]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ext4/inode.c
ext4: Add fine print for the 32000 subdirectory limit
[net-next-2.6.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
3dcf5451 40#include "ext4_jbd2.h"
ac27a0ec
DK
41#include "xattr.h"
42#include "acl.h"
d2a17637 43#include "ext4_extents.h"
ac27a0ec 44
a1d6cc56
AK
45#define MPAGE_DA_EXTENT_TAIL 0x01
46
678aaf48
JK
47static inline int ext4_begin_ordered_truncate(struct inode *inode,
48 loff_t new_size)
49{
7f5aa215
JK
50 return jbd2_journal_begin_ordered_truncate(
51 EXT4_SB(inode->i_sb)->s_journal,
52 &EXT4_I(inode)->jinode,
53 new_size);
678aaf48
JK
54}
55
64769240
AT
56static void ext4_invalidatepage(struct page *page, unsigned long offset);
57
ac27a0ec
DK
58/*
59 * Test whether an inode is a fast symlink.
60 */
617ba13b 61static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 62{
617ba13b 63 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
64 (inode->i_sb->s_blocksize >> 9) : 0;
65
66 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67}
68
69/*
617ba13b 70 * The ext4 forget function must perform a revoke if we are freeing data
ac27a0ec
DK
71 * which has been journaled. Metadata (eg. indirect blocks) must be
72 * revoked in all cases.
73 *
74 * "bh" may be NULL: a metadata block may have been freed from memory
75 * but there may still be a record of it in the journal, and that record
76 * still needs to be revoked.
0390131b
FM
77 *
78 * If the handle isn't valid we're not journaling so there's nothing to do.
ac27a0ec 79 */
617ba13b
MC
80int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
81 struct buffer_head *bh, ext4_fsblk_t blocknr)
ac27a0ec
DK
82{
83 int err;
84
0390131b
FM
85 if (!ext4_handle_valid(handle))
86 return 0;
87
ac27a0ec
DK
88 might_sleep();
89
90 BUFFER_TRACE(bh, "enter");
91
92 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
93 "data mode %lx\n",
94 bh, is_metadata, inode->i_mode,
95 test_opt(inode->i_sb, DATA_FLAGS));
96
97 /* Never use the revoke function if we are doing full data
98 * journaling: there is no need to, and a V1 superblock won't
99 * support it. Otherwise, only skip the revoke on un-journaled
100 * data blocks. */
101
617ba13b
MC
102 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
103 (!is_metadata && !ext4_should_journal_data(inode))) {
ac27a0ec 104 if (bh) {
dab291af 105 BUFFER_TRACE(bh, "call jbd2_journal_forget");
617ba13b 106 return ext4_journal_forget(handle, bh);
ac27a0ec
DK
107 }
108 return 0;
109 }
110
111 /*
112 * data!=journal && (is_metadata || should_journal_data(inode))
113 */
617ba13b
MC
114 BUFFER_TRACE(bh, "call ext4_journal_revoke");
115 err = ext4_journal_revoke(handle, blocknr, bh);
ac27a0ec 116 if (err)
46e665e9 117 ext4_abort(inode->i_sb, __func__,
ac27a0ec
DK
118 "error %d when attempting revoke", err);
119 BUFFER_TRACE(bh, "exit");
120 return err;
121}
122
123/*
124 * Work out how many blocks we need to proceed with the next chunk of a
125 * truncate transaction.
126 */
127static unsigned long blocks_for_truncate(struct inode *inode)
128{
725d26d3 129 ext4_lblk_t needed;
ac27a0ec
DK
130
131 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
132
133 /* Give ourselves just enough room to cope with inodes in which
134 * i_blocks is corrupt: we've seen disk corruptions in the past
135 * which resulted in random data in an inode which looked enough
617ba13b 136 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
137 * will go a bit crazy if that happens, but at least we should
138 * try not to panic the whole kernel. */
139 if (needed < 2)
140 needed = 2;
141
142 /* But we need to bound the transaction so we don't overflow the
143 * journal. */
617ba13b
MC
144 if (needed > EXT4_MAX_TRANS_DATA)
145 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 146
617ba13b 147 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
148}
149
150/*
151 * Truncate transactions can be complex and absolutely huge. So we need to
152 * be able to restart the transaction at a conventient checkpoint to make
153 * sure we don't overflow the journal.
154 *
155 * start_transaction gets us a new handle for a truncate transaction,
156 * and extend_transaction tries to extend the existing one a bit. If
157 * extend fails, we need to propagate the failure up and restart the
158 * transaction in the top-level truncate loop. --sct
159 */
160static handle_t *start_transaction(struct inode *inode)
161{
162 handle_t *result;
163
617ba13b 164 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
165 if (!IS_ERR(result))
166 return result;
167
617ba13b 168 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
169 return result;
170}
171
172/*
173 * Try to extend this transaction for the purposes of truncation.
174 *
175 * Returns 0 if we managed to create more room. If we can't create more
176 * room, and the transaction must be restarted we return 1.
177 */
178static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
179{
0390131b
FM
180 if (!ext4_handle_valid(handle))
181 return 0;
182 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
ac27a0ec 183 return 0;
617ba13b 184 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
185 return 0;
186 return 1;
187}
188
189/*
190 * Restart the transaction associated with *handle. This does a commit,
191 * so before we call here everything must be consistently dirtied against
192 * this transaction.
193 */
617ba13b 194static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
ac27a0ec 195{
0390131b 196 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 197 jbd_debug(2, "restarting handle %p\n", handle);
617ba13b 198 return ext4_journal_restart(handle, blocks_for_truncate(inode));
ac27a0ec
DK
199}
200
201/*
202 * Called at the last iput() if i_nlink is zero.
203 */
af5bc92d 204void ext4_delete_inode(struct inode *inode)
ac27a0ec
DK
205{
206 handle_t *handle;
bc965ab3 207 int err;
ac27a0ec 208
678aaf48
JK
209 if (ext4_should_order_data(inode))
210 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
211 truncate_inode_pages(&inode->i_data, 0);
212
213 if (is_bad_inode(inode))
214 goto no_delete;
215
bc965ab3 216 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 217 if (IS_ERR(handle)) {
bc965ab3 218 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
219 /*
220 * If we're going to skip the normal cleanup, we still need to
221 * make sure that the in-core orphan linked list is properly
222 * cleaned up.
223 */
617ba13b 224 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
225 goto no_delete;
226 }
227
228 if (IS_SYNC(inode))
0390131b 229 ext4_handle_sync(handle);
ac27a0ec 230 inode->i_size = 0;
bc965ab3
TT
231 err = ext4_mark_inode_dirty(handle, inode);
232 if (err) {
233 ext4_warning(inode->i_sb, __func__,
234 "couldn't mark inode dirty (err %d)", err);
235 goto stop_handle;
236 }
ac27a0ec 237 if (inode->i_blocks)
617ba13b 238 ext4_truncate(inode);
bc965ab3
TT
239
240 /*
241 * ext4_ext_truncate() doesn't reserve any slop when it
242 * restarts journal transactions; therefore there may not be
243 * enough credits left in the handle to remove the inode from
244 * the orphan list and set the dtime field.
245 */
0390131b 246 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
247 err = ext4_journal_extend(handle, 3);
248 if (err > 0)
249 err = ext4_journal_restart(handle, 3);
250 if (err != 0) {
251 ext4_warning(inode->i_sb, __func__,
252 "couldn't extend journal (err %d)", err);
253 stop_handle:
254 ext4_journal_stop(handle);
255 goto no_delete;
256 }
257 }
258
ac27a0ec 259 /*
617ba13b 260 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 261 * AKPM: I think this can be inside the above `if'.
617ba13b 262 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 263 * deletion of a non-existent orphan - this is because we don't
617ba13b 264 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
265 * (Well, we could do this if we need to, but heck - it works)
266 */
617ba13b
MC
267 ext4_orphan_del(handle, inode);
268 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
269
270 /*
271 * One subtle ordering requirement: if anything has gone wrong
272 * (transaction abort, IO errors, whatever), then we can still
273 * do these next steps (the fs will already have been marked as
274 * having errors), but we can't free the inode if the mark_dirty
275 * fails.
276 */
617ba13b 277 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
278 /* If that failed, just do the required in-core inode clear. */
279 clear_inode(inode);
280 else
617ba13b
MC
281 ext4_free_inode(handle, inode);
282 ext4_journal_stop(handle);
ac27a0ec
DK
283 return;
284no_delete:
285 clear_inode(inode); /* We must guarantee clearing of inode... */
286}
287
288typedef struct {
289 __le32 *p;
290 __le32 key;
291 struct buffer_head *bh;
292} Indirect;
293
294static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
295{
296 p->key = *(p->p = v);
297 p->bh = bh;
298}
299
ac27a0ec 300/**
617ba13b 301 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
302 * @inode: inode in question (we are only interested in its superblock)
303 * @i_block: block number to be parsed
304 * @offsets: array to store the offsets in
8c55e204
DK
305 * @boundary: set this non-zero if the referred-to block is likely to be
306 * followed (on disk) by an indirect block.
ac27a0ec 307 *
617ba13b 308 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
309 * for UNIX filesystems - tree of pointers anchored in the inode, with
310 * data blocks at leaves and indirect blocks in intermediate nodes.
311 * This function translates the block number into path in that tree -
312 * return value is the path length and @offsets[n] is the offset of
313 * pointer to (n+1)th node in the nth one. If @block is out of range
314 * (negative or too large) warning is printed and zero returned.
315 *
316 * Note: function doesn't find node addresses, so no IO is needed. All
317 * we need to know is the capacity of indirect blocks (taken from the
318 * inode->i_sb).
319 */
320
321/*
322 * Portability note: the last comparison (check that we fit into triple
323 * indirect block) is spelled differently, because otherwise on an
324 * architecture with 32-bit longs and 8Kb pages we might get into trouble
325 * if our filesystem had 8Kb blocks. We might use long long, but that would
326 * kill us on x86. Oh, well, at least the sign propagation does not matter -
327 * i_block would have to be negative in the very beginning, so we would not
328 * get there at all.
329 */
330
617ba13b 331static int ext4_block_to_path(struct inode *inode,
725d26d3
AK
332 ext4_lblk_t i_block,
333 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 334{
617ba13b
MC
335 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
336 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
337 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
338 indirect_blocks = ptrs,
339 double_blocks = (1 << (ptrs_bits * 2));
340 int n = 0;
341 int final = 0;
342
343 if (i_block < 0) {
af5bc92d 344 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
ac27a0ec
DK
345 } else if (i_block < direct_blocks) {
346 offsets[n++] = i_block;
347 final = direct_blocks;
af5bc92d 348 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 349 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
350 offsets[n++] = i_block;
351 final = ptrs;
352 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 353 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
354 offsets[n++] = i_block >> ptrs_bits;
355 offsets[n++] = i_block & (ptrs - 1);
356 final = ptrs;
357 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 358 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
359 offsets[n++] = i_block >> (ptrs_bits * 2);
360 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
361 offsets[n++] = i_block & (ptrs - 1);
362 final = ptrs;
363 } else {
e2b46574 364 ext4_warning(inode->i_sb, "ext4_block_to_path",
06a279d6 365 "block %lu > max in inode %lu",
e2b46574 366 i_block + direct_blocks +
06a279d6 367 indirect_blocks + double_blocks, inode->i_ino);
ac27a0ec
DK
368 }
369 if (boundary)
370 *boundary = final - 1 - (i_block & (ptrs - 1));
371 return n;
372}
373
374/**
617ba13b 375 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
376 * @inode: inode in question
377 * @depth: depth of the chain (1 - direct pointer, etc.)
378 * @offsets: offsets of pointers in inode/indirect blocks
379 * @chain: place to store the result
380 * @err: here we store the error value
381 *
382 * Function fills the array of triples <key, p, bh> and returns %NULL
383 * if everything went OK or the pointer to the last filled triple
384 * (incomplete one) otherwise. Upon the return chain[i].key contains
385 * the number of (i+1)-th block in the chain (as it is stored in memory,
386 * i.e. little-endian 32-bit), chain[i].p contains the address of that
387 * number (it points into struct inode for i==0 and into the bh->b_data
388 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
389 * block for i>0 and NULL for i==0. In other words, it holds the block
390 * numbers of the chain, addresses they were taken from (and where we can
391 * verify that chain did not change) and buffer_heads hosting these
392 * numbers.
393 *
394 * Function stops when it stumbles upon zero pointer (absent block)
395 * (pointer to last triple returned, *@err == 0)
396 * or when it gets an IO error reading an indirect block
397 * (ditto, *@err == -EIO)
ac27a0ec
DK
398 * or when it reads all @depth-1 indirect blocks successfully and finds
399 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
400 *
401 * Need to be called with
0e855ac8 402 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 403 */
725d26d3
AK
404static Indirect *ext4_get_branch(struct inode *inode, int depth,
405 ext4_lblk_t *offsets,
ac27a0ec
DK
406 Indirect chain[4], int *err)
407{
408 struct super_block *sb = inode->i_sb;
409 Indirect *p = chain;
410 struct buffer_head *bh;
411
412 *err = 0;
413 /* i_data is not going away, no lock needed */
af5bc92d 414 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
415 if (!p->key)
416 goto no_block;
417 while (--depth) {
418 bh = sb_bread(sb, le32_to_cpu(p->key));
419 if (!bh)
420 goto failure;
af5bc92d 421 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
422 /* Reader: end */
423 if (!p->key)
424 goto no_block;
425 }
426 return NULL;
427
ac27a0ec
DK
428failure:
429 *err = -EIO;
430no_block:
431 return p;
432}
433
434/**
617ba13b 435 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
436 * @inode: owner
437 * @ind: descriptor of indirect block.
438 *
1cc8dcf5 439 * This function returns the preferred place for block allocation.
ac27a0ec
DK
440 * It is used when heuristic for sequential allocation fails.
441 * Rules are:
442 * + if there is a block to the left of our position - allocate near it.
443 * + if pointer will live in indirect block - allocate near that block.
444 * + if pointer will live in inode - allocate in the same
445 * cylinder group.
446 *
447 * In the latter case we colour the starting block by the callers PID to
448 * prevent it from clashing with concurrent allocations for a different inode
449 * in the same block group. The PID is used here so that functionally related
450 * files will be close-by on-disk.
451 *
452 * Caller must make sure that @ind is valid and will stay that way.
453 */
617ba13b 454static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 455{
617ba13b 456 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 457 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 458 __le32 *p;
617ba13b 459 ext4_fsblk_t bg_start;
74d3487f 460 ext4_fsblk_t last_block;
617ba13b 461 ext4_grpblk_t colour;
a4912123
TT
462 ext4_group_t block_group;
463 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
ac27a0ec
DK
464
465 /* Try to find previous block */
466 for (p = ind->p - 1; p >= start; p--) {
467 if (*p)
468 return le32_to_cpu(*p);
469 }
470
471 /* No such thing, so let's try location of indirect block */
472 if (ind->bh)
473 return ind->bh->b_blocknr;
474
475 /*
476 * It is going to be referred to from the inode itself? OK, just put it
477 * into the same cylinder group then.
478 */
a4912123
TT
479 block_group = ei->i_block_group;
480 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
481 block_group &= ~(flex_size-1);
482 if (S_ISREG(inode->i_mode))
483 block_group++;
484 }
485 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
74d3487f
VC
486 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
487
a4912123
TT
488 /*
489 * If we are doing delayed allocation, we don't need take
490 * colour into account.
491 */
492 if (test_opt(inode->i_sb, DELALLOC))
493 return bg_start;
494
74d3487f
VC
495 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
496 colour = (current->pid % 16) *
617ba13b 497 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
498 else
499 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
500 return bg_start + colour;
501}
502
503/**
1cc8dcf5 504 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
505 * @inode: owner
506 * @block: block we want
ac27a0ec 507 * @partial: pointer to the last triple within a chain
ac27a0ec 508 *
1cc8dcf5 509 * Normally this function find the preferred place for block allocation,
fb01bfda 510 * returns it.
ac27a0ec 511 */
725d26d3 512static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
fb01bfda 513 Indirect *partial)
ac27a0ec 514{
ac27a0ec 515 /*
c2ea3fde 516 * XXX need to get goal block from mballoc's data structures
ac27a0ec 517 */
ac27a0ec 518
617ba13b 519 return ext4_find_near(inode, partial);
ac27a0ec
DK
520}
521
522/**
617ba13b 523 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
524 * of direct blocks need to be allocated for the given branch.
525 *
526 * @branch: chain of indirect blocks
527 * @k: number of blocks need for indirect blocks
528 * @blks: number of data blocks to be mapped.
529 * @blocks_to_boundary: the offset in the indirect block
530 *
531 * return the total number of blocks to be allocate, including the
532 * direct and indirect blocks.
533 */
498e5f24 534static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
ac27a0ec
DK
535 int blocks_to_boundary)
536{
498e5f24 537 unsigned int count = 0;
ac27a0ec
DK
538
539 /*
540 * Simple case, [t,d]Indirect block(s) has not allocated yet
541 * then it's clear blocks on that path have not allocated
542 */
543 if (k > 0) {
544 /* right now we don't handle cross boundary allocation */
545 if (blks < blocks_to_boundary + 1)
546 count += blks;
547 else
548 count += blocks_to_boundary + 1;
549 return count;
550 }
551
552 count++;
553 while (count < blks && count <= blocks_to_boundary &&
554 le32_to_cpu(*(branch[0].p + count)) == 0) {
555 count++;
556 }
557 return count;
558}
559
560/**
617ba13b 561 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
562 * @indirect_blks: the number of blocks need to allocate for indirect
563 * blocks
564 *
565 * @new_blocks: on return it will store the new block numbers for
566 * the indirect blocks(if needed) and the first direct block,
567 * @blks: on return it will store the total number of allocated
568 * direct blocks
569 */
617ba13b 570static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
7061eba7
AK
571 ext4_lblk_t iblock, ext4_fsblk_t goal,
572 int indirect_blks, int blks,
573 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 574{
815a1130 575 struct ext4_allocation_request ar;
ac27a0ec 576 int target, i;
7061eba7 577 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 578 int index = 0;
617ba13b 579 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
580 int ret = 0;
581
582 /*
583 * Here we try to allocate the requested multiple blocks at once,
584 * on a best-effort basis.
585 * To build a branch, we should allocate blocks for
586 * the indirect blocks(if not allocated yet), and at least
587 * the first direct block of this branch. That's the
588 * minimum number of blocks need to allocate(required)
589 */
7061eba7
AK
590 /* first we try to allocate the indirect blocks */
591 target = indirect_blks;
592 while (target > 0) {
ac27a0ec
DK
593 count = target;
594 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
595 current_block = ext4_new_meta_blocks(handle, inode,
596 goal, &count, err);
ac27a0ec
DK
597 if (*err)
598 goto failed_out;
599
600 target -= count;
601 /* allocate blocks for indirect blocks */
602 while (index < indirect_blks && count) {
603 new_blocks[index++] = current_block++;
604 count--;
605 }
7061eba7
AK
606 if (count > 0) {
607 /*
608 * save the new block number
609 * for the first direct block
610 */
611 new_blocks[index] = current_block;
612 printk(KERN_INFO "%s returned more blocks than "
613 "requested\n", __func__);
614 WARN_ON(1);
ac27a0ec 615 break;
7061eba7 616 }
ac27a0ec
DK
617 }
618
7061eba7
AK
619 target = blks - count ;
620 blk_allocated = count;
621 if (!target)
622 goto allocated;
623 /* Now allocate data blocks */
815a1130
TT
624 memset(&ar, 0, sizeof(ar));
625 ar.inode = inode;
626 ar.goal = goal;
627 ar.len = target;
628 ar.logical = iblock;
629 if (S_ISREG(inode->i_mode))
630 /* enable in-core preallocation only for regular files */
631 ar.flags = EXT4_MB_HINT_DATA;
632
633 current_block = ext4_mb_new_blocks(handle, &ar, err);
634
7061eba7
AK
635 if (*err && (target == blks)) {
636 /*
637 * if the allocation failed and we didn't allocate
638 * any blocks before
639 */
640 goto failed_out;
641 }
642 if (!*err) {
643 if (target == blks) {
644 /*
645 * save the new block number
646 * for the first direct block
647 */
648 new_blocks[index] = current_block;
649 }
815a1130 650 blk_allocated += ar.len;
7061eba7
AK
651 }
652allocated:
ac27a0ec 653 /* total number of blocks allocated for direct blocks */
7061eba7 654 ret = blk_allocated;
ac27a0ec
DK
655 *err = 0;
656 return ret;
657failed_out:
af5bc92d 658 for (i = 0; i < index; i++)
c9de560d 659 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec
DK
660 return ret;
661}
662
663/**
617ba13b 664 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
665 * @inode: owner
666 * @indirect_blks: number of allocated indirect blocks
667 * @blks: number of allocated direct blocks
668 * @offsets: offsets (in the blocks) to store the pointers to next.
669 * @branch: place to store the chain in.
670 *
671 * This function allocates blocks, zeroes out all but the last one,
672 * links them into chain and (if we are synchronous) writes them to disk.
673 * In other words, it prepares a branch that can be spliced onto the
674 * inode. It stores the information about that chain in the branch[], in
617ba13b 675 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
676 * we had read the existing part of chain and partial points to the last
677 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 678 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
679 * place chain is disconnected - *branch->p is still zero (we did not
680 * set the last link), but branch->key contains the number that should
681 * be placed into *branch->p to fill that gap.
682 *
683 * If allocation fails we free all blocks we've allocated (and forget
684 * their buffer_heads) and return the error value the from failed
617ba13b 685 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
686 * as described above and return 0.
687 */
617ba13b 688static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
7061eba7
AK
689 ext4_lblk_t iblock, int indirect_blks,
690 int *blks, ext4_fsblk_t goal,
691 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
692{
693 int blocksize = inode->i_sb->s_blocksize;
694 int i, n = 0;
695 int err = 0;
696 struct buffer_head *bh;
697 int num;
617ba13b
MC
698 ext4_fsblk_t new_blocks[4];
699 ext4_fsblk_t current_block;
ac27a0ec 700
7061eba7 701 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
702 *blks, new_blocks, &err);
703 if (err)
704 return err;
705
706 branch[0].key = cpu_to_le32(new_blocks[0]);
707 /*
708 * metadata blocks and data blocks are allocated.
