]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ext4/inode.c
ext4: stop looping in ext4_num_dirty_pages when max_pages reached
[net-next-2.6.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
4c0425ff 40#include <linux/workqueue.h>
744692dc 41#include <linux/kernel.h>
5a0e3ad6 42#include <linux/slab.h>
9bffad1e 43
3dcf5451 44#include "ext4_jbd2.h"
ac27a0ec
DK
45#include "xattr.h"
46#include "acl.h"
d2a17637 47#include "ext4_extents.h"
ac27a0ec 48
9bffad1e
TT
49#include <trace/events/ext4.h>
50
a1d6cc56
AK
51#define MPAGE_DA_EXTENT_TAIL 0x01
52
678aaf48
JK
53static inline int ext4_begin_ordered_truncate(struct inode *inode,
54 loff_t new_size)
55{
7f5aa215
JK
56 return jbd2_journal_begin_ordered_truncate(
57 EXT4_SB(inode->i_sb)->s_journal,
58 &EXT4_I(inode)->jinode,
59 new_size);
678aaf48
JK
60}
61
64769240
AT
62static void ext4_invalidatepage(struct page *page, unsigned long offset);
63
ac27a0ec
DK
64/*
65 * Test whether an inode is a fast symlink.
66 */
617ba13b 67static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 68{
617ba13b 69 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
70 (inode->i_sb->s_blocksize >> 9) : 0;
71
72 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
73}
74
ac27a0ec
DK
75/*
76 * Work out how many blocks we need to proceed with the next chunk of a
77 * truncate transaction.
78 */
79static unsigned long blocks_for_truncate(struct inode *inode)
80{
725d26d3 81 ext4_lblk_t needed;
ac27a0ec
DK
82
83 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
84
85 /* Give ourselves just enough room to cope with inodes in which
86 * i_blocks is corrupt: we've seen disk corruptions in the past
87 * which resulted in random data in an inode which looked enough
617ba13b 88 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
89 * will go a bit crazy if that happens, but at least we should
90 * try not to panic the whole kernel. */
91 if (needed < 2)
92 needed = 2;
93
94 /* But we need to bound the transaction so we don't overflow the
95 * journal. */
617ba13b
MC
96 if (needed > EXT4_MAX_TRANS_DATA)
97 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 98
617ba13b 99 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
100}
101
102/*
103 * Truncate transactions can be complex and absolutely huge. So we need to
104 * be able to restart the transaction at a conventient checkpoint to make
105 * sure we don't overflow the journal.
106 *
107 * start_transaction gets us a new handle for a truncate transaction,
108 * and extend_transaction tries to extend the existing one a bit. If
109 * extend fails, we need to propagate the failure up and restart the
110 * transaction in the top-level truncate loop. --sct
111 */
112static handle_t *start_transaction(struct inode *inode)
113{
114 handle_t *result;
115
617ba13b 116 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
117 if (!IS_ERR(result))
118 return result;
119
617ba13b 120 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
121 return result;
122}
123
124/*
125 * Try to extend this transaction for the purposes of truncation.
126 *
127 * Returns 0 if we managed to create more room. If we can't create more
128 * room, and the transaction must be restarted we return 1.
129 */
130static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
131{
0390131b
FM
132 if (!ext4_handle_valid(handle))
133 return 0;
134 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
ac27a0ec 135 return 0;
617ba13b 136 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
137 return 0;
138 return 1;
139}
140
141/*
142 * Restart the transaction associated with *handle. This does a commit,
143 * so before we call here everything must be consistently dirtied against
144 * this transaction.
145 */
fa5d1113 146int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 147 int nblocks)
ac27a0ec 148{
487caeef
JK
149 int ret;
150
151 /*
e35fd660 152 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
153 * moment, get_block can be called only for blocks inside i_size since
154 * page cache has been already dropped and writes are blocked by
155 * i_mutex. So we can safely drop the i_data_sem here.
156 */
0390131b 157 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 158 jbd_debug(2, "restarting handle %p\n", handle);
487caeef
JK
159 up_write(&EXT4_I(inode)->i_data_sem);
160 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
161 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 162 ext4_discard_preallocations(inode);
487caeef
JK
163
164 return ret;
ac27a0ec
DK
165}
166
167/*
168 * Called at the last iput() if i_nlink is zero.
169 */
0930fcc1 170void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
171{
172 handle_t *handle;
bc965ab3 173 int err;
ac27a0ec 174
0930fcc1
AV
175 if (inode->i_nlink) {
176 truncate_inode_pages(&inode->i_data, 0);
177 goto no_delete;
178 }
179
907f4554 180 if (!is_bad_inode(inode))
871a2931 181 dquot_initialize(inode);
907f4554 182
678aaf48
JK
183 if (ext4_should_order_data(inode))
184 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
185 truncate_inode_pages(&inode->i_data, 0);
186
187 if (is_bad_inode(inode))
188 goto no_delete;
189
bc965ab3 190 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 191 if (IS_ERR(handle)) {
bc965ab3 192 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
193 /*
194 * If we're going to skip the normal cleanup, we still need to
195 * make sure that the in-core orphan linked list is properly
196 * cleaned up.
197 */
617ba13b 198 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
199 goto no_delete;
200 }
201
202 if (IS_SYNC(inode))
0390131b 203 ext4_handle_sync(handle);
ac27a0ec 204 inode->i_size = 0;
bc965ab3
TT
205 err = ext4_mark_inode_dirty(handle, inode);
206 if (err) {
12062ddd 207 ext4_warning(inode->i_sb,
bc965ab3
TT
208 "couldn't mark inode dirty (err %d)", err);
209 goto stop_handle;
210 }
ac27a0ec 211 if (inode->i_blocks)
617ba13b 212 ext4_truncate(inode);
bc965ab3
TT
213
214 /*
215 * ext4_ext_truncate() doesn't reserve any slop when it
216 * restarts journal transactions; therefore there may not be
217 * enough credits left in the handle to remove the inode from
218 * the orphan list and set the dtime field.
219 */
0390131b 220 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
221 err = ext4_journal_extend(handle, 3);
222 if (err > 0)
223 err = ext4_journal_restart(handle, 3);
224 if (err != 0) {
12062ddd 225 ext4_warning(inode->i_sb,
bc965ab3
TT
226 "couldn't extend journal (err %d)", err);
227 stop_handle:
228 ext4_journal_stop(handle);
45388219 229 ext4_orphan_del(NULL, inode);
bc965ab3
TT
230 goto no_delete;
231 }
232 }
233
ac27a0ec 234 /*
617ba13b 235 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 236 * AKPM: I think this can be inside the above `if'.
617ba13b 237 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 238 * deletion of a non-existent orphan - this is because we don't
617ba13b 239 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
240 * (Well, we could do this if we need to, but heck - it works)
241 */
617ba13b
MC
242 ext4_orphan_del(handle, inode);
243 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
244
245 /*
246 * One subtle ordering requirement: if anything has gone wrong
247 * (transaction abort, IO errors, whatever), then we can still
248 * do these next steps (the fs will already have been marked as
249 * having errors), but we can't free the inode if the mark_dirty
250 * fails.
251 */
617ba13b 252 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 253 /* If that failed, just do the required in-core inode clear. */
0930fcc1 254 ext4_clear_inode(inode);
ac27a0ec 255 else
617ba13b
MC
256 ext4_free_inode(handle, inode);
257 ext4_journal_stop(handle);
ac27a0ec
DK
258 return;
259no_delete:
0930fcc1 260 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
261}
262
263typedef struct {
264 __le32 *p;
265 __le32 key;
266 struct buffer_head *bh;
267} Indirect;
268
269static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
270{
271 p->key = *(p->p = v);
272 p->bh = bh;
273}
274
ac27a0ec 275/**
617ba13b 276 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
277 * @inode: inode in question (we are only interested in its superblock)
278 * @i_block: block number to be parsed
279 * @offsets: array to store the offsets in
8c55e204
DK
280 * @boundary: set this non-zero if the referred-to block is likely to be
281 * followed (on disk) by an indirect block.
ac27a0ec 282 *
617ba13b 283 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
284 * for UNIX filesystems - tree of pointers anchored in the inode, with
285 * data blocks at leaves and indirect blocks in intermediate nodes.
286 * This function translates the block number into path in that tree -
287 * return value is the path length and @offsets[n] is the offset of
288 * pointer to (n+1)th node in the nth one. If @block is out of range
289 * (negative or too large) warning is printed and zero returned.
290 *
291 * Note: function doesn't find node addresses, so no IO is needed. All
292 * we need to know is the capacity of indirect blocks (taken from the
293 * inode->i_sb).
294 */
295
296/*
297 * Portability note: the last comparison (check that we fit into triple
298 * indirect block) is spelled differently, because otherwise on an
299 * architecture with 32-bit longs and 8Kb pages we might get into trouble
300 * if our filesystem had 8Kb blocks. We might use long long, but that would
301 * kill us on x86. Oh, well, at least the sign propagation does not matter -
302 * i_block would have to be negative in the very beginning, so we would not
303 * get there at all.
304 */
305
617ba13b 306static int ext4_block_to_path(struct inode *inode,
de9a55b8
TT
307 ext4_lblk_t i_block,
308 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 309{
617ba13b
MC
310 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
311 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
312 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
313 indirect_blocks = ptrs,
314 double_blocks = (1 << (ptrs_bits * 2));
315 int n = 0;
316 int final = 0;
317
c333e073 318 if (i_block < direct_blocks) {
ac27a0ec
DK
319 offsets[n++] = i_block;
320 final = direct_blocks;
af5bc92d 321 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 322 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
323 offsets[n++] = i_block;
324 final = ptrs;
325 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 326 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
327 offsets[n++] = i_block >> ptrs_bits;
328 offsets[n++] = i_block & (ptrs - 1);
329 final = ptrs;
330 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 331 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
332 offsets[n++] = i_block >> (ptrs_bits * 2);
333 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
334 offsets[n++] = i_block & (ptrs - 1);
335 final = ptrs;
336 } else {
12062ddd 337 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
de9a55b8
TT
338 i_block + direct_blocks +
339 indirect_blocks + double_blocks, inode->i_ino);
ac27a0ec
DK
340 }
341 if (boundary)
342 *boundary = final - 1 - (i_block & (ptrs - 1));
343 return n;
344}
345
c398eda0
TT
346static int __ext4_check_blockref(const char *function, unsigned int line,
347 struct inode *inode,
6fd058f7
TT
348 __le32 *p, unsigned int max)
349{
1c13d5c0 350 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
f73953c0 351 __le32 *bref = p;
6fd058f7
TT
352 unsigned int blk;
353
fe2c8191 354 while (bref < p+max) {
6fd058f7 355 blk = le32_to_cpu(*bref++);
de9a55b8
TT
356 if (blk &&
357 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
6fd058f7 358 blk, 1))) {
1c13d5c0 359 es->s_last_error_block = cpu_to_le64(blk);
c398eda0
TT
360 ext4_error_inode(inode, function, line, blk,
361 "invalid block");
de9a55b8
TT
362 return -EIO;
363 }
364 }
365 return 0;
fe2c8191
TN
366}
367
368
369#define ext4_check_indirect_blockref(inode, bh) \
c398eda0
TT
370 __ext4_check_blockref(__func__, __LINE__, inode, \
371 (__le32 *)(bh)->b_data, \
fe2c8191
TN
372 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
373
374#define ext4_check_inode_blockref(inode) \
c398eda0
TT
375 __ext4_check_blockref(__func__, __LINE__, inode, \
376 EXT4_I(inode)->i_data, \
fe2c8191
TN
377 EXT4_NDIR_BLOCKS)
378
ac27a0ec 379/**
617ba13b 380 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
381 * @inode: inode in question
382 * @depth: depth of the chain (1 - direct pointer, etc.)
383 * @offsets: offsets of pointers in inode/indirect blocks
384 * @chain: place to store the result
385 * @err: here we store the error value
386 *
387 * Function fills the array of triples <key, p, bh> and returns %NULL
388 * if everything went OK or the pointer to the last filled triple
389 * (incomplete one) otherwise. Upon the return chain[i].key contains
390 * the number of (i+1)-th block in the chain (as it is stored in memory,
391 * i.e. little-endian 32-bit), chain[i].p contains the address of that
392 * number (it points into struct inode for i==0 and into the bh->b_data
393 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
394 * block for i>0 and NULL for i==0. In other words, it holds the block
395 * numbers of the chain, addresses they were taken from (and where we can
396 * verify that chain did not change) and buffer_heads hosting these
397 * numbers.
398 *
399 * Function stops when it stumbles upon zero pointer (absent block)
400 * (pointer to last triple returned, *@err == 0)
401 * or when it gets an IO error reading an indirect block
402 * (ditto, *@err == -EIO)
ac27a0ec
DK
403 * or when it reads all @depth-1 indirect blocks successfully and finds
404 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
405 *
406 * Need to be called with
0e855ac8 407 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 408 */
725d26d3
AK
409static Indirect *ext4_get_branch(struct inode *inode, int depth,
410 ext4_lblk_t *offsets,
ac27a0ec
DK
411 Indirect chain[4], int *err)
412{
413 struct super_block *sb = inode->i_sb;
414 Indirect *p = chain;
415 struct buffer_head *bh;
416
417 *err = 0;
418 /* i_data is not going away, no lock needed */
af5bc92d 419 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
420 if (!p->key)
421 goto no_block;
422 while (--depth) {
fe2c8191
TN
423 bh = sb_getblk(sb, le32_to_cpu(p->key));
424 if (unlikely(!bh))
ac27a0ec 425 goto failure;
de9a55b8 426
fe2c8191
TN
427 if (!bh_uptodate_or_lock(bh)) {
428 if (bh_submit_read(bh) < 0) {
429 put_bh(bh);
430 goto failure;
431 }
432 /* validate block references */
433 if (ext4_check_indirect_blockref(inode, bh)) {
434 put_bh(bh);
435 goto failure;
436 }
437 }
de9a55b8 438
af5bc92d 439 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
440 /* Reader: end */
441 if (!p->key)
442 goto no_block;
443 }
444 return NULL;
445
ac27a0ec
DK
446failure:
447 *err = -EIO;
448no_block:
449 return p;
450}
451
452/**
617ba13b 453 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
454 * @inode: owner
455 * @ind: descriptor of indirect block.
456 *
1cc8dcf5 457 * This function returns the preferred place for block allocation.
ac27a0ec
DK
458 * It is used when heuristic for sequential allocation fails.
459 * Rules are:
460 * + if there is a block to the left of our position - allocate near it.
461 * + if pointer will live in indirect block - allocate near that block.
462 * + if pointer will live in inode - allocate in the same
463 * cylinder group.
464 *
465 * In the latter case we colour the starting block by the callers PID to
466 * prevent it from clashing with concurrent allocations for a different inode
467 * in the same block group. The PID is used here so that functionally related
468 * files will be close-by on-disk.
469 *
470 * Caller must make sure that @ind is valid and will stay that way.
471 */
617ba13b 472static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 473{
617ba13b 474 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 475 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 476 __le32 *p;
617ba13b 477 ext4_fsblk_t bg_start;
74d3487f 478 ext4_fsblk_t last_block;
617ba13b 479 ext4_grpblk_t colour;
a4912123
TT
480 ext4_group_t block_group;
481 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
ac27a0ec
DK
482
483 /* Try to find previous block */
484 for (p = ind->p - 1; p >= start; p--) {
485 if (*p)
486 return le32_to_cpu(*p);
487 }
488
489 /* No such thing, so let's try location of indirect block */
490 if (ind->bh)
491 return ind->bh->b_blocknr;
492
493 /*
494 * It is going to be referred to from the inode itself? OK, just put it
495 * into the same cylinder group then.
496 */
a4912123
TT
497 block_group = ei->i_block_group;
498 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
499 block_group &= ~(flex_size-1);
500 if (S_ISREG(inode->i_mode))
501 block_group++;
502 }
503 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
74d3487f
VC
504 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
505
a4912123
TT
506 /*
507 * If we are doing delayed allocation, we don't need take
508 * colour into account.
509 */
510 if (test_opt(inode->i_sb, DELALLOC))
511 return bg_start;
512
74d3487f
VC
513 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
514 colour = (current->pid % 16) *
617ba13b 515 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
516 else
517 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
518 return bg_start + colour;
519}
520
521/**
1cc8dcf5 522 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
523 * @inode: owner
524 * @block: block we want
ac27a0ec 525 * @partial: pointer to the last triple within a chain
ac27a0ec 526 *
1cc8dcf5 527 * Normally this function find the preferred place for block allocation,
fb01bfda 528 * returns it.
fb0a387d
ES
529 * Because this is only used for non-extent files, we limit the block nr
530 * to 32 bits.
ac27a0ec 531 */
725d26d3 532static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
de9a55b8 533 Indirect *partial)
ac27a0ec 534{
fb0a387d
ES
535 ext4_fsblk_t goal;
536
ac27a0ec 537 /*
c2ea3fde 538 * XXX need to get goal block from mballoc's data structures
ac27a0ec 539 */
ac27a0ec 540
fb0a387d
ES
541 goal = ext4_find_near(inode, partial);
542 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
543 return goal;
ac27a0ec
DK
544}
545
546/**
617ba13b 547 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
548 * of direct blocks need to be allocated for the given branch.
549 *
550 * @branch: chain of indirect blocks
551 * @k: number of blocks need for indirect blocks
552 * @blks: number of data blocks to be mapped.
553 * @blocks_to_boundary: the offset in the indirect block
554 *
555 * return the total number of blocks to be allocate, including the
556 * direct and indirect blocks.
557 */
498e5f24 558static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
de9a55b8 559 int blocks_to_boundary)
ac27a0ec 560{
498e5f24 561 unsigned int count = 0;
ac27a0ec
DK
562
563 /*
564 * Simple case, [t,d]Indirect block(s) has not allocated yet
565 * then it's clear blocks on that path have not allocated
566 */
567 if (k > 0) {
568 /* right now we don't handle cross boundary allocation */
569 if (blks < blocks_to_boundary + 1)
570 count += blks;
571 else
572 count += blocks_to_boundary + 1;
573 return count;
574 }
575
576 count++;
577 while (count < blks && count <= blocks_to_boundary &&
578 le32_to_cpu(*(branch[0].p + count)) == 0) {
579 count++;
580 }
581 return count;
582}
583
584/**
617ba13b 585 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
586 * @indirect_blks: the number of blocks need to allocate for indirect
587 * blocks
588 *
589 * @new_blocks: on return it will store the new block numbers for
590 * the indirect blocks(if needed) and the first direct block,
591 * @blks: on return it will store the total number of allocated
592 * direct blocks
593 */
617ba13b 594static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
595 ext4_lblk_t iblock, ext4_fsblk_t goal,
596 int indirect_blks, int blks,
597 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 598{
815a1130 599 struct ext4_allocation_request ar;
ac27a0ec 600 int target, i;
7061eba7 601 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 602 int index = 0;
617ba13b 603 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
604 int ret = 0;
605
606 /*
607 * Here we try to allocate the requested multiple blocks at once,
608 * on a best-effort basis.
609 * To build a branch, we should allocate blocks for
610 * the indirect blocks(if not allocated yet), and at least
611 * the first direct block of this branch. That's the
612 * minimum number of blocks need to allocate(required)
613 */
7061eba7
AK
614 /* first we try to allocate the indirect blocks */
615 target = indirect_blks;
616 while (target > 0) {
ac27a0ec
DK
617 count = target;
618 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
619 current_block = ext4_new_meta_blocks(handle, inode,
620 goal, &count, err);
ac27a0ec
DK
621 if (*err)
622 goto failed_out;
623
273df556
FM
624 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
625 EXT4_ERROR_INODE(inode,
626 "current_block %llu + count %lu > %d!",
627 current_block, count,
628 EXT4_MAX_BLOCK_FILE_PHYS);
629 *err = -EIO;
630 goto failed_out;
631 }
fb0a387d 632
ac27a0ec
DK
633 target -= count;
634 /* allocate blocks for indirect blocks */
635 while (index < indirect_blks && count) {
636 new_blocks[index++] = current_block++;
637 count--;
638 }
7061eba7
AK
639 if (count > 0) {
640 /*
641 * save the new block number
642 * for the first direct block
643 */
644 new_blocks[index] = current_block;
645 printk(KERN_INFO "%s returned more blocks than "
646 "requested\n", __func__);
647 WARN_ON(1);
ac27a0ec 648 break;
7061eba7 649 }
ac27a0ec
DK
650 }
651
7061eba7
AK
652 target = blks - count ;
653 blk_allocated = count;
654 if (!target)
655 goto allocated;
656 /* Now allocate data blocks */
815a1130
TT
657 memset(&ar, 0, sizeof(ar));
658 ar.inode = inode;
659 ar.goal = goal;
660 ar.len = target;
661 ar.logical = iblock;
662 if (S_ISREG(inode->i_mode))
663 /* enable in-core preallocation only for regular files */
664 ar.flags = EXT4_MB_HINT_DATA;
665
666 current_block = ext4_mb_new_blocks(handle, &ar, err);
273df556
FM
667 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
668 EXT4_ERROR_INODE(inode,
669 "current_block %llu + ar.len %d > %d!",
670 current_block, ar.len,
671 EXT4_MAX_BLOCK_FILE_PHYS);
672 *err = -EIO;
673 goto failed_out;
674 }
815a1130 675
7061eba7
AK
676 if (*err && (target == blks)) {
677 /*
678 * if the allocation failed and we didn't allocate
679 * any blocks before
680 */
681 goto failed_out;
682 }
683 if (!*err) {
684 if (target == blks) {
de9a55b8
TT
685 /*
686 * save the new block number
687 * for the first direct block
688 */
7061eba7
AK
689 new_blocks[index] = current_block;
690 }
815a1130 691 blk_allocated += ar.len;
7061eba7
AK
692 }
693allocated:
ac27a0ec 694 /* total number of blocks allocated for direct blocks */
7061eba7 695 ret = blk_allocated;
ac27a0ec
DK
696 *err = 0;
697 return ret;
698failed_out:
af5bc92d 699 for (i = 0; i < index; i++)
e6362609 700 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
ac27a0ec
DK
701 return ret;
702}
703
704/**
617ba13b 705 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
706 * @inode: owner
707 * @indirect_blks: number of allocated indirect blocks
708 * @blks: number of allocated direct blocks
709 * @offsets: offsets (in the blocks) to store the pointers to next.
710 * @branch: place to store the chain in.
711 *
712 * This function allocates blocks, zeroes out all but the last one,
713 * links them into chain and (if we are synchronous) writes them to disk.
714 * In other words, it prepares a branch that can be spliced onto the
715 * inode. It stores the information about that chain in the branch[], in
617ba13b 716 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
717 * we had read the existing part of chain and partial points to the last
718 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 719 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
720 * place chain is disconnected - *branch->p is still zero (we did not
721 * set the last link), but branch->key contains the number that should
722 * be placed into *branch->p to fill that gap.
723 *
724 * If allocation fails we free all blocks we've allocated (and forget
725 * their buffer_heads) and return the error value the from failed
617ba13b 726 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
727 * as described above and return 0.
728 */
617ba13b 729static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
730 ext4_lblk_t iblock, int indirect_blks,
731 int *blks, ext4_fsblk_t goal,
732 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
733{
734 int blocksize = inode->i_sb->s_blocksize;
735 int i, n = 0;
736 int err = 0;
737 struct buffer_head *bh;
738 int num;
617ba13b
MC
739 ext4_fsblk_t new_blocks[4];
740 ext4_fsblk_t current_block;
ac27a0ec 741
7061eba7 742 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
743 *blks, new_blocks, &err);
744 if (err)
745 return err;
746
747 branch[0].key = cpu_to_le32(new_blocks[0]);
748 /*
749 * metadata blocks and data blocks are allocated.
750 */
751 for (n = 1; n <= indirect_blks; n++) {
752 /*
753 * Get buffer_head for parent block, zero it out
754 * and set the pointer to new one, then send
755 * parent to disk.
756 */
757 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
758 branch[n].bh = bh;
759 lock_buffer(bh);
760 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 761 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec 762 if (err) {
6487a9d3
CW
763 /* Don't brelse(bh) here; it's done in
764 * ext4_journal_forget() below */
ac27a0ec 765 unlock_buffer(bh);
ac27a0ec
DK
766 goto failed;
767 }
768
769 memset(bh->b_data, 0, blocksize);
770 branch[n].p = (__le32 *) bh->b_data + offsets[n];
771 branch[n].key = cpu_to_le32(new_blocks[n]);
772 *branch[n].p = branch[n].key;
af5bc92d 773 if (n == indirect_blks) {
ac27a0ec
DK
774 current_block = new_blocks[n];
775 /*
776 * End of chain, update the last new metablock of
777 * the chain to point to the new allocated
778 * data blocks numbers
779 */
de9a55b8 780 for (i = 1; i < num; i++)
ac27a0ec
DK
781 *(branch[n].p + i) = cpu_to_le32(++current_block);
782 }
783 BUFFER_TRACE(bh, "marking uptodate");
784 set_buffer_uptodate(bh);
785 unlock_buffer(bh);
786
0390131b
FM
787 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
788 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
789 if (err)
790 goto failed;
791 }
792 *blks = num;
793 return err;
794failed:
795 /* Allocation failed, free what we already allocated */
e6362609 796 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
ac27a0ec 797 for (i = 1; i <= n ; i++) {
60e6679e 798 /*
e6362609
TT
799 * branch[i].bh is newly allocated, so there is no
800 * need to revoke the block, which is why we don't
801 * need to set EXT4_FREE_BLOCKS_METADATA.
b7e57e7c 802 */
e6362609
TT
803 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
804 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec 805 }
e6362609
TT
806 for (i = n+1; i < indirect_blks; i++)
807 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
ac27a0ec 808
e6362609 809 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
ac27a0ec
DK
810
811 return err;
812}
813
814/**
617ba13b 815 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
816 * @inode: owner
817 * @block: (logical) number of block we are adding
818 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 819 * ext4_alloc_branch)
ac27a0ec
DK
820 * @where: location of missing link
821 * @num: number of indirect blocks we are adding
822 * @blks: number of direct blocks we are adding
823 *
824 * This function fills the missing link and does all housekeeping needed in
825 * inode (->i_blocks, etc.). In case of success we end up with the full
826 * chain to new block and return 0.
