]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ext4/inode.c
ext4: Cleanup ext4_check_dir_entry so __func__ is now implicit
[net-next-2.6.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
4c0425ff 40#include <linux/workqueue.h>
744692dc 41#include <linux/kernel.h>
5a0e3ad6 42#include <linux/slab.h>
9bffad1e 43
3dcf5451 44#include "ext4_jbd2.h"
ac27a0ec
DK
45#include "xattr.h"
46#include "acl.h"
d2a17637 47#include "ext4_extents.h"
ac27a0ec 48
9bffad1e
TT
49#include <trace/events/ext4.h>
50
a1d6cc56
AK
51#define MPAGE_DA_EXTENT_TAIL 0x01
52
678aaf48
JK
53static inline int ext4_begin_ordered_truncate(struct inode *inode,
54 loff_t new_size)
55{
7f5aa215
JK
56 return jbd2_journal_begin_ordered_truncate(
57 EXT4_SB(inode->i_sb)->s_journal,
58 &EXT4_I(inode)->jinode,
59 new_size);
678aaf48
JK
60}
61
64769240
AT
62static void ext4_invalidatepage(struct page *page, unsigned long offset);
63
ac27a0ec
DK
64/*
65 * Test whether an inode is a fast symlink.
66 */
617ba13b 67static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 68{
617ba13b 69 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
70 (inode->i_sb->s_blocksize >> 9) : 0;
71
72 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
73}
74
ac27a0ec
DK
75/*
76 * Work out how many blocks we need to proceed with the next chunk of a
77 * truncate transaction.
78 */
79static unsigned long blocks_for_truncate(struct inode *inode)
80{
725d26d3 81 ext4_lblk_t needed;
ac27a0ec
DK
82
83 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
84
85 /* Give ourselves just enough room to cope with inodes in which
86 * i_blocks is corrupt: we've seen disk corruptions in the past
87 * which resulted in random data in an inode which looked enough
617ba13b 88 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
89 * will go a bit crazy if that happens, but at least we should
90 * try not to panic the whole kernel. */
91 if (needed < 2)
92 needed = 2;
93
94 /* But we need to bound the transaction so we don't overflow the
95 * journal. */
617ba13b
MC
96 if (needed > EXT4_MAX_TRANS_DATA)
97 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 98
617ba13b 99 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
100}
101
102/*
103 * Truncate transactions can be complex and absolutely huge. So we need to
104 * be able to restart the transaction at a conventient checkpoint to make
105 * sure we don't overflow the journal.
106 *
107 * start_transaction gets us a new handle for a truncate transaction,
108 * and extend_transaction tries to extend the existing one a bit. If
109 * extend fails, we need to propagate the failure up and restart the
110 * transaction in the top-level truncate loop. --sct
111 */
112static handle_t *start_transaction(struct inode *inode)
113{
114 handle_t *result;
115
617ba13b 116 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
117 if (!IS_ERR(result))
118 return result;
119
617ba13b 120 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
121 return result;
122}
123
124/*
125 * Try to extend this transaction for the purposes of truncation.
126 *
127 * Returns 0 if we managed to create more room. If we can't create more
128 * room, and the transaction must be restarted we return 1.
129 */
130static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
131{
0390131b
FM
132 if (!ext4_handle_valid(handle))
133 return 0;
134 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
ac27a0ec 135 return 0;
617ba13b 136 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
137 return 0;
138 return 1;
139}
140
141/*
142 * Restart the transaction associated with *handle. This does a commit,
143 * so before we call here everything must be consistently dirtied against
144 * this transaction.
145 */
fa5d1113 146int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 147 int nblocks)
ac27a0ec 148{
487caeef
JK
149 int ret;
150
151 /*
e35fd660 152 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
153 * moment, get_block can be called only for blocks inside i_size since
154 * page cache has been already dropped and writes are blocked by
155 * i_mutex. So we can safely drop the i_data_sem here.
156 */
0390131b 157 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 158 jbd_debug(2, "restarting handle %p\n", handle);
487caeef
JK
159 up_write(&EXT4_I(inode)->i_data_sem);
160 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
161 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 162 ext4_discard_preallocations(inode);
487caeef
JK
163
164 return ret;
ac27a0ec
DK
165}
166
167/*
168 * Called at the last iput() if i_nlink is zero.
169 */
af5bc92d 170void ext4_delete_inode(struct inode *inode)
ac27a0ec
DK
171{
172 handle_t *handle;
bc965ab3 173 int err;
ac27a0ec 174
907f4554 175 if (!is_bad_inode(inode))
871a2931 176 dquot_initialize(inode);
907f4554 177
678aaf48
JK
178 if (ext4_should_order_data(inode))
179 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
180 truncate_inode_pages(&inode->i_data, 0);
181
182 if (is_bad_inode(inode))
183 goto no_delete;
184
bc965ab3 185 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 186 if (IS_ERR(handle)) {
bc965ab3 187 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
188 /*
189 * If we're going to skip the normal cleanup, we still need to
190 * make sure that the in-core orphan linked list is properly
191 * cleaned up.
192 */
617ba13b 193 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
194 goto no_delete;
195 }
196
197 if (IS_SYNC(inode))
0390131b 198 ext4_handle_sync(handle);
ac27a0ec 199 inode->i_size = 0;
bc965ab3
TT
200 err = ext4_mark_inode_dirty(handle, inode);
201 if (err) {
12062ddd 202 ext4_warning(inode->i_sb,
bc965ab3
TT
203 "couldn't mark inode dirty (err %d)", err);
204 goto stop_handle;
205 }
ac27a0ec 206 if (inode->i_blocks)
617ba13b 207 ext4_truncate(inode);
bc965ab3
TT
208
209 /*
210 * ext4_ext_truncate() doesn't reserve any slop when it
211 * restarts journal transactions; therefore there may not be
212 * enough credits left in the handle to remove the inode from
213 * the orphan list and set the dtime field.
214 */
0390131b 215 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
216 err = ext4_journal_extend(handle, 3);
217 if (err > 0)
218 err = ext4_journal_restart(handle, 3);
219 if (err != 0) {
12062ddd 220 ext4_warning(inode->i_sb,
bc965ab3
TT
221 "couldn't extend journal (err %d)", err);
222 stop_handle:
223 ext4_journal_stop(handle);
224 goto no_delete;
225 }
226 }
227
ac27a0ec 228 /*
617ba13b 229 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 230 * AKPM: I think this can be inside the above `if'.
617ba13b 231 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 232 * deletion of a non-existent orphan - this is because we don't
617ba13b 233 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
234 * (Well, we could do this if we need to, but heck - it works)
235 */
617ba13b
MC
236 ext4_orphan_del(handle, inode);
237 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
238
239 /*
240 * One subtle ordering requirement: if anything has gone wrong
241 * (transaction abort, IO errors, whatever), then we can still
242 * do these next steps (the fs will already have been marked as
243 * having errors), but we can't free the inode if the mark_dirty
244 * fails.
245 */
617ba13b 246 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
247 /* If that failed, just do the required in-core inode clear. */
248 clear_inode(inode);
249 else
617ba13b
MC
250 ext4_free_inode(handle, inode);
251 ext4_journal_stop(handle);
ac27a0ec
DK
252 return;
253no_delete:
254 clear_inode(inode); /* We must guarantee clearing of inode... */
255}
256
257typedef struct {
258 __le32 *p;
259 __le32 key;
260 struct buffer_head *bh;
261} Indirect;
262
263static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
264{
265 p->key = *(p->p = v);
266 p->bh = bh;
267}
268
ac27a0ec 269/**
617ba13b 270 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
271 * @inode: inode in question (we are only interested in its superblock)
272 * @i_block: block number to be parsed
273 * @offsets: array to store the offsets in
8c55e204
DK
274 * @boundary: set this non-zero if the referred-to block is likely to be
275 * followed (on disk) by an indirect block.
ac27a0ec 276 *
617ba13b 277 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
278 * for UNIX filesystems - tree of pointers anchored in the inode, with
279 * data blocks at leaves and indirect blocks in intermediate nodes.
280 * This function translates the block number into path in that tree -
281 * return value is the path length and @offsets[n] is the offset of
282 * pointer to (n+1)th node in the nth one. If @block is out of range
283 * (negative or too large) warning is printed and zero returned.
284 *
285 * Note: function doesn't find node addresses, so no IO is needed. All
286 * we need to know is the capacity of indirect blocks (taken from the
287 * inode->i_sb).
288 */
289
290/*
291 * Portability note: the last comparison (check that we fit into triple
292 * indirect block) is spelled differently, because otherwise on an
293 * architecture with 32-bit longs and 8Kb pages we might get into trouble
294 * if our filesystem had 8Kb blocks. We might use long long, but that would
295 * kill us on x86. Oh, well, at least the sign propagation does not matter -
296 * i_block would have to be negative in the very beginning, so we would not
297 * get there at all.
298 */
299
617ba13b 300static int ext4_block_to_path(struct inode *inode,
de9a55b8
TT
301 ext4_lblk_t i_block,
302 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 303{
617ba13b
MC
304 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
305 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
306 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
307 indirect_blocks = ptrs,
308 double_blocks = (1 << (ptrs_bits * 2));
309 int n = 0;
310 int final = 0;
311
c333e073 312 if (i_block < direct_blocks) {
ac27a0ec
DK
313 offsets[n++] = i_block;
314 final = direct_blocks;
af5bc92d 315 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 316 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
317 offsets[n++] = i_block;
318 final = ptrs;
319 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 320 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
321 offsets[n++] = i_block >> ptrs_bits;
322 offsets[n++] = i_block & (ptrs - 1);
323 final = ptrs;
324 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 325 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
326 offsets[n++] = i_block >> (ptrs_bits * 2);
327 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
328 offsets[n++] = i_block & (ptrs - 1);
329 final = ptrs;
330 } else {
12062ddd 331 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
de9a55b8
TT
332 i_block + direct_blocks +
333 indirect_blocks + double_blocks, inode->i_ino);
ac27a0ec
DK
334 }
335 if (boundary)
336 *boundary = final - 1 - (i_block & (ptrs - 1));
337 return n;
338}
339
fe2c8191 340static int __ext4_check_blockref(const char *function, struct inode *inode,
6fd058f7
TT
341 __le32 *p, unsigned int max)
342{
f73953c0 343 __le32 *bref = p;
6fd058f7
TT
344 unsigned int blk;
345
fe2c8191 346 while (bref < p+max) {
6fd058f7 347 blk = le32_to_cpu(*bref++);
de9a55b8
TT
348 if (blk &&
349 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
6fd058f7 350 blk, 1))) {
24676da4
TT
351 ext4_error_inode(function, inode,
352 "invalid block reference %u", blk);
de9a55b8
TT
353 return -EIO;
354 }
355 }
356 return 0;
fe2c8191
TN
357}
358
359
360#define ext4_check_indirect_blockref(inode, bh) \
de9a55b8 361 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
fe2c8191
TN
362 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
363
364#define ext4_check_inode_blockref(inode) \
de9a55b8 365 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
fe2c8191
TN
366 EXT4_NDIR_BLOCKS)
367
ac27a0ec 368/**
617ba13b 369 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
370 * @inode: inode in question
371 * @depth: depth of the chain (1 - direct pointer, etc.)