709 */
710 for (n = 1; n <= indirect_blks; n++) {
711 /*
712 * Get buffer_head for parent block, zero it out
713 * and set the pointer to new one, then send
714 * parent to disk.
715 */
716 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
717 branch[n].bh = bh;
718 lock_buffer(bh);
719 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 720 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec
DK
721 if (err) {
722 unlock_buffer(bh);
723 brelse(bh);
724 goto failed;
725 }
726
727 memset(bh->b_data, 0, blocksize);
728 branch[n].p = (__le32 *) bh->b_data + offsets[n];
729 branch[n].key = cpu_to_le32(new_blocks[n]);
730 *branch[n].p = branch[n].key;
af5bc92d 731 if (n == indirect_blks) {
ac27a0ec
DK
732 current_block = new_blocks[n];
733 /*
734 * End of chain, update the last new metablock of
735 * the chain to point to the new allocated
736 * data blocks numbers
737 */
738 for (i=1; i < num; i++)
739 *(branch[n].p + i) = cpu_to_le32(++current_block);
740 }
741 BUFFER_TRACE(bh, "marking uptodate");
742 set_buffer_uptodate(bh);
743 unlock_buffer(bh);
744
0390131b
FM
745 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
746 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
747 if (err)
748 goto failed;
749 }
750 *blks = num;
751 return err;
752failed:
753 /* Allocation failed, free what we already allocated */
754 for (i = 1; i <= n ; i++) {
dab291af 755 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
617ba13b 756 ext4_journal_forget(handle, branch[i].bh);
ac27a0ec 757 }
af5bc92d 758 for (i = 0; i < indirect_blks; i++)
c9de560d 759 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec 760
c9de560d 761 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
ac27a0ec
DK
762
763 return err;
764}
765
766/**
617ba13b 767 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
768 * @inode: owner
769 * @block: (logical) number of block we are adding
770 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 771 * ext4_alloc_branch)
ac27a0ec
DK
772 * @where: location of missing link
773 * @num: number of indirect blocks we are adding
774 * @blks: number of direct blocks we are adding
775 *
776 * This function fills the missing link and does all housekeeping needed in
777 * inode (->i_blocks, etc.). In case of success we end up with the full
778 * chain to new block and return 0.
779 */
617ba13b 780static int ext4_splice_branch(handle_t *handle, struct inode *inode,
725d26d3 781 ext4_lblk_t block, Indirect *where, int num, int blks)
ac27a0ec
DK
782{
783 int i;
784 int err = 0;
617ba13b 785 ext4_fsblk_t current_block;
ac27a0ec 786
ac27a0ec
DK
787 /*
788 * If we're splicing into a [td]indirect block (as opposed to the
789 * inode) then we need to get write access to the [td]indirect block
790 * before the splice.
791 */
792 if (where->bh) {
793 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 794 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
795 if (err)
796 goto err_out;
797 }
798 /* That's it */
799
800 *where->p = where->key;
801
802 /*
803 * Update the host buffer_head or inode to point to more just allocated
804 * direct blocks blocks
805 */
806 if (num == 0 && blks > 1) {
807 current_block = le32_to_cpu(where->key) + 1;
808 for (i = 1; i < blks; i++)
af5bc92d 809 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
810 }
811
ac27a0ec
DK
812 /* We are done with atomic stuff, now do the rest of housekeeping */
813
ef7f3835 814 inode->i_ctime = ext4_current_time(inode);
617ba13b 815 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
816
817 /* had we spliced it onto indirect block? */
818 if (where->bh) {
819 /*
820 * If we spliced it onto an indirect block, we haven't
821 * altered the inode. Note however that if it is being spliced
822 * onto an indirect block at the very end of the file (the
823 * file is growing) then we *will* alter the inode to reflect
824 * the new i_size. But that is not done here - it is done in
617ba13b 825 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
826 */
827 jbd_debug(5, "splicing indirect only\n");
0390131b
FM
828 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
829 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
ac27a0ec
DK
830 if (err)
831 goto err_out;
832 } else {
833 /*
834 * OK, we spliced it into the inode itself on a direct block.
835 * Inode was dirtied above.
836 */
837 jbd_debug(5, "splicing direct\n");
838 }
839 return err;
840
841err_out:
842 for (i = 1; i <= num; i++) {
dab291af 843 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
617ba13b 844 ext4_journal_forget(handle, where[i].bh);
c9de560d
AT
845 ext4_free_blocks(handle, inode,
846 le32_to_cpu(where[i-1].key), 1, 0);
ac27a0ec 847 }
c9de560d 848 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
ac27a0ec
DK
849
850 return err;
851}
852
853/*
854 * Allocation strategy is simple: if we have to allocate something, we will
855 * have to go the whole way to leaf. So let's do it before attaching anything
856 * to tree, set linkage between the newborn blocks, write them if sync is
857 * required, recheck the path, free and repeat if check fails, otherwise
858 * set the last missing link (that will protect us from any truncate-generated
859 * removals - all blocks on the path are immune now) and possibly force the
860 * write on the parent block.
861 * That has a nice additional property: no special recovery from the failed
862 * allocations is needed - we simply release blocks and do not touch anything
863 * reachable from inode.
864 *
865 * `handle' can be NULL if create == 0.
866 *
ac27a0ec
DK
867 * return > 0, # of blocks mapped or allocated.
868 * return = 0, if plain lookup failed.
869 * return < 0, error case.
c278bfec
AK
870 *
871 *
872 * Need to be called with
0e855ac8
AK
873 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
874 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
ac27a0ec 875 */
498e5f24
TT
876static int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
877 ext4_lblk_t iblock, unsigned int maxblocks,
878 struct buffer_head *bh_result,
879 int create, int extend_disksize)
ac27a0ec
DK
880{
881 int err = -EIO;
725d26d3 882 ext4_lblk_t offsets[4];
ac27a0ec
DK
883 Indirect chain[4];
884 Indirect *partial;
617ba13b 885 ext4_fsblk_t goal;
ac27a0ec
DK
886 int indirect_blks;
887 int blocks_to_boundary = 0;
888 int depth;
617ba13b 889 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 890 int count = 0;
617ba13b 891 ext4_fsblk_t first_block = 0;
61628a3f 892 loff_t disksize;
ac27a0ec
DK
893
894
a86c6181 895 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
ac27a0ec 896 J_ASSERT(handle != NULL || create == 0);
725d26d3
AK
897 depth = ext4_block_to_path(inode, iblock, offsets,
898 &blocks_to_boundary);
ac27a0ec
DK
899
900 if (depth == 0)
901 goto out;
902
617ba13b 903 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
904
905 /* Simplest case - block found, no allocation needed */
906 if (!partial) {
907 first_block = le32_to_cpu(chain[depth - 1].key);
908 clear_buffer_new(bh_result);
909 count++;
910 /*map more blocks*/
911 while (count < maxblocks && count <= blocks_to_boundary) {
617ba13b 912 ext4_fsblk_t blk;
ac27a0ec 913
ac27a0ec
DK
914 blk = le32_to_cpu(*(chain[depth-1].p + count));
915
916 if (blk == first_block + count)
917 count++;
918 else
919 break;
920 }
c278bfec 921 goto got_it;
ac27a0ec
DK
922 }
923
924 /* Next simple case - plain lookup or failed read of indirect block */
925 if (!create || err == -EIO)
926 goto cleanup;
927
ac27a0ec 928 /*
c2ea3fde 929 * Okay, we need to do block allocation.
ac27a0ec 930 */
fb01bfda 931 goal = ext4_find_goal(inode, iblock, partial);
ac27a0ec
DK
932
933 /* the number of blocks need to allocate for [d,t]indirect blocks */
934 indirect_blks = (chain + depth) - partial - 1;
935
936 /*
937 * Next look up the indirect map to count the totoal number of
938 * direct blocks to allocate for this branch.
939 */
617ba13b 940 count = ext4_blks_to_allocate(partial, indirect_blks,
ac27a0ec
DK
941 maxblocks, blocks_to_boundary);
942 /*
617ba13b 943 * Block out ext4_truncate while we alter the tree
ac27a0ec 944 */
7061eba7
AK
945 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
946 &count, goal,
947 offsets + (partial - chain), partial);
ac27a0ec
DK
948
949 /*
617ba13b 950 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
951 * on the new chain if there is a failure, but that risks using
952 * up transaction credits, especially for bitmaps where the
953 * credits cannot be returned. Can we handle this somehow? We
954 * may need to return -EAGAIN upwards in the worst case. --sct
955 */
956 if (!err)
617ba13b 957 err = ext4_splice_branch(handle, inode, iblock,
ac27a0ec
DK
958 partial, indirect_blks, count);
959 /*
0e855ac8 960 * i_disksize growing is protected by i_data_sem. Don't forget to
ac27a0ec 961 * protect it if you're about to implement concurrent
617ba13b 962 * ext4_get_block() -bzzz
ac27a0ec 963 */
61628a3f
MC
964 if (!err && extend_disksize) {
965 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
966 if (disksize > i_size_read(inode))
967 disksize = i_size_read(inode);
968 if (disksize > ei->i_disksize)
969 ei->i_disksize = disksize;
970 }
ac27a0ec
DK
971 if (err)
972 goto cleanup;
973
974 set_buffer_new(bh_result);
975got_it:
976 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
977 if (count > blocks_to_boundary)
978 set_buffer_boundary(bh_result);
979 err = count;
980 /* Clean up and exit */
981 partial = chain + depth - 1; /* the whole chain */
982cleanup:
983 while (partial > chain) {
984 BUFFER_TRACE(partial->bh, "call brelse");
985 brelse(partial->bh);
986 partial--;
987 }
988 BUFFER_TRACE(bh_result, "returned");
989out:
990 return err;
991}
992
60e58e0f
MC
993qsize_t ext4_get_reserved_space(struct inode *inode)
994{
995 unsigned long long total;
996
997 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
998 total = EXT4_I(inode)->i_reserved_data_blocks +
999 EXT4_I(inode)->i_reserved_meta_blocks;
1000 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1001
1002 return total;
1003}
12219aea
AK
1004/*
1005 * Calculate the number of metadata blocks need to reserve
1006 * to allocate @blocks for non extent file based file
1007 */
1008static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1009{
1010 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1011 int ind_blks, dind_blks, tind_blks;
1012
1013 /* number of new indirect blocks needed */
1014 ind_blks = (blocks + icap - 1) / icap;
1015
1016 dind_blks = (ind_blks + icap - 1) / icap;
1017
1018 tind_blks = 1;
1019
1020 return ind_blks + dind_blks + tind_blks;
1021}
1022
1023/*
1024 * Calculate the number of metadata blocks need to reserve
1025 * to allocate given number of blocks
1026 */
1027static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1028{
cd213226
MC
1029 if (!blocks)
1030 return 0;
1031
12219aea
AK
1032 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1033 return ext4_ext_calc_metadata_amount(inode, blocks);
1034
1035 return ext4_indirect_calc_metadata_amount(inode, blocks);
1036}
1037
1038static void ext4_da_update_reserve_space(struct inode *inode, int used)
1039{
1040 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1041 int total, mdb, mdb_free;
1042
1043 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1044 /* recalculate the number of metablocks still need to be reserved */
1045 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1046 mdb = ext4_calc_metadata_amount(inode, total);
1047
1048 /* figure out how many metablocks to release */
1049 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1050 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1051
6bc6e63f
AK
1052 if (mdb_free) {
1053 /* Account for allocated meta_blocks */
1054 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1055
1056 /* update fs dirty blocks counter */
1057 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1058 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1059 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1060 }
12219aea
AK
1061
1062 /* update per-inode reservations */
1063 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1064 EXT4_I(inode)->i_reserved_data_blocks -= used;
12219aea 1065 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f
MC
1066
1067 /*
1068 * free those over-booking quota for metadata blocks
1069 */
1070
1071 if (mdb_free)
1072 vfs_dq_release_reservation_block(inode, mdb_free);
12219aea
AK
1073}
1074
f5ab0d1f 1075/*
2b2d6d01
TT
1076 * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1077 * and returns if the blocks are already mapped.
f5ab0d1f 1078 *
f5ab0d1f
MC
1079 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1080 * and store the allocated blocks in the result buffer head and mark it
1081 * mapped.
1082 *
1083 * If file type is extents based, it will call ext4_ext_get_blocks(),
1084 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1085 * based files
1086 *
1087 * On success, it returns the number of blocks being mapped or allocate.
1088 * if create==0 and the blocks are pre-allocated and uninitialized block,
1089 * the result buffer head is unmapped. If the create ==1, it will make sure
1090 * the buffer head is mapped.
1091 *
1092 * It returns 0 if plain look up failed (blocks have not been allocated), in
1093 * that casem, buffer head is unmapped
1094 *
1095 * It returns the error in case of allocation failure.
1096 */
0e855ac8 1097int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
498e5f24 1098 unsigned int max_blocks, struct buffer_head *bh,
d2a17637 1099 int create, int extend_disksize, int flag)
0e855ac8
AK
1100{
1101 int retval;
f5ab0d1f
MC
1102
1103 clear_buffer_mapped(bh);
1104
4df3d265
AK
1105 /*
1106 * Try to see if we can get the block without requesting
1107 * for new file system block.
1108 */
1109 down_read((&EXT4_I(inode)->i_data_sem));
1110 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1111 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1112 bh, 0, 0);
0e855ac8 1113 } else {
4df3d265
AK
1114 retval = ext4_get_blocks_handle(handle,
1115 inode, block, max_blocks, bh, 0, 0);
0e855ac8 1116 }
4df3d265 1117 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f
MC
1118
1119 /* If it is only a block(s) look up */
1120 if (!create)
1121 return retval;
1122
1123 /*
1124 * Returns if the blocks have already allocated
1125 *
1126 * Note that if blocks have been preallocated
1127 * ext4_ext_get_block() returns th create = 0
1128 * with buffer head unmapped.
1129 */
1130 if (retval > 0 && buffer_mapped(bh))
4df3d265
AK
1131 return retval;
1132
1133 /*
f5ab0d1f
MC
1134 * New blocks allocate and/or writing to uninitialized extent
1135 * will possibly result in updating i_data, so we take
1136 * the write lock of i_data_sem, and call get_blocks()
1137 * with create == 1 flag.
4df3d265
AK
1138 */
1139 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1140
1141 /*
1142 * if the caller is from delayed allocation writeout path
1143 * we have already reserved fs blocks for allocation
1144 * let the underlying get_block() function know to
1145 * avoid double accounting
1146 */
1147 if (flag)
1148 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1149 /*
1150 * We need to check for EXT4 here because migrate
1151 * could have changed the inode type in between
1152 */
0e855ac8
AK
1153 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1154 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1155 bh, create, extend_disksize);
1156 } else {
1157 retval = ext4_get_blocks_handle(handle, inode, block,
1158 max_blocks, bh, create, extend_disksize);
267e4db9
AK
1159
1160 if (retval > 0 && buffer_new(bh)) {
1161 /*
1162 * We allocated new blocks which will result in
1163 * i_data's format changing. Force the migrate
1164 * to fail by clearing migrate flags
1165 */
1166 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1167 ~EXT4_EXT_MIGRATE;
1168 }
0e855ac8 1169 }
d2a17637
MC
1170
1171 if (flag) {
1172 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1173 /*
1174 * Update reserved blocks/metadata blocks
1175 * after successful block allocation
1176 * which were deferred till now
1177 */
1178 if ((retval > 0) && buffer_delay(bh))
12219aea 1179 ext4_da_update_reserve_space(inode, retval);
d2a17637
MC
1180 }
1181
4df3d265 1182 up_write((&EXT4_I(inode)->i_data_sem));
0e855ac8
AK
1183 return retval;
1184}
1185
f3bd1f3f
MC
1186/* Maximum number of blocks we map for direct IO at once. */
1187#define DIO_MAX_BLOCKS 4096
1188
6873fa0d
ES
1189int ext4_get_block(struct inode *inode, sector_t iblock,
1190 struct buffer_head *bh_result, int create)
ac27a0ec 1191{
3e4fdaf8 1192 handle_t *handle = ext4_journal_current_handle();
7fb5409d 1193 int ret = 0, started = 0;
ac27a0ec 1194 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
f3bd1f3f 1195 int dio_credits;
ac27a0ec 1196
7fb5409d
JK
1197 if (create && !handle) {
1198 /* Direct IO write... */
1199 if (max_blocks > DIO_MAX_BLOCKS)
1200 max_blocks = DIO_MAX_BLOCKS;
f3bd1f3f
MC
1201 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1202 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1203 if (IS_ERR(handle)) {
ac27a0ec 1204 ret = PTR_ERR(handle);
7fb5409d 1205 goto out;
ac27a0ec 1206 }
7fb5409d 1207 started = 1;
ac27a0ec
DK
1208 }
1209
7fb5409d 1210 ret = ext4_get_blocks_wrap(handle, inode, iblock,
d2a17637 1211 max_blocks, bh_result, create, 0, 0);
7fb5409d
JK
1212 if (ret > 0) {
1213 bh_result->b_size = (ret << inode->i_blkbits);
1214 ret = 0;
ac27a0ec 1215 }
7fb5409d
JK
1216 if (started)
1217 ext4_journal_stop(handle);
1218out:
ac27a0ec
DK
1219 return ret;
1220}
1221
1222/*
1223 * `handle' can be NULL if create is zero
1224 */
617ba13b 1225struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1226 ext4_lblk_t block, int create, int *errp)
ac27a0ec
DK
1227{
1228 struct buffer_head dummy;
1229 int fatal = 0, err;
1230
1231 J_ASSERT(handle != NULL || create == 0);
1232
1233 dummy.b_state = 0;
1234 dummy.b_blocknr = -1000;
1235 buffer_trace_init(&dummy.b_history);
a86c6181 1236 err = ext4_get_blocks_wrap(handle, inode, block, 1,
d2a17637 1237 &dummy, create, 1, 0);
ac27a0ec 1238 /*
617ba13b 1239 * ext4_get_blocks_handle() returns number of blocks
ac27a0ec
DK
1240 * mapped. 0 in case of a HOLE.
1241 */
1242 if (err > 0) {
1243 if (err > 1)
1244 WARN_ON(1);
1245 err = 0;
1246 }
1247 *errp = err;
1248 if (!err && buffer_mapped(&dummy)) {
1249 struct buffer_head *bh;
1250 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1251 if (!bh) {
1252 *errp = -EIO;
1253 goto err;
1254 }
1255 if (buffer_new(&dummy)) {
1256 J_ASSERT(create != 0);
ac39849d 1257 J_ASSERT(handle != NULL);
ac27a0ec
DK
1258
1259 /*
1260 * Now that we do not always journal data, we should
1261 * keep in mind whether this should always journal the
1262 * new buffer as metadata. For now, regular file
617ba13b 1263 * writes use ext4_get_block instead, so it's not a
ac27a0ec
DK
1264 * problem.
1265 */
1266 lock_buffer(bh);
1267 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 1268 fatal = ext4_journal_get_create_access(handle, bh);
ac27a0ec 1269 if (!fatal && !buffer_uptodate(bh)) {
af5bc92d 1270 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
ac27a0ec
DK
1271 set_buffer_uptodate(bh);
1272 }
1273 unlock_buffer(bh);
0390131b
FM
1274 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1275 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
1276 if (!fatal)
1277 fatal = err;
1278 } else {
1279 BUFFER_TRACE(bh, "not a new buffer");
1280 }
1281 if (fatal) {
1282 *errp = fatal;
1283 brelse(bh);
1284 bh = NULL;
1285 }
1286 return bh;
1287 }
1288err:
1289 return NULL;
1290}
1291
617ba13b 1292struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1293 ext4_lblk_t block, int create, int *err)
ac27a0ec 1294{
af5bc92d 1295 struct buffer_head *bh;
ac27a0ec 1296
617ba13b 1297 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1298 if (!bh)
1299 return bh;
1300 if (buffer_uptodate(bh))
1301 return bh;
1302 ll_rw_block(READ_META, 1, &bh);
1303 wait_on_buffer(bh);
1304 if (buffer_uptodate(bh))
1305 return bh;
1306 put_bh(bh);
1307 *err = -EIO;
1308 return NULL;
1309}
1310
af5bc92d
TT
1311static int walk_page_buffers(handle_t *handle,
1312 struct buffer_head *head,
1313 unsigned from,
1314 unsigned to,
1315 int *partial,
1316 int (*fn)(handle_t *handle,
1317 struct buffer_head *bh))
ac27a0ec
DK
1318{
1319 struct buffer_head *bh;
1320 unsigned block_start, block_end;
1321 unsigned blocksize = head->b_size;
1322 int err, ret = 0;
1323 struct buffer_head *next;
1324
af5bc92d
TT
1325 for (bh = head, block_start = 0;
1326 ret == 0 && (bh != head || !block_start);
1327 block_start = block_end, bh = next)
ac27a0ec
DK
1328 {
1329 next = bh->b_this_page;
1330 block_end = block_start + blocksize;
1331 if (block_end <= from || block_start >= to) {
1332 if (partial && !buffer_uptodate(bh))
1333 *partial = 1;
1334 continue;
1335 }
1336 err = (*fn)(handle, bh);
1337 if (!ret)
1338 ret = err;
1339 }
1340 return ret;
1341}
1342
1343/*
1344 * To preserve ordering, it is essential that the hole instantiation and
1345 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1346 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1347 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1348 * prepare_write() is the right place.
1349 *
617ba13b
MC
1350 * Also, this function can nest inside ext4_writepage() ->
1351 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1352 * has generated enough buffer credits to do the whole page. So we won't
1353 * block on the journal in that case, which is good, because the caller may
1354 * be PF_MEMALLOC.
1355 *
617ba13b 1356 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1357 * quota file writes. If we were to commit the transaction while thus
1358 * reentered, there can be a deadlock - we would be holding a quota
1359 * lock, and the commit would never complete if another thread had a
1360 * transaction open and was blocking on the quota lock - a ranking
1361 * violation.
1362 *
dab291af 1363 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1364 * will _not_ run commit under these circumstances because handle->h_ref
1365 * is elevated. We'll still have enough credits for the tiny quotafile
1366 * write.