827 */
617ba13b 828static int ext4_splice_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
829 ext4_lblk_t block, Indirect *where, int num,
830 int blks)
ac27a0ec
DK
831{
832 int i;
833 int err = 0;
617ba13b 834 ext4_fsblk_t current_block;
ac27a0ec 835
ac27a0ec
DK
836 /*
837 * If we're splicing into a [td]indirect block (as opposed to the
838 * inode) then we need to get write access to the [td]indirect block
839 * before the splice.
840 */
841 if (where->bh) {
842 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 843 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
844 if (err)
845 goto err_out;
846 }
847 /* That's it */
848
849 *where->p = where->key;
850
851 /*
852 * Update the host buffer_head or inode to point to more just allocated
853 * direct blocks blocks
854 */
855 if (num == 0 && blks > 1) {
856 current_block = le32_to_cpu(where->key) + 1;
857 for (i = 1; i < blks; i++)
af5bc92d 858 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
859 }
860
ac27a0ec 861 /* We are done with atomic stuff, now do the rest of housekeeping */
ac27a0ec
DK
862 /* had we spliced it onto indirect block? */
863 if (where->bh) {
864 /*
865 * If we spliced it onto an indirect block, we haven't
866 * altered the inode. Note however that if it is being spliced
867 * onto an indirect block at the very end of the file (the
868 * file is growing) then we *will* alter the inode to reflect
869 * the new i_size. But that is not done here - it is done in
617ba13b 870 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
871 */
872 jbd_debug(5, "splicing indirect only\n");
0390131b
FM
873 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
874 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
ac27a0ec
DK
875 if (err)
876 goto err_out;
877 } else {
878 /*
879 * OK, we spliced it into the inode itself on a direct block.
ac27a0ec 880 */
41591750 881 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
882 jbd_debug(5, "splicing direct\n");
883 }
884 return err;
885
886err_out:
887 for (i = 1; i <= num; i++) {
60e6679e 888 /*
e6362609
TT
889 * branch[i].bh is newly allocated, so there is no
890 * need to revoke the block, which is why we don't
891 * need to set EXT4_FREE_BLOCKS_METADATA.
b7e57e7c 892 */
e6362609
TT
893 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
894 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec 895 }
e6362609
TT
896 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
897 blks, 0);
ac27a0ec
DK
898
899 return err;
900}
901
902/*
e35fd660 903 * The ext4_ind_map_blocks() function handles non-extents inodes
b920c755 904 * (i.e., using the traditional indirect/double-indirect i_blocks
e35fd660 905 * scheme) for ext4_map_blocks().
b920c755 906 *
ac27a0ec
DK
907 * Allocation strategy is simple: if we have to allocate something, we will
908 * have to go the whole way to leaf. So let's do it before attaching anything
909 * to tree, set linkage between the newborn blocks, write them if sync is
910 * required, recheck the path, free and repeat if check fails, otherwise
911 * set the last missing link (that will protect us from any truncate-generated
912 * removals - all blocks on the path are immune now) and possibly force the
913 * write on the parent block.
914 * That has a nice additional property: no special recovery from the failed
915 * allocations is needed - we simply release blocks and do not touch anything
916 * reachable from inode.
917 *
918 * `handle' can be NULL if create == 0.
919 *
ac27a0ec
DK
920 * return > 0, # of blocks mapped or allocated.
921 * return = 0, if plain lookup failed.
922 * return < 0, error case.
c278bfec 923 *
b920c755
TT
924 * The ext4_ind_get_blocks() function should be called with
925 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
926 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
927 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
928 * blocks.
ac27a0ec 929 */
e35fd660
TT
930static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
931 struct ext4_map_blocks *map,
de9a55b8 932 int flags)
ac27a0ec
DK
933{
934 int err = -EIO;
725d26d3 935 ext4_lblk_t offsets[4];
ac27a0ec
DK
936 Indirect chain[4];
937 Indirect *partial;
617ba13b 938 ext4_fsblk_t goal;
ac27a0ec
DK
939 int indirect_blks;
940 int blocks_to_boundary = 0;
941 int depth;
ac27a0ec 942 int count = 0;
617ba13b 943 ext4_fsblk_t first_block = 0;
ac27a0ec 944
12e9b892 945 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
c2177057 946 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
e35fd660 947 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
de9a55b8 948 &blocks_to_boundary);
ac27a0ec
DK
949
950 if (depth == 0)
951 goto out;
952
617ba13b 953 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
954
955 /* Simplest case - block found, no allocation needed */
956 if (!partial) {
957 first_block = le32_to_cpu(chain[depth - 1].key);
ac27a0ec
DK
958 count++;
959 /*map more blocks*/
e35fd660 960 while (count < map->m_len && count <= blocks_to_boundary) {
617ba13b 961 ext4_fsblk_t blk;
ac27a0ec 962
ac27a0ec
DK
963 blk = le32_to_cpu(*(chain[depth-1].p + count));
964
965 if (blk == first_block + count)
966 count++;
967 else
968 break;
969 }
c278bfec 970 goto got_it;
ac27a0ec
DK
971 }
972
973 /* Next simple case - plain lookup or failed read of indirect block */
c2177057 974 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
ac27a0ec
DK
975 goto cleanup;
976
ac27a0ec 977 /*
c2ea3fde 978 * Okay, we need to do block allocation.
ac27a0ec 979 */
e35fd660 980 goal = ext4_find_goal(inode, map->m_lblk, partial);
ac27a0ec
DK
981
982 /* the number of blocks need to allocate for [d,t]indirect blocks */
983 indirect_blks = (chain + depth) - partial - 1;
984
985 /*
986 * Next look up the indirect map to count the totoal number of
987 * direct blocks to allocate for this branch.
988 */
617ba13b 989 count = ext4_blks_to_allocate(partial, indirect_blks,
e35fd660 990 map->m_len, blocks_to_boundary);
ac27a0ec 991 /*
617ba13b 992 * Block out ext4_truncate while we alter the tree
ac27a0ec 993 */
e35fd660 994 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
de9a55b8
TT
995 &count, goal,
996 offsets + (partial - chain), partial);
ac27a0ec
DK
997
998 /*
617ba13b 999 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
1000 * on the new chain if there is a failure, but that risks using
1001 * up transaction credits, especially for bitmaps where the
1002 * credits cannot be returned. Can we handle this somehow? We
1003 * may need to return -EAGAIN upwards in the worst case. --sct
1004 */
1005 if (!err)
e35fd660 1006 err = ext4_splice_branch(handle, inode, map->m_lblk,
de9a55b8 1007 partial, indirect_blks, count);
2bba702d 1008 if (err)
ac27a0ec
DK
1009 goto cleanup;
1010
e35fd660 1011 map->m_flags |= EXT4_MAP_NEW;
b436b9be
JK
1012
1013 ext4_update_inode_fsync_trans(handle, inode, 1);
ac27a0ec 1014got_it:
e35fd660
TT
1015 map->m_flags |= EXT4_MAP_MAPPED;
1016 map->m_pblk = le32_to_cpu(chain[depth-1].key);
1017 map->m_len = count;
ac27a0ec 1018 if (count > blocks_to_boundary)
e35fd660 1019 map->m_flags |= EXT4_MAP_BOUNDARY;
ac27a0ec
DK
1020 err = count;
1021 /* Clean up and exit */
1022 partial = chain + depth - 1; /* the whole chain */
1023cleanup:
1024 while (partial > chain) {
1025 BUFFER_TRACE(partial->bh, "call brelse");
1026 brelse(partial->bh);
1027 partial--;
1028 }
ac27a0ec
DK
1029out:
1030 return err;
1031}
1032
a9e7f447
DM
1033#ifdef CONFIG_QUOTA
1034qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 1035{
a9e7f447 1036 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 1037}
a9e7f447 1038#endif
9d0be502 1039
12219aea
AK
1040/*
1041 * Calculate the number of metadata blocks need to reserve
9d0be502 1042 * to allocate a new block at @lblocks for non extent file based file
12219aea 1043 */
9d0be502
TT
1044static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1045 sector_t lblock)
12219aea 1046{
9d0be502 1047 struct ext4_inode_info *ei = EXT4_I(inode);
d330a5be 1048 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
9d0be502 1049 int blk_bits;
12219aea 1050
9d0be502
TT
1051 if (lblock < EXT4_NDIR_BLOCKS)
1052 return 0;
12219aea 1053
9d0be502 1054 lblock -= EXT4_NDIR_BLOCKS;
12219aea 1055
9d0be502
TT
1056 if (ei->i_da_metadata_calc_len &&
1057 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1058 ei->i_da_metadata_calc_len++;
1059 return 0;
1060 }
1061 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1062 ei->i_da_metadata_calc_len = 1;
d330a5be 1063 blk_bits = order_base_2(lblock);
9d0be502 1064 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
12219aea
AK
1065}
1066
1067/*
1068 * Calculate the number of metadata blocks need to reserve
9d0be502 1069 * to allocate a block located at @lblock
12219aea 1070 */
9d0be502 1071static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
12219aea 1072{
12e9b892 1073 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 1074 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 1075
9d0be502 1076 return ext4_indirect_calc_metadata_amount(inode, lblock);
12219aea
AK
1077}
1078
0637c6f4
TT
1079/*
1080 * Called with i_data_sem down, which is important since we can call
1081 * ext4_discard_preallocations() from here.
1082 */
5f634d06
AK
1083void ext4_da_update_reserve_space(struct inode *inode,
1084 int used, int quota_claim)
12219aea
AK
1085{
1086 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1087 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
1088
1089 spin_lock(&ei->i_block_reservation_lock);
f8ec9d68 1090 trace_ext4_da_update_reserve_space(inode, used);
0637c6f4
TT
1091 if (unlikely(used > ei->i_reserved_data_blocks)) {
1092 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1093 "with only %d reserved data blocks\n",
1094 __func__, inode->i_ino, used,
1095 ei->i_reserved_data_blocks);
1096 WARN_ON(1);
1097 used = ei->i_reserved_data_blocks;
1098 }
12219aea 1099
0637c6f4
TT
1100 /* Update per-inode reservations */
1101 ei->i_reserved_data_blocks -= used;
0637c6f4 1102 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
72b8ab9d
ES
1103 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1104 used + ei->i_allocated_meta_blocks);
0637c6f4 1105 ei->i_allocated_meta_blocks = 0;
6bc6e63f 1106
0637c6f4
TT
1107 if (ei->i_reserved_data_blocks == 0) {
1108 /*
1109 * We can release all of the reserved metadata blocks
1110 * only when we have written all of the delayed
1111 * allocation blocks.
1112 */
72b8ab9d
ES
1113 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1114 ei->i_reserved_meta_blocks);
ee5f4d9c 1115 ei->i_reserved_meta_blocks = 0;
9d0be502 1116 ei->i_da_metadata_calc_len = 0;
6bc6e63f 1117 }
12219aea 1118 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1119
72b8ab9d
ES
1120 /* Update quota subsystem for data blocks */
1121 if (quota_claim)
5dd4056d 1122 dquot_claim_block(inode, used);
72b8ab9d 1123 else {
5f634d06
AK
1124 /*
1125 * We did fallocate with an offset that is already delayed
1126 * allocated. So on delayed allocated writeback we should
72b8ab9d 1127 * not re-claim the quota for fallocated blocks.
5f634d06 1128 */
72b8ab9d 1129 dquot_release_reservation_block(inode, used);
5f634d06 1130 }
d6014301
AK
1131
1132 /*
1133 * If we have done all the pending block allocations and if
1134 * there aren't any writers on the inode, we can discard the
1135 * inode's preallocations.
1136 */
0637c6f4
TT
1137 if ((ei->i_reserved_data_blocks == 0) &&
1138 (atomic_read(&inode->i_writecount) == 0))
d6014301 1139 ext4_discard_preallocations(inode);
12219aea
AK
1140}
1141
e29136f8 1142static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
1143 unsigned int line,
1144 struct ext4_map_blocks *map)
6fd058f7 1145{
24676da4
TT
1146 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1147 map->m_len)) {
c398eda0
TT
1148 ext4_error_inode(inode, func, line, map->m_pblk,
1149 "lblock %lu mapped to illegal pblock "
1150 "(length %d)", (unsigned long) map->m_lblk,
1151 map->m_len);
6fd058f7
TT
1152 return -EIO;
1153 }
1154 return 0;
1155}
1156
e29136f8 1157#define check_block_validity(inode, map) \
c398eda0 1158 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 1159
55138e0b 1160/*
1f94533d
TT
1161 * Return the number of contiguous dirty pages in a given inode
1162 * starting at page frame idx.
55138e0b
TT
1163 */
1164static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1165 unsigned int max_pages)
1166{
1167 struct address_space *mapping = inode->i_mapping;
1168 pgoff_t index;
1169 struct pagevec pvec;
1170 pgoff_t num = 0;
1171 int i, nr_pages, done = 0;
1172
1173 if (max_pages == 0)
1174 return 0;
1175 pagevec_init(&pvec, 0);
1176 while (!done) {
1177 index = idx;
1178 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1179 PAGECACHE_TAG_DIRTY,
1180 (pgoff_t)PAGEVEC_SIZE);
1181 if (nr_pages == 0)
1182 break;
1183 for (i = 0; i < nr_pages; i++) {
1184 struct page *page = pvec.pages[i];
1185 struct buffer_head *bh, *head;
1186
1187 lock_page(page);
1188 if (unlikely(page->mapping != mapping) ||
1189 !PageDirty(page) ||
1190 PageWriteback(page) ||
1191 page->index != idx) {
1192 done = 1;
1193 unlock_page(page);
1194 break;
1195 }
1f94533d
TT
1196 if (page_has_buffers(page)) {
1197 bh = head = page_buffers(page);
1198 do {
1199 if (!buffer_delay(bh) &&
1200 !buffer_unwritten(bh))
1201 done = 1;
1202 bh = bh->b_this_page;
1203 } while (!done && (bh != head));
1204 }
55138e0b
TT
1205 unlock_page(page);
1206 if (done)
1207 break;
1208 idx++;
1209 num++;
659c6009
ES
1210 if (num >= max_pages) {
1211 done = 1;
55138e0b 1212 break;
659c6009 1213 }
55138e0b
TT
1214 }
1215 pagevec_release(&pvec);
1216 }
1217 return num;
1218}
1219
f5ab0d1f 1220/*
e35fd660 1221 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 1222 * and returns if the blocks are already mapped.
f5ab0d1f 1223 *
f5ab0d1f
MC
1224 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1225 * and store the allocated blocks in the result buffer head and mark it
1226 * mapped.
1227 *
e35fd660
TT
1228 * If file type is extents based, it will call ext4_ext_map_blocks(),
1229 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
1230 * based files
1231 *
1232 * On success, it returns the number of blocks being mapped or allocate.
1233 * if create==0 and the blocks are pre-allocated and uninitialized block,
1234 * the result buffer head is unmapped. If the create ==1, it will make sure
1235 * the buffer head is mapped.
1236 *
1237 * It returns 0 if plain look up failed (blocks have not been allocated), in
1238 * that casem, buffer head is unmapped
1239 *
1240 * It returns the error in case of allocation failure.
1241 */
e35fd660
TT
1242int ext4_map_blocks(handle_t *handle, struct inode *inode,
1243 struct ext4_map_blocks *map, int flags)
0e855ac8
AK
1244{
1245 int retval;
f5ab0d1f 1246
e35fd660
TT
1247 map->m_flags = 0;
1248 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1249 "logical block %lu\n", inode->i_ino, flags, map->m_len,
1250 (unsigned long) map->m_lblk);
4df3d265 1251 /*
b920c755
TT
1252 * Try to see if we can get the block without requesting a new
1253 * file system block.
4df3d265
AK
1254 */
1255 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 1256 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 1257 retval = ext4_ext_map_blocks(handle, inode, map, 0);
0e855ac8 1258 } else {
e35fd660 1259 retval = ext4_ind_map_blocks(handle, inode, map, 0);
0e855ac8 1260 }
4df3d265 1261 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 1262
e35fd660 1263 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 1264 int ret = check_block_validity(inode, map);
6fd058f7
TT
1265 if (ret != 0)
1266 return ret;
1267 }
1268
f5ab0d1f 1269 /* If it is only a block(s) look up */
c2177057 1270 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
1271 return retval;
1272
1273 /*
1274 * Returns if the blocks have already allocated
1275 *
1276 * Note that if blocks have been preallocated
1277 * ext4_ext_get_block() returns th create = 0
1278 * with buffer head unmapped.
1279 */
e35fd660 1280 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
1281 return retval;
1282
2a8964d6
AK
1283 /*
1284 * When we call get_blocks without the create flag, the
1285 * BH_Unwritten flag could have gotten set if the blocks
1286 * requested were part of a uninitialized extent. We need to
1287 * clear this flag now that we are committed to convert all or
1288 * part of the uninitialized extent to be an initialized
1289 * extent. This is because we need to avoid the combination
1290 * of BH_Unwritten and BH_Mapped flags being simultaneously
1291 * set on the buffer_head.
1292 */
e35fd660 1293 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
2a8964d6 1294
4df3d265 1295 /*
f5ab0d1f
MC
1296 * New blocks allocate and/or writing to uninitialized extent
1297 * will possibly result in updating i_data, so we take
1298 * the write lock of i_data_sem, and call get_blocks()
1299 * with create == 1 flag.
4df3d265
AK
1300 */
1301 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1302
1303 /*
1304 * if the caller is from delayed allocation writeout path
1305 * we have already reserved fs blocks for allocation
1306 * let the underlying get_block() function know to
1307 * avoid double accounting
1308 */
c2177057 1309 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1310 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1311 /*
1312 * We need to check for EXT4 here because migrate
1313 * could have changed the inode type in between
1314 */
12e9b892 1315 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 1316 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 1317 } else {
e35fd660 1318 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 1319
e35fd660 1320 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
1321 /*
1322 * We allocated new blocks which will result in
1323 * i_data's format changing. Force the migrate
1324 * to fail by clearing migrate flags
1325 */
19f5fb7a 1326 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 1327 }
d2a17637 1328
5f634d06
AK
1329 /*
1330 * Update reserved blocks/metadata blocks after successful
1331 * block allocation which had been deferred till now. We don't
1332 * support fallocate for non extent files. So we can update
1333 * reserve space here.
1334 */
1335 if ((retval > 0) &&
1296cc85 1336 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
1337 ext4_da_update_reserve_space(inode, retval, 1);
1338 }
2ac3b6e0 1339 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1340 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
2ac3b6e0 1341
4df3d265 1342 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 1343 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 1344 int ret = check_block_validity(inode, map);
6fd058f7
TT
1345 if (ret != 0)
1346 return ret;
1347 }
0e855ac8
AK
1348 return retval;
1349}
1350
f3bd1f3f
MC
1351/* Maximum number of blocks we map for direct IO at once. */
1352#define DIO_MAX_BLOCKS 4096
1353
2ed88685
TT
1354static int _ext4_get_block(struct inode *inode, sector_t iblock,
1355 struct buffer_head *bh, int flags)
ac27a0ec 1356{
3e4fdaf8 1357 handle_t *handle = ext4_journal_current_handle();
2ed88685 1358 struct ext4_map_blocks map;
7fb5409d 1359 int ret = 0, started = 0;
f3bd1f3f 1360 int dio_credits;
ac27a0ec 1361
2ed88685
TT
1362 map.m_lblk = iblock;
1363 map.m_len = bh->b_size >> inode->i_blkbits;
1364
1365 if (flags && !handle) {
7fb5409d 1366 /* Direct IO write... */
2ed88685
TT
1367 if (map.m_len > DIO_MAX_BLOCKS)
1368 map.m_len = DIO_MAX_BLOCKS;
1369 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
f3bd1f3f 1370 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1371 if (IS_ERR(handle)) {
ac27a0ec 1372 ret = PTR_ERR(handle);
2ed88685 1373 return ret;
ac27a0ec 1374 }
7fb5409d 1375 started = 1;
ac27a0ec
DK
1376 }
1377
2ed88685 1378 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 1379 if (ret > 0) {
2ed88685
TT
1380 map_bh(bh, inode->i_sb, map.m_pblk);
1381 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1382 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 1383 ret = 0;
ac27a0ec 1384 }
7fb5409d
JK
1385 if (started)
1386 ext4_journal_stop(handle);
ac27a0ec
DK
1387 return ret;
1388}
1389
2ed88685
TT
1390int ext4_get_block(struct inode *inode, sector_t iblock,
1391 struct buffer_head *bh, int create)
1392{
1393 return _ext4_get_block(inode, iblock, bh,
1394 create ? EXT4_GET_BLOCKS_CREATE : 0);
1395}
1396
ac27a0ec
DK
1397/*
1398 * `handle' can be NULL if create is zero
1399 */
617ba13b 1400struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1401 ext4_lblk_t block, int create, int *errp)
ac27a0ec 1402{
2ed88685
TT
1403 struct ext4_map_blocks map;
1404 struct buffer_head *bh;
ac27a0ec
DK
1405 int fatal = 0, err;
1406
1407 J_ASSERT(handle != NULL || create == 0);
1408
2ed88685
TT
1409 map.m_lblk = block;
1410 map.m_len = 1;
1411 err = ext4_map_blocks(handle, inode, &map,
1412 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 1413
2ed88685
TT
1414 if (err < 0)
1415 *errp = err;
1416 if (err <= 0)
1417 return NULL;
1418 *errp = 0;
1419
1420 bh = sb_getblk(inode->i_sb, map.m_pblk);
1421 if (!bh) {
1422 *errp = -EIO;
1423 return NULL;
ac27a0ec 1424 }
2ed88685
TT
1425 if (map.m_flags & EXT4_MAP_NEW) {
1426 J_ASSERT(create != 0);
1427 J_ASSERT(handle != NULL);
ac27a0ec 1428
2ed88685
TT
1429 /*
1430 * Now that we do not always journal data, we should
1431 * keep in mind whether this should always journal the
1432 * new buffer as metadata. For now, regular file
1433 * writes use ext4_get_block instead, so it's not a
1434 * problem.
1435 */
1436 lock_buffer(bh);
1437 BUFFER_TRACE(bh, "call get_create_access");
1438 fatal = ext4_journal_get_create_access(handle, bh);
1439 if (!fatal && !buffer_uptodate(bh)) {
1440 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1441 set_buffer_uptodate(bh);
ac27a0ec 1442 }
2ed88685
TT
1443 unlock_buffer(bh);
1444 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1445 err = ext4_handle_dirty_metadata(handle, inode, bh);
1446 if (!fatal)
1447 fatal = err;
1448 } else {
1449 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 1450 }
2ed88685
TT
1451 if (fatal) {
1452 *errp = fatal;
1453 brelse(bh);
1454 bh = NULL;
1455 }
1456 return bh;
ac27a0ec
DK
1457}
1458
617ba13b 1459struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1460 ext4_lblk_t block, int create, int *err)
ac27a0ec 1461{
af5bc92d 1462 struct buffer_head *bh;
ac27a0ec 1463
617ba13b 1464 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1465 if (!bh)
1466 return bh;
1467 if (buffer_uptodate(bh))
1468 return bh;
1469 ll_rw_block(READ_META, 1, &bh);
1470 wait_on_buffer(bh);
1471 if (buffer_uptodate(bh))
1472 return bh;
1473 put_bh(bh);
1474 *err = -EIO;
1475 return NULL;
1476}
1477
af5bc92d
TT
1478static int walk_page_buffers(handle_t *handle,
1479 struct buffer_head *head,
1480 unsigned from,
1481 unsigned to,
1482 int *partial,
1483 int (*fn)(handle_t *handle,
1484 struct buffer_head *bh))
ac27a0ec
DK
1485{
1486 struct buffer_head *bh;
1487 unsigned block_start, block_end;
1488 unsigned blocksize = head->b_size;
1489 int err, ret = 0;
1490 struct buffer_head *next;
1491
af5bc92d
TT
1492 for (bh = head, block_start = 0;
1493 ret == 0 && (bh != head || !block_start);
de9a55b8 1494 block_start = block_end, bh = next) {
ac27a0ec
DK
1495 next = bh->b_this_page;
1496 block_end = block_start + blocksize;
1497 if (block_end <= from || block_start >= to) {
1498 if (partial && !buffer_uptodate(bh))
1499 *partial = 1;
1500 continue;
1501 }
1502 err = (*fn)(handle, bh);
1503 if (!ret)
1504 ret = err;
1505 }
1506 return ret;
1507}
1508
1509/*
1510 * To preserve ordering, it is essential that the hole instantiation and
1511 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1512 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1513 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1514 * prepare_write() is the right place.
1515 *
617ba13b
MC
1516 * Also, this function can nest inside ext4_writepage() ->
1517 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1518 * has generated enough buffer credits to do the whole page. So we won't
1519 * block on the journal in that case, which is good, because the caller may
1520 * be PF_MEMALLOC.
1521 *
617ba13b 1522 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1523 * quota file writes. If we were to commit the transaction while thus
1524 * reentered, there can be a deadlock - we would be holding a quota
1525 * lock, and the commit would never complete if another thread had a
1526 * transaction open and was blocking on the quota lock - a ranking
1527 * violation.
1528 *
dab291af 1529 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1530 * will _not_ run commit under these circumstances because handle->h_ref
1531 * is elevated. We'll still have enough credits for the tiny quotafile
1532 * write.
1533 */
1534static int do_journal_get_write_access(handle_t *handle,
de9a55b8 1535 struct buffer_head *bh)
ac27a0ec 1536{
56d35a4c
JK
1537 int dirty = buffer_dirty(bh);
1538 int ret;
1539
ac27a0ec
DK
1540 if (!buffer_mapped(bh) || buffer_freed(bh))
1541 return 0;
56d35a4c
JK
1542 /*
1543 * __block_prepare_write() could have dirtied some buffers. Clean
1544 * the dirty bit as jbd2_journal_get_write_access() could complain
1545 * otherwise about fs integrity issues. Setting of the dirty bit
1546 * by __block_prepare_write() isn't a real problem here as we clear
1547 * the bit before releasing a page lock and thus writeback cannot
1548 * ever write the buffer.
