
1323 * Update reserved blocks/metadata blocks after successful
1324 * block allocation which had been deferred till now. We don't
1325 * support fallocate for non extent files. So we can update
1326 * reserve space here.
1327 */
1328 if ((retval > 0) &&
1296cc85 1329 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
1330 ext4_da_update_reserve_space(inode, retval, 1);
1331 }
2ac3b6e0 1332 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1333 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
2ac3b6e0 1334
4df3d265 1335 up_write((&EXT4_I(inode)->i_data_sem));
6fd058f7 1336 if (retval > 0 && buffer_mapped(bh)) {
80e42468
TT
1337 int ret = check_block_validity(inode, "file system "
1338 "corruption after allocation",
1339 block, bh->b_blocknr, retval);
6fd058f7
TT
1340 if (ret != 0)
1341 return ret;
1342 }
0e855ac8
AK
1343 return retval;
1344}
1345
f3bd1f3f
MC
1346/* Maximum number of blocks we map for direct IO at once. */
1347#define DIO_MAX_BLOCKS 4096
1348
6873fa0d
ES
1349int ext4_get_block(struct inode *inode, sector_t iblock,
1350 struct buffer_head *bh_result, int create)
ac27a0ec 1351{
3e4fdaf8 1352 handle_t *handle = ext4_journal_current_handle();
7fb5409d 1353 int ret = 0, started = 0;
ac27a0ec 1354 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
f3bd1f3f 1355 int dio_credits;
ac27a0ec 1356
7fb5409d
JK
1357 if (create && !handle) {
1358 /* Direct IO write... */
1359 if (max_blocks > DIO_MAX_BLOCKS)
1360 max_blocks = DIO_MAX_BLOCKS;
f3bd1f3f
MC
1361 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1362 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1363 if (IS_ERR(handle)) {
ac27a0ec 1364 ret = PTR_ERR(handle);
7fb5409d 1365 goto out;
ac27a0ec 1366 }
7fb5409d 1367 started = 1;
ac27a0ec
DK
1368 }
1369
12b7ac17 1370 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
c2177057 1371 create ? EXT4_GET_BLOCKS_CREATE : 0);
7fb5409d
JK
1372 if (ret > 0) {
1373 bh_result->b_size = (ret << inode->i_blkbits);
1374 ret = 0;
ac27a0ec 1375 }
7fb5409d
JK
1376 if (started)
1377 ext4_journal_stop(handle);
1378out:
ac27a0ec
DK
1379 return ret;
1380}
1381
1382/*
1383 * `handle' can be NULL if create is zero
1384 */
617ba13b 1385struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1386 ext4_lblk_t block, int create, int *errp)
ac27a0ec
DK
1387{
1388 struct buffer_head dummy;
1389 int fatal = 0, err;
03f5d8bc 1390 int flags = 0;
ac27a0ec
DK
1391
1392 J_ASSERT(handle != NULL || create == 0);
1393
1394 dummy.b_state = 0;
1395 dummy.b_blocknr = -1000;
1396 buffer_trace_init(&dummy.b_history);
c2177057
TT
1397 if (create)
1398 flags |= EXT4_GET_BLOCKS_CREATE;
1399 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
ac27a0ec 1400 /*
c2177057
TT
1401 * ext4_get_blocks() returns number of blocks mapped. 0 in
1402 * case of a HOLE.
ac27a0ec
DK
1403 */
1404 if (err > 0) {
1405 if (err > 1)
1406 WARN_ON(1);
1407 err = 0;
1408 }
1409 *errp = err;
1410 if (!err && buffer_mapped(&dummy)) {
1411 struct buffer_head *bh;
1412 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1413 if (!bh) {
1414 *errp = -EIO;
1415 goto err;
1416 }
1417 if (buffer_new(&dummy)) {
1418 J_ASSERT(create != 0);
ac39849d 1419 J_ASSERT(handle != NULL);
ac27a0ec
DK
1420
1421 /*
1422 * Now that we do not always journal data, we should
1423 * keep in mind whether this should always journal the
1424 * new buffer as metadata. For now, regular file
617ba13b 1425 * writes use ext4_get_block instead, so it's not a
ac27a0ec
DK
1426 * problem.
1427 */
1428 lock_buffer(bh);
1429 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 1430 fatal = ext4_journal_get_create_access(handle, bh);
ac27a0ec 1431 if (!fatal && !buffer_uptodate(bh)) {
af5bc92d 1432 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
ac27a0ec
DK
1433 set_buffer_uptodate(bh);
1434 }
1435 unlock_buffer(bh);
0390131b
FM
1436 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1437 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
1438 if (!fatal)
1439 fatal = err;
1440 } else {
1441 BUFFER_TRACE(bh, "not a new buffer");
1442 }
1443 if (fatal) {
1444 *errp = fatal;
1445 brelse(bh);
1446 bh = NULL;
1447 }
1448 return bh;
1449 }
1450err:
1451 return NULL;
1452}
1453
617ba13b 1454struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1455 ext4_lblk_t block, int create, int *err)
ac27a0ec 1456{
af5bc92d 1457 struct buffer_head *bh;
ac27a0ec 1458
617ba13b 1459 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1460 if (!bh)
1461 return bh;
1462 if (buffer_uptodate(bh))
1463 return bh;
1464 ll_rw_block(READ_META, 1, &bh);
1465 wait_on_buffer(bh);
1466 if (buffer_uptodate(bh))
1467 return bh;
1468 put_bh(bh);
1469 *err = -EIO;
1470 return NULL;
1471}
1472
af5bc92d
TT
1473static int walk_page_buffers(handle_t *handle,
1474 struct buffer_head *head,
1475 unsigned from,
1476 unsigned to,
1477 int *partial,
1478 int (*fn)(handle_t *handle,
1479 struct buffer_head *bh))
ac27a0ec
DK
1480{
1481 struct buffer_head *bh;
1482 unsigned block_start, block_end;
1483 unsigned blocksize = head->b_size;
1484 int err, ret = 0;
1485 struct buffer_head *next;
1486
af5bc92d
TT
1487 for (bh = head, block_start = 0;
1488 ret == 0 && (bh != head || !block_start);
de9a55b8 1489 block_start = block_end, bh = next) {
ac27a0ec
DK
1490 next = bh->b_this_page;
1491 block_end = block_start + blocksize;
1492 if (block_end <= from || block_start >= to) {
1493 if (partial && !buffer_uptodate(bh))
1494 *partial = 1;
1495 continue;
1496 }
1497 err = (*fn)(handle, bh);
1498 if (!ret)
1499 ret = err;
1500 }
1501 return ret;
1502}
1503
1504/*
1505 * To preserve ordering, it is essential that the hole instantiation and
1506 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1507 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1508 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1509 * prepare_write() is the right place.
1510 *
617ba13b
MC
1511 * Also, this function can nest inside ext4_writepage() ->
1512 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1513 * has generated enough buffer credits to do the whole page. So we won't
1514 * block on the journal in that case, which is good, because the caller may
1515 * be PF_MEMALLOC.
1516 *
617ba13b 1517 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1518 * quota file writes. If we were to commit the transaction while thus
1519 * reentered, there can be a deadlock - we would be holding a quota
1520 * lock, and the commit would never complete if another thread had a
1521 * transaction open and was blocking on the quota lock - a ranking
1522 * violation.
1523 *
dab291af 1524 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1525 * will _not_ run commit under these circumstances because handle->h_ref
1526 * is elevated. We'll still have enough credits for the tiny quotafile
1527 * write.
1528 */
1529static int do_journal_get_write_access(handle_t *handle,
de9a55b8 1530 struct buffer_head *bh)
ac27a0ec
DK
1531{
1532 if (!buffer_mapped(bh) || buffer_freed(bh))
1533 return 0;
617ba13b 1534 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1535}
1536
b9a4207d
JK
1537/*
1538 * Truncate blocks that were not used by write. We have to truncate the
1539 * pagecache as well so that corresponding buffers get properly unmapped.
1540 */
1541static void ext4_truncate_failed_write(struct inode *inode)
1542{
1543 truncate_inode_pages(inode->i_mapping, inode->i_size);
1544 ext4_truncate(inode);
1545}
1546
744692dc
JZ
1547static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1548 struct buffer_head *bh_result, int create);
bfc1af65 1549static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1550 loff_t pos, unsigned len, unsigned flags,
1551 struct page **pagep, void **fsdata)
ac27a0ec 1552{
af5bc92d 1553 struct inode *inode = mapping->host;
1938a150 1554 int ret, needed_blocks;
ac27a0ec
DK
1555 handle_t *handle;
1556 int retries = 0;
af5bc92d 1557 struct page *page;
de9a55b8 1558 pgoff_t index;
af5bc92d 1559 unsigned from, to;
bfc1af65 1560
9bffad1e 1561 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1562 /*
1563 * Reserve one block more for addition to orphan list in case
1564 * we allocate blocks but write fails for some reason
1565 */
1566 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 1567 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1568 from = pos & (PAGE_CACHE_SIZE - 1);
1569 to = from + len;
ac27a0ec
DK
1570
1571retry:
af5bc92d
TT
1572 handle = ext4_journal_start(inode, needed_blocks);
1573 if (IS_ERR(handle)) {
1574 ret = PTR_ERR(handle);
1575 goto out;
7479d2b9 1576 }
ac27a0ec 1577
ebd3610b
JK
1578 /* We cannot recurse into the filesystem as the transaction is already
1579 * started */
1580 flags |= AOP_FLAG_NOFS;
1581
54566b2c 1582 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1583 if (!page) {
1584 ext4_journal_stop(handle);
1585 ret = -ENOMEM;
1586 goto out;
1587 }
1588 *pagep = page;
1589
744692dc
JZ
1590 if (ext4_should_dioread_nolock(inode))
1591 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1592 fsdata, ext4_get_block_write);
1593 else
1594 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1595 fsdata, ext4_get_block);
bfc1af65
NP
1596
1597 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1598 ret = walk_page_buffers(handle, page_buffers(page),
1599 from, to, NULL, do_journal_get_write_access);
1600 }
bfc1af65
NP
1601
1602 if (ret) {
af5bc92d 1603 unlock_page(page);
af5bc92d 1604 page_cache_release(page);
ae4d5372
AK
1605 /*
1606 * block_write_begin may have instantiated a few blocks
1607 * outside i_size. Trim these off again. Don't need
1608 * i_size_read because we hold i_mutex.
1938a150
AK
1609 *
1610 * Add inode to orphan list in case we crash before
1611 * truncate finishes
ae4d5372 1612 */
ffacfa7a 1613 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1614 ext4_orphan_add(handle, inode);
1615
1616 ext4_journal_stop(handle);
1617 if (pos + len > inode->i_size) {
b9a4207d 1618 ext4_truncate_failed_write(inode);
de9a55b8 1619 /*
ffacfa7a 1620 * If truncate failed early the inode might
1938a150
AK
1621 * still be on the orphan list; we need to
1622 * make sure the inode is removed from the
1623 * orphan list in that case.
1624 */
1625 if (inode->i_nlink)
1626 ext4_orphan_del(NULL, inode);
1627 }
bfc1af65
NP
1628 }
1629
617ba13b 1630 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1631 goto retry;
7479d2b9 1632out:
ac27a0ec
DK
1633 return ret;
1634}
1635
bfc1af65
NP
1636/* For write_end() in data=journal mode */
1637static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1638{
1639 if (!buffer_mapped(bh) || buffer_freed(bh))
1640 return 0;
1641 set_buffer_uptodate(bh);
0390131b 1642 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1643}
1644
f8514083 1645static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
1646 struct address_space *mapping,
1647 loff_t pos, unsigned len, unsigned copied,
1648 struct page *page, void *fsdata)
f8514083
AK
1649{
1650 int i_size_changed = 0;
1651 struct inode *inode = mapping->host;
1652 handle_t *handle = ext4_journal_current_handle();
1653
1654 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1655
1656 /*
1657 * No need to use i_size_read() here, the i_size
1658 * cannot change under us because we hold i_mutex.
1659 *
1660 * But it's important to update i_size while still holding page lock:
1661 * page writeout could otherwise come in and zero beyond i_size.
1662 */
1663 if (pos + copied > inode->i_size) {
1664 i_size_write(inode, pos + copied);
1665 i_size_changed = 1;
1666 }
1667
1668 if (pos + copied > EXT4_I(inode)->i_disksize) {
1669 /* We need to mark inode dirty even if
1670 * new_i_size is less that inode->i_size
1671 * bu greater than i_disksize.(hint delalloc)
1672 */
1673 ext4_update_i_disksize(inode, (pos + copied));
1674 i_size_changed = 1;
1675 }
1676 unlock_page(page);
1677 page_cache_release(page);
1678
1679 /*
1680 * Don't mark the inode dirty under page lock. First, it unnecessarily
1681 * makes the holding time of page lock longer. Second, it forces lock
1682 * ordering of page lock and transaction start for journaling
1683 * filesystems.
1684 */
1685 if (i_size_changed)
1686 ext4_mark_inode_dirty(handle, inode);
1687
1688 return copied;
1689}
1690
ac27a0ec
DK
1691/*
1692 * We need to pick up the new inode size which generic_commit_write gave us
1693 * `file' can be NULL - eg, when called from page_symlink().
1694 *
617ba13b 1695 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1696 * buffers are managed internally.
1697 */
bfc1af65 1698static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
1699 struct address_space *mapping,
1700 loff_t pos, unsigned len, unsigned copied,
1701 struct page *page, void *fsdata)
ac27a0ec 1702{
617ba13b 1703 handle_t *handle = ext4_journal_current_handle();
cf108bca 1704 struct inode *inode = mapping->host;
ac27a0ec
DK
1705 int ret = 0, ret2;
1706
9bffad1e 1707 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 1708 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1709
1710 if (ret == 0) {
f8514083 1711 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1712 page, fsdata);
f8a87d89 1713 copied = ret2;
ffacfa7a 1714 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1715 /* if we have allocated more blocks and copied
1716 * less. We will have blocks allocated outside
1717 * inode->i_size. So truncate them
1718 */
1719 ext4_orphan_add(handle, inode);
f8a87d89
RK
1720 if (ret2 < 0)
1721 ret = ret2;
ac27a0ec 1722 }
617ba13b 1723 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1724 if (!ret)
1725 ret = ret2;
bfc1af65 1726
f8514083 1727 if (pos + len > inode->i_size) {
b9a4207d 1728 ext4_truncate_failed_write(inode);
de9a55b8 1729 /*
ffacfa7a 1730 * If truncate failed early the inode might still be
f8514083
AK
1731 * on the orphan list; we need to make sure the inode
1732 * is removed from the orphan list in that case.
1733 */
1734 if (inode->i_nlink)
1735 ext4_orphan_del(NULL, inode);
1736 }
1737
1738
bfc1af65 1739 return ret ? ret : copied;
ac27a0ec
DK
1740}
1741
bfc1af65 1742static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
1743 struct address_space *mapping,
1744 loff_t pos, unsigned len, unsigned copied,
1745 struct page *page, void *fsdata)
ac27a0ec 1746{
617ba13b 1747 handle_t *handle = ext4_journal_current_handle();
cf108bca 1748 struct inode *inode = mapping->host;
ac27a0ec 1749 int ret = 0, ret2;
ac27a0ec 1750
9bffad1e 1751 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 1752 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1753 page, fsdata);
f8a87d89 1754 copied = ret2;
ffacfa7a 1755 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1756 /* if we have allocated more blocks and copied
1757 * less. We will have blocks allocated outside
1758 * inode->i_size. So truncate them
1759 */
1760 ext4_orphan_add(handle, inode);
1761
f8a87d89
RK
1762 if (ret2 < 0)
1763 ret = ret2;
ac27a0ec 1764
617ba13b 1765 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1766 if (!ret)
1767 ret = ret2;
bfc1af65 1768
f8514083 1769 if (pos + len > inode->i_size) {
b9a4207d 1770 ext4_truncate_failed_write(inode);
de9a55b8 1771 /*
ffacfa7a 1772 * If truncate failed early the inode might still be
f8514083
AK
1773 * on the orphan list; we need to make sure the inode
1774 * is removed from the orphan list in that case.
1775 */
1776 if (inode->i_nlink)
1777 ext4_orphan_del(NULL, inode);
1778 }
1779
bfc1af65 1780 return ret ? ret : copied;
ac27a0ec
DK
1781}
1782
bfc1af65 1783static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1784 struct address_space *mapping,
1785 loff_t pos, unsigned len, unsigned copied,
1786 struct page *page, void *fsdata)
ac27a0ec 1787{
617ba13b 1788 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1789 struct inode *inode = mapping->host;
ac27a0ec
DK
1790 int ret = 0, ret2;
1791 int partial = 0;
bfc1af65 1792 unsigned from, to;
cf17fea6 1793 loff_t new_i_size;
ac27a0ec 1794
9bffad1e 1795 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1796 from = pos & (PAGE_CACHE_SIZE - 1);
1797 to = from + len;
1798
1799 if (copied < len) {
1800 if (!PageUptodate(page))
1801 copied = 0;
1802 page_zero_new_buffers(page, from+copied, to);
1803 }
ac27a0ec
DK
1804
1805 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1806 to, &partial, write_end_fn);
ac27a0ec
DK
1807 if (!partial)
1808 SetPageUptodate(page);
cf17fea6
AK
1809 new_i_size = pos + copied;
1810 if (new_i_size > inode->i_size)
bfc1af65 1811 i_size_write(inode, pos+copied);
19f5fb7a 1812 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
cf17fea6
AK
1813 if (new_i_size > EXT4_I(inode)->i_disksize) {
1814 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1815 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1816 if (!ret)
1817 ret = ret2;
1818 }
bfc1af65 1819
cf108bca 1820 unlock_page(page);
f8514083 1821 page_cache_release(page);
ffacfa7a 1822 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1823 /* if we have allocated more blocks and copied
1824 * less. We will have blocks allocated outside
1825 * inode->i_size. So truncate them
1826 */
1827 ext4_orphan_add(handle, inode);
1828
617ba13b 1829 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1830 if (!ret)
1831 ret = ret2;
f8514083 1832 if (pos + len > inode->i_size) {
b9a4207d 1833 ext4_truncate_failed_write(inode);
de9a55b8 1834 /*
ffacfa7a 1835 * If truncate failed early the inode might still be
f8514083
AK
1836 * on the orphan list; we need to make sure the inode
1837 * is removed from the orphan list in that case.
1838 */
1839 if (inode->i_nlink)
1840 ext4_orphan_del(NULL, inode);
1841 }
bfc1af65
NP
1842
1843 return ret ? ret : copied;
ac27a0ec 1844}
d2a17637 1845
9d0be502
TT
1846/*
1847 * Reserve a single block located at lblock
1848 */
1849static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
d2a17637 1850{
030ba6bc 1851 int retries = 0;
60e58e0f 1852 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1853 struct ext4_inode_info *ei = EXT4_I(inode);
72b8ab9d 1854 unsigned long md_needed;
5dd4056d 1855 int ret;
d2a17637
MC
1856
1857 /*
1858 * recalculate the amount of metadata blocks to reserve
1859 * in order to allocate nrblocks
1860 * worse case is one extent per block
1861 */
030ba6bc 1862repeat:
0637c6f4 1863 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1864 md_needed = ext4_calc_metadata_amount(inode, lblock);
f8ec9d68 1865 trace_ext4_da_reserve_space(inode, md_needed);
0637c6f4 1866 spin_unlock(&ei->i_block_reservation_lock);
d2a17637 1867
60e58e0f 1868 /*
72b8ab9d
ES
1869 * We will charge metadata quota at writeout time; this saves
1870 * us from metadata over-estimation, though we may go over by
1871 * a small amount in the end. Here we just reserve for data.
60e58e0f 1872 */
72b8ab9d 1873 ret = dquot_reserve_block(inode, 1);
5dd4056d
CH
1874 if (ret)
1875 return ret;
72b8ab9d
ES
1876 /*
1877 * We do still charge estimated metadata to the sb though;
1878 * we cannot afford to run out of free blocks.