1367 */
1368static int do_journal_get_write_access(handle_t *handle,
1369 struct buffer_head *bh)
1370{
1371 if (!buffer_mapped(bh) || buffer_freed(bh))
1372 return 0;
617ba13b 1373 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1374}
1375
bfc1af65
NP
1376static int ext4_write_begin(struct file *file, struct address_space *mapping,
1377 loff_t pos, unsigned len, unsigned flags,
1378 struct page **pagep, void **fsdata)
ac27a0ec 1379{
af5bc92d 1380 struct inode *inode = mapping->host;
7479d2b9 1381 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
ac27a0ec
DK
1382 handle_t *handle;
1383 int retries = 0;
af5bc92d 1384 struct page *page;
bfc1af65 1385 pgoff_t index;
af5bc92d 1386 unsigned from, to;
bfc1af65 1387
ba80b101
TT
1388 trace_mark(ext4_write_begin,
1389 "dev %s ino %lu pos %llu len %u flags %u",
1390 inode->i_sb->s_id, inode->i_ino,
1391 (unsigned long long) pos, len, flags);
bfc1af65 1392 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1393 from = pos & (PAGE_CACHE_SIZE - 1);
1394 to = from + len;
ac27a0ec
DK
1395
1396retry:
af5bc92d
TT
1397 handle = ext4_journal_start(inode, needed_blocks);
1398 if (IS_ERR(handle)) {
1399 ret = PTR_ERR(handle);
1400 goto out;
7479d2b9 1401 }
ac27a0ec 1402
ebd3610b
JK
1403 /* We cannot recurse into the filesystem as the transaction is already
1404 * started */
1405 flags |= AOP_FLAG_NOFS;
1406
54566b2c 1407 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1408 if (!page) {
1409 ext4_journal_stop(handle);
1410 ret = -ENOMEM;
1411 goto out;
1412 }
1413 *pagep = page;
1414
bfc1af65 1415 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
ebd3610b 1416 ext4_get_block);
bfc1af65
NP
1417
1418 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1419 ret = walk_page_buffers(handle, page_buffers(page),
1420 from, to, NULL, do_journal_get_write_access);
1421 }
bfc1af65
NP
1422
1423 if (ret) {
af5bc92d 1424 unlock_page(page);
cf108bca 1425 ext4_journal_stop(handle);
af5bc92d 1426 page_cache_release(page);
ae4d5372
AK
1427 /*
1428 * block_write_begin may have instantiated a few blocks
1429 * outside i_size. Trim these off again. Don't need
1430 * i_size_read because we hold i_mutex.
1431 */
1432 if (pos + len > inode->i_size)
1433 vmtruncate(inode, inode->i_size);
bfc1af65
NP
1434 }
1435
617ba13b 1436 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1437 goto retry;
7479d2b9 1438out:
ac27a0ec
DK
1439 return ret;
1440}
1441
bfc1af65
NP
1442/* For write_end() in data=journal mode */
1443static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1444{
1445 if (!buffer_mapped(bh) || buffer_freed(bh))
1446 return 0;
1447 set_buffer_uptodate(bh);
0390131b 1448 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1449}
1450
1451/*
1452 * We need to pick up the new inode size which generic_commit_write gave us
1453 * `file' can be NULL - eg, when called from page_symlink().
1454 *
617ba13b 1455 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1456 * buffers are managed internally.
1457 */
bfc1af65
NP
1458static int ext4_ordered_write_end(struct file *file,
1459 struct address_space *mapping,
1460 loff_t pos, unsigned len, unsigned copied,
1461 struct page *page, void *fsdata)
ac27a0ec 1462{
617ba13b 1463 handle_t *handle = ext4_journal_current_handle();
cf108bca 1464 struct inode *inode = mapping->host;
ac27a0ec
DK
1465 int ret = 0, ret2;
1466
ba80b101
TT
1467 trace_mark(ext4_ordered_write_end,
1468 "dev %s ino %lu pos %llu len %u copied %u",
1469 inode->i_sb->s_id, inode->i_ino,
1470 (unsigned long long) pos, len, copied);
678aaf48 1471 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1472
1473 if (ret == 0) {
ac27a0ec
DK
1474 loff_t new_i_size;
1475
bfc1af65 1476 new_i_size = pos + copied;
cf17fea6
AK
1477 if (new_i_size > EXT4_I(inode)->i_disksize) {
1478 ext4_update_i_disksize(inode, new_i_size);
1479 /* We need to mark inode dirty even if
1480 * new_i_size is less that inode->i_size
1481 * bu greater than i_disksize.(hint delalloc)
1482 */
1483 ext4_mark_inode_dirty(handle, inode);
1484 }
1485
cf108bca 1486 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1487 page, fsdata);
f8a87d89
RK
1488 copied = ret2;
1489 if (ret2 < 0)
1490 ret = ret2;
ac27a0ec 1491 }
617ba13b 1492 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1493 if (!ret)
1494 ret = ret2;
bfc1af65
NP
1495
1496 return ret ? ret : copied;
ac27a0ec
DK
1497}
1498
bfc1af65
NP
1499static int ext4_writeback_write_end(struct file *file,
1500 struct address_space *mapping,
1501 loff_t pos, unsigned len, unsigned copied,
1502 struct page *page, void *fsdata)
ac27a0ec 1503{
617ba13b 1504 handle_t *handle = ext4_journal_current_handle();
cf108bca 1505 struct inode *inode = mapping->host;
ac27a0ec
DK
1506 int ret = 0, ret2;
1507 loff_t new_i_size;
1508
ba80b101
TT
1509 trace_mark(ext4_writeback_write_end,
1510 "dev %s ino %lu pos %llu len %u copied %u",
1511 inode->i_sb->s_id, inode->i_ino,
1512 (unsigned long long) pos, len, copied);
bfc1af65 1513 new_i_size = pos + copied;
cf17fea6
AK
1514 if (new_i_size > EXT4_I(inode)->i_disksize) {
1515 ext4_update_i_disksize(inode, new_i_size);
1516 /* We need to mark inode dirty even if
1517 * new_i_size is less that inode->i_size
1518 * bu greater than i_disksize.(hint delalloc)
1519 */
1520 ext4_mark_inode_dirty(handle, inode);
1521 }
ac27a0ec 1522
cf108bca 1523 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1524 page, fsdata);
f8a87d89
RK
1525 copied = ret2;
1526 if (ret2 < 0)
1527 ret = ret2;
ac27a0ec 1528
617ba13b 1529 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1530 if (!ret)
1531 ret = ret2;
bfc1af65
NP
1532
1533 return ret ? ret : copied;
ac27a0ec
DK
1534}
1535
bfc1af65
NP
1536static int ext4_journalled_write_end(struct file *file,
1537 struct address_space *mapping,
1538 loff_t pos, unsigned len, unsigned copied,
1539 struct page *page, void *fsdata)
ac27a0ec 1540{
617ba13b 1541 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1542 struct inode *inode = mapping->host;
ac27a0ec
DK
1543 int ret = 0, ret2;
1544 int partial = 0;
bfc1af65 1545 unsigned from, to;
cf17fea6 1546 loff_t new_i_size;
ac27a0ec 1547
ba80b101
TT
1548 trace_mark(ext4_journalled_write_end,
1549 "dev %s ino %lu pos %llu len %u copied %u",
1550 inode->i_sb->s_id, inode->i_ino,
1551 (unsigned long long) pos, len, copied);
bfc1af65
NP
1552 from = pos & (PAGE_CACHE_SIZE - 1);
1553 to = from + len;
1554
1555 if (copied < len) {
1556 if (!PageUptodate(page))
1557 copied = 0;
1558 page_zero_new_buffers(page, from+copied, to);
1559 }
ac27a0ec
DK
1560
1561 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1562 to, &partial, write_end_fn);
ac27a0ec
DK
1563 if (!partial)
1564 SetPageUptodate(page);
cf17fea6
AK
1565 new_i_size = pos + copied;
1566 if (new_i_size > inode->i_size)
bfc1af65 1567 i_size_write(inode, pos+copied);
617ba13b 1568 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
cf17fea6
AK
1569 if (new_i_size > EXT4_I(inode)->i_disksize) {
1570 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1571 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1572 if (!ret)
1573 ret = ret2;
1574 }
bfc1af65 1575
cf108bca 1576 unlock_page(page);
617ba13b 1577 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1578 if (!ret)
1579 ret = ret2;
bfc1af65
NP
1580 page_cache_release(page);
1581
1582 return ret ? ret : copied;
ac27a0ec 1583}
d2a17637
MC
1584
1585static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1586{
030ba6bc 1587 int retries = 0;
60e58e0f
MC
1588 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1589 unsigned long md_needed, mdblocks, total = 0;
d2a17637
MC
1590
1591 /*
1592 * recalculate the amount of metadata blocks to reserve
1593 * in order to allocate nrblocks
1594 * worse case is one extent per block
1595 */
030ba6bc 1596repeat:
d2a17637
MC
1597 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1598 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1599 mdblocks = ext4_calc_metadata_amount(inode, total);
1600 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1601
1602 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1603 total = md_needed + nrblocks;
1604
60e58e0f
MC
1605 /*
1606 * Make quota reservation here to prevent quota overflow
1607 * later. Real quota accounting is done at pages writeout
1608 * time.
1609 */
1610 if (vfs_dq_reserve_block(inode, total)) {
1611 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1612 return -EDQUOT;
1613 }
1614
a30d542a 1615 if (ext4_claim_free_blocks(sbi, total)) {
d2a17637 1616 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
030ba6bc
AK
1617 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1618 yield();
1619 goto repeat;
1620 }
60e58e0f 1621 vfs_dq_release_reservation_block(inode, total);
d2a17637
MC
1622 return -ENOSPC;
1623 }
d2a17637
MC
1624 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1625 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1626
1627 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1628 return 0; /* success */
1629}
1630
12219aea 1631static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1632{
1633 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1634 int total, mdb, mdb_free, release;
1635
cd213226
MC
1636 if (!to_free)
1637 return; /* Nothing to release, exit */
1638
d2a17637 1639 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226
MC
1640
1641 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1642 /*
1643 * if there is no reserved blocks, but we try to free some
1644 * then the counter is messed up somewhere.
1645 * but since this function is called from invalidate
1646 * page, it's harmless to return without any action
1647 */
1648 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1649 "blocks for inode %lu, but there is no reserved "
1650 "data blocks\n", to_free, inode->i_ino);
1651 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1652 return;
1653 }
1654
d2a17637 1655 /* recalculate the number of metablocks still need to be reserved */
12219aea 1656 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
d2a17637
MC
1657 mdb = ext4_calc_metadata_amount(inode, total);
1658
1659 /* figure out how many metablocks to release */
1660 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1661 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1662
d2a17637
MC
1663 release = to_free + mdb_free;
1664
6bc6e63f
AK
1665 /* update fs dirty blocks counter for truncate case */
1666 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
d2a17637
MC
1667
1668 /* update per-inode reservations */
12219aea
AK
1669 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1670 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
d2a17637
MC
1671
1672 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1673 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
d2a17637 1674 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f
MC
1675
1676 vfs_dq_release_reservation_block(inode, release);
d2a17637
MC
1677}
1678
1679static void ext4_da_page_release_reservation(struct page *page,
1680 unsigned long offset)
1681{
1682 int to_release = 0;
1683 struct buffer_head *head, *bh;
1684 unsigned int curr_off = 0;
1685
1686 head = page_buffers(page);
1687 bh = head;
1688 do {
1689 unsigned int next_off = curr_off + bh->b_size;
1690
1691 if ((offset <= curr_off) && (buffer_delay(bh))) {
1692 to_release++;
1693 clear_buffer_delay(bh);
1694 }
1695 curr_off = next_off;
1696 } while ((bh = bh->b_this_page) != head);
12219aea 1697 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1698}
ac27a0ec 1699
64769240
AT
1700/*
1701 * Delayed allocation stuff
1702 */
1703
1704struct mpage_da_data {
1705 struct inode *inode;
1706 struct buffer_head lbh; /* extent of blocks */
1707 unsigned long first_page, next_page; /* extent of pages */
1708 get_block_t *get_block;
1709 struct writeback_control *wbc;
a1d6cc56 1710 int io_done;
498e5f24 1711 int pages_written;
df22291f 1712 int retval;
64769240
AT
1713};
1714
1715/*
1716 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1717 * them with writepage() call back
64769240
AT
1718 *
1719 * @mpd->inode: inode
1720 * @mpd->first_page: first page of the extent
1721 * @mpd->next_page: page after the last page of the extent
1722 * @mpd->get_block: the filesystem's block mapper function
1723 *
1724 * By the time mpage_da_submit_io() is called we expect all blocks
1725 * to be allocated. this may be wrong if allocation failed.
1726 *
1727 * As pages are already locked by write_cache_pages(), we can't use it
1728 */
1729static int mpage_da_submit_io(struct mpage_da_data *mpd)
1730{
22208ded 1731 long pages_skipped;
791b7f08
AK
1732 struct pagevec pvec;
1733 unsigned long index, end;
1734 int ret = 0, err, nr_pages, i;
1735 struct inode *inode = mpd->inode;
1736 struct address_space *mapping = inode->i_mapping;
64769240
AT
1737
1738 BUG_ON(mpd->next_page <= mpd->first_page);
791b7f08
AK
1739 /*
1740 * We need to start from the first_page to the next_page - 1
1741 * to make sure we also write the mapped dirty buffer_heads.
1742 * If we look at mpd->lbh.b_blocknr we would only be looking
1743 * at the currently mapped buffer_heads.
1744 */
64769240
AT
1745 index = mpd->first_page;
1746 end = mpd->next_page - 1;
1747
791b7f08 1748 pagevec_init(&pvec, 0);
64769240 1749 while (index <= end) {
791b7f08 1750 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1751 if (nr_pages == 0)
1752 break;
1753 for (i = 0; i < nr_pages; i++) {
1754 struct page *page = pvec.pages[i];
1755
791b7f08
AK
1756 index = page->index;
1757 if (index > end)
1758 break;
1759 index++;
1760
1761 BUG_ON(!PageLocked(page));
1762 BUG_ON(PageWriteback(page));
1763
22208ded 1764 pages_skipped = mpd->wbc->pages_skipped;
a1d6cc56 1765 err = mapping->a_ops->writepage(page, mpd->wbc);
22208ded
AK
1766 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1767 /*
1768 * have successfully written the page
1769 * without skipping the same
1770 */
a1d6cc56 1771 mpd->pages_written++;
64769240
AT
1772 /*
1773 * In error case, we have to continue because
1774 * remaining pages are still locked
1775 * XXX: unlock and re-dirty them?
1776 */
1777 if (ret == 0)
1778 ret = err;
1779 }
1780 pagevec_release(&pvec);
1781 }
64769240
AT
1782 return ret;
1783}
1784
1785/*
1786 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1787 *
1788 * @mpd->inode - inode to walk through
1789 * @exbh->b_blocknr - first block on a disk
1790 * @exbh->b_size - amount of space in bytes
1791 * @logical - first logical block to start assignment with
1792 *
1793 * the function goes through all passed space and put actual disk
1794 * block numbers into buffer heads, dropping BH_Delay
1795 */
1796static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1797 struct buffer_head *exbh)
1798{
1799 struct inode *inode = mpd->inode;
1800 struct address_space *mapping = inode->i_mapping;
1801 int blocks = exbh->b_size >> inode->i_blkbits;
1802 sector_t pblock = exbh->b_blocknr, cur_logical;
1803 struct buffer_head *head, *bh;
a1d6cc56 1804 pgoff_t index, end;
64769240
AT
1805 struct pagevec pvec;
1806 int nr_pages, i;
1807
1808 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1809 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1810 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1811
1812 pagevec_init(&pvec, 0);
1813
1814 while (index <= end) {
1815 /* XXX: optimize tail */
1816 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1817 if (nr_pages == 0)
1818 break;
1819 for (i = 0; i < nr_pages; i++) {
1820 struct page *page = pvec.pages[i];
1821
1822 index = page->index;
1823 if (index > end)
1824 break;
1825 index++;
1826
1827 BUG_ON(!PageLocked(page));
1828 BUG_ON(PageWriteback(page));
1829 BUG_ON(!page_has_buffers(page));
1830
1831 bh = page_buffers(page);
1832 head = bh;
1833
1834 /* skip blocks out of the range */
1835 do {
1836 if (cur_logical >= logical)
1837 break;
1838 cur_logical++;
1839 } while ((bh = bh->b_this_page) != head);
1840
1841 do {
1842 if (cur_logical >= logical + blocks)
1843 break;
64769240
AT
1844 if (buffer_delay(bh)) {
1845 bh->b_blocknr = pblock;
1846 clear_buffer_delay(bh);
bf068ee2
AK
1847 bh->b_bdev = inode->i_sb->s_bdev;
1848 } else if (buffer_unwritten(bh)) {
1849 bh->b_blocknr = pblock;
1850 clear_buffer_unwritten(bh);
1851 set_buffer_mapped(bh);
1852 set_buffer_new(bh);
1853 bh->b_bdev = inode->i_sb->s_bdev;
61628a3f 1854 } else if (buffer_mapped(bh))
64769240 1855 BUG_ON(bh->b_blocknr != pblock);
64769240
AT
1856
1857 cur_logical++;
1858 pblock++;
1859 } while ((bh = bh->b_this_page) != head);
1860 }
1861 pagevec_release(&pvec);
1862 }
1863}
1864
1865
1866/*
1867 * __unmap_underlying_blocks - just a helper function to unmap
1868 * set of blocks described by @bh
1869 */
1870static inline void __unmap_underlying_blocks(struct inode *inode,
1871 struct buffer_head *bh)
1872{
1873 struct block_device *bdev = inode->i_sb->s_bdev;
1874 int blocks, i;
1875
1876 blocks = bh->b_size >> inode->i_blkbits;
1877 for (i = 0; i < blocks; i++)
1878 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1879}
1880
c4a0c46e
AK
1881static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1882 sector_t logical, long blk_cnt)
1883{
1884 int nr_pages, i;
1885 pgoff_t index, end;
1886 struct pagevec pvec;
1887 struct inode *inode = mpd->inode;
1888 struct address_space *mapping = inode->i_mapping;
1889
1890 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1891 end = (logical + blk_cnt - 1) >>
1892 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1893 while (index <= end) {
1894 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1895 if (nr_pages == 0)
1896 break;
1897 for (i = 0; i < nr_pages; i++) {
1898 struct page *page = pvec.pages[i];
1899 index = page->index;
1900 if (index > end)
1901 break;
1902 index++;
1903
1904 BUG_ON(!PageLocked(page));
1905 BUG_ON(PageWriteback(page));
1906 block_invalidatepage(page, 0);
1907 ClearPageUptodate(page);
1908 unlock_page(page);
1909 }
1910 }
1911 return;
1912}
1913
df22291f
AK
1914static void ext4_print_free_blocks(struct inode *inode)
1915{
1916 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1917 printk(KERN_EMERG "Total free blocks count %lld\n",
1918 ext4_count_free_blocks(inode->i_sb));
1919 printk(KERN_EMERG "Free/Dirty block details\n");
1920 printk(KERN_EMERG "free_blocks=%lld\n",
8f72fbdf 1921 (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
df22291f 1922 printk(KERN_EMERG "dirty_blocks=%lld\n",
8f72fbdf 1923 (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
df22291f 1924 printk(KERN_EMERG "Block reservation details\n");
498e5f24 1925 printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
df22291f 1926 EXT4_I(inode)->i_reserved_data_blocks);
498e5f24 1927 printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
df22291f
AK
1928 EXT4_I(inode)->i_reserved_meta_blocks);
1929 return;
1930}
1931
64769240
AT
1932/*
1933 * mpage_da_map_blocks - go through given space
1934 *
1935 * @mpd->lbh - bh describing space
1936 * @mpd->get_block - the filesystem's block mapper function
1937 *
1938 * The function skips space we know is already mapped to disk blocks.
1939 *
64769240 1940 */
c4a0c46e 1941static int mpage_da_map_blocks(struct mpage_da_data *mpd)
64769240 1942{
a1d6cc56 1943 int err = 0;
030ba6bc 1944 struct buffer_head new;
64769240 1945 struct buffer_head *lbh = &mpd->lbh;
df22291f 1946 sector_t next;
64769240
AT
1947
1948 /*
1949 * We consider only non-mapped and non-allocated blocks
1950 */
1951 if (buffer_mapped(lbh) && !buffer_delay(lbh))
c4a0c46e 1952 return 0;
a1d6cc56
AK
1953 new.b_state = lbh->b_state;
1954 new.b_blocknr = 0;
1955 new.b_size = lbh->b_size;
df22291f 1956 next = lbh->b_blocknr;
a1d6cc56
AK
1957 /*
1958 * If we didn't accumulate anything
1959 * to write simply return
1960 */
1961 if (!new.b_size)
c4a0c46e 1962 return 0;
a1d6cc56 1963 err = mpd->get_block(mpd->inode, next, &new, 1);
c4a0c46e
AK
1964 if (err) {
1965
1966 /* If get block returns with error
1967 * we simply return. Later writepage
1968 * will redirty the page and writepages
1969 * will find the dirty page again
1970 */
1971 if (err == -EAGAIN)
1972 return 0;
df22291f
AK
1973
1974 if (err == -ENOSPC &&
1975 ext4_count_free_blocks(mpd->inode->i_sb)) {
1976 mpd->retval = err;
1977 return 0;
1978 }
1979
c4a0c46e
AK
1980 /*
1981 * get block failure will cause us
1982 * to loop in writepages. Because
1983 * a_ops->writepage won't be able to
1984 * make progress. The page will be redirtied
1985 * by writepage and writepages will again
1986 * try to write the same.