1549 */
1550 if (dirty)
1551 clear_buffer_dirty(bh);
1552 ret = ext4_journal_get_write_access(handle, bh);
1553 if (!ret && dirty)
1554 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1555 return ret;
ac27a0ec
DK
1556}
1557
b9a4207d
JK
1558/*
1559 * Truncate blocks that were not used by write. We have to truncate the
1560 * pagecache as well so that corresponding buffers get properly unmapped.
1561 */
1562static void ext4_truncate_failed_write(struct inode *inode)
1563{
1564 truncate_inode_pages(inode->i_mapping, inode->i_size);
1565 ext4_truncate(inode);
1566}
1567
744692dc
JZ
1568static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1569 struct buffer_head *bh_result, int create);
bfc1af65 1570static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1571 loff_t pos, unsigned len, unsigned flags,
1572 struct page **pagep, void **fsdata)
ac27a0ec 1573{
af5bc92d 1574 struct inode *inode = mapping->host;
1938a150 1575 int ret, needed_blocks;
ac27a0ec
DK
1576 handle_t *handle;
1577 int retries = 0;
af5bc92d 1578 struct page *page;
de9a55b8 1579 pgoff_t index;
af5bc92d 1580 unsigned from, to;
bfc1af65 1581
9bffad1e 1582 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1583 /*
1584 * Reserve one block more for addition to orphan list in case
1585 * we allocate blocks but write fails for some reason
1586 */
1587 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 1588 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1589 from = pos & (PAGE_CACHE_SIZE - 1);
1590 to = from + len;
ac27a0ec
DK
1591
1592retry:
af5bc92d
TT
1593 handle = ext4_journal_start(inode, needed_blocks);
1594 if (IS_ERR(handle)) {
1595 ret = PTR_ERR(handle);
1596 goto out;
7479d2b9 1597 }
ac27a0ec 1598
ebd3610b
JK
1599 /* We cannot recurse into the filesystem as the transaction is already
1600 * started */
1601 flags |= AOP_FLAG_NOFS;
1602
54566b2c 1603 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1604 if (!page) {
1605 ext4_journal_stop(handle);
1606 ret = -ENOMEM;
1607 goto out;
1608 }
1609 *pagep = page;
1610
744692dc 1611 if (ext4_should_dioread_nolock(inode))
6e1db88d 1612 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 1613 else
6e1db88d 1614 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
1615
1616 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1617 ret = walk_page_buffers(handle, page_buffers(page),
1618 from, to, NULL, do_journal_get_write_access);
1619 }
bfc1af65
NP
1620
1621 if (ret) {
af5bc92d 1622 unlock_page(page);
af5bc92d 1623 page_cache_release(page);
ae4d5372 1624 /*
6e1db88d 1625 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1626 * outside i_size. Trim these off again. Don't need
1627 * i_size_read because we hold i_mutex.
1938a150
AK
1628 *
1629 * Add inode to orphan list in case we crash before
1630 * truncate finishes
ae4d5372 1631 */
ffacfa7a 1632 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1633 ext4_orphan_add(handle, inode);
1634
1635 ext4_journal_stop(handle);
1636 if (pos + len > inode->i_size) {
b9a4207d 1637 ext4_truncate_failed_write(inode);
de9a55b8 1638 /*
ffacfa7a 1639 * If truncate failed early the inode might
1938a150
AK
1640 * still be on the orphan list; we need to
1641 * make sure the inode is removed from the
1642 * orphan list in that case.
1643 */
1644 if (inode->i_nlink)
1645 ext4_orphan_del(NULL, inode);
1646 }
bfc1af65
NP
1647 }
1648
617ba13b 1649 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1650 goto retry;
7479d2b9 1651out:
ac27a0ec
DK
1652 return ret;
1653}
1654
bfc1af65
NP
1655/* For write_end() in data=journal mode */
1656static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1657{
1658 if (!buffer_mapped(bh) || buffer_freed(bh))
1659 return 0;
1660 set_buffer_uptodate(bh);
0390131b 1661 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1662}
1663
f8514083 1664static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
1665 struct address_space *mapping,
1666 loff_t pos, unsigned len, unsigned copied,
1667 struct page *page, void *fsdata)
f8514083
AK
1668{
1669 int i_size_changed = 0;
1670 struct inode *inode = mapping->host;
1671 handle_t *handle = ext4_journal_current_handle();
1672
1673 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1674
1675 /*
1676 * No need to use i_size_read() here, the i_size
1677 * cannot change under us because we hold i_mutex.
1678 *
1679 * But it's important to update i_size while still holding page lock:
1680 * page writeout could otherwise come in and zero beyond i_size.
1681 */
1682 if (pos + copied > inode->i_size) {
1683 i_size_write(inode, pos + copied);
1684 i_size_changed = 1;
1685 }
1686
1687 if (pos + copied > EXT4_I(inode)->i_disksize) {
1688 /* We need to mark inode dirty even if
1689 * new_i_size is less that inode->i_size
1690 * bu greater than i_disksize.(hint delalloc)
1691 */
1692 ext4_update_i_disksize(inode, (pos + copied));
1693 i_size_changed = 1;
1694 }
1695 unlock_page(page);
1696 page_cache_release(page);
1697
1698 /*
1699 * Don't mark the inode dirty under page lock. First, it unnecessarily
1700 * makes the holding time of page lock longer. Second, it forces lock
1701 * ordering of page lock and transaction start for journaling
1702 * filesystems.
1703 */
1704 if (i_size_changed)
1705 ext4_mark_inode_dirty(handle, inode);
1706
1707 return copied;
1708}
1709
ac27a0ec
DK
1710/*
1711 * We need to pick up the new inode size which generic_commit_write gave us
1712 * `file' can be NULL - eg, when called from page_symlink().
1713 *
617ba13b 1714 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1715 * buffers are managed internally.
1716 */
bfc1af65 1717static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
1718 struct address_space *mapping,
1719 loff_t pos, unsigned len, unsigned copied,
1720 struct page *page, void *fsdata)
ac27a0ec 1721{
617ba13b 1722 handle_t *handle = ext4_journal_current_handle();
cf108bca 1723 struct inode *inode = mapping->host;
ac27a0ec
DK
1724 int ret = 0, ret2;
1725
9bffad1e 1726 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 1727 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1728
1729 if (ret == 0) {
f8514083 1730 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1731 page, fsdata);
f8a87d89 1732 copied = ret2;
ffacfa7a 1733 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1734 /* if we have allocated more blocks and copied
1735 * less. We will have blocks allocated outside
1736 * inode->i_size. So truncate them
1737 */
1738 ext4_orphan_add(handle, inode);
f8a87d89
RK
1739 if (ret2 < 0)
1740 ret = ret2;
ac27a0ec 1741 }
617ba13b 1742 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1743 if (!ret)
1744 ret = ret2;
bfc1af65 1745
f8514083 1746 if (pos + len > inode->i_size) {
b9a4207d 1747 ext4_truncate_failed_write(inode);
de9a55b8 1748 /*
ffacfa7a 1749 * If truncate failed early the inode might still be
f8514083
AK
1750 * on the orphan list; we need to make sure the inode
1751 * is removed from the orphan list in that case.
1752 */
1753 if (inode->i_nlink)
1754 ext4_orphan_del(NULL, inode);
1755 }
1756
1757
bfc1af65 1758 return ret ? ret : copied;
ac27a0ec
DK
1759}
1760
bfc1af65 1761static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
1762 struct address_space *mapping,
1763 loff_t pos, unsigned len, unsigned copied,
1764 struct page *page, void *fsdata)
ac27a0ec 1765{
617ba13b 1766 handle_t *handle = ext4_journal_current_handle();
cf108bca 1767 struct inode *inode = mapping->host;
ac27a0ec 1768 int ret = 0, ret2;
ac27a0ec 1769
9bffad1e 1770 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 1771 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1772 page, fsdata);
f8a87d89 1773 copied = ret2;
ffacfa7a 1774 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1775 /* if we have allocated more blocks and copied
1776 * less. We will have blocks allocated outside
1777 * inode->i_size. So truncate them
1778 */
1779 ext4_orphan_add(handle, inode);
1780
f8a87d89
RK
1781 if (ret2 < 0)
1782 ret = ret2;
ac27a0ec 1783
617ba13b 1784 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1785 if (!ret)
1786 ret = ret2;
bfc1af65 1787
f8514083 1788 if (pos + len > inode->i_size) {
b9a4207d 1789 ext4_truncate_failed_write(inode);
de9a55b8 1790 /*
ffacfa7a 1791 * If truncate failed early the inode might still be
f8514083
AK
1792 * on the orphan list; we need to make sure the inode
1793 * is removed from the orphan list in that case.
1794 */
1795 if (inode->i_nlink)
1796 ext4_orphan_del(NULL, inode);
1797 }
1798
bfc1af65 1799 return ret ? ret : copied;
ac27a0ec
DK
1800}
1801
bfc1af65 1802static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1803 struct address_space *mapping,
1804 loff_t pos, unsigned len, unsigned copied,
1805 struct page *page, void *fsdata)
ac27a0ec 1806{
617ba13b 1807 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1808 struct inode *inode = mapping->host;
ac27a0ec
DK
1809 int ret = 0, ret2;
1810 int partial = 0;
bfc1af65 1811 unsigned from, to;
cf17fea6 1812 loff_t new_i_size;
ac27a0ec 1813
9bffad1e 1814 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1815 from = pos & (PAGE_CACHE_SIZE - 1);
1816 to = from + len;
1817
1818 if (copied < len) {
1819 if (!PageUptodate(page))
1820 copied = 0;
1821 page_zero_new_buffers(page, from+copied, to);
1822 }
ac27a0ec
DK
1823
1824 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1825 to, &partial, write_end_fn);
ac27a0ec
DK
1826 if (!partial)
1827 SetPageUptodate(page);
cf17fea6
AK
1828 new_i_size = pos + copied;
1829 if (new_i_size > inode->i_size)
bfc1af65 1830 i_size_write(inode, pos+copied);
19f5fb7a 1831 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
cf17fea6
AK
1832 if (new_i_size > EXT4_I(inode)->i_disksize) {
1833 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1834 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1835 if (!ret)
1836 ret = ret2;
1837 }
bfc1af65 1838
cf108bca 1839 unlock_page(page);
f8514083 1840 page_cache_release(page);
ffacfa7a 1841 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1842 /* if we have allocated more blocks and copied
1843 * less. We will have blocks allocated outside
1844 * inode->i_size. So truncate them
1845 */
1846 ext4_orphan_add(handle, inode);
1847
617ba13b 1848 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1849 if (!ret)
1850 ret = ret2;
f8514083 1851 if (pos + len > inode->i_size) {
b9a4207d 1852 ext4_truncate_failed_write(inode);
de9a55b8 1853 /*
ffacfa7a 1854 * If truncate failed early the inode might still be
f8514083
AK
1855 * on the orphan list; we need to make sure the inode
1856 * is removed from the orphan list in that case.
1857 */
1858 if (inode->i_nlink)
1859 ext4_orphan_del(NULL, inode);
1860 }
bfc1af65
NP
1861
1862 return ret ? ret : copied;
ac27a0ec 1863}
d2a17637 1864
9d0be502
TT
1865/*
1866 * Reserve a single block located at lblock
1867 */
1868static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
d2a17637 1869{
030ba6bc 1870 int retries = 0;
60e58e0f 1871 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1872 struct ext4_inode_info *ei = EXT4_I(inode);
72b8ab9d 1873 unsigned long md_needed;
5dd4056d 1874 int ret;
d2a17637
MC
1875
1876 /*
1877 * recalculate the amount of metadata blocks to reserve
1878 * in order to allocate nrblocks
1879 * worse case is one extent per block
1880 */
030ba6bc 1881repeat:
0637c6f4 1882 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1883 md_needed = ext4_calc_metadata_amount(inode, lblock);
f8ec9d68 1884 trace_ext4_da_reserve_space(inode, md_needed);
0637c6f4 1885 spin_unlock(&ei->i_block_reservation_lock);
d2a17637 1886
60e58e0f 1887 /*
72b8ab9d
ES
1888 * We will charge metadata quota at writeout time; this saves
1889 * us from metadata over-estimation, though we may go over by
1890 * a small amount in the end. Here we just reserve for data.
60e58e0f 1891 */
72b8ab9d 1892 ret = dquot_reserve_block(inode, 1);
5dd4056d
CH
1893 if (ret)
1894 return ret;
72b8ab9d
ES
1895 /*
1896 * We do still charge estimated metadata to the sb though;
1897 * we cannot afford to run out of free blocks.
1898 */
9d0be502 1899 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
72b8ab9d 1900 dquot_release_reservation_block(inode, 1);
030ba6bc
AK
1901 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1902 yield();
1903 goto repeat;
1904 }
d2a17637
MC
1905 return -ENOSPC;
1906 }
0637c6f4 1907 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1908 ei->i_reserved_data_blocks++;
0637c6f4
TT
1909 ei->i_reserved_meta_blocks += md_needed;
1910 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1911
d2a17637
MC
1912 return 0; /* success */
1913}
1914
12219aea 1915static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1916{
1917 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1918 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1919
cd213226
MC
1920 if (!to_free)
1921 return; /* Nothing to release, exit */
1922
d2a17637 1923 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1924
5a58ec87 1925 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1926 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1927 /*
0637c6f4
TT
1928 * if there aren't enough reserved blocks, then the
1929 * counter is messed up somewhere. Since this
1930 * function is called from invalidate page, it's
1931 * harmless to return without any action.
cd213226 1932 */
0637c6f4
TT
1933 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1934 "ino %lu, to_free %d with only %d reserved "
1935 "data blocks\n", inode->i_ino, to_free,
1936 ei->i_reserved_data_blocks);
1937 WARN_ON(1);
1938 to_free = ei->i_reserved_data_blocks;
cd213226 1939 }
0637c6f4 1940 ei->i_reserved_data_blocks -= to_free;
cd213226 1941
0637c6f4
TT
1942 if (ei->i_reserved_data_blocks == 0) {
1943 /*
1944 * We can release all of the reserved metadata blocks
1945 * only when we have written all of the delayed
1946 * allocation blocks.
1947 */
72b8ab9d
ES
1948 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1949 ei->i_reserved_meta_blocks);
ee5f4d9c 1950 ei->i_reserved_meta_blocks = 0;
9d0be502 1951 ei->i_da_metadata_calc_len = 0;
0637c6f4 1952 }
d2a17637 1953
72b8ab9d 1954 /* update fs dirty data blocks counter */
0637c6f4 1955 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
d2a17637 1956
d2a17637 1957 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1958
5dd4056d 1959 dquot_release_reservation_block(inode, to_free);
d2a17637
MC
1960}
1961
1962static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1963 unsigned long offset)
d2a17637
MC
1964{
1965 int to_release = 0;
1966 struct buffer_head *head, *bh;
1967 unsigned int curr_off = 0;
1968
1969 head = page_buffers(page);
1970 bh = head;
1971 do {
1972 unsigned int next_off = curr_off + bh->b_size;
1973
1974 if ((offset <= curr_off) && (buffer_delay(bh))) {
1975 to_release++;
1976 clear_buffer_delay(bh);
1977 }
1978 curr_off = next_off;
1979 } while ((bh = bh->b_this_page) != head);
12219aea 1980 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1981}
ac27a0ec 1982
64769240
AT
1983/*
1984 * Delayed allocation stuff
1985 */
1986
64769240
AT
1987/*
1988 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1989 * them with writepage() call back
64769240
AT
1990 *
1991 * @mpd->inode: inode
1992 * @mpd->first_page: first page of the extent
1993 * @mpd->next_page: page after the last page of the extent
64769240
AT
1994 *
1995 * By the time mpage_da_submit_io() is called we expect all blocks
1996 * to be allocated. this may be wrong if allocation failed.
1997 *
1998 * As pages are already locked by write_cache_pages(), we can't use it
1999 */
2000static int mpage_da_submit_io(struct mpage_da_data *mpd)
2001{
22208ded 2002 long pages_skipped;
791b7f08
AK
2003 struct pagevec pvec;
2004 unsigned long index, end;
2005 int ret = 0, err, nr_pages, i;
2006 struct inode *inode = mpd->inode;
2007 struct address_space *mapping = inode->i_mapping;
64769240
AT
2008
2009 BUG_ON(mpd->next_page <= mpd->first_page);
791b7f08
AK
2010 /*
2011 * We need to start from the first_page to the next_page - 1
2012 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 2013 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
2014 * at the currently mapped buffer_heads.
2015 */
64769240
AT
2016 index = mpd->first_page;
2017 end = mpd->next_page - 1;
2018
791b7f08 2019 pagevec_init(&pvec, 0);
64769240 2020 while (index <= end) {
791b7f08 2021 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
2022 if (nr_pages == 0)
2023 break;
2024 for (i = 0; i < nr_pages; i++) {
2025 struct page *page = pvec.pages[i];
2026
791b7f08
AK
2027 index = page->index;
2028 if (index > end)
2029 break;
2030 index++;
2031
2032 BUG_ON(!PageLocked(page));
2033 BUG_ON(PageWriteback(page));
2034
22208ded 2035 pages_skipped = mpd->wbc->pages_skipped;
a1d6cc56 2036 err = mapping->a_ops->writepage(page, mpd->wbc);
22208ded
AK
2037 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2038 /*
2039 * have successfully written the page
2040 * without skipping the same
2041 */
a1d6cc56 2042 mpd->pages_written++;
64769240
AT
2043 /*
2044 * In error case, we have to continue because
2045 * remaining pages are still locked
2046 * XXX: unlock and re-dirty them?
2047 */
2048 if (ret == 0)
2049 ret = err;
2050 }
2051 pagevec_release(&pvec);
2052 }
64769240
AT
2053 return ret;
2054}
2055
2056/*
2057 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2058 *
64769240 2059 * the function goes through all passed space and put actual disk
29fa89d0 2060 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
64769240 2061 */
2ed88685
TT
2062static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd,
2063 struct ext4_map_blocks *map)
64769240
AT
2064{
2065 struct inode *inode = mpd->inode;
2066 struct address_space *mapping = inode->i_mapping;
2ed88685
TT
2067 int blocks = map->m_len;
2068 sector_t pblock = map->m_pblk, cur_logical;
64769240 2069 struct buffer_head *head, *bh;
a1d6cc56 2070 pgoff_t index, end;
64769240
AT
2071 struct pagevec pvec;
2072 int nr_pages, i;
2073
2ed88685
TT
2074 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2075 end = (map->m_lblk + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
64769240
AT
2076 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2077
2078 pagevec_init(&pvec, 0);
2079
2080 while (index <= end) {
2081 /* XXX: optimize tail */
2082 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2083 if (nr_pages == 0)
2084 break;
2085 for (i = 0; i < nr_pages; i++) {
2086 struct page *page = pvec.pages[i];
2087
2088 index = page->index;
2089 if (index > end)
2090 break;
2091 index++;
2092
2093 BUG_ON(!PageLocked(page));
2094 BUG_ON(PageWriteback(page));
2095 BUG_ON(!page_has_buffers(page));
2096
2097 bh = page_buffers(page);
2098 head = bh;
2099
2100 /* skip blocks out of the range */
2101 do {
2ed88685 2102 if (cur_logical >= map->m_lblk)
64769240
AT
2103 break;
2104 cur_logical++;
2105 } while ((bh = bh->b_this_page) != head);
2106
2107 do {
2ed88685 2108 if (cur_logical >= map->m_lblk + blocks)
64769240 2109 break;
29fa89d0 2110
2ed88685 2111 if (buffer_delay(bh) || buffer_unwritten(bh)) {
29fa89d0
AK
2112
2113 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2114
2115 if (buffer_delay(bh)) {
2116 clear_buffer_delay(bh);
2117 bh->b_blocknr = pblock;
2118 } else {
2119 /*
2120 * unwritten already should have
2121 * blocknr assigned. Verify that
2122 */
2123 clear_buffer_unwritten(bh);
2124 BUG_ON(bh->b_blocknr != pblock);
2125 }
2126
61628a3f 2127 } else if (buffer_mapped(bh))
64769240 2128 BUG_ON(bh->b_blocknr != pblock);
64769240 2129
2ed88685 2130 if (map->m_flags & EXT4_MAP_UNINIT)
744692dc 2131 set_buffer_uninit(bh);
64769240
AT
2132 cur_logical++;
2133 pblock++;
2134 } while ((bh = bh->b_this_page) != head);
2135 }
2136 pagevec_release(&pvec);
2137 }
2138}
2139
2140
c4a0c46e
AK
2141static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2142 sector_t logical, long blk_cnt)
2143{
2144 int nr_pages, i;
2145 pgoff_t index, end;
2146 struct pagevec pvec;
2147 struct inode *inode = mpd->inode;
2148 struct address_space *mapping = inode->i_mapping;
2149
2150 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2151 end = (logical + blk_cnt - 1) >>
2152 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2153 while (index <= end) {
2154 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2155 if (nr_pages == 0)
2156 break;
2157 for (i = 0; i < nr_pages; i++) {
2158 struct page *page = pvec.pages[i];
9b1d0998 2159 if (page->index > end)
c4a0c46e 2160 break;
c4a0c46e
AK
2161 BUG_ON(!PageLocked(page));
2162 BUG_ON(PageWriteback(page));
2163 block_invalidatepage(page, 0);
2164 ClearPageUptodate(page);
2165 unlock_page(page);
2166 }
9b1d0998
JK
2167 index = pvec.pages[nr_pages - 1]->index + 1;
2168 pagevec_release(&pvec);
c4a0c46e
AK
2169 }
2170 return;
2171}
2172
df22291f
AK
2173static void ext4_print_free_blocks(struct inode *inode)
2174{
2175 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1693918e
TT
2176 printk(KERN_CRIT "Total free blocks count %lld\n",
2177 ext4_count_free_blocks(inode->i_sb));
2178 printk(KERN_CRIT "Free/Dirty block details\n");
2179 printk(KERN_CRIT "free_blocks=%lld\n",
2180 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2181 printk(KERN_CRIT "dirty_blocks=%lld\n",
2182 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2183 printk(KERN_CRIT "Block reservation details\n");
2184 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2185 EXT4_I(inode)->i_reserved_data_blocks);
2186 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2187 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
2188 return;
2189}
2190
64769240
AT
2191/*
2192 * mpage_da_map_blocks - go through given space
2193 *
8dc207c0 2194 * @mpd - bh describing space
64769240
AT
2195 *
2196 * The function skips space we know is already mapped to disk blocks.
2197 *
64769240 2198 */
ed5bde0b 2199static int mpage_da_map_blocks(struct mpage_da_data *mpd)
64769240 2200{
2ac3b6e0 2201 int err, blks, get_blocks_flags;
2ed88685 2202 struct ext4_map_blocks map;
2fa3cdfb
TT
2203 sector_t next = mpd->b_blocknr;
2204 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2205 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2206 handle_t *handle = NULL;
64769240
AT
2207
2208 /*
2209 * We consider only non-mapped and non-allocated blocks
2210 */
8dc207c0 2211 if ((mpd->b_state & (1 << BH_Mapped)) &&
29fa89d0
AK
2212 !(mpd->b_state & (1 << BH_Delay)) &&
2213 !(mpd->b_state & (1 << BH_Unwritten)))
c4a0c46e 2214 return 0;
2fa3cdfb
TT
2215
2216 /*
2217 * If we didn't accumulate anything to write simply return
2218 */
2219 if (!mpd->b_size)
2220 return 0;
2221
2222 handle = ext4_journal_current_handle();
2223 BUG_ON(!handle);
2224
79ffab34 2225 /*
79e83036 2226 * Call ext4_map_blocks() to allocate any delayed allocation
2ac3b6e0
TT
2227 * blocks, or to convert an uninitialized extent to be
2228 * initialized (in the case where we have written into
2229 * one or more preallocated blocks).
2230 *
2231 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2232 * indicate that we are on the delayed allocation path. This
2233 * affects functions in many different parts of the allocation
2234 * call path. This flag exists primarily because we don't
79e83036 2235 * want to change *many* call functions, so ext4_map_blocks()
2ac3b6e0
TT
2236 * will set the magic i_delalloc_reserved_flag once the
2237 * inode's allocation semaphore is taken.
2238 *
2239 * If the blocks in questions were delalloc blocks, set
2240 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2241 * variables are updated after the blocks have been allocated.