1879 */
9d0be502 1880 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
72b8ab9d 1881 dquot_release_reservation_block(inode, 1);
030ba6bc
AK
1882 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1883 yield();
1884 goto repeat;
1885 }
d2a17637
MC
1886 return -ENOSPC;
1887 }
0637c6f4 1888 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1889 ei->i_reserved_data_blocks++;
0637c6f4
TT
1890 ei->i_reserved_meta_blocks += md_needed;
1891 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1892
d2a17637
MC
1893 return 0; /* success */
1894}
1895
12219aea 1896static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1897{
1898 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1899 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1900
cd213226
MC
1901 if (!to_free)
1902 return; /* Nothing to release, exit */
1903
d2a17637 1904 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1905
0637c6f4 1906 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1907 /*
0637c6f4
TT
1908 * if there aren't enough reserved blocks, then the
1909 * counter is messed up somewhere. Since this
1910 * function is called from invalidate page, it's
1911 * harmless to return without any action.
cd213226 1912 */
0637c6f4
TT
1913 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1914 "ino %lu, to_free %d with only %d reserved "
1915 "data blocks\n", inode->i_ino, to_free,
1916 ei->i_reserved_data_blocks);
1917 WARN_ON(1);
1918 to_free = ei->i_reserved_data_blocks;
cd213226 1919 }
0637c6f4 1920 ei->i_reserved_data_blocks -= to_free;
cd213226 1921
0637c6f4
TT
1922 if (ei->i_reserved_data_blocks == 0) {
1923 /*
1924 * We can release all of the reserved metadata blocks
1925 * only when we have written all of the delayed
1926 * allocation blocks.
1927 */
72b8ab9d
ES
1928 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1929 ei->i_reserved_meta_blocks);
ee5f4d9c 1930 ei->i_reserved_meta_blocks = 0;
9d0be502 1931 ei->i_da_metadata_calc_len = 0;
0637c6f4 1932 }
d2a17637 1933
72b8ab9d 1934 /* update fs dirty data blocks counter */
0637c6f4 1935 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
d2a17637 1936
d2a17637 1937 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1938
5dd4056d 1939 dquot_release_reservation_block(inode, to_free);
d2a17637
MC
1940}
1941
1942static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1943 unsigned long offset)
d2a17637
MC
1944{
1945 int to_release = 0;
1946 struct buffer_head *head, *bh;
1947 unsigned int curr_off = 0;
1948
1949 head = page_buffers(page);
1950 bh = head;
1951 do {
1952 unsigned int next_off = curr_off + bh->b_size;
1953
1954 if ((offset <= curr_off) && (buffer_delay(bh))) {
1955 to_release++;
1956 clear_buffer_delay(bh);
1957 }
1958 curr_off = next_off;
1959 } while ((bh = bh->b_this_page) != head);
12219aea 1960 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1961}
ac27a0ec 1962
64769240
AT
1963/*
1964 * Delayed allocation stuff
1965 */
1966
64769240
AT
1967/*
1968 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1969 * them with writepage() call back
64769240
AT
1970 *
1971 * @mpd->inode: inode
1972 * @mpd->first_page: first page of the extent
1973 * @mpd->next_page: page after the last page of the extent
64769240
AT
1974 *
1975 * By the time mpage_da_submit_io() is called we expect all blocks
1976 * to be allocated. this may be wrong if allocation failed.
1977 *
1978 * As pages are already locked by write_cache_pages(), we can't use it
1979 */
1980static int mpage_da_submit_io(struct mpage_da_data *mpd)
1981{
22208ded 1982 long pages_skipped;
791b7f08
AK
1983 struct pagevec pvec;
1984 unsigned long index, end;
1985 int ret = 0, err, nr_pages, i;
1986 struct inode *inode = mpd->inode;
1987 struct address_space *mapping = inode->i_mapping;
64769240
AT
1988
1989 BUG_ON(mpd->next_page <= mpd->first_page);
791b7f08
AK
1990 /*
1991 * We need to start from the first_page to the next_page - 1
1992 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1993 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1994 * at the currently mapped buffer_heads.
1995 */
64769240
AT
1996 index = mpd->first_page;
1997 end = mpd->next_page - 1;
1998
791b7f08 1999 pagevec_init(&pvec, 0);
64769240 2000 while (index <= end) {
791b7f08 2001 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
2002 if (nr_pages == 0)
2003 break;
2004 for (i = 0; i < nr_pages; i++) {
2005 struct page *page = pvec.pages[i];
2006
791b7f08
AK
2007 index = page->index;
2008 if (index > end)
2009 break;
2010 index++;
2011
2012 BUG_ON(!PageLocked(page));
2013 BUG_ON(PageWriteback(page));
2014
22208ded 2015 pages_skipped = mpd->wbc->pages_skipped;
a1d6cc56 2016 err = mapping->a_ops->writepage(page, mpd->wbc);
22208ded
AK
2017 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2018 /*
2019 * have successfully written the page
2020 * without skipping the same
2021 */
a1d6cc56 2022 mpd->pages_written++;
64769240
AT
2023 /*
2024 * In error case, we have to continue because
2025 * remaining pages are still locked
2026 * XXX: unlock and re-dirty them?
2027 */
2028 if (ret == 0)
2029 ret = err;
2030 }
2031 pagevec_release(&pvec);
2032 }
64769240
AT
2033 return ret;
2034}
2035
2036/*
2037 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2038 *
2039 * @mpd->inode - inode to walk through
2040 * @exbh->b_blocknr - first block on a disk
2041 * @exbh->b_size - amount of space in bytes
2042 * @logical - first logical block to start assignment with
2043 *
2044 * the function goes through all passed space and put actual disk
29fa89d0 2045 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
64769240
AT
2046 */
2047static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
2048 struct buffer_head *exbh)
2049{
2050 struct inode *inode = mpd->inode;
2051 struct address_space *mapping = inode->i_mapping;
2052 int blocks = exbh->b_size >> inode->i_blkbits;
2053 sector_t pblock = exbh->b_blocknr, cur_logical;
2054 struct buffer_head *head, *bh;
a1d6cc56 2055 pgoff_t index, end;
64769240
AT
2056 struct pagevec pvec;
2057 int nr_pages, i;
2058
2059 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2060 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2061 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2062
2063 pagevec_init(&pvec, 0);
2064
2065 while (index <= end) {
2066 /* XXX: optimize tail */
2067 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2068 if (nr_pages == 0)
2069 break;
2070 for (i = 0; i < nr_pages; i++) {
2071 struct page *page = pvec.pages[i];
2072
2073 index = page->index;
2074 if (index > end)
2075 break;
2076 index++;
2077
2078 BUG_ON(!PageLocked(page));
2079 BUG_ON(PageWriteback(page));
2080 BUG_ON(!page_has_buffers(page));
2081
2082 bh = page_buffers(page);
2083 head = bh;
2084
2085 /* skip blocks out of the range */
2086 do {
2087 if (cur_logical >= logical)
2088 break;
2089 cur_logical++;
2090 } while ((bh = bh->b_this_page) != head);
2091
2092 do {
2093 if (cur_logical >= logical + blocks)
2094 break;
29fa89d0
AK
2095
2096 if (buffer_delay(bh) ||
2097 buffer_unwritten(bh)) {
2098
2099 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2100
2101 if (buffer_delay(bh)) {
2102 clear_buffer_delay(bh);
2103 bh->b_blocknr = pblock;
2104 } else {
2105 /*
2106 * unwritten already should have
2107 * blocknr assigned. Verify that
2108 */
2109 clear_buffer_unwritten(bh);
2110 BUG_ON(bh->b_blocknr != pblock);
2111 }
2112
61628a3f 2113 } else if (buffer_mapped(bh))
64769240 2114 BUG_ON(bh->b_blocknr != pblock);
64769240 2115
744692dc
JZ
2116 if (buffer_uninit(exbh))
2117 set_buffer_uninit(bh);
64769240
AT
2118 cur_logical++;
2119 pblock++;
2120 } while ((bh = bh->b_this_page) != head);
2121 }
2122 pagevec_release(&pvec);
2123 }
2124}
2125
2126
2127/*
2128 * __unmap_underlying_blocks - just a helper function to unmap
2129 * set of blocks described by @bh
2130 */
2131static inline void __unmap_underlying_blocks(struct inode *inode,
2132 struct buffer_head *bh)
2133{
2134 struct block_device *bdev = inode->i_sb->s_bdev;
2135 int blocks, i;
2136
2137 blocks = bh->b_size >> inode->i_blkbits;
2138 for (i = 0; i < blocks; i++)
2139 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2140}
2141
c4a0c46e
AK
2142static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2143 sector_t logical, long blk_cnt)
2144{
2145 int nr_pages, i;
2146 pgoff_t index, end;
2147 struct pagevec pvec;
2148 struct inode *inode = mpd->inode;
2149 struct address_space *mapping = inode->i_mapping;
2150
2151 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2152 end = (logical + blk_cnt - 1) >>
2153 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2154 while (index <= end) {
2155 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2156 if (nr_pages == 0)
2157 break;
2158 for (i = 0; i < nr_pages; i++) {
2159 struct page *page = pvec.pages[i];
9b1d0998 2160 if (page->index > end)
c4a0c46e 2161 break;
c4a0c46e
AK
2162 BUG_ON(!PageLocked(page));
2163 BUG_ON(PageWriteback(page));
2164 block_invalidatepage(page, 0);
2165 ClearPageUptodate(page);
2166 unlock_page(page);
2167 }
9b1d0998
JK
2168 index = pvec.pages[nr_pages - 1]->index + 1;
2169 pagevec_release(&pvec);
c4a0c46e
AK
2170 }
2171 return;
2172}
2173
df22291f
AK
2174static void ext4_print_free_blocks(struct inode *inode)
2175{
2176 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1693918e
TT
2177 printk(KERN_CRIT "Total free blocks count %lld\n",
2178 ext4_count_free_blocks(inode->i_sb));
2179 printk(KERN_CRIT "Free/Dirty block details\n");
2180 printk(KERN_CRIT "free_blocks=%lld\n",
2181 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2182 printk(KERN_CRIT "dirty_blocks=%lld\n",
2183 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2184 printk(KERN_CRIT "Block reservation details\n");
2185 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2186 EXT4_I(inode)->i_reserved_data_blocks);
2187 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2188 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
2189 return;
2190}
2191
64769240
AT
2192/*
2193 * mpage_da_map_blocks - go through given space
2194 *
8dc207c0 2195 * @mpd - bh describing space
64769240
AT
2196 *
2197 * The function skips space we know is already mapped to disk blocks.
2198 *
64769240 2199 */
ed5bde0b 2200static int mpage_da_map_blocks(struct mpage_da_data *mpd)
64769240 2201{
2ac3b6e0 2202 int err, blks, get_blocks_flags;
030ba6bc 2203 struct buffer_head new;
2fa3cdfb
TT
2204 sector_t next = mpd->b_blocknr;
2205 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2206 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2207 handle_t *handle = NULL;
64769240
AT
2208
2209 /*
2210 * We consider only non-mapped and non-allocated blocks
2211 */
8dc207c0 2212 if ((mpd->b_state & (1 << BH_Mapped)) &&
29fa89d0
AK
2213 !(mpd->b_state & (1 << BH_Delay)) &&
2214 !(mpd->b_state & (1 << BH_Unwritten)))
c4a0c46e 2215 return 0;
2fa3cdfb
TT
2216
2217 /*
2218 * If we didn't accumulate anything to write simply return
2219 */
2220 if (!mpd->b_size)
2221 return 0;
2222
2223 handle = ext4_journal_current_handle();
2224 BUG_ON(!handle);
2225
79ffab34 2226 /*
2ac3b6e0
TT
2227 * Call ext4_get_blocks() to allocate any delayed allocation
2228 * blocks, or to convert an uninitialized extent to be
2229 * initialized (in the case where we have written into
2230 * one or more preallocated blocks).
2231 *
2232 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2233 * indicate that we are on the delayed allocation path. This
2234 * affects functions in many different parts of the allocation
2235 * call path. This flag exists primarily because we don't
2236 * want to change *many* call functions, so ext4_get_blocks()
2237 * will set the magic i_delalloc_reserved_flag once the
2238 * inode's allocation semaphore is taken.
2239 *
2240 * If the blocks in questions were delalloc blocks, set
2241 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2242 * variables are updated after the blocks have been allocated.
79ffab34 2243 */
2ac3b6e0 2244 new.b_state = 0;
1296cc85 2245 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
744692dc
JZ
2246 if (ext4_should_dioread_nolock(mpd->inode))
2247 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 2248 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
2249 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2250
2fa3cdfb 2251 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2ac3b6e0 2252 &new, get_blocks_flags);
2fa3cdfb
TT
2253 if (blks < 0) {
2254 err = blks;
ed5bde0b
TT
2255 /*
2256 * If get block returns with error we simply
2257 * return. Later writepage will redirty the page and
2258 * writepages will find the dirty page again
c4a0c46e
AK
2259 */
2260 if (err == -EAGAIN)
2261 return 0;
df22291f
AK
2262
2263 if (err == -ENOSPC &&
ed5bde0b 2264 ext4_count_free_blocks(mpd->inode->i_sb)) {
df22291f
AK
2265 mpd->retval = err;
2266 return 0;
2267 }
2268
c4a0c46e 2269 /*
ed5bde0b
TT
2270 * get block failure will cause us to loop in
2271 * writepages, because a_ops->writepage won't be able
2272 * to make progress. The page will be redirtied by
2273 * writepage and writepages will again try to write
2274 * the same.
c4a0c46e 2275 */
1693918e
TT
2276 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2277 "delayed block allocation failed for inode %lu at "
2278 "logical offset %llu with max blocks %zd with "
fbe845dd 2279 "error %d", mpd->inode->i_ino,
1693918e
TT
2280 (unsigned long long) next,
2281 mpd->b_size >> mpd->inode->i_blkbits, err);
2282 printk(KERN_CRIT "This should not happen!! "
2283 "Data will be lost\n");
030ba6bc 2284 if (err == -ENOSPC) {
df22291f 2285 ext4_print_free_blocks(mpd->inode);
030ba6bc 2286 }
2fa3cdfb 2287 /* invalidate all the pages */
c4a0c46e 2288 ext4_da_block_invalidatepages(mpd, next,
8dc207c0 2289 mpd->b_size >> mpd->inode->i_blkbits);
c4a0c46e
AK
2290 return err;
2291 }
2fa3cdfb
TT
2292 BUG_ON(blks == 0);
2293
2294 new.b_size = (blks << mpd->inode->i_blkbits);
64769240 2295
a1d6cc56
AK
2296 if (buffer_new(&new))
2297 __unmap_underlying_blocks(mpd->inode, &new);
64769240 2298
a1d6cc56
AK
2299 /*
2300 * If blocks are delayed marked, we need to
2301 * put actual blocknr and drop delayed bit
2302 */
8dc207c0
TT
2303 if ((mpd->b_state & (1 << BH_Delay)) ||
2304 (mpd->b_state & (1 << BH_Unwritten)))
a1d6cc56 2305 mpage_put_bnr_to_bhs(mpd, next, &new);
64769240 2306
2fa3cdfb
TT
2307 if (ext4_should_order_data(mpd->inode)) {
2308 err = ext4_jbd2_file_inode(handle, mpd->inode);
2309 if (err)
2310 return err;
2311 }
2312
2313 /*
03f5d8bc 2314 * Update on-disk size along with block allocation.
2fa3cdfb
TT
2315 */
2316 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2317 if (disksize > i_size_read(mpd->inode))
2318 disksize = i_size_read(mpd->inode);
2319 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2320 ext4_update_i_disksize(mpd->inode, disksize);
2321 return ext4_mark_inode_dirty(handle, mpd->inode);
2322 }
2323
c4a0c46e 2324 return 0;
64769240
AT
2325}
2326
bf068ee2
AK
2327#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2328 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
2329
2330/*
2331 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2332 *
2333 * @mpd->lbh - extent of blocks
2334 * @logical - logical number of the block in the file
2335 * @bh - bh of the block (used to access block's state)
2336 *
2337 * the function is used to collect contig. blocks in same state
2338 */
2339static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
2340 sector_t logical, size_t b_size,
2341 unsigned long b_state)
64769240 2342{
64769240 2343 sector_t next;
8dc207c0 2344 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 2345
c445e3e0
ES
2346 /*
2347 * XXX Don't go larger than mballoc is willing to allocate
2348 * This is a stopgap solution. We eventually need to fold
2349 * mpage_da_submit_io() into this function and then call
2350 * ext4_get_blocks() multiple times in a loop
2351 */
2352 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2353 goto flush_it;
2354
525f4ed8
MC
2355 /* check if thereserved journal credits might overflow */
2356 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2357 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2358 /*
2359 * With non-extent format we are limited by the journal
2360 * credit available. Total credit needed to insert
2361 * nrblocks contiguous blocks is dependent on the
2362 * nrblocks. So limit nrblocks.
2363 */
2364 goto flush_it;
2365 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2366 EXT4_MAX_TRANS_DATA) {
2367 /*
2368 * Adding the new buffer_head would make it cross the
2369 * allowed limit for which we have journal credit
2370 * reserved. So limit the new bh->b_size
2371 */
2372 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2373 mpd->inode->i_blkbits;
2374 /* we will do mpage_da_submit_io in the next loop */
2375 }
2376 }
64769240
AT
2377 /*
2378 * First block in the extent
2379 */
8dc207c0
TT
2380 if (mpd->b_size == 0) {
2381 mpd->b_blocknr = logical;
2382 mpd->b_size = b_size;
2383 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
2384 return;
2385 }
2386
8dc207c0 2387 next = mpd->b_blocknr + nrblocks;
64769240
AT
2388 /*
2389 * Can we merge the block to our big extent?
2390 */
8dc207c0
TT
2391 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2392 mpd->b_size += b_size;
64769240
AT
2393 return;
2394 }
2395
525f4ed8 2396flush_it:
64769240
AT
2397 /*
2398 * We couldn't merge the block to our extent, so we
2399 * need to flush current extent and start new one
2400 */
c4a0c46e
AK
2401 if (mpage_da_map_blocks(mpd) == 0)
2402 mpage_da_submit_io(mpd);
a1d6cc56
AK
2403 mpd->io_done = 1;
2404 return;
64769240
AT
2405}
2406
c364b22c 2407static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 2408{
c364b22c 2409 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
2410}
2411
64769240
AT
2412/*
2413 * __mpage_da_writepage - finds extent of pages and blocks
2414 *
2415 * @page: page to consider
2416 * @wbc: not used, we just follow rules
2417 * @data: context
2418 *
2419 * The function finds extents of pages and scan them for all blocks.
2420 */
2421static int __mpage_da_writepage(struct page *page,
2422 struct writeback_control *wbc, void *data)
2423{
2424 struct mpage_da_data *mpd = data;
2425 struct inode *inode = mpd->inode;
8dc207c0 2426 struct buffer_head *bh, *head;
64769240
AT
2427 sector_t logical;
2428
2429 /*
2430 * Can we merge this page to current extent?
2431 */
2432 if (mpd->next_page != page->index) {
2433 /*
2434 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 2435 * and start IO on them using writepage()
64769240
AT
2436 */
2437 if (mpd->next_page != mpd->first_page) {
c4a0c46e
AK
2438 if (mpage_da_map_blocks(mpd) == 0)
2439 mpage_da_submit_io(mpd);
a1d6cc56
AK
2440 /*
2441 * skip rest of the page in the page_vec
2442 */
2443 mpd->io_done = 1;
2444 redirty_page_for_writepage(wbc, page);
2445 unlock_page(page);
2446 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2447 }
2448
2449 /*
2450 * Start next extent of pages ...
2451 */
2452 mpd->first_page = page->index;
2453
2454 /*
2455 * ... and blocks
2456 */
8dc207c0
TT
2457 mpd->b_size = 0;
2458 mpd->b_state = 0;
2459 mpd->b_blocknr = 0;
64769240
AT
2460 }
2461
2462 mpd->next_page = page->index + 1;
2463 logical = (sector_t) page->index <<
2464 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2465
2466 if (!page_has_buffers(page)) {
8dc207c0
TT
2467 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2468 (1 << BH_Dirty) | (1 << BH_Uptodate));
a1d6cc56
AK
2469 if (mpd->io_done)
2470 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2471 } else {
2472 /*
2473 * Page with regular buffer heads, just add all dirty ones
2474 */
2475 head = page_buffers(page);
2476 bh = head;
2477 do {
2478 BUG_ON(buffer_locked(bh));
791b7f08
AK
2479 /*
2480 * We need to try to allocate
2481 * unmapped blocks in the same page.
2482 * Otherwise we won't make progress
43ce1d23 2483 * with the page in ext4_writepage
791b7f08 2484 */
c364b22c 2485 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
8dc207c0
TT
2486 mpage_add_bh_to_extent(mpd, logical,
2487 bh->b_size,
2488 bh->b_state);
a1d6cc56
AK
2489 if (mpd->io_done)
2490 return MPAGE_DA_EXTENT_TAIL;
791b7f08
AK
2491 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2492 /*
2493 * mapped dirty buffer. We need to update
2494 * the b_state because we look at
2495 * b_state in mpage_da_map_blocks. We don't
2496 * update b_size because if we find an
2497 * unmapped buffer_head later we need to
2498 * use the b_state flag of that buffer_head.