1987 */
1988 printk(KERN_EMERG "%s block allocation failed for inode %lu "
1989 "at logical offset %llu with max blocks "
1990 "%zd with error %d\n",
1991 __func__, mpd->inode->i_ino,
1992 (unsigned long long)next,
1993 lbh->b_size >> mpd->inode->i_blkbits, err);
1994 printk(KERN_EMERG "This should not happen.!! "
1995 "Data will be lost\n");
030ba6bc 1996 if (err == -ENOSPC) {
df22291f 1997 ext4_print_free_blocks(mpd->inode);
030ba6bc 1998 }
c4a0c46e
AK
1999 /* invlaidate all the pages */
2000 ext4_da_block_invalidatepages(mpd, next,
2001 lbh->b_size >> mpd->inode->i_blkbits);
2002 return err;
2003 }
a1d6cc56 2004 BUG_ON(new.b_size == 0);
64769240 2005
a1d6cc56
AK
2006 if (buffer_new(&new))
2007 __unmap_underlying_blocks(mpd->inode, &new);
64769240 2008
a1d6cc56
AK
2009 /*
2010 * If blocks are delayed marked, we need to
2011 * put actual blocknr and drop delayed bit
2012 */
2013 if (buffer_delay(lbh) || buffer_unwritten(lbh))
2014 mpage_put_bnr_to_bhs(mpd, next, &new);
64769240 2015
c4a0c46e 2016 return 0;
64769240
AT
2017}
2018
bf068ee2
AK
2019#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2020 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
2021
2022/*
2023 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2024 *
2025 * @mpd->lbh - extent of blocks
2026 * @logical - logical number of the block in the file
2027 * @bh - bh of the block (used to access block's state)
2028 *
2029 * the function is used to collect contig. blocks in same state
2030 */
2031static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2032 sector_t logical, struct buffer_head *bh)
2033{
64769240 2034 sector_t next;
525f4ed8
MC
2035 size_t b_size = bh->b_size;
2036 struct buffer_head *lbh = &mpd->lbh;
2037 int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
64769240 2038
525f4ed8
MC
2039 /* check if thereserved journal credits might overflow */
2040 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2041 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2042 /*
2043 * With non-extent format we are limited by the journal
2044 * credit available. Total credit needed to insert
2045 * nrblocks contiguous blocks is dependent on the
2046 * nrblocks. So limit nrblocks.
2047 */
2048 goto flush_it;
2049 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2050 EXT4_MAX_TRANS_DATA) {
2051 /*
2052 * Adding the new buffer_head would make it cross the
2053 * allowed limit for which we have journal credit
2054 * reserved. So limit the new bh->b_size
2055 */
2056 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2057 mpd->inode->i_blkbits;
2058 /* we will do mpage_da_submit_io in the next loop */
2059 }
2060 }
64769240
AT
2061 /*
2062 * First block in the extent
2063 */
2064 if (lbh->b_size == 0) {
2065 lbh->b_blocknr = logical;
525f4ed8 2066 lbh->b_size = b_size;
64769240
AT
2067 lbh->b_state = bh->b_state & BH_FLAGS;
2068 return;
2069 }
2070
525f4ed8 2071 next = lbh->b_blocknr + nrblocks;
64769240
AT
2072 /*
2073 * Can we merge the block to our big extent?
2074 */
2075 if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
525f4ed8 2076 lbh->b_size += b_size;
64769240
AT
2077 return;
2078 }
2079
525f4ed8 2080flush_it:
64769240
AT
2081 /*
2082 * We couldn't merge the block to our extent, so we
2083 * need to flush current extent and start new one
2084 */
c4a0c46e
AK
2085 if (mpage_da_map_blocks(mpd) == 0)
2086 mpage_da_submit_io(mpd);
a1d6cc56
AK
2087 mpd->io_done = 1;
2088 return;
64769240
AT
2089}
2090
2091/*
2092 * __mpage_da_writepage - finds extent of pages and blocks
2093 *
2094 * @page: page to consider
2095 * @wbc: not used, we just follow rules
2096 * @data: context
2097 *
2098 * The function finds extents of pages and scan them for all blocks.
2099 */
2100static int __mpage_da_writepage(struct page *page,
2101 struct writeback_control *wbc, void *data)
2102{
2103 struct mpage_da_data *mpd = data;
2104 struct inode *inode = mpd->inode;
2105 struct buffer_head *bh, *head, fake;
2106 sector_t logical;
2107
a1d6cc56
AK
2108 if (mpd->io_done) {
2109 /*
2110 * Rest of the page in the page_vec
2111 * redirty then and skip then. We will
2112 * try to to write them again after
2113 * starting a new transaction
2114 */
2115 redirty_page_for_writepage(wbc, page);
2116 unlock_page(page);
2117 return MPAGE_DA_EXTENT_TAIL;
2118 }
64769240
AT
2119 /*
2120 * Can we merge this page to current extent?
2121 */
2122 if (mpd->next_page != page->index) {
2123 /*
2124 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 2125 * and start IO on them using writepage()
64769240
AT
2126 */
2127 if (mpd->next_page != mpd->first_page) {
c4a0c46e
AK
2128 if (mpage_da_map_blocks(mpd) == 0)
2129 mpage_da_submit_io(mpd);
a1d6cc56
AK
2130 /*
2131 * skip rest of the page in the page_vec
2132 */
2133 mpd->io_done = 1;
2134 redirty_page_for_writepage(wbc, page);
2135 unlock_page(page);
2136 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2137 }
2138
2139 /*
2140 * Start next extent of pages ...
2141 */
2142 mpd->first_page = page->index;
2143
2144 /*
2145 * ... and blocks
2146 */
2147 mpd->lbh.b_size = 0;
2148 mpd->lbh.b_state = 0;
2149 mpd->lbh.b_blocknr = 0;
2150 }
2151
2152 mpd->next_page = page->index + 1;
2153 logical = (sector_t) page->index <<
2154 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2155
2156 if (!page_has_buffers(page)) {
2157 /*
2158 * There is no attached buffer heads yet (mmap?)
2159 * we treat the page asfull of dirty blocks
2160 */
2161 bh = &fake;
2162 bh->b_size = PAGE_CACHE_SIZE;
2163 bh->b_state = 0;
2164 set_buffer_dirty(bh);
2165 set_buffer_uptodate(bh);
2166 mpage_add_bh_to_extent(mpd, logical, bh);
a1d6cc56
AK
2167 if (mpd->io_done)
2168 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2169 } else {
2170 /*
2171 * Page with regular buffer heads, just add all dirty ones
2172 */
2173 head = page_buffers(page);
2174 bh = head;
2175 do {
2176 BUG_ON(buffer_locked(bh));
791b7f08
AK
2177 /*
2178 * We need to try to allocate
2179 * unmapped blocks in the same page.
2180 * Otherwise we won't make progress
2181 * with the page in ext4_da_writepage
2182 */
a1d6cc56
AK
2183 if (buffer_dirty(bh) &&
2184 (!buffer_mapped(bh) || buffer_delay(bh))) {
64769240 2185 mpage_add_bh_to_extent(mpd, logical, bh);
a1d6cc56
AK
2186 if (mpd->io_done)
2187 return MPAGE_DA_EXTENT_TAIL;
791b7f08
AK
2188 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2189 /*
2190 * mapped dirty buffer. We need to update
2191 * the b_state because we look at
2192 * b_state in mpage_da_map_blocks. We don't
2193 * update b_size because if we find an
2194 * unmapped buffer_head later we need to
2195 * use the b_state flag of that buffer_head.
2196 */
2197 if (mpd->lbh.b_size == 0)
2198 mpd->lbh.b_state =
2199 bh->b_state & BH_FLAGS;
a1d6cc56 2200 }
64769240
AT
2201 logical++;
2202 } while ((bh = bh->b_this_page) != head);
2203 }
2204
2205 return 0;
2206}
2207
2208/*
2209 * mpage_da_writepages - walk the list of dirty pages of the given
2210 * address space, allocates non-allocated blocks, maps newly-allocated
2211 * blocks to existing bhs and issue IO them
2212 *
2213 * @mapping: address space structure to write
2214 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2215 * @get_block: the filesystem's block mapper function.
2216 *
2217 * This is a library function, which implements the writepages()
2218 * address_space_operation.
64769240
AT
2219 */
2220static int mpage_da_writepages(struct address_space *mapping,
2221 struct writeback_control *wbc,
df22291f 2222 struct mpage_da_data *mpd)
64769240 2223{
64769240
AT
2224 int ret;
2225
df22291f 2226 if (!mpd->get_block)
64769240
AT
2227 return generic_writepages(mapping, wbc);
2228
df22291f
AK
2229 mpd->lbh.b_size = 0;
2230 mpd->lbh.b_state = 0;
2231 mpd->lbh.b_blocknr = 0;
2232 mpd->first_page = 0;
2233 mpd->next_page = 0;
2234 mpd->io_done = 0;
2235 mpd->pages_written = 0;
2236 mpd->retval = 0;
a1d6cc56 2237
df22291f 2238 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd);
64769240
AT
2239 /*
2240 * Handle last extent of pages
2241 */
df22291f
AK
2242 if (!mpd->io_done && mpd->next_page != mpd->first_page) {
2243 if (mpage_da_map_blocks(mpd) == 0)
2244 mpage_da_submit_io(mpd);
64769240 2245
22208ded
AK
2246 mpd->io_done = 1;
2247 ret = MPAGE_DA_EXTENT_TAIL;
2248 }
2249 wbc->nr_to_write -= mpd->pages_written;
64769240
AT
2250 return ret;
2251}
2252
2253/*
2254 * this is a special callback for ->write_begin() only
2255 * it's intention is to return mapped block or reserve space
2256 */
2257static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2258 struct buffer_head *bh_result, int create)
2259{
2260 int ret = 0;
2261
2262 BUG_ON(create == 0);
2263 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2264
2265 /*
2266 * first, we need to know whether the block is allocated already
2267 * preallocated blocks are unmapped but should treated
2268 * the same as allocated blocks.
2269 */
d2a17637
MC
2270 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0);
2271 if ((ret == 0) && !buffer_delay(bh_result)) {
2272 /* the block isn't (pre)allocated yet, let's reserve space */
64769240
AT
2273 /*
2274 * XXX: __block_prepare_write() unmaps passed block,
2275 * is it OK?
2276 */
d2a17637
MC
2277 ret = ext4_da_reserve_space(inode, 1);
2278 if (ret)
2279 /* not enough space to reserve */
2280 return ret;
2281
64769240
AT
2282 map_bh(bh_result, inode->i_sb, 0);
2283 set_buffer_new(bh_result);
2284 set_buffer_delay(bh_result);
2285 } else if (ret > 0) {
2286 bh_result->b_size = (ret << inode->i_blkbits);
2287 ret = 0;
2288 }
2289
2290 return ret;
2291}
d2a17637 2292#define EXT4_DELALLOC_RSVED 1
64769240
AT
2293static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2294 struct buffer_head *bh_result, int create)
2295{
61628a3f 2296 int ret;
64769240
AT
2297 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2298 loff_t disksize = EXT4_I(inode)->i_disksize;
2299 handle_t *handle = NULL;
2300
61628a3f 2301 handle = ext4_journal_current_handle();
166348dd
AK
2302 BUG_ON(!handle);
2303 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2304 bh_result, create, 0, EXT4_DELALLOC_RSVED);
64769240 2305 if (ret > 0) {
166348dd 2306
64769240
AT
2307 bh_result->b_size = (ret << inode->i_blkbits);
2308
166348dd
AK
2309 if (ext4_should_order_data(inode)) {
2310 int retval;
2311 retval = ext4_jbd2_file_inode(handle, inode);
2312 if (retval)
2313 /*
2314 * Failed to add inode for ordered
2315 * mode. Don't update file size
2316 */
2317 return retval;
2318 }
2319
64769240
AT
2320 /*
2321 * Update on-disk size along with block allocation
2322 * we don't use 'extend_disksize' as size may change
2323 * within already allocated block -bzzz
2324 */
2325 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2326 if (disksize > i_size_read(inode))
2327 disksize = i_size_read(inode);
2328 if (disksize > EXT4_I(inode)->i_disksize) {
cf17fea6
AK
2329 ext4_update_i_disksize(inode, disksize);
2330 ret = ext4_mark_inode_dirty(handle, inode);
2331 return ret;
64769240 2332 }
64769240
AT
2333 ret = 0;
2334 }
64769240
AT
2335 return ret;
2336}
61628a3f
MC
2337
2338static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2339{
f0e6c985
AK
2340 /*
2341 * unmapped buffer is possible for holes.
2342 * delay buffer is possible with delayed allocation
2343 */
2344 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2345}
2346
2347static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2348 struct buffer_head *bh_result, int create)
2349{
2350 int ret = 0;
2351 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2352
2353 /*
2354 * we don't want to do block allocation in writepage
2355 * so call get_block_wrap with create = 0
2356 */
2357 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2358 bh_result, 0, 0, 0);
2359 if (ret > 0) {
2360 bh_result->b_size = (ret << inode->i_blkbits);
2361 ret = 0;
2362 }
2363 return ret;
61628a3f
MC
2364}
2365
61628a3f 2366/*
f0e6c985
AK
2367 * get called vi ext4_da_writepages after taking page lock (have journal handle)
2368 * get called via journal_submit_inode_data_buffers (no journal handle)
2369 * get called via shrink_page_list via pdflush (no journal handle)
2370 * or grab_page_cache when doing write_begin (have journal handle)
61628a3f 2371 */
64769240
AT
2372static int ext4_da_writepage(struct page *page,
2373 struct writeback_control *wbc)
2374{
64769240 2375 int ret = 0;
61628a3f 2376 loff_t size;
498e5f24 2377 unsigned int len;
61628a3f
MC
2378 struct buffer_head *page_bufs;
2379 struct inode *inode = page->mapping->host;
2380
ba80b101
TT
2381 trace_mark(ext4_da_writepage,
2382 "dev %s ino %lu page_index %lu",
2383 inode->i_sb->s_id, inode->i_ino, page->index);
f0e6c985
AK
2384 size = i_size_read(inode);
2385 if (page->index == size >> PAGE_CACHE_SHIFT)
2386 len = size & ~PAGE_CACHE_MASK;
2387 else
2388 len = PAGE_CACHE_SIZE;
64769240 2389
f0e6c985 2390 if (page_has_buffers(page)) {
61628a3f 2391 page_bufs = page_buffers(page);
f0e6c985
AK
2392 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2393 ext4_bh_unmapped_or_delay)) {
61628a3f 2394 /*
f0e6c985
AK
2395 * We don't want to do block allocation
2396 * So redirty the page and return
cd1aac32
AK
2397 * We may reach here when we do a journal commit
2398 * via journal_submit_inode_data_buffers.
2399 * If we don't have mapping block we just ignore
f0e6c985
AK
2400 * them. We can also reach here via shrink_page_list
2401 */
2402 redirty_page_for_writepage(wbc, page);
2403 unlock_page(page);
2404 return 0;
2405 }
2406 } else {
2407 /*
2408 * The test for page_has_buffers() is subtle:
2409 * We know the page is dirty but it lost buffers. That means
2410 * that at some moment in time after write_begin()/write_end()
2411 * has been called all buffers have been clean and thus they
2412 * must have been written at least once. So they are all
2413 * mapped and we can happily proceed with mapping them
2414 * and writing the page.
2415 *
2416 * Try to initialize the buffer_heads and check whether
2417 * all are mapped and non delay. We don't want to
2418 * do block allocation here.
2419 */
2420 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2421 ext4_normal_get_block_write);
2422 if (!ret) {
2423 page_bufs = page_buffers(page);
2424 /* check whether all are mapped and non delay */
2425 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2426 ext4_bh_unmapped_or_delay)) {
2427 redirty_page_for_writepage(wbc, page);
2428 unlock_page(page);
2429 return 0;
2430 }
2431 } else {
2432 /*
2433 * We can't do block allocation here
2434 * so just redity the page and unlock
2435 * and return
61628a3f 2436 */
61628a3f
MC
2437 redirty_page_for_writepage(wbc, page);
2438 unlock_page(page);
2439 return 0;
2440 }
ed9b3e33
AK
2441 /* now mark the buffer_heads as dirty and uptodate */
2442 block_commit_write(page, 0, PAGE_CACHE_SIZE);
64769240
AT
2443 }
2444
2445 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
f0e6c985 2446 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
64769240 2447 else
f0e6c985
AK
2448 ret = block_write_full_page(page,
2449 ext4_normal_get_block_write,
2450 wbc);
64769240 2451
64769240
AT
2452 return ret;
2453}
2454
61628a3f 2455/*
525f4ed8
MC
2456 * This is called via ext4_da_writepages() to
2457 * calulate the total number of credits to reserve to fit
2458 * a single extent allocation into a single transaction,
2459 * ext4_da_writpeages() will loop calling this before
2460 * the block allocation.
61628a3f 2461 */
525f4ed8
MC
2462
2463static int ext4_da_writepages_trans_blocks(struct inode *inode)
2464{
2465 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2466
2467 /*
2468 * With non-extent format the journal credit needed to
2469 * insert nrblocks contiguous block is dependent on
2470 * number of contiguous block. So we will limit
2471 * number of contiguous block to a sane value
2472 */
2473 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2474 (max_blocks > EXT4_MAX_TRANS_DATA))
2475 max_blocks = EXT4_MAX_TRANS_DATA;
2476
2477 return ext4_chunk_trans_blocks(inode, max_blocks);
2478}
61628a3f 2479
64769240 2480static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2481 struct writeback_control *wbc)
64769240 2482{
22208ded
AK
2483 pgoff_t index;
2484 int range_whole = 0;
61628a3f 2485 handle_t *handle = NULL;
df22291f 2486 struct mpage_da_data mpd;
5e745b04 2487 struct inode *inode = mapping->host;
22208ded 2488 int no_nrwrite_index_update;
498e5f24
TT
2489 int pages_written = 0;
2490 long pages_skipped;
2acf2c26 2491 int range_cyclic, cycled = 1, io_done = 0;
5e745b04 2492 int needed_blocks, ret = 0, nr_to_writebump = 0;
5e745b04 2493 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f 2494
ba80b101
TT
2495 trace_mark(ext4_da_writepages,
2496 "dev %s ino %lu nr_t_write %ld "
2497 "pages_skipped %ld range_start %llu "
2498 "range_end %llu nonblocking %d "
2499 "for_kupdate %d for_reclaim %d "
2500 "for_writepages %d range_cyclic %d",
2501 inode->i_sb->s_id, inode->i_ino,
2502 wbc->nr_to_write, wbc->pages_skipped,
2503 (unsigned long long) wbc->range_start,
2504 (unsigned long long) wbc->range_end,
2505 wbc->nonblocking, wbc->for_kupdate,
2506 wbc->for_reclaim, wbc->for_writepages,
2507 wbc->range_cyclic);
2508
61628a3f
MC
2509 /*
2510 * No pages to write? This is mainly a kludge to avoid starting
2511 * a transaction for special inodes like journal inode on last iput()
2512 * because that could violate lock ordering on umount
2513 */
a1d6cc56 2514 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2515 return 0;
2a21e37e
TT
2516
2517 /*
2518 * If the filesystem has aborted, it is read-only, so return
2519 * right away instead of dumping stack traces later on that
2520 * will obscure the real source of the problem. We test
2521 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2522 * the latter could be true if the filesystem is mounted
2523 * read-only, and in that case, ext4_da_writepages should
2524 * *never* be called, so if that ever happens, we would want
2525 * the stack trace.
2526 */
2527 if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2528 return -EROFS;
2529
5e745b04
AK
2530 /*
2531 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2532 * This make sure small files blocks are allocated in
2533 * single attempt. This ensure that small files
2534 * get less fragmented.
2535 */
2536 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2537 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2538 wbc->nr_to_write = sbi->s_mb_stream_request;
2539 }
22208ded
AK
2540 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2541 range_whole = 1;
61628a3f 2542
2acf2c26
AK
2543 range_cyclic = wbc->range_cyclic;
2544 if (wbc->range_cyclic) {
22208ded 2545 index = mapping->writeback_index;
2acf2c26
AK
2546 if (index)
2547 cycled = 0;
2548 wbc->range_start = index << PAGE_CACHE_SHIFT;
2549 wbc->range_end = LLONG_MAX;
2550 wbc->range_cyclic = 0;
2551 } else
22208ded 2552 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 2553
df22291f
AK
2554 mpd.wbc = wbc;
2555 mpd.inode = mapping->host;
2556
22208ded
AK
2557 /*
2558 * we don't want write_cache_pages to update
2559 * nr_to_write and writeback_index
2560 */
2561 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2562 wbc->no_nrwrite_index_update = 1;
2563 pages_skipped = wbc->pages_skipped;
2564
2acf2c26 2565retry:
22208ded 2566 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2567
2568 /*
2569 * we insert one extent at a time. So we need
2570 * credit needed for single extent allocation.