372 * @offsets: offsets of pointers in inode/indirect blocks
373 * @chain: place to store the result
374 * @err: here we store the error value
375 *
376 * Function fills the array of triples <key, p, bh> and returns %NULL
377 * if everything went OK or the pointer to the last filled triple
378 * (incomplete one) otherwise. Upon the return chain[i].key contains
379 * the number of (i+1)-th block in the chain (as it is stored in memory,
380 * i.e. little-endian 32-bit), chain[i].p contains the address of that
381 * number (it points into struct inode for i==0 and into the bh->b_data
382 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
383 * block for i>0 and NULL for i==0. In other words, it holds the block
384 * numbers of the chain, addresses they were taken from (and where we can
385 * verify that chain did not change) and buffer_heads hosting these
386 * numbers.
387 *
388 * Function stops when it stumbles upon zero pointer (absent block)
389 * (pointer to last triple returned, *@err == 0)
390 * or when it gets an IO error reading an indirect block
391 * (ditto, *@err == -EIO)
ac27a0ec
DK
392 * or when it reads all @depth-1 indirect blocks successfully and finds
393 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
394 *
395 * Need to be called with
0e855ac8 396 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 397 */
725d26d3
AK
398static Indirect *ext4_get_branch(struct inode *inode, int depth,
399 ext4_lblk_t *offsets,
ac27a0ec
DK
400 Indirect chain[4], int *err)
401{
402 struct super_block *sb = inode->i_sb;
403 Indirect *p = chain;
404 struct buffer_head *bh;
405
406 *err = 0;
407 /* i_data is not going away, no lock needed */
af5bc92d 408 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
409 if (!p->key)
410 goto no_block;
411 while (--depth) {
fe2c8191
TN
412 bh = sb_getblk(sb, le32_to_cpu(p->key));
413 if (unlikely(!bh))
ac27a0ec 414 goto failure;
de9a55b8 415
fe2c8191
TN
416 if (!bh_uptodate_or_lock(bh)) {
417 if (bh_submit_read(bh) < 0) {
418 put_bh(bh);
419 goto failure;
420 }
421 /* validate block references */
422 if (ext4_check_indirect_blockref(inode, bh)) {
423 put_bh(bh);
424 goto failure;
425 }
426 }
de9a55b8 427
af5bc92d 428 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
429 /* Reader: end */
430 if (!p->key)
431 goto no_block;
432 }
433 return NULL;
434
ac27a0ec
DK
435failure:
436 *err = -EIO;
437no_block:
438 return p;
439}
440
441/**
617ba13b 442 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
443 * @inode: owner
444 * @ind: descriptor of indirect block.
445 *
1cc8dcf5 446 * This function returns the preferred place for block allocation.
ac27a0ec
DK
447 * It is used when heuristic for sequential allocation fails.
448 * Rules are:
449 * + if there is a block to the left of our position - allocate near it.
450 * + if pointer will live in indirect block - allocate near that block.
451 * + if pointer will live in inode - allocate in the same
452 * cylinder group.
453 *
454 * In the latter case we colour the starting block by the callers PID to
455 * prevent it from clashing with concurrent allocations for a different inode
456 * in the same block group. The PID is used here so that functionally related
457 * files will be close-by on-disk.
458 *
459 * Caller must make sure that @ind is valid and will stay that way.
460 */
617ba13b 461static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 462{
617ba13b 463 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 464 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 465 __le32 *p;
617ba13b 466 ext4_fsblk_t bg_start;
74d3487f 467 ext4_fsblk_t last_block;
617ba13b 468 ext4_grpblk_t colour;
a4912123
TT
469 ext4_group_t block_group;
470 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
ac27a0ec
DK
471
472 /* Try to find previous block */
473 for (p = ind->p - 1; p >= start; p--) {
474 if (*p)
475 return le32_to_cpu(*p);
476 }
477
478 /* No such thing, so let's try location of indirect block */
479 if (ind->bh)
480 return ind->bh->b_blocknr;
481
482 /*
483 * It is going to be referred to from the inode itself? OK, just put it
484 * into the same cylinder group then.
485 */
a4912123
TT
486 block_group = ei->i_block_group;
487 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
488 block_group &= ~(flex_size-1);
489 if (S_ISREG(inode->i_mode))
490 block_group++;
491 }
492 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
74d3487f
VC
493 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
494
a4912123
TT
495 /*
496 * If we are doing delayed allocation, we don't need take
497 * colour into account.
498 */
499 if (test_opt(inode->i_sb, DELALLOC))
500 return bg_start;
501
74d3487f
VC
502 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
503 colour = (current->pid % 16) *
617ba13b 504 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
505 else
506 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
507 return bg_start + colour;
508}
509
510/**
1cc8dcf5 511 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
512 * @inode: owner
513 * @block: block we want
ac27a0ec 514 * @partial: pointer to the last triple within a chain
ac27a0ec 515 *
1cc8dcf5 516 * Normally this function find the preferred place for block allocation,
fb01bfda 517 * returns it.
fb0a387d
ES
518 * Because this is only used for non-extent files, we limit the block nr
519 * to 32 bits.
ac27a0ec 520 */
725d26d3 521static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
de9a55b8 522 Indirect *partial)
ac27a0ec 523{
fb0a387d
ES
524 ext4_fsblk_t goal;
525
ac27a0ec 526 /*
c2ea3fde 527 * XXX need to get goal block from mballoc's data structures
ac27a0ec 528 */
ac27a0ec 529
fb0a387d
ES
530 goal = ext4_find_near(inode, partial);
531 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
532 return goal;
ac27a0ec
DK
533}
534
535/**
617ba13b 536 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
537 * of direct blocks need to be allocated for the given branch.
538 *
539 * @branch: chain of indirect blocks
540 * @k: number of blocks need for indirect blocks
541 * @blks: number of data blocks to be mapped.
542 * @blocks_to_boundary: the offset in the indirect block
543 *
544 * return the total number of blocks to be allocate, including the
545 * direct and indirect blocks.
546 */
498e5f24 547static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
de9a55b8 548 int blocks_to_boundary)
ac27a0ec 549{
498e5f24 550 unsigned int count = 0;
ac27a0ec
DK
551
552 /*
553 * Simple case, [t,d]Indirect block(s) has not allocated yet
554 * then it's clear blocks on that path have not allocated
555 */
556 if (k > 0) {
557 /* right now we don't handle cross boundary allocation */
558 if (blks < blocks_to_boundary + 1)
559 count += blks;
560 else
561 count += blocks_to_boundary + 1;
562 return count;
563 }
564
565 count++;
566 while (count < blks && count <= blocks_to_boundary &&
567 le32_to_cpu(*(branch[0].p + count)) == 0) {
568 count++;
569 }
570 return count;
571}
572
573/**
617ba13b 574 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
575 * @indirect_blks: the number of blocks need to allocate for indirect
576 * blocks
577 *
578 * @new_blocks: on return it will store the new block numbers for
579 * the indirect blocks(if needed) and the first direct block,
580 * @blks: on return it will store the total number of allocated
581 * direct blocks
582 */
617ba13b 583static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
584 ext4_lblk_t iblock, ext4_fsblk_t goal,
585 int indirect_blks, int blks,
586 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 587{
815a1130 588 struct ext4_allocation_request ar;
ac27a0ec 589 int target, i;
7061eba7 590 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 591 int index = 0;
617ba13b 592 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
593 int ret = 0;
594
595 /*
596 * Here we try to allocate the requested multiple blocks at once,
597 * on a best-effort basis.
598 * To build a branch, we should allocate blocks for
599 * the indirect blocks(if not allocated yet), and at least
600 * the first direct block of this branch. That's the
601 * minimum number of blocks need to allocate(required)
602 */
7061eba7
AK
603 /* first we try to allocate the indirect blocks */
604 target = indirect_blks;
605 while (target > 0) {
ac27a0ec
DK
606 count = target;
607 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
608 current_block = ext4_new_meta_blocks(handle, inode,
609 goal, &count, err);
ac27a0ec
DK
610 if (*err)
611 goto failed_out;
612
273df556
FM
613 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
614 EXT4_ERROR_INODE(inode,
615 "current_block %llu + count %lu > %d!",
616 current_block, count,
617 EXT4_MAX_BLOCK_FILE_PHYS);
618 *err = -EIO;
619 goto failed_out;
620 }
fb0a387d 621
ac27a0ec
DK
622 target -= count;
623 /* allocate blocks for indirect blocks */
624 while (index < indirect_blks && count) {
625 new_blocks[index++] = current_block++;
626 count--;
627 }
7061eba7
AK
628 if (count > 0) {
629 /*
630 * save the new block number
631 * for the first direct block
632 */
633 new_blocks[index] = current_block;
634 printk(KERN_INFO "%s returned more blocks than "
635 "requested\n", __func__);
636 WARN_ON(1);
ac27a0ec 637 break;
7061eba7 638 }
ac27a0ec
DK
639 }
640
7061eba7
AK
641 target = blks - count ;
642 blk_allocated = count;
643 if (!target)
644 goto allocated;
645 /* Now allocate data blocks */
815a1130
TT
646 memset(&ar, 0, sizeof(ar));
647 ar.inode = inode;
648 ar.goal = goal;
649 ar.len = target;
650 ar.logical = iblock;
651 if (S_ISREG(inode->i_mode))
652 /* enable in-core preallocation only for regular files */
653 ar.flags = EXT4_MB_HINT_DATA;
654
655 current_block = ext4_mb_new_blocks(handle, &ar, err);
273df556
FM
656 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
657 EXT4_ERROR_INODE(inode,
658 "current_block %llu + ar.len %d > %d!",
659 current_block, ar.len,
660 EXT4_MAX_BLOCK_FILE_PHYS);
661 *err = -EIO;
662 goto failed_out;
663 }
815a1130 664
7061eba7
AK
665 if (*err && (target == blks)) {
666 /*
667 * if the allocation failed and we didn't allocate
668 * any blocks before
669 */
670 goto failed_out;
671 }
672 if (!*err) {
673 if (target == blks) {
de9a55b8
TT
674 /*
675 * save the new block number
676 * for the first direct block
677 */
7061eba7
AK
678 new_blocks[index] = current_block;
679 }
815a1130 680 blk_allocated += ar.len;
7061eba7
AK
681 }
682allocated:
ac27a0ec 683 /* total number of blocks allocated for direct blocks */
7061eba7 684 ret = blk_allocated;
ac27a0ec
DK
685 *err = 0;
686 return ret;
687failed_out:
af5bc92d 688 for (i = 0; i < index; i++)
e6362609 689 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
ac27a0ec
DK
690 return ret;
691}
692
693/**
617ba13b 694 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
695 * @inode: owner
696 * @indirect_blks: number of allocated indirect blocks
697 * @blks: number of allocated direct blocks
698 * @offsets: offsets (in the blocks) to store the pointers to next.