2499 */
8dc207c0
TT
2500 if (mpd->b_size == 0)
2501 mpd->b_state = bh->b_state & BH_FLAGS;
a1d6cc56 2502 }
64769240
AT
2503 logical++;
2504 } while ((bh = bh->b_this_page) != head);
2505 }
2506
2507 return 0;
2508}
2509
64769240 2510/*
b920c755
TT
2511 * This is a special get_blocks_t callback which is used by
2512 * ext4_da_write_begin(). It will either return mapped block or
2513 * reserve space for a single block.
29fa89d0
AK
2514 *
2515 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2516 * We also have b_blocknr = -1 and b_bdev initialized properly
2517 *
2518 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2519 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2520 * initialized properly.
64769240
AT
2521 */
2522static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2523 struct buffer_head *bh_result, int create)
2524{
2525 int ret = 0;
33b9817e
AK
2526 sector_t invalid_block = ~((sector_t) 0xffff);
2527
2528 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2529 invalid_block = ~0;
64769240
AT
2530
2531 BUG_ON(create == 0);
2532 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2533
2534 /*
2535 * first, we need to know whether the block is allocated already
2536 * preallocated blocks are unmapped but should treated
2537 * the same as allocated blocks.
2538 */
c2177057 2539 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
d2a17637
MC
2540 if ((ret == 0) && !buffer_delay(bh_result)) {
2541 /* the block isn't (pre)allocated yet, let's reserve space */
64769240
AT
2542 /*
2543 * XXX: __block_prepare_write() unmaps passed block,
2544 * is it OK?
2545 */
9d0be502 2546 ret = ext4_da_reserve_space(inode, iblock);
d2a17637
MC
2547 if (ret)
2548 /* not enough space to reserve */
2549 return ret;
2550
33b9817e 2551 map_bh(bh_result, inode->i_sb, invalid_block);
64769240
AT
2552 set_buffer_new(bh_result);
2553 set_buffer_delay(bh_result);
2554 } else if (ret > 0) {
2555 bh_result->b_size = (ret << inode->i_blkbits);
29fa89d0
AK
2556 if (buffer_unwritten(bh_result)) {
2557 /* A delayed write to unwritten bh should
2558 * be marked new and mapped. Mapped ensures
2559 * that we don't do get_block multiple times
2560 * when we write to the same offset and new
2561 * ensures that we do proper zero out for
2562 * partial write.
2563 */
9c1ee184 2564 set_buffer_new(bh_result);
29fa89d0
AK
2565 set_buffer_mapped(bh_result);
2566 }
64769240
AT
2567 ret = 0;
2568 }
2569
2570 return ret;
2571}
61628a3f 2572
b920c755
TT
2573/*
2574 * This function is used as a standard get_block_t calback function
2575 * when there is no desire to allocate any blocks. It is used as a
2576 * callback function for block_prepare_write(), nobh_writepage(), and
2577 * block_write_full_page(). These functions should only try to map a
2578 * single block at a time.
2579 *
2580 * Since this function doesn't do block allocations even if the caller
2581 * requests it by passing in create=1, it is critically important that
2582 * any caller checks to make sure that any buffer heads are returned
2583 * by this function are either all already mapped or marked for
2584 * delayed allocation before calling nobh_writepage() or
2585 * block_write_full_page(). Otherwise, b_blocknr could be left
2586 * unitialized, and the page write functions will be taken by
2587 * surprise.
2588 */
2589static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
2590 struct buffer_head *bh_result, int create)
2591{
2592 int ret = 0;
2593 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2594
a2dc52b5
TT
2595 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2596
f0e6c985
AK
2597 /*
2598 * we don't want to do block allocation in writepage
2599 * so call get_block_wrap with create = 0
2600 */
c2177057 2601 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
f0e6c985
AK
2602 if (ret > 0) {
2603 bh_result->b_size = (ret << inode->i_blkbits);
2604 ret = 0;
2605 }
2606 return ret;
61628a3f
MC
2607}
2608
62e086be
AK
2609static int bget_one(handle_t *handle, struct buffer_head *bh)
2610{
2611 get_bh(bh);
2612 return 0;
2613}
2614
2615static int bput_one(handle_t *handle, struct buffer_head *bh)
2616{
2617 put_bh(bh);
2618 return 0;
2619}
2620
2621static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
2622 unsigned int len)
2623{
2624 struct address_space *mapping = page->mapping;
2625 struct inode *inode = mapping->host;
2626 struct buffer_head *page_bufs;
2627 handle_t *handle = NULL;
2628 int ret = 0;
2629 int err;
2630
2631 page_bufs = page_buffers(page);
2632 BUG_ON(!page_bufs);
2633 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2634 /* As soon as we unlock the page, it can go away, but we have
2635 * references to buffers so we are safe */
2636 unlock_page(page);
2637
2638 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2639 if (IS_ERR(handle)) {
2640 ret = PTR_ERR(handle);
2641 goto out;
2642 }
2643
2644 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2645 do_journal_get_write_access);
2646
2647 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2648 write_end_fn);
2649 if (ret == 0)
2650 ret = err;
2651 err = ext4_journal_stop(handle);
2652 if (!ret)
2653 ret = err;
2654
2655 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
19f5fb7a 2656 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be
AK
2657out:
2658 return ret;
2659}
2660
744692dc
JZ
2661static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2662static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2663
61628a3f 2664/*
43ce1d23
AK
2665 * Note that we don't need to start a transaction unless we're journaling data
2666 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2667 * need to file the inode to the transaction's list in ordered mode because if
2668 * we are writing back data added by write(), the inode is already there and if
2669 * we are writing back data modified via mmap(), noone guarantees in which
2670 * transaction the data will hit the disk. In case we are journaling data, we
2671 * cannot start transaction directly because transaction start ranks above page
2672 * lock so we have to do some magic.
2673 *
b920c755
TT
2674 * This function can get called via...
2675 * - ext4_da_writepages after taking page lock (have journal handle)
2676 * - journal_submit_inode_data_buffers (no journal handle)
2677 * - shrink_page_list via pdflush (no journal handle)
2678 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2679 *
2680 * We don't do any block allocation in this function. If we have page with
2681 * multiple blocks we need to write those buffer_heads that are mapped. This
2682 * is important for mmaped based write. So if we do with blocksize 1K
2683 * truncate(f, 1024);
2684 * a = mmap(f, 0, 4096);
2685 * a[0] = 'a';
2686 * truncate(f, 4096);
2687 * we have in the page first buffer_head mapped via page_mkwrite call back
2688 * but other bufer_heads would be unmapped but dirty(dirty done via the
2689 * do_wp_page). So writepage should write the first block. If we modify
2690 * the mmap area beyond 1024 we will again get a page_fault and the
2691 * page_mkwrite callback will do the block allocation and mark the
2692 * buffer_heads mapped.
2693 *
2694 * We redirty the page if we have any buffer_heads that is either delay or
2695 * unwritten in the page.
2696 *
2697 * We can get recursively called as show below.
2698 *
2699 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2700 * ext4_writepage()
2701 *
2702 * But since we don't do any block allocation we should not deadlock.
2703 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2704 */
43ce1d23 2705static int ext4_writepage(struct page *page,
62e086be 2706 struct writeback_control *wbc)
64769240 2707{
64769240 2708 int ret = 0;
61628a3f 2709 loff_t size;
498e5f24 2710 unsigned int len;
744692dc 2711 struct buffer_head *page_bufs = NULL;
61628a3f
MC
2712 struct inode *inode = page->mapping->host;
2713
43ce1d23 2714 trace_ext4_writepage(inode, page);
f0e6c985
AK
2715 size = i_size_read(inode);
2716 if (page->index == size >> PAGE_CACHE_SHIFT)
2717 len = size & ~PAGE_CACHE_MASK;
2718 else
2719 len = PAGE_CACHE_SIZE;
64769240 2720
f0e6c985 2721 if (page_has_buffers(page)) {
61628a3f 2722 page_bufs = page_buffers(page);
f0e6c985 2723 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2724 ext4_bh_delay_or_unwritten)) {
61628a3f 2725 /*
f0e6c985
AK
2726 * We don't want to do block allocation
2727 * So redirty the page and return
cd1aac32
AK
2728 * We may reach here when we do a journal commit
2729 * via journal_submit_inode_data_buffers.
2730 * If we don't have mapping block we just ignore
f0e6c985
AK
2731 * them. We can also reach here via shrink_page_list
2732 */
2733 redirty_page_for_writepage(wbc, page);
2734 unlock_page(page);
2735 return 0;
2736 }
2737 } else {
2738 /*
2739 * The test for page_has_buffers() is subtle:
2740 * We know the page is dirty but it lost buffers. That means
2741 * that at some moment in time after write_begin()/write_end()
2742 * has been called all buffers have been clean and thus they
2743 * must have been written at least once. So they are all
2744 * mapped and we can happily proceed with mapping them
2745 * and writing the page.
2746 *
2747 * Try to initialize the buffer_heads and check whether
2748 * all are mapped and non delay. We don't want to
2749 * do block allocation here.
2750 */
b767e78a 2751 ret = block_prepare_write(page, 0, len,
b920c755 2752 noalloc_get_block_write);
f0e6c985
AK
2753 if (!ret) {
2754 page_bufs = page_buffers(page);
2755 /* check whether all are mapped and non delay */
2756 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2757 ext4_bh_delay_or_unwritten)) {
f0e6c985
AK
2758 redirty_page_for_writepage(wbc, page);
2759 unlock_page(page);
2760 return 0;
2761 }
2762 } else {
2763 /*
2764 * We can't do block allocation here
2765 * so just redity the page and unlock
2766 * and return
61628a3f 2767 */
61628a3f
MC
2768 redirty_page_for_writepage(wbc, page);
2769 unlock_page(page);
2770 return 0;
2771 }
ed9b3e33 2772 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 2773 block_commit_write(page, 0, len);
64769240
AT
2774 }
2775
43ce1d23
AK
2776 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2777 /*
2778 * It's mmapped pagecache. Add buffers and journal it. There
2779 * doesn't seem much point in redirtying the page here.
2780 */
2781 ClearPageChecked(page);
3f0ca309 2782 return __ext4_journalled_writepage(page, len);
43ce1d23
AK
2783 }
2784
64769240 2785 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
b920c755 2786 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
744692dc
JZ
2787 else if (page_bufs && buffer_uninit(page_bufs)) {
2788 ext4_set_bh_endio(page_bufs, inode);
2789 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2790 wbc, ext4_end_io_buffer_write);
2791 } else
b920c755
TT
2792 ret = block_write_full_page(page, noalloc_get_block_write,
2793 wbc);
64769240 2794
64769240
AT
2795 return ret;
2796}
2797
61628a3f 2798/*
525f4ed8
MC
2799 * This is called via ext4_da_writepages() to
2800 * calulate the total number of credits to reserve to fit
2801 * a single extent allocation into a single transaction,
2802 * ext4_da_writpeages() will loop calling this before
2803 * the block allocation.
61628a3f 2804 */
525f4ed8
MC
2805
2806static int ext4_da_writepages_trans_blocks(struct inode *inode)
2807{
2808 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2809
2810 /*
2811 * With non-extent format the journal credit needed to
2812 * insert nrblocks contiguous block is dependent on
2813 * number of contiguous block. So we will limit
2814 * number of contiguous block to a sane value
2815 */
30c6e07a 2816 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
525f4ed8
MC
2817 (max_blocks > EXT4_MAX_TRANS_DATA))
2818 max_blocks = EXT4_MAX_TRANS_DATA;
2819
2820 return ext4_chunk_trans_blocks(inode, max_blocks);
2821}
61628a3f 2822
8e48dcfb
TT
2823/*
2824 * write_cache_pages_da - walk the list of dirty pages of the given
2825 * address space and call the callback function (which usually writes
2826 * the pages).
2827 *
2828 * This is a forked version of write_cache_pages(). Differences:
2829 * Range cyclic is ignored.
2830 * no_nrwrite_index_update is always presumed true
2831 */
2832static int write_cache_pages_da(struct address_space *mapping,
2833 struct writeback_control *wbc,
2834 struct mpage_da_data *mpd)
2835{
2836 int ret = 0;
2837 int done = 0;
2838 struct pagevec pvec;
2839 int nr_pages;
2840 pgoff_t index;
2841 pgoff_t end; /* Inclusive */
2842 long nr_to_write = wbc->nr_to_write;
2843
2844 pagevec_init(&pvec, 0);
2845 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2846 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2847
2848 while (!done && (index <= end)) {
2849 int i;
2850
2851 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2852 PAGECACHE_TAG_DIRTY,
2853 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2854 if (nr_pages == 0)
2855 break;
2856
2857 for (i = 0; i < nr_pages; i++) {
2858 struct page *page = pvec.pages[i];
2859
2860 /*
2861 * At this point, the page may be truncated or
2862 * invalidated (changing page->mapping to NULL), or
2863 * even swizzled back from swapper_space to tmpfs file
2864 * mapping. However, page->index will not change
2865 * because we have a reference on the page.
2866 */
2867 if (page->index > end) {
2868 done = 1;
2869 break;
2870 }
2871
2872 lock_page(page);
2873
2874 /*
2875 * Page truncated or invalidated. We can freely skip it
2876 * then, even for data integrity operations: the page
2877 * has disappeared concurrently, so there could be no
2878 * real expectation of this data interity operation
2879 * even if there is now a new, dirty page at the same
2880 * pagecache address.
2881 */
2882 if (unlikely(page->mapping != mapping)) {
2883continue_unlock:
2884 unlock_page(page);
2885 continue;
2886 }
2887
2888 if (!PageDirty(page)) {
2889 /* someone wrote it for us */
2890 goto continue_unlock;
2891 }
2892
2893 if (PageWriteback(page)) {
2894 if (wbc->sync_mode != WB_SYNC_NONE)
2895 wait_on_page_writeback(page);
2896 else
2897 goto continue_unlock;
2898 }
2899
2900 BUG_ON(PageWriteback(page));
2901 if (!clear_page_dirty_for_io(page))
2902 goto continue_unlock;
2903
2904 ret = __mpage_da_writepage(page, wbc, mpd);
2905 if (unlikely(ret)) {
2906 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2907 unlock_page(page);
2908 ret = 0;
2909 } else {
2910 done = 1;
2911 break;
2912 }
2913 }
2914
2915 if (nr_to_write > 0) {
2916 nr_to_write--;
2917 if (nr_to_write == 0 &&
2918 wbc->sync_mode == WB_SYNC_NONE) {
2919 /*
2920 * We stop writing back only if we are
2921 * not doing integrity sync. In case of
2922 * integrity sync we have to keep going
2923 * because someone may be concurrently
2924 * dirtying pages, and we might have
2925 * synced a lot of newly appeared dirty
2926 * pages, but have not synced all of the
2927 * old dirty pages.
2928 */
2929 done = 1;
2930 break;
2931 }
2932 }
2933 }
2934 pagevec_release(&pvec);
2935 cond_resched();
2936 }
2937 return ret;
2938}
2939
2940
64769240 2941static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2942 struct writeback_control *wbc)
64769240 2943{
22208ded
AK
2944 pgoff_t index;
2945 int range_whole = 0;
61628a3f 2946 handle_t *handle = NULL;
df22291f 2947 struct mpage_da_data mpd;
5e745b04 2948 struct inode *inode = mapping->host;
498e5f24
TT
2949 int pages_written = 0;
2950 long pages_skipped;
55138e0b 2951 unsigned int max_pages;
2acf2c26 2952 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2953 int needed_blocks, ret = 0;
2954 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2955 loff_t range_start = wbc->range_start;
5e745b04 2956 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f 2957
9bffad1e 2958 trace_ext4_da_writepages(inode, wbc);
ba80b101 2959
61628a3f
MC
2960 /*
2961 * No pages to write? This is mainly a kludge to avoid starting
2962 * a transaction for special inodes like journal inode on last iput()
2963 * because that could violate lock ordering on umount
2964 */
a1d6cc56 2965 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2966 return 0;
2a21e37e
TT
2967
2968 /*
2969 * If the filesystem has aborted, it is read-only, so return
2970 * right away instead of dumping stack traces later on that
2971 * will obscure the real source of the problem. We test
4ab2f15b 2972 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2973 * the latter could be true if the filesystem is mounted
2974 * read-only, and in that case, ext4_da_writepages should
2975 * *never* be called, so if that ever happens, we would want
2976 * the stack trace.
2977 */
4ab2f15b 2978 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2979 return -EROFS;
2980
22208ded
AK
2981 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2982 range_whole = 1;
61628a3f 2983
2acf2c26
AK
2984 range_cyclic = wbc->range_cyclic;
2985 if (wbc->range_cyclic) {
22208ded 2986 index = mapping->writeback_index;
2acf2c26
AK
2987 if (index)
2988 cycled = 0;
2989 wbc->range_start = index << PAGE_CACHE_SHIFT;
2990 wbc->range_end = LLONG_MAX;
2991 wbc->range_cyclic = 0;
2992 } else
22208ded 2993 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 2994
55138e0b
TT
2995 /*
2996 * This works around two forms of stupidity. The first is in
2997 * the writeback code, which caps the maximum number of pages
2998 * written to be 1024 pages. This is wrong on multiple
2999 * levels; different architectues have a different page size,
3000 * which changes the maximum amount of data which gets
3001 * written. Secondly, 4 megabytes is way too small. XFS
3002 * forces this value to be 16 megabytes by multiplying
3003 * nr_to_write parameter by four, and then relies on its
3004 * allocator to allocate larger extents to make them
3005 * contiguous. Unfortunately this brings us to the second
3006 * stupidity, which is that ext4's mballoc code only allocates
3007 * at most 2048 blocks. So we force contiguous writes up to
3008 * the number of dirty blocks in the inode, or
3009 * sbi->max_writeback_mb_bump whichever is smaller.
3010 */
3011 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
3012 if (!range_cyclic && range_whole)
3013 desired_nr_to_write = wbc->nr_to_write * 8;
3014 else
3015 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
3016 max_pages);
3017 if (desired_nr_to_write > max_pages)
3018 desired_nr_to_write = max_pages;
3019
3020 if (wbc->nr_to_write < desired_nr_to_write) {
3021 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
3022 wbc->nr_to_write = desired_nr_to_write;
3023 }
3024
df22291f
AK
3025 mpd.wbc = wbc;
3026 mpd.inode = mapping->host;
3027
22208ded
AK
3028 pages_skipped = wbc->pages_skipped;
3029
2acf2c26 3030retry:
22208ded 3031 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
3032
3033 /*
3034 * we insert one extent at a time. So we need
3035 * credit needed for single extent allocation.
3036 * journalled mode is currently not supported
3037 * by delalloc
3038 */
3039 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 3040 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 3041
61628a3f
MC
3042 /* start a new transaction*/
3043 handle = ext4_journal_start(inode, needed_blocks);
3044 if (IS_ERR(handle)) {
3045 ret = PTR_ERR(handle);
1693918e 3046 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 3047 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 3048 wbc->nr_to_write, inode->i_ino, ret);
61628a3f
MC
3049 goto out_writepages;
3050 }
f63e6005
TT
3051
3052 /*
3053 * Now call __mpage_da_writepage to find the next
3054 * contiguous region of logical blocks that need
3055 * blocks to be allocated by ext4. We don't actually
3056 * submit the blocks for I/O here, even though
3057 * write_cache_pages thinks it will, and will set the
3058 * pages as clean for write before calling
3059 * __mpage_da_writepage().
3060 */
3061 mpd.b_size = 0;
3062 mpd.b_state = 0;
3063 mpd.b_blocknr = 0;
3064 mpd.first_page = 0;
3065 mpd.next_page = 0;
3066 mpd.io_done = 0;
3067 mpd.pages_written = 0;
3068 mpd.retval = 0;
8e48dcfb 3069 ret = write_cache_pages_da(mapping, wbc, &mpd);
f63e6005 3070 /*
af901ca1 3071 * If we have a contiguous extent of pages and we
f63e6005
TT
3072 * haven't done the I/O yet, map the blocks and submit
3073 * them for I/O.