79ffab34 2242 */
2ed88685
TT
2243 map.m_lblk = next;
2244 map.m_len = max_blocks;
1296cc85 2245 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
744692dc
JZ
2246 if (ext4_should_dioread_nolock(mpd->inode))
2247 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 2248 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
2249 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2250
2ed88685 2251 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb 2252 if (blks < 0) {
e3570639
ES
2253 struct super_block *sb = mpd->inode->i_sb;
2254
2fa3cdfb 2255 err = blks;
ed5bde0b
TT
2256 /*
2257 * If get block returns with error we simply
2258 * return. Later writepage will redirty the page and
2259 * writepages will find the dirty page again
c4a0c46e
AK
2260 */
2261 if (err == -EAGAIN)
2262 return 0;
df22291f
AK
2263
2264 if (err == -ENOSPC &&
e3570639 2265 ext4_count_free_blocks(sb)) {
df22291f
AK
2266 mpd->retval = err;
2267 return 0;
2268 }
2269
c4a0c46e 2270 /*
ed5bde0b
TT
2271 * get block failure will cause us to loop in
2272 * writepages, because a_ops->writepage won't be able
2273 * to make progress. The page will be redirtied by
2274 * writepage and writepages will again try to write
2275 * the same.
c4a0c46e 2276 */
e3570639
ES
2277 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2278 ext4_msg(sb, KERN_CRIT,
2279 "delayed block allocation failed for inode %lu "
2280 "at logical offset %llu with max blocks %zd "
2281 "with error %d", mpd->inode->i_ino,
2282 (unsigned long long) next,
2283 mpd->b_size >> mpd->inode->i_blkbits, err);
2284 ext4_msg(sb, KERN_CRIT,
2285 "This should not happen!! Data will be lost\n");
2286 if (err == -ENOSPC)
2287 ext4_print_free_blocks(mpd->inode);
030ba6bc 2288 }
2fa3cdfb 2289 /* invalidate all the pages */
c4a0c46e 2290 ext4_da_block_invalidatepages(mpd, next,
8dc207c0 2291 mpd->b_size >> mpd->inode->i_blkbits);
c4a0c46e
AK
2292 return err;
2293 }
2fa3cdfb
TT
2294 BUG_ON(blks == 0);
2295
2ed88685
TT
2296 if (map.m_flags & EXT4_MAP_NEW) {
2297 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2298 int i;
64769240 2299
2ed88685
TT
2300 for (i = 0; i < map.m_len; i++)
2301 unmap_underlying_metadata(bdev, map.m_pblk + i);
2302 }
64769240 2303
a1d6cc56
AK
2304 /*
2305 * If blocks are delayed marked, we need to
2306 * put actual blocknr and drop delayed bit
2307 */
8dc207c0
TT
2308 if ((mpd->b_state & (1 << BH_Delay)) ||
2309 (mpd->b_state & (1 << BH_Unwritten)))
2ed88685 2310 mpage_put_bnr_to_bhs(mpd, &map);
64769240 2311
2fa3cdfb
TT
2312 if (ext4_should_order_data(mpd->inode)) {
2313 err = ext4_jbd2_file_inode(handle, mpd->inode);
2314 if (err)
2315 return err;
2316 }
2317
2318 /*
03f5d8bc 2319 * Update on-disk size along with block allocation.
2fa3cdfb
TT
2320 */
2321 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2322 if (disksize > i_size_read(mpd->inode))
2323 disksize = i_size_read(mpd->inode);
2324 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2325 ext4_update_i_disksize(mpd->inode, disksize);
2326 return ext4_mark_inode_dirty(handle, mpd->inode);
2327 }
2328
c4a0c46e 2329 return 0;
64769240
AT
2330}
2331
bf068ee2
AK
2332#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2333 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
2334
2335/*
2336 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2337 *
2338 * @mpd->lbh - extent of blocks
2339 * @logical - logical number of the block in the file
2340 * @bh - bh of the block (used to access block's state)
2341 *
2342 * the function is used to collect contig. blocks in same state
2343 */
2344static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
2345 sector_t logical, size_t b_size,
2346 unsigned long b_state)
64769240 2347{
64769240 2348 sector_t next;
8dc207c0 2349 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 2350
c445e3e0
ES
2351 /*
2352 * XXX Don't go larger than mballoc is willing to allocate
2353 * This is a stopgap solution. We eventually need to fold
2354 * mpage_da_submit_io() into this function and then call
79e83036 2355 * ext4_map_blocks() multiple times in a loop
c445e3e0
ES
2356 */
2357 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2358 goto flush_it;
2359
525f4ed8 2360 /* check if thereserved journal credits might overflow */
12e9b892 2361 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
525f4ed8
MC
2362 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2363 /*
2364 * With non-extent format we are limited by the journal
2365 * credit available. Total credit needed to insert
2366 * nrblocks contiguous blocks is dependent on the
2367 * nrblocks. So limit nrblocks.
2368 */
2369 goto flush_it;
2370 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2371 EXT4_MAX_TRANS_DATA) {
2372 /*
2373 * Adding the new buffer_head would make it cross the
2374 * allowed limit for which we have journal credit
2375 * reserved. So limit the new bh->b_size
2376 */
2377 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2378 mpd->inode->i_blkbits;
2379 /* we will do mpage_da_submit_io in the next loop */
2380 }
2381 }
64769240
AT
2382 /*
2383 * First block in the extent
2384 */
8dc207c0
TT
2385 if (mpd->b_size == 0) {
2386 mpd->b_blocknr = logical;
2387 mpd->b_size = b_size;
2388 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
2389 return;
2390 }
2391
8dc207c0 2392 next = mpd->b_blocknr + nrblocks;
64769240
AT
2393 /*
2394 * Can we merge the block to our big extent?
2395 */
8dc207c0
TT
2396 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2397 mpd->b_size += b_size;
64769240
AT
2398 return;
2399 }
2400
525f4ed8 2401flush_it:
64769240
AT
2402 /*
2403 * We couldn't merge the block to our extent, so we
2404 * need to flush current extent and start new one
2405 */
c4a0c46e
AK
2406 if (mpage_da_map_blocks(mpd) == 0)
2407 mpage_da_submit_io(mpd);
a1d6cc56
AK
2408 mpd->io_done = 1;
2409 return;
64769240
AT
2410}
2411
c364b22c 2412static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 2413{
c364b22c 2414 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
2415}
2416
64769240
AT
2417/*
2418 * __mpage_da_writepage - finds extent of pages and blocks
2419 *
2420 * @page: page to consider
2421 * @wbc: not used, we just follow rules
2422 * @data: context
2423 *
2424 * The function finds extents of pages and scan them for all blocks.
2425 */
2426static int __mpage_da_writepage(struct page *page,
2427 struct writeback_control *wbc, void *data)
2428{
2429 struct mpage_da_data *mpd = data;
2430 struct inode *inode = mpd->inode;
8dc207c0 2431 struct buffer_head *bh, *head;
64769240
AT
2432 sector_t logical;
2433
2434 /*
2435 * Can we merge this page to current extent?
2436 */
2437 if (mpd->next_page != page->index) {
2438 /*
2439 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 2440 * and start IO on them using writepage()
64769240
AT
2441 */
2442 if (mpd->next_page != mpd->first_page) {
c4a0c46e
AK
2443 if (mpage_da_map_blocks(mpd) == 0)
2444 mpage_da_submit_io(mpd);
a1d6cc56
AK
2445 /*
2446 * skip rest of the page in the page_vec
2447 */
2448 mpd->io_done = 1;
2449 redirty_page_for_writepage(wbc, page);
2450 unlock_page(page);
2451 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2452 }
2453
2454 /*
2455 * Start next extent of pages ...
2456 */
2457 mpd->first_page = page->index;
2458
2459 /*
2460 * ... and blocks
2461 */
8dc207c0
TT
2462 mpd->b_size = 0;
2463 mpd->b_state = 0;
2464 mpd->b_blocknr = 0;
64769240
AT
2465 }
2466
2467 mpd->next_page = page->index + 1;
2468 logical = (sector_t) page->index <<
2469 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2470
2471 if (!page_has_buffers(page)) {
8dc207c0
TT
2472 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2473 (1 << BH_Dirty) | (1 << BH_Uptodate));
a1d6cc56
AK
2474 if (mpd->io_done)
2475 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2476 } else {
2477 /*
2478 * Page with regular buffer heads, just add all dirty ones
2479 */
2480 head = page_buffers(page);
2481 bh = head;
2482 do {
2483 BUG_ON(buffer_locked(bh));
791b7f08
AK
2484 /*
2485 * We need to try to allocate
2486 * unmapped blocks in the same page.
2487 * Otherwise we won't make progress
43ce1d23 2488 * with the page in ext4_writepage
791b7f08 2489 */
c364b22c 2490 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
8dc207c0
TT
2491 mpage_add_bh_to_extent(mpd, logical,
2492 bh->b_size,
2493 bh->b_state);
a1d6cc56
AK
2494 if (mpd->io_done)
2495 return MPAGE_DA_EXTENT_TAIL;
791b7f08
AK
2496 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2497 /*
2498 * mapped dirty buffer. We need to update
2499 * the b_state because we look at
2500 * b_state in mpage_da_map_blocks. We don't
2501 * update b_size because if we find an
2502 * unmapped buffer_head later we need to
2503 * use the b_state flag of that buffer_head.
2504 */
8dc207c0
TT
2505 if (mpd->b_size == 0)
2506 mpd->b_state = bh->b_state & BH_FLAGS;
a1d6cc56 2507 }
64769240
AT
2508 logical++;
2509 } while ((bh = bh->b_this_page) != head);
2510 }
2511
2512 return 0;
2513}
2514
64769240 2515/*
b920c755
TT
2516 * This is a special get_blocks_t callback which is used by
2517 * ext4_da_write_begin(). It will either return mapped block or
2518 * reserve space for a single block.
29fa89d0
AK
2519 *
2520 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2521 * We also have b_blocknr = -1 and b_bdev initialized properly
2522 *
2523 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2524 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2525 * initialized properly.
64769240
AT
2526 */
2527static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2ed88685 2528 struct buffer_head *bh, int create)
64769240 2529{
2ed88685 2530 struct ext4_map_blocks map;
64769240 2531 int ret = 0;
33b9817e
AK
2532 sector_t invalid_block = ~((sector_t) 0xffff);
2533
2534 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2535 invalid_block = ~0;
64769240
AT
2536
2537 BUG_ON(create == 0);
2ed88685
TT
2538 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2539
2540 map.m_lblk = iblock;
2541 map.m_len = 1;
64769240
AT
2542
2543 /*
2544 * first, we need to know whether the block is allocated already
2545 * preallocated blocks are unmapped but should treated
2546 * the same as allocated blocks.
2547 */
2ed88685
TT
2548 ret = ext4_map_blocks(NULL, inode, &map, 0);
2549 if (ret < 0)
2550 return ret;
2551 if (ret == 0) {
2552 if (buffer_delay(bh))
2553 return 0; /* Not sure this could or should happen */
64769240
AT
2554 /*
2555 * XXX: __block_prepare_write() unmaps passed block,
2556 * is it OK?
2557 */
9d0be502 2558 ret = ext4_da_reserve_space(inode, iblock);
d2a17637
MC
2559 if (ret)
2560 /* not enough space to reserve */
2561 return ret;
2562
2ed88685
TT
2563 map_bh(bh, inode->i_sb, invalid_block);
2564 set_buffer_new(bh);
2565 set_buffer_delay(bh);
2566 return 0;
64769240
AT
2567 }
2568
2ed88685
TT
2569 map_bh(bh, inode->i_sb, map.m_pblk);
2570 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2571
2572 if (buffer_unwritten(bh)) {
2573 /* A delayed write to unwritten bh should be marked
2574 * new and mapped. Mapped ensures that we don't do
2575 * get_block multiple times when we write to the same
2576 * offset and new ensures that we do proper zero out
2577 * for partial write.
2578 */
2579 set_buffer_new(bh);
2580 set_buffer_mapped(bh);
2581 }
2582 return 0;
64769240 2583}
61628a3f 2584
b920c755
TT
2585/*
2586 * This function is used as a standard get_block_t calback function
2587 * when there is no desire to allocate any blocks. It is used as a
206f7ab4
CH
2588 * callback function for block_prepare_write() and block_write_full_page().
2589 * These functions should only try to map a single block at a time.
b920c755
TT
2590 *
2591 * Since this function doesn't do block allocations even if the caller
2592 * requests it by passing in create=1, it is critically important that
2593 * any caller checks to make sure that any buffer heads are returned
2594 * by this function are either all already mapped or marked for
206f7ab4
CH
2595 * delayed allocation before calling block_write_full_page(). Otherwise,
2596 * b_blocknr could be left unitialized, and the page write functions will
2597 * be taken by surprise.
b920c755
TT
2598 */
2599static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
2600 struct buffer_head *bh_result, int create)
2601{
a2dc52b5 2602 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2ed88685 2603 return _ext4_get_block(inode, iblock, bh_result, 0);
61628a3f
MC
2604}
2605
62e086be
AK
2606static int bget_one(handle_t *handle, struct buffer_head *bh)
2607{
2608 get_bh(bh);
2609 return 0;
2610}
2611
2612static int bput_one(handle_t *handle, struct buffer_head *bh)
2613{
2614 put_bh(bh);
2615 return 0;
2616}
2617
2618static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
2619 unsigned int len)
2620{
2621 struct address_space *mapping = page->mapping;
2622 struct inode *inode = mapping->host;
2623 struct buffer_head *page_bufs;
2624 handle_t *handle = NULL;
2625 int ret = 0;
2626 int err;
2627
2628 page_bufs = page_buffers(page);
2629 BUG_ON(!page_bufs);
2630 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2631 /* As soon as we unlock the page, it can go away, but we have
2632 * references to buffers so we are safe */
2633 unlock_page(page);
2634
2635 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2636 if (IS_ERR(handle)) {
2637 ret = PTR_ERR(handle);
2638 goto out;
2639 }
2640
2641 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2642 do_journal_get_write_access);
2643
2644 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2645 write_end_fn);
2646 if (ret == 0)
2647 ret = err;
2648 err = ext4_journal_stop(handle);
2649 if (!ret)
2650 ret = err;
2651
2652 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
19f5fb7a 2653 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be
AK
2654out:
2655 return ret;
2656}
2657
744692dc
JZ
2658static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2659static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2660
61628a3f 2661/*
43ce1d23
AK
2662 * Note that we don't need to start a transaction unless we're journaling data
2663 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2664 * need to file the inode to the transaction's list in ordered mode because if
2665 * we are writing back data added by write(), the inode is already there and if
2666 * we are writing back data modified via mmap(), noone guarantees in which
2667 * transaction the data will hit the disk. In case we are journaling data, we
2668 * cannot start transaction directly because transaction start ranks above page
2669 * lock so we have to do some magic.
2670 *
b920c755
TT
2671 * This function can get called via...
2672 * - ext4_da_writepages after taking page lock (have journal handle)
2673 * - journal_submit_inode_data_buffers (no journal handle)
2674 * - shrink_page_list via pdflush (no journal handle)
2675 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2676 *
2677 * We don't do any block allocation in this function. If we have page with
2678 * multiple blocks we need to write those buffer_heads that are mapped. This
2679 * is important for mmaped based write. So if we do with blocksize 1K
2680 * truncate(f, 1024);
2681 * a = mmap(f, 0, 4096);
2682 * a[0] = 'a';
2683 * truncate(f, 4096);
2684 * we have in the page first buffer_head mapped via page_mkwrite call back
2685 * but other bufer_heads would be unmapped but dirty(dirty done via the
2686 * do_wp_page). So writepage should write the first block. If we modify
2687 * the mmap area beyond 1024 we will again get a page_fault and the
2688 * page_mkwrite callback will do the block allocation and mark the
2689 * buffer_heads mapped.
2690 *
2691 * We redirty the page if we have any buffer_heads that is either delay or
2692 * unwritten in the page.
2693 *
2694 * We can get recursively called as show below.
2695 *
2696 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2697 * ext4_writepage()
2698 *
2699 * But since we don't do any block allocation we should not deadlock.
2700 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2701 */
43ce1d23 2702static int ext4_writepage(struct page *page,
62e086be 2703 struct writeback_control *wbc)
64769240 2704{
64769240 2705 int ret = 0;
61628a3f 2706 loff_t size;
498e5f24 2707 unsigned int len;
744692dc 2708 struct buffer_head *page_bufs = NULL;
61628a3f
MC
2709 struct inode *inode = page->mapping->host;
2710
43ce1d23 2711 trace_ext4_writepage(inode, page);
f0e6c985
AK
2712 size = i_size_read(inode);
2713 if (page->index == size >> PAGE_CACHE_SHIFT)
2714 len = size & ~PAGE_CACHE_MASK;
2715 else
2716 len = PAGE_CACHE_SIZE;
64769240 2717
f0e6c985 2718 if (page_has_buffers(page)) {
61628a3f 2719 page_bufs = page_buffers(page);
f0e6c985 2720 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2721 ext4_bh_delay_or_unwritten)) {
61628a3f 2722 /*
f0e6c985
AK
2723 * We don't want to do block allocation
2724 * So redirty the page and return
cd1aac32
AK
2725 * We may reach here when we do a journal commit
2726 * via journal_submit_inode_data_buffers.
2727 * If we don't have mapping block we just ignore
f0e6c985
AK
2728 * them. We can also reach here via shrink_page_list
2729 */
2730 redirty_page_for_writepage(wbc, page);
2731 unlock_page(page);
2732 return 0;
2733 }
2734 } else {
2735 /*
2736 * The test for page_has_buffers() is subtle:
2737 * We know the page is dirty but it lost buffers. That means
2738 * that at some moment in time after write_begin()/write_end()
2739 * has been called all buffers have been clean and thus they
2740 * must have been written at least once. So they are all
2741 * mapped and we can happily proceed with mapping them
2742 * and writing the page.
2743 *
2744 * Try to initialize the buffer_heads and check whether
2745 * all are mapped and non delay. We don't want to
2746 * do block allocation here.
2747 */
b767e78a 2748 ret = block_prepare_write(page, 0, len,
b920c755 2749 noalloc_get_block_write);
f0e6c985
AK
2750 if (!ret) {
2751 page_bufs = page_buffers(page);
2752 /* check whether all are mapped and non delay */
2753 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2754 ext4_bh_delay_or_unwritten)) {
f0e6c985
AK
2755 redirty_page_for_writepage(wbc, page);
2756 unlock_page(page);
2757 return 0;
2758 }
2759 } else {
2760 /*
2761 * We can't do block allocation here
2762 * so just redity the page and unlock
2763 * and return
61628a3f 2764 */
61628a3f
MC
2765 redirty_page_for_writepage(wbc, page);
2766 unlock_page(page);
2767 return 0;
2768 }
ed9b3e33 2769 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 2770 block_commit_write(page, 0, len);
64769240
AT
2771 }
2772
43ce1d23
AK
2773 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2774 /*
2775 * It's mmapped pagecache. Add buffers and journal it. There
2776 * doesn't seem much point in redirtying the page here.
2777 */
2778 ClearPageChecked(page);
3f0ca309 2779 return __ext4_journalled_writepage(page, len);
43ce1d23
AK
2780 }
2781
206f7ab4 2782 if (page_bufs && buffer_uninit(page_bufs)) {
744692dc
JZ
2783 ext4_set_bh_endio(page_bufs, inode);
2784 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2785 wbc, ext4_end_io_buffer_write);
2786 } else
b920c755
TT
2787 ret = block_write_full_page(page, noalloc_get_block_write,
2788 wbc);
64769240 2789
64769240
AT
2790 return ret;
2791}
2792
61628a3f 2793/*
525f4ed8
MC
2794 * This is called via ext4_da_writepages() to
2795 * calulate the total number of credits to reserve to fit
2796 * a single extent allocation into a single transaction,
2797 * ext4_da_writpeages() will loop calling this before
2798 * the block allocation.
61628a3f 2799 */
525f4ed8
MC
2800
2801static int ext4_da_writepages_trans_blocks(struct inode *inode)
2802{
2803 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2804
2805 /*
2806 * With non-extent format the journal credit needed to
2807 * insert nrblocks contiguous block is dependent on
2808 * number of contiguous block. So we will limit
2809 * number of contiguous block to a sane value
2810 */
12e9b892 2811 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
2812 (max_blocks > EXT4_MAX_TRANS_DATA))
2813 max_blocks = EXT4_MAX_TRANS_DATA;
2814
2815 return ext4_chunk_trans_blocks(inode, max_blocks);
2816}
61628a3f 2817
8e48dcfb
TT
2818/*
2819 * write_cache_pages_da - walk the list of dirty pages of the given
2820 * address space and call the callback function (which usually writes
2821 * the pages).
2822 *
2823 * This is a forked version of write_cache_pages(). Differences:
2824 * Range cyclic is ignored.
2825 * no_nrwrite_index_update is always presumed true
2826 */
2827static int write_cache_pages_da(struct address_space *mapping,
2828 struct writeback_control *wbc,
2829 struct mpage_da_data *mpd)
2830{
2831 int ret = 0;
2832 int done = 0;
2833 struct pagevec pvec;
2834 int nr_pages;
2835 pgoff_t index;
2836 pgoff_t end; /* Inclusive */
2837 long nr_to_write = wbc->nr_to_write;
2838
2839 pagevec_init(&pvec, 0);
2840 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2841 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2842
2843 while (!done && (index <= end)) {
2844 int i;
2845
2846 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2847 PAGECACHE_TAG_DIRTY,
2848 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2849 if (nr_pages == 0)
2850 break;
2851
2852 for (i = 0; i < nr_pages; i++) {
2853 struct page *page = pvec.pages[i];
2854
2855 /*
2856 * At this point, the page may be truncated or
2857 * invalidated (changing page->mapping to NULL), or
2858 * even swizzled back from swapper_space to tmpfs file
2859 * mapping. However, page->index will not change
2860 * because we have a reference on the page.
2861 */
2862 if (page->index > end) {
2863 done = 1;
2864 break;
2865 }
2866
2867 lock_page(page);
2868
2869 /*
2870 * Page truncated or invalidated. We can freely skip it
2871 * then, even for data integrity operations: the page
2872 * has disappeared concurrently, so there could be no
2873 * real expectation of this data interity operation
2874 * even if there is now a new, dirty page at the same
2875 * pagecache address.
2876 */
2877 if (unlikely(page->mapping != mapping)) {
2878continue_unlock:
2879 unlock_page(page);
2880 continue;
2881 }
2882
2883 if (!PageDirty(page)) {
2884 /* someone wrote it for us */
2885 goto continue_unlock;
2886 }
2887
2888 if (PageWriteback(page)) {
2889 if (wbc->sync_mode != WB_SYNC_NONE)
2890 wait_on_page_writeback(page);
2891 else
2892 goto continue_unlock;
2893 }
2894
2895 BUG_ON(PageWriteback(page));
2896 if (!clear_page_dirty_for_io(page))
2897 goto continue_unlock;
2898
2899 ret = __mpage_da_writepage(page, wbc, mpd);
2900 if (unlikely(ret)) {
2901 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2902 unlock_page(page);
2903 ret = 0;
2904 } else {
2905 done = 1;
2906 break;
2907 }
2908 }
2909
2910 if (nr_to_write > 0) {
2911 nr_to_write--;
2912 if (nr_to_write == 0 &&
2913 wbc->sync_mode == WB_SYNC_NONE) {
2914 /*
2915 * We stop writing back only if we are
2916 * not doing integrity sync. In case of
2917 * integrity sync we have to keep going
2918 * because someone may be concurrently
2919 * dirtying pages, and we might have
2920 * synced a lot of newly appeared dirty
2921 * pages, but have not synced all of the
2922 * old dirty pages.
2923 */
2924 done = 1;
2925 break;
2926 }
2927 }
2928 }
2929 pagevec_release(&pvec);
2930 cond_resched();
2931 }
2932 return ret;
2933}
2934
2935
64769240 2936static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2937 struct writeback_control *wbc)
64769240 2938{
22208ded
AK
2939 pgoff_t index;
2940 int range_whole = 0;
61628a3f 2941 handle_t *handle = NULL;
df22291f 2942 struct mpage_da_data mpd;
5e745b04 2943 struct inode *inode = mapping->host;
498e5f24
TT
2944 int pages_written = 0;
2945 long pages_skipped;
55138e0b 2946 unsigned int max_pages;
2acf2c26 2947 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2948 int needed_blocks, ret = 0;
2949 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2950 loff_t range_start = wbc->range_start;
5e745b04 2951 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f 2952
9bffad1e 2953 trace_ext4_da_writepages(inode, wbc);
ba80b101 2954
61628a3f
MC
2955 /*
2956 * No pages to write? This is mainly a kludge to avoid starting
2957 * a transaction for special inodes like journal inode on last iput()
2958 * because that could violate lock ordering on umount
2959 */
a1d6cc56 2960 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2961 return 0;
2a21e37e
TT
2962
2963 /*
2964 * If the filesystem has aborted, it is read-only, so return
2965 * right away instead of dumping stack traces later on that
2966 * will obscure the real source of the problem. We test
4ab2f15b 2967 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2968 * the latter could be true if the filesystem is mounted
2969 * read-only, and in that case, ext4_da_writepages should
2970 * *never* be called, so if that ever happens, we would want
2971 * the stack trace.
2972 */
4ab2f15b 2973 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2974 return -EROFS;
2975
22208ded
AK
2976 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2977 range_whole = 1;
61628a3f 2978
2acf2c26
AK
2979 range_cyclic = wbc->range_cyclic;
2980 if (wbc->range_cyclic) {
22208ded 2981 index = mapping->writeback_index;
2acf2c26
AK
2982 if (index)
2983 cycled = 0;
2984 wbc->range_start = index << PAGE_CACHE_SHIFT;
2985 wbc->range_end = LLONG_MAX;
2986 wbc->range_cyclic = 0;
2987 } else
22208ded 2988 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 2989
55138e0b
TT
2990 /*
2991 * This works around two forms of stupidity. The first is in
2992 * the writeback code, which caps the maximum number of pages
2993 * written to be 1024 pages. This is wrong on multiple
2994 * levels; different architectues have a different page size,
2995 * which changes the maximum amount of data which gets
2996 * written. Secondly, 4 megabytes is way too small. XFS
2997 * forces this value to be 16 megabytes by multiplying
2998 * nr_to_write parameter by four, and then relies on its
2999 * allocator to allocate larger extents to make them
3000 * contiguous. Unfortunately this brings us to the second
3001 * stupidity, which is that ext4's mballoc code only allocates
3002 * at most 2048 blocks. So we force contiguous writes up to
3003 * the number of dirty blocks in the inode, or
3004 * sbi->max_writeback_mb_bump whichever is smaller.
3005 */
3006 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
3007 if (!range_cyclic && range_whole)
3008 desired_nr_to_write = wbc->nr_to_write * 8;
3009 else
3010 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
3011 max_pages);
3012 if (desired_nr_to_write > max_pages)
3013 desired_nr_to_write = max_pages;
3014
3015 if (wbc->nr_to_write < desired_nr_to_write) {
3016 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
3017 wbc->nr_to_write = desired_nr_to_write;
3018 }
3019
df22291f
AK
3020 mpd.wbc = wbc;
3021 mpd.inode = mapping->host;
3022
22208ded
AK
3023 pages_skipped = wbc->pages_skipped;
3024
2acf2c26 3025retry:
22208ded 3026 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
3027
3028 /*
3029 * we insert one extent at a time. So we need
3030 * credit needed for single extent allocation.