2571 * journalled mode is currently not supported
2572 * by delalloc
2573 */
2574 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2575 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2576
61628a3f
MC
2577 /* start a new transaction*/
2578 handle = ext4_journal_start(inode, needed_blocks);
2579 if (IS_ERR(handle)) {
2580 ret = PTR_ERR(handle);
2a21e37e 2581 printk(KERN_CRIT "%s: jbd2_start: "
a1d6cc56
AK
2582 "%ld pages, ino %lu; err %d\n", __func__,
2583 wbc->nr_to_write, inode->i_ino, ret);
2584 dump_stack();
61628a3f
MC
2585 goto out_writepages;
2586 }
df22291f
AK
2587 mpd.get_block = ext4_da_get_block_write;
2588 ret = mpage_da_writepages(mapping, wbc, &mpd);
2589
61628a3f 2590 ext4_journal_stop(handle);
df22291f 2591
8f64b32e 2592 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2593 /* commit the transaction which would
2594 * free blocks released in the transaction
2595 * and try again
2596 */
df22291f 2597 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2598 wbc->pages_skipped = pages_skipped;
2599 ret = 0;
2600 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
2601 /*
2602 * got one extent now try with
2603 * rest of the pages
2604 */
22208ded
AK
2605 pages_written += mpd.pages_written;
2606 wbc->pages_skipped = pages_skipped;
a1d6cc56 2607 ret = 0;
2acf2c26 2608 io_done = 1;
22208ded 2609 } else if (wbc->nr_to_write)
61628a3f
MC
2610 /*
2611 * There is no more writeout needed
2612 * or we requested for a noblocking writeout
2613 * and we found the device congested
2614 */
61628a3f 2615 break;
a1d6cc56 2616 }
2acf2c26
AK
2617 if (!io_done && !cycled) {
2618 cycled = 1;
2619 index = 0;
2620 wbc->range_start = index << PAGE_CACHE_SHIFT;
2621 wbc->range_end = mapping->writeback_index - 1;
2622 goto retry;
2623 }
22208ded
AK
2624 if (pages_skipped != wbc->pages_skipped)
2625 printk(KERN_EMERG "This should not happen leaving %s "
2626 "with nr_to_write = %ld ret = %d\n",
2627 __func__, wbc->nr_to_write, ret);
2628
2629 /* Update index */
2630 index += pages_written;
2acf2c26 2631 wbc->range_cyclic = range_cyclic;
22208ded
AK
2632 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2633 /*
2634 * set the writeback_index so that range_cyclic
2635 * mode will write it back later
2636 */
2637 mapping->writeback_index = index;
a1d6cc56 2638
61628a3f 2639out_writepages:
22208ded
AK
2640 if (!no_nrwrite_index_update)
2641 wbc->no_nrwrite_index_update = 0;
2642 wbc->nr_to_write -= nr_to_writebump;
ba80b101
TT
2643 trace_mark(ext4_da_writepage_result,
2644 "dev %s ino %lu ret %d pages_written %d "
2645 "pages_skipped %ld congestion %d "
2646 "more_io %d no_nrwrite_index_update %d",
2647 inode->i_sb->s_id, inode->i_ino, ret,
2648 pages_written, wbc->pages_skipped,
2649 wbc->encountered_congestion, wbc->more_io,
2650 wbc->no_nrwrite_index_update);
61628a3f 2651 return ret;
64769240
AT
2652}
2653
79f0be8d
AK
2654#define FALL_BACK_TO_NONDELALLOC 1
2655static int ext4_nonda_switch(struct super_block *sb)
2656{
2657 s64 free_blocks, dirty_blocks;
2658 struct ext4_sb_info *sbi = EXT4_SB(sb);
2659
2660 /*
2661 * switch to non delalloc mode if we are running low
2662 * on free block. The free block accounting via percpu
179f7ebf 2663 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2664 * accumulated on each CPU without updating global counters
2665 * Delalloc need an accurate free block accounting. So switch
2666 * to non delalloc when we are near to error range.
2667 */
2668 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2669 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2670 if (2 * free_blocks < 3 * dirty_blocks ||
2671 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2672 /*
2673 * free block count is less that 150% of dirty blocks
2674 * or free blocks is less that watermark
2675 */
2676 return 1;
2677 }
2678 return 0;
2679}
2680
64769240
AT
2681static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2682 loff_t pos, unsigned len, unsigned flags,
2683 struct page **pagep, void **fsdata)
2684{
d2a17637 2685 int ret, retries = 0;
64769240
AT
2686 struct page *page;
2687 pgoff_t index;
2688 unsigned from, to;
2689 struct inode *inode = mapping->host;
2690 handle_t *handle;
2691
2692 index = pos >> PAGE_CACHE_SHIFT;
2693 from = pos & (PAGE_CACHE_SIZE - 1);
2694 to = from + len;
79f0be8d
AK
2695
2696 if (ext4_nonda_switch(inode->i_sb)) {
2697 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2698 return ext4_write_begin(file, mapping, pos,
2699 len, flags, pagep, fsdata);
2700 }
2701 *fsdata = (void *)0;
ba80b101
TT
2702
2703 trace_mark(ext4_da_write_begin,
2704 "dev %s ino %lu pos %llu len %u flags %u",
2705 inode->i_sb->s_id, inode->i_ino,
2706 (unsigned long long) pos, len, flags);
d2a17637 2707retry:
64769240
AT
2708 /*
2709 * With delayed allocation, we don't log the i_disksize update
2710 * if there is delayed block allocation. But we still need
2711 * to journalling the i_disksize update if writes to the end
2712 * of file which has an already mapped buffer.
2713 */
2714 handle = ext4_journal_start(inode, 1);
2715 if (IS_ERR(handle)) {
2716 ret = PTR_ERR(handle);
2717 goto out;
2718 }
ebd3610b
JK
2719 /* We cannot recurse into the filesystem as the transaction is already
2720 * started */
2721 flags |= AOP_FLAG_NOFS;
64769240 2722
54566b2c 2723 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
2724 if (!page) {
2725 ext4_journal_stop(handle);
2726 ret = -ENOMEM;
2727 goto out;
2728 }
64769240
AT
2729 *pagep = page;
2730
2731 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2732 ext4_da_get_block_prep);
2733 if (ret < 0) {
2734 unlock_page(page);
2735 ext4_journal_stop(handle);
2736 page_cache_release(page);
ae4d5372
AK
2737 /*
2738 * block_write_begin may have instantiated a few blocks
2739 * outside i_size. Trim these off again. Don't need
2740 * i_size_read because we hold i_mutex.
2741 */
2742 if (pos + len > inode->i_size)
2743 vmtruncate(inode, inode->i_size);
64769240
AT
2744 }
2745
d2a17637
MC
2746 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2747 goto retry;
64769240
AT
2748out:
2749 return ret;
2750}
2751
632eaeab
MC
2752/*
2753 * Check if we should update i_disksize
2754 * when write to the end of file but not require block allocation
2755 */
2756static int ext4_da_should_update_i_disksize(struct page *page,
2757 unsigned long offset)
2758{
2759 struct buffer_head *bh;
2760 struct inode *inode = page->mapping->host;
2761 unsigned int idx;
2762 int i;
2763
2764 bh = page_buffers(page);
2765 idx = offset >> inode->i_blkbits;
2766
af5bc92d 2767 for (i = 0; i < idx; i++)
632eaeab
MC
2768 bh = bh->b_this_page;
2769
2770 if (!buffer_mapped(bh) || (buffer_delay(bh)))
2771 return 0;
2772 return 1;
2773}
2774
64769240
AT
2775static int ext4_da_write_end(struct file *file,
2776 struct address_space *mapping,
2777 loff_t pos, unsigned len, unsigned copied,
2778 struct page *page, void *fsdata)
2779{
2780 struct inode *inode = mapping->host;
2781 int ret = 0, ret2;
2782 handle_t *handle = ext4_journal_current_handle();
2783 loff_t new_i_size;
632eaeab 2784 unsigned long start, end;
79f0be8d
AK
2785 int write_mode = (int)(unsigned long)fsdata;
2786
2787 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2788 if (ext4_should_order_data(inode)) {
2789 return ext4_ordered_write_end(file, mapping, pos,
2790 len, copied, page, fsdata);
2791 } else if (ext4_should_writeback_data(inode)) {
2792 return ext4_writeback_write_end(file, mapping, pos,
2793 len, copied, page, fsdata);
2794 } else {
2795 BUG();
2796 }
2797 }
632eaeab 2798
ba80b101
TT
2799 trace_mark(ext4_da_write_end,
2800 "dev %s ino %lu pos %llu len %u copied %u",
2801 inode->i_sb->s_id, inode->i_ino,
2802 (unsigned long long) pos, len, copied);
632eaeab 2803 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2804 end = start + copied - 1;
64769240
AT
2805
2806 /*
2807 * generic_write_end() will run mark_inode_dirty() if i_size
2808 * changes. So let's piggyback the i_disksize mark_inode_dirty
2809 * into that.
2810 */
2811
2812 new_i_size = pos + copied;
632eaeab
MC
2813 if (new_i_size > EXT4_I(inode)->i_disksize) {
2814 if (ext4_da_should_update_i_disksize(page, end)) {
2815 down_write(&EXT4_I(inode)->i_data_sem);
2816 if (new_i_size > EXT4_I(inode)->i_disksize) {
2817 /*
2818 * Updating i_disksize when extending file
2819 * without needing block allocation
2820 */
2821 if (ext4_should_order_data(inode))
2822 ret = ext4_jbd2_file_inode(handle,
2823 inode);
64769240 2824
632eaeab
MC
2825 EXT4_I(inode)->i_disksize = new_i_size;
2826 }
2827 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2828 /* We need to mark inode dirty even if
2829 * new_i_size is less that inode->i_size
2830 * bu greater than i_disksize.(hint delalloc)
2831 */
2832 ext4_mark_inode_dirty(handle, inode);
64769240 2833 }
632eaeab 2834 }
64769240
AT
2835 ret2 = generic_write_end(file, mapping, pos, len, copied,
2836 page, fsdata);
2837 copied = ret2;
2838 if (ret2 < 0)
2839 ret = ret2;
2840 ret2 = ext4_journal_stop(handle);
2841 if (!ret)
2842 ret = ret2;
2843
2844 return ret ? ret : copied;
2845}
2846
2847static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2848{
64769240
AT
2849 /*
2850 * Drop reserved blocks
2851 */
2852 BUG_ON(!PageLocked(page));
2853 if (!page_has_buffers(page))
2854 goto out;
2855
d2a17637 2856 ext4_da_page_release_reservation(page, offset);
64769240
AT
2857
2858out:
2859 ext4_invalidatepage(page, offset);
2860
2861 return;
2862}
2863
2864
ac27a0ec
DK
2865/*
2866 * bmap() is special. It gets used by applications such as lilo and by
2867 * the swapper to find the on-disk block of a specific piece of data.
2868 *
2869 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2870 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2871 * filesystem and enables swap, then they may get a nasty shock when the
2872 * data getting swapped to that swapfile suddenly gets overwritten by
2873 * the original zero's written out previously to the journal and
2874 * awaiting writeback in the kernel's buffer cache.
2875 *
2876 * So, if we see any bmap calls here on a modified, data-journaled file,
2877 * take extra steps to flush any blocks which might be in the cache.
2878 */
617ba13b 2879static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2880{
2881 struct inode *inode = mapping->host;
2882 journal_t *journal;
2883 int err;
2884
64769240
AT
2885 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2886 test_opt(inode->i_sb, DELALLOC)) {
2887 /*
2888 * With delalloc we want to sync the file
2889 * so that we can make sure we allocate
2890 * blocks for file
2891 */
2892 filemap_write_and_wait(mapping);
2893 }
2894
0390131b 2895 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
ac27a0ec
DK
2896 /*
2897 * This is a REALLY heavyweight approach, but the use of
2898 * bmap on dirty files is expected to be extremely rare:
2899 * only if we run lilo or swapon on a freshly made file
2900 * do we expect this to happen.
2901 *
2902 * (bmap requires CAP_SYS_RAWIO so this does not
2903 * represent an unprivileged user DOS attack --- we'd be
2904 * in trouble if mortal users could trigger this path at
2905 * will.)
2906 *
617ba13b 2907 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2908 * regular files. If somebody wants to bmap a directory
2909 * or symlink and gets confused because the buffer
2910 * hasn't yet been flushed to disk, they deserve
2911 * everything they get.
2912 */
2913
617ba13b
MC
2914 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2915 journal = EXT4_JOURNAL(inode);
dab291af
MC
2916 jbd2_journal_lock_updates(journal);
2917 err = jbd2_journal_flush(journal);
2918 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2919
2920 if (err)
2921 return 0;
2922 }
2923
af5bc92d 2924 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2925}
2926
2927static int bget_one(handle_t *handle, struct buffer_head *bh)
2928{
2929 get_bh(bh);
2930 return 0;
2931}
2932
2933static int bput_one(handle_t *handle, struct buffer_head *bh)
2934{
2935 put_bh(bh);
2936 return 0;
2937}
2938
ac27a0ec 2939/*
678aaf48
JK
2940 * Note that we don't need to start a transaction unless we're journaling data
2941 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2942 * need to file the inode to the transaction's list in ordered mode because if
2943 * we are writing back data added by write(), the inode is already there and if
2944 * we are writing back data modified via mmap(), noone guarantees in which
2945 * transaction the data will hit the disk. In case we are journaling data, we
2946 * cannot start transaction directly because transaction start ranks above page
2947 * lock so we have to do some magic.
ac27a0ec 2948 *
678aaf48 2949 * In all journaling modes block_write_full_page() will start the I/O.
ac27a0ec
DK
2950 *
2951 * Problem:
2952 *
617ba13b
MC
2953 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2954 * ext4_writepage()
ac27a0ec
DK
2955 *
2956 * Similar for:
2957 *
617ba13b 2958 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
ac27a0ec 2959 *
617ba13b 2960 * Same applies to ext4_get_block(). We will deadlock on various things like
0e855ac8 2961 * lock_journal and i_data_sem
ac27a0ec
DK
2962 *
2963 * Setting PF_MEMALLOC here doesn't work - too many internal memory
2964 * allocations fail.
2965 *
2966 * 16May01: If we're reentered then journal_current_handle() will be
2967 * non-zero. We simply *return*.
2968 *
2969 * 1 July 2001: @@@ FIXME:
2970 * In journalled data mode, a data buffer may be metadata against the
2971 * current transaction. But the same file is part of a shared mapping
2972 * and someone does a writepage() on it.
2973 *
2974 * We will move the buffer onto the async_data list, but *after* it has
2975 * been dirtied. So there's a small window where we have dirty data on
2976 * BJ_Metadata.
2977 *
2978 * Note that this only applies to the last partial page in the file. The
2979 * bit which block_write_full_page() uses prepare/commit for. (That's
2980 * broken code anyway: it's wrong for msync()).
2981 *
2982 * It's a rare case: affects the final partial page, for journalled data
2983 * where the file is subject to bith write() and writepage() in the same
2984 * transction. To fix it we'll need a custom block_write_full_page().
2985 * We'll probably need that anyway for journalling writepage() output.
2986 *
2987 * We don't honour synchronous mounts for writepage(). That would be
2988 * disastrous. Any write() or metadata operation will sync the fs for
2989 * us.
2990 *
ac27a0ec 2991 */
678aaf48 2992static int __ext4_normal_writepage(struct page *page,
cf108bca
JK
2993 struct writeback_control *wbc)
2994{
2995 struct inode *inode = page->mapping->host;
2996
2997 if (test_opt(inode->i_sb, NOBH))
f0e6c985
AK
2998 return nobh_writepage(page,
2999 ext4_normal_get_block_write, wbc);
cf108bca 3000 else
f0e6c985
AK
3001 return block_write_full_page(page,
3002 ext4_normal_get_block_write,
3003 wbc);
cf108bca
JK
3004}
3005
678aaf48 3006static int ext4_normal_writepage(struct page *page,
ac27a0ec
DK
3007 struct writeback_control *wbc)
3008{
3009 struct inode *inode = page->mapping->host;
cf108bca
JK
3010 loff_t size = i_size_read(inode);
3011 loff_t len;
3012
ba80b101
TT
3013 trace_mark(ext4_normal_writepage,
3014 "dev %s ino %lu page_index %lu",
3015 inode->i_sb->s_id, inode->i_ino, page->index);
cf108bca 3016 J_ASSERT(PageLocked(page));
cf108bca
JK
3017 if (page->index == size >> PAGE_CACHE_SHIFT)
3018 len = size & ~PAGE_CACHE_MASK;
3019 else
3020 len = PAGE_CACHE_SIZE;
f0e6c985
AK
3021
3022 if (page_has_buffers(page)) {
3023 /* if page has buffers it should all be mapped
3024 * and allocated. If there are not buffers attached
3025 * to the page we know the page is dirty but it lost
3026 * buffers. That means that at some moment in time
3027 * after write_begin() / write_end() has been called
3028 * all buffers have been clean and thus they must have been
3029 * written at least once. So they are all mapped and we can
3030 * happily proceed with mapping them and writing the page.
3031 */
3032 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3033 ext4_bh_unmapped_or_delay));
3034 }
cf108bca
JK
3035
3036 if (!ext4_journal_current_handle())
678aaf48 3037 return __ext4_normal_writepage(page, wbc);
cf108bca
JK
3038
3039 redirty_page_for_writepage(wbc, page);
3040 unlock_page(page);
3041 return 0;
3042}
3043
3044static int __ext4_journalled_writepage(struct page *page,
3045 struct writeback_control *wbc)
3046{
3047 struct address_space *mapping = page->mapping;
3048 struct inode *inode = mapping->host;
3049 struct buffer_head *page_bufs;
ac27a0ec
DK
3050 handle_t *handle = NULL;
3051 int ret = 0;
3052 int err;
3053
f0e6c985
AK
3054 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
3055 ext4_normal_get_block_write);
cf108bca
JK
3056 if (ret != 0)
3057 goto out_unlock;
3058
3059 page_bufs = page_buffers(page);
3060 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3061 bget_one);
3062 /* As soon as we unlock the page, it can go away, but we have
3063 * references to buffers so we are safe */
3064 unlock_page(page);
ac27a0ec 3065
617ba13b 3066 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
ac27a0ec
DK
3067 if (IS_ERR(handle)) {
3068 ret = PTR_ERR(handle);
cf108bca 3069 goto out;
ac27a0ec
DK
3070 }
3071
cf108bca
JK
3072 ret = walk_page_buffers(handle, page_bufs, 0,
3073 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
ac27a0ec 3074
cf108bca
JK
3075 err = walk_page_buffers(handle, page_bufs, 0,
3076 PAGE_CACHE_SIZE, NULL, write_end_fn);
3077 if (ret == 0)
3078 ret = err;
617ba13b 3079 err = ext4_journal_stop(handle);
ac27a0ec
DK
3080 if (!ret)
3081 ret = err;
ac27a0ec 3082
cf108bca
JK
3083 walk_page_buffers(handle, page_bufs, 0,
3084 PAGE_CACHE_SIZE, NULL, bput_one);
3085 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3086 goto out;
3087
3088out_unlock:
ac27a0ec 3089 unlock_page(page);
cf108bca 3090out:
ac27a0ec
DK
3091 return ret;
3092}
3093
617ba13b 3094static int ext4_journalled_writepage(struct page *page,
ac27a0ec
DK
3095 struct writeback_control *wbc)
3096{
3097 struct inode *inode = page->mapping->host;
cf108bca
JK
3098 loff_t size = i_size_read(inode);
3099 loff_t len;
ac27a0ec 3100
ba80b101
TT
3101 trace_mark(ext4_journalled_writepage,
3102 "dev %s ino %lu page_index %lu",
3103 inode->i_sb->s_id, inode->i_ino, page->index);
cf108bca 3104 J_ASSERT(PageLocked(page));
cf108bca
JK
3105 if (page->index == size >> PAGE_CACHE_SHIFT)
3106 len = size & ~PAGE_CACHE_MASK;
3107 else
3108 len = PAGE_CACHE_SIZE;
f0e6c985
AK
3109
3110 if (page_has_buffers(page)) {
3111 /* if page has buffers it should all be mapped
3112 * and allocated. If there are not buffers attached
3113 * to the page we know the page is dirty but it lost
3114 * buffers. That means that at some moment in time
3115 * after write_begin() / write_end() has been called
3116 * all buffers have been clean and thus they must have been
3117 * written at least once. So they are all mapped and we can
3118 * happily proceed with mapping them and writing the page.
3119 */
3120 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3121 ext4_bh_unmapped_or_delay));
3122 }
ac27a0ec 3123
cf108bca 3124 if (ext4_journal_current_handle())
ac27a0ec 3125 goto no_write;
ac27a0ec 3126
cf108bca 3127 if (PageChecked(page)) {
ac27a0ec
DK
3128 /*
3129 * It's mmapped pagecache. Add buffers and journal it. There
3130 * doesn't seem much point in redirtying the page here.
3131 */
3132 ClearPageChecked(page);
cf108bca 3133 return __ext4_journalled_writepage(page, wbc);
ac27a0ec
DK
3134 } else {
3135 /*
3136 * It may be a page full of checkpoint-mode buffers. We don't
3137 * really know unless we go poke around in the buffer_heads.
3138 * But block_write_full_page will do the right thing.
3139 */
f0e6c985
AK
3140 return block_write_full_page(page,
3141 ext4_normal_get_block_write,
3142 wbc);
ac27a0ec 3143 }
ac27a0ec
DK
3144no_write:
3145 redirty_page_for_writepage(wbc, page);
ac27a0ec 3146 unlock_page(page);
cf108bca 3147 return 0;
ac27a0ec
DK
3148}
3149
617ba13b 3150static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3151{
617ba13b 3152 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
3153}
3154
3155static int
617ba13b 3156ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3157 struct list_head *pages, unsigned nr_pages)
3158{
617ba13b 3159 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3160}
3161
617ba13b 3162static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3163{
617ba13b 3164 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3165
3166 /*
3167 * If it's a full truncate we just forget about the pending dirtying
3168 */
3169 if (offset == 0)
3170 ClearPageChecked(page);
3171
0390131b
FM
3172 if (journal)
3173 jbd2_journal_invalidatepage(journal, page, offset);
3174 else
3175 block_invalidatepage(page, offset);
ac27a0ec
DK
3176}
3177
617ba13b 3178static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3179{
617ba13b 3180 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3181
3182 WARN_ON(PageChecked(page));
3183 if (!page_has_buffers(page))
3184 return 0;
0390131b
FM
3185 if (journal)
3186 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3187 else
3188 return try_to_free_buffers(page);
ac27a0ec
DK
3189}
3190
3191/*
3192 * If the O_DIRECT write will extend the file then add this inode to the
3193 * orphan list. So recovery will truncate it back to the original size
3194 * if the machine crashes during the write.