3074 */
3075 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3076 if (mpage_da_map_blocks(&mpd) == 0)
3077 mpage_da_submit_io(&mpd);
3078 mpd.io_done = 1;
3079 ret = MPAGE_DA_EXTENT_TAIL;
3080 }
b3a3ca8c 3081 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 3082 wbc->nr_to_write -= mpd.pages_written;
df22291f 3083
61628a3f 3084 ext4_journal_stop(handle);
df22291f 3085
8f64b32e 3086 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
3087 /* commit the transaction which would
3088 * free blocks released in the transaction
3089 * and try again
3090 */
df22291f 3091 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
3092 wbc->pages_skipped = pages_skipped;
3093 ret = 0;
3094 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
3095 /*
3096 * got one extent now try with
3097 * rest of the pages
3098 */
22208ded
AK
3099 pages_written += mpd.pages_written;
3100 wbc->pages_skipped = pages_skipped;
a1d6cc56 3101 ret = 0;
2acf2c26 3102 io_done = 1;
22208ded 3103 } else if (wbc->nr_to_write)
61628a3f
MC
3104 /*
3105 * There is no more writeout needed
3106 * or we requested for a noblocking writeout
3107 * and we found the device congested
3108 */
61628a3f 3109 break;
a1d6cc56 3110 }
2acf2c26
AK
3111 if (!io_done && !cycled) {
3112 cycled = 1;
3113 index = 0;
3114 wbc->range_start = index << PAGE_CACHE_SHIFT;
3115 wbc->range_end = mapping->writeback_index - 1;
3116 goto retry;
3117 }
22208ded 3118 if (pages_skipped != wbc->pages_skipped)
1693918e
TT
3119 ext4_msg(inode->i_sb, KERN_CRIT,
3120 "This should not happen leaving %s "
fbe845dd 3121 "with nr_to_write = %ld ret = %d",
1693918e 3122 __func__, wbc->nr_to_write, ret);
22208ded
AK
3123
3124 /* Update index */
3125 index += pages_written;
2acf2c26 3126 wbc->range_cyclic = range_cyclic;
22208ded
AK
3127 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3128 /*
3129 * set the writeback_index so that range_cyclic
3130 * mode will write it back later
3131 */
3132 mapping->writeback_index = index;
a1d6cc56 3133
61628a3f 3134out_writepages:
2faf2e19 3135 wbc->nr_to_write -= nr_to_writebump;
de89de6e 3136 wbc->range_start = range_start;
9bffad1e 3137 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 3138 return ret;
64769240
AT
3139}
3140
79f0be8d
AK
3141#define FALL_BACK_TO_NONDELALLOC 1
3142static int ext4_nonda_switch(struct super_block *sb)
3143{
3144 s64 free_blocks, dirty_blocks;
3145 struct ext4_sb_info *sbi = EXT4_SB(sb);
3146
3147 /*
3148 * switch to non delalloc mode if we are running low
3149 * on free block. The free block accounting via percpu
179f7ebf 3150 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
3151 * accumulated on each CPU without updating global counters
3152 * Delalloc need an accurate free block accounting. So switch
3153 * to non delalloc when we are near to error range.
3154 */
3155 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3156 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3157 if (2 * free_blocks < 3 * dirty_blocks ||
3158 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3159 /*
c8afb446
ES
3160 * free block count is less than 150% of dirty blocks
3161 * or free blocks is less than watermark
79f0be8d
AK
3162 */
3163 return 1;
3164 }
c8afb446
ES
3165 /*
3166 * Even if we don't switch but are nearing capacity,
3167 * start pushing delalloc when 1/2 of free blocks are dirty.
3168 */
3169 if (free_blocks < 2 * dirty_blocks)
3170 writeback_inodes_sb_if_idle(sb);
3171
79f0be8d
AK
3172 return 0;
3173}
3174
64769240 3175static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
3176 loff_t pos, unsigned len, unsigned flags,
3177 struct page **pagep, void **fsdata)
64769240 3178{
72b8ab9d 3179 int ret, retries = 0;
64769240
AT
3180 struct page *page;
3181 pgoff_t index;
3182 unsigned from, to;
3183 struct inode *inode = mapping->host;
3184 handle_t *handle;
3185
3186 index = pos >> PAGE_CACHE_SHIFT;
3187 from = pos & (PAGE_CACHE_SIZE - 1);
3188 to = from + len;
79f0be8d
AK
3189
3190 if (ext4_nonda_switch(inode->i_sb)) {
3191 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3192 return ext4_write_begin(file, mapping, pos,
3193 len, flags, pagep, fsdata);
3194 }
3195 *fsdata = (void *)0;
9bffad1e 3196 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 3197retry:
64769240
AT
3198 /*
3199 * With delayed allocation, we don't log the i_disksize update
3200 * if there is delayed block allocation. But we still need
3201 * to journalling the i_disksize update if writes to the end
3202 * of file which has an already mapped buffer.
3203 */
3204 handle = ext4_journal_start(inode, 1);
3205 if (IS_ERR(handle)) {
3206 ret = PTR_ERR(handle);
3207 goto out;
3208 }
ebd3610b
JK
3209 /* We cannot recurse into the filesystem as the transaction is already
3210 * started */
3211 flags |= AOP_FLAG_NOFS;
64769240 3212
54566b2c 3213 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
3214 if (!page) {
3215 ext4_journal_stop(handle);
3216 ret = -ENOMEM;
3217 goto out;
3218 }
64769240
AT
3219 *pagep = page;
3220
3221 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
b920c755 3222 ext4_da_get_block_prep);
64769240
AT
3223 if (ret < 0) {
3224 unlock_page(page);
3225 ext4_journal_stop(handle);
3226 page_cache_release(page);
ae4d5372
AK
3227 /*
3228 * block_write_begin may have instantiated a few blocks
3229 * outside i_size. Trim these off again. Don't need
3230 * i_size_read because we hold i_mutex.
3231 */
3232 if (pos + len > inode->i_size)
b9a4207d 3233 ext4_truncate_failed_write(inode);
64769240
AT
3234 }
3235
d2a17637
MC
3236 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3237 goto retry;
64769240
AT
3238out:
3239 return ret;
3240}
3241
632eaeab
MC
3242/*
3243 * Check if we should update i_disksize
3244 * when write to the end of file but not require block allocation
3245 */
3246static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3247 unsigned long offset)
632eaeab
MC
3248{
3249 struct buffer_head *bh;
3250 struct inode *inode = page->mapping->host;
3251 unsigned int idx;
3252 int i;
3253
3254 bh = page_buffers(page);
3255 idx = offset >> inode->i_blkbits;
3256
af5bc92d 3257 for (i = 0; i < idx; i++)
632eaeab
MC
3258 bh = bh->b_this_page;
3259
29fa89d0 3260 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3261 return 0;
3262 return 1;
3263}
3264
64769240 3265static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3266 struct address_space *mapping,
3267 loff_t pos, unsigned len, unsigned copied,
3268 struct page *page, void *fsdata)
64769240
AT
3269{
3270 struct inode *inode = mapping->host;
3271 int ret = 0, ret2;
3272 handle_t *handle = ext4_journal_current_handle();
3273 loff_t new_i_size;
632eaeab 3274 unsigned long start, end;
79f0be8d
AK
3275 int write_mode = (int)(unsigned long)fsdata;
3276
3277 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3278 if (ext4_should_order_data(inode)) {
3279 return ext4_ordered_write_end(file, mapping, pos,
3280 len, copied, page, fsdata);
3281 } else if (ext4_should_writeback_data(inode)) {
3282 return ext4_writeback_write_end(file, mapping, pos,
3283 len, copied, page, fsdata);
3284 } else {
3285 BUG();
3286 }
3287 }
632eaeab 3288
9bffad1e 3289 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 3290 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 3291 end = start + copied - 1;
64769240
AT
3292
3293 /*
3294 * generic_write_end() will run mark_inode_dirty() if i_size
3295 * changes. So let's piggyback the i_disksize mark_inode_dirty
3296 * into that.
3297 */
3298
3299 new_i_size = pos + copied;
632eaeab
MC
3300 if (new_i_size > EXT4_I(inode)->i_disksize) {
3301 if (ext4_da_should_update_i_disksize(page, end)) {
3302 down_write(&EXT4_I(inode)->i_data_sem);
3303 if (new_i_size > EXT4_I(inode)->i_disksize) {
3304 /*
3305 * Updating i_disksize when extending file
3306 * without needing block allocation
3307 */
3308 if (ext4_should_order_data(inode))
3309 ret = ext4_jbd2_file_inode(handle,
3310 inode);
64769240 3311
632eaeab
MC
3312 EXT4_I(inode)->i_disksize = new_i_size;
3313 }
3314 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
3315 /* We need to mark inode dirty even if
3316 * new_i_size is less that inode->i_size
3317 * bu greater than i_disksize.(hint delalloc)
3318 */
3319 ext4_mark_inode_dirty(handle, inode);
64769240 3320 }
632eaeab 3321 }
64769240
AT
3322 ret2 = generic_write_end(file, mapping, pos, len, copied,
3323 page, fsdata);
3324 copied = ret2;
3325 if (ret2 < 0)
3326 ret = ret2;
3327 ret2 = ext4_journal_stop(handle);
3328 if (!ret)
3329 ret = ret2;
3330
3331 return ret ? ret : copied;
3332}
3333
3334static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3335{
64769240
AT
3336 /*
3337 * Drop reserved blocks
3338 */
3339 BUG_ON(!PageLocked(page));
3340 if (!page_has_buffers(page))
3341 goto out;
3342
d2a17637 3343 ext4_da_page_release_reservation(page, offset);
64769240
AT
3344
3345out:
3346 ext4_invalidatepage(page, offset);
3347
3348 return;
3349}
3350
ccd2506b
TT
3351/*
3352 * Force all delayed allocation blocks to be allocated for a given inode.
3353 */
3354int ext4_alloc_da_blocks(struct inode *inode)
3355{
fb40ba0d
TT
3356 trace_ext4_alloc_da_blocks(inode);
3357
ccd2506b
TT
3358 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3359 !EXT4_I(inode)->i_reserved_meta_blocks)
3360 return 0;
3361
3362 /*
3363 * We do something simple for now. The filemap_flush() will
3364 * also start triggering a write of the data blocks, which is
3365 * not strictly speaking necessary (and for users of
3366 * laptop_mode, not even desirable). However, to do otherwise
3367 * would require replicating code paths in:
de9a55b8 3368 *
ccd2506b
TT
3369 * ext4_da_writepages() ->
3370 * write_cache_pages() ---> (via passed in callback function)
3371 * __mpage_da_writepage() -->
3372 * mpage_add_bh_to_extent()
3373 * mpage_da_map_blocks()
3374 *
3375 * The problem is that write_cache_pages(), located in
3376 * mm/page-writeback.c, marks pages clean in preparation for
3377 * doing I/O, which is not desirable if we're not planning on
3378 * doing I/O at all.
3379 *
3380 * We could call write_cache_pages(), and then redirty all of
3381 * the pages by calling redirty_page_for_writeback() but that
3382 * would be ugly in the extreme. So instead we would need to
3383 * replicate parts of the code in the above functions,
3384 * simplifying them becuase we wouldn't actually intend to
3385 * write out the pages, but rather only collect contiguous
3386 * logical block extents, call the multi-block allocator, and
3387 * then update the buffer heads with the block allocations.
de9a55b8 3388 *
ccd2506b
TT
3389 * For now, though, we'll cheat by calling filemap_flush(),
3390 * which will map the blocks, and start the I/O, but not
3391 * actually wait for the I/O to complete.
3392 */
3393 return filemap_flush(inode->i_mapping);
3394}
64769240 3395
ac27a0ec
DK
3396/*
3397 * bmap() is special. It gets used by applications such as lilo and by
3398 * the swapper to find the on-disk block of a specific piece of data.
3399 *
3400 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3401 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3402 * filesystem and enables swap, then they may get a nasty shock when the
3403 * data getting swapped to that swapfile suddenly gets overwritten by
3404 * the original zero's written out previously to the journal and
3405 * awaiting writeback in the kernel's buffer cache.
3406 *
3407 * So, if we see any bmap calls here on a modified, data-journaled file,
3408 * take extra steps to flush any blocks which might be in the cache.
3409 */
617ba13b 3410static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3411{
3412 struct inode *inode = mapping->host;
3413 journal_t *journal;
3414 int err;
3415
64769240
AT
3416 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3417 test_opt(inode->i_sb, DELALLOC)) {
3418 /*
3419 * With delalloc we want to sync the file
3420 * so that we can make sure we allocate
3421 * blocks for file
3422 */
3423 filemap_write_and_wait(mapping);
3424 }
3425
19f5fb7a
TT
3426 if (EXT4_JOURNAL(inode) &&
3427 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
3428 /*
3429 * This is a REALLY heavyweight approach, but the use of
3430 * bmap on dirty files is expected to be extremely rare:
3431 * only if we run lilo or swapon on a freshly made file
3432 * do we expect this to happen.
3433 *
3434 * (bmap requires CAP_SYS_RAWIO so this does not
3435 * represent an unprivileged user DOS attack --- we'd be
3436 * in trouble if mortal users could trigger this path at
3437 * will.)
3438 *
617ba13b 3439 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3440 * regular files. If somebody wants to bmap a directory
3441 * or symlink and gets confused because the buffer
3442 * hasn't yet been flushed to disk, they deserve
3443 * everything they get.
3444 */
3445
19f5fb7a 3446 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 3447 journal = EXT4_JOURNAL(inode);
dab291af
MC
3448 jbd2_journal_lock_updates(journal);
3449 err = jbd2_journal_flush(journal);
3450 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3451
3452 if (err)
3453 return 0;
3454 }
3455
af5bc92d 3456 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3457}
3458
617ba13b 3459static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3460{
617ba13b 3461 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
3462}
3463
3464static int
617ba13b 3465ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3466 struct list_head *pages, unsigned nr_pages)
3467{
617ba13b 3468 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3469}
3470
744692dc
JZ
3471static void ext4_free_io_end(ext4_io_end_t *io)
3472{
3473 BUG_ON(!io);
3474 if (io->page)
3475 put_page(io->page);
3476 iput(io->inode);
3477 kfree(io);
3478}
3479
3480static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3481{
3482 struct buffer_head *head, *bh;
3483 unsigned int curr_off = 0;
3484
3485 if (!page_has_buffers(page))
3486 return;
3487 head = bh = page_buffers(page);
3488 do {
3489 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3490 && bh->b_private) {
3491 ext4_free_io_end(bh->b_private);
3492 bh->b_private = NULL;
3493 bh->b_end_io = NULL;
3494 }
3495 curr_off = curr_off + bh->b_size;
3496 bh = bh->b_this_page;
3497 } while (bh != head);
3498}
3499
617ba13b 3500static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3501{
617ba13b 3502 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3503
744692dc
JZ
3504 /*
3505 * free any io_end structure allocated for buffers to be discarded
3506 */
3507 if (ext4_should_dioread_nolock(page->mapping->host))
3508 ext4_invalidatepage_free_endio(page, offset);
ac27a0ec
DK
3509 /*
3510 * If it's a full truncate we just forget about the pending dirtying
3511 */
3512 if (offset == 0)
3513 ClearPageChecked(page);
3514
0390131b
FM
3515 if (journal)
3516 jbd2_journal_invalidatepage(journal, page, offset);
3517 else
3518 block_invalidatepage(page, offset);
ac27a0ec
DK
3519}
3520
617ba13b 3521static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3522{
617ba13b 3523 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3524
3525 WARN_ON(PageChecked(page));
3526 if (!page_has_buffers(page))
3527 return 0;
0390131b
FM
3528 if (journal)
3529 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3530 else
3531 return try_to_free_buffers(page);
ac27a0ec
DK
3532}
3533
3534/*
4c0425ff
MC
3535 * O_DIRECT for ext3 (or indirect map) based files
3536 *
ac27a0ec
DK
3537 * If the O_DIRECT write will extend the file then add this inode to the
3538 * orphan list. So recovery will truncate it back to the original size
3539 * if the machine crashes during the write.
3540 *
3541 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3542 * crashes then stale disk data _may_ be exposed inside the file. But current
3543 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3544 */
4c0425ff 3545static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
de9a55b8
TT
3546 const struct iovec *iov, loff_t offset,
3547 unsigned long nr_segs)
ac27a0ec
DK
3548{
3549 struct file *file = iocb->ki_filp;
3550 struct inode *inode = file->f_mapping->host;
617ba13b 3551 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3552 handle_t *handle;
ac27a0ec
DK
3553 ssize_t ret;
3554 int orphan = 0;
3555 size_t count = iov_length(iov, nr_segs);
fbbf6945 3556 int retries = 0;
ac27a0ec
DK
3557
3558 if (rw == WRITE) {
3559 loff_t final_size = offset + count;
3560
ac27a0ec 3561 if (final_size > inode->i_size) {
7fb5409d
JK
3562 /* Credits for sb + inode write */
3563 handle = ext4_journal_start(inode, 2);
3564 if (IS_ERR(handle)) {
3565 ret = PTR_ERR(handle);
3566 goto out;
3567 }
617ba13b 3568 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3569 if (ret) {
3570 ext4_journal_stop(handle);
3571 goto out;
3572 }
ac27a0ec
DK
3573 orphan = 1;
3574 ei->i_disksize = inode->i_size;
7fb5409d 3575 ext4_journal_stop(handle);
ac27a0ec
DK
3576 }
3577 }
3578
fbbf6945 3579retry:
b7adc1f3
JZ
3580 if (rw == READ && ext4_should_dioread_nolock(inode))
3581 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
3582 inode->i_sb->s_bdev, iov,
3583 offset, nr_segs,
3584 ext4_get_block, NULL);
3585 else
3586 ret = blockdev_direct_IO(rw, iocb, inode,
3587 inode->i_sb->s_bdev, iov,
ac27a0ec 3588 offset, nr_segs,
617ba13b 3589 ext4_get_block, NULL);
fbbf6945
ES
3590 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3591 goto retry;
ac27a0ec 3592
7fb5409d 3593 if (orphan) {
ac27a0ec
DK
3594 int err;
3595
7fb5409d
JK
3596 /* Credits for sb + inode write */
3597 handle = ext4_journal_start(inode, 2);
3598 if (IS_ERR(handle)) {
3599 /* This is really bad luck. We've written the data
3600 * but cannot extend i_size. Bail out and pretend
3601 * the write failed... */
3602 ret = PTR_ERR(handle);
da1dafca
DM
3603 if (inode->i_nlink)
3604 ext4_orphan_del(NULL, inode);
3605
7fb5409d
JK
3606 goto out;
3607 }
3608 if (inode->i_nlink)
617ba13b 3609 ext4_orphan_del(handle, inode);
7fb5409d 3610 if (ret > 0) {
ac27a0ec
DK
3611 loff_t end = offset + ret;
3612 if (end > inode->i_size) {
3613 ei->i_disksize = end;
3614 i_size_write(inode, end);
3615 /*
3616 * We're going to return a positive `ret'
3617 * here due to non-zero-length I/O, so there's
3618 * no way of reporting error returns from
617ba13b 3619 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3620 * ignore it.
3621 */
617ba13b 3622 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3623 }
3624 }
617ba13b 3625 err = ext4_journal_stop(handle);
ac27a0ec
DK
3626 if (ret == 0)
3627 ret = err;
3628 }
3629out:
3630 return ret;
3631}
3632
c7064ef1 3633static int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
3634 struct buffer_head *bh_result, int create)
3635{
744692dc 3636 handle_t *handle = ext4_journal_current_handle();
4c0425ff
MC
3637 int ret = 0;
3638 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3639 int dio_credits;
744692dc 3640 int started = 0;
4c0425ff 3641
c7064ef1 3642 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 3643 inode->i_ino, create);
4c0425ff 3644 /*
c7064ef1
JZ
3645 * ext4_get_block in prepare for a DIO write or buffer write.
3646 * We allocate an uinitialized extent if blocks haven't been allocated.
3647 * The extent will be converted to initialized after IO complete.
4c0425ff 3648 */
c7064ef1 3649 create = EXT4_GET_BLOCKS_IO_CREATE_EXT;
4c0425ff 3650
744692dc
JZ
3651 if (!handle) {
3652 if (max_blocks > DIO_MAX_BLOCKS)
3653 max_blocks = DIO_MAX_BLOCKS;
3654 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3655 handle = ext4_journal_start(inode, dio_credits);
3656 if (IS_ERR(handle)) {
3657 ret = PTR_ERR(handle);
3658 goto out;
3659 }
3660 started = 1;
4c0425ff 3661 }
744692dc 3662
4c0425ff
MC
3663 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3664 create);
3665 if (ret > 0) {
3666 bh_result->b_size = (ret << inode->i_blkbits);
3667 ret = 0;
3668 }
744692dc
JZ
3669 if (started)
3670 ext4_journal_stop(handle);
4c0425ff
MC
3671out:
3672 return ret;
3673}
3674
c7064ef1 3675static void dump_completed_IO(struct inode * inode)
8d5d02e6
MC
3676{
3677#ifdef EXT4_DEBUG
3678 struct list_head *cur, *before, *after;
3679 ext4_io_end_t *io, *io0, *io1;
744692dc 3680 unsigned long flags;
8d5d02e6 3681
c7064ef1
JZ
3682 if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
3683 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
8d5d02e6
MC
3684 return;
3685 }
3686
c7064ef1 3687 ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
744692dc 3688 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
c7064ef1 3689 list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
8d5d02e6
MC
3690 cur = &io->list;
3691 before = cur->prev;
3692 io0 = container_of(before, ext4_io_end_t, list);
3693 after = cur->next;
3694 io1 = container_of(after, ext4_io_end_t, list);
3695
3696 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3697 io, inode->i_ino, io0, io1);
3698 }
744692dc 3699 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
8d5d02e6
MC
3700#endif
3701}
4c0425ff
MC
3702
3703/*
4c0425ff
MC
3704 * check a range of space and convert unwritten extents to written.