3031 * journalled mode is currently not supported
3032 * by delalloc
3033 */
3034 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 3035 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 3036
61628a3f
MC
3037 /* start a new transaction*/
3038 handle = ext4_journal_start(inode, needed_blocks);
3039 if (IS_ERR(handle)) {
3040 ret = PTR_ERR(handle);
1693918e 3041 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 3042 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 3043 wbc->nr_to_write, inode->i_ino, ret);
61628a3f
MC
3044 goto out_writepages;
3045 }
f63e6005
TT
3046
3047 /*
3048 * Now call __mpage_da_writepage to find the next
3049 * contiguous region of logical blocks that need
3050 * blocks to be allocated by ext4. We don't actually
3051 * submit the blocks for I/O here, even though
3052 * write_cache_pages thinks it will, and will set the
3053 * pages as clean for write before calling
3054 * __mpage_da_writepage().
3055 */
3056 mpd.b_size = 0;
3057 mpd.b_state = 0;
3058 mpd.b_blocknr = 0;
3059 mpd.first_page = 0;
3060 mpd.next_page = 0;
3061 mpd.io_done = 0;
3062 mpd.pages_written = 0;
3063 mpd.retval = 0;
8e48dcfb 3064 ret = write_cache_pages_da(mapping, wbc, &mpd);
f63e6005 3065 /*
af901ca1 3066 * If we have a contiguous extent of pages and we
f63e6005
TT
3067 * haven't done the I/O yet, map the blocks and submit
3068 * them for I/O.
3069 */
3070 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3071 if (mpage_da_map_blocks(&mpd) == 0)
3072 mpage_da_submit_io(&mpd);
3073 mpd.io_done = 1;
3074 ret = MPAGE_DA_EXTENT_TAIL;
3075 }
b3a3ca8c 3076 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 3077 wbc->nr_to_write -= mpd.pages_written;
df22291f 3078
61628a3f 3079 ext4_journal_stop(handle);
df22291f 3080
8f64b32e 3081 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
3082 /* commit the transaction which would
3083 * free blocks released in the transaction
3084 * and try again
3085 */
df22291f 3086 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
3087 wbc->pages_skipped = pages_skipped;
3088 ret = 0;
3089 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
3090 /*
3091 * got one extent now try with
3092 * rest of the pages
3093 */
22208ded
AK
3094 pages_written += mpd.pages_written;
3095 wbc->pages_skipped = pages_skipped;
a1d6cc56 3096 ret = 0;
2acf2c26 3097 io_done = 1;
22208ded 3098 } else if (wbc->nr_to_write)
61628a3f
MC
3099 /*
3100 * There is no more writeout needed
3101 * or we requested for a noblocking writeout
3102 * and we found the device congested
3103 */
61628a3f 3104 break;
a1d6cc56 3105 }
2acf2c26
AK
3106 if (!io_done && !cycled) {
3107 cycled = 1;
3108 index = 0;
3109 wbc->range_start = index << PAGE_CACHE_SHIFT;
3110 wbc->range_end = mapping->writeback_index - 1;
3111 goto retry;
3112 }
22208ded 3113 if (pages_skipped != wbc->pages_skipped)
1693918e
TT
3114 ext4_msg(inode->i_sb, KERN_CRIT,
3115 "This should not happen leaving %s "
fbe845dd 3116 "with nr_to_write = %ld ret = %d",
1693918e 3117 __func__, wbc->nr_to_write, ret);
22208ded
AK
3118
3119 /* Update index */
3120 index += pages_written;
2acf2c26 3121 wbc->range_cyclic = range_cyclic;
22208ded
AK
3122 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3123 /*
3124 * set the writeback_index so that range_cyclic
3125 * mode will write it back later
3126 */
3127 mapping->writeback_index = index;
a1d6cc56 3128
61628a3f 3129out_writepages:
2faf2e19 3130 wbc->nr_to_write -= nr_to_writebump;
de89de6e 3131 wbc->range_start = range_start;
9bffad1e 3132 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 3133 return ret;
64769240
AT
3134}
3135
79f0be8d
AK
3136#define FALL_BACK_TO_NONDELALLOC 1
3137static int ext4_nonda_switch(struct super_block *sb)
3138{
3139 s64 free_blocks, dirty_blocks;
3140 struct ext4_sb_info *sbi = EXT4_SB(sb);
3141
3142 /*
3143 * switch to non delalloc mode if we are running low
3144 * on free block. The free block accounting via percpu
179f7ebf 3145 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
3146 * accumulated on each CPU without updating global counters
3147 * Delalloc need an accurate free block accounting. So switch
3148 * to non delalloc when we are near to error range.
3149 */
3150 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3151 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3152 if (2 * free_blocks < 3 * dirty_blocks ||
3153 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3154 /*
c8afb446
ES
3155 * free block count is less than 150% of dirty blocks
3156 * or free blocks is less than watermark
79f0be8d
AK
3157 */
3158 return 1;
3159 }
c8afb446
ES
3160 /*
3161 * Even if we don't switch but are nearing capacity,
3162 * start pushing delalloc when 1/2 of free blocks are dirty.
3163 */
3164 if (free_blocks < 2 * dirty_blocks)
3165 writeback_inodes_sb_if_idle(sb);
3166
79f0be8d
AK
3167 return 0;
3168}
3169
64769240 3170static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
3171 loff_t pos, unsigned len, unsigned flags,
3172 struct page **pagep, void **fsdata)
64769240 3173{
72b8ab9d 3174 int ret, retries = 0;
64769240
AT
3175 struct page *page;
3176 pgoff_t index;
64769240
AT
3177 struct inode *inode = mapping->host;
3178 handle_t *handle;
3179
3180 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
3181
3182 if (ext4_nonda_switch(inode->i_sb)) {
3183 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3184 return ext4_write_begin(file, mapping, pos,
3185 len, flags, pagep, fsdata);
3186 }
3187 *fsdata = (void *)0;
9bffad1e 3188 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 3189retry:
64769240
AT
3190 /*
3191 * With delayed allocation, we don't log the i_disksize update
3192 * if there is delayed block allocation. But we still need
3193 * to journalling the i_disksize update if writes to the end
3194 * of file which has an already mapped buffer.
3195 */
3196 handle = ext4_journal_start(inode, 1);
3197 if (IS_ERR(handle)) {
3198 ret = PTR_ERR(handle);
3199 goto out;
3200 }
ebd3610b
JK
3201 /* We cannot recurse into the filesystem as the transaction is already
3202 * started */
3203 flags |= AOP_FLAG_NOFS;
64769240 3204
54566b2c 3205 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
3206 if (!page) {
3207 ext4_journal_stop(handle);
3208 ret = -ENOMEM;
3209 goto out;
3210 }
64769240
AT
3211 *pagep = page;
3212
6e1db88d 3213 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
3214 if (ret < 0) {
3215 unlock_page(page);
3216 ext4_journal_stop(handle);
3217 page_cache_release(page);
ae4d5372
AK
3218 /*
3219 * block_write_begin may have instantiated a few blocks
3220 * outside i_size. Trim these off again. Don't need
3221 * i_size_read because we hold i_mutex.
3222 */
3223 if (pos + len > inode->i_size)
b9a4207d 3224 ext4_truncate_failed_write(inode);
64769240
AT
3225 }
3226
d2a17637
MC
3227 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3228 goto retry;
64769240
AT
3229out:
3230 return ret;
3231}
3232
632eaeab
MC
3233/*
3234 * Check if we should update i_disksize
3235 * when write to the end of file but not require block allocation
3236 */
3237static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3238 unsigned long offset)
632eaeab
MC
3239{
3240 struct buffer_head *bh;
3241 struct inode *inode = page->mapping->host;
3242 unsigned int idx;
3243 int i;
3244
3245 bh = page_buffers(page);
3246 idx = offset >> inode->i_blkbits;
3247
af5bc92d 3248 for (i = 0; i < idx; i++)
632eaeab
MC
3249 bh = bh->b_this_page;
3250
29fa89d0 3251 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3252 return 0;
3253 return 1;
3254}
3255
64769240 3256static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3257 struct address_space *mapping,
3258 loff_t pos, unsigned len, unsigned copied,
3259 struct page *page, void *fsdata)
64769240
AT
3260{
3261 struct inode *inode = mapping->host;
3262 int ret = 0, ret2;
3263 handle_t *handle = ext4_journal_current_handle();
3264 loff_t new_i_size;
632eaeab 3265 unsigned long start, end;
79f0be8d
AK
3266 int write_mode = (int)(unsigned long)fsdata;
3267
3268 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3269 if (ext4_should_order_data(inode)) {
3270 return ext4_ordered_write_end(file, mapping, pos,
3271 len, copied, page, fsdata);
3272 } else if (ext4_should_writeback_data(inode)) {
3273 return ext4_writeback_write_end(file, mapping, pos,
3274 len, copied, page, fsdata);
3275 } else {
3276 BUG();
3277 }
3278 }
632eaeab 3279
9bffad1e 3280 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 3281 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 3282 end = start + copied - 1;
64769240
AT
3283
3284 /*
3285 * generic_write_end() will run mark_inode_dirty() if i_size
3286 * changes. So let's piggyback the i_disksize mark_inode_dirty
3287 * into that.
3288 */
3289
3290 new_i_size = pos + copied;
632eaeab
MC
3291 if (new_i_size > EXT4_I(inode)->i_disksize) {
3292 if (ext4_da_should_update_i_disksize(page, end)) {
3293 down_write(&EXT4_I(inode)->i_data_sem);
3294 if (new_i_size > EXT4_I(inode)->i_disksize) {
3295 /*
3296 * Updating i_disksize when extending file
3297 * without needing block allocation
3298 */
3299 if (ext4_should_order_data(inode))
3300 ret = ext4_jbd2_file_inode(handle,
3301 inode);
64769240 3302
632eaeab
MC
3303 EXT4_I(inode)->i_disksize = new_i_size;
3304 }
3305 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
3306 /* We need to mark inode dirty even if
3307 * new_i_size is less that inode->i_size
3308 * bu greater than i_disksize.(hint delalloc)
3309 */
3310 ext4_mark_inode_dirty(handle, inode);
64769240 3311 }
632eaeab 3312 }
64769240
AT
3313 ret2 = generic_write_end(file, mapping, pos, len, copied,
3314 page, fsdata);
3315 copied = ret2;
3316 if (ret2 < 0)
3317 ret = ret2;
3318 ret2 = ext4_journal_stop(handle);
3319 if (!ret)
3320 ret = ret2;
3321
3322 return ret ? ret : copied;
3323}
3324
3325static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3326{
64769240
AT
3327 /*
3328 * Drop reserved blocks
3329 */
3330 BUG_ON(!PageLocked(page));
3331 if (!page_has_buffers(page))
3332 goto out;
3333
d2a17637 3334 ext4_da_page_release_reservation(page, offset);
64769240
AT
3335
3336out:
3337 ext4_invalidatepage(page, offset);
3338
3339 return;
3340}
3341
ccd2506b
TT
3342/*
3343 * Force all delayed allocation blocks to be allocated for a given inode.
3344 */
3345int ext4_alloc_da_blocks(struct inode *inode)
3346{
fb40ba0d
TT
3347 trace_ext4_alloc_da_blocks(inode);
3348
ccd2506b
TT
3349 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3350 !EXT4_I(inode)->i_reserved_meta_blocks)
3351 return 0;
3352
3353 /*
3354 * We do something simple for now. The filemap_flush() will
3355 * also start triggering a write of the data blocks, which is
3356 * not strictly speaking necessary (and for users of
3357 * laptop_mode, not even desirable). However, to do otherwise
3358 * would require replicating code paths in:
de9a55b8 3359 *
ccd2506b
TT
3360 * ext4_da_writepages() ->
3361 * write_cache_pages() ---> (via passed in callback function)
3362 * __mpage_da_writepage() -->
3363 * mpage_add_bh_to_extent()
3364 * mpage_da_map_blocks()
3365 *
3366 * The problem is that write_cache_pages(), located in
3367 * mm/page-writeback.c, marks pages clean in preparation for
3368 * doing I/O, which is not desirable if we're not planning on
3369 * doing I/O at all.
3370 *
3371 * We could call write_cache_pages(), and then redirty all of
3372 * the pages by calling redirty_page_for_writeback() but that
3373 * would be ugly in the extreme. So instead we would need to
3374 * replicate parts of the code in the above functions,
3375 * simplifying them becuase we wouldn't actually intend to
3376 * write out the pages, but rather only collect contiguous
3377 * logical block extents, call the multi-block allocator, and
3378 * then update the buffer heads with the block allocations.
de9a55b8 3379 *
ccd2506b
TT
3380 * For now, though, we'll cheat by calling filemap_flush(),
3381 * which will map the blocks, and start the I/O, but not
3382 * actually wait for the I/O to complete.
3383 */
3384 return filemap_flush(inode->i_mapping);
3385}
64769240 3386
ac27a0ec
DK
3387/*
3388 * bmap() is special. It gets used by applications such as lilo and by
3389 * the swapper to find the on-disk block of a specific piece of data.
3390 *
3391 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3392 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3393 * filesystem and enables swap, then they may get a nasty shock when the
3394 * data getting swapped to that swapfile suddenly gets overwritten by
3395 * the original zero's written out previously to the journal and
3396 * awaiting writeback in the kernel's buffer cache.
3397 *
3398 * So, if we see any bmap calls here on a modified, data-journaled file,
3399 * take extra steps to flush any blocks which might be in the cache.
3400 */
617ba13b 3401static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3402{
3403 struct inode *inode = mapping->host;
3404 journal_t *journal;
3405 int err;
3406
64769240
AT
3407 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3408 test_opt(inode->i_sb, DELALLOC)) {
3409 /*
3410 * With delalloc we want to sync the file
3411 * so that we can make sure we allocate
3412 * blocks for file
3413 */
3414 filemap_write_and_wait(mapping);
3415 }
3416
19f5fb7a
TT
3417 if (EXT4_JOURNAL(inode) &&
3418 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
3419 /*
3420 * This is a REALLY heavyweight approach, but the use of
3421 * bmap on dirty files is expected to be extremely rare:
3422 * only if we run lilo or swapon on a freshly made file
3423 * do we expect this to happen.
3424 *
3425 * (bmap requires CAP_SYS_RAWIO so this does not
3426 * represent an unprivileged user DOS attack --- we'd be
3427 * in trouble if mortal users could trigger this path at
3428 * will.)
3429 *
617ba13b 3430 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3431 * regular files. If somebody wants to bmap a directory
3432 * or symlink and gets confused because the buffer
3433 * hasn't yet been flushed to disk, they deserve
3434 * everything they get.
3435 */
3436
19f5fb7a 3437 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 3438 journal = EXT4_JOURNAL(inode);
dab291af
MC
3439 jbd2_journal_lock_updates(journal);
3440 err = jbd2_journal_flush(journal);
3441 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3442
3443 if (err)
3444 return 0;
3445 }
3446
af5bc92d 3447 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3448}
3449
617ba13b 3450static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3451{
617ba13b 3452 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
3453}
3454
3455static int
617ba13b 3456ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3457 struct list_head *pages, unsigned nr_pages)
3458{
617ba13b 3459 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3460}
3461
744692dc
JZ
3462static void ext4_free_io_end(ext4_io_end_t *io)
3463{
3464 BUG_ON(!io);
3465 if (io->page)
3466 put_page(io->page);
3467 iput(io->inode);
3468 kfree(io);
3469}
3470
3471static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3472{
3473 struct buffer_head *head, *bh;
3474 unsigned int curr_off = 0;
3475
3476 if (!page_has_buffers(page))
3477 return;
3478 head = bh = page_buffers(page);
3479 do {
3480 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3481 && bh->b_private) {
3482 ext4_free_io_end(bh->b_private);
3483 bh->b_private = NULL;
3484 bh->b_end_io = NULL;
3485 }
3486 curr_off = curr_off + bh->b_size;
3487 bh = bh->b_this_page;
3488 } while (bh != head);
3489}
3490
617ba13b 3491static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3492{
617ba13b 3493 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3494
744692dc
JZ
3495 /*
3496 * free any io_end structure allocated for buffers to be discarded
3497 */
3498 if (ext4_should_dioread_nolock(page->mapping->host))
3499 ext4_invalidatepage_free_endio(page, offset);
ac27a0ec
DK
3500 /*
3501 * If it's a full truncate we just forget about the pending dirtying
3502 */
3503 if (offset == 0)
3504 ClearPageChecked(page);
3505
0390131b
FM
3506 if (journal)
3507 jbd2_journal_invalidatepage(journal, page, offset);
3508 else
3509 block_invalidatepage(page, offset);
ac27a0ec
DK
3510}
3511
617ba13b 3512static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3513{
617ba13b 3514 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3515
3516 WARN_ON(PageChecked(page));
3517 if (!page_has_buffers(page))
3518 return 0;
0390131b
FM
3519 if (journal)
3520 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3521 else
3522 return try_to_free_buffers(page);
ac27a0ec
DK
3523}
3524
3525/*
4c0425ff
MC
3526 * O_DIRECT for ext3 (or indirect map) based files
3527 *
ac27a0ec
DK
3528 * If the O_DIRECT write will extend the file then add this inode to the
3529 * orphan list. So recovery will truncate it back to the original size
3530 * if the machine crashes during the write.
3531 *
3532 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3533 * crashes then stale disk data _may_ be exposed inside the file. But current
3534 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3535 */
4c0425ff 3536static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
de9a55b8
TT
3537 const struct iovec *iov, loff_t offset,
3538 unsigned long nr_segs)
ac27a0ec
DK
3539{
3540 struct file *file = iocb->ki_filp;
3541 struct inode *inode = file->f_mapping->host;
617ba13b 3542 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3543 handle_t *handle;
ac27a0ec
DK
3544 ssize_t ret;
3545 int orphan = 0;
3546 size_t count = iov_length(iov, nr_segs);
fbbf6945 3547 int retries = 0;
ac27a0ec
DK
3548
3549 if (rw == WRITE) {
3550 loff_t final_size = offset + count;
3551
ac27a0ec 3552 if (final_size > inode->i_size) {
7fb5409d
JK
3553 /* Credits for sb + inode write */
3554 handle = ext4_journal_start(inode, 2);
3555 if (IS_ERR(handle)) {
3556 ret = PTR_ERR(handle);
3557 goto out;
3558 }
617ba13b 3559 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3560 if (ret) {
3561 ext4_journal_stop(handle);
3562 goto out;
3563 }
ac27a0ec
DK
3564 orphan = 1;
3565 ei->i_disksize = inode->i_size;
7fb5409d 3566 ext4_journal_stop(handle);
ac27a0ec
DK
3567 }
3568 }
3569
fbbf6945 3570retry:
b7adc1f3 3571 if (rw == READ && ext4_should_dioread_nolock(inode))
eafdc7d1 3572 ret = __blockdev_direct_IO(rw, iocb, inode,
b7adc1f3
JZ
3573 inode->i_sb->s_bdev, iov,
3574 offset, nr_segs,
eafdc7d1
CH
3575 ext4_get_block, NULL, NULL, 0);
3576 else {
b7adc1f3
JZ
3577 ret = blockdev_direct_IO(rw, iocb, inode,
3578 inode->i_sb->s_bdev, iov,
ac27a0ec 3579 offset, nr_segs,
617ba13b 3580 ext4_get_block, NULL);
eafdc7d1
CH
3581
3582 if (unlikely((rw & WRITE) && ret < 0)) {
3583 loff_t isize = i_size_read(inode);
3584 loff_t end = offset + iov_length(iov, nr_segs);
3585
3586 if (end > isize)
3587 vmtruncate(inode, isize);
3588 }
3589 }
fbbf6945
ES
3590 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3591 goto retry;
ac27a0ec 3592
7fb5409d 3593 if (orphan) {
ac27a0ec
DK
3594 int err;
3595
7fb5409d
JK
3596 /* Credits for sb + inode write */
3597 handle = ext4_journal_start(inode, 2);
3598 if (IS_ERR(handle)) {
3599 /* This is really bad luck. We've written the data
3600 * but cannot extend i_size. Bail out and pretend
3601 * the write failed... */
3602 ret = PTR_ERR(handle);
da1dafca
DM
3603 if (inode->i_nlink)
3604 ext4_orphan_del(NULL, inode);
3605
7fb5409d
JK
3606 goto out;
3607 }
3608 if (inode->i_nlink)
617ba13b 3609 ext4_orphan_del(handle, inode);
7fb5409d 3610 if (ret > 0) {
ac27a0ec
DK
3611 loff_t end = offset + ret;
3612 if (end > inode->i_size) {
3613 ei->i_disksize = end;
3614 i_size_write(inode, end);
3615 /*
3616 * We're going to return a positive `ret'
3617 * here due to non-zero-length I/O, so there's
3618 * no way of reporting error returns from
617ba13b 3619 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3620 * ignore it.
3621 */
617ba13b 3622 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3623 }
3624 }
617ba13b 3625 err = ext4_journal_stop(handle);
ac27a0ec
DK
3626 if (ret == 0)
3627 ret = err;
3628 }
3629out:
3630 return ret;
3631}
3632
2ed88685
TT
3633/*
3634 * ext4_get_block used when preparing for a DIO write or buffer write.
3635 * We allocate an uinitialized extent if blocks haven't been allocated.
3636 * The extent will be converted to initialized after the IO is complete.
3637 */
c7064ef1 3638static int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
3639 struct buffer_head *bh_result, int create)
3640{
c7064ef1 3641 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 3642 inode->i_ino, create);
2ed88685
TT
3643 return _ext4_get_block(inode, iblock, bh_result,
3644 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
3645}
3646
c7064ef1 3647static void dump_completed_IO(struct inode * inode)
8d5d02e6
MC
3648{
3649#ifdef EXT4_DEBUG
3650 struct list_head *cur, *before, *after;
3651 ext4_io_end_t *io, *io0, *io1;
744692dc 3652 unsigned long flags;
8d5d02e6 3653
c7064ef1
JZ
3654 if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
3655 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
8d5d02e6
MC
3656 return;
3657 }
3658
c7064ef1 3659 ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
744692dc 3660 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
c7064ef1 3661 list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
8d5d02e6
MC
3662 cur = &io->list;
3663 before = cur->prev;
3664 io0 = container_of(before, ext4_io_end_t, list);
3665 after = cur->next;
3666 io1 = container_of(after, ext4_io_end_t, list);
3667
3668 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3669 io, inode->i_ino, io0, io1);
3670 }
744692dc 3671 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
8d5d02e6
MC
3672#endif
3673}
4c0425ff
MC
3674
3675/*
4c0425ff
MC
3676 * check a range of space and convert unwritten extents to written.
3677 */
c7064ef1 3678static int ext4_end_io_nolock(ext4_io_end_t *io)
4c0425ff 3679{
4c0425ff
MC
3680 struct inode *inode = io->inode;
3681 loff_t offset = io->offset;
a1de02dc 3682 ssize_t size = io->size;
4c0425ff 3683 int ret = 0;
4c0425ff 3684
c7064ef1 3685 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
8d5d02e6
MC
3686 "list->prev 0x%p\n",
3687 io, inode->i_ino, io->list.next, io->list.prev);
3688
3689 if (list_empty(&io->list))
3690 return ret;
3691
c7064ef1 3692 if (io->flag != EXT4_IO_UNWRITTEN)
8d5d02e6
MC
3693 return ret;
3694
744692dc 3695 ret = ext4_convert_unwritten_extents(inode, offset, size);
8d5d02e6 3696 if (ret < 0) {
4c0425ff 3697 printk(KERN_EMERG "%s: failed to convert unwritten"
8d5d02e6
MC
3698 "extents to written extents, error is %d"
3699 " io is still on inode %lu aio dio list\n",
3700 __func__, ret, inode->i_ino);
3701 return ret;
3702 }
4c0425ff 3703
5b3ff237
JZ
3704 if (io->iocb)
3705 aio_complete(io->iocb, io->result, 0);
8d5d02e6
MC
3706 /* clear the DIO AIO unwritten flag */
3707 io->flag = 0;
3708 return ret;
4c0425ff 3709}
c7064ef1 3710
8d5d02e6
MC
3711/*
3712 * work on completed aio dio IO, to convert unwritten extents to extents
3713 */
c7064ef1 3714static void ext4_end_io_work(struct work_struct *work)
8d5d02e6 3715{
744692dc
JZ
3716 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3717 struct inode *inode = io->inode;
3718 struct ext4_inode_info *ei = EXT4_I(inode);
3719 unsigned long flags;
3720 int ret;
4c0425ff 3721
8d5d02e6 3722 mutex_lock(&inode->i_mutex);
c7064ef1 3723 ret = ext4_end_io_nolock(io);
744692dc
JZ
3724 if (ret < 0) {
3725 mutex_unlock(&inode->i_mutex);
3726 return;
8d5d02e6 3727 }
744692dc
JZ
3728
3729 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3730 if (!list_empty(&io->list))
3731 list_del_init(&io->list);
3732 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
8d5d02e6 3733 mutex_unlock(&inode->i_mutex);
744692dc 3734 ext4_free_io_end(io);
8d5d02e6 3735}
c7064ef1 3736
8d5d02e6
MC
3737/*
3738 * This function is called from ext4_sync_file().
3739 *
c7064ef1
JZ
3740 * When IO is completed, the work to convert unwritten extents to
3741 * written is queued on workqueue but may not get immediately
8d5d02e6
MC
3742 * scheduled. When fsync is called, we need to ensure the
3743 * conversion is complete before fsync returns.
c7064ef1
JZ
3744 * The inode keeps track of a list of pending/completed IO that
3745 * might needs to do the conversion. This function walks through
3746 * the list and convert the related unwritten extents for completed IO
3747 * to written.
3748 * The function return the number of pending IOs on success.