699 * @branch: place to store the chain in.
700 *
701 * This function allocates blocks, zeroes out all but the last one,
702 * links them into chain and (if we are synchronous) writes them to disk.
703 * In other words, it prepares a branch that can be spliced onto the
704 * inode. It stores the information about that chain in the branch[], in
617ba13b 705 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
706 * we had read the existing part of chain and partial points to the last
707 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 708 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
709 * place chain is disconnected - *branch->p is still zero (we did not
710 * set the last link), but branch->key contains the number that should
711 * be placed into *branch->p to fill that gap.
712 *
713 * If allocation fails we free all blocks we've allocated (and forget
714 * their buffer_heads) and return the error value the from failed
617ba13b 715 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
716 * as described above and return 0.
717 */
617ba13b 718static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
719 ext4_lblk_t iblock, int indirect_blks,
720 int *blks, ext4_fsblk_t goal,
721 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
722{
723 int blocksize = inode->i_sb->s_blocksize;
724 int i, n = 0;
725 int err = 0;
726 struct buffer_head *bh;
727 int num;
617ba13b
MC
728 ext4_fsblk_t new_blocks[4];
729 ext4_fsblk_t current_block;
ac27a0ec 730
7061eba7 731 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
732 *blks, new_blocks, &err);
733 if (err)
734 return err;
735
736 branch[0].key = cpu_to_le32(new_blocks[0]);
737 /*
738 * metadata blocks and data blocks are allocated.
739 */
740 for (n = 1; n <= indirect_blks; n++) {
741 /*
742 * Get buffer_head for parent block, zero it out
743 * and set the pointer to new one, then send
744 * parent to disk.
745 */
746 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
747 branch[n].bh = bh;
748 lock_buffer(bh);
749 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 750 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec 751 if (err) {
6487a9d3
CW
752 /* Don't brelse(bh) here; it's done in
753 * ext4_journal_forget() below */
ac27a0ec 754 unlock_buffer(bh);
ac27a0ec
DK
755 goto failed;
756 }
757
758 memset(bh->b_data, 0, blocksize);
759 branch[n].p = (__le32 *) bh->b_data + offsets[n];
760 branch[n].key = cpu_to_le32(new_blocks[n]);
761 *branch[n].p = branch[n].key;
af5bc92d 762 if (n == indirect_blks) {
ac27a0ec
DK
763 current_block = new_blocks[n];
764 /*
765 * End of chain, update the last new metablock of
766 * the chain to point to the new allocated
767 * data blocks numbers
768 */
de9a55b8 769 for (i = 1; i < num; i++)
ac27a0ec
DK
770 *(branch[n].p + i) = cpu_to_le32(++current_block);
771 }
772 BUFFER_TRACE(bh, "marking uptodate");
773 set_buffer_uptodate(bh);
774 unlock_buffer(bh);
775
0390131b
FM
776 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
777 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
778 if (err)
779 goto failed;
780 }
781 *blks = num;
782 return err;
783failed:
784 /* Allocation failed, free what we already allocated */
e6362609 785 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
ac27a0ec 786 for (i = 1; i <= n ; i++) {
60e6679e 787 /*
e6362609
TT
788 * branch[i].bh is newly allocated, so there is no
789 * need to revoke the block, which is why we don't
790 * need to set EXT4_FREE_BLOCKS_METADATA.
b7e57e7c 791 */
e6362609
TT
792 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
793 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec 794 }
e6362609
TT
795 for (i = n+1; i < indirect_blks; i++)
796 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
ac27a0ec 797
e6362609 798 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
ac27a0ec
DK
799
800 return err;
801}
802
803/**
617ba13b 804 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
805 * @inode: owner
806 * @block: (logical) number of block we are adding
807 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 808 * ext4_alloc_branch)
ac27a0ec
DK
809 * @where: location of missing link
810 * @num: number of indirect blocks we are adding
811 * @blks: number of direct blocks we are adding
812 *
813 * This function fills the missing link and does all housekeeping needed in
814 * inode (->i_blocks, etc.). In case of success we end up with the full
815 * chain to new block and return 0.
816 */
617ba13b 817static int ext4_splice_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
818 ext4_lblk_t block, Indirect *where, int num,
819 int blks)
ac27a0ec
DK
820{
821 int i;
822 int err = 0;
617ba13b 823 ext4_fsblk_t current_block;
ac27a0ec 824
ac27a0ec
DK
825 /*
826 * If we're splicing into a [td]indirect block (as opposed to the
827 * inode) then we need to get write access to the [td]indirect block
828 * before the splice.
829 */
830 if (where->bh) {
831 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 832 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
833 if (err)
834 goto err_out;
835 }
836 /* That's it */
837
838 *where->p = where->key;
839
840 /*
841 * Update the host buffer_head or inode to point to more just allocated
842 * direct blocks blocks
843 */
844 if (num == 0 && blks > 1) {
845 current_block = le32_to_cpu(where->key) + 1;
846 for (i = 1; i < blks; i++)
af5bc92d 847 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
848 }
849
ac27a0ec 850 /* We are done with atomic stuff, now do the rest of housekeeping */
ac27a0ec
DK
851 /* had we spliced it onto indirect block? */
852 if (where->bh) {
853 /*
854 * If we spliced it onto an indirect block, we haven't
855 * altered the inode. Note however that if it is being spliced
856 * onto an indirect block at the very end of the file (the
857 * file is growing) then we *will* alter the inode to reflect
858 * the new i_size. But that is not done here - it is done in
617ba13b 859 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
860 */
861 jbd_debug(5, "splicing indirect only\n");
0390131b
FM
862 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
863 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
ac27a0ec
DK
864 if (err)
865 goto err_out;
866 } else {
867 /*
868 * OK, we spliced it into the inode itself on a direct block.
ac27a0ec 869 */
41591750 870 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
871 jbd_debug(5, "splicing direct\n");
872 }
873 return err;
874
875err_out:
876 for (i = 1; i <= num; i++) {
60e6679e 877 /*
e6362609
TT
878 * branch[i].bh is newly allocated, so there is no
879 * need to revoke the block, which is why we don't
880 * need to set EXT4_FREE_BLOCKS_METADATA.
b7e57e7c 881 */
e6362609
TT
882 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
883 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec 884 }
e6362609
TT
885 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
886 blks, 0);
ac27a0ec
DK
887
888 return err;
889}
890
891/*
e35fd660 892 * The ext4_ind_map_blocks() function handles non-extents inodes
b920c755 893 * (i.e., using the traditional indirect/double-indirect i_blocks
e35fd660 894 * scheme) for ext4_map_blocks().
b920c755 895 *
ac27a0ec
DK
896 * Allocation strategy is simple: if we have to allocate something, we will
897 * have to go the whole way to leaf. So let's do it before attaching anything
898 * to tree, set linkage between the newborn blocks, write them if sync is
899 * required, recheck the path, free and repeat if check fails, otherwise
900 * set the last missing link (that will protect us from any truncate-generated
901 * removals - all blocks on the path are immune now) and possibly force the
902 * write on the parent block.
903 * That has a nice additional property: no special recovery from the failed
904 * allocations is needed - we simply release blocks and do not touch anything
905 * reachable from inode.
906 *
907 * `handle' can be NULL if create == 0.
908 *
ac27a0ec
DK
909 * return > 0, # of blocks mapped or allocated.
910 * return = 0, if plain lookup failed.
911 * return < 0, error case.
c278bfec 912 *
b920c755
TT
913 * The ext4_ind_get_blocks() function should be called with
914 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
915 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
916 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
917 * blocks.
ac27a0ec 918 */
e35fd660
TT
919static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
920 struct ext4_map_blocks *map,
de9a55b8 921 int flags)
ac27a0ec
DK
922{
923 int err = -EIO;
725d26d3 924 ext4_lblk_t offsets[4];
ac27a0ec
DK
925 Indirect chain[4];
926 Indirect *partial;
617ba13b 927 ext4_fsblk_t goal;
ac27a0ec
DK
928 int indirect_blks;
929 int blocks_to_boundary = 0;
930 int depth;
ac27a0ec 931 int count = 0;
617ba13b 932 ext4_fsblk_t first_block = 0;
ac27a0ec 933
12e9b892 934 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
c2177057 935 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
e35fd660 936 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
de9a55b8 937 &blocks_to_boundary);
ac27a0ec
DK
938
939 if (depth == 0)
940 goto out;
941
617ba13b 942 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
943
944 /* Simplest case - block found, no allocation needed */
945 if (!partial) {
946 first_block = le32_to_cpu(chain[depth - 1].key);
ac27a0ec
DK
947 count++;
948 /*map more blocks*/
e35fd660 949 while (count < map->m_len && count <= blocks_to_boundary) {
617ba13b 950 ext4_fsblk_t blk;
ac27a0ec 951
ac27a0ec
DK
952 blk = le32_to_cpu(*(chain[depth-1].p + count));
953
954 if (blk == first_block + count)
955 count++;
956 else
957 break;
958 }
c278bfec 959 goto got_it;
ac27a0ec
DK
960 }
961
962 /* Next simple case - plain lookup or failed read of indirect block */
c2177057 963 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
ac27a0ec
DK
964 goto cleanup;
965
ac27a0ec 966 /*
c2ea3fde 967 * Okay, we need to do block allocation.
ac27a0ec 968 */
e35fd660 969 goal = ext4_find_goal(inode, map->m_lblk, partial);
ac27a0ec
DK
970
971 /* the number of blocks need to allocate for [d,t]indirect blocks */
972 indirect_blks = (chain + depth) - partial - 1;
973
974 /*
975 * Next look up the indirect map to count the totoal number of
976 * direct blocks to allocate for this branch.