3705 */
c7064ef1 3706static int ext4_end_io_nolock(ext4_io_end_t *io)
4c0425ff 3707{
4c0425ff
MC
3708 struct inode *inode = io->inode;
3709 loff_t offset = io->offset;
a1de02dc 3710 ssize_t size = io->size;
4c0425ff 3711 int ret = 0;
4c0425ff 3712
c7064ef1 3713 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
8d5d02e6
MC
3714 "list->prev 0x%p\n",
3715 io, inode->i_ino, io->list.next, io->list.prev);
3716
3717 if (list_empty(&io->list))
3718 return ret;
3719
c7064ef1 3720 if (io->flag != EXT4_IO_UNWRITTEN)
8d5d02e6
MC
3721 return ret;
3722
744692dc 3723 ret = ext4_convert_unwritten_extents(inode, offset, size);
8d5d02e6 3724 if (ret < 0) {
4c0425ff 3725 printk(KERN_EMERG "%s: failed to convert unwritten"
8d5d02e6
MC
3726 "extents to written extents, error is %d"
3727 " io is still on inode %lu aio dio list\n",
3728 __func__, ret, inode->i_ino);
3729 return ret;
3730 }
4c0425ff 3731
8d5d02e6
MC
3732 /* clear the DIO AIO unwritten flag */
3733 io->flag = 0;
3734 return ret;
4c0425ff 3735}
c7064ef1 3736
8d5d02e6
MC
3737/*
3738 * work on completed aio dio IO, to convert unwritten extents to extents
3739 */
c7064ef1 3740static void ext4_end_io_work(struct work_struct *work)
8d5d02e6 3741{
744692dc
JZ
3742 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3743 struct inode *inode = io->inode;
3744 struct ext4_inode_info *ei = EXT4_I(inode);
3745 unsigned long flags;
3746 int ret;
4c0425ff 3747
8d5d02e6 3748 mutex_lock(&inode->i_mutex);
c7064ef1 3749 ret = ext4_end_io_nolock(io);
744692dc
JZ
3750 if (ret < 0) {
3751 mutex_unlock(&inode->i_mutex);
3752 return;
8d5d02e6 3753 }
744692dc
JZ
3754
3755 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3756 if (!list_empty(&io->list))
3757 list_del_init(&io->list);
3758 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
8d5d02e6 3759 mutex_unlock(&inode->i_mutex);
744692dc 3760 ext4_free_io_end(io);
8d5d02e6 3761}
c7064ef1 3762
8d5d02e6
MC
3763/*
3764 * This function is called from ext4_sync_file().
3765 *
c7064ef1
JZ
3766 * When IO is completed, the work to convert unwritten extents to
3767 * written is queued on workqueue but may not get immediately
8d5d02e6
MC
3768 * scheduled. When fsync is called, we need to ensure the
3769 * conversion is complete before fsync returns.
c7064ef1
JZ
3770 * The inode keeps track of a list of pending/completed IO that
3771 * might needs to do the conversion. This function walks through
3772 * the list and convert the related unwritten extents for completed IO
3773 * to written.
3774 * The function return the number of pending IOs on success.
8d5d02e6 3775 */
c7064ef1 3776int flush_completed_IO(struct inode *inode)
8d5d02e6
MC
3777{
3778 ext4_io_end_t *io;
744692dc
JZ
3779 struct ext4_inode_info *ei = EXT4_I(inode);
3780 unsigned long flags;
8d5d02e6
MC
3781 int ret = 0;
3782 int ret2 = 0;
3783
744692dc 3784 if (list_empty(&ei->i_completed_io_list))
8d5d02e6
MC
3785 return ret;
3786
c7064ef1 3787 dump_completed_IO(inode);
744692dc
JZ
3788 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3789 while (!list_empty(&ei->i_completed_io_list)){
3790 io = list_entry(ei->i_completed_io_list.next,
8d5d02e6
MC
3791 ext4_io_end_t, list);
3792 /*
c7064ef1 3793 * Calling ext4_end_io_nolock() to convert completed
8d5d02e6
MC
3794 * IO to written.
3795 *
3796 * When ext4_sync_file() is called, run_queue() may already
3797 * about to flush the work corresponding to this io structure.
3798 * It will be upset if it founds the io structure related
3799 * to the work-to-be schedule is freed.
3800 *
3801 * Thus we need to keep the io structure still valid here after
3802 * convertion finished. The io structure has a flag to
3803 * avoid double converting from both fsync and background work
3804 * queue work.
3805 */
744692dc 3806 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
c7064ef1 3807 ret = ext4_end_io_nolock(io);
744692dc 3808 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
8d5d02e6
MC
3809 if (ret < 0)
3810 ret2 = ret;
3811 else
3812 list_del_init(&io->list);
3813 }
744692dc 3814 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
8d5d02e6
MC
3815 return (ret2 < 0) ? ret2 : 0;
3816}
3817
744692dc 3818static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
4c0425ff
MC
3819{
3820 ext4_io_end_t *io = NULL;
3821
744692dc 3822 io = kmalloc(sizeof(*io), flags);
4c0425ff
MC
3823
3824 if (io) {
8d5d02e6 3825 igrab(inode);
4c0425ff 3826 io->inode = inode;
8d5d02e6 3827 io->flag = 0;
4c0425ff
MC
3828 io->offset = 0;
3829 io->size = 0;
744692dc 3830 io->page = NULL;
c7064ef1 3831 INIT_WORK(&io->work, ext4_end_io_work);
8d5d02e6 3832 INIT_LIST_HEAD(&io->list);
4c0425ff
MC
3833 }
3834
3835 return io;
3836}
3837
3838static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3839 ssize_t size, void *private)
3840{
3841 ext4_io_end_t *io_end = iocb->private;
3842 struct workqueue_struct *wq;
744692dc
JZ
3843 unsigned long flags;
3844 struct ext4_inode_info *ei;
4c0425ff 3845
4b70df18
M
3846 /* if not async direct IO or dio with 0 bytes write, just return */
3847 if (!io_end || !size)
3848 return;
3849
8d5d02e6
MC
3850 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3851 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3852 iocb->private, io_end->inode->i_ino, iocb, offset,
3853 size);
8d5d02e6
MC
3854
3855 /* if not aio dio with unwritten extents, just free io and return */
c7064ef1 3856 if (io_end->flag != EXT4_IO_UNWRITTEN){
8d5d02e6
MC
3857 ext4_free_io_end(io_end);
3858 iocb->private = NULL;
4c0425ff 3859 return;
8d5d02e6
MC
3860 }
3861
4c0425ff
MC
3862 io_end->offset = offset;
3863 io_end->size = size;
744692dc 3864 io_end->flag = EXT4_IO_UNWRITTEN;
4c0425ff
MC
3865 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3866
8d5d02e6 3867 /* queue the work to convert unwritten extents to written */
4c0425ff
MC
3868 queue_work(wq, &io_end->work);
3869
8d5d02e6 3870 /* Add the io_end to per-inode completed aio dio list*/
744692dc
JZ
3871 ei = EXT4_I(io_end->inode);
3872 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3873 list_add_tail(&io_end->list, &ei->i_completed_io_list);
3874 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
4c0425ff
MC
3875 iocb->private = NULL;
3876}
c7064ef1 3877
744692dc
JZ
3878static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3879{
3880 ext4_io_end_t *io_end = bh->b_private;
3881 struct workqueue_struct *wq;
3882 struct inode *inode;
3883 unsigned long flags;
3884
3885 if (!test_clear_buffer_uninit(bh) || !io_end)
3886 goto out;
3887
3888 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3889 printk("sb umounted, discard end_io request for inode %lu\n",
3890 io_end->inode->i_ino);
3891 ext4_free_io_end(io_end);
3892 goto out;
3893 }
3894
3895 io_end->flag = EXT4_IO_UNWRITTEN;
3896 inode = io_end->inode;
3897
3898 /* Add the io_end to per-inode completed io list*/
3899 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3900 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3901 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3902
3903 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3904 /* queue the work to convert unwritten extents to written */
3905 queue_work(wq, &io_end->work);
3906out:
3907 bh->b_private = NULL;
3908 bh->b_end_io = NULL;
3909 clear_buffer_uninit(bh);
3910 end_buffer_async_write(bh, uptodate);
3911}
3912
3913static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3914{
3915 ext4_io_end_t *io_end;
3916 struct page *page = bh->b_page;
3917 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3918 size_t size = bh->b_size;
3919
3920retry:
3921 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3922 if (!io_end) {
3923 if (printk_ratelimit())
3924 printk(KERN_WARNING "%s: allocation fail\n", __func__);
3925 schedule();
3926 goto retry;
3927 }
3928 io_end->offset = offset;
3929 io_end->size = size;
3930 /*
3931 * We need to hold a reference to the page to make sure it
3932 * doesn't get evicted before ext4_end_io_work() has a chance
3933 * to convert the extent from written to unwritten.
3934 */
3935 io_end->page = page;
3936 get_page(io_end->page);
3937
3938 bh->b_private = io_end;
3939 bh->b_end_io = ext4_end_io_buffer_write;
3940 return 0;
3941}
3942
4c0425ff
MC
3943/*
3944 * For ext4 extent files, ext4 will do direct-io write to holes,
3945 * preallocated extents, and those write extend the file, no need to
3946 * fall back to buffered IO.
3947 *
3948 * For holes, we fallocate those blocks, mark them as unintialized
3949 * If those blocks were preallocated, we mark sure they are splited, but
3950 * still keep the range to write as unintialized.
3951 *
8d5d02e6
MC
3952 * The unwrritten extents will be converted to written when DIO is completed.
3953 * For async direct IO, since the IO may still pending when return, we
3954 * set up an end_io call back function, which will do the convertion
3955 * when async direct IO completed.
4c0425ff
MC
3956 *
3957 * If the O_DIRECT write will extend the file then add this inode to the
3958 * orphan list. So recovery will truncate it back to the original size
3959 * if the machine crashes during the write.
3960 *
3961 */
3962static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3963 const struct iovec *iov, loff_t offset,
3964 unsigned long nr_segs)
3965{
3966 struct file *file = iocb->ki_filp;
3967 struct inode *inode = file->f_mapping->host;
3968 ssize_t ret;
3969 size_t count = iov_length(iov, nr_segs);
3970
3971 loff_t final_size = offset + count;
3972 if (rw == WRITE && final_size <= inode->i_size) {
3973 /*
8d5d02e6
MC
3974 * We could direct write to holes and fallocate.
3975 *
3976 * Allocated blocks to fill the hole are marked as uninitialized
4c0425ff
MC
3977 * to prevent paralel buffered read to expose the stale data
3978 * before DIO complete the data IO.
8d5d02e6
MC
3979 *
3980 * As to previously fallocated extents, ext4 get_block
4c0425ff
MC
3981 * will just simply mark the buffer mapped but still
3982 * keep the extents uninitialized.
3983 *
8d5d02e6
MC
3984 * for non AIO case, we will convert those unwritten extents
3985 * to written after return back from blockdev_direct_IO.
3986 *
3987 * for async DIO, the conversion needs to be defered when
3988 * the IO is completed. The ext4 end_io callback function
3989 * will be called to take care of the conversion work.
3990 * Here for async case, we allocate an io_end structure to
3991 * hook to the iocb.
4c0425ff 3992 */
8d5d02e6
MC
3993 iocb->private = NULL;
3994 EXT4_I(inode)->cur_aio_dio = NULL;
3995 if (!is_sync_kiocb(iocb)) {
744692dc 3996 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
8d5d02e6
MC
3997 if (!iocb->private)
3998 return -ENOMEM;
3999 /*
4000 * we save the io structure for current async
4001 * direct IO, so that later ext4_get_blocks()
4002 * could flag the io structure whether there
4003 * is a unwritten extents needs to be converted
4004 * when IO is completed.
4005 */
4006 EXT4_I(inode)->cur_aio_dio = iocb->private;
4007 }
4008
4c0425ff
MC
4009 ret = blockdev_direct_IO(rw, iocb, inode,
4010 inode->i_sb->s_bdev, iov,
4011 offset, nr_segs,
c7064ef1 4012 ext4_get_block_write,
4c0425ff 4013 ext4_end_io_dio);
8d5d02e6
MC
4014 if (iocb->private)
4015 EXT4_I(inode)->cur_aio_dio = NULL;
4016 /*
4017 * The io_end structure takes a reference to the inode,
4018 * that structure needs to be destroyed and the
4019 * reference to the inode need to be dropped, when IO is
4020 * complete, even with 0 byte write, or failed.
4021 *
4022 * In the successful AIO DIO case, the io_end structure will be
4023 * desctroyed and the reference to the inode will be dropped
4024 * after the end_io call back function is called.
4025 *
4026 * In the case there is 0 byte write, or error case, since
4027 * VFS direct IO won't invoke the end_io call back function,
4028 * we need to free the end_io structure here.
4029 */
4030 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
4031 ext4_free_io_end(iocb->private);
4032 iocb->private = NULL;
19f5fb7a
TT
4033 } else if (ret > 0 && ext4_test_inode_state(inode,
4034 EXT4_STATE_DIO_UNWRITTEN)) {
109f5565 4035 int err;
8d5d02e6
MC
4036 /*
4037 * for non AIO case, since the IO is already
4038 * completed, we could do the convertion right here
4039 */
109f5565
M
4040 err = ext4_convert_unwritten_extents(inode,
4041 offset, ret);
4042 if (err < 0)
4043 ret = err;
19f5fb7a 4044 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
109f5565 4045 }
4c0425ff
MC
4046 return ret;
4047 }
8d5d02e6
MC
4048
4049 /* for write the the end of file case, we fall back to old way */
4c0425ff
MC
4050 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4051}
4052
4053static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
4054 const struct iovec *iov, loff_t offset,
4055 unsigned long nr_segs)
4056{
4057 struct file *file = iocb->ki_filp;
4058 struct inode *inode = file->f_mapping->host;
4059
4060 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
4061 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
4062
4063 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4064}
4065
ac27a0ec 4066/*
617ba13b 4067 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
4068 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
4069 * much here because ->set_page_dirty is called under VFS locks. The page is
4070 * not necessarily locked.
4071 *
4072 * We cannot just dirty the page and leave attached buffers clean, because the
4073 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
4074 * or jbddirty because all the journalling code will explode.
4075 *
4076 * So what we do is to mark the page "pending dirty" and next time writepage
4077 * is called, propagate that into the buffers appropriately.
4078 */
617ba13b 4079static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
4080{
4081 SetPageChecked(page);
4082 return __set_page_dirty_nobuffers(page);
4083}
4084
617ba13b 4085static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
4086 .readpage = ext4_readpage,
4087 .readpages = ext4_readpages,
43ce1d23 4088 .writepage = ext4_writepage,
8ab22b9a
HH
4089 .sync_page = block_sync_page,
4090 .write_begin = ext4_write_begin,
4091 .write_end = ext4_ordered_write_end,
4092 .bmap = ext4_bmap,
4093 .invalidatepage = ext4_invalidatepage,
4094 .releasepage = ext4_releasepage,
4095 .direct_IO = ext4_direct_IO,
4096 .migratepage = buffer_migrate_page,
4097 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4098 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
4099};
4100
617ba13b 4101static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
4102 .readpage = ext4_readpage,
4103 .readpages = ext4_readpages,
43ce1d23 4104 .writepage = ext4_writepage,
8ab22b9a
HH
4105 .sync_page = block_sync_page,
4106 .write_begin = ext4_write_begin,
4107 .write_end = ext4_writeback_write_end,
4108 .bmap = ext4_bmap,
4109 .invalidatepage = ext4_invalidatepage,
4110 .releasepage = ext4_releasepage,
4111 .direct_IO = ext4_direct_IO,
4112 .migratepage = buffer_migrate_page,
4113 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4114 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
4115};
4116
617ba13b 4117static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
4118 .readpage = ext4_readpage,
4119 .readpages = ext4_readpages,
43ce1d23 4120 .writepage = ext4_writepage,
8ab22b9a
HH
4121 .sync_page = block_sync_page,
4122 .write_begin = ext4_write_begin,
4123 .write_end = ext4_journalled_write_end,
4124 .set_page_dirty = ext4_journalled_set_page_dirty,
4125 .bmap = ext4_bmap,
4126 .invalidatepage = ext4_invalidatepage,
4127 .releasepage = ext4_releasepage,
4128 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4129 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
4130};
4131
64769240 4132static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
4133 .readpage = ext4_readpage,
4134 .readpages = ext4_readpages,
43ce1d23 4135 .writepage = ext4_writepage,
8ab22b9a
HH
4136 .writepages = ext4_da_writepages,
4137 .sync_page = block_sync_page,
4138 .write_begin = ext4_da_write_begin,
4139 .write_end = ext4_da_write_end,
4140 .bmap = ext4_bmap,
4141 .invalidatepage = ext4_da_invalidatepage,
4142 .releasepage = ext4_releasepage,
4143 .direct_IO = ext4_direct_IO,
4144 .migratepage = buffer_migrate_page,
4145 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4146 .error_remove_page = generic_error_remove_page,
64769240
AT
4147};
4148
617ba13b 4149void ext4_set_aops(struct inode *inode)
ac27a0ec 4150{
cd1aac32
AK
4151 if (ext4_should_order_data(inode) &&
4152 test_opt(inode->i_sb, DELALLOC))
4153 inode->i_mapping->a_ops = &ext4_da_aops;
4154 else if (ext4_should_order_data(inode))
617ba13b 4155 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
4156 else if (ext4_should_writeback_data(inode) &&
4157 test_opt(inode->i_sb, DELALLOC))
4158 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
4159 else if (ext4_should_writeback_data(inode))
4160 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 4161 else
617ba13b 4162 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
4163}
4164
4165/*
617ba13b 4166 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
4167 * up to the end of the block which corresponds to `from'.
4168 * This required during truncate. We need to physically zero the tail end
4169 * of that block so it doesn't yield old data if the file is later grown.
4170 */
cf108bca 4171int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
4172 struct address_space *mapping, loff_t from)
4173{
617ba13b 4174 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 4175 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
4176 unsigned blocksize, length, pos;
4177 ext4_lblk_t iblock;
ac27a0ec
DK
4178 struct inode *inode = mapping->host;
4179 struct buffer_head *bh;
cf108bca 4180 struct page *page;
ac27a0ec 4181 int err = 0;
ac27a0ec 4182
f4a01017
TT
4183 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4184 mapping_gfp_mask(mapping) & ~__GFP_FS);
cf108bca
JK
4185 if (!page)
4186 return -EINVAL;
4187
ac27a0ec
DK
4188 blocksize = inode->i_sb->s_blocksize;
4189 length = blocksize - (offset & (blocksize - 1));
4190 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4191
4192 /*
4193 * For "nobh" option, we can only work if we don't need to
4194 * read-in the page - otherwise we create buffers to do the IO.
4195 */
4196 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 4197 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 4198 zero_user(page, offset, length);
ac27a0ec
DK
4199 set_page_dirty(page);
4200 goto unlock;
4201 }
4202
4203 if (!page_has_buffers(page))
4204 create_empty_buffers(page, blocksize, 0);
4205
4206 /* Find the buffer that contains "offset" */
4207 bh = page_buffers(page);
4208 pos = blocksize;
4209 while (offset >= pos) {
4210 bh = bh->b_this_page;
4211 iblock++;
4212 pos += blocksize;
4213 }
4214
4215 err = 0;
4216 if (buffer_freed(bh)) {
4217 BUFFER_TRACE(bh, "freed: skip");
4218 goto unlock;
4219 }
4220
4221 if (!buffer_mapped(bh)) {
4222 BUFFER_TRACE(bh, "unmapped");
617ba13b 4223 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
4224 /* unmapped? It's a hole - nothing to do */
4225 if (!buffer_mapped(bh)) {
4226 BUFFER_TRACE(bh, "still unmapped");
4227 goto unlock;
4228 }
4229 }
4230
4231 /* Ok, it's mapped. Make sure it's up-to-date */
4232 if (PageUptodate(page))
4233 set_buffer_uptodate(bh);
4234
4235 if (!buffer_uptodate(bh)) {
4236 err = -EIO;
4237 ll_rw_block(READ, 1, &bh);
4238 wait_on_buffer(bh);
4239 /* Uhhuh. Read error. Complain and punt. */
4240 if (!buffer_uptodate(bh))
4241 goto unlock;
4242 }
4243
617ba13b 4244 if (ext4_should_journal_data(inode)) {
ac27a0ec 4245 BUFFER_TRACE(bh, "get write access");
617ba13b 4246 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
4247 if (err)
4248 goto unlock;
4249 }
4250
eebd2aa3 4251 zero_user(page, offset, length);
ac27a0ec
DK
4252
4253 BUFFER_TRACE(bh, "zeroed end of block");
4254
4255 err = 0;
617ba13b 4256 if (ext4_should_journal_data(inode)) {
0390131b 4257 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 4258 } else {
617ba13b 4259 if (ext4_should_order_data(inode))
678aaf48 4260 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
4261 mark_buffer_dirty(bh);
4262 }
4263
4264unlock:
4265 unlock_page(page);
4266 page_cache_release(page);
4267 return err;
4268}
4269
4270/*
4271 * Probably it should be a library function... search for first non-zero word
4272 * or memcmp with zero_page, whatever is better for particular architecture.