8d5d02e6 3749 */
c7064ef1 3750int flush_completed_IO(struct inode *inode)
8d5d02e6
MC
3751{
3752 ext4_io_end_t *io;
744692dc
JZ
3753 struct ext4_inode_info *ei = EXT4_I(inode);
3754 unsigned long flags;
8d5d02e6
MC
3755 int ret = 0;
3756 int ret2 = 0;
3757
744692dc 3758 if (list_empty(&ei->i_completed_io_list))
8d5d02e6
MC
3759 return ret;
3760
c7064ef1 3761 dump_completed_IO(inode);
744692dc
JZ
3762 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3763 while (!list_empty(&ei->i_completed_io_list)){
3764 io = list_entry(ei->i_completed_io_list.next,
8d5d02e6
MC
3765 ext4_io_end_t, list);
3766 /*
c7064ef1 3767 * Calling ext4_end_io_nolock() to convert completed
8d5d02e6
MC
3768 * IO to written.
3769 *
3770 * When ext4_sync_file() is called, run_queue() may already
3771 * about to flush the work corresponding to this io structure.
3772 * It will be upset if it founds the io structure related
3773 * to the work-to-be schedule is freed.
3774 *
3775 * Thus we need to keep the io structure still valid here after
3776 * convertion finished. The io structure has a flag to
3777 * avoid double converting from both fsync and background work
3778 * queue work.
3779 */
744692dc 3780 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
c7064ef1 3781 ret = ext4_end_io_nolock(io);
744692dc 3782 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
8d5d02e6
MC
3783 if (ret < 0)
3784 ret2 = ret;
3785 else
3786 list_del_init(&io->list);
3787 }
744692dc 3788 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
8d5d02e6
MC
3789 return (ret2 < 0) ? ret2 : 0;
3790}
3791
744692dc 3792static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
4c0425ff
MC
3793{
3794 ext4_io_end_t *io = NULL;
3795
744692dc 3796 io = kmalloc(sizeof(*io), flags);
4c0425ff
MC
3797
3798 if (io) {
8d5d02e6 3799 igrab(inode);
4c0425ff 3800 io->inode = inode;
8d5d02e6 3801 io->flag = 0;
4c0425ff
MC
3802 io->offset = 0;
3803 io->size = 0;
744692dc 3804 io->page = NULL;
5b3ff237
JZ
3805 io->iocb = NULL;
3806 io->result = 0;
c7064ef1 3807 INIT_WORK(&io->work, ext4_end_io_work);
8d5d02e6 3808 INIT_LIST_HEAD(&io->list);
4c0425ff
MC
3809 }
3810
3811 return io;
3812}
3813
3814static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
3815 ssize_t size, void *private, int ret,
3816 bool is_async)
4c0425ff
MC
3817{
3818 ext4_io_end_t *io_end = iocb->private;
3819 struct workqueue_struct *wq;
744692dc
JZ
3820 unsigned long flags;
3821 struct ext4_inode_info *ei;
4c0425ff 3822
4b70df18
M
3823 /* if not async direct IO or dio with 0 bytes write, just return */
3824 if (!io_end || !size)
552ef802 3825 goto out;
4b70df18 3826
8d5d02e6
MC
3827 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3828 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3829 iocb->private, io_end->inode->i_ino, iocb, offset,
3830 size);
8d5d02e6
MC
3831
3832 /* if not aio dio with unwritten extents, just free io and return */
c7064ef1 3833 if (io_end->flag != EXT4_IO_UNWRITTEN){
8d5d02e6
MC
3834 ext4_free_io_end(io_end);
3835 iocb->private = NULL;
5b3ff237
JZ
3836out:
3837 if (is_async)
3838 aio_complete(iocb, ret, 0);
3839 return;
8d5d02e6
MC
3840 }
3841
4c0425ff
MC
3842 io_end->offset = offset;
3843 io_end->size = size;
5b3ff237
JZ
3844 if (is_async) {
3845 io_end->iocb = iocb;
3846 io_end->result = ret;
3847 }
4c0425ff
MC
3848 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3849
8d5d02e6 3850 /* queue the work to convert unwritten extents to written */
4c0425ff
MC
3851 queue_work(wq, &io_end->work);
3852
8d5d02e6 3853 /* Add the io_end to per-inode completed aio dio list*/
744692dc
JZ
3854 ei = EXT4_I(io_end->inode);
3855 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3856 list_add_tail(&io_end->list, &ei->i_completed_io_list);
3857 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
4c0425ff
MC
3858 iocb->private = NULL;
3859}
c7064ef1 3860
744692dc
JZ
3861static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3862{
3863 ext4_io_end_t *io_end = bh->b_private;
3864 struct workqueue_struct *wq;
3865 struct inode *inode;
3866 unsigned long flags;
3867
3868 if (!test_clear_buffer_uninit(bh) || !io_end)
3869 goto out;
3870
3871 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3872 printk("sb umounted, discard end_io request for inode %lu\n",
3873 io_end->inode->i_ino);
3874 ext4_free_io_end(io_end);
3875 goto out;
3876 }
3877
3878 io_end->flag = EXT4_IO_UNWRITTEN;
3879 inode = io_end->inode;
3880
3881 /* Add the io_end to per-inode completed io list*/
3882 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3883 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3884 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3885
3886 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3887 /* queue the work to convert unwritten extents to written */
3888 queue_work(wq, &io_end->work);
3889out:
3890 bh->b_private = NULL;
3891 bh->b_end_io = NULL;
3892 clear_buffer_uninit(bh);
3893 end_buffer_async_write(bh, uptodate);
3894}
3895
3896static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3897{
3898 ext4_io_end_t *io_end;
3899 struct page *page = bh->b_page;
3900 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3901 size_t size = bh->b_size;
3902
3903retry:
3904 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3905 if (!io_end) {
3906 if (printk_ratelimit())
3907 printk(KERN_WARNING "%s: allocation fail\n", __func__);
3908 schedule();
3909 goto retry;
3910 }
3911 io_end->offset = offset;
3912 io_end->size = size;
3913 /*
3914 * We need to hold a reference to the page to make sure it
3915 * doesn't get evicted before ext4_end_io_work() has a chance
3916 * to convert the extent from written to unwritten.
3917 */
3918 io_end->page = page;
3919 get_page(io_end->page);
3920
3921 bh->b_private = io_end;
3922 bh->b_end_io = ext4_end_io_buffer_write;
3923 return 0;
3924}
3925
4c0425ff
MC
3926/*
3927 * For ext4 extent files, ext4 will do direct-io write to holes,
3928 * preallocated extents, and those write extend the file, no need to
3929 * fall back to buffered IO.
3930 *
3931 * For holes, we fallocate those blocks, mark them as unintialized
3932 * If those blocks were preallocated, we mark sure they are splited, but
3933 * still keep the range to write as unintialized.
3934 *
8d5d02e6
MC
3935 * The unwrritten extents will be converted to written when DIO is completed.
3936 * For async direct IO, since the IO may still pending when return, we
3937 * set up an end_io call back function, which will do the convertion
3938 * when async direct IO completed.
4c0425ff
MC
3939 *
3940 * If the O_DIRECT write will extend the file then add this inode to the
3941 * orphan list. So recovery will truncate it back to the original size
3942 * if the machine crashes during the write.
3943 *
3944 */
3945static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3946 const struct iovec *iov, loff_t offset,
3947 unsigned long nr_segs)
3948{
3949 struct file *file = iocb->ki_filp;
3950 struct inode *inode = file->f_mapping->host;
3951 ssize_t ret;
3952 size_t count = iov_length(iov, nr_segs);
3953
3954 loff_t final_size = offset + count;
3955 if (rw == WRITE && final_size <= inode->i_size) {
3956 /*
8d5d02e6
MC
3957 * We could direct write to holes and fallocate.
3958 *
3959 * Allocated blocks to fill the hole are marked as uninitialized
4c0425ff
MC
3960 * to prevent paralel buffered read to expose the stale data
3961 * before DIO complete the data IO.
8d5d02e6
MC
3962 *
3963 * As to previously fallocated extents, ext4 get_block
4c0425ff
MC
3964 * will just simply mark the buffer mapped but still
3965 * keep the extents uninitialized.
3966 *
8d5d02e6
MC
3967 * for non AIO case, we will convert those unwritten extents
3968 * to written after return back from blockdev_direct_IO.
3969 *
3970 * for async DIO, the conversion needs to be defered when
3971 * the IO is completed. The ext4 end_io callback function
3972 * will be called to take care of the conversion work.
3973 * Here for async case, we allocate an io_end structure to
3974 * hook to the iocb.
4c0425ff 3975 */
8d5d02e6
MC
3976 iocb->private = NULL;
3977 EXT4_I(inode)->cur_aio_dio = NULL;
3978 if (!is_sync_kiocb(iocb)) {
744692dc 3979 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
8d5d02e6
MC
3980 if (!iocb->private)
3981 return -ENOMEM;
3982 /*
3983 * we save the io structure for current async
79e83036 3984 * direct IO, so that later ext4_map_blocks()
8d5d02e6
MC
3985 * could flag the io structure whether there
3986 * is a unwritten extents needs to be converted
3987 * when IO is completed.
3988 */
3989 EXT4_I(inode)->cur_aio_dio = iocb->private;
3990 }
3991
4c0425ff
MC
3992 ret = blockdev_direct_IO(rw, iocb, inode,
3993 inode->i_sb->s_bdev, iov,
3994 offset, nr_segs,
c7064ef1 3995 ext4_get_block_write,
4c0425ff 3996 ext4_end_io_dio);
8d5d02e6
MC
3997 if (iocb->private)
3998 EXT4_I(inode)->cur_aio_dio = NULL;
3999 /*
4000 * The io_end structure takes a reference to the inode,
4001 * that structure needs to be destroyed and the
4002 * reference to the inode need to be dropped, when IO is
4003 * complete, even with 0 byte write, or failed.
4004 *
4005 * In the successful AIO DIO case, the io_end structure will be
4006 * desctroyed and the reference to the inode will be dropped
4007 * after the end_io call back function is called.
4008 *
4009 * In the case there is 0 byte write, or error case, since
4010 * VFS direct IO won't invoke the end_io call back function,
4011 * we need to free the end_io structure here.
4012 */
4013 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
4014 ext4_free_io_end(iocb->private);
4015 iocb->private = NULL;
19f5fb7a
TT
4016 } else if (ret > 0 && ext4_test_inode_state(inode,
4017 EXT4_STATE_DIO_UNWRITTEN)) {
109f5565 4018 int err;
8d5d02e6
MC
4019 /*
4020 * for non AIO case, since the IO is already
4021 * completed, we could do the convertion right here
4022 */
109f5565
M
4023 err = ext4_convert_unwritten_extents(inode,
4024 offset, ret);
4025 if (err < 0)
4026 ret = err;
19f5fb7a 4027 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
109f5565 4028 }
4c0425ff
MC
4029 return ret;
4030 }
8d5d02e6
MC
4031
4032 /* for write the the end of file case, we fall back to old way */
4c0425ff
MC
4033 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4034}
4035
4036static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
4037 const struct iovec *iov, loff_t offset,
4038 unsigned long nr_segs)
4039{
4040 struct file *file = iocb->ki_filp;
4041 struct inode *inode = file->f_mapping->host;
4042
12e9b892 4043 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4c0425ff
MC
4044 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
4045
4046 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4047}
4048
ac27a0ec 4049/*
617ba13b 4050 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
4051 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
4052 * much here because ->set_page_dirty is called under VFS locks. The page is
4053 * not necessarily locked.
4054 *
4055 * We cannot just dirty the page and leave attached buffers clean, because the
4056 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
4057 * or jbddirty because all the journalling code will explode.
4058 *
4059 * So what we do is to mark the page "pending dirty" and next time writepage
4060 * is called, propagate that into the buffers appropriately.
4061 */
617ba13b 4062static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
4063{
4064 SetPageChecked(page);
4065 return __set_page_dirty_nobuffers(page);
4066}
4067
617ba13b 4068static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
4069 .readpage = ext4_readpage,
4070 .readpages = ext4_readpages,
43ce1d23 4071 .writepage = ext4_writepage,
8ab22b9a
HH
4072 .sync_page = block_sync_page,
4073 .write_begin = ext4_write_begin,
4074 .write_end = ext4_ordered_write_end,
4075 .bmap = ext4_bmap,
4076 .invalidatepage = ext4_invalidatepage,
4077 .releasepage = ext4_releasepage,
4078 .direct_IO = ext4_direct_IO,
4079 .migratepage = buffer_migrate_page,
4080 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4081 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
4082};
4083
617ba13b 4084static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
4085 .readpage = ext4_readpage,
4086 .readpages = ext4_readpages,
43ce1d23 4087 .writepage = ext4_writepage,
8ab22b9a
HH
4088 .sync_page = block_sync_page,
4089 .write_begin = ext4_write_begin,
4090 .write_end = ext4_writeback_write_end,
4091 .bmap = ext4_bmap,
4092 .invalidatepage = ext4_invalidatepage,
4093 .releasepage = ext4_releasepage,
4094 .direct_IO = ext4_direct_IO,
4095 .migratepage = buffer_migrate_page,
4096 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4097 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
4098};
4099
617ba13b 4100static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
4101 .readpage = ext4_readpage,
4102 .readpages = ext4_readpages,
43ce1d23 4103 .writepage = ext4_writepage,
8ab22b9a
HH
4104 .sync_page = block_sync_page,
4105 .write_begin = ext4_write_begin,
4106 .write_end = ext4_journalled_write_end,
4107 .set_page_dirty = ext4_journalled_set_page_dirty,
4108 .bmap = ext4_bmap,
4109 .invalidatepage = ext4_invalidatepage,
4110 .releasepage = ext4_releasepage,
4111 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4112 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
4113};
4114
64769240 4115static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
4116 .readpage = ext4_readpage,
4117 .readpages = ext4_readpages,
43ce1d23 4118 .writepage = ext4_writepage,
8ab22b9a
HH
4119 .writepages = ext4_da_writepages,
4120 .sync_page = block_sync_page,
4121 .write_begin = ext4_da_write_begin,
4122 .write_end = ext4_da_write_end,
4123 .bmap = ext4_bmap,
4124 .invalidatepage = ext4_da_invalidatepage,
4125 .releasepage = ext4_releasepage,
4126 .direct_IO = ext4_direct_IO,
4127 .migratepage = buffer_migrate_page,
4128 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4129 .error_remove_page = generic_error_remove_page,
64769240
AT
4130};
4131
617ba13b 4132void ext4_set_aops(struct inode *inode)
ac27a0ec 4133{
cd1aac32
AK
4134 if (ext4_should_order_data(inode) &&
4135 test_opt(inode->i_sb, DELALLOC))
4136 inode->i_mapping->a_ops = &ext4_da_aops;
4137 else if (ext4_should_order_data(inode))
617ba13b 4138 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
4139 else if (ext4_should_writeback_data(inode) &&
4140 test_opt(inode->i_sb, DELALLOC))
4141 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
4142 else if (ext4_should_writeback_data(inode))
4143 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 4144 else
617ba13b 4145 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
4146}
4147
4148/*
617ba13b 4149 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
4150 * up to the end of the block which corresponds to `from'.
4151 * This required during truncate. We need to physically zero the tail end
4152 * of that block so it doesn't yield old data if the file is later grown.
4153 */
cf108bca 4154int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
4155 struct address_space *mapping, loff_t from)
4156{
617ba13b 4157 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 4158 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
4159 unsigned blocksize, length, pos;
4160 ext4_lblk_t iblock;
ac27a0ec
DK
4161 struct inode *inode = mapping->host;
4162 struct buffer_head *bh;
cf108bca 4163 struct page *page;
ac27a0ec 4164 int err = 0;
ac27a0ec 4165
f4a01017
TT
4166 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4167 mapping_gfp_mask(mapping) & ~__GFP_FS);
cf108bca
JK
4168 if (!page)
4169 return -EINVAL;
4170
ac27a0ec
DK
4171 blocksize = inode->i_sb->s_blocksize;
4172 length = blocksize - (offset & (blocksize - 1));
4173 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4174
ac27a0ec
DK
4175 if (!page_has_buffers(page))
4176 create_empty_buffers(page, blocksize, 0);
4177
4178 /* Find the buffer that contains "offset" */
4179 bh = page_buffers(page);
4180 pos = blocksize;
4181 while (offset >= pos) {
4182 bh = bh->b_this_page;
4183 iblock++;
4184 pos += blocksize;
4185 }
4186
4187 err = 0;
4188 if (buffer_freed(bh)) {
4189 BUFFER_TRACE(bh, "freed: skip");
4190 goto unlock;
4191 }
4192
4193 if (!buffer_mapped(bh)) {
4194 BUFFER_TRACE(bh, "unmapped");
617ba13b 4195 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
4196 /* unmapped? It's a hole - nothing to do */
4197 if (!buffer_mapped(bh)) {
4198 BUFFER_TRACE(bh, "still unmapped");
4199 goto unlock;
4200 }
4201 }
4202
4203 /* Ok, it's mapped. Make sure it's up-to-date */
4204 if (PageUptodate(page))
4205 set_buffer_uptodate(bh);
4206
4207 if (!buffer_uptodate(bh)) {
4208 err = -EIO;
4209 ll_rw_block(READ, 1, &bh);
4210 wait_on_buffer(bh);
4211 /* Uhhuh. Read error. Complain and punt. */
4212 if (!buffer_uptodate(bh))
4213 goto unlock;
4214 }
4215
617ba13b 4216 if (ext4_should_journal_data(inode)) {
ac27a0ec 4217 BUFFER_TRACE(bh, "get write access");
617ba13b 4218 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
4219 if (err)
4220 goto unlock;
4221 }
4222
eebd2aa3 4223 zero_user(page, offset, length);
ac27a0ec
DK
4224
4225 BUFFER_TRACE(bh, "zeroed end of block");
4226
4227 err = 0;
617ba13b 4228 if (ext4_should_journal_data(inode)) {
0390131b 4229 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 4230 } else {
617ba13b 4231 if (ext4_should_order_data(inode))
678aaf48 4232 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
4233 mark_buffer_dirty(bh);
4234 }
4235
4236unlock:
4237 unlock_page(page);
4238 page_cache_release(page);
4239 return err;
4240}
4241
4242/*
4243 * Probably it should be a library function... search for first non-zero word
4244 * or memcmp with zero_page, whatever is better for particular architecture.
4245 * Linus?
4246 */
4247static inline int all_zeroes(__le32 *p, __le32 *q)
4248{
4249 while (p < q)
4250 if (*p++)
4251 return 0;
4252 return 1;
4253}
4254
4255/**
617ba13b 4256 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
4257 * @inode: inode in question
4258 * @depth: depth of the affected branch
617ba13b 4259 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
4260 * @chain: place to store the pointers to partial indirect blocks
4261 * @top: place to the (detached) top of branch
4262 *
617ba13b 4263 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
4264 *
4265 * When we do truncate() we may have to clean the ends of several
4266 * indirect blocks but leave the blocks themselves alive. Block is
4267 * partially truncated if some data below the new i_size is refered
4268 * from it (and it is on the path to the first completely truncated
4269 * data block, indeed). We have to free the top of that path along
4270 * with everything to the right of the path. Since no allocation
617ba13b 4271 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
4272 * finishes, we may safely do the latter, but top of branch may
4273 * require special attention - pageout below the truncation point
4274 * might try to populate it.
4275 *
4276 * We atomically detach the top of branch from the tree, store the
4277 * block number of its root in *@top, pointers to buffer_heads of
4278 * partially truncated blocks - in @chain[].bh and pointers to
4279 * their last elements that should not be removed - in
4280 * @chain[].p. Return value is the pointer to last filled element
4281 * of @chain.
4282 *
4283 * The work left to caller to do the actual freeing of subtrees:
4284 * a) free the subtree starting from *@top
4285 * b) free the subtrees whose roots are stored in
4286 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4287 * c) free the subtrees growing from the inode past the @chain[0].
4288 * (no partially truncated stuff there). */
4289
617ba13b 4290static Indirect *ext4_find_shared(struct inode *inode, int depth,
de9a55b8
TT
4291 ext4_lblk_t offsets[4], Indirect chain[4],
4292 __le32 *top)
ac27a0ec
DK
4293{
4294 Indirect *partial, *p;
4295 int k, err;
4296
4297 *top = 0;
bf48aabb 4298 /* Make k index the deepest non-null offset + 1 */
ac27a0ec
DK
4299 for (k = depth; k > 1 && !offsets[k-1]; k--)
4300 ;
617ba13b 4301 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
4302 /* Writer: pointers */
4303 if (!partial)
4304 partial = chain + k-1;
4305 /*
4306 * If the branch acquired continuation since we've looked at it -
4307 * fine, it should all survive and (new) top doesn't belong to us.
4308 */
4309 if (!partial->key && *partial->p)
4310 /* Writer: end */
4311 goto no_top;
af5bc92d 4312 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
4313 ;
4314 /*
4315 * OK, we've found the last block that must survive. The rest of our
4316 * branch should be detached before unlocking. However, if that rest
4317 * of branch is all ours and does not grow immediately from the inode
4318 * it's easier to cheat and just decrement partial->p.
4319 */
4320 if (p == chain + k - 1 && p > chain) {
4321 p->p--;
4322 } else {
4323 *top = *p->p;
617ba13b 4324 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
4325#if 0
4326 *p->p = 0;
4327#endif
4328 }
4329 /* Writer: end */
4330
af5bc92d 4331 while (partial > p) {
ac27a0ec
DK
4332 brelse(partial->bh);
4333 partial--;
4334 }
4335no_top:
4336 return partial;
4337}
4338
4339/*
4340 * Zero a number of block pointers in either an inode or an indirect block.
4341 * If we restart the transaction we must again get write access to the
4342 * indirect block for further modification.
4343 *
4344 * We release `count' blocks on disk, but (last - first) may be greater
4345 * than `count' because there can be holes in there.
4346 */
1f2acb60
TT
4347static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4348 struct buffer_head *bh,
4349 ext4_fsblk_t block_to_free,
4350 unsigned long count, __le32 *first,
4351 __le32 *last)
ac27a0ec
DK
4352{
4353 __le32 *p;
1f2acb60 4354 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
e6362609
TT
4355
4356 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4357 flags |= EXT4_FREE_BLOCKS_METADATA;
50689696 4358
1f2acb60
TT
4359 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4360 count)) {
24676da4
TT
4361 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4362 "blocks %llu len %lu",
4363 (unsigned long long) block_to_free, count);
1f2acb60
TT
4364 return 1;
4365 }
4366
ac27a0ec
DK
4367 if (try_to_extend_transaction(handle, inode)) {
4368 if (bh) {
0390131b
FM
4369 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4370 ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 4371 }
617ba13b 4372 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4373 ext4_truncate_restart_trans(handle, inode,
4374 blocks_for_truncate(inode));
ac27a0ec
DK
4375 if (bh) {
4376 BUFFER_TRACE(bh, "retaking write access");
617ba13b 4377 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
4378 }
4379 }
4380
e6362609
TT
4381 for (p = first; p < last; p++)
4382 *p = 0;
ac27a0ec 4383
e6362609 4384 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
1f2acb60 4385 return 0;
ac27a0ec
DK
4386}
4387
4388/**
617ba13b 4389 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
4390 * @handle: handle for this transaction
4391 * @inode: inode we are dealing with
4392 * @this_bh: indirect buffer_head which contains *@first and *@last
4393 * @first: array of block numbers
4394 * @last: points immediately past the end of array
4395 *
4396 * We are freeing all blocks refered from that array (numbers are stored as
4397 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4398 *
4399 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4400 * blocks are contiguous then releasing them at one time will only affect one
4401 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4402 * actually use a lot of journal space.
4403 *
4404 * @this_bh will be %NULL if @first and @last point into the inode's direct
4405 * block pointers.
4406 */
617ba13b 4407static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4408 struct buffer_head *this_bh,
4409 __le32 *first, __le32 *last)
4410{
617ba13b 4411 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
4412 unsigned long count = 0; /* Number of blocks in the run */
4413 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4414 corresponding to
4415 block_to_free */
617ba13b 4416 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
4417 __le32 *p; /* Pointer into inode/ind
4418 for current block */
4419 int err;
4420
4421 if (this_bh) { /* For indirect block */
4422 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 4423 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
4424 /* Important: if we can't update the indirect pointers
4425 * to the blocks, we can't free them. */
4426 if (err)
4427 return;
4428 }
4429
4430 for (p = first; p < last; p++) {
4431 nr = le32_to_cpu(*p);
4432 if (nr) {
4433 /* accumulate blocks to free if they're contiguous */
4434 if (count == 0) {
4435 block_to_free = nr;
4436 block_to_free_p = p;
4437 count = 1;
4438 } else if (nr == block_to_free + count) {
4439 count++;
4440 } else {
1f2acb60
TT
4441 if (ext4_clear_blocks(handle, inode, this_bh,
4442 block_to_free, count,
4443 block_to_free_p, p))
4444 break;
ac27a0ec
DK
4445 block_to_free = nr;
4446 block_to_free_p = p;
4447 count = 1;
4448 }
4449 }
4450 }
4451
4452 if (count > 0)
617ba13b 4453 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
4454 count, block_to_free_p, p);
4455
4456 if (this_bh) {
0390131b 4457 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
71dc8fbc
DG
4458
4459 /*
4460 * The buffer head should have an attached journal head at this
4461 * point. However, if the data is corrupted and an indirect
4462 * block pointed to itself, it would have been detached when
4463 * the block was cleared. Check for this instead of OOPSing.
4464 */
e7f07968 4465 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
0390131b 4466 ext4_handle_dirty_metadata(handle, inode, this_bh);
71dc8fbc 4467 else
24676da4
TT
4468 EXT4_ERROR_INODE(inode,
4469 "circular indirect block detected at "
4470 "block %llu",
4471 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
4472 }
4473}
4474
4475/**
617ba13b 4476 * ext4_free_branches - free an array of branches
ac27a0ec
DK
4477 * @handle: JBD handle for this transaction
4478 * @inode: inode we are dealing with
4479 * @parent_bh: the buffer_head which contains *@first and *@last
4480 * @first: array of block numbers
4481 * @last: pointer immediately past the end of array
4482 * @depth: depth of the branches to free
4483 *
4484 * We are freeing all blocks refered from these branches (numbers are
4485 * stored as little-endian 32-bit) and updating @inode->i_blocks
4486 * appropriately.