977 */
617ba13b 978 count = ext4_blks_to_allocate(partial, indirect_blks,
e35fd660 979 map->m_len, blocks_to_boundary);
ac27a0ec 980 /*
617ba13b 981 * Block out ext4_truncate while we alter the tree
ac27a0ec 982 */
e35fd660 983 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
de9a55b8
TT
984 &count, goal,
985 offsets + (partial - chain), partial);
ac27a0ec
DK
986
987 /*
617ba13b 988 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
989 * on the new chain if there is a failure, but that risks using
990 * up transaction credits, especially for bitmaps where the
991 * credits cannot be returned. Can we handle this somehow? We
992 * may need to return -EAGAIN upwards in the worst case. --sct
993 */
994 if (!err)
e35fd660 995 err = ext4_splice_branch(handle, inode, map->m_lblk,
de9a55b8 996 partial, indirect_blks, count);
2bba702d 997 if (err)
ac27a0ec
DK
998 goto cleanup;
999
e35fd660 1000 map->m_flags |= EXT4_MAP_NEW;
b436b9be
JK
1001
1002 ext4_update_inode_fsync_trans(handle, inode, 1);
ac27a0ec 1003got_it:
e35fd660
TT
1004 map->m_flags |= EXT4_MAP_MAPPED;
1005 map->m_pblk = le32_to_cpu(chain[depth-1].key);
1006 map->m_len = count;
ac27a0ec 1007 if (count > blocks_to_boundary)
e35fd660 1008 map->m_flags |= EXT4_MAP_BOUNDARY;
ac27a0ec
DK
1009 err = count;
1010 /* Clean up and exit */
1011 partial = chain + depth - 1; /* the whole chain */
1012cleanup:
1013 while (partial > chain) {
1014 BUFFER_TRACE(partial->bh, "call brelse");
1015 brelse(partial->bh);
1016 partial--;
1017 }
ac27a0ec
DK
1018out:
1019 return err;
1020}
1021
a9e7f447
DM
1022#ifdef CONFIG_QUOTA
1023qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 1024{
a9e7f447 1025 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 1026}
a9e7f447 1027#endif
9d0be502 1028
12219aea
AK
1029/*
1030 * Calculate the number of metadata blocks need to reserve
9d0be502 1031 * to allocate a new block at @lblocks for non extent file based file
12219aea 1032 */
9d0be502
TT
1033static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1034 sector_t lblock)
12219aea 1035{
9d0be502 1036 struct ext4_inode_info *ei = EXT4_I(inode);
d330a5be 1037 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
9d0be502 1038 int blk_bits;
12219aea 1039
9d0be502
TT
1040 if (lblock < EXT4_NDIR_BLOCKS)
1041 return 0;
12219aea 1042
9d0be502 1043 lblock -= EXT4_NDIR_BLOCKS;
12219aea 1044
9d0be502
TT
1045 if (ei->i_da_metadata_calc_len &&
1046 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1047 ei->i_da_metadata_calc_len++;
1048 return 0;
1049 }
1050 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1051 ei->i_da_metadata_calc_len = 1;
d330a5be 1052 blk_bits = order_base_2(lblock);
9d0be502 1053 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
12219aea
AK
1054}
1055
1056/*
1057 * Calculate the number of metadata blocks need to reserve
9d0be502 1058 * to allocate a block located at @lblock
12219aea 1059 */
9d0be502 1060static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
12219aea 1061{
12e9b892 1062 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 1063 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 1064
9d0be502 1065 return ext4_indirect_calc_metadata_amount(inode, lblock);
12219aea
AK
1066}
1067
0637c6f4
TT
1068/*
1069 * Called with i_data_sem down, which is important since we can call
1070 * ext4_discard_preallocations() from here.
1071 */
5f634d06
AK
1072void ext4_da_update_reserve_space(struct inode *inode,
1073 int used, int quota_claim)
12219aea
AK
1074{
1075 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1076 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
1077
1078 spin_lock(&ei->i_block_reservation_lock);
f8ec9d68 1079 trace_ext4_da_update_reserve_space(inode, used);
0637c6f4
TT
1080 if (unlikely(used > ei->i_reserved_data_blocks)) {
1081 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1082 "with only %d reserved data blocks\n",
1083 __func__, inode->i_ino, used,
1084 ei->i_reserved_data_blocks);
1085 WARN_ON(1);
1086 used = ei->i_reserved_data_blocks;
1087 }
12219aea 1088
0637c6f4
TT
1089 /* Update per-inode reservations */
1090 ei->i_reserved_data_blocks -= used;
0637c6f4 1091 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
72b8ab9d
ES
1092 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1093 used + ei->i_allocated_meta_blocks);
0637c6f4 1094 ei->i_allocated_meta_blocks = 0;
6bc6e63f 1095
0637c6f4
TT
1096 if (ei->i_reserved_data_blocks == 0) {
1097 /*
1098 * We can release all of the reserved metadata blocks
1099 * only when we have written all of the delayed
1100 * allocation blocks.
1101 */
72b8ab9d
ES
1102 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1103 ei->i_reserved_meta_blocks);
ee5f4d9c 1104 ei->i_reserved_meta_blocks = 0;
9d0be502 1105 ei->i_da_metadata_calc_len = 0;
6bc6e63f 1106 }
12219aea 1107 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1108
72b8ab9d
ES
1109 /* Update quota subsystem for data blocks */
1110 if (quota_claim)
5dd4056d 1111 dquot_claim_block(inode, used);
72b8ab9d 1112 else {
5f634d06
AK
1113 /*
1114 * We did fallocate with an offset that is already delayed
1115 * allocated. So on delayed allocated writeback we should
72b8ab9d 1116 * not re-claim the quota for fallocated blocks.
5f634d06 1117 */
72b8ab9d 1118 dquot_release_reservation_block(inode, used);
5f634d06 1119 }
d6014301
AK
1120
1121 /*
1122 * If we have done all the pending block allocations and if
1123 * there aren't any writers on the inode, we can discard the
1124 * inode's preallocations.
1125 */
0637c6f4
TT
1126 if ((ei->i_reserved_data_blocks == 0) &&
1127 (atomic_read(&inode->i_writecount) == 0))
d6014301 1128 ext4_discard_preallocations(inode);
12219aea
AK
1129}
1130
e29136f8
TT
1131static int __check_block_validity(struct inode *inode, const char *func,
1132 struct ext4_map_blocks *map)
6fd058f7 1133{
24676da4
TT
1134 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1135 map->m_len)) {
1136 ext4_error_inode(func, inode,
1137 "lblock %lu mapped to illegal pblock %llu "
1138 "(length %d)", (unsigned long) map->m_lblk,
1139 map->m_pblk, map->m_len);
6fd058f7
TT
1140 return -EIO;
1141 }
1142 return 0;
1143}
1144
e29136f8
TT
1145#define check_block_validity(inode, map) \
1146 __check_block_validity((inode), __func__, (map))
1147
55138e0b 1148/*
1f94533d
TT
1149 * Return the number of contiguous dirty pages in a given inode
1150 * starting at page frame idx.
55138e0b
TT
1151 */
1152static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1153 unsigned int max_pages)
1154{
1155 struct address_space *mapping = inode->i_mapping;
1156 pgoff_t index;
1157 struct pagevec pvec;
1158 pgoff_t num = 0;
1159 int i, nr_pages, done = 0;
1160
1161 if (max_pages == 0)
1162 return 0;
1163 pagevec_init(&pvec, 0);
1164 while (!done) {
1165 index = idx;
1166 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1167 PAGECACHE_TAG_DIRTY,
1168 (pgoff_t)PAGEVEC_SIZE);
1169 if (nr_pages == 0)
1170 break;
1171 for (i = 0; i < nr_pages; i++) {
1172 struct page *page = pvec.pages[i];
1173 struct buffer_head *bh, *head;
1174
1175 lock_page(page);
1176 if (unlikely(page->mapping != mapping) ||
1177 !PageDirty(page) ||
1178 PageWriteback(page) ||
1179 page->index != idx) {
1180 done = 1;
1181 unlock_page(page);
1182 break;
1183 }
1f94533d
TT
1184 if (page_has_buffers(page)) {
1185 bh = head = page_buffers(page);
1186 do {
1187 if (!buffer_delay(bh) &&
1188 !buffer_unwritten(bh))
1189 done = 1;
1190 bh = bh->b_this_page;
1191 } while (!done && (bh != head));
1192 }
55138e0b
TT
1193 unlock_page(page);
1194 if (done)
1195 break;
1196 idx++;
1197 num++;
1198 if (num >= max_pages)
1199 break;
1200 }
1201 pagevec_release(&pvec);
1202 }
1203 return num;
1204}
1205
f5ab0d1f 1206/*
e35fd660 1207 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 1208 * and returns if the blocks are already mapped.
f5ab0d1f 1209 *
f5ab0d1f
MC
1210 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1211 * and store the allocated blocks in the result buffer head and mark it
1212 * mapped.
1213 *
e35fd660
TT
1214 * If file type is extents based, it will call ext4_ext_map_blocks(),
1215 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
1216 * based files
1217 *
1218 * On success, it returns the number of blocks being mapped or allocate.
1219 * if create==0 and the blocks are pre-allocated and uninitialized block,
1220 * the result buffer head is unmapped. If the create ==1, it will make sure
1221 * the buffer head is mapped.
1222 *
1223 * It returns 0 if plain look up failed (blocks have not been allocated), in
1224 * that casem, buffer head is unmapped
1225 *
1226 * It returns the error in case of allocation failure.
1227 */
e35fd660
TT
1228int ext4_map_blocks(handle_t *handle, struct inode *inode,
1229 struct ext4_map_blocks *map, int flags)
0e855ac8
AK
1230{
1231 int retval;
f5ab0d1f 1232
e35fd660
TT
1233 map->m_flags = 0;
1234 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1235 "logical block %lu\n", inode->i_ino, flags, map->m_len,
1236 (unsigned long) map->m_lblk);
4df3d265 1237 /*
b920c755
TT
1238 * Try to see if we can get the block without requesting a new
1239 * file system block.
4df3d265
AK
1240 */
1241 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 1242 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 1243 retval = ext4_ext_map_blocks(handle, inode, map, 0);
0e855ac8 1244 } else {
e35fd660 1245 retval = ext4_ind_map_blocks(handle, inode, map, 0);
0e855ac8 1246 }
4df3d265 1247 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 1248
e35fd660 1249 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 1250 int ret = check_block_validity(inode, map);
6fd058f7
TT
1251 if (ret != 0)
1252 return ret;
1253 }
1254
f5ab0d1f 1255 /* If it is only a block(s) look up */
c2177057 1256 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
1257 return retval;
1258
1259 /*
1260 * Returns if the blocks have already allocated
1261 *
1262 * Note that if blocks have been preallocated
1263 * ext4_ext_get_block() returns th create = 0
1264 * with buffer head unmapped.
1265 */
e35fd660 1266 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
1267 return retval;
1268
2a8964d6
AK
1269 /*
1270 * When we call get_blocks without the create flag, the
1271 * BH_Unwritten flag could have gotten set if the blocks
1272 * requested were part of a uninitialized extent. We need to
1273 * clear this flag now that we are committed to convert all or
1274 * part of the uninitialized extent to be an initialized
1275 * extent. This is because we need to avoid the combination
1276 * of BH_Unwritten and BH_Mapped flags being simultaneously
1277 * set on the buffer_head.
1278 */
e35fd660 1279 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
2a8964d6 1280
4df3d265 1281 /*
f5ab0d1f
MC
1282 * New blocks allocate and/or writing to uninitialized extent
1283 * will possibly result in updating i_data, so we take
1284 * the write lock of i_data_sem, and call get_blocks()
1285 * with create == 1 flag.
4df3d265
AK
1286 */
1287 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1288
1289 /*
1290 * if the caller is from delayed allocation writeout path
1291 * we have already reserved fs blocks for allocation
1292 * let the underlying get_block() function know to
1293 * avoid double accounting
1294 */
c2177057 1295 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1296 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1297 /*
1298 * We need to check for EXT4 here because migrate
1299 * could have changed the inode type in between
1300 */
12e9b892 1301 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 1302 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 1303 } else {
e35fd660 1304 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 1305
e35fd660 1306 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
1307 /*
1308 * We allocated new blocks which will result in
1309 * i_data's format changing. Force the migrate
1310 * to fail by clearing migrate flags
1311 */
19f5fb7a 1312 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 1313 }
d2a17637 1314
5f634d06
AK
1315 /*
1316 * Update reserved blocks/metadata blocks after successful
1317 * block allocation which had been deferred till now. We don't
1318 * support fallocate for non extent files. So we can update
1319 * reserve space here.