4273 * Linus?
4274 */
4275static inline int all_zeroes(__le32 *p, __le32 *q)
4276{
4277 while (p < q)
4278 if (*p++)
4279 return 0;
4280 return 1;
4281}
4282
4283/**
617ba13b 4284 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
4285 * @inode: inode in question
4286 * @depth: depth of the affected branch
617ba13b 4287 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
4288 * @chain: place to store the pointers to partial indirect blocks
4289 * @top: place to the (detached) top of branch
4290 *
617ba13b 4291 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
4292 *
4293 * When we do truncate() we may have to clean the ends of several
4294 * indirect blocks but leave the blocks themselves alive. Block is
4295 * partially truncated if some data below the new i_size is refered
4296 * from it (and it is on the path to the first completely truncated
4297 * data block, indeed). We have to free the top of that path along
4298 * with everything to the right of the path. Since no allocation
617ba13b 4299 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
4300 * finishes, we may safely do the latter, but top of branch may
4301 * require special attention - pageout below the truncation point
4302 * might try to populate it.
4303 *
4304 * We atomically detach the top of branch from the tree, store the
4305 * block number of its root in *@top, pointers to buffer_heads of
4306 * partially truncated blocks - in @chain[].bh and pointers to
4307 * their last elements that should not be removed - in
4308 * @chain[].p. Return value is the pointer to last filled element
4309 * of @chain.
4310 *
4311 * The work left to caller to do the actual freeing of subtrees:
4312 * a) free the subtree starting from *@top
4313 * b) free the subtrees whose roots are stored in
4314 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4315 * c) free the subtrees growing from the inode past the @chain[0].
4316 * (no partially truncated stuff there). */
4317
617ba13b 4318static Indirect *ext4_find_shared(struct inode *inode, int depth,
de9a55b8
TT
4319 ext4_lblk_t offsets[4], Indirect chain[4],
4320 __le32 *top)
ac27a0ec
DK
4321{
4322 Indirect *partial, *p;
4323 int k, err;
4324
4325 *top = 0;
bf48aabb 4326 /* Make k index the deepest non-null offset + 1 */
ac27a0ec
DK
4327 for (k = depth; k > 1 && !offsets[k-1]; k--)
4328 ;
617ba13b 4329 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
4330 /* Writer: pointers */
4331 if (!partial)
4332 partial = chain + k-1;
4333 /*
4334 * If the branch acquired continuation since we've looked at it -
4335 * fine, it should all survive and (new) top doesn't belong to us.
4336 */
4337 if (!partial->key && *partial->p)
4338 /* Writer: end */
4339 goto no_top;
af5bc92d 4340 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
4341 ;
4342 /*
4343 * OK, we've found the last block that must survive. The rest of our
4344 * branch should be detached before unlocking. However, if that rest
4345 * of branch is all ours and does not grow immediately from the inode
4346 * it's easier to cheat and just decrement partial->p.
4347 */
4348 if (p == chain + k - 1 && p > chain) {
4349 p->p--;
4350 } else {
4351 *top = *p->p;
617ba13b 4352 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
4353#if 0
4354 *p->p = 0;
4355#endif
4356 }
4357 /* Writer: end */
4358
af5bc92d 4359 while (partial > p) {
ac27a0ec
DK
4360 brelse(partial->bh);
4361 partial--;
4362 }
4363no_top:
4364 return partial;
4365}
4366
4367/*
4368 * Zero a number of block pointers in either an inode or an indirect block.
4369 * If we restart the transaction we must again get write access to the
4370 * indirect block for further modification.
4371 *
4372 * We release `count' blocks on disk, but (last - first) may be greater
4373 * than `count' because there can be holes in there.
4374 */
1f2acb60
TT
4375static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4376 struct buffer_head *bh,
4377 ext4_fsblk_t block_to_free,
4378 unsigned long count, __le32 *first,
4379 __le32 *last)
ac27a0ec
DK
4380{
4381 __le32 *p;
1f2acb60 4382 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
e6362609
TT
4383
4384 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4385 flags |= EXT4_FREE_BLOCKS_METADATA;
50689696 4386
1f2acb60
TT
4387 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4388 count)) {
12062ddd 4389 ext4_error(inode->i_sb, "inode #%lu: "
1f2acb60
TT
4390 "attempt to clear blocks %llu len %lu, invalid",
4391 inode->i_ino, (unsigned long long) block_to_free,
4392 count);
4393 return 1;
4394 }
4395
ac27a0ec
DK
4396 if (try_to_extend_transaction(handle, inode)) {
4397 if (bh) {
0390131b
FM
4398 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4399 ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 4400 }
617ba13b 4401 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4402 ext4_truncate_restart_trans(handle, inode,
4403 blocks_for_truncate(inode));
ac27a0ec
DK
4404 if (bh) {
4405 BUFFER_TRACE(bh, "retaking write access");
617ba13b 4406 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
4407 }
4408 }
4409
e6362609
TT
4410 for (p = first; p < last; p++)
4411 *p = 0;
ac27a0ec 4412
e6362609 4413 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
1f2acb60 4414 return 0;
ac27a0ec
DK
4415}
4416
4417/**
617ba13b 4418 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
4419 * @handle: handle for this transaction
4420 * @inode: inode we are dealing with
4421 * @this_bh: indirect buffer_head which contains *@first and *@last
4422 * @first: array of block numbers
4423 * @last: points immediately past the end of array
4424 *
4425 * We are freeing all blocks refered from that array (numbers are stored as
4426 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4427 *
4428 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4429 * blocks are contiguous then releasing them at one time will only affect one
4430 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4431 * actually use a lot of journal space.
4432 *
4433 * @this_bh will be %NULL if @first and @last point into the inode's direct
4434 * block pointers.
4435 */
617ba13b 4436static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4437 struct buffer_head *this_bh,
4438 __le32 *first, __le32 *last)
4439{
617ba13b 4440 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
4441 unsigned long count = 0; /* Number of blocks in the run */
4442 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4443 corresponding to
4444 block_to_free */
617ba13b 4445 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
4446 __le32 *p; /* Pointer into inode/ind
4447 for current block */
4448 int err;
4449
4450 if (this_bh) { /* For indirect block */
4451 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 4452 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
4453 /* Important: if we can't update the indirect pointers
4454 * to the blocks, we can't free them. */
4455 if (err)
4456 return;
4457 }
4458
4459 for (p = first; p < last; p++) {
4460 nr = le32_to_cpu(*p);
4461 if (nr) {
4462 /* accumulate blocks to free if they're contiguous */
4463 if (count == 0) {
4464 block_to_free = nr;
4465 block_to_free_p = p;
4466 count = 1;
4467 } else if (nr == block_to_free + count) {
4468 count++;
4469 } else {
1f2acb60
TT
4470 if (ext4_clear_blocks(handle, inode, this_bh,
4471 block_to_free, count,
4472 block_to_free_p, p))
4473 break;
ac27a0ec
DK
4474 block_to_free = nr;
4475 block_to_free_p = p;
4476 count = 1;
4477 }
4478 }
4479 }
4480
4481 if (count > 0)
617ba13b 4482 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
4483 count, block_to_free_p, p);
4484
4485 if (this_bh) {
0390131b 4486 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
71dc8fbc
DG
4487
4488 /*
4489 * The buffer head should have an attached journal head at this
4490 * point. However, if the data is corrupted and an indirect
4491 * block pointed to itself, it would have been detached when
4492 * the block was cleared. Check for this instead of OOPSing.
4493 */
e7f07968 4494 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
0390131b 4495 ext4_handle_dirty_metadata(handle, inode, this_bh);
71dc8fbc 4496 else
12062ddd 4497 ext4_error(inode->i_sb,
71dc8fbc
DG
4498 "circular indirect block detected, "
4499 "inode=%lu, block=%llu",
4500 inode->i_ino,
4501 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
4502 }
4503}
4504
4505/**
617ba13b 4506 * ext4_free_branches - free an array of branches
ac27a0ec
DK
4507 * @handle: JBD handle for this transaction
4508 * @inode: inode we are dealing with
4509 * @parent_bh: the buffer_head which contains *@first and *@last
4510 * @first: array of block numbers
4511 * @last: pointer immediately past the end of array
4512 * @depth: depth of the branches to free
4513 *
4514 * We are freeing all blocks refered from these branches (numbers are
4515 * stored as little-endian 32-bit) and updating @inode->i_blocks
4516 * appropriately.
4517 */
617ba13b 4518static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4519 struct buffer_head *parent_bh,
4520 __le32 *first, __le32 *last, int depth)
4521{
617ba13b 4522 ext4_fsblk_t nr;
ac27a0ec
DK
4523 __le32 *p;
4524
0390131b 4525 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4526 return;
4527
4528 if (depth--) {
4529 struct buffer_head *bh;
617ba13b 4530 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
4531 p = last;
4532 while (--p >= first) {
4533 nr = le32_to_cpu(*p);
4534 if (!nr)
4535 continue; /* A hole */
4536
1f2acb60
TT
4537 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4538 nr, 1)) {
12062ddd 4539 ext4_error(inode->i_sb,
1f2acb60
TT
4540 "indirect mapped block in inode "
4541 "#%lu invalid (level %d, blk #%lu)",
4542 inode->i_ino, depth,
4543 (unsigned long) nr);
4544 break;
4545 }
4546
ac27a0ec
DK
4547 /* Go read the buffer for the next level down */
4548 bh = sb_bread(inode->i_sb, nr);
4549
4550 /*
4551 * A read failure? Report error and clear slot
4552 * (should be rare).
4553 */
4554 if (!bh) {
12062ddd 4555 ext4_error(inode->i_sb,
2ae02107 4556 "Read failure, inode=%lu, block=%llu",
ac27a0ec
DK
4557 inode->i_ino, nr);
4558 continue;
4559 }
4560
4561 /* This zaps the entire block. Bottom up. */
4562 BUFFER_TRACE(bh, "free child branches");
617ba13b 4563 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
4564 (__le32 *) bh->b_data,
4565 (__le32 *) bh->b_data + addr_per_block,
4566 depth);
ac27a0ec
DK
4567
4568 /*
4569 * We've probably journalled the indirect block several
4570 * times during the truncate. But it's no longer
4571 * needed and we now drop it from the transaction via
dab291af 4572 * jbd2_journal_revoke().
ac27a0ec
DK
4573 *
4574 * That's easy if it's exclusively part of this
4575 * transaction. But if it's part of the committing
dab291af 4576 * transaction then jbd2_journal_forget() will simply
ac27a0ec 4577 * brelse() it. That means that if the underlying
617ba13b 4578 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
4579 * unmap_underlying_metadata() will find this block
4580 * and will try to get rid of it. damn, damn.
4581 *
4582 * If this block has already been committed to the
4583 * journal, a revoke record will be written. And
4584 * revoke records must be emitted *before* clearing
4585 * this block's bit in the bitmaps.
4586 */
617ba13b 4587 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
4588
4589 /*
4590 * Everything below this this pointer has been
4591 * released. Now let this top-of-subtree go.
4592 *
4593 * We want the freeing of this indirect block to be
4594 * atomic in the journal with the updating of the
4595 * bitmap block which owns it. So make some room in
4596 * the journal.
4597 *
4598 * We zero the parent pointer *after* freeing its
4599 * pointee in the bitmaps, so if extend_transaction()
4600 * for some reason fails to put the bitmap changes and
4601 * the release into the same transaction, recovery
4602 * will merely complain about releasing a free block,
4603 * rather than leaking blocks.
4604 */
0390131b 4605 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4606 return;
4607 if (try_to_extend_transaction(handle, inode)) {
617ba13b 4608 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4609 ext4_truncate_restart_trans(handle, inode,
4610 blocks_for_truncate(inode));
ac27a0ec
DK
4611 }
4612
e6362609
TT
4613 ext4_free_blocks(handle, inode, 0, nr, 1,
4614 EXT4_FREE_BLOCKS_METADATA);
ac27a0ec
DK
4615
4616 if (parent_bh) {
4617 /*
4618 * The block which we have just freed is
4619 * pointed to by an indirect block: journal it
4620 */
4621 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 4622 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
4623 parent_bh)){
4624 *p = 0;
4625 BUFFER_TRACE(parent_bh,
0390131b
FM
4626 "call ext4_handle_dirty_metadata");
4627 ext4_handle_dirty_metadata(handle,
4628 inode,
4629 parent_bh);
ac27a0ec
DK
4630 }
4631 }
4632 }
4633 } else {
4634 /* We have reached the bottom of the tree. */
4635 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 4636 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
4637 }
4638}
4639
91ef4caf
DG
4640int ext4_can_truncate(struct inode *inode)
4641{
4642 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4643 return 0;
4644 if (S_ISREG(inode->i_mode))
4645 return 1;
4646 if (S_ISDIR(inode->i_mode))
4647 return 1;
4648 if (S_ISLNK(inode->i_mode))
4649 return !ext4_inode_is_fast_symlink(inode);
4650 return 0;
4651}
4652
ac27a0ec 4653/*
617ba13b 4654 * ext4_truncate()
ac27a0ec 4655 *
617ba13b
MC
4656 * We block out ext4_get_block() block instantiations across the entire
4657 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4658 * simultaneously on behalf of the same inode.
4659 *
4660 * As we work through the truncate and commmit bits of it to the journal there
4661 * is one core, guiding principle: the file's tree must always be consistent on
4662 * disk. We must be able to restart the truncate after a crash.
4663 *
4664 * The file's tree may be transiently inconsistent in memory (although it
4665 * probably isn't), but whenever we close off and commit a journal transaction,
4666 * the contents of (the filesystem + the journal) must be consistent and
4667 * restartable. It's pretty simple, really: bottom up, right to left (although
4668 * left-to-right works OK too).
4669 *
4670 * Note that at recovery time, journal replay occurs *before* the restart of
4671 * truncate against the orphan inode list.
4672 *
4673 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4674 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4675 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4676 * ext4_truncate() to have another go. So there will be instantiated blocks
4677 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4678 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4679 * ext4_truncate() run will find them and release them.
ac27a0ec 4680 */
617ba13b 4681void ext4_truncate(struct inode *inode)
ac27a0ec
DK
4682{
4683 handle_t *handle;
617ba13b 4684 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4685 __le32 *i_data = ei->i_data;
617ba13b 4686 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 4687 struct address_space *mapping = inode->i_mapping;
725d26d3 4688 ext4_lblk_t offsets[4];
ac27a0ec
DK
4689 Indirect chain[4];
4690 Indirect *partial;
4691 __le32 nr = 0;
4692 int n;
725d26d3 4693 ext4_lblk_t last_block;
ac27a0ec 4694 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 4695
91ef4caf 4696 if (!ext4_can_truncate(inode))
ac27a0ec
DK
4697 return;
4698
c8d46e41
JZ
4699 EXT4_I(inode)->i_flags &= ~EXT4_EOFBLOCKS_FL;
4700
5534fb5b 4701 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 4702 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 4703
1d03ec98 4704 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
cf108bca 4705 ext4_ext_truncate(inode);
1d03ec98
AK
4706 return;
4707 }
a86c6181 4708
ac27a0ec 4709 handle = start_transaction(inode);
cf108bca 4710 if (IS_ERR(handle))
ac27a0ec 4711 return; /* AKPM: return what? */
ac27a0ec
DK
4712
4713 last_block = (inode->i_size + blocksize-1)
617ba13b 4714 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 4715
cf108bca
JK
4716 if (inode->i_size & (blocksize - 1))
4717 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4718 goto out_stop;
ac27a0ec 4719
617ba13b 4720 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
4721 if (n == 0)
4722 goto out_stop; /* error */
4723
4724 /*
4725 * OK. This truncate is going to happen. We add the inode to the
4726 * orphan list, so that if this truncate spans multiple transactions,
4727 * and we crash, we will resume the truncate when the filesystem
4728 * recovers. It also marks the inode dirty, to catch the new size.
4729 *
4730 * Implication: the file must always be in a sane, consistent
4731 * truncatable state while each transaction commits.
4732 */
617ba13b 4733 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
4734 goto out_stop;
4735
632eaeab
MC
4736 /*
4737 * From here we block out all ext4_get_block() callers who want to
4738 * modify the block allocation tree.
4739 */
4740 down_write(&ei->i_data_sem);
b4df2030 4741
c2ea3fde 4742 ext4_discard_preallocations(inode);
b4df2030 4743
ac27a0ec
DK
4744 /*
4745 * The orphan list entry will now protect us from any crash which
4746 * occurs before the truncate completes, so it is now safe to propagate
4747 * the new, shorter inode size (held for now in i_size) into the
4748 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 4749 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
4750 */
4751 ei->i_disksize = inode->i_size;
4752
ac27a0ec 4753 if (n == 1) { /* direct blocks */
617ba13b
MC
4754 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4755 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
4756 goto do_indirects;
4757 }
4758
617ba13b 4759 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
4760 /* Kill the top of shared branch (not detached) */
4761 if (nr) {
4762 if (partial == chain) {
4763 /* Shared branch grows from the inode */
617ba13b 4764 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
4765 &nr, &nr+1, (chain+n-1) - partial);
4766 *partial->p = 0;
4767 /*
4768 * We mark the inode dirty prior to restart,
4769 * and prior to stop. No need for it here.
4770 */
4771 } else {
4772 /* Shared branch grows from an indirect block */
4773 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 4774 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
4775 partial->p,
4776 partial->p+1, (chain+n-1) - partial);
4777 }
4778 }
4779 /* Clear the ends of indirect blocks on the shared branch */
4780 while (partial > chain) {
617ba13b 4781 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
4782 (__le32*)partial->bh->b_data+addr_per_block,
4783 (chain+n-1) - partial);
4784 BUFFER_TRACE(partial->bh, "call brelse");
de9a55b8 4785 brelse(partial->bh);
ac27a0ec
DK
4786 partial--;
4787 }
4788do_indirects:
4789 /* Kill the remaining (whole) subtrees */
4790 switch (offsets[0]) {
4791 default:
617ba13b 4792 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 4793 if (nr) {
617ba13b
MC
4794 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4795 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 4796 }
617ba13b
MC
4797 case EXT4_IND_BLOCK:
4798 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 4799 if (nr) {
617ba13b
MC
4800 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4801 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 4802 }
617ba13b
MC
4803 case EXT4_DIND_BLOCK:
4804 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 4805 if (nr) {
617ba13b
MC
4806 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4807 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 4808 }
617ba13b 4809 case EXT4_TIND_BLOCK:
ac27a0ec
DK
4810 ;
4811 }
4812
0e855ac8 4813 up_write(&ei->i_data_sem);
ef7f3835 4814 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 4815 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4816
4817 /*
4818 * In a multi-transaction truncate, we only make the final transaction
4819 * synchronous
4820 */
4821 if (IS_SYNC(inode))
0390131b 4822 ext4_handle_sync(handle);
ac27a0ec
DK
4823out_stop:
4824 /*
4825 * If this was a simple ftruncate(), and the file will remain alive
4826 * then we need to clear up the orphan record which we created above.
4827 * However, if this was a real unlink then we were called by
617ba13b 4828 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
4829 * orphan info for us.
4830 */
4831 if (inode->i_nlink)
617ba13b 4832 ext4_orphan_del(handle, inode);
ac27a0ec 4833
617ba13b 4834 ext4_journal_stop(handle);
ac27a0ec
DK
4835}
4836
ac27a0ec 4837/*
617ba13b 4838 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4839 * underlying buffer_head on success. If 'in_mem' is true, we have all
4840 * data in memory that is needed to recreate the on-disk version of this
4841 * inode.