3195 *
3196 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3197 * crashes then stale disk data _may_ be exposed inside the file. But current
3198 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3199 */
617ba13b 3200static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
ac27a0ec
DK
3201 const struct iovec *iov, loff_t offset,
3202 unsigned long nr_segs)
3203{
3204 struct file *file = iocb->ki_filp;
3205 struct inode *inode = file->f_mapping->host;
617ba13b 3206 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3207 handle_t *handle;
ac27a0ec
DK
3208 ssize_t ret;
3209 int orphan = 0;
3210 size_t count = iov_length(iov, nr_segs);
3211
3212 if (rw == WRITE) {
3213 loff_t final_size = offset + count;
3214
ac27a0ec 3215 if (final_size > inode->i_size) {
7fb5409d
JK
3216 /* Credits for sb + inode write */
3217 handle = ext4_journal_start(inode, 2);
3218 if (IS_ERR(handle)) {
3219 ret = PTR_ERR(handle);
3220 goto out;
3221 }
617ba13b 3222 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3223 if (ret) {
3224 ext4_journal_stop(handle);
3225 goto out;
3226 }
ac27a0ec
DK
3227 orphan = 1;
3228 ei->i_disksize = inode->i_size;
7fb5409d 3229 ext4_journal_stop(handle);
ac27a0ec
DK
3230 }
3231 }
3232
3233 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3234 offset, nr_segs,
617ba13b 3235 ext4_get_block, NULL);
ac27a0ec 3236
7fb5409d 3237 if (orphan) {
ac27a0ec
DK
3238 int err;
3239
7fb5409d
JK
3240 /* Credits for sb + inode write */
3241 handle = ext4_journal_start(inode, 2);
3242 if (IS_ERR(handle)) {
3243 /* This is really bad luck. We've written the data
3244 * but cannot extend i_size. Bail out and pretend
3245 * the write failed... */
3246 ret = PTR_ERR(handle);
3247 goto out;
3248 }
3249 if (inode->i_nlink)
617ba13b 3250 ext4_orphan_del(handle, inode);
7fb5409d 3251 if (ret > 0) {
ac27a0ec
DK
3252 loff_t end = offset + ret;
3253 if (end > inode->i_size) {
3254 ei->i_disksize = end;
3255 i_size_write(inode, end);
3256 /*
3257 * We're going to return a positive `ret'
3258 * here due to non-zero-length I/O, so there's
3259 * no way of reporting error returns from
617ba13b 3260 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3261 * ignore it.
3262 */
617ba13b 3263 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3264 }
3265 }
617ba13b 3266 err = ext4_journal_stop(handle);
ac27a0ec
DK
3267 if (ret == 0)
3268 ret = err;
3269 }
3270out:
3271 return ret;
3272}
3273
3274/*
617ba13b 3275 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3276 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3277 * much here because ->set_page_dirty is called under VFS locks. The page is
3278 * not necessarily locked.
3279 *
3280 * We cannot just dirty the page and leave attached buffers clean, because the
3281 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3282 * or jbddirty because all the journalling code will explode.
3283 *
3284 * So what we do is to mark the page "pending dirty" and next time writepage
3285 * is called, propagate that into the buffers appropriately.
3286 */
617ba13b 3287static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3288{
3289 SetPageChecked(page);
3290 return __set_page_dirty_nobuffers(page);
3291}
3292
617ba13b 3293static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3294 .readpage = ext4_readpage,
3295 .readpages = ext4_readpages,
3296 .writepage = ext4_normal_writepage,
3297 .sync_page = block_sync_page,
3298 .write_begin = ext4_write_begin,
3299 .write_end = ext4_ordered_write_end,
3300 .bmap = ext4_bmap,
3301 .invalidatepage = ext4_invalidatepage,
3302 .releasepage = ext4_releasepage,
3303 .direct_IO = ext4_direct_IO,
3304 .migratepage = buffer_migrate_page,
3305 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3306};
3307
617ba13b 3308static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3309 .readpage = ext4_readpage,
3310 .readpages = ext4_readpages,
3311 .writepage = ext4_normal_writepage,
3312 .sync_page = block_sync_page,
3313 .write_begin = ext4_write_begin,
3314 .write_end = ext4_writeback_write_end,
3315 .bmap = ext4_bmap,
3316 .invalidatepage = ext4_invalidatepage,
3317 .releasepage = ext4_releasepage,
3318 .direct_IO = ext4_direct_IO,
3319 .migratepage = buffer_migrate_page,
3320 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3321};
3322
617ba13b 3323static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3324 .readpage = ext4_readpage,
3325 .readpages = ext4_readpages,
3326 .writepage = ext4_journalled_writepage,
3327 .sync_page = block_sync_page,
3328 .write_begin = ext4_write_begin,
3329 .write_end = ext4_journalled_write_end,
3330 .set_page_dirty = ext4_journalled_set_page_dirty,
3331 .bmap = ext4_bmap,
3332 .invalidatepage = ext4_invalidatepage,
3333 .releasepage = ext4_releasepage,
3334 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3335};
3336
64769240 3337static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3338 .readpage = ext4_readpage,
3339 .readpages = ext4_readpages,
3340 .writepage = ext4_da_writepage,
3341 .writepages = ext4_da_writepages,
3342 .sync_page = block_sync_page,
3343 .write_begin = ext4_da_write_begin,
3344 .write_end = ext4_da_write_end,
3345 .bmap = ext4_bmap,
3346 .invalidatepage = ext4_da_invalidatepage,
3347 .releasepage = ext4_releasepage,
3348 .direct_IO = ext4_direct_IO,
3349 .migratepage = buffer_migrate_page,
3350 .is_partially_uptodate = block_is_partially_uptodate,
64769240
AT
3351};
3352
617ba13b 3353void ext4_set_aops(struct inode *inode)
ac27a0ec 3354{
cd1aac32
AK
3355 if (ext4_should_order_data(inode) &&
3356 test_opt(inode->i_sb, DELALLOC))
3357 inode->i_mapping->a_ops = &ext4_da_aops;
3358 else if (ext4_should_order_data(inode))
617ba13b 3359 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
3360 else if (ext4_should_writeback_data(inode) &&
3361 test_opt(inode->i_sb, DELALLOC))
3362 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
3363 else if (ext4_should_writeback_data(inode))
3364 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 3365 else
617ba13b 3366 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
3367}
3368
3369/*
617ba13b 3370 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
3371 * up to the end of the block which corresponds to `from'.
3372 * This required during truncate. We need to physically zero the tail end
3373 * of that block so it doesn't yield old data if the file is later grown.
3374 */
cf108bca 3375int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
3376 struct address_space *mapping, loff_t from)
3377{
617ba13b 3378 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 3379 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
3380 unsigned blocksize, length, pos;
3381 ext4_lblk_t iblock;
ac27a0ec
DK
3382 struct inode *inode = mapping->host;
3383 struct buffer_head *bh;
cf108bca 3384 struct page *page;
ac27a0ec 3385 int err = 0;
ac27a0ec 3386
cf108bca
JK
3387 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3388 if (!page)
3389 return -EINVAL;
3390
ac27a0ec
DK
3391 blocksize = inode->i_sb->s_blocksize;
3392 length = blocksize - (offset & (blocksize - 1));
3393 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3394
3395 /*
3396 * For "nobh" option, we can only work if we don't need to
3397 * read-in the page - otherwise we create buffers to do the IO.
3398 */
3399 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 3400 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 3401 zero_user(page, offset, length);
ac27a0ec
DK
3402 set_page_dirty(page);
3403 goto unlock;
3404 }
3405
3406 if (!page_has_buffers(page))
3407 create_empty_buffers(page, blocksize, 0);
3408
3409 /* Find the buffer that contains "offset" */
3410 bh = page_buffers(page);
3411 pos = blocksize;
3412 while (offset >= pos) {
3413 bh = bh->b_this_page;
3414 iblock++;
3415 pos += blocksize;
3416 }
3417
3418 err = 0;
3419 if (buffer_freed(bh)) {
3420 BUFFER_TRACE(bh, "freed: skip");
3421 goto unlock;
3422 }
3423
3424 if (!buffer_mapped(bh)) {
3425 BUFFER_TRACE(bh, "unmapped");
617ba13b 3426 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
3427 /* unmapped? It's a hole - nothing to do */
3428 if (!buffer_mapped(bh)) {
3429 BUFFER_TRACE(bh, "still unmapped");
3430 goto unlock;
3431 }
3432 }
3433
3434 /* Ok, it's mapped. Make sure it's up-to-date */
3435 if (PageUptodate(page))
3436 set_buffer_uptodate(bh);
3437
3438 if (!buffer_uptodate(bh)) {
3439 err = -EIO;
3440 ll_rw_block(READ, 1, &bh);
3441 wait_on_buffer(bh);
3442 /* Uhhuh. Read error. Complain and punt. */
3443 if (!buffer_uptodate(bh))
3444 goto unlock;
3445 }
3446
617ba13b 3447 if (ext4_should_journal_data(inode)) {
ac27a0ec 3448 BUFFER_TRACE(bh, "get write access");
617ba13b 3449 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3450 if (err)
3451 goto unlock;
3452 }
3453
eebd2aa3 3454 zero_user(page, offset, length);
ac27a0ec
DK
3455
3456 BUFFER_TRACE(bh, "zeroed end of block");
3457
3458 err = 0;
617ba13b 3459 if (ext4_should_journal_data(inode)) {
0390131b 3460 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3461 } else {
617ba13b 3462 if (ext4_should_order_data(inode))
678aaf48 3463 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
3464 mark_buffer_dirty(bh);
3465 }
3466
3467unlock:
3468 unlock_page(page);
3469 page_cache_release(page);
3470 return err;
3471}
3472
3473/*
3474 * Probably it should be a library function... search for first non-zero word
3475 * or memcmp with zero_page, whatever is better for particular architecture.
3476 * Linus?
3477 */
3478static inline int all_zeroes(__le32 *p, __le32 *q)
3479{
3480 while (p < q)
3481 if (*p++)
3482 return 0;
3483 return 1;
3484}
3485
3486/**
617ba13b 3487 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
3488 * @inode: inode in question
3489 * @depth: depth of the affected branch
617ba13b 3490 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
3491 * @chain: place to store the pointers to partial indirect blocks
3492 * @top: place to the (detached) top of branch
3493 *
617ba13b 3494 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
3495 *
3496 * When we do truncate() we may have to clean the ends of several
3497 * indirect blocks but leave the blocks themselves alive. Block is
3498 * partially truncated if some data below the new i_size is refered
3499 * from it (and it is on the path to the first completely truncated
3500 * data block, indeed). We have to free the top of that path along
3501 * with everything to the right of the path. Since no allocation
617ba13b 3502 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
3503 * finishes, we may safely do the latter, but top of branch may
3504 * require special attention - pageout below the truncation point
3505 * might try to populate it.
3506 *
3507 * We atomically detach the top of branch from the tree, store the
3508 * block number of its root in *@top, pointers to buffer_heads of
3509 * partially truncated blocks - in @chain[].bh and pointers to
3510 * their last elements that should not be removed - in
3511 * @chain[].p. Return value is the pointer to last filled element
3512 * of @chain.
3513 *
3514 * The work left to caller to do the actual freeing of subtrees:
3515 * a) free the subtree starting from *@top
3516 * b) free the subtrees whose roots are stored in
3517 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3518 * c) free the subtrees growing from the inode past the @chain[0].
3519 * (no partially truncated stuff there). */
3520
617ba13b 3521static Indirect *ext4_find_shared(struct inode *inode, int depth,
725d26d3 3522 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
ac27a0ec
DK
3523{
3524 Indirect *partial, *p;
3525 int k, err;
3526
3527 *top = 0;
3528 /* Make k index the deepest non-null offest + 1 */
3529 for (k = depth; k > 1 && !offsets[k-1]; k--)
3530 ;
617ba13b 3531 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
3532 /* Writer: pointers */
3533 if (!partial)
3534 partial = chain + k-1;
3535 /*
3536 * If the branch acquired continuation since we've looked at it -
3537 * fine, it should all survive and (new) top doesn't belong to us.
3538 */
3539 if (!partial->key && *partial->p)
3540 /* Writer: end */
3541 goto no_top;
af5bc92d 3542 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
3543 ;
3544 /*
3545 * OK, we've found the last block that must survive. The rest of our
3546 * branch should be detached before unlocking. However, if that rest
3547 * of branch is all ours and does not grow immediately from the inode
3548 * it's easier to cheat and just decrement partial->p.
3549 */
3550 if (p == chain + k - 1 && p > chain) {
3551 p->p--;
3552 } else {
3553 *top = *p->p;
617ba13b 3554 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
3555#if 0
3556 *p->p = 0;
3557#endif
3558 }
3559 /* Writer: end */
3560
af5bc92d 3561 while (partial > p) {
ac27a0ec
DK
3562 brelse(partial->bh);
3563 partial--;
3564 }
3565no_top:
3566 return partial;
3567}
3568
3569/*
3570 * Zero a number of block pointers in either an inode or an indirect block.
3571 * If we restart the transaction we must again get write access to the
3572 * indirect block for further modification.
3573 *
3574 * We release `count' blocks on disk, but (last - first) may be greater
3575 * than `count' because there can be holes in there.
3576 */
617ba13b
MC
3577static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3578 struct buffer_head *bh, ext4_fsblk_t block_to_free,
ac27a0ec
DK
3579 unsigned long count, __le32 *first, __le32 *last)
3580{
3581 __le32 *p;
3582 if (try_to_extend_transaction(handle, inode)) {
3583 if (bh) {
0390131b
FM
3584 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3585 ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3586 }
617ba13b
MC
3587 ext4_mark_inode_dirty(handle, inode);
3588 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3589 if (bh) {
3590 BUFFER_TRACE(bh, "retaking write access");
617ba13b 3591 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3592 }
3593 }
3594
3595 /*
3596 * Any buffers which are on the journal will be in memory. We find
dab291af 3597 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
ac27a0ec 3598 * on them. We've already detached each block from the file, so
dab291af 3599 * bforget() in jbd2_journal_forget() should be safe.
ac27a0ec 3600 *
dab291af 3601 * AKPM: turn on bforget in jbd2_journal_forget()!!!
ac27a0ec
DK
3602 */
3603 for (p = first; p < last; p++) {
3604 u32 nr = le32_to_cpu(*p);
3605 if (nr) {
1d03ec98 3606 struct buffer_head *tbh;
ac27a0ec
DK
3607
3608 *p = 0;
1d03ec98
AK
3609 tbh = sb_find_get_block(inode->i_sb, nr);
3610 ext4_forget(handle, 0, inode, tbh, nr);
ac27a0ec
DK
3611 }
3612 }
3613
c9de560d 3614 ext4_free_blocks(handle, inode, block_to_free, count, 0);
ac27a0ec
DK
3615}
3616
3617/**
617ba13b 3618 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
3619 * @handle: handle for this transaction
3620 * @inode: inode we are dealing with
3621 * @this_bh: indirect buffer_head which contains *@first and *@last
3622 * @first: array of block numbers
3623 * @last: points immediately past the end of array
3624 *
3625 * We are freeing all blocks refered from that array (numbers are stored as
3626 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3627 *
3628 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3629 * blocks are contiguous then releasing them at one time will only affect one
3630 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3631 * actually use a lot of journal space.
3632 *
3633 * @this_bh will be %NULL if @first and @last point into the inode's direct
3634 * block pointers.
3635 */
617ba13b 3636static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3637 struct buffer_head *this_bh,
3638 __le32 *first, __le32 *last)
3639{
617ba13b 3640 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
3641 unsigned long count = 0; /* Number of blocks in the run */
3642 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3643 corresponding to
3644 block_to_free */
617ba13b 3645 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
3646 __le32 *p; /* Pointer into inode/ind
3647 for current block */
3648 int err;
3649
3650 if (this_bh) { /* For indirect block */
3651 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 3652 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
3653 /* Important: if we can't update the indirect pointers
3654 * to the blocks, we can't free them. */
3655 if (err)
3656 return;
3657 }
3658
3659 for (p = first; p < last; p++) {
3660 nr = le32_to_cpu(*p);
3661 if (nr) {
3662 /* accumulate blocks to free if they're contiguous */
3663 if (count == 0) {
3664 block_to_free = nr;
3665 block_to_free_p = p;
3666 count = 1;
3667 } else if (nr == block_to_free + count) {
3668 count++;
3669 } else {
617ba13b 3670 ext4_clear_blocks(handle, inode, this_bh,
ac27a0ec
DK
3671 block_to_free,
3672 count, block_to_free_p, p);
3673 block_to_free = nr;
3674 block_to_free_p = p;
3675 count = 1;
3676 }
3677 }
3678 }
3679
3680 if (count > 0)
617ba13b 3681 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
3682 count, block_to_free_p, p);
3683
3684 if (this_bh) {
0390131b 3685 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
71dc8fbc
DG
3686
3687 /*
3688 * The buffer head should have an attached journal head at this
3689 * point. However, if the data is corrupted and an indirect
3690 * block pointed to itself, it would have been detached when
3691 * the block was cleared. Check for this instead of OOPSing.
3692 */
e7f07968 3693 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
0390131b 3694 ext4_handle_dirty_metadata(handle, inode, this_bh);
71dc8fbc
DG
3695 else
3696 ext4_error(inode->i_sb, __func__,
3697 "circular indirect block detected, "
3698 "inode=%lu, block=%llu",
3699 inode->i_ino,
3700 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
3701 }
3702}
3703
3704/**
617ba13b 3705 * ext4_free_branches - free an array of branches
ac27a0ec
DK
3706 * @handle: JBD handle for this transaction
3707 * @inode: inode we are dealing with
3708 * @parent_bh: the buffer_head which contains *@first and *@last
3709 * @first: array of block numbers
3710 * @last: pointer immediately past the end of array
3711 * @depth: depth of the branches to free
3712 *
3713 * We are freeing all blocks refered from these branches (numbers are
3714 * stored as little-endian 32-bit) and updating @inode->i_blocks
3715 * appropriately.
3716 */
617ba13b 3717static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3718 struct buffer_head *parent_bh,
3719 __le32 *first, __le32 *last, int depth)
3720{
617ba13b 3721 ext4_fsblk_t nr;
ac27a0ec
DK
3722 __le32 *p;
3723
0390131b 3724 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
3725 return;
3726
3727 if (depth--) {
3728 struct buffer_head *bh;
617ba13b 3729 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
3730 p = last;
3731 while (--p >= first) {
3732 nr = le32_to_cpu(*p);
3733 if (!nr)
3734 continue; /* A hole */
3735
3736 /* Go read the buffer for the next level down */
3737 bh = sb_bread(inode->i_sb, nr);
3738
3739 /*
3740 * A read failure? Report error and clear slot
3741 * (should be rare).
3742 */
3743 if (!bh) {
617ba13b 3744 ext4_error(inode->i_sb, "ext4_free_branches",
2ae02107 3745 "Read failure, inode=%lu, block=%llu",
ac27a0ec
DK
3746 inode->i_ino, nr);
3747 continue;
3748 }
3749
3750 /* This zaps the entire block. Bottom up. */
3751 BUFFER_TRACE(bh, "free child branches");
617ba13b 3752 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
3753 (__le32 *) bh->b_data,
3754 (__le32 *) bh->b_data + addr_per_block,
3755 depth);
ac27a0ec
DK
3756
3757 /*
3758 * We've probably journalled the indirect block several
3759 * times during the truncate. But it's no longer
3760 * needed and we now drop it from the transaction via
dab291af 3761 * jbd2_journal_revoke().
ac27a0ec
DK
3762 *
3763 * That's easy if it's exclusively part of this
3764 * transaction. But if it's part of the committing
dab291af 3765 * transaction then jbd2_journal_forget() will simply
ac27a0ec 3766 * brelse() it. That means that if the underlying
617ba13b 3767 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
3768 * unmap_underlying_metadata() will find this block
3769 * and will try to get rid of it. damn, damn.
3770 *
3771 * If this block has already been committed to the
3772 * journal, a revoke record will be written. And
3773 * revoke records must be emitted *before* clearing
3774 * this block's bit in the bitmaps.
3775 */
617ba13b 3776 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
3777
3778 /*
3779 * Everything below this this pointer has been
3780 * released. Now let this top-of-subtree go.
3781 *
3782 * We want the freeing of this indirect block to be
3783 * atomic in the journal with the updating of the
3784 * bitmap block which owns it. So make some room in
3785 * the journal.
3786 *
3787 * We zero the parent pointer *after* freeing its
3788 * pointee in the bitmaps, so if extend_transaction()
3789 * for some reason fails to put the bitmap changes and
3790 * the release into the same transaction, recovery
3791 * will merely complain about releasing a free block,
3792 * rather than leaking blocks.
3793 */
0390131b 3794 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
3795 return;
3796 if (try_to_extend_transaction(handle, inode)) {
617ba13b
MC
3797 ext4_mark_inode_dirty(handle, inode);
3798 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3799 }
3800
c9de560d 3801 ext4_free_blocks(handle, inode, nr, 1, 1);
ac27a0ec
DK
3802
3803 if (parent_bh) {
3804 /*
3805 * The block which we have just freed is
3806 * pointed to by an indirect block: journal it
3807 */
3808 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 3809 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
3810 parent_bh)){
3811 *p = 0;
3812 BUFFER_TRACE(parent_bh,
0390131b
FM
3813 "call ext4_handle_dirty_metadata");
3814 ext4_handle_dirty_metadata(handle,
3815 inode,
3816 parent_bh);
ac27a0ec
DK
3817 }
3818 }
3819 }
3820 } else {
3821 /* We have reached the bottom of the tree. */
3822 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 3823 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
3824 }
3825}
3826
91ef4caf
DG
3827int ext4_can_truncate(struct inode *inode)
3828{
3829 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3830 return 0;
3831 if (S_ISREG(inode->i_mode))
3832 return 1;
3833 if (S_ISDIR(inode->i_mode))
3834 return 1;
3835 if (S_ISLNK(inode->i_mode))
3836 return !ext4_inode_is_fast_symlink(inode);
3837 return 0;
3838}
3839
ac27a0ec 3840/*
617ba13b 3841 * ext4_truncate()
ac27a0ec 3842 *
617ba13b
MC
3843 * We block out ext4_get_block() block instantiations across the entire
3844 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3845 * simultaneously on behalf of the same inode.
3846 *
3847 * As we work through the truncate and commmit bits of it to the journal there
3848 * is one core, guiding principle: the file's tree must always be consistent on
3849 * disk. We must be able to restart the truncate after a crash.
3850 *
3851 * The file's tree may be transiently inconsistent in memory (although it
3852 * probably isn't), but whenever we close off and commit a journal transaction,
3853 * the contents of (the filesystem + the journal) must be consistent and
3854 * restartable. It's pretty simple, really: bottom up, right to left (although
3855 * left-to-right works OK too).
3856 *
3857 * Note that at recovery time, journal replay occurs *before* the restart of
3858 * truncate against the orphan inode list.