4487 */
617ba13b 4488static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4489 struct buffer_head *parent_bh,
4490 __le32 *first, __le32 *last, int depth)
4491{
617ba13b 4492 ext4_fsblk_t nr;
ac27a0ec
DK
4493 __le32 *p;
4494
0390131b 4495 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4496 return;
4497
4498 if (depth--) {
4499 struct buffer_head *bh;
617ba13b 4500 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
4501 p = last;
4502 while (--p >= first) {
4503 nr = le32_to_cpu(*p);
4504 if (!nr)
4505 continue; /* A hole */
4506
1f2acb60
TT
4507 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4508 nr, 1)) {
24676da4
TT
4509 EXT4_ERROR_INODE(inode,
4510 "invalid indirect mapped "
4511 "block %lu (level %d)",
4512 (unsigned long) nr, depth);
1f2acb60
TT
4513 break;
4514 }
4515
ac27a0ec
DK
4516 /* Go read the buffer for the next level down */
4517 bh = sb_bread(inode->i_sb, nr);
4518
4519 /*
4520 * A read failure? Report error and clear slot
4521 * (should be rare).
4522 */
4523 if (!bh) {
c398eda0
TT
4524 EXT4_ERROR_INODE_BLOCK(inode, nr,
4525 "Read failure");
ac27a0ec
DK
4526 continue;
4527 }
4528
4529 /* This zaps the entire block. Bottom up. */
4530 BUFFER_TRACE(bh, "free child branches");
617ba13b 4531 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
4532 (__le32 *) bh->b_data,
4533 (__le32 *) bh->b_data + addr_per_block,
4534 depth);
ac27a0ec 4535
ac27a0ec
DK
4536 /*
4537 * Everything below this this pointer has been
4538 * released. Now let this top-of-subtree go.
4539 *
4540 * We want the freeing of this indirect block to be
4541 * atomic in the journal with the updating of the
4542 * bitmap block which owns it. So make some room in
4543 * the journal.
4544 *
4545 * We zero the parent pointer *after* freeing its
4546 * pointee in the bitmaps, so if extend_transaction()
4547 * for some reason fails to put the bitmap changes and
4548 * the release into the same transaction, recovery
4549 * will merely complain about releasing a free block,
4550 * rather than leaking blocks.
4551 */
0390131b 4552 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4553 return;
4554 if (try_to_extend_transaction(handle, inode)) {
617ba13b 4555 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4556 ext4_truncate_restart_trans(handle, inode,
4557 blocks_for_truncate(inode));
ac27a0ec
DK
4558 }
4559
40389687
A
4560 /*
4561 * The forget flag here is critical because if
4562 * we are journaling (and not doing data
4563 * journaling), we have to make sure a revoke
4564 * record is written to prevent the journal
4565 * replay from overwriting the (former)
4566 * indirect block if it gets reallocated as a
4567 * data block. This must happen in the same
4568 * transaction where the data blocks are
4569 * actually freed.
4570 */
e6362609 4571 ext4_free_blocks(handle, inode, 0, nr, 1,
40389687
A
4572 EXT4_FREE_BLOCKS_METADATA|
4573 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec
DK
4574
4575 if (parent_bh) {
4576 /*
4577 * The block which we have just freed is
4578 * pointed to by an indirect block: journal it
4579 */
4580 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 4581 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
4582 parent_bh)){
4583 *p = 0;
4584 BUFFER_TRACE(parent_bh,
0390131b
FM
4585 "call ext4_handle_dirty_metadata");
4586 ext4_handle_dirty_metadata(handle,
4587 inode,
4588 parent_bh);
ac27a0ec
DK
4589 }
4590 }
4591 }
4592 } else {
4593 /* We have reached the bottom of the tree. */
4594 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 4595 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
4596 }
4597}
4598
91ef4caf
DG
4599int ext4_can_truncate(struct inode *inode)
4600{
4601 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4602 return 0;
4603 if (S_ISREG(inode->i_mode))
4604 return 1;
4605 if (S_ISDIR(inode->i_mode))
4606 return 1;
4607 if (S_ISLNK(inode->i_mode))
4608 return !ext4_inode_is_fast_symlink(inode);
4609 return 0;
4610}
4611
ac27a0ec 4612/*
617ba13b 4613 * ext4_truncate()
ac27a0ec 4614 *
617ba13b
MC
4615 * We block out ext4_get_block() block instantiations across the entire
4616 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4617 * simultaneously on behalf of the same inode.
4618 *
4619 * As we work through the truncate and commmit bits of it to the journal there
4620 * is one core, guiding principle: the file's tree must always be consistent on
4621 * disk. We must be able to restart the truncate after a crash.
4622 *
4623 * The file's tree may be transiently inconsistent in memory (although it
4624 * probably isn't), but whenever we close off and commit a journal transaction,
4625 * the contents of (the filesystem + the journal) must be consistent and
4626 * restartable. It's pretty simple, really: bottom up, right to left (although
4627 * left-to-right works OK too).
4628 *
4629 * Note that at recovery time, journal replay occurs *before* the restart of
4630 * truncate against the orphan inode list.
4631 *
4632 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4633 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4634 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4635 * ext4_truncate() to have another go. So there will be instantiated blocks
4636 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4637 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4638 * ext4_truncate() run will find them and release them.
ac27a0ec 4639 */
617ba13b 4640void ext4_truncate(struct inode *inode)
ac27a0ec
DK
4641{
4642 handle_t *handle;
617ba13b 4643 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4644 __le32 *i_data = ei->i_data;
617ba13b 4645 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 4646 struct address_space *mapping = inode->i_mapping;
725d26d3 4647 ext4_lblk_t offsets[4];
ac27a0ec
DK
4648 Indirect chain[4];
4649 Indirect *partial;
4650 __le32 nr = 0;
4651 int n;
725d26d3 4652 ext4_lblk_t last_block;
ac27a0ec 4653 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 4654
91ef4caf 4655 if (!ext4_can_truncate(inode))
ac27a0ec
DK
4656 return;
4657
12e9b892 4658 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 4659
5534fb5b 4660 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 4661 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 4662
12e9b892 4663 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
cf108bca 4664 ext4_ext_truncate(inode);
1d03ec98
AK
4665 return;
4666 }
a86c6181 4667
ac27a0ec 4668 handle = start_transaction(inode);
cf108bca 4669 if (IS_ERR(handle))
ac27a0ec 4670 return; /* AKPM: return what? */
ac27a0ec
DK
4671
4672 last_block = (inode->i_size + blocksize-1)
617ba13b 4673 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 4674
cf108bca
JK
4675 if (inode->i_size & (blocksize - 1))
4676 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4677 goto out_stop;
ac27a0ec 4678
617ba13b 4679 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
4680 if (n == 0)
4681 goto out_stop; /* error */
4682
4683 /*
4684 * OK. This truncate is going to happen. We add the inode to the
4685 * orphan list, so that if this truncate spans multiple transactions,
4686 * and we crash, we will resume the truncate when the filesystem
4687 * recovers. It also marks the inode dirty, to catch the new size.
4688 *
4689 * Implication: the file must always be in a sane, consistent
4690 * truncatable state while each transaction commits.
4691 */
617ba13b 4692 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
4693 goto out_stop;
4694
632eaeab
MC
4695 /*
4696 * From here we block out all ext4_get_block() callers who want to
4697 * modify the block allocation tree.
4698 */
4699 down_write(&ei->i_data_sem);
b4df2030 4700
c2ea3fde 4701 ext4_discard_preallocations(inode);
b4df2030 4702
ac27a0ec
DK
4703 /*
4704 * The orphan list entry will now protect us from any crash which
4705 * occurs before the truncate completes, so it is now safe to propagate
4706 * the new, shorter inode size (held for now in i_size) into the
4707 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 4708 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
4709 */
4710 ei->i_disksize = inode->i_size;
4711
ac27a0ec 4712 if (n == 1) { /* direct blocks */
617ba13b
MC
4713 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4714 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
4715 goto do_indirects;
4716 }
4717
617ba13b 4718 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
4719 /* Kill the top of shared branch (not detached) */
4720 if (nr) {
4721 if (partial == chain) {
4722 /* Shared branch grows from the inode */
617ba13b 4723 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
4724 &nr, &nr+1, (chain+n-1) - partial);
4725 *partial->p = 0;
4726 /*
4727 * We mark the inode dirty prior to restart,
4728 * and prior to stop. No need for it here.
4729 */
4730 } else {
4731 /* Shared branch grows from an indirect block */
4732 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 4733 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
4734 partial->p,
4735 partial->p+1, (chain+n-1) - partial);
4736 }
4737 }
4738 /* Clear the ends of indirect blocks on the shared branch */
4739 while (partial > chain) {
617ba13b 4740 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
4741 (__le32*)partial->bh->b_data+addr_per_block,
4742 (chain+n-1) - partial);
4743 BUFFER_TRACE(partial->bh, "call brelse");
de9a55b8 4744 brelse(partial->bh);
ac27a0ec
DK
4745 partial--;
4746 }
4747do_indirects:
4748 /* Kill the remaining (whole) subtrees */
4749 switch (offsets[0]) {
4750 default:
617ba13b 4751 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 4752 if (nr) {
617ba13b
MC
4753 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4754 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 4755 }
617ba13b
MC
4756 case EXT4_IND_BLOCK:
4757 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 4758 if (nr) {
617ba13b
MC
4759 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4760 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 4761 }
617ba13b
MC
4762 case EXT4_DIND_BLOCK:
4763 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 4764 if (nr) {
617ba13b
MC
4765 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4766 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 4767 }
617ba13b 4768 case EXT4_TIND_BLOCK:
ac27a0ec
DK
4769 ;
4770 }
4771
0e855ac8 4772 up_write(&ei->i_data_sem);
ef7f3835 4773 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 4774 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4775
4776 /*
4777 * In a multi-transaction truncate, we only make the final transaction
4778 * synchronous
4779 */
4780 if (IS_SYNC(inode))
0390131b 4781 ext4_handle_sync(handle);
ac27a0ec
DK
4782out_stop:
4783 /*
4784 * If this was a simple ftruncate(), and the file will remain alive
4785 * then we need to clear up the orphan record which we created above.
4786 * However, if this was a real unlink then we were called by
617ba13b 4787 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
4788 * orphan info for us.
4789 */
4790 if (inode->i_nlink)
617ba13b 4791 ext4_orphan_del(handle, inode);
ac27a0ec 4792
617ba13b 4793 ext4_journal_stop(handle);
ac27a0ec
DK
4794}
4795
ac27a0ec 4796/*
617ba13b 4797 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4798 * underlying buffer_head on success. If 'in_mem' is true, we have all
4799 * data in memory that is needed to recreate the on-disk version of this
4800 * inode.
4801 */
617ba13b
MC
4802static int __ext4_get_inode_loc(struct inode *inode,
4803 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4804{
240799cd
TT
4805 struct ext4_group_desc *gdp;
4806 struct buffer_head *bh;
4807 struct super_block *sb = inode->i_sb;
4808 ext4_fsblk_t block;
4809 int inodes_per_block, inode_offset;
4810
3a06d778 4811 iloc->bh = NULL;
240799cd
TT
4812 if (!ext4_valid_inum(sb, inode->i_ino))
4813 return -EIO;
ac27a0ec 4814
240799cd
TT
4815 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4816 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4817 if (!gdp)
ac27a0ec
DK
4818 return -EIO;
4819
240799cd
TT
4820 /*
4821 * Figure out the offset within the block group inode table
4822 */
4823 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4824 inode_offset = ((inode->i_ino - 1) %
4825 EXT4_INODES_PER_GROUP(sb));
4826 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4827 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4828
4829 bh = sb_getblk(sb, block);
ac27a0ec 4830 if (!bh) {
c398eda0
TT
4831 EXT4_ERROR_INODE_BLOCK(inode, block,
4832 "unable to read itable block");
ac27a0ec
DK
4833 return -EIO;
4834 }
4835 if (!buffer_uptodate(bh)) {
4836 lock_buffer(bh);
9c83a923
HK
4837
4838 /*
4839 * If the buffer has the write error flag, we have failed
4840 * to write out another inode in the same block. In this
4841 * case, we don't have to read the block because we may
4842 * read the old inode data successfully.
4843 */
4844 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4845 set_buffer_uptodate(bh);
4846
ac27a0ec
DK
4847 if (buffer_uptodate(bh)) {
4848 /* someone brought it uptodate while we waited */
4849 unlock_buffer(bh);
4850 goto has_buffer;
4851 }
4852
4853 /*
4854 * If we have all information of the inode in memory and this
4855 * is the only valid inode in the block, we need not read the
4856 * block.
4857 */
4858 if (in_mem) {
4859 struct buffer_head *bitmap_bh;
240799cd 4860 int i, start;
ac27a0ec 4861
240799cd 4862 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4863
240799cd
TT
4864 /* Is the inode bitmap in cache? */
4865 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
4866 if (!bitmap_bh)
4867 goto make_io;
4868
4869 /*
4870 * If the inode bitmap isn't in cache then the
4871 * optimisation may end up performing two reads instead
4872 * of one, so skip it.
4873 */
4874 if (!buffer_uptodate(bitmap_bh)) {
4875 brelse(bitmap_bh);
4876 goto make_io;
4877 }
240799cd 4878 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4879 if (i == inode_offset)
4880 continue;
617ba13b 4881 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4882 break;
4883 }
4884 brelse(bitmap_bh);
240799cd 4885 if (i == start + inodes_per_block) {
ac27a0ec
DK
4886 /* all other inodes are free, so skip I/O */
4887 memset(bh->b_data, 0, bh->b_size);
4888 set_buffer_uptodate(bh);
4889 unlock_buffer(bh);
4890 goto has_buffer;
4891 }
4892 }
4893
4894make_io:
240799cd
TT
4895 /*
4896 * If we need to do any I/O, try to pre-readahead extra
4897 * blocks from the inode table.
4898 */
4899 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4900 ext4_fsblk_t b, end, table;
4901 unsigned num;
4902
4903 table = ext4_inode_table(sb, gdp);
b713a5ec 4904 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
4905 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4906 if (table > b)
4907 b = table;
4908 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4909 num = EXT4_INODES_PER_GROUP(sb);
4910 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4911 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 4912 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4913 table += num / inodes_per_block;
4914 if (end > table)
4915 end = table;
4916 while (b <= end)
4917 sb_breadahead(sb, b++);
4918 }
4919
ac27a0ec
DK
4920 /*
4921 * There are other valid inodes in the buffer, this inode
4922 * has in-inode xattrs, or we don't have this inode in memory.
4923 * Read the block from disk.
4924 */
4925 get_bh(bh);
4926 bh->b_end_io = end_buffer_read_sync;
4927 submit_bh(READ_META, bh);
4928 wait_on_buffer(bh);
4929 if (!buffer_uptodate(bh)) {
c398eda0
TT
4930 EXT4_ERROR_INODE_BLOCK(inode, block,
4931 "unable to read itable block");
ac27a0ec
DK
4932 brelse(bh);
4933 return -EIO;
4934 }
4935 }
4936has_buffer:
4937 iloc->bh = bh;
4938 return 0;
4939}
4940
617ba13b 4941int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4942{
4943 /* We have all inode data except xattrs in memory here. */
617ba13b 4944 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4945 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4946}
4947
617ba13b 4948void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4949{
617ba13b 4950 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4951
4952 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4953 if (flags & EXT4_SYNC_FL)
ac27a0ec 4954 inode->i_flags |= S_SYNC;
617ba13b 4955 if (flags & EXT4_APPEND_FL)
ac27a0ec 4956 inode->i_flags |= S_APPEND;
617ba13b 4957 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4958 inode->i_flags |= S_IMMUTABLE;
617ba13b 4959 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4960 inode->i_flags |= S_NOATIME;
617ba13b 4961 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4962 inode->i_flags |= S_DIRSYNC;
4963}
4964
ff9ddf7e
JK
4965/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4966void ext4_get_inode_flags(struct ext4_inode_info *ei)
4967{
84a8dce2
DM
4968 unsigned int vfs_fl;
4969 unsigned long old_fl, new_fl;
4970
4971 do {
4972 vfs_fl = ei->vfs_inode.i_flags;
4973 old_fl = ei->i_flags;
4974 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4975 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4976 EXT4_DIRSYNC_FL);
4977 if (vfs_fl & S_SYNC)
4978 new_fl |= EXT4_SYNC_FL;
4979 if (vfs_fl & S_APPEND)
4980 new_fl |= EXT4_APPEND_FL;
4981 if (vfs_fl & S_IMMUTABLE)
4982 new_fl |= EXT4_IMMUTABLE_FL;
4983 if (vfs_fl & S_NOATIME)
4984 new_fl |= EXT4_NOATIME_FL;
4985 if (vfs_fl & S_DIRSYNC)
4986 new_fl |= EXT4_DIRSYNC_FL;
4987 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 4988}
de9a55b8 4989
0fc1b451 4990static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4991 struct ext4_inode_info *ei)
0fc1b451
AK
4992{
4993 blkcnt_t i_blocks ;
8180a562
AK
4994 struct inode *inode = &(ei->vfs_inode);
4995 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4996
4997 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4998 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4999 /* we are using combined 48 bit field */
5000 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
5001 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 5002 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
5003 /* i_blocks represent file system block size */
5004 return i_blocks << (inode->i_blkbits - 9);
5005 } else {
5006 return i_blocks;
5007 }
0fc1b451
AK
5008 } else {
5009 return le32_to_cpu(raw_inode->i_blocks_lo);
5010 }
5011}
ff9ddf7e 5012
1d1fe1ee 5013struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 5014{
617ba13b
MC
5015 struct ext4_iloc iloc;
5016 struct ext4_inode *raw_inode;
1d1fe1ee 5017 struct ext4_inode_info *ei;
1d1fe1ee 5018 struct inode *inode;
b436b9be 5019 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 5020 long ret;
ac27a0ec
DK
5021 int block;
5022
1d1fe1ee
DH
5023 inode = iget_locked(sb, ino);
5024 if (!inode)
5025 return ERR_PTR(-ENOMEM);
5026 if (!(inode->i_state & I_NEW))
5027 return inode;
5028
5029 ei = EXT4_I(inode);
567f3e9a 5030 iloc.bh = 0;
ac27a0ec 5031
1d1fe1ee
DH
5032 ret = __ext4_get_inode_loc(inode, &iloc, 0);
5033 if (ret < 0)
ac27a0ec 5034 goto bad_inode;
617ba13b 5035 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
5036 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
5037 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
5038 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 5039 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
5040 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
5041 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
5042 }
5043 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec 5044
19f5fb7a 5045 ei->i_state_flags = 0;
ac27a0ec
DK
5046 ei->i_dir_start_lookup = 0;
5047 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
5048 /* We now have enough fields to check if the inode was active or not.
5049 * This is needed because nfsd might try to access dead inodes
5050 * the test is that same one that e2fsck uses
5051 * NeilBrown 1999oct15
5052 */
5053 if (inode->i_nlink == 0) {
5054 if (inode->i_mode == 0 ||
617ba13b 5055 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 5056 /* this inode is deleted */
1d1fe1ee 5057 ret = -ESTALE;
ac27a0ec
DK
5058 goto bad_inode;
5059 }
5060 /* The only unlinked inodes we let through here have
5061 * valid i_mode and are being read by the orphan
5062 * recovery code: that's fine, we're about to complete
5063 * the process of deleting those. */
5064 }
ac27a0ec 5065 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 5066 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 5067 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 5068 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
5069 ei->i_file_acl |=
5070 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 5071 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 5072 ei->i_disksize = inode->i_size;
a9e7f447
DM
5073#ifdef CONFIG_QUOTA
5074 ei->i_reserved_quota = 0;
5075#endif
ac27a0ec
DK
5076 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5077 ei->i_block_group = iloc.block_group;
a4912123 5078 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
5079 /*
5080 * NOTE! The in-memory inode i_data array is in little-endian order
5081 * even on big-endian machines: we do NOT byteswap the block numbers!
5082 */
617ba13b 5083 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
5084 ei->i_data[block] = raw_inode->i_block[block];
5085 INIT_LIST_HEAD(&ei->i_orphan);
5086
b436b9be
JK
5087 /*
5088 * Set transaction id's of transactions that have to be committed
5089 * to finish f[data]sync. We set them to currently running transaction
5090 * as we cannot be sure that the inode or some of its metadata isn't
5091 * part of the transaction - the inode could have been reclaimed and
5092 * now it is reread from disk.
5093 */
5094 if (journal) {
5095 transaction_t *transaction;
5096 tid_t tid;
5097
a931da6a 5098 read_lock(&journal->j_state_lock);
b436b9be
JK
5099 if (journal->j_running_transaction)
5100 transaction = journal->j_running_transaction;
5101 else
5102 transaction = journal->j_committing_transaction;
5103 if (transaction)
5104 tid = transaction->t_tid;
5105 else
5106 tid = journal->j_commit_sequence;
a931da6a 5107 read_unlock(&journal->j_state_lock);
b436b9be
JK
5108 ei->i_sync_tid = tid;
5109 ei->i_datasync_tid = tid;
5110 }
5111
0040d987 5112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 5113 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 5114 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 5115 EXT4_INODE_SIZE(inode->i_sb)) {
1d1fe1ee 5116 ret = -EIO;
ac27a0ec 5117 goto bad_inode;
e5d2861f 5118 }
ac27a0ec
DK
5119 if (ei->i_extra_isize == 0) {
5120 /* The extra space is currently unused. Use it. */
617ba13b
MC
5121 ei->i_extra_isize = sizeof(struct ext4_inode) -
5122 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
5123 } else {
5124 __le32 *magic = (void *)raw_inode +
617ba13b 5125 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 5126 ei->i_extra_isize;
617ba13b 5127 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
19f5fb7a 5128 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
ac27a0ec
DK
5129 }
5130 } else
5131 ei->i_extra_isize = 0;
5132
ef7f3835
KS
5133 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5134 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5135 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5136 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5137
25ec56b5
JNC
5138 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5139 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5140 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5141 inode->i_version |=
5142 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5143 }
5144
c4b5a614 5145 ret = 0;
485c26ec 5146 if (ei->i_file_acl &&
1032988c 5147 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
5148 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
5149 ei->i_file_acl);
485c26ec
TT
5150 ret = -EIO;
5151 goto bad_inode;
07a03824 5152 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
c4b5a614
TT
5153 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5154 (S_ISLNK(inode->i_mode) &&
5155 !ext4_inode_is_fast_symlink(inode)))
5156 /* Validate extent which is part of inode */
5157 ret = ext4_ext_check_inode(inode);
de9a55b8 5158 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
fe2c8191
TN
5159 (S_ISLNK(inode->i_mode) &&
5160 !ext4_inode_is_fast_symlink(inode))) {
de9a55b8 5161 /* Validate block references which are part of inode */
fe2c8191
TN
5162 ret = ext4_check_inode_blockref(inode);
5163 }
567f3e9a 5164 if (ret)
de9a55b8 5165 goto bad_inode;
7a262f7c 5166
ac27a0ec 5167 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
5168 inode->i_op = &ext4_file_inode_operations;
5169 inode->i_fop = &ext4_file_operations;
5170 ext4_set_aops(inode);
ac27a0ec 5171 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
5172 inode->i_op = &ext4_dir_inode_operations;
5173 inode->i_fop = &ext4_dir_operations;
ac27a0ec 5174 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 5175 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 5176 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
5177 nd_terminate_link(ei->i_data, inode->i_size,
5178 sizeof(ei->i_data) - 1);
5179 } else {
617ba13b
MC
5180 inode->i_op = &ext4_symlink_inode_operations;
5181 ext4_set_aops(inode);
ac27a0ec 5182 }
563bdd61
TT
5183 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5184 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 5185 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
5186 if (raw_inode->i_block[0])
5187 init_special_inode(inode, inode->i_mode,
5188 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5189 else
5190 init_special_inode(inode, inode->i_mode,
5191 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 5192 } else {
563bdd61 5193 ret = -EIO;
24676da4 5194 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 5195 goto bad_inode;
ac27a0ec 5196 }
af5bc92d 5197 brelse(iloc.bh);
617ba13b 5198 ext4_set_inode_flags(inode);
1d1fe1ee
DH
5199 unlock_new_inode(inode);
5200 return inode;
ac27a0ec
DK
5201
5202bad_inode:
567f3e9a 5203 brelse(iloc.bh);
1d1fe1ee
DH
5204 iget_failed(inode);
5205 return ERR_PTR(ret);
ac27a0ec
DK
5206}
5207
0fc1b451
AK
5208static int ext4_inode_blocks_set(handle_t *handle,
5209 struct ext4_inode *raw_inode,
5210 struct ext4_inode_info *ei)
5211{
5212 struct inode *inode = &(ei->vfs_inode);
5213 u64 i_blocks = inode->i_blocks;
5214 struct super_block *sb = inode->i_sb;
0fc1b451
AK
5215
5216 if (i_blocks <= ~0U) {
5217 /*
5218 * i_blocks can be represnted in a 32 bit variable
5219 * as multiple of 512 bytes
5220 */
8180a562 5221 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5222 raw_inode->i_blocks_high = 0;
84a8dce2 5223 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
5224 return 0;
5225 }
5226 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5227 return -EFBIG;
5228
5229 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
5230 /*
5231 * i_blocks can be represented in a 48 bit variable
5232 * as multiple of 512 bytes
5233 */
8180a562 5234 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5235 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 5236 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 5237 } else {
84a8dce2 5238 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
5239 /* i_block is stored in file system block size */
5240 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5241 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5242 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 5243 }
f287a1a5 5244 return 0;
0fc1b451
AK
5245}
5246
ac27a0ec
DK
5247/*
5248 * Post the struct inode info into an on-disk inode location in the
5249 * buffer-cache. This gobbles the caller's reference to the
5250 * buffer_head in the inode location struct.