4842 */
617ba13b
MC
4843static int __ext4_get_inode_loc(struct inode *inode,
4844 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4845{
240799cd
TT
4846 struct ext4_group_desc *gdp;
4847 struct buffer_head *bh;
4848 struct super_block *sb = inode->i_sb;
4849 ext4_fsblk_t block;
4850 int inodes_per_block, inode_offset;
4851
3a06d778 4852 iloc->bh = NULL;
240799cd
TT
4853 if (!ext4_valid_inum(sb, inode->i_ino))
4854 return -EIO;
ac27a0ec 4855
240799cd
TT
4856 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4857 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4858 if (!gdp)
ac27a0ec
DK
4859 return -EIO;
4860
240799cd
TT
4861 /*
4862 * Figure out the offset within the block group inode table
4863 */
4864 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4865 inode_offset = ((inode->i_ino - 1) %
4866 EXT4_INODES_PER_GROUP(sb));
4867 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4868 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4869
4870 bh = sb_getblk(sb, block);
ac27a0ec 4871 if (!bh) {
12062ddd
ES
4872 ext4_error(sb, "unable to read inode block - "
4873 "inode=%lu, block=%llu", inode->i_ino, block);
ac27a0ec
DK
4874 return -EIO;
4875 }
4876 if (!buffer_uptodate(bh)) {
4877 lock_buffer(bh);
9c83a923
HK
4878
4879 /*
4880 * If the buffer has the write error flag, we have failed
4881 * to write out another inode in the same block. In this
4882 * case, we don't have to read the block because we may
4883 * read the old inode data successfully.
4884 */
4885 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4886 set_buffer_uptodate(bh);
4887
ac27a0ec
DK
4888 if (buffer_uptodate(bh)) {
4889 /* someone brought it uptodate while we waited */
4890 unlock_buffer(bh);
4891 goto has_buffer;
4892 }
4893
4894 /*
4895 * If we have all information of the inode in memory and this
4896 * is the only valid inode in the block, we need not read the
4897 * block.
4898 */
4899 if (in_mem) {
4900 struct buffer_head *bitmap_bh;
240799cd 4901 int i, start;
ac27a0ec 4902
240799cd 4903 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4904
240799cd
TT
4905 /* Is the inode bitmap in cache? */
4906 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
4907 if (!bitmap_bh)
4908 goto make_io;
4909
4910 /*
4911 * If the inode bitmap isn't in cache then the
4912 * optimisation may end up performing two reads instead
4913 * of one, so skip it.
4914 */
4915 if (!buffer_uptodate(bitmap_bh)) {
4916 brelse(bitmap_bh);
4917 goto make_io;
4918 }
240799cd 4919 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4920 if (i == inode_offset)
4921 continue;
617ba13b 4922 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4923 break;
4924 }
4925 brelse(bitmap_bh);
240799cd 4926 if (i == start + inodes_per_block) {
ac27a0ec
DK
4927 /* all other inodes are free, so skip I/O */
4928 memset(bh->b_data, 0, bh->b_size);
4929 set_buffer_uptodate(bh);
4930 unlock_buffer(bh);
4931 goto has_buffer;
4932 }
4933 }
4934
4935make_io:
240799cd
TT
4936 /*
4937 * If we need to do any I/O, try to pre-readahead extra
4938 * blocks from the inode table.
4939 */
4940 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4941 ext4_fsblk_t b, end, table;
4942 unsigned num;
4943
4944 table = ext4_inode_table(sb, gdp);
b713a5ec 4945 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
4946 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4947 if (table > b)
4948 b = table;
4949 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4950 num = EXT4_INODES_PER_GROUP(sb);
4951 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4952 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 4953 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4954 table += num / inodes_per_block;
4955 if (end > table)
4956 end = table;
4957 while (b <= end)
4958 sb_breadahead(sb, b++);
4959 }
4960
ac27a0ec
DK
4961 /*
4962 * There are other valid inodes in the buffer, this inode
4963 * has in-inode xattrs, or we don't have this inode in memory.
4964 * Read the block from disk.
4965 */
4966 get_bh(bh);
4967 bh->b_end_io = end_buffer_read_sync;
4968 submit_bh(READ_META, bh);
4969 wait_on_buffer(bh);
4970 if (!buffer_uptodate(bh)) {
12062ddd
ES
4971 ext4_error(sb, "unable to read inode block - inode=%lu,"
4972 " block=%llu", inode->i_ino, block);
ac27a0ec
DK
4973 brelse(bh);
4974 return -EIO;
4975 }
4976 }
4977has_buffer:
4978 iloc->bh = bh;
4979 return 0;
4980}
4981
617ba13b 4982int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4983{
4984 /* We have all inode data except xattrs in memory here. */
617ba13b 4985 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4986 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4987}
4988
617ba13b 4989void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4990{
617ba13b 4991 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4992
4993 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4994 if (flags & EXT4_SYNC_FL)
ac27a0ec 4995 inode->i_flags |= S_SYNC;
617ba13b 4996 if (flags & EXT4_APPEND_FL)
ac27a0ec 4997 inode->i_flags |= S_APPEND;
617ba13b 4998 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4999 inode->i_flags |= S_IMMUTABLE;
617ba13b 5000 if (flags & EXT4_NOATIME_FL)
ac27a0ec 5001 inode->i_flags |= S_NOATIME;
617ba13b 5002 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
5003 inode->i_flags |= S_DIRSYNC;
5004}
5005
ff9ddf7e
JK
5006/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
5007void ext4_get_inode_flags(struct ext4_inode_info *ei)
5008{
5009 unsigned int flags = ei->vfs_inode.i_flags;
5010
5011 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
5012 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
5013 if (flags & S_SYNC)
5014 ei->i_flags |= EXT4_SYNC_FL;
5015 if (flags & S_APPEND)
5016 ei->i_flags |= EXT4_APPEND_FL;
5017 if (flags & S_IMMUTABLE)
5018 ei->i_flags |= EXT4_IMMUTABLE_FL;
5019 if (flags & S_NOATIME)
5020 ei->i_flags |= EXT4_NOATIME_FL;
5021 if (flags & S_DIRSYNC)
5022 ei->i_flags |= EXT4_DIRSYNC_FL;
5023}
de9a55b8 5024
0fc1b451 5025static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 5026 struct ext4_inode_info *ei)
0fc1b451
AK
5027{
5028 blkcnt_t i_blocks ;
8180a562
AK
5029 struct inode *inode = &(ei->vfs_inode);
5030 struct super_block *sb = inode->i_sb;
0fc1b451
AK
5031
5032 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
5033 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
5034 /* we are using combined 48 bit field */
5035 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
5036 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
5037 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
5038 /* i_blocks represent file system block size */
5039 return i_blocks << (inode->i_blkbits - 9);
5040 } else {
5041 return i_blocks;
5042 }
0fc1b451
AK
5043 } else {
5044 return le32_to_cpu(raw_inode->i_blocks_lo);
5045 }
5046}
ff9ddf7e 5047
1d1fe1ee 5048struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 5049{
617ba13b
MC
5050 struct ext4_iloc iloc;
5051 struct ext4_inode *raw_inode;
1d1fe1ee 5052 struct ext4_inode_info *ei;
1d1fe1ee 5053 struct inode *inode;
b436b9be 5054 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 5055 long ret;
ac27a0ec
DK
5056 int block;
5057
1d1fe1ee
DH
5058 inode = iget_locked(sb, ino);
5059 if (!inode)
5060 return ERR_PTR(-ENOMEM);
5061 if (!(inode->i_state & I_NEW))
5062 return inode;
5063
5064 ei = EXT4_I(inode);
567f3e9a 5065 iloc.bh = 0;
ac27a0ec 5066
1d1fe1ee
DH
5067 ret = __ext4_get_inode_loc(inode, &iloc, 0);
5068 if (ret < 0)
ac27a0ec 5069 goto bad_inode;
617ba13b 5070 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
5071 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
5072 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
5073 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 5074 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
5075 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
5076 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
5077 }
5078 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec 5079
19f5fb7a 5080 ei->i_state_flags = 0;
ac27a0ec
DK
5081 ei->i_dir_start_lookup = 0;
5082 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
5083 /* We now have enough fields to check if the inode was active or not.
5084 * This is needed because nfsd might try to access dead inodes
5085 * the test is that same one that e2fsck uses
5086 * NeilBrown 1999oct15
5087 */
5088 if (inode->i_nlink == 0) {
5089 if (inode->i_mode == 0 ||
617ba13b 5090 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 5091 /* this inode is deleted */
1d1fe1ee 5092 ret = -ESTALE;
ac27a0ec
DK
5093 goto bad_inode;
5094 }
5095 /* The only unlinked inodes we let through here have
5096 * valid i_mode and are being read by the orphan
5097 * recovery code: that's fine, we're about to complete
5098 * the process of deleting those. */
5099 }
ac27a0ec 5100 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 5101 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 5102 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 5103 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
5104 ei->i_file_acl |=
5105 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 5106 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 5107 ei->i_disksize = inode->i_size;
a9e7f447
DM
5108#ifdef CONFIG_QUOTA
5109 ei->i_reserved_quota = 0;
5110#endif
ac27a0ec
DK
5111 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5112 ei->i_block_group = iloc.block_group;
a4912123 5113 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
5114 /*
5115 * NOTE! The in-memory inode i_data array is in little-endian order
5116 * even on big-endian machines: we do NOT byteswap the block numbers!
5117 */
617ba13b 5118 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
5119 ei->i_data[block] = raw_inode->i_block[block];
5120 INIT_LIST_HEAD(&ei->i_orphan);
5121
b436b9be
JK
5122 /*
5123 * Set transaction id's of transactions that have to be committed
5124 * to finish f[data]sync. We set them to currently running transaction
5125 * as we cannot be sure that the inode or some of its metadata isn't
5126 * part of the transaction - the inode could have been reclaimed and
5127 * now it is reread from disk.
5128 */
5129 if (journal) {
5130 transaction_t *transaction;
5131 tid_t tid;
5132
5133 spin_lock(&journal->j_state_lock);
5134 if (journal->j_running_transaction)
5135 transaction = journal->j_running_transaction;
5136 else
5137 transaction = journal->j_committing_transaction;
5138 if (transaction)
5139 tid = transaction->t_tid;
5140 else
5141 tid = journal->j_commit_sequence;
5142 spin_unlock(&journal->j_state_lock);
5143 ei->i_sync_tid = tid;
5144 ei->i_datasync_tid = tid;
5145 }
5146
0040d987 5147 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 5148 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 5149 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 5150 EXT4_INODE_SIZE(inode->i_sb)) {
1d1fe1ee 5151 ret = -EIO;
ac27a0ec 5152 goto bad_inode;
e5d2861f 5153 }
ac27a0ec
DK
5154 if (ei->i_extra_isize == 0) {
5155 /* The extra space is currently unused. Use it. */
617ba13b
MC
5156 ei->i_extra_isize = sizeof(struct ext4_inode) -
5157 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
5158 } else {
5159 __le32 *magic = (void *)raw_inode +
617ba13b 5160 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 5161 ei->i_extra_isize;
617ba13b 5162 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
19f5fb7a 5163 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
ac27a0ec
DK
5164 }
5165 } else
5166 ei->i_extra_isize = 0;
5167
ef7f3835
KS
5168 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5169 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5170 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5171 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5172
25ec56b5
JNC
5173 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5174 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5175 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5176 inode->i_version |=
5177 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5178 }
5179
c4b5a614 5180 ret = 0;
485c26ec 5181 if (ei->i_file_acl &&
1032988c 5182 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
12062ddd 5183 ext4_error(sb, "bad extended attribute block %llu inode #%lu",
485c26ec
TT
5184 ei->i_file_acl, inode->i_ino);
5185 ret = -EIO;
5186 goto bad_inode;
5187 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
c4b5a614
TT
5188 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5189 (S_ISLNK(inode->i_mode) &&
5190 !ext4_inode_is_fast_symlink(inode)))
5191 /* Validate extent which is part of inode */
5192 ret = ext4_ext_check_inode(inode);
de9a55b8 5193 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
fe2c8191
TN
5194 (S_ISLNK(inode->i_mode) &&
5195 !ext4_inode_is_fast_symlink(inode))) {
de9a55b8 5196 /* Validate block references which are part of inode */
fe2c8191
TN
5197 ret = ext4_check_inode_blockref(inode);
5198 }
567f3e9a 5199 if (ret)
de9a55b8 5200 goto bad_inode;
7a262f7c 5201
ac27a0ec 5202 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
5203 inode->i_op = &ext4_file_inode_operations;
5204 inode->i_fop = &ext4_file_operations;
5205 ext4_set_aops(inode);
ac27a0ec 5206 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
5207 inode->i_op = &ext4_dir_inode_operations;
5208 inode->i_fop = &ext4_dir_operations;
ac27a0ec 5209 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 5210 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 5211 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
5212 nd_terminate_link(ei->i_data, inode->i_size,
5213 sizeof(ei->i_data) - 1);
5214 } else {
617ba13b
MC
5215 inode->i_op = &ext4_symlink_inode_operations;
5216 ext4_set_aops(inode);
ac27a0ec 5217 }
563bdd61
TT
5218 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5219 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 5220 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
5221 if (raw_inode->i_block[0])
5222 init_special_inode(inode, inode->i_mode,
5223 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5224 else
5225 init_special_inode(inode, inode->i_mode,
5226 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 5227 } else {
563bdd61 5228 ret = -EIO;
12062ddd 5229 ext4_error(inode->i_sb, "bogus i_mode (%o) for inode=%lu",
563bdd61
TT
5230 inode->i_mode, inode->i_ino);
5231 goto bad_inode;
ac27a0ec 5232 }
af5bc92d 5233 brelse(iloc.bh);
617ba13b 5234 ext4_set_inode_flags(inode);
1d1fe1ee
DH
5235 unlock_new_inode(inode);
5236 return inode;
ac27a0ec
DK
5237
5238bad_inode:
567f3e9a 5239 brelse(iloc.bh);
1d1fe1ee
DH
5240 iget_failed(inode);
5241 return ERR_PTR(ret);
ac27a0ec
DK
5242}
5243
0fc1b451
AK
5244static int ext4_inode_blocks_set(handle_t *handle,
5245 struct ext4_inode *raw_inode,
5246 struct ext4_inode_info *ei)
5247{
5248 struct inode *inode = &(ei->vfs_inode);
5249 u64 i_blocks = inode->i_blocks;
5250 struct super_block *sb = inode->i_sb;
0fc1b451
AK
5251
5252 if (i_blocks <= ~0U) {
5253 /*
5254 * i_blocks can be represnted in a 32 bit variable
5255 * as multiple of 512 bytes
5256 */
8180a562 5257 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5258 raw_inode->i_blocks_high = 0;
8180a562 5259 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
f287a1a5
TT
5260 return 0;
5261 }
5262 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5263 return -EFBIG;
5264
5265 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
5266 /*
5267 * i_blocks can be represented in a 48 bit variable
5268 * as multiple of 512 bytes
5269 */
8180a562 5270 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5271 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 5272 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 5273 } else {
8180a562
AK
5274 ei->i_flags |= EXT4_HUGE_FILE_FL;
5275 /* i_block is stored in file system block size */
5276 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5277 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5278 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 5279 }
f287a1a5 5280 return 0;
0fc1b451
AK
5281}
5282
ac27a0ec
DK
5283/*
5284 * Post the struct inode info into an on-disk inode location in the
5285 * buffer-cache. This gobbles the caller's reference to the
5286 * buffer_head in the inode location struct.
5287 *
5288 * The caller must have write access to iloc->bh.
5289 */
617ba13b 5290static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 5291 struct inode *inode,
830156c7 5292 struct ext4_iloc *iloc)
ac27a0ec 5293{
617ba13b
MC
5294 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5295 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
5296 struct buffer_head *bh = iloc->bh;
5297 int err = 0, rc, block;
5298
5299 /* For fields not not tracking in the in-memory inode,
5300 * initialise them to zero for new inodes. */
19f5fb7a 5301 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 5302 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 5303
ff9ddf7e 5304 ext4_get_inode_flags(ei);
ac27a0ec 5305 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 5306 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
5307 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5308 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5309/*
5310 * Fix up interoperability with old kernels. Otherwise, old inodes get
5311 * re-used with the upper 16 bits of the uid/gid intact
5312 */
af5bc92d 5313 if (!ei->i_dtime) {
ac27a0ec
DK
5314 raw_inode->i_uid_high =
5315 cpu_to_le16(high_16_bits(inode->i_uid));
5316 raw_inode->i_gid_high =
5317 cpu_to_le16(high_16_bits(inode->i_gid));
5318 } else {
5319 raw_inode->i_uid_high = 0;
5320 raw_inode->i_gid_high = 0;
5321 }
5322 } else {
5323 raw_inode->i_uid_low =
5324 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5325 raw_inode->i_gid_low =
5326 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5327 raw_inode->i_uid_high = 0;
5328 raw_inode->i_gid_high = 0;
5329 }
5330 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
5331
5332 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5333 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5334 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5335 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5336
0fc1b451
AK
5337 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5338 goto out_brelse;
ac27a0ec 5339 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1b9c12f4 5340 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
9b8f1f01
MC
5341 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5342 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
5343 raw_inode->i_file_acl_high =
5344 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 5345 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
5346 ext4_isize_set(raw_inode, ei->i_disksize);
5347 if (ei->i_disksize > 0x7fffffffULL) {
5348 struct super_block *sb = inode->i_sb;
5349 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5350 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5351 EXT4_SB(sb)->s_es->s_rev_level ==
5352 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5353 /* If this is the first large file
5354 * created, add a flag to the superblock.
5355 */
5356 err = ext4_journal_get_write_access(handle,
5357 EXT4_SB(sb)->s_sbh);
5358 if (err)
5359 goto out_brelse;
5360 ext4_update_dynamic_rev(sb);
5361 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 5362 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 5363 sb->s_dirt = 1;
0390131b 5364 ext4_handle_sync(handle);
73b50c1c 5365 err = ext4_handle_dirty_metadata(handle, NULL,
a48380f7 5366 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
5367 }
5368 }
5369 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5370 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5371 if (old_valid_dev(inode->i_rdev)) {
5372 raw_inode->i_block[0] =
5373 cpu_to_le32(old_encode_dev(inode->i_rdev));
5374 raw_inode->i_block[1] = 0;
5375 } else {
5376 raw_inode->i_block[0] = 0;
5377 raw_inode->i_block[1] =
5378 cpu_to_le32(new_encode_dev(inode->i_rdev));
5379 raw_inode->i_block[2] = 0;
5380 }
de9a55b8
TT
5381 } else
5382 for (block = 0; block < EXT4_N_BLOCKS; block++)
5383 raw_inode->i_block[block] = ei->i_data[block];
ac27a0ec 5384
25ec56b5
JNC
5385 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5386 if (ei->i_extra_isize) {
5387 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5388 raw_inode->i_version_hi =
5389 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 5390 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
5391 }
5392
830156c7 5393 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 5394 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
5395 if (!err)
5396 err = rc;
19f5fb7a 5397 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 5398
b436b9be 5399 ext4_update_inode_fsync_trans(handle, inode, 0);
ac27a0ec 5400out_brelse:
af5bc92d 5401 brelse(bh);
617ba13b 5402 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5403 return err;
5404}
5405
5406/*
617ba13b 5407 * ext4_write_inode()
ac27a0ec
DK
5408 *
5409 * We are called from a few places:
5410 *
5411 * - Within generic_file_write() for O_SYNC files.
5412 * Here, there will be no transaction running. We wait for any running
5413 * trasnaction to commit.
5414 *
5415 * - Within sys_sync(), kupdate and such.
5416 * We wait on commit, if tol to.
5417 *
5418 * - Within prune_icache() (PF_MEMALLOC == true)
5419 * Here we simply return. We can't afford to block kswapd on the
5420 * journal commit.
5421 *
5422 * In all cases it is actually safe for us to return without doing anything,
5423 * because the inode has been copied into a raw inode buffer in
617ba13b 5424 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
5425 * knfsd.
5426 *
5427 * Note that we are absolutely dependent upon all inode dirtiers doing the
5428 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5429 * which we are interested.
5430 *
5431 * It would be a bug for them to not do this. The code:
5432 *
5433 * mark_inode_dirty(inode)
5434 * stuff();
5435 * inode->i_size = expr;
5436 *
5437 * is in error because a kswapd-driven write_inode() could occur while
5438 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5439 * will no longer be on the superblock's dirty inode list.