3859 *
3860 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3861 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3862 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3863 * ext4_truncate() to have another go. So there will be instantiated blocks
3864 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3865 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3866 * ext4_truncate() run will find them and release them.
ac27a0ec 3867 */
617ba13b 3868void ext4_truncate(struct inode *inode)
ac27a0ec
DK
3869{
3870 handle_t *handle;
617ba13b 3871 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 3872 __le32 *i_data = ei->i_data;
617ba13b 3873 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 3874 struct address_space *mapping = inode->i_mapping;
725d26d3 3875 ext4_lblk_t offsets[4];
ac27a0ec
DK
3876 Indirect chain[4];
3877 Indirect *partial;
3878 __le32 nr = 0;
3879 int n;
725d26d3 3880 ext4_lblk_t last_block;
ac27a0ec 3881 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 3882
91ef4caf 3883 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3884 return;
3885
1d03ec98 3886 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
cf108bca 3887 ext4_ext_truncate(inode);
1d03ec98
AK
3888 return;
3889 }
a86c6181 3890
ac27a0ec 3891 handle = start_transaction(inode);
cf108bca 3892 if (IS_ERR(handle))
ac27a0ec 3893 return; /* AKPM: return what? */
ac27a0ec
DK
3894
3895 last_block = (inode->i_size + blocksize-1)
617ba13b 3896 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 3897
cf108bca
JK
3898 if (inode->i_size & (blocksize - 1))
3899 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3900 goto out_stop;
ac27a0ec 3901
617ba13b 3902 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
3903 if (n == 0)
3904 goto out_stop; /* error */
3905
3906 /*
3907 * OK. This truncate is going to happen. We add the inode to the
3908 * orphan list, so that if this truncate spans multiple transactions,
3909 * and we crash, we will resume the truncate when the filesystem
3910 * recovers. It also marks the inode dirty, to catch the new size.
3911 *
3912 * Implication: the file must always be in a sane, consistent
3913 * truncatable state while each transaction commits.
3914 */
617ba13b 3915 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
3916 goto out_stop;
3917
632eaeab
MC
3918 /*
3919 * From here we block out all ext4_get_block() callers who want to
3920 * modify the block allocation tree.
3921 */
3922 down_write(&ei->i_data_sem);
b4df2030 3923
c2ea3fde 3924 ext4_discard_preallocations(inode);
b4df2030 3925
ac27a0ec
DK
3926 /*
3927 * The orphan list entry will now protect us from any crash which
3928 * occurs before the truncate completes, so it is now safe to propagate
3929 * the new, shorter inode size (held for now in i_size) into the
3930 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 3931 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
3932 */
3933 ei->i_disksize = inode->i_size;
3934
ac27a0ec 3935 if (n == 1) { /* direct blocks */
617ba13b
MC
3936 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3937 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
3938 goto do_indirects;
3939 }
3940
617ba13b 3941 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
3942 /* Kill the top of shared branch (not detached) */
3943 if (nr) {
3944 if (partial == chain) {
3945 /* Shared branch grows from the inode */
617ba13b 3946 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
3947 &nr, &nr+1, (chain+n-1) - partial);
3948 *partial->p = 0;
3949 /*
3950 * We mark the inode dirty prior to restart,
3951 * and prior to stop. No need for it here.
3952 */
3953 } else {
3954 /* Shared branch grows from an indirect block */
3955 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 3956 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
3957 partial->p,
3958 partial->p+1, (chain+n-1) - partial);
3959 }
3960 }
3961 /* Clear the ends of indirect blocks on the shared branch */
3962 while (partial > chain) {
617ba13b 3963 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
3964 (__le32*)partial->bh->b_data+addr_per_block,
3965 (chain+n-1) - partial);
3966 BUFFER_TRACE(partial->bh, "call brelse");
3967 brelse (partial->bh);
3968 partial--;
3969 }
3970do_indirects:
3971 /* Kill the remaining (whole) subtrees */
3972 switch (offsets[0]) {
3973 default:
617ba13b 3974 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 3975 if (nr) {
617ba13b
MC
3976 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3977 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 3978 }
617ba13b
MC
3979 case EXT4_IND_BLOCK:
3980 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 3981 if (nr) {
617ba13b
MC
3982 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3983 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 3984 }
617ba13b
MC
3985 case EXT4_DIND_BLOCK:
3986 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 3987 if (nr) {
617ba13b
MC
3988 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3989 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 3990 }
617ba13b 3991 case EXT4_TIND_BLOCK:
ac27a0ec
DK
3992 ;
3993 }
3994
0e855ac8 3995 up_write(&ei->i_data_sem);
ef7f3835 3996 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 3997 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3998
3999 /*
4000 * In a multi-transaction truncate, we only make the final transaction
4001 * synchronous
4002 */
4003 if (IS_SYNC(inode))
0390131b 4004 ext4_handle_sync(handle);
ac27a0ec
DK
4005out_stop:
4006 /*
4007 * If this was a simple ftruncate(), and the file will remain alive
4008 * then we need to clear up the orphan record which we created above.
4009 * However, if this was a real unlink then we were called by
617ba13b 4010 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
4011 * orphan info for us.
4012 */
4013 if (inode->i_nlink)
617ba13b 4014 ext4_orphan_del(handle, inode);
ac27a0ec 4015
617ba13b 4016 ext4_journal_stop(handle);
ac27a0ec
DK
4017}
4018
ac27a0ec 4019/*
617ba13b 4020 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4021 * underlying buffer_head on success. If 'in_mem' is true, we have all
4022 * data in memory that is needed to recreate the on-disk version of this
4023 * inode.
4024 */
617ba13b
MC
4025static int __ext4_get_inode_loc(struct inode *inode,
4026 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4027{
240799cd
TT
4028 struct ext4_group_desc *gdp;
4029 struct buffer_head *bh;
4030 struct super_block *sb = inode->i_sb;
4031 ext4_fsblk_t block;
4032 int inodes_per_block, inode_offset;
4033
3a06d778 4034 iloc->bh = NULL;
240799cd
TT
4035 if (!ext4_valid_inum(sb, inode->i_ino))
4036 return -EIO;
ac27a0ec 4037
240799cd
TT
4038 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4039 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4040 if (!gdp)
ac27a0ec
DK
4041 return -EIO;
4042
240799cd
TT
4043 /*
4044 * Figure out the offset within the block group inode table
4045 */
4046 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4047 inode_offset = ((inode->i_ino - 1) %
4048 EXT4_INODES_PER_GROUP(sb));
4049 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4050 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4051
4052 bh = sb_getblk(sb, block);
ac27a0ec 4053 if (!bh) {
240799cd
TT
4054 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4055 "inode block - inode=%lu, block=%llu",
4056 inode->i_ino, block);
ac27a0ec
DK
4057 return -EIO;
4058 }
4059 if (!buffer_uptodate(bh)) {
4060 lock_buffer(bh);
9c83a923
HK
4061
4062 /*
4063 * If the buffer has the write error flag, we have failed
4064 * to write out another inode in the same block. In this
4065 * case, we don't have to read the block because we may
4066 * read the old inode data successfully.
4067 */
4068 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4069 set_buffer_uptodate(bh);
4070
ac27a0ec
DK
4071 if (buffer_uptodate(bh)) {
4072 /* someone brought it uptodate while we waited */
4073 unlock_buffer(bh);
4074 goto has_buffer;
4075 }
4076
4077 /*
4078 * If we have all information of the inode in memory and this
4079 * is the only valid inode in the block, we need not read the
4080 * block.
4081 */
4082 if (in_mem) {
4083 struct buffer_head *bitmap_bh;
240799cd 4084 int i, start;
ac27a0ec 4085
240799cd 4086 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4087
240799cd
TT
4088 /* Is the inode bitmap in cache? */
4089 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
4090 if (!bitmap_bh)
4091 goto make_io;
4092
4093 /*
4094 * If the inode bitmap isn't in cache then the
4095 * optimisation may end up performing two reads instead
4096 * of one, so skip it.
4097 */
4098 if (!buffer_uptodate(bitmap_bh)) {
4099 brelse(bitmap_bh);
4100 goto make_io;
4101 }
240799cd 4102 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4103 if (i == inode_offset)
4104 continue;
617ba13b 4105 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4106 break;
4107 }
4108 brelse(bitmap_bh);
240799cd 4109 if (i == start + inodes_per_block) {
ac27a0ec
DK
4110 /* all other inodes are free, so skip I/O */
4111 memset(bh->b_data, 0, bh->b_size);
4112 set_buffer_uptodate(bh);
4113 unlock_buffer(bh);
4114 goto has_buffer;
4115 }
4116 }
4117
4118make_io:
240799cd
TT
4119 /*
4120 * If we need to do any I/O, try to pre-readahead extra
4121 * blocks from the inode table.
4122 */
4123 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4124 ext4_fsblk_t b, end, table;
4125 unsigned num;
4126
4127 table = ext4_inode_table(sb, gdp);
4128 /* Make sure s_inode_readahead_blks is a power of 2 */
4129 while (EXT4_SB(sb)->s_inode_readahead_blks &
4130 (EXT4_SB(sb)->s_inode_readahead_blks-1))
4131 EXT4_SB(sb)->s_inode_readahead_blks =
4132 (EXT4_SB(sb)->s_inode_readahead_blks &
4133 (EXT4_SB(sb)->s_inode_readahead_blks-1));
4134 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4135 if (table > b)
4136 b = table;
4137 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4138 num = EXT4_INODES_PER_GROUP(sb);
4139 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4140 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 4141 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4142 table += num / inodes_per_block;
4143 if (end > table)
4144 end = table;
4145 while (b <= end)
4146 sb_breadahead(sb, b++);
4147 }
4148
ac27a0ec
DK
4149 /*
4150 * There are other valid inodes in the buffer, this inode
4151 * has in-inode xattrs, or we don't have this inode in memory.
4152 * Read the block from disk.
4153 */
4154 get_bh(bh);
4155 bh->b_end_io = end_buffer_read_sync;
4156 submit_bh(READ_META, bh);
4157 wait_on_buffer(bh);
4158 if (!buffer_uptodate(bh)) {
240799cd
TT
4159 ext4_error(sb, __func__,
4160 "unable to read inode block - inode=%lu, "
4161 "block=%llu", inode->i_ino, block);
ac27a0ec
DK
4162 brelse(bh);
4163 return -EIO;
4164 }
4165 }
4166has_buffer:
4167 iloc->bh = bh;
4168 return 0;
4169}
4170
617ba13b 4171int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4172{
4173 /* We have all inode data except xattrs in memory here. */
617ba13b
MC
4174 return __ext4_get_inode_loc(inode, iloc,
4175 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
ac27a0ec
DK
4176}
4177
617ba13b 4178void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4179{
617ba13b 4180 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4181
4182 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4183 if (flags & EXT4_SYNC_FL)
ac27a0ec 4184 inode->i_flags |= S_SYNC;
617ba13b 4185 if (flags & EXT4_APPEND_FL)
ac27a0ec 4186 inode->i_flags |= S_APPEND;
617ba13b 4187 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4188 inode->i_flags |= S_IMMUTABLE;
617ba13b 4189 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4190 inode->i_flags |= S_NOATIME;
617ba13b 4191 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4192 inode->i_flags |= S_DIRSYNC;
4193}
4194
ff9ddf7e
JK
4195/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4196void ext4_get_inode_flags(struct ext4_inode_info *ei)
4197{
4198 unsigned int flags = ei->vfs_inode.i_flags;
4199
4200 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4201 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4202 if (flags & S_SYNC)
4203 ei->i_flags |= EXT4_SYNC_FL;
4204 if (flags & S_APPEND)
4205 ei->i_flags |= EXT4_APPEND_FL;
4206 if (flags & S_IMMUTABLE)
4207 ei->i_flags |= EXT4_IMMUTABLE_FL;
4208 if (flags & S_NOATIME)
4209 ei->i_flags |= EXT4_NOATIME_FL;
4210 if (flags & S_DIRSYNC)
4211 ei->i_flags |= EXT4_DIRSYNC_FL;
4212}
0fc1b451
AK
4213static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4214 struct ext4_inode_info *ei)
4215{
4216 blkcnt_t i_blocks ;
8180a562
AK
4217 struct inode *inode = &(ei->vfs_inode);
4218 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4219
4220 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4221 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4222 /* we are using combined 48 bit field */
4223 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4224 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
4225 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4226 /* i_blocks represent file system block size */
4227 return i_blocks << (inode->i_blkbits - 9);
4228 } else {
4229 return i_blocks;
4230 }
0fc1b451
AK
4231 } else {
4232 return le32_to_cpu(raw_inode->i_blocks_lo);
4233 }
4234}
ff9ddf7e 4235
1d1fe1ee 4236struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4237{
617ba13b
MC
4238 struct ext4_iloc iloc;
4239 struct ext4_inode *raw_inode;
1d1fe1ee 4240 struct ext4_inode_info *ei;
ac27a0ec 4241 struct buffer_head *bh;
1d1fe1ee
DH
4242 struct inode *inode;
4243 long ret;
ac27a0ec
DK
4244 int block;
4245
1d1fe1ee
DH
4246 inode = iget_locked(sb, ino);
4247 if (!inode)
4248 return ERR_PTR(-ENOMEM);
4249 if (!(inode->i_state & I_NEW))
4250 return inode;
4251
4252 ei = EXT4_I(inode);
03010a33 4253#ifdef CONFIG_EXT4_FS_POSIX_ACL
617ba13b
MC
4254 ei->i_acl = EXT4_ACL_NOT_CACHED;
4255 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
ac27a0ec 4256#endif
ac27a0ec 4257
1d1fe1ee
DH
4258 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4259 if (ret < 0)
ac27a0ec
DK
4260 goto bad_inode;
4261 bh = iloc.bh;
617ba13b 4262 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
4263 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4264 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4265 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4266 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4267 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4268 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4269 }
4270 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec
DK
4271
4272 ei->i_state = 0;
4273 ei->i_dir_start_lookup = 0;
4274 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4275 /* We now have enough fields to check if the inode was active or not.
4276 * This is needed because nfsd might try to access dead inodes
4277 * the test is that same one that e2fsck uses
4278 * NeilBrown 1999oct15
4279 */
4280 if (inode->i_nlink == 0) {
4281 if (inode->i_mode == 0 ||
617ba13b 4282 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 4283 /* this inode is deleted */
af5bc92d 4284 brelse(bh);
1d1fe1ee 4285 ret = -ESTALE;
ac27a0ec
DK
4286 goto bad_inode;
4287 }
4288 /* The only unlinked inodes we let through here have
4289 * valid i_mode and are being read by the orphan
4290 * recovery code: that's fine, we're about to complete
4291 * the process of deleting those. */
4292 }
ac27a0ec 4293 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4294 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4295 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
9b8f1f01 4296 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
a48380f7 4297 cpu_to_le32(EXT4_OS_HURD)) {
a1ddeb7e
BP
4298 ei->i_file_acl |=
4299 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
ac27a0ec 4300 }
a48380f7 4301 inode->i_size = ext4_isize(raw_inode);
ac27a0ec
DK
4302 ei->i_disksize = inode->i_size;
4303 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4304 ei->i_block_group = iloc.block_group;
a4912123 4305 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4306 /*
4307 * NOTE! The in-memory inode i_data array is in little-endian order
4308 * even on big-endian machines: we do NOT byteswap the block numbers!
4309 */
617ba13b 4310 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4311 ei->i_data[block] = raw_inode->i_block[block];
4312 INIT_LIST_HEAD(&ei->i_orphan);
4313
0040d987 4314 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 4315 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 4316 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 4317 EXT4_INODE_SIZE(inode->i_sb)) {
af5bc92d 4318 brelse(bh);
1d1fe1ee 4319 ret = -EIO;
ac27a0ec 4320 goto bad_inode;
e5d2861f 4321 }
ac27a0ec
DK
4322 if (ei->i_extra_isize == 0) {
4323 /* The extra space is currently unused. Use it. */
617ba13b
MC
4324 ei->i_extra_isize = sizeof(struct ext4_inode) -
4325 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
4326 } else {
4327 __le32 *magic = (void *)raw_inode +
617ba13b 4328 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 4329 ei->i_extra_isize;
617ba13b
MC
4330 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4331 ei->i_state |= EXT4_STATE_XATTR;
ac27a0ec
DK
4332 }
4333 } else
4334 ei->i_extra_isize = 0;
4335
ef7f3835
KS
4336 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4337 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4338 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4339 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4340
25ec56b5
JNC
4341 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4342 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4343 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4344 inode->i_version |=
4345 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4346 }
4347
7a262f7c
AK
4348 if (ei->i_flags & EXT4_EXTENTS_FL) {
4349 /* Validate extent which is part of inode */
4350 ret = ext4_ext_check_inode(inode);
4351 if (ret) {
4352 brelse(bh);
4353 goto bad_inode;
4354 }
4355
4356 }
4357
ac27a0ec 4358 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4359 inode->i_op = &ext4_file_inode_operations;
4360 inode->i_fop = &ext4_file_operations;
4361 ext4_set_aops(inode);
ac27a0ec 4362 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4363 inode->i_op = &ext4_dir_inode_operations;
4364 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4365 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4366 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4367 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4368 nd_terminate_link(ei->i_data, inode->i_size,
4369 sizeof(ei->i_data) - 1);
4370 } else {
617ba13b
MC
4371 inode->i_op = &ext4_symlink_inode_operations;
4372 ext4_set_aops(inode);
ac27a0ec
DK
4373 }
4374 } else {
617ba13b 4375 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4376 if (raw_inode->i_block[0])
4377 init_special_inode(inode, inode->i_mode,
4378 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4379 else
4380 init_special_inode(inode, inode->i_mode,
4381 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4382 }
af5bc92d 4383 brelse(iloc.bh);
617ba13b 4384 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4385 unlock_new_inode(inode);
4386 return inode;
ac27a0ec
DK
4387
4388bad_inode:
1d1fe1ee
DH
4389 iget_failed(inode);
4390 return ERR_PTR(ret);
ac27a0ec
DK
4391}
4392
0fc1b451
AK
4393static int ext4_inode_blocks_set(handle_t *handle,
4394 struct ext4_inode *raw_inode,
4395 struct ext4_inode_info *ei)
4396{
4397 struct inode *inode = &(ei->vfs_inode);
4398 u64 i_blocks = inode->i_blocks;
4399 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4400
4401 if (i_blocks <= ~0U) {
4402 /*
4403 * i_blocks can be represnted in a 32 bit variable
4404 * as multiple of 512 bytes
4405 */
8180a562 4406 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4407 raw_inode->i_blocks_high = 0;
8180a562 4408 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
f287a1a5
TT
4409 return 0;
4410 }
4411 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4412 return -EFBIG;
4413
4414 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4415 /*
4416 * i_blocks can be represented in a 48 bit variable
4417 * as multiple of 512 bytes
4418 */
8180a562 4419 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4420 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 4421 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 4422 } else {
8180a562
AK
4423 ei->i_flags |= EXT4_HUGE_FILE_FL;
4424 /* i_block is stored in file system block size */
4425 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4426 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4427 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4428 }
f287a1a5 4429 return 0;
0fc1b451
AK
4430}
4431
ac27a0ec
DK
4432/*
4433 * Post the struct inode info into an on-disk inode location in the
4434 * buffer-cache. This gobbles the caller's reference to the
4435 * buffer_head in the inode location struct.
4436 *
4437 * The caller must have write access to iloc->bh.
4438 */
617ba13b 4439static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4440 struct inode *inode,
617ba13b 4441 struct ext4_iloc *iloc)
ac27a0ec 4442{
617ba13b
MC
4443 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4444 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4445 struct buffer_head *bh = iloc->bh;
4446 int err = 0, rc, block;
4447
4448 /* For fields not not tracking in the in-memory inode,
4449 * initialise them to zero for new inodes. */
617ba13b
MC
4450 if (ei->i_state & EXT4_STATE_NEW)
4451 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4452
ff9ddf7e 4453 ext4_get_inode_flags(ei);
ac27a0ec 4454 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 4455 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4456 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4457 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4458/*
4459 * Fix up interoperability with old kernels. Otherwise, old inodes get
4460 * re-used with the upper 16 bits of the uid/gid intact
4461 */
af5bc92d 4462 if (!ei->i_dtime) {
ac27a0ec
DK
4463 raw_inode->i_uid_high =
4464 cpu_to_le16(high_16_bits(inode->i_uid));
4465 raw_inode->i_gid_high =
4466 cpu_to_le16(high_16_bits(inode->i_gid));
4467 } else {
4468 raw_inode->i_uid_high = 0;
4469 raw_inode->i_gid_high = 0;
4470 }
4471 } else {
4472 raw_inode->i_uid_low =
4473 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4474 raw_inode->i_gid_low =
4475 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4476 raw_inode->i_uid_high = 0;
4477 raw_inode->i_gid_high = 0;
4478 }
4479 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4480
4481 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4482 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4483 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4484 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4485
0fc1b451
AK
4486 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4487 goto out_brelse;
ac27a0ec 4488 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
267e4db9
AK
4489 /* clear the migrate flag in the raw_inode */
4490 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
9b8f1f01
MC
4491 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4492 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4493 raw_inode->i_file_acl_high =
4494 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4495 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
4496 ext4_isize_set(raw_inode, ei->i_disksize);
4497 if (ei->i_disksize > 0x7fffffffULL) {
4498 struct super_block *sb = inode->i_sb;
4499 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4500 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4501 EXT4_SB(sb)->s_es->s_rev_level ==
4502 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4503 /* If this is the first large file
4504 * created, add a flag to the superblock.
4505 */
4506 err = ext4_journal_get_write_access(handle,
4507 EXT4_SB(sb)->s_sbh);
4508 if (err)
4509 goto out_brelse;
4510 ext4_update_dynamic_rev(sb);
4511 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4512 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 4513 sb->s_dirt = 1;
0390131b
FM
4514 ext4_handle_sync(handle);
4515 err = ext4_handle_dirty_metadata(handle, inode,
a48380f7 4516 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
4517 }
4518 }
4519 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4520 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4521 if (old_valid_dev(inode->i_rdev)) {
4522 raw_inode->i_block[0] =
4523 cpu_to_le32(old_encode_dev(inode->i_rdev));
4524 raw_inode->i_block[1] = 0;
4525 } else {
4526 raw_inode->i_block[0] = 0;
4527 raw_inode->i_block[1] =
4528 cpu_to_le32(new_encode_dev(inode->i_rdev));
4529 raw_inode->i_block[2] = 0;
4530 }
617ba13b 4531 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4532 raw_inode->i_block[block] = ei->i_data[block];
4533
25ec56b5
JNC
4534 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4535 if (ei->i_extra_isize) {
4536 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4537 raw_inode->i_version_hi =
4538 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4539 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4540 }
4541
0390131b
FM
4542 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4543 rc = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
4544 if (!err)
4545 err = rc;
617ba13b 4546 ei->i_state &= ~EXT4_STATE_NEW;
ac27a0ec
DK
4547
4548out_brelse:
af5bc92d 4549 brelse(bh);
617ba13b 4550 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4551 return err;
4552}
4553
4554/*
617ba13b 4555 * ext4_write_inode()
ac27a0ec
DK
4556 *
4557 * We are called from a few places:
4558 *
4559 * - Within generic_file_write() for O_SYNC files.