1320 */
1321 if ((retval > 0) &&
1296cc85 1322 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
1323 ext4_da_update_reserve_space(inode, retval, 1);
1324 }
2ac3b6e0 1325 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1326 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
2ac3b6e0 1327
4df3d265 1328 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 1329 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 1330 int ret = check_block_validity(inode, map);
6fd058f7
TT
1331 if (ret != 0)
1332 return ret;
1333 }
0e855ac8
AK
1334 return retval;
1335}
1336
f3bd1f3f
MC
1337/* Maximum number of blocks we map for direct IO at once. */
1338#define DIO_MAX_BLOCKS 4096
1339
2ed88685
TT
1340static int _ext4_get_block(struct inode *inode, sector_t iblock,
1341 struct buffer_head *bh, int flags)
ac27a0ec 1342{
3e4fdaf8 1343 handle_t *handle = ext4_journal_current_handle();
2ed88685 1344 struct ext4_map_blocks map;
7fb5409d 1345 int ret = 0, started = 0;
f3bd1f3f 1346 int dio_credits;
ac27a0ec 1347
2ed88685
TT
1348 map.m_lblk = iblock;
1349 map.m_len = bh->b_size >> inode->i_blkbits;
1350
1351 if (flags && !handle) {
7fb5409d 1352 /* Direct IO write... */
2ed88685
TT
1353 if (map.m_len > DIO_MAX_BLOCKS)
1354 map.m_len = DIO_MAX_BLOCKS;
1355 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
f3bd1f3f 1356 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1357 if (IS_ERR(handle)) {
ac27a0ec 1358 ret = PTR_ERR(handle);
2ed88685 1359 return ret;
ac27a0ec 1360 }
7fb5409d 1361 started = 1;
ac27a0ec
DK
1362 }
1363
2ed88685 1364 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 1365 if (ret > 0) {
2ed88685
TT
1366 map_bh(bh, inode->i_sb, map.m_pblk);
1367 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1368 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 1369 ret = 0;
ac27a0ec 1370 }
7fb5409d
JK
1371 if (started)
1372 ext4_journal_stop(handle);
ac27a0ec
DK
1373 return ret;
1374}
1375
2ed88685
TT
1376int ext4_get_block(struct inode *inode, sector_t iblock,
1377 struct buffer_head *bh, int create)
1378{
1379 return _ext4_get_block(inode, iblock, bh,
1380 create ? EXT4_GET_BLOCKS_CREATE : 0);
1381}
1382
ac27a0ec
DK
1383/*
1384 * `handle' can be NULL if create is zero
1385 */
617ba13b 1386struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1387 ext4_lblk_t block, int create, int *errp)
ac27a0ec 1388{
2ed88685
TT
1389 struct ext4_map_blocks map;
1390 struct buffer_head *bh;
ac27a0ec
DK
1391 int fatal = 0, err;
1392
1393 J_ASSERT(handle != NULL || create == 0);
1394
2ed88685
TT
1395 map.m_lblk = block;
1396 map.m_len = 1;
1397 err = ext4_map_blocks(handle, inode, &map,
1398 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 1399
2ed88685
TT
1400 if (err < 0)
1401 *errp = err;
1402 if (err <= 0)
1403 return NULL;
1404 *errp = 0;
1405
1406 bh = sb_getblk(inode->i_sb, map.m_pblk);
1407 if (!bh) {
1408 *errp = -EIO;
1409 return NULL;
ac27a0ec 1410 }
2ed88685
TT
1411 if (map.m_flags & EXT4_MAP_NEW) {
1412 J_ASSERT(create != 0);
1413 J_ASSERT(handle != NULL);
ac27a0ec 1414
2ed88685
TT
1415 /*
1416 * Now that we do not always journal data, we should
1417 * keep in mind whether this should always journal the
1418 * new buffer as metadata. For now, regular file
1419 * writes use ext4_get_block instead, so it's not a
1420 * problem.
1421 */
1422 lock_buffer(bh);
1423 BUFFER_TRACE(bh, "call get_create_access");
1424 fatal = ext4_journal_get_create_access(handle, bh);
1425 if (!fatal && !buffer_uptodate(bh)) {
1426 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1427 set_buffer_uptodate(bh);
ac27a0ec 1428 }
2ed88685
TT
1429 unlock_buffer(bh);
1430 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1431 err = ext4_handle_dirty_metadata(handle, inode, bh);
1432 if (!fatal)
1433 fatal = err;
1434 } else {
1435 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 1436 }
2ed88685
TT
1437 if (fatal) {
1438 *errp = fatal;
1439 brelse(bh);
1440 bh = NULL;
1441 }
1442 return bh;
ac27a0ec
DK
1443}
1444
617ba13b 1445struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1446 ext4_lblk_t block, int create, int *err)
ac27a0ec 1447{
af5bc92d 1448 struct buffer_head *bh;
ac27a0ec 1449
617ba13b 1450 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1451 if (!bh)
1452 return bh;
1453 if (buffer_uptodate(bh))
1454 return bh;
1455 ll_rw_block(READ_META, 1, &bh);
1456 wait_on_buffer(bh);
1457 if (buffer_uptodate(bh))
1458 return bh;
1459 put_bh(bh);
1460 *err = -EIO;
1461 return NULL;
1462}
1463
af5bc92d
TT
1464static int walk_page_buffers(handle_t *handle,
1465 struct buffer_head *head,
1466 unsigned from,
1467 unsigned to,
1468 int *partial,
1469 int (*fn)(handle_t *handle,
1470 struct buffer_head *bh))
ac27a0ec
DK
1471{
1472 struct buffer_head *bh;
1473 unsigned block_start, block_end;
1474 unsigned blocksize = head->b_size;
1475 int err, ret = 0;
1476 struct buffer_head *next;
1477
af5bc92d
TT
1478 for (bh = head, block_start = 0;
1479 ret == 0 && (bh != head || !block_start);
de9a55b8 1480 block_start = block_end, bh = next) {
ac27a0ec
DK
1481 next = bh->b_this_page;
1482 block_end = block_start + blocksize;
1483 if (block_end <= from || block_start >= to) {
1484 if (partial && !buffer_uptodate(bh))
1485 *partial = 1;
1486 continue;
1487 }
1488 err = (*fn)(handle, bh);
1489 if (!ret)
1490 ret = err;
1491 }
1492 return ret;
1493}
1494
1495/*
1496 * To preserve ordering, it is essential that the hole instantiation and
1497 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1498 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1499 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1500 * prepare_write() is the right place.
1501 *
617ba13b
MC
1502 * Also, this function can nest inside ext4_writepage() ->
1503 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1504 * has generated enough buffer credits to do the whole page. So we won't
1505 * block on the journal in that case, which is good, because the caller may
1506 * be PF_MEMALLOC.
1507 *
617ba13b 1508 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1509 * quota file writes. If we were to commit the transaction while thus
1510 * reentered, there can be a deadlock - we would be holding a quota
1511 * lock, and the commit would never complete if another thread had a
1512 * transaction open and was blocking on the quota lock - a ranking
1513 * violation.
1514 *
dab291af 1515 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1516 * will _not_ run commit under these circumstances because handle->h_ref
1517 * is elevated. We'll still have enough credits for the tiny quotafile
1518 * write.
1519 */
1520static int do_journal_get_write_access(handle_t *handle,
de9a55b8 1521 struct buffer_head *bh)
ac27a0ec
DK
1522{
1523 if (!buffer_mapped(bh) || buffer_freed(bh))
1524 return 0;
617ba13b 1525 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1526}
1527
b9a4207d
JK
1528/*
1529 * Truncate blocks that were not used by write. We have to truncate the
1530 * pagecache as well so that corresponding buffers get properly unmapped.
1531 */
1532static void ext4_truncate_failed_write(struct inode *inode)
1533{
1534 truncate_inode_pages(inode->i_mapping, inode->i_size);
1535 ext4_truncate(inode);
1536}
1537
744692dc
JZ
1538static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1539 struct buffer_head *bh_result, int create);
bfc1af65 1540static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1541 loff_t pos, unsigned len, unsigned flags,
1542 struct page **pagep, void **fsdata)
ac27a0ec 1543{
af5bc92d 1544 struct inode *inode = mapping->host;
1938a150 1545 int ret, needed_blocks;
ac27a0ec
DK
1546 handle_t *handle;
1547 int retries = 0;
af5bc92d 1548 struct page *page;
de9a55b8 1549 pgoff_t index;
af5bc92d 1550 unsigned from, to;
bfc1af65 1551
9bffad1e 1552 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1553 /*
1554 * Reserve one block more for addition to orphan list in case
1555 * we allocate blocks but write fails for some reason
1556 */
1557 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 1558 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1559 from = pos & (PAGE_CACHE_SIZE - 1);
1560 to = from + len;
ac27a0ec
DK
1561
1562retry:
af5bc92d
TT
1563 handle = ext4_journal_start(inode, needed_blocks);
1564 if (IS_ERR(handle)) {
1565 ret = PTR_ERR(handle);
1566 goto out;
7479d2b9 1567 }
ac27a0ec 1568
ebd3610b
JK
1569 /* We cannot recurse into the filesystem as the transaction is already
1570 * started */
1571 flags |= AOP_FLAG_NOFS;
1572
54566b2c 1573 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1574 if (!page) {
1575 ext4_journal_stop(handle);
1576 ret = -ENOMEM;
1577 goto out;
1578 }
1579 *pagep = page;
1580
744692dc
JZ
1581 if (ext4_should_dioread_nolock(inode))
1582 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1583 fsdata, ext4_get_block_write);
1584 else
1585 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1586 fsdata, ext4_get_block);
bfc1af65
NP
1587
1588 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1589 ret = walk_page_buffers(handle, page_buffers(page),
1590 from, to, NULL, do_journal_get_write_access);
1591 }
bfc1af65
NP
1592
1593 if (ret) {
af5bc92d 1594 unlock_page(page);
af5bc92d 1595 page_cache_release(page);
ae4d5372
AK
1596 /*
1597 * block_write_begin may have instantiated a few blocks
1598 * outside i_size. Trim these off again. Don't need
1599 * i_size_read because we hold i_mutex.
1938a150
AK
1600 *
1601 * Add inode to orphan list in case we crash before
1602 * truncate finishes
ae4d5372 1603 */
ffacfa7a 1604 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1605 ext4_orphan_add(handle, inode);
1606
1607 ext4_journal_stop(handle);
1608 if (pos + len > inode->i_size) {
b9a4207d 1609 ext4_truncate_failed_write(inode);
de9a55b8 1610 /*
ffacfa7a 1611 * If truncate failed early the inode might
1938a150
AK
1612 * still be on the orphan list; we need to
1613 * make sure the inode is removed from the
1614 * orphan list in that case.