5440 */
a9185b41 5441int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 5442{
91ac6f43
FM
5443 int err;
5444
ac27a0ec
DK
5445 if (current->flags & PF_MEMALLOC)
5446 return 0;
5447
91ac6f43
FM
5448 if (EXT4_SB(inode->i_sb)->s_journal) {
5449 if (ext4_journal_current_handle()) {
5450 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5451 dump_stack();
5452 return -EIO;
5453 }
ac27a0ec 5454
a9185b41 5455 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
5456 return 0;
5457
5458 err = ext4_force_commit(inode->i_sb);
5459 } else {
5460 struct ext4_iloc iloc;
ac27a0ec 5461
8b472d73 5462 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
5463 if (err)
5464 return err;
a9185b41 5465 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
5466 sync_dirty_buffer(iloc.bh);
5467 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
12062ddd
ES
5468 ext4_error(inode->i_sb, "IO error syncing inode, "
5469 "inode=%lu, block=%llu", inode->i_ino,
830156c7
FM
5470 (unsigned long long)iloc.bh->b_blocknr);
5471 err = -EIO;
5472 }
fd2dd9fb 5473 brelse(iloc.bh);
91ac6f43
FM
5474 }
5475 return err;
ac27a0ec
DK
5476}
5477
5478/*
617ba13b 5479 * ext4_setattr()
ac27a0ec
DK
5480 *
5481 * Called from notify_change.
5482 *
5483 * We want to trap VFS attempts to truncate the file as soon as
5484 * possible. In particular, we want to make sure that when the VFS
5485 * shrinks i_size, we put the inode on the orphan list and modify
5486 * i_disksize immediately, so that during the subsequent flushing of
5487 * dirty pages and freeing of disk blocks, we can guarantee that any
5488 * commit will leave the blocks being flushed in an unused state on
5489 * disk. (On recovery, the inode will get truncated and the blocks will
5490 * be freed, so we have a strong guarantee that no future commit will
5491 * leave these blocks visible to the user.)
5492 *
678aaf48
JK
5493 * Another thing we have to assure is that if we are in ordered mode
5494 * and inode is still attached to the committing transaction, we must
5495 * we start writeout of all the dirty pages which are being truncated.
5496 * This way we are sure that all the data written in the previous
5497 * transaction are already on disk (truncate waits for pages under
5498 * writeback).
5499 *
5500 * Called with inode->i_mutex down.
ac27a0ec 5501 */
617ba13b 5502int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
5503{
5504 struct inode *inode = dentry->d_inode;
5505 int error, rc = 0;
5506 const unsigned int ia_valid = attr->ia_valid;
5507
5508 error = inode_change_ok(inode, attr);
5509 if (error)
5510 return error;
5511
907f4554 5512 if (ia_valid & ATTR_SIZE)
871a2931 5513 dquot_initialize(inode);
ac27a0ec
DK
5514 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5515 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5516 handle_t *handle;
5517
5518 /* (user+group)*(old+new) structure, inode write (sb,
5519 * inode block, ? - but truncate inode update has it) */
5aca07eb 5520 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
194074ac 5521 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
5522 if (IS_ERR(handle)) {
5523 error = PTR_ERR(handle);
5524 goto err_out;
5525 }
b43fa828 5526 error = dquot_transfer(inode, attr);
ac27a0ec 5527 if (error) {
617ba13b 5528 ext4_journal_stop(handle);
ac27a0ec
DK
5529 return error;
5530 }
5531 /* Update corresponding info in inode so that everything is in
5532 * one transaction */
5533 if (attr->ia_valid & ATTR_UID)
5534 inode->i_uid = attr->ia_uid;
5535 if (attr->ia_valid & ATTR_GID)
5536 inode->i_gid = attr->ia_gid;
617ba13b
MC
5537 error = ext4_mark_inode_dirty(handle, inode);
5538 ext4_journal_stop(handle);
ac27a0ec
DK
5539 }
5540
e2b46574
ES
5541 if (attr->ia_valid & ATTR_SIZE) {
5542 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5543 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5544
5545 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5546 error = -EFBIG;
5547 goto err_out;
5548 }
5549 }
5550 }
5551
ac27a0ec 5552 if (S_ISREG(inode->i_mode) &&
c8d46e41
JZ
5553 attr->ia_valid & ATTR_SIZE &&
5554 (attr->ia_size < inode->i_size ||
5555 (EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL))) {
ac27a0ec
DK
5556 handle_t *handle;
5557
617ba13b 5558 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
5559 if (IS_ERR(handle)) {
5560 error = PTR_ERR(handle);
5561 goto err_out;
5562 }
5563
617ba13b
MC
5564 error = ext4_orphan_add(handle, inode);
5565 EXT4_I(inode)->i_disksize = attr->ia_size;
5566 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
5567 if (!error)
5568 error = rc;
617ba13b 5569 ext4_journal_stop(handle);
678aaf48
JK
5570
5571 if (ext4_should_order_data(inode)) {
5572 error = ext4_begin_ordered_truncate(inode,
5573 attr->ia_size);
5574 if (error) {
5575 /* Do as much error cleanup as possible */
5576 handle = ext4_journal_start(inode, 3);
5577 if (IS_ERR(handle)) {
5578 ext4_orphan_del(NULL, inode);
5579 goto err_out;
5580 }
5581 ext4_orphan_del(handle, inode);
5582 ext4_journal_stop(handle);
5583 goto err_out;
5584 }
5585 }
c8d46e41
JZ
5586 /* ext4_truncate will clear the flag */
5587 if ((EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL))
5588 ext4_truncate(inode);
ac27a0ec
DK
5589 }
5590
5591 rc = inode_setattr(inode, attr);
5592
617ba13b 5593 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
5594 * transaction handle at all, we need to clean up the in-core
5595 * orphan list manually. */
5596 if (inode->i_nlink)
617ba13b 5597 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
5598
5599 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 5600 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
5601
5602err_out:
617ba13b 5603 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5604 if (!error)
5605 error = rc;
5606 return error;
5607}
5608
3e3398a0
MC
5609int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5610 struct kstat *stat)
5611{
5612 struct inode *inode;
5613 unsigned long delalloc_blocks;
5614
5615 inode = dentry->d_inode;
5616 generic_fillattr(inode, stat);
5617
5618 /*
5619 * We can't update i_blocks if the block allocation is delayed
5620 * otherwise in the case of system crash before the real block
5621 * allocation is done, we will have i_blocks inconsistent with
5622 * on-disk file blocks.
5623 * We always keep i_blocks updated together with real
5624 * allocation. But to not confuse with user, stat
5625 * will return the blocks that include the delayed allocation
5626 * blocks for this file.
5627 */
5628 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5629 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5630 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5631
5632 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5633 return 0;
5634}
ac27a0ec 5635
a02908f1
MC
5636static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5637 int chunk)
5638{
5639 int indirects;
5640
5641 /* if nrblocks are contiguous */
5642 if (chunk) {
5643 /*
5644 * With N contiguous data blocks, it need at most
5645 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5646 * 2 dindirect blocks
5647 * 1 tindirect block
5648 */
5649 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5650 return indirects + 3;
5651 }
5652 /*
5653 * if nrblocks are not contiguous, worse case, each block touch
5654 * a indirect block, and each indirect block touch a double indirect
5655 * block, plus a triple indirect block
5656 */
5657 indirects = nrblocks * 2 + 1;
5658 return indirects;
5659}
5660
5661static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5662{
5663 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
ac51d837
TT
5664 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5665 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 5666}
ac51d837 5667
ac27a0ec 5668/*
a02908f1
MC
5669 * Account for index blocks, block groups bitmaps and block group
5670 * descriptor blocks if modify datablocks and index blocks
5671 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5672 *
a02908f1 5673 * If datablocks are discontiguous, they are possible to spread over
af901ca1 5674 * different block groups too. If they are contiuguous, with flexbg,
a02908f1 5675 * they could still across block group boundary.
ac27a0ec 5676 *
a02908f1
MC
5677 * Also account for superblock, inode, quota and xattr blocks
5678 */
5679int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5680{
8df9675f
TT
5681 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5682 int gdpblocks;
a02908f1
MC
5683 int idxblocks;
5684 int ret = 0;
5685
5686 /*
5687 * How many index blocks need to touch to modify nrblocks?
5688 * The "Chunk" flag indicating whether the nrblocks is
5689 * physically contiguous on disk
5690 *
5691 * For Direct IO and fallocate, they calls get_block to allocate
5692 * one single extent at a time, so they could set the "Chunk" flag
5693 */
5694 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5695
5696 ret = idxblocks;
5697
5698 /*
5699 * Now let's see how many group bitmaps and group descriptors need
5700 * to account
5701 */
5702 groups = idxblocks;
5703 if (chunk)
5704 groups += 1;
5705 else
5706 groups += nrblocks;
5707
5708 gdpblocks = groups;
8df9675f
TT
5709 if (groups > ngroups)
5710 groups = ngroups;
a02908f1
MC
5711 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5712 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5713
5714 /* bitmaps and block group descriptor blocks */
5715 ret += groups + gdpblocks;
5716
5717 /* Blocks for super block, inode, quota and xattr blocks */
5718 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5719
5720 return ret;
5721}
5722
5723/*
5724 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
5725 * the modification of a single pages into a single transaction,
5726 * which may include multiple chunks of block allocations.
ac27a0ec 5727 *
525f4ed8 5728 * This could be called via ext4_write_begin()
ac27a0ec 5729 *
525f4ed8 5730 * We need to consider the worse case, when
a02908f1 5731 * one new block per extent.
ac27a0ec 5732 */
a86c6181 5733int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5734{
617ba13b 5735 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5736 int ret;
5737
a02908f1 5738 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 5739
a02908f1 5740 /* Account for data blocks for journalled mode */
617ba13b 5741 if (ext4_should_journal_data(inode))
a02908f1 5742 ret += bpp;
ac27a0ec
DK
5743 return ret;
5744}
f3bd1f3f
MC
5745
5746/*
5747 * Calculate the journal credits for a chunk of data modification.
5748 *
5749 * This is called from DIO, fallocate or whoever calling
af901ca1 5750 * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5751 *
5752 * journal buffers for data blocks are not included here, as DIO
5753 * and fallocate do no need to journal data buffers.
5754 */
5755int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5756{
5757 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5758}
5759
ac27a0ec 5760/*
617ba13b 5761 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5762 * Give this, we know that the caller already has write access to iloc->bh.
5763 */
617ba13b 5764int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5765 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5766{
5767 int err = 0;
5768
25ec56b5
JNC
5769 if (test_opt(inode->i_sb, I_VERSION))
5770 inode_inc_iversion(inode);
5771
ac27a0ec
DK
5772 /* the do_update_inode consumes one bh->b_count */
5773 get_bh(iloc->bh);
5774
dab291af 5775 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5776 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5777 put_bh(iloc->bh);
5778 return err;
5779}
5780
5781/*
5782 * On success, We end up with an outstanding reference count against
5783 * iloc->bh. This _must_ be cleaned up later.
5784 */
5785
5786int
617ba13b
MC
5787ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5788 struct ext4_iloc *iloc)
ac27a0ec 5789{
0390131b
FM
5790 int err;
5791
5792 err = ext4_get_inode_loc(inode, iloc);
5793 if (!err) {
5794 BUFFER_TRACE(iloc->bh, "get_write_access");
5795 err = ext4_journal_get_write_access(handle, iloc->bh);
5796 if (err) {
5797 brelse(iloc->bh);
5798 iloc->bh = NULL;
ac27a0ec
DK
5799 }
5800 }
617ba13b 5801 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5802 return err;
5803}
5804
6dd4ee7c
KS
5805/*
5806 * Expand an inode by new_extra_isize bytes.
5807 * Returns 0 on success or negative error number on failure.
5808 */
1d03ec98
AK
5809static int ext4_expand_extra_isize(struct inode *inode,
5810 unsigned int new_extra_isize,
5811 struct ext4_iloc iloc,
5812 handle_t *handle)
6dd4ee7c
KS
5813{
5814 struct ext4_inode *raw_inode;
5815 struct ext4_xattr_ibody_header *header;
5816 struct ext4_xattr_entry *entry;
5817
5818 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5819 return 0;
5820
5821 raw_inode = ext4_raw_inode(&iloc);
5822
5823 header = IHDR(inode, raw_inode);
5824 entry = IFIRST(header);
5825
5826 /* No extended attributes present */
19f5fb7a
TT
5827 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5828 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
5829 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5830 new_extra_isize);
5831 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5832 return 0;
5833 }
5834
5835 /* try to expand with EAs present */
5836 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5837 raw_inode, handle);
5838}
5839
ac27a0ec
DK
5840/*
5841 * What we do here is to mark the in-core inode as clean with respect to inode
5842 * dirtiness (it may still be data-dirty).
5843 * This means that the in-core inode may be reaped by prune_icache
5844 * without having to perform any I/O. This is a very good thing,
5845 * because *any* task may call prune_icache - even ones which
5846 * have a transaction open against a different journal.
5847 *
5848 * Is this cheating? Not really. Sure, we haven't written the
5849 * inode out, but prune_icache isn't a user-visible syncing function.
5850 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5851 * we start and wait on commits.
5852 *
5853 * Is this efficient/effective? Well, we're being nice to the system
5854 * by cleaning up our inodes proactively so they can be reaped
5855 * without I/O. But we are potentially leaving up to five seconds'
5856 * worth of inodes floating about which prune_icache wants us to
5857 * write out. One way to fix that would be to get prune_icache()
5858 * to do a write_super() to free up some memory. It has the desired
5859 * effect.
5860 */
617ba13b 5861int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5862{
617ba13b 5863 struct ext4_iloc iloc;
6dd4ee7c
KS
5864 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5865 static unsigned int mnt_count;
5866 int err, ret;
ac27a0ec
DK
5867
5868 might_sleep();
617ba13b 5869 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5870 if (ext4_handle_valid(handle) &&
5871 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5872 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
5873 /*
5874 * We need extra buffer credits since we may write into EA block
5875 * with this same handle. If journal_extend fails, then it will
5876 * only result in a minor loss of functionality for that inode.
5877 * If this is felt to be critical, then e2fsck should be run to
5878 * force a large enough s_min_extra_isize.
5879 */
5880 if ((jbd2_journal_extend(handle,
5881 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5882 ret = ext4_expand_extra_isize(inode,
5883 sbi->s_want_extra_isize,
5884 iloc, handle);
5885 if (ret) {
19f5fb7a
TT
5886 ext4_set_inode_state(inode,
5887 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
5888 if (mnt_count !=
5889 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5890 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5891 "Unable to expand inode %lu. Delete"
5892 " some EAs or run e2fsck.",
5893 inode->i_ino);
c1bddad9
AK
5894 mnt_count =
5895 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5896 }
5897 }
5898 }
5899 }
ac27a0ec 5900 if (!err)
617ba13b 5901 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5902 return err;
5903}
5904
5905/*
617ba13b 5906 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5907 *
5908 * We're really interested in the case where a file is being extended.
5909 * i_size has been changed by generic_commit_write() and we thus need
5910 * to include the updated inode in the current transaction.
5911 *
5dd4056d 5912 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5913 * are allocated to the file.
5914 *
5915 * If the inode is marked synchronous, we don't honour that here - doing
5916 * so would cause a commit on atime updates, which we don't bother doing.
5917 * We handle synchronous inodes at the highest possible level.
5918 */
617ba13b 5919void ext4_dirty_inode(struct inode *inode)
ac27a0ec 5920{
ac27a0ec
DK
5921 handle_t *handle;
5922
617ba13b 5923 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
5924 if (IS_ERR(handle))
5925 goto out;
f3dc272f 5926
f3dc272f
CW
5927 ext4_mark_inode_dirty(handle, inode);
5928
617ba13b 5929 ext4_journal_stop(handle);
ac27a0ec
DK
5930out:
5931 return;
5932}
5933
5934#if 0
5935/*
5936 * Bind an inode's backing buffer_head into this transaction, to prevent
5937 * it from being flushed to disk early. Unlike
617ba13b 5938 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5939 * returns no iloc structure, so the caller needs to repeat the iloc
5940 * lookup to mark the inode dirty later.
5941 */
617ba13b 5942static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5943{
617ba13b 5944 struct ext4_iloc iloc;
ac27a0ec
DK
5945
5946 int err = 0;
5947 if (handle) {
617ba13b 5948 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5949 if (!err) {
5950 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5951 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5952 if (!err)
0390131b 5953 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5954 NULL,
0390131b 5955 iloc.bh);
ac27a0ec
DK
5956 brelse(iloc.bh);
5957 }
5958 }
617ba13b 5959 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5960 return err;
5961}
5962#endif
5963
617ba13b 5964int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5965{
5966 journal_t *journal;
5967 handle_t *handle;
5968 int err;
5969
5970 /*
5971 * We have to be very careful here: changing a data block's
5972 * journaling status dynamically is dangerous. If we write a
5973 * data block to the journal, change the status and then delete
5974 * that block, we risk forgetting to revoke the old log record
5975 * from the journal and so a subsequent replay can corrupt data.
5976 * So, first we make sure that the journal is empty and that
5977 * nobody is changing anything.
5978 */
5979
617ba13b 5980 journal = EXT4_JOURNAL(inode);
0390131b
FM
5981 if (!journal)
5982 return 0;
d699594d 5983 if (is_journal_aborted(journal))
ac27a0ec
DK
5984 return -EROFS;
5985
dab291af
MC
5986 jbd2_journal_lock_updates(journal);
5987 jbd2_journal_flush(journal);
ac27a0ec
DK
5988
5989 /*
5990 * OK, there are no updates running now, and all cached data is
5991 * synced to disk. We are now in a completely consistent state
5992 * which doesn't have anything in the journal, and we know that
5993 * no filesystem updates are running, so it is safe to modify
5994 * the inode's in-core data-journaling state flag now.
5995 */
5996
5997 if (val)
617ba13b 5998 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
ac27a0ec 5999 else
617ba13b
MC
6000 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
6001 ext4_set_aops(inode);
ac27a0ec 6002
dab291af 6003 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
6004
6005 /* Finally we can mark the inode as dirty. */
6006
617ba13b 6007 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
6008 if (IS_ERR(handle))
6009 return PTR_ERR(handle);
6010
617ba13b 6011 err = ext4_mark_inode_dirty(handle, inode);
0390131b 6012 ext4_handle_sync(handle);
617ba13b
MC
6013 ext4_journal_stop(handle);
6014 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
6015
6016 return err;
6017}
2e9ee850
AK
6018
6019static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6020{
6021 return !buffer_mapped(bh);
6022}
6023
c2ec175c 6024int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 6025{
c2ec175c 6026 struct page *page = vmf->page;
2e9ee850
AK
6027 loff_t size;
6028 unsigned long len;
6029 int ret = -EINVAL;
79f0be8d 6030 void *fsdata;
2e9ee850
AK
6031 struct file *file = vma->vm_file;
6032 struct inode *inode = file->f_path.dentry->d_inode;
6033 struct address_space *mapping = inode->i_mapping;
6034
6035 /*
6036 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
6037 * get i_mutex because we are already holding mmap_sem.
6038 */
6039 down_read(&inode->i_alloc_sem);
6040 size = i_size_read(inode);
6041 if (page->mapping != mapping || size <= page_offset(page)
6042 || !PageUptodate(page)) {
6043 /* page got truncated from under us? */
6044 goto out_unlock;
6045 }
6046 ret = 0;
6047 if (PageMappedToDisk(page))
6048 goto out_unlock;
6049
6050 if (page->index == size >> PAGE_CACHE_SHIFT)
6051 len = size & ~PAGE_CACHE_MASK;
6052 else
6053 len = PAGE_CACHE_SIZE;
6054
a827eaff
AK
6055 lock_page(page);
6056 /*
6057 * return if we have all the buffers mapped. This avoid
6058 * the need to call write_begin/write_end which does a
6059 * journal_start/journal_stop which can block and take
6060 * long time
6061 */
2e9ee850 6062 if (page_has_buffers(page)) {
2e9ee850 6063 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
a827eaff
AK
6064 ext4_bh_unmapped)) {
6065 unlock_page(page);
2e9ee850 6066 goto out_unlock;
a827eaff 6067 }
2e9ee850 6068 }
a827eaff 6069 unlock_page(page);
2e9ee850
AK
6070 /*
6071 * OK, we need to fill the hole... Do write_begin write_end
6072 * to do block allocation/reservation.We are not holding
6073 * inode.i__mutex here. That allow * parallel write_begin,
6074 * write_end call. lock_page prevent this from happening
6075 * on the same page though
6076 */
6077 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 6078 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
6079 if (ret < 0)
6080 goto out_unlock;
6081 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 6082 len, len, page, fsdata);
2e9ee850
AK
6083 if (ret < 0)
6084 goto out_unlock;
6085 ret = 0;
6086out_unlock:
c2ec175c
NP
6087 if (ret)
6088 ret = VM_FAULT_SIGBUS;
2e9ee850
AK
6089 up_read(&inode->i_alloc_sem);
6090 return ret;
6091}