4560 * Here, there will be no transaction running. We wait for any running
4561 * trasnaction to commit.
4562 *
4563 * - Within sys_sync(), kupdate and such.
4564 * We wait on commit, if tol to.
4565 *
4566 * - Within prune_icache() (PF_MEMALLOC == true)
4567 * Here we simply return. We can't afford to block kswapd on the
4568 * journal commit.
4569 *
4570 * In all cases it is actually safe for us to return without doing anything,
4571 * because the inode has been copied into a raw inode buffer in
617ba13b 4572 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4573 * knfsd.
4574 *
4575 * Note that we are absolutely dependent upon all inode dirtiers doing the
4576 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4577 * which we are interested.
4578 *
4579 * It would be a bug for them to not do this. The code:
4580 *
4581 * mark_inode_dirty(inode)
4582 * stuff();
4583 * inode->i_size = expr;
4584 *
4585 * is in error because a kswapd-driven write_inode() could occur while
4586 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4587 * will no longer be on the superblock's dirty inode list.
4588 */
617ba13b 4589int ext4_write_inode(struct inode *inode, int wait)
ac27a0ec
DK
4590{
4591 if (current->flags & PF_MEMALLOC)
4592 return 0;
4593
617ba13b 4594 if (ext4_journal_current_handle()) {
b38bd33a 4595 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
ac27a0ec
DK
4596 dump_stack();
4597 return -EIO;
4598 }
4599
4600 if (!wait)
4601 return 0;
4602
617ba13b 4603 return ext4_force_commit(inode->i_sb);
ac27a0ec
DK
4604}
4605
0390131b
FM
4606int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
4607{
4608 int err = 0;
4609
4610 mark_buffer_dirty(bh);
4611 if (inode && inode_needs_sync(inode)) {
4612 sync_dirty_buffer(bh);
4613 if (buffer_req(bh) && !buffer_uptodate(bh)) {
4614 ext4_error(inode->i_sb, __func__,
4615 "IO error syncing inode, "
4616 "inode=%lu, block=%llu",
4617 inode->i_ino,
4618 (unsigned long long)bh->b_blocknr);
4619 err = -EIO;
4620 }
4621 }
4622 return err;
4623}
4624
ac27a0ec 4625/*
617ba13b 4626 * ext4_setattr()
ac27a0ec
DK
4627 *
4628 * Called from notify_change.
4629 *
4630 * We want to trap VFS attempts to truncate the file as soon as
4631 * possible. In particular, we want to make sure that when the VFS
4632 * shrinks i_size, we put the inode on the orphan list and modify
4633 * i_disksize immediately, so that during the subsequent flushing of
4634 * dirty pages and freeing of disk blocks, we can guarantee that any
4635 * commit will leave the blocks being flushed in an unused state on
4636 * disk. (On recovery, the inode will get truncated and the blocks will
4637 * be freed, so we have a strong guarantee that no future commit will
4638 * leave these blocks visible to the user.)
4639 *
678aaf48
JK
4640 * Another thing we have to assure is that if we are in ordered mode
4641 * and inode is still attached to the committing transaction, we must
4642 * we start writeout of all the dirty pages which are being truncated.
4643 * This way we are sure that all the data written in the previous
4644 * transaction are already on disk (truncate waits for pages under
4645 * writeback).
4646 *
4647 * Called with inode->i_mutex down.
ac27a0ec 4648 */
617ba13b 4649int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4650{
4651 struct inode *inode = dentry->d_inode;
4652 int error, rc = 0;
4653 const unsigned int ia_valid = attr->ia_valid;
4654
4655 error = inode_change_ok(inode, attr);
4656 if (error)
4657 return error;
4658
4659 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4660 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4661 handle_t *handle;
4662
4663 /* (user+group)*(old+new) structure, inode write (sb,
4664 * inode block, ? - but truncate inode update has it) */
617ba13b
MC
4665 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4666 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4667 if (IS_ERR(handle)) {
4668 error = PTR_ERR(handle);
4669 goto err_out;
4670 }
a269eb18 4671 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
ac27a0ec 4672 if (error) {
617ba13b 4673 ext4_journal_stop(handle);
ac27a0ec
DK
4674 return error;
4675 }
4676 /* Update corresponding info in inode so that everything is in
4677 * one transaction */
4678 if (attr->ia_valid & ATTR_UID)
4679 inode->i_uid = attr->ia_uid;
4680 if (attr->ia_valid & ATTR_GID)
4681 inode->i_gid = attr->ia_gid;
617ba13b
MC
4682 error = ext4_mark_inode_dirty(handle, inode);
4683 ext4_journal_stop(handle);
ac27a0ec
DK
4684 }
4685
e2b46574
ES
4686 if (attr->ia_valid & ATTR_SIZE) {
4687 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4688 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4689
4690 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4691 error = -EFBIG;
4692 goto err_out;
4693 }
4694 }
4695 }
4696
ac27a0ec
DK
4697 if (S_ISREG(inode->i_mode) &&
4698 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4699 handle_t *handle;
4700
617ba13b 4701 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4702 if (IS_ERR(handle)) {
4703 error = PTR_ERR(handle);
4704 goto err_out;
4705 }
4706
617ba13b
MC
4707 error = ext4_orphan_add(handle, inode);
4708 EXT4_I(inode)->i_disksize = attr->ia_size;
4709 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4710 if (!error)
4711 error = rc;
617ba13b 4712 ext4_journal_stop(handle);
678aaf48
JK
4713
4714 if (ext4_should_order_data(inode)) {
4715 error = ext4_begin_ordered_truncate(inode,
4716 attr->ia_size);
4717 if (error) {
4718 /* Do as much error cleanup as possible */
4719 handle = ext4_journal_start(inode, 3);
4720 if (IS_ERR(handle)) {
4721 ext4_orphan_del(NULL, inode);
4722 goto err_out;
4723 }
4724 ext4_orphan_del(handle, inode);
4725 ext4_journal_stop(handle);
4726 goto err_out;
4727 }
4728 }
ac27a0ec
DK
4729 }
4730
4731 rc = inode_setattr(inode, attr);
4732
617ba13b 4733 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
4734 * transaction handle at all, we need to clean up the in-core
4735 * orphan list manually. */
4736 if (inode->i_nlink)
617ba13b 4737 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4738
4739 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4740 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4741
4742err_out:
617ba13b 4743 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4744 if (!error)
4745 error = rc;
4746 return error;
4747}
4748
3e3398a0
MC
4749int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4750 struct kstat *stat)
4751{
4752 struct inode *inode;
4753 unsigned long delalloc_blocks;
4754
4755 inode = dentry->d_inode;
4756 generic_fillattr(inode, stat);
4757
4758 /*
4759 * We can't update i_blocks if the block allocation is delayed
4760 * otherwise in the case of system crash before the real block
4761 * allocation is done, we will have i_blocks inconsistent with
4762 * on-disk file blocks.
4763 * We always keep i_blocks updated together with real
4764 * allocation. But to not confuse with user, stat
4765 * will return the blocks that include the delayed allocation
4766 * blocks for this file.
4767 */
4768 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4769 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4770 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4771
4772 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4773 return 0;
4774}
ac27a0ec 4775
a02908f1
MC
4776static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4777 int chunk)
4778{
4779 int indirects;
4780
4781 /* if nrblocks are contiguous */
4782 if (chunk) {
4783 /*
4784 * With N contiguous data blocks, it need at most
4785 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4786 * 2 dindirect blocks
4787 * 1 tindirect block
4788 */
4789 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4790 return indirects + 3;
4791 }
4792 /*
4793 * if nrblocks are not contiguous, worse case, each block touch
4794 * a indirect block, and each indirect block touch a double indirect
4795 * block, plus a triple indirect block
4796 */
4797 indirects = nrblocks * 2 + 1;
4798 return indirects;
4799}
4800
4801static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4802{
4803 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
ac51d837
TT
4804 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4805 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4806}
ac51d837 4807
ac27a0ec 4808/*
a02908f1
MC
4809 * Account for index blocks, block groups bitmaps and block group
4810 * descriptor blocks if modify datablocks and index blocks
4811 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4812 *
a02908f1
MC
4813 * If datablocks are discontiguous, they are possible to spread over
4814 * different block groups too. If they are contiugous, with flexbg,
4815 * they could still across block group boundary.
ac27a0ec 4816 *
a02908f1
MC
4817 * Also account for superblock, inode, quota and xattr blocks
4818 */
4819int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4820{
4821 int groups, gdpblocks;
4822 int idxblocks;
4823 int ret = 0;
4824
4825 /*
4826 * How many index blocks need to touch to modify nrblocks?
4827 * The "Chunk" flag indicating whether the nrblocks is
4828 * physically contiguous on disk
4829 *
4830 * For Direct IO and fallocate, they calls get_block to allocate
4831 * one single extent at a time, so they could set the "Chunk" flag
4832 */
4833 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4834
4835 ret = idxblocks;
4836
4837 /*
4838 * Now let's see how many group bitmaps and group descriptors need
4839 * to account
4840 */
4841 groups = idxblocks;
4842 if (chunk)
4843 groups += 1;
4844 else
4845 groups += nrblocks;
4846
4847 gdpblocks = groups;
4848 if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4849 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4850 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4851 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4852
4853 /* bitmaps and block group descriptor blocks */
4854 ret += groups + gdpblocks;
4855
4856 /* Blocks for super block, inode, quota and xattr blocks */
4857 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4858
4859 return ret;
4860}
4861
4862/*
4863 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
4864 * the modification of a single pages into a single transaction,
4865 * which may include multiple chunks of block allocations.
ac27a0ec 4866 *
525f4ed8 4867 * This could be called via ext4_write_begin()
ac27a0ec 4868 *
525f4ed8 4869 * We need to consider the worse case, when
a02908f1 4870 * one new block per extent.
ac27a0ec 4871 */
a86c6181 4872int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4873{
617ba13b 4874 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4875 int ret;
4876
a02908f1 4877 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4878
a02908f1 4879 /* Account for data blocks for journalled mode */
617ba13b 4880 if (ext4_should_journal_data(inode))
a02908f1 4881 ret += bpp;
ac27a0ec
DK
4882 return ret;
4883}
f3bd1f3f
MC
4884
4885/*
4886 * Calculate the journal credits for a chunk of data modification.
4887 *
4888 * This is called from DIO, fallocate or whoever calling
4889 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4890 *
4891 * journal buffers for data blocks are not included here, as DIO
4892 * and fallocate do no need to journal data buffers.
4893 */
4894int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4895{
4896 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4897}
4898
ac27a0ec 4899/*
617ba13b 4900 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4901 * Give this, we know that the caller already has write access to iloc->bh.
4902 */
617ba13b
MC
4903int ext4_mark_iloc_dirty(handle_t *handle,
4904 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4905{
4906 int err = 0;
4907
25ec56b5
JNC
4908 if (test_opt(inode->i_sb, I_VERSION))
4909 inode_inc_iversion(inode);
4910
ac27a0ec
DK
4911 /* the do_update_inode consumes one bh->b_count */
4912 get_bh(iloc->bh);
4913
dab291af 4914 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
617ba13b 4915 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4916 put_bh(iloc->bh);
4917 return err;
4918}
4919
4920/*
4921 * On success, We end up with an outstanding reference count against
4922 * iloc->bh. This _must_ be cleaned up later.
4923 */
4924
4925int
617ba13b
MC
4926ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4927 struct ext4_iloc *iloc)
ac27a0ec 4928{
0390131b
FM
4929 int err;
4930
4931 err = ext4_get_inode_loc(inode, iloc);
4932 if (!err) {
4933 BUFFER_TRACE(iloc->bh, "get_write_access");
4934 err = ext4_journal_get_write_access(handle, iloc->bh);
4935 if (err) {
4936 brelse(iloc->bh);
4937 iloc->bh = NULL;
ac27a0ec
DK
4938 }
4939 }
617ba13b 4940 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4941 return err;
4942}
4943
6dd4ee7c
KS
4944/*
4945 * Expand an inode by new_extra_isize bytes.
4946 * Returns 0 on success or negative error number on failure.
4947 */
1d03ec98
AK
4948static int ext4_expand_extra_isize(struct inode *inode,
4949 unsigned int new_extra_isize,
4950 struct ext4_iloc iloc,
4951 handle_t *handle)
6dd4ee7c
KS
4952{
4953 struct ext4_inode *raw_inode;
4954 struct ext4_xattr_ibody_header *header;
4955 struct ext4_xattr_entry *entry;
4956
4957 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4958 return 0;
4959
4960 raw_inode = ext4_raw_inode(&iloc);
4961
4962 header = IHDR(inode, raw_inode);
4963 entry = IFIRST(header);
4964
4965 /* No extended attributes present */
4966 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4967 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4968 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4969 new_extra_isize);
4970 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4971 return 0;
4972 }
4973
4974 /* try to expand with EAs present */
4975 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4976 raw_inode, handle);
4977}
4978
ac27a0ec
DK
4979/*
4980 * What we do here is to mark the in-core inode as clean with respect to inode
4981 * dirtiness (it may still be data-dirty).
4982 * This means that the in-core inode may be reaped by prune_icache
4983 * without having to perform any I/O. This is a very good thing,
4984 * because *any* task may call prune_icache - even ones which
4985 * have a transaction open against a different journal.
4986 *
4987 * Is this cheating? Not really. Sure, we haven't written the
4988 * inode out, but prune_icache isn't a user-visible syncing function.
4989 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4990 * we start and wait on commits.
4991 *
4992 * Is this efficient/effective? Well, we're being nice to the system
4993 * by cleaning up our inodes proactively so they can be reaped
4994 * without I/O. But we are potentially leaving up to five seconds'
4995 * worth of inodes floating about which prune_icache wants us to
4996 * write out. One way to fix that would be to get prune_icache()
4997 * to do a write_super() to free up some memory. It has the desired
4998 * effect.
4999 */
617ba13b 5000int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5001{
617ba13b 5002 struct ext4_iloc iloc;
6dd4ee7c
KS
5003 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5004 static unsigned int mnt_count;
5005 int err, ret;
ac27a0ec
DK
5006
5007 might_sleep();
617ba13b 5008 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5009 if (ext4_handle_valid(handle) &&
5010 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
6dd4ee7c
KS
5011 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5012 /*
5013 * We need extra buffer credits since we may write into EA block
5014 * with this same handle. If journal_extend fails, then it will
5015 * only result in a minor loss of functionality for that inode.
5016 * If this is felt to be critical, then e2fsck should be run to
5017 * force a large enough s_min_extra_isize.
5018 */
5019 if ((jbd2_journal_extend(handle,
5020 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5021 ret = ext4_expand_extra_isize(inode,
5022 sbi->s_want_extra_isize,
5023 iloc, handle);
5024 if (ret) {
5025 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
c1bddad9
AK
5026 if (mnt_count !=
5027 le16_to_cpu(sbi->s_es->s_mnt_count)) {
46e665e9 5028 ext4_warning(inode->i_sb, __func__,
6dd4ee7c
KS
5029 "Unable to expand inode %lu. Delete"
5030 " some EAs or run e2fsck.",
5031 inode->i_ino);
c1bddad9
AK
5032 mnt_count =
5033 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5034 }
5035 }
5036 }
5037 }
ac27a0ec 5038 if (!err)
617ba13b 5039 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5040 return err;
5041}
5042
5043/*
617ba13b 5044 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5045 *
5046 * We're really interested in the case where a file is being extended.
5047 * i_size has been changed by generic_commit_write() and we thus need
5048 * to include the updated inode in the current transaction.
5049 *
a269eb18 5050 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5051 * are allocated to the file.
5052 *
5053 * If the inode is marked synchronous, we don't honour that here - doing
5054 * so would cause a commit on atime updates, which we don't bother doing.
5055 * We handle synchronous inodes at the highest possible level.
5056 */
617ba13b 5057void ext4_dirty_inode(struct inode *inode)
ac27a0ec 5058{
617ba13b 5059 handle_t *current_handle = ext4_journal_current_handle();
ac27a0ec
DK
5060 handle_t *handle;
5061
0390131b
FM
5062 if (!ext4_handle_valid(current_handle)) {
5063 ext4_mark_inode_dirty(current_handle, inode);
5064 return;
5065 }
5066
617ba13b 5067 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
5068 if (IS_ERR(handle))
5069 goto out;
5070 if (current_handle &&
5071 current_handle->h_transaction != handle->h_transaction) {
5072 /* This task has a transaction open against a different fs */
5073 printk(KERN_EMERG "%s: transactions do not match!\n",
46e665e9 5074 __func__);
ac27a0ec
DK
5075 } else {
5076 jbd_debug(5, "marking dirty. outer handle=%p\n",
5077 current_handle);
617ba13b 5078 ext4_mark_inode_dirty(handle, inode);
ac27a0ec 5079 }
617ba13b 5080 ext4_journal_stop(handle);
ac27a0ec
DK
5081out:
5082 return;
5083}
5084
5085#if 0
5086/*
5087 * Bind an inode's backing buffer_head into this transaction, to prevent
5088 * it from being flushed to disk early. Unlike
617ba13b 5089 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5090 * returns no iloc structure, so the caller needs to repeat the iloc
5091 * lookup to mark the inode dirty later.
5092 */
617ba13b 5093static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5094{
617ba13b 5095 struct ext4_iloc iloc;
ac27a0ec
DK
5096
5097 int err = 0;
5098 if (handle) {
617ba13b 5099 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5100 if (!err) {
5101 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5102 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5103 if (!err)
0390131b
FM
5104 err = ext4_handle_dirty_metadata(handle,
5105 inode,
5106 iloc.bh);
ac27a0ec
DK
5107 brelse(iloc.bh);
5108 }
5109 }
617ba13b 5110 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5111 return err;
5112}
5113#endif
5114
617ba13b 5115int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5116{
5117 journal_t *journal;
5118 handle_t *handle;
5119 int err;
5120
5121 /*
5122 * We have to be very careful here: changing a data block's
5123 * journaling status dynamically is dangerous. If we write a
5124 * data block to the journal, change the status and then delete
5125 * that block, we risk forgetting to revoke the old log record
5126 * from the journal and so a subsequent replay can corrupt data.
5127 * So, first we make sure that the journal is empty and that
5128 * nobody is changing anything.
5129 */
5130
617ba13b 5131 journal = EXT4_JOURNAL(inode);
0390131b
FM
5132 if (!journal)
5133 return 0;
d699594d 5134 if (is_journal_aborted(journal))
ac27a0ec
DK
5135 return -EROFS;
5136
dab291af
MC
5137 jbd2_journal_lock_updates(journal);
5138 jbd2_journal_flush(journal);
ac27a0ec
DK
5139
5140 /*
5141 * OK, there are no updates running now, and all cached data is
5142 * synced to disk. We are now in a completely consistent state
5143 * which doesn't have anything in the journal, and we know that
5144 * no filesystem updates are running, so it is safe to modify
5145 * the inode's in-core data-journaling state flag now.
5146 */
5147
5148 if (val)
617ba13b 5149 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
ac27a0ec 5150 else
617ba13b
MC
5151 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5152 ext4_set_aops(inode);
ac27a0ec 5153
dab291af 5154 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
5155
5156 /* Finally we can mark the inode as dirty. */
5157
617ba13b 5158 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
5159 if (IS_ERR(handle))
5160 return PTR_ERR(handle);
5161
617ba13b 5162 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5163 ext4_handle_sync(handle);
617ba13b
MC
5164 ext4_journal_stop(handle);
5165 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5166
5167 return err;
5168}
2e9ee850
AK
5169
5170static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5171{
5172 return !buffer_mapped(bh);
5173}
5174
5175int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
5176{
5177 loff_t size;
5178 unsigned long len;
5179 int ret = -EINVAL;
79f0be8d 5180 void *fsdata;
2e9ee850
AK
5181 struct file *file = vma->vm_file;
5182 struct inode *inode = file->f_path.dentry->d_inode;
5183 struct address_space *mapping = inode->i_mapping;
5184
5185 /*
5186 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5187 * get i_mutex because we are already holding mmap_sem.
5188 */
5189 down_read(&inode->i_alloc_sem);
5190 size = i_size_read(inode);
5191 if (page->mapping != mapping || size <= page_offset(page)
5192 || !PageUptodate(page)) {
5193 /* page got truncated from under us? */
5194 goto out_unlock;
5195 }
5196 ret = 0;
5197 if (PageMappedToDisk(page))
5198 goto out_unlock;
5199
5200 if (page->index == size >> PAGE_CACHE_SHIFT)
5201 len = size & ~PAGE_CACHE_MASK;
5202 else
5203 len = PAGE_CACHE_SIZE;
5204
5205 if (page_has_buffers(page)) {
5206 /* return if we have all the buffers mapped */
5207 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5208 ext4_bh_unmapped))
5209 goto out_unlock;
5210 }
5211 /*
5212 * OK, we need to fill the hole... Do write_begin write_end
5213 * to do block allocation/reservation.We are not holding
5214 * inode.i__mutex here. That allow * parallel write_begin,
5215 * write_end call. lock_page prevent this from happening
5216 * on the same page though
5217 */
5218 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 5219 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
5220 if (ret < 0)
5221 goto out_unlock;
5222 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 5223 len, len, page, fsdata);
2e9ee850
AK
5224 if (ret < 0)
5225 goto out_unlock;
5226 ret = 0;
5227out_unlock:
5228 up_read(&inode->i_alloc_sem);
5229 return ret;
5230}