1615 */
1616 if (inode->i_nlink)
1617 ext4_orphan_del(NULL, inode);
1618 }
bfc1af65
NP
1619 }
1620
617ba13b 1621 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1622 goto retry;
7479d2b9 1623out:
ac27a0ec
DK
1624 return ret;
1625}
1626
bfc1af65
NP
1627/* For write_end() in data=journal mode */
1628static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1629{
1630 if (!buffer_mapped(bh) || buffer_freed(bh))
1631 return 0;
1632 set_buffer_uptodate(bh);
0390131b 1633 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1634}
1635
f8514083 1636static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
1637 struct address_space *mapping,
1638 loff_t pos, unsigned len, unsigned copied,
1639 struct page *page, void *fsdata)
f8514083
AK
1640{
1641 int i_size_changed = 0;
1642 struct inode *inode = mapping->host;
1643 handle_t *handle = ext4_journal_current_handle();
1644
1645 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1646
1647 /*
1648 * No need to use i_size_read() here, the i_size
1649 * cannot change under us because we hold i_mutex.
1650 *
1651 * But it's important to update i_size while still holding page lock:
1652 * page writeout could otherwise come in and zero beyond i_size.
1653 */
1654 if (pos + copied > inode->i_size) {
1655 i_size_write(inode, pos + copied);
1656 i_size_changed = 1;
1657 }
1658
1659 if (pos + copied > EXT4_I(inode)->i_disksize) {
1660 /* We need to mark inode dirty even if
1661 * new_i_size is less that inode->i_size
1662 * bu greater than i_disksize.(hint delalloc)
1663 */
1664 ext4_update_i_disksize(inode, (pos + copied));
1665 i_size_changed = 1;
1666 }
1667 unlock_page(page);
1668 page_cache_release(page);
1669
1670 /*
1671 * Don't mark the inode dirty under page lock. First, it unnecessarily
1672 * makes the holding time of page lock longer. Second, it forces lock
1673 * ordering of page lock and transaction start for journaling
1674 * filesystems.
1675 */
1676 if (i_size_changed)
1677 ext4_mark_inode_dirty(handle, inode);
1678
1679 return copied;
1680}
1681
ac27a0ec
DK
1682/*
1683 * We need to pick up the new inode size which generic_commit_write gave us
1684 * `file' can be NULL - eg, when called from page_symlink().
1685 *
617ba13b 1686 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1687 * buffers are managed internally.
1688 */
bfc1af65 1689static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
1690 struct address_space *mapping,
1691 loff_t pos, unsigned len, unsigned copied,
1692 struct page *page, void *fsdata)
ac27a0ec 1693{
617ba13b 1694 handle_t *handle = ext4_journal_current_handle();
cf108bca 1695 struct inode *inode = mapping->host;
ac27a0ec
DK
1696 int ret = 0, ret2;
1697
9bffad1e 1698 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 1699 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1700
1701 if (ret == 0) {
f8514083 1702 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1703 page, fsdata);
f8a87d89 1704 copied = ret2;
ffacfa7a 1705 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1706 /* if we have allocated more blocks and copied
1707 * less. We will have blocks allocated outside
1708 * inode->i_size. So truncate them
1709 */
1710 ext4_orphan_add(handle, inode);
f8a87d89
RK
1711 if (ret2 < 0)
1712 ret = ret2;
ac27a0ec 1713 }
617ba13b 1714 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1715 if (!ret)
1716 ret = ret2;
bfc1af65 1717
f8514083 1718 if (pos + len > inode->i_size) {
b9a4207d 1719 ext4_truncate_failed_write(inode);
de9a55b8 1720 /*
ffacfa7a 1721 * If truncate failed early the inode might still be
f8514083
AK
1722 * on the orphan list; we need to make sure the inode
1723 * is removed from the orphan list in that case.
1724 */
1725 if (inode->i_nlink)
1726 ext4_orphan_del(NULL, inode);
1727 }
1728
1729
bfc1af65 1730 return ret ? ret : copied;
ac27a0ec
DK
1731}
1732
bfc1af65 1733static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
1734 struct address_space *mapping,
1735 loff_t pos, unsigned len, unsigned copied,
1736 struct page *page, void *fsdata)
ac27a0ec 1737{
617ba13b 1738 handle_t *handle = ext4_journal_current_handle();
cf108bca 1739 struct inode *inode = mapping->host;
ac27a0ec 1740 int ret = 0, ret2;
ac27a0ec 1741
9bffad1e 1742 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 1743 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1744 page, fsdata);
f8a87d89 1745 copied = ret2;
ffacfa7a 1746 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1747 /* if we have allocated more blocks and copied
1748 * less. We will have blocks allocated outside
1749 * inode->i_size. So truncate them
1750 */
1751 ext4_orphan_add(handle, inode);
1752
f8a87d89
RK
1753 if (ret2 < 0)
1754 ret = ret2;
ac27a0ec 1755
617ba13b 1756 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1757 if (!ret)
1758 ret = ret2;
bfc1af65 1759
f8514083 1760 if (pos + len > inode->i_size) {
b9a4207d 1761 ext4_truncate_failed_write(inode);
de9a55b8 1762 /*
ffacfa7a 1763 * If truncate failed early the inode might still be
f8514083
AK
1764 * on the orphan list; we need to make sure the inode
1765 * is removed from the orphan list in that case.
1766 */
1767 if (inode->i_nlink)
1768 ext4_orphan_del(NULL, inode);
1769 }
1770
bfc1af65 1771 return ret ? ret : copied;
ac27a0ec
DK
1772}
1773
bfc1af65 1774static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1775 struct address_space *mapping,
1776 loff_t pos, unsigned len, unsigned copied,
1777 struct page *page, void *fsdata)
ac27a0ec 1778{
617ba13b 1779 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1780 struct inode *inode = mapping->host;
ac27a0ec
DK
1781 int ret = 0, ret2;
1782 int partial = 0;
bfc1af65 1783 unsigned from, to;
cf17fea6 1784 loff_t new_i_size;
ac27a0ec 1785
9bffad1e 1786 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1787 from = pos & (PAGE_CACHE_SIZE - 1);
1788 to = from + len;
1789
1790 if (copied < len) {
1791 if (!PageUptodate(page))
1792 copied = 0;
1793 page_zero_new_buffers(page, from+copied, to);
1794 }
ac27a0ec
DK
1795
1796 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1797 to, &partial, write_end_fn);
ac27a0ec
DK
1798 if (!partial)
1799 SetPageUptodate(page);
cf17fea6
AK
1800 new_i_size = pos + copied;
1801 if (new_i_size > inode->i_size)
bfc1af65 1802 i_size_write(inode, pos+copied);
19f5fb7a 1803 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
cf17fea6
AK
1804 if (new_i_size > EXT4_I(inode)->i_disksize) {
1805 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1806 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1807 if (!ret)
1808 ret = ret2;
1809 }
bfc1af65 1810
cf108bca 1811 unlock_page(page);
f8514083 1812 page_cache_release(page);
ffacfa7a 1813 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1814 /* if we have allocated more blocks and copied
1815 * less. We will have blocks allocated outside
1816 * inode->i_size. So truncate them
1817 */
1818 ext4_orphan_add(handle, inode);
1819
617ba13b 1820 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1821 if (!ret)
1822 ret = ret2;
f8514083 1823 if (pos + len > inode->i_size) {
b9a4207d 1824 ext4_truncate_failed_write(inode);
de9a55b8 1825 /*
ffacfa7a 1826 * If truncate failed early the inode might still be
f8514083
AK
1827 * on the orphan list; we need to make sure the inode
1828 * is removed from the orphan list in that case.
1829 */
1830 if (inode->i_nlink)
1831 ext4_orphan_del(NULL, inode);
1832 }
bfc1af65
NP
1833
1834 return ret ? ret : copied;
ac27a0ec 1835}
d2a17637 1836
9d0be502
TT
1837/*
1838 * Reserve a single block located at lblock
1839 */
1840static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
d2a17637 1841{
030ba6bc 1842 int retries = 0;
60e58e0f 1843 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1844 struct ext4_inode_info *ei = EXT4_I(inode);
72b8ab9d 1845 unsigned long md_needed;
5dd4056d 1846 int ret;
d2a17637
MC
1847
1848 /*
1849 * recalculate the amount of metadata blocks to reserve
1850 * in order to allocate nrblocks
1851 * worse case is one extent per block
1852 */
030ba6bc 1853repeat:
0637c6f4 1854 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1855 md_needed = ext4_calc_metadata_amount(inode, lblock);
f8ec9d68 1856 trace_ext4_da_reserve_space(inode, md_needed);
0637c6f4 1857 spin_unlock(&ei->i_block_reservation_lock);
d2a17637 1858
60e58e0f 1859 /*
72b8ab9d
ES
1860 * We will charge metadata quota at writeout time; this saves
1861 * us from metadata over-estimation, though we may go over by
1862 * a small amount in the end. Here we just reserve for data.
60e58e0f 1863 */
72b8ab9d 1864 ret = dquot_reserve_block(inode, 1);
5dd4056d
CH
1865 if (ret)
1866 return ret;
72b8ab9d
ES
1867 /*
1868 * We do still charge estimated metadata to the sb though;
1869 * we cannot afford to run out of free blocks.
1870 */
9d0be502 1871 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
72b8ab9d 1872 dquot_release_reservation_block(inode, 1);
030ba6bc
AK
1873 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1874 yield();
1875 goto repeat;
1876 }
d2a17637
MC
1877 return -ENOSPC;
1878 }
0637c6f4 1879 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1880 ei->i_reserved_data_blocks++;
0637c6f4
TT
1881 ei->i_reserved_meta_blocks += md_needed;
1882 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1883
d2a17637
MC
1884 return 0; /* success */
1885}
1886
12219aea 1887static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1888{
1889 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1890 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1891
cd213226
MC
1892 if (!to_free)
1893 return; /* Nothing to release, exit */
1894
d2a17637 1895 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1896
5a58ec87 1897 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1898 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1899 /*
0637c6f4
TT
1900 * if there aren't enough reserved blocks, then the
1901 * counter is messed up somewhere. Since this
1902 * function is called from invalidate page, it's
1903 * harmless to return without any action.
cd213226 1904 */
0637c6f4
TT
1905 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1906 "ino %lu, to_free %d with only %d reserved "
1907 "data blocks\n", inode->i_ino, to_free,
1908 ei->i_reserved_data_blocks);
1909 WARN_ON(1);
1910 to_free = ei->i_reserved_data_blocks;
cd213226 1911 }
0637c6f4 1912 ei->i_reserved_data_blocks -= to_free;
cd213226 1913
0637c6f4
TT
1914 if (ei->i_reserved_data_blocks == 0) {
1915 /*
1916 * We can release all of the reserved metadata blocks
1917 * only when we have written all of the delayed
1918 * allocation blocks.