5251 *
5252 * The caller must have write access to iloc->bh.
5253 */
617ba13b 5254static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 5255 struct inode *inode,
830156c7 5256 struct ext4_iloc *iloc)
ac27a0ec 5257{
617ba13b
MC
5258 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5259 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
5260 struct buffer_head *bh = iloc->bh;
5261 int err = 0, rc, block;
5262
5263 /* For fields not not tracking in the in-memory inode,
5264 * initialise them to zero for new inodes. */
19f5fb7a 5265 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 5266 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 5267
ff9ddf7e 5268 ext4_get_inode_flags(ei);
ac27a0ec 5269 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 5270 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
5271 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5272 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5273/*
5274 * Fix up interoperability with old kernels. Otherwise, old inodes get
5275 * re-used with the upper 16 bits of the uid/gid intact
5276 */
af5bc92d 5277 if (!ei->i_dtime) {
ac27a0ec
DK
5278 raw_inode->i_uid_high =
5279 cpu_to_le16(high_16_bits(inode->i_uid));
5280 raw_inode->i_gid_high =
5281 cpu_to_le16(high_16_bits(inode->i_gid));
5282 } else {
5283 raw_inode->i_uid_high = 0;
5284 raw_inode->i_gid_high = 0;
5285 }
5286 } else {
5287 raw_inode->i_uid_low =
5288 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5289 raw_inode->i_gid_low =
5290 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5291 raw_inode->i_uid_high = 0;
5292 raw_inode->i_gid_high = 0;
5293 }
5294 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
5295
5296 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5297 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5298 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5299 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5300
0fc1b451
AK
5301 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5302 goto out_brelse;
ac27a0ec 5303 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1b9c12f4 5304 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
9b8f1f01
MC
5305 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5306 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
5307 raw_inode->i_file_acl_high =
5308 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 5309 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
5310 ext4_isize_set(raw_inode, ei->i_disksize);
5311 if (ei->i_disksize > 0x7fffffffULL) {
5312 struct super_block *sb = inode->i_sb;
5313 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5314 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5315 EXT4_SB(sb)->s_es->s_rev_level ==
5316 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5317 /* If this is the first large file
5318 * created, add a flag to the superblock.
5319 */
5320 err = ext4_journal_get_write_access(handle,
5321 EXT4_SB(sb)->s_sbh);
5322 if (err)
5323 goto out_brelse;
5324 ext4_update_dynamic_rev(sb);
5325 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 5326 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 5327 sb->s_dirt = 1;
0390131b 5328 ext4_handle_sync(handle);
73b50c1c 5329 err = ext4_handle_dirty_metadata(handle, NULL,
a48380f7 5330 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
5331 }
5332 }
5333 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5334 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5335 if (old_valid_dev(inode->i_rdev)) {
5336 raw_inode->i_block[0] =
5337 cpu_to_le32(old_encode_dev(inode->i_rdev));
5338 raw_inode->i_block[1] = 0;
5339 } else {
5340 raw_inode->i_block[0] = 0;
5341 raw_inode->i_block[1] =
5342 cpu_to_le32(new_encode_dev(inode->i_rdev));
5343 raw_inode->i_block[2] = 0;
5344 }
de9a55b8
TT
5345 } else
5346 for (block = 0; block < EXT4_N_BLOCKS; block++)
5347 raw_inode->i_block[block] = ei->i_data[block];
ac27a0ec 5348
25ec56b5
JNC
5349 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5350 if (ei->i_extra_isize) {
5351 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5352 raw_inode->i_version_hi =
5353 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 5354 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
5355 }
5356
830156c7 5357 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 5358 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
5359 if (!err)
5360 err = rc;
19f5fb7a 5361 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 5362
b436b9be 5363 ext4_update_inode_fsync_trans(handle, inode, 0);
ac27a0ec 5364out_brelse:
af5bc92d 5365 brelse(bh);
617ba13b 5366 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5367 return err;
5368}
5369
5370/*
617ba13b 5371 * ext4_write_inode()
ac27a0ec
DK
5372 *
5373 * We are called from a few places:
5374 *
5375 * - Within generic_file_write() for O_SYNC files.
5376 * Here, there will be no transaction running. We wait for any running
5377 * trasnaction to commit.
5378 *
5379 * - Within sys_sync(), kupdate and such.
5380 * We wait on commit, if tol to.
5381 *
5382 * - Within prune_icache() (PF_MEMALLOC == true)
5383 * Here we simply return. We can't afford to block kswapd on the
5384 * journal commit.
5385 *
5386 * In all cases it is actually safe for us to return without doing anything,
5387 * because the inode has been copied into a raw inode buffer in
617ba13b 5388 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
5389 * knfsd.
5390 *
5391 * Note that we are absolutely dependent upon all inode dirtiers doing the
5392 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5393 * which we are interested.
5394 *
5395 * It would be a bug for them to not do this. The code:
5396 *
5397 * mark_inode_dirty(inode)
5398 * stuff();
5399 * inode->i_size = expr;
5400 *
5401 * is in error because a kswapd-driven write_inode() could occur while
5402 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5403 * will no longer be on the superblock's dirty inode list.
5404 */
a9185b41 5405int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 5406{
91ac6f43
FM
5407 int err;
5408
ac27a0ec
DK
5409 if (current->flags & PF_MEMALLOC)
5410 return 0;
5411
91ac6f43
FM
5412 if (EXT4_SB(inode->i_sb)->s_journal) {
5413 if (ext4_journal_current_handle()) {
5414 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5415 dump_stack();
5416 return -EIO;
5417 }
ac27a0ec 5418
a9185b41 5419 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
5420 return 0;
5421
5422 err = ext4_force_commit(inode->i_sb);
5423 } else {
5424 struct ext4_iloc iloc;
ac27a0ec 5425
8b472d73 5426 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
5427 if (err)
5428 return err;
a9185b41 5429 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
5430 sync_dirty_buffer(iloc.bh);
5431 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
5432 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5433 "IO error syncing inode");
830156c7
FM
5434 err = -EIO;
5435 }
fd2dd9fb 5436 brelse(iloc.bh);
91ac6f43
FM
5437 }
5438 return err;
ac27a0ec
DK
5439}
5440
5441/*
617ba13b 5442 * ext4_setattr()
ac27a0ec
DK
5443 *
5444 * Called from notify_change.
5445 *
5446 * We want to trap VFS attempts to truncate the file as soon as
5447 * possible. In particular, we want to make sure that when the VFS
5448 * shrinks i_size, we put the inode on the orphan list and modify
5449 * i_disksize immediately, so that during the subsequent flushing of
5450 * dirty pages and freeing of disk blocks, we can guarantee that any
5451 * commit will leave the blocks being flushed in an unused state on
5452 * disk. (On recovery, the inode will get truncated and the blocks will
5453 * be freed, so we have a strong guarantee that no future commit will
5454 * leave these blocks visible to the user.)
5455 *
678aaf48
JK
5456 * Another thing we have to assure is that if we are in ordered mode
5457 * and inode is still attached to the committing transaction, we must
5458 * we start writeout of all the dirty pages which are being truncated.
5459 * This way we are sure that all the data written in the previous
5460 * transaction are already on disk (truncate waits for pages under
5461 * writeback).
5462 *
5463 * Called with inode->i_mutex down.
ac27a0ec 5464 */
617ba13b 5465int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
5466{
5467 struct inode *inode = dentry->d_inode;
5468 int error, rc = 0;
5469 const unsigned int ia_valid = attr->ia_valid;
5470
5471 error = inode_change_ok(inode, attr);
5472 if (error)
5473 return error;
5474
12755627 5475 if (is_quota_modification(inode, attr))
871a2931 5476 dquot_initialize(inode);
ac27a0ec
DK
5477 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5478 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5479 handle_t *handle;
5480
5481 /* (user+group)*(old+new) structure, inode write (sb,
5482 * inode block, ? - but truncate inode update has it) */
5aca07eb 5483 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
194074ac 5484 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
5485 if (IS_ERR(handle)) {
5486 error = PTR_ERR(handle);
5487 goto err_out;
5488 }
b43fa828 5489 error = dquot_transfer(inode, attr);
ac27a0ec 5490 if (error) {
617ba13b 5491 ext4_journal_stop(handle);
ac27a0ec
DK
5492 return error;
5493 }
5494 /* Update corresponding info in inode so that everything is in
5495 * one transaction */
5496 if (attr->ia_valid & ATTR_UID)
5497 inode->i_uid = attr->ia_uid;
5498 if (attr->ia_valid & ATTR_GID)
5499 inode->i_gid = attr->ia_gid;
617ba13b
MC
5500 error = ext4_mark_inode_dirty(handle, inode);
5501 ext4_journal_stop(handle);
ac27a0ec
DK
5502 }
5503
e2b46574 5504 if (attr->ia_valid & ATTR_SIZE) {
12e9b892 5505 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
5506 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5507
0c095c7f
TT
5508 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5509 return -EFBIG;
e2b46574
ES
5510 }
5511 }
5512
ac27a0ec 5513 if (S_ISREG(inode->i_mode) &&
c8d46e41
JZ
5514 attr->ia_valid & ATTR_SIZE &&
5515 (attr->ia_size < inode->i_size ||
12e9b892 5516 (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
ac27a0ec
DK
5517 handle_t *handle;
5518
617ba13b 5519 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
5520 if (IS_ERR(handle)) {
5521 error = PTR_ERR(handle);
5522 goto err_out;
5523 }
5524
617ba13b
MC
5525 error = ext4_orphan_add(handle, inode);
5526 EXT4_I(inode)->i_disksize = attr->ia_size;
5527 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
5528 if (!error)
5529 error = rc;
617ba13b 5530 ext4_journal_stop(handle);
678aaf48
JK
5531
5532 if (ext4_should_order_data(inode)) {
5533 error = ext4_begin_ordered_truncate(inode,
5534 attr->ia_size);
5535 if (error) {
5536 /* Do as much error cleanup as possible */
5537 handle = ext4_journal_start(inode, 3);
5538 if (IS_ERR(handle)) {
5539 ext4_orphan_del(NULL, inode);
5540 goto err_out;
5541 }
5542 ext4_orphan_del(handle, inode);
5543 ext4_journal_stop(handle);
5544 goto err_out;
5545 }
5546 }
c8d46e41 5547 /* ext4_truncate will clear the flag */
12e9b892 5548 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
c8d46e41 5549 ext4_truncate(inode);
ac27a0ec
DK
5550 }
5551
1025774c
CH
5552 if ((attr->ia_valid & ATTR_SIZE) &&
5553 attr->ia_size != i_size_read(inode))
5554 rc = vmtruncate(inode, attr->ia_size);
ac27a0ec 5555
1025774c
CH
5556 if (!rc) {
5557 setattr_copy(inode, attr);
5558 mark_inode_dirty(inode);
5559 }
5560
5561 /*
5562 * If the call to ext4_truncate failed to get a transaction handle at
5563 * all, we need to clean up the in-core orphan list manually.
5564 */
ac27a0ec 5565 if (inode->i_nlink)
617ba13b 5566 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
5567
5568 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 5569 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
5570
5571err_out:
617ba13b 5572 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5573 if (!error)
5574 error = rc;
5575 return error;
5576}
5577
3e3398a0
MC
5578int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5579 struct kstat *stat)
5580{
5581 struct inode *inode;
5582 unsigned long delalloc_blocks;
5583
5584 inode = dentry->d_inode;
5585 generic_fillattr(inode, stat);
5586
5587 /*
5588 * We can't update i_blocks if the block allocation is delayed
5589 * otherwise in the case of system crash before the real block
5590 * allocation is done, we will have i_blocks inconsistent with
5591 * on-disk file blocks.
5592 * We always keep i_blocks updated together with real
5593 * allocation. But to not confuse with user, stat
5594 * will return the blocks that include the delayed allocation
5595 * blocks for this file.
5596 */
5597 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5598 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5599 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5600
5601 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5602 return 0;
5603}
ac27a0ec 5604
a02908f1
MC
5605static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5606 int chunk)
5607{
5608 int indirects;
5609
5610 /* if nrblocks are contiguous */
5611 if (chunk) {
5612 /*
5613 * With N contiguous data blocks, it need at most
5614 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5615 * 2 dindirect blocks
5616 * 1 tindirect block
5617 */
5618 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5619 return indirects + 3;
5620 }
5621 /*
5622 * if nrblocks are not contiguous, worse case, each block touch
5623 * a indirect block, and each indirect block touch a double indirect
5624 * block, plus a triple indirect block
5625 */
5626 indirects = nrblocks * 2 + 1;
5627 return indirects;
5628}
5629
5630static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5631{
12e9b892 5632 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
ac51d837
TT
5633 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5634 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 5635}
ac51d837 5636
ac27a0ec 5637/*
a02908f1
MC
5638 * Account for index blocks, block groups bitmaps and block group
5639 * descriptor blocks if modify datablocks and index blocks
5640 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5641 *
a02908f1 5642 * If datablocks are discontiguous, they are possible to spread over
af901ca1 5643 * different block groups too. If they are contiuguous, with flexbg,
a02908f1 5644 * they could still across block group boundary.
ac27a0ec 5645 *
a02908f1
MC
5646 * Also account for superblock, inode, quota and xattr blocks
5647 */
5648int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5649{
8df9675f
TT
5650 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5651 int gdpblocks;
a02908f1
MC
5652 int idxblocks;
5653 int ret = 0;
5654
5655 /*
5656 * How many index blocks need to touch to modify nrblocks?
5657 * The "Chunk" flag indicating whether the nrblocks is
5658 * physically contiguous on disk
5659 *
5660 * For Direct IO and fallocate, they calls get_block to allocate
5661 * one single extent at a time, so they could set the "Chunk" flag
5662 */
5663 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5664
5665 ret = idxblocks;
5666
5667 /*
5668 * Now let's see how many group bitmaps and group descriptors need
5669 * to account
5670 */
5671 groups = idxblocks;
5672 if (chunk)
5673 groups += 1;
5674 else
5675 groups += nrblocks;
5676
5677 gdpblocks = groups;
8df9675f
TT
5678 if (groups > ngroups)
5679 groups = ngroups;
a02908f1
MC
5680 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5681 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5682
5683 /* bitmaps and block group descriptor blocks */
5684 ret += groups + gdpblocks;
5685
5686 /* Blocks for super block, inode, quota and xattr blocks */
5687 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5688
5689 return ret;
5690}
5691
5692/*
5693 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
5694 * the modification of a single pages into a single transaction,
5695 * which may include multiple chunks of block allocations.
ac27a0ec 5696 *
525f4ed8 5697 * This could be called via ext4_write_begin()
ac27a0ec 5698 *
525f4ed8 5699 * We need to consider the worse case, when
a02908f1 5700 * one new block per extent.
ac27a0ec 5701 */
a86c6181 5702int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5703{
617ba13b 5704 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5705 int ret;
5706
a02908f1 5707 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 5708
a02908f1 5709 /* Account for data blocks for journalled mode */
617ba13b 5710 if (ext4_should_journal_data(inode))
a02908f1 5711 ret += bpp;
ac27a0ec
DK
5712 return ret;
5713}
f3bd1f3f
MC
5714
5715/*
5716 * Calculate the journal credits for a chunk of data modification.
5717 *
5718 * This is called from DIO, fallocate or whoever calling
79e83036 5719 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5720 *
5721 * journal buffers for data blocks are not included here, as DIO
5722 * and fallocate do no need to journal data buffers.
5723 */
5724int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5725{
5726 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5727}
5728
ac27a0ec 5729/*
617ba13b 5730 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5731 * Give this, we know that the caller already has write access to iloc->bh.
5732 */
617ba13b 5733int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5734 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5735{
5736 int err = 0;
5737
25ec56b5
JNC
5738 if (test_opt(inode->i_sb, I_VERSION))
5739 inode_inc_iversion(inode);
5740
ac27a0ec
DK
5741 /* the do_update_inode consumes one bh->b_count */
5742 get_bh(iloc->bh);
5743
dab291af 5744 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5745 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5746 put_bh(iloc->bh);
5747 return err;
5748}
5749
5750/*
5751 * On success, We end up with an outstanding reference count against
5752 * iloc->bh. This _must_ be cleaned up later.
5753 */
5754
5755int
617ba13b
MC
5756ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5757 struct ext4_iloc *iloc)
ac27a0ec 5758{
0390131b
FM
5759 int err;
5760
5761 err = ext4_get_inode_loc(inode, iloc);
5762 if (!err) {
5763 BUFFER_TRACE(iloc->bh, "get_write_access");
5764 err = ext4_journal_get_write_access(handle, iloc->bh);
5765 if (err) {
5766 brelse(iloc->bh);
5767 iloc->bh = NULL;
ac27a0ec
DK
5768 }
5769 }
617ba13b 5770 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5771 return err;
5772}
5773
6dd4ee7c
KS
5774/*
5775 * Expand an inode by new_extra_isize bytes.
5776 * Returns 0 on success or negative error number on failure.
5777 */
1d03ec98
AK
5778static int ext4_expand_extra_isize(struct inode *inode,
5779 unsigned int new_extra_isize,
5780 struct ext4_iloc iloc,
5781 handle_t *handle)
6dd4ee7c
KS
5782{
5783 struct ext4_inode *raw_inode;
5784 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
5785
5786 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5787 return 0;
5788
5789 raw_inode = ext4_raw_inode(&iloc);
5790
5791 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
5792
5793 /* No extended attributes present */
19f5fb7a
TT
5794 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5795 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
5796 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5797 new_extra_isize);
5798 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5799 return 0;
5800 }
5801
5802 /* try to expand with EAs present */
5803 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5804 raw_inode, handle);
5805}
5806
ac27a0ec
DK
5807/*
5808 * What we do here is to mark the in-core inode as clean with respect to inode
5809 * dirtiness (it may still be data-dirty).
5810 * This means that the in-core inode may be reaped by prune_icache
5811 * without having to perform any I/O. This is a very good thing,
5812 * because *any* task may call prune_icache - even ones which
5813 * have a transaction open against a different journal.
5814 *
5815 * Is this cheating? Not really. Sure, we haven't written the
5816 * inode out, but prune_icache isn't a user-visible syncing function.
5817 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5818 * we start and wait on commits.
5819 *
5820 * Is this efficient/effective? Well, we're being nice to the system
5821 * by cleaning up our inodes proactively so they can be reaped
5822 * without I/O. But we are potentially leaving up to five seconds'
5823 * worth of inodes floating about which prune_icache wants us to
5824 * write out. One way to fix that would be to get prune_icache()
5825 * to do a write_super() to free up some memory. It has the desired
5826 * effect.
5827 */
617ba13b 5828int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5829{
617ba13b 5830 struct ext4_iloc iloc;
6dd4ee7c
KS
5831 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5832 static unsigned int mnt_count;
5833 int err, ret;
ac27a0ec
DK
5834
5835 might_sleep();
617ba13b 5836 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5837 if (ext4_handle_valid(handle) &&
5838 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5839 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
5840 /*
5841 * We need extra buffer credits since we may write into EA block
5842 * with this same handle. If journal_extend fails, then it will
5843 * only result in a minor loss of functionality for that inode.
5844 * If this is felt to be critical, then e2fsck should be run to
5845 * force a large enough s_min_extra_isize.
5846 */
5847 if ((jbd2_journal_extend(handle,
5848 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5849 ret = ext4_expand_extra_isize(inode,
5850 sbi->s_want_extra_isize,
5851 iloc, handle);
5852 if (ret) {
19f5fb7a
TT
5853 ext4_set_inode_state(inode,
5854 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
5855 if (mnt_count !=
5856 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5857 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5858 "Unable to expand inode %lu. Delete"
5859 " some EAs or run e2fsck.",
5860 inode->i_ino);
c1bddad9
AK
5861 mnt_count =
5862 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5863 }
5864 }
5865 }
5866 }
ac27a0ec 5867 if (!err)
617ba13b 5868 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5869 return err;
5870}
5871
5872/*
617ba13b 5873 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5874 *
5875 * We're really interested in the case where a file is being extended.
5876 * i_size has been changed by generic_commit_write() and we thus need
5877 * to include the updated inode in the current transaction.
5878 *
5dd4056d 5879 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5880 * are allocated to the file.
5881 *
5882 * If the inode is marked synchronous, we don't honour that here - doing
5883 * so would cause a commit on atime updates, which we don't bother doing.
5884 * We handle synchronous inodes at the highest possible level.
5885 */
617ba13b 5886void ext4_dirty_inode(struct inode *inode)
ac27a0ec 5887{
ac27a0ec
DK
5888 handle_t *handle;
5889
617ba13b 5890 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
5891 if (IS_ERR(handle))
5892 goto out;
f3dc272f 5893
f3dc272f
CW
5894 ext4_mark_inode_dirty(handle, inode);
5895
617ba13b 5896 ext4_journal_stop(handle);
ac27a0ec
DK
5897out:
5898 return;
5899}
5900
5901#if 0
5902/*
5903 * Bind an inode's backing buffer_head into this transaction, to prevent
5904 * it from being flushed to disk early. Unlike
617ba13b 5905 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5906 * returns no iloc structure, so the caller needs to repeat the iloc
5907 * lookup to mark the inode dirty later.
5908 */
617ba13b 5909static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5910{
617ba13b 5911 struct ext4_iloc iloc;
ac27a0ec
DK
5912
5913 int err = 0;
5914 if (handle) {
617ba13b 5915 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5916 if (!err) {
5917 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5918 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5919 if (!err)
0390131b 5920 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5921 NULL,
0390131b 5922 iloc.bh);
ac27a0ec
DK
5923 brelse(iloc.bh);
5924 }
5925 }
617ba13b 5926 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5927 return err;
5928}
5929#endif
5930
617ba13b 5931int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5932{
5933 journal_t *journal;
5934 handle_t *handle;
5935 int err;
5936
5937 /*
5938 * We have to be very careful here: changing a data block's
5939 * journaling status dynamically is dangerous. If we write a
5940 * data block to the journal, change the status and then delete
5941 * that block, we risk forgetting to revoke the old log record
5942 * from the journal and so a subsequent replay can corrupt data.
5943 * So, first we make sure that the journal is empty and that
5944 * nobody is changing anything.
5945 */
5946
617ba13b 5947 journal = EXT4_JOURNAL(inode);
0390131b
FM
5948 if (!journal)
5949 return 0;
d699594d 5950 if (is_journal_aborted(journal))
ac27a0ec
DK
5951 return -EROFS;
5952
dab291af
MC
5953 jbd2_journal_lock_updates(journal);
5954 jbd2_journal_flush(journal);
ac27a0ec
DK
5955
5956 /*
5957 * OK, there are no updates running now, and all cached data is
5958 * synced to disk. We are now in a completely consistent state
5959 * which doesn't have anything in the journal, and we know that
5960 * no filesystem updates are running, so it is safe to modify
5961 * the inode's in-core data-journaling state flag now.
5962 */
5963
5964 if (val)
12e9b892 5965 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
ac27a0ec 5966 else
12e9b892 5967 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
617ba13b 5968 ext4_set_aops(inode);
ac27a0ec 5969
dab291af 5970 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
5971
5972 /* Finally we can mark the inode as dirty. */
5973
617ba13b 5974 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
5975 if (IS_ERR(handle))
5976 return PTR_ERR(handle);
5977
617ba13b 5978 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5979 ext4_handle_sync(handle);
617ba13b
MC
5980 ext4_journal_stop(handle);
5981 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5982
5983 return err;
5984}
2e9ee850
AK
5985
5986static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5987{
5988 return !buffer_mapped(bh);
5989}
5990
c2ec175c 5991int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5992{
c2ec175c 5993 struct page *page = vmf->page;
2e9ee850
AK
5994 loff_t size;
5995 unsigned long len;
5996 int ret = -EINVAL;
79f0be8d 5997 void *fsdata;
2e9ee850
AK
5998 struct file *file = vma->vm_file;
5999 struct inode *inode = file->f_path.dentry->d_inode;
6000 struct address_space *mapping = inode->i_mapping;
6001
6002 /*
6003 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
6004 * get i_mutex because we are already holding mmap_sem.
6005 */
6006 down_read(&inode->i_alloc_sem);
6007 size = i_size_read(inode);
6008 if (page->mapping != mapping || size <= page_offset(page)
6009 || !PageUptodate(page)) {
6010 /* page got truncated from under us? */
6011 goto out_unlock;
6012 }
6013 ret = 0;
6014 if (PageMappedToDisk(page))
6015 goto out_unlock;
6016
6017 if (page->index == size >> PAGE_CACHE_SHIFT)
6018 len = size & ~PAGE_CACHE_MASK;
6019 else
6020 len = PAGE_CACHE_SIZE;
6021
a827eaff
AK
6022 lock_page(page);
6023 /*
6024 * return if we have all the buffers mapped. This avoid
6025 * the need to call write_begin/write_end which does a
6026 * journal_start/journal_stop which can block and take
6027 * long time
6028 */
2e9ee850 6029 if (page_has_buffers(page)) {
2e9ee850 6030 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
a827eaff
AK
6031 ext4_bh_unmapped)) {
6032 unlock_page(page);
2e9ee850 6033 goto out_unlock;
a827eaff 6034 }
2e9ee850 6035 }
a827eaff 6036 unlock_page(page);
2e9ee850
AK
6037 /*
6038 * OK, we need to fill the hole... Do write_begin write_end
6039 * to do block allocation/reservation.We are not holding
6040 * inode.i__mutex here. That allow * parallel write_begin,
6041 * write_end call. lock_page prevent this from happening
6042 * on the same page though
6043 */
6044 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 6045 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
6046 if (ret < 0)
6047 goto out_unlock;
6048 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 6049 len, len, page, fsdata);
2e9ee850
AK
6050 if (ret < 0)
6051 goto out_unlock;
6052 ret = 0;
6053out_unlock:
c2ec175c
NP
6054 if (ret)
6055 ret = VM_FAULT_SIGBUS;
2e9ee850
AK
6056 up_read(&inode->i_alloc_sem);
6057 return ret;
6058}