1919 */
72b8ab9d
ES
1920 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1921 ei->i_reserved_meta_blocks);
ee5f4d9c 1922 ei->i_reserved_meta_blocks = 0;
9d0be502 1923 ei->i_da_metadata_calc_len = 0;
0637c6f4 1924 }
d2a17637 1925
72b8ab9d 1926 /* update fs dirty data blocks counter */
0637c6f4 1927 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
d2a17637 1928
d2a17637 1929 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1930
5dd4056d 1931 dquot_release_reservation_block(inode, to_free);
d2a17637
MC
1932}
1933
1934static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1935 unsigned long offset)
d2a17637
MC
1936{
1937 int to_release = 0;
1938 struct buffer_head *head, *bh;
1939 unsigned int curr_off = 0;
1940
1941 head = page_buffers(page);
1942 bh = head;
1943 do {
1944 unsigned int next_off = curr_off + bh->b_size;
1945
1946 if ((offset <= curr_off) && (buffer_delay(bh))) {
1947 to_release++;
1948 clear_buffer_delay(bh);
1949 }
1950 curr_off = next_off;
1951 } while ((bh = bh->b_this_page) != head);
12219aea 1952 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1953}
ac27a0ec 1954
64769240
AT
1955/*
1956 * Delayed allocation stuff
1957 */
1958
64769240
AT
1959/*
1960 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1961 * them with writepage() call back
64769240
AT
1962 *
1963 * @mpd->inode: inode
1964 * @mpd->first_page: first page of the extent
1965 * @mpd->next_page: page after the last page of the extent
64769240
AT
1966 *
1967 * By the time mpage_da_submit_io() is called we expect all blocks
1968 * to be allocated. this may be wrong if allocation failed.
1969 *
1970 * As pages are already locked by write_cache_pages(), we can't use it
1971 */
1972static int mpage_da_submit_io(struct mpage_da_data *mpd)
1973{
22208ded 1974 long pages_skipped;
791b7f08
AK
1975 struct pagevec pvec;
1976 unsigned long index, end;
1977 int ret = 0, err, nr_pages, i;
1978 struct inode *inode = mpd->inode;
1979 struct address_space *mapping = inode->i_mapping;
64769240
AT
1980
1981 BUG_ON(mpd->next_page <= mpd->first_page);
791b7f08
AK
1982 /*
1983 * We need to start from the first_page to the next_page - 1
1984 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1985 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1986 * at the currently mapped buffer_heads.
1987 */
64769240
AT
1988 index = mpd->first_page;
1989 end = mpd->next_page - 1;
1990
791b7f08 1991 pagevec_init(&pvec, 0);
64769240 1992 while (index <= end) {
791b7f08 1993 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1994 if (nr_pages == 0)
1995 break;
1996 for (i = 0; i < nr_pages; i++) {
1997 struct page *page = pvec.pages[i];
1998
791b7f08
AK
1999 index = page->index;
2000 if (index > end)
2001 break;
2002 index++;
2003
2004 BUG_ON(!PageLocked(page));
2005 BUG_ON(PageWriteback(page));
2006
22208ded 2007 pages_skipped = mpd->wbc->pages_skipped;
a1d6cc56 2008 err = mapping->a_ops->writepage(page, mpd->wbc);
22208ded
AK
2009 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2010 /*
2011 * have successfully written the page
2012 * without skipping the same
2013 */
a1d6cc56 2014 mpd->pages_written++;
64769240
AT
2015 /*
2016 * In error case, we have to continue because
2017 * remaining pages are still locked
2018 * XXX: unlock and re-dirty them?
2019 */
2020 if (ret == 0)
2021 ret = err;
2022 }
2023 pagevec_release(&pvec);
2024 }
64769240
AT
2025 return ret;
2026}
2027
2028/*
2029 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2030 *
64769240 2031 * the function goes through all passed space and put actual disk
29fa89d0 2032 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
64769240 2033 */
2ed88685
TT
2034static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd,
2035 struct ext4_map_blocks *map)
64769240
AT
2036{
2037 struct inode *inode = mpd->inode;
2038 struct address_space *mapping = inode->i_mapping;
2ed88685
TT
2039 int blocks = map->m_len;
2040 sector_t pblock = map->m_pblk, cur_logical;
64769240 2041 struct buffer_head *head, *bh;
a1d6cc56 2042 pgoff_t index, end;
64769240
AT
2043 struct pagevec pvec;
2044 int nr_pages, i;
2045
2ed88685
TT
2046 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2047 end = (map->m_lblk + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
64769240
AT
2048 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2049
2050 pagevec_init(&pvec, 0);
2051
2052 while (index <= end) {
2053 /* XXX: optimize tail */
2054 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2055 if (nr_pages == 0)
2056 break;
2057 for (i = 0; i < nr_pages; i++) {
2058 struct page *page = pvec.pages[i];
2059
2060 index = page->index;
2061 if (index > end)
2062 break;
2063 index++;
2064
2065 BUG_ON(!PageLocked(page));
2066 BUG_ON(PageWriteback(page));
2067 BUG_ON(!page_has_buffers(page));
2068
2069 bh = page_buffers(page);
2070 head = bh;
2071
2072 /* skip blocks out of the range */
2073 do {
2ed88685 2074 if (cur_logical >= map->m_lblk)
64769240
AT
2075 break;
2076 cur_logical++;
2077 } while ((bh = bh->b_this_page) != head);
2078
2079 do {
2ed88685 2080 if (cur_logical >= map->m_lblk + blocks)
64769240 2081 break;
29fa89d0 2082
2ed88685 2083 if (buffer_delay(bh) || buffer_unwritten(bh)) {
29fa89d0
AK
2084
2085 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2086
2087 if (buffer_delay(bh)) {
2088 clear_buffer_delay(bh);
2089 bh->b_blocknr = pblock;
2090 } else {
2091 /*
2092 * unwritten already should have
2093 * blocknr assigned. Verify that
2094 */
2095 clear_buffer_unwritten(bh);
2096 BUG_ON(bh->b_blocknr != pblock);
2097 }
2098
61628a3f 2099 } else if (buffer_mapped(bh))
64769240 2100 BUG_ON(bh->b_blocknr != pblock);
64769240 2101
2ed88685 2102 if (map->m_flags & EXT4_MAP_UNINIT)
744692dc 2103 set_buffer_uninit(bh);
64769240
AT
2104 cur_logical++;
2105 pblock++;
2106 } while ((bh = bh->b_this_page) != head);
2107 }
2108 pagevec_release(&pvec);
2109 }
2110}
2111
2112
c4a0c46e
AK
2113static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2114 sector_t logical, long blk_cnt)
2115{
2116 int nr_pages, i;
2117 pgoff_t index, end;
2118 struct pagevec pvec;
2119 struct inode *inode = mpd->inode;
2120 struct address_space *mapping = inode->i_mapping;
2121
2122 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2123 end = (logical + blk_cnt - 1) >>
2124 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2125 while (index <= end) {
2126 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2127 if (nr_pages == 0)
2128 break;
2129 for (i = 0; i < nr_pages; i++) {
2130 struct page *page = pvec.pages[i];
9b1d0998 2131 if (page->index > end)
c4a0c46e 2132 break;
c4a0c46e
AK
2133 BUG_ON(!PageLocked(page));
2134 BUG_ON(PageWriteback(page));
2135 block_invalidatepage(page, 0);
2136 ClearPageUptodate(page);
2137 unlock_page(page);
2138 }
9b1d0998
JK
2139 index = pvec.pages[nr_pages - 1]->index + 1;
2140 pagevec_release(&pvec);
c4a0c46e
AK
2141 }
2142 return;
2143}
2144
df22291f
AK
2145static void ext4_print_free_blocks(struct inode *inode)
2146{
2147 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1693918e
TT
2148 printk(KERN_CRIT "Total free blocks count %lld\n",
2149 ext4_count_free_blocks(inode->i_sb));
2150 printk(KERN_CRIT "Free/Dirty block details\n");
2151 printk(KERN_CRIT "free_blocks=%lld\n",
2152 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2153 printk(KERN_CRIT "dirty_blocks=%lld\n",
2154 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2155 printk(KERN_CRIT "Block reservation details\n");
2156 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2157 EXT4_I(inode)->i_reserved_data_blocks);
2158 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2159 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
2160 return;
2161}
2162
64769240
AT
2163/*
2164 * mpage_da_map_blocks - go through given space
2165 *
8dc207c0 2166 * @mpd - bh describing space
64769240
AT
2167 *
2168 * The function skips space we know is already mapped to disk blocks.
2169 *
64769240 2170 */
ed5bde0b 2171static int mpage_da_map_blocks(struct mpage_da_data *mpd)
64769240 2172{
2ac3b6e0 2173 int err, blks, get_blocks_flags;
2ed88685 2174 struct ext4_map_blocks map;
2fa3cdfb
TT
2175 sector_t next = mpd->b_blocknr;
2176 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2177 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2178 handle_t *handle = NULL;
64769240
AT
2179
2180 /*
2181 * We consider only non-mapped and non-allocated blocks
2182 */
8dc207c0 2183 if ((mpd->b_state & (1 << BH_Mapped)) &&
29fa89d0
AK
2184 !(mpd->b_state & (1 << BH_Delay)) &&
2185 !(mpd->b_state & (1 << BH_Unwritten)))
c4a0c46e 2186 return 0;
2fa3cdfb
TT
2187
2188 /*
2189 * If we didn't accumulate anything to write simply return
2190 */
2191 if (!mpd->b_size)
2192 return 0;
2193
2194 handle = ext4_journal_current_handle();
2195 BUG_ON(!handle);
2196
79ffab34 2197 /*
2ac3b6e0
TT
2198 * Call ext4_get_blocks() to allocate any delayed allocation
2199 * blocks, or to convert an uninitialized extent to be
2200 * initialized (in the case where we have written into
2201 * one or more preallocated blocks).
2202 *
2203 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2204 * indicate that we are on the delayed allocation path. This
2205 * affects functions in many different parts of the allocation
2206 * call path. This flag exists primarily because we don't
2207 * want to change *many* call functions, so ext4_get_blocks()
2208 * will set the magic i_delalloc_reserved_flag once the
2209 * inode's allocation semaphore is taken.
2210 *
2211 * If the blocks in questions were delalloc blocks, set
2212 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2213 * variables are updated after the blocks have been allocated.
79ffab34 2214 */
2ed88685
TT
2215 map.m_lblk = next;
2216 map.m_len = max_blocks;
1296cc85 2217 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
744692dc
JZ
2218 if (ext4_should_dioread_nolock(mpd->inode))
2219 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 2220 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
2221 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2222
2ed88685 2223 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb
TT
2224 if (blks < 0) {
2225 err = blks;
ed5bde0b
TT
2226 /*
2227 * If get block returns with error we simply
2228 * return. Later writepage will redirty the page and
2229 * writepages will find the dirty page again
c4a0c46e
AK
2230 */
2231 if (err == -EAGAIN)
2232 return 0;
df22291f
AK
2233
2234 if (err == -ENOSPC &&
ed5bde0b 2235 ext4_count_free_blocks(mpd->inode->i_sb)) {
df22291f
AK
2236 mpd->retval = err;
2237 return 0;
2238 }
2239
c4a0c46e 2240 /*
ed5bde0b
TT
2241 * get block failure will cause us to loop in
2242 * writepages, because a_ops->writepage won't be able
2243 * to make progress. The page will be redirtied by
2244 * writepage and writepages will again try to write
2245 * the same.
c4a0c46e 2246 */
1693918e
TT
2247 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2248 "delayed block allocation failed for inode %lu at "
2249 "logical offset %llu with max blocks %zd with "
fbe845dd 2250 "error %d", mpd->inode->i_ino,
1693918e
TT
2251 (unsigned long long) next,
2252 mpd->b_size >> mpd->inode->i_blkbits, err);
2253 printk(KERN_CRIT "This should not happen!! "
2254 "Data will be lost\n");
030ba6bc 2255 if (err == -ENOSPC) {
df22291f 2256 ext4_print_free_blocks(mpd->inode);
030ba6bc 2257 }
2fa3cdfb 2258 /* invalidate all the pages */
c4a0c46e 2259 ext4_da_block_invalidatepages(mpd, next,
8dc207c0 2260 mpd->b_size >> mpd->inode->i_blkbits);
c4a0c46e
AK
2261 return err;
2262 }
2fa3cdfb
TT
2263 BUG_ON(blks == 0);
2264
2ed88685
TT
2265 if (map.m_flags & EXT4_MAP_NEW) {
2266 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2267 int i;
64769240 2268
2ed88685
TT
2269 for (i = 0; i < map.m_len; i++)
2270 unmap_underlying_metadata(bdev, map.m_pblk + i);
2271 }
64769240 2272
a1d6cc56
AK
2273 /*
2274 * If blocks are delayed marked, we need to
2275 * put actual blocknr and drop delayed bit
2276 */
8dc207c0
TT
2277 if ((mpd->b_state & (1 << BH_Delay)) ||
2278 (mpd->b_state & (1 << BH_Unwritten)))
2ed88685 2279 mpage_put_bnr_to_bhs(mpd, &map);
64769240 2280
2fa3cdfb
TT
2281 if (ext4_should_order_data(mpd->inode)) {
2282 err = ext4_jbd2_file_inode(handle, mpd->inode);
2283 if (err)
2284 return err;
2285 }
2286
2287 /*
03f5d8bc 2288 * Update on-disk size along with block allocation.
2fa3cdfb
TT
2289 */
2290 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2291 if (disksize > i_size_read(mpd->inode))
2292 disksize = i_size_read(mpd->inode);
2293 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2294 ext4_update_i_disksize(mpd->inode, disksize);
2295 return ext4_mark_inode_dirty(handle, mpd->inode);
2296 }
2297
c4a0c46e 2298 return 0;
64769240
AT
2299}
2300
bf068ee2
AK
2301#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2302 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
2303
2304/*
2305 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2306 *
2307 * @mpd->lbh - extent of blocks
2308 * @logical - logical number of the block in the file
2309 * @bh - bh of the block (used to access block's state)
2310 *
2311 * the function is used to collect contig. blocks in same state
2312 */
2313static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
2314 sector_t logical, size_t b_size,
2315 unsigned long b_state)
64769240 2316{
64769240 2317 sector_t next;
8dc207c0 2318 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 2319
c445e3e0
ES
2320 /*
2321 * XXX Don't go larger than mballoc is willing to allocate
2322 * This is a stopgap solution. We eventually need to fold
2323 * mpage_da_submit_io() into this function and then call
2324 * ext4_get_blocks() multiple times in a loop
2325 */
2326 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2327 goto flush_it;
2328
525f4ed8 2329 /* check if thereserved journal credits might overflow */
12e9b892 2330 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
525f4ed8
MC
2331 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2332 /*
2333 * With non-extent format we are limited by the journal
2334 * credit available. Total credit needed to insert
2335 * nrblocks contiguous blocks is dependent on the
2336 * nrblocks. So limit nrblocks.
2337 */
2338 goto flush_it;
2339 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2340 EXT4_MAX_TRANS_DATA) {
2341 /*
2342 * Adding the new buffer_head would make it cross the
2343 * allowed limit for which we have journal credit
2344 * reserved. So limit the new bh->b_size
2345 */
2346 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2347 mpd->inode->i_blkbits;
2348 /* we will do mpage_da_submit_io in the next loop */
2349 }
2350 }
64769240
AT
2351 /*
2352 * First block in the extent
2353 */
8dc207c0
TT
2354 if (mpd->b_size == 0) {
2355 mpd->b_blocknr = logical;
2356 mpd->b_size = b_size;
2357 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
2358 return;
2359 }
2360
8dc207c0 2361 next = mpd->b_blocknr + nrblocks;
64769240
AT
2362 /*
2363 * Can we merge the block to our big extent?
2364 */
8dc207c0
TT
2365 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2366 mpd->b_size += b_size;
64769240
AT
2367 return;
2368 }
2369
525f4ed8 2370flush_it:
64769240
AT
2371 /*
2372 * We couldn't merge the block to our extent, so we
2373 * need to flush current extent and start new one
2374 */
c4a0c46e
AK
2375 if (mpage_da_map_blocks(mpd) == 0)
2376 mpage_da_submit_io(mpd);
a1d6cc56
AK
2377 mpd->io_done = 1;
2378 return;
64769240
AT
2379}
2380
c364b22c 2381static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 2382{
c364b22c 2383 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
2384}
2385
64769240
AT
2386/*
2387 * __mpage_da_writepage - finds extent of pages and blocks
2388 *
2389 * @page: page to consider
2390 * @wbc: not used, we just follow rules
2391 * @data: context
2392 *
2393 * The function finds extents of pages and scan them for all blocks.
2394 */
2395static int __mpage_da_writepage(struct page *page,
2396 struct writeback_control *wbc, void *data)
2397{
2398 struct mpage_da_data *mpd = data;
2399 struct inode *inode = mpd->inode;
8dc207c0 2400 struct buffer_head *bh, *head;
64769240
AT
2401 sector_t logical;
2402
2403 /*
2404 * Can we merge this page to current extent?
2405 */
2406 if (mpd->next_page != page->index) {
2407 /*
2408 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 2409 * and start IO on them using writepage()
64769240
AT
2410 */
2411 if (mpd->next_page != mpd->first_page) {
c4a0c46e
AK
2412 if (mpage_da_map_blocks(mpd) == 0)
2413 mpage_da_submit_io(mpd);
a1d6cc56
AK
2414 /*
2415 * skip rest of the page in the page_vec
2416 */
2417 mpd->io_done = 1;
2418 redirty_page_for_writepage(wbc, page);
2419 unlock_page(page);
2420 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2421 }
2422
2423 /*
2424 * Start next extent of pages ...
2425 */
2426 mpd->first_page = page->index;
2427
2428 /*
2429 * ... and blocks
2430 */
8dc207c0
TT
2431 mpd->b_size = 0;
2432 mpd->b_state = 0;
2433 mpd->b_blocknr = 0;
64769240
AT
2434 }
2435
2436 mpd->next_page = page->index + 1;
2437 logical = (sector_t) page->index <<
2438 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2439
2440 if (!page_has_buffers(page)) {
8dc207c0
TT
2441 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2442 (1 << BH_Dirty) | (1 << BH_Uptodate));
a1d6cc56
AK
2443 if (mpd->io_done)
2444 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2445 } else {
2446 /*
2447 * Page with regular buffer heads, just add all dirty ones
2448 */
2449 head = page_buffers(page);
2450 bh = head;
2451 do {
2452 BUG_ON(buffer_locked(bh));
791b7f08
AK
2453 /*
2454 * We need to try to allocate
2455 * unmapped blocks in the same page.
2456 * Otherwise we won't make progress
43ce1d23 2457 * with the page in ext4_writepage
791b7f08 2458 */
c364b22c 2459 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
8dc207c0
TT
2460 mpage_add_bh_to_extent(mpd, logical,
2461 bh->b_size,
2462 bh->b_state);
a1d6cc56
AK
2463 if (mpd->io_done)
2464 return MPAGE_DA_EXTENT_TAIL;
791b7f08
AK
2465 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2466 /*
2467 * mapped dirty buffer. We need to update
2468 * the b_state because we look at
2469 * b_state in mpage_da_map_blocks. We don't
2470 * update b_size because if we find an
2471 * unmapped buffer_head later we need to
2472 * use the b_state flag of that buffer_head.
2473 */
8dc207c0
TT
2474 if (mpd->b_size == 0)
2475 mpd->b_state = bh->b_state & BH_FLAGS;
a1d6cc56 2476 }
64769240
AT
2477 logical++;
2478 } while ((bh = bh->b_this_page) != head);
2479 }
2480
2481 return 0;
2482}
2483
64769240 2484/*
b920c755
TT
2485 * This is a special get_blocks_t callback which is used by
2486 * ext4_da_write_begin(). It will either return mapped block or
2487 * reserve space for a single block.
29fa89d0
AK
2488 *
2489 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2490 * We also have b_blocknr = -1 and b_bdev initialized properly
2491 *
2492 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2493 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2494 * initialized properly.
64769240
AT
2495 */
2496static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2ed88685 2497 struct buffer_head *bh, int create)
64769240 2498{
2ed88685 2499 struct ext4_map_blocks map;
64769240 2500 int ret = 0;
33b9817e
AK
2501 sector_t invalid_block = ~((sector_t) 0xffff);
2502
2503 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2504 invalid_block = ~0;
64769240
AT
2505
2506 BUG_ON(create == 0);
2ed88685
TT
2507 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2508
2509 map.m_lblk = iblock;
2510 map.m_len = 1;
64769240
AT
2511
2512 /*
2513 * first, we need to know whether the block is allocated already
2514 * preallocated blocks are unmapped but should treated
2515 * the same as allocated blocks.
2516 */
2ed88685
TT
2517 ret = ext4_map_blocks(NULL, inode, &map, 0);
2518 if (ret < 0)
2519 return ret;
2520 if (ret == 0) {
2521 if (buffer_delay(bh))
2522 return 0; /* Not sure this could or should happen */
64769240
AT
2523 /*
2524 * XXX: __block_prepare_write() unmaps passed block,
2525 * is it OK?
2526 */
9d0be502 2527 ret = ext4_da_reserve_space(inode, iblock);
d2a17637
MC
2528 if (ret)
2529 /* not enough space to reserve */
2530 return ret;
2531
2ed88685
TT
2532 map_bh(bh, inode->i_sb, invalid_block);
2533 set_buffer_new(bh);
2534 set_buffer_delay(bh);
2535 return 0;
64769240
AT
2536 }
2537
2ed88685
TT
2538 map_bh(bh, inode->i_sb, map.m_pblk);
2539 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2540
2541 if (buffer_unwritten(bh)) {
2542 /* A delayed write to unwritten bh should be marked
2543 * new and mapped. Mapped ensures that we don't do
2544 * get_block multiple times when we write to the same
2545 * offset and new ensures that we do proper zero out
2546 * for partial write.
2547 */
2548 set_buffer_new(bh);
2549 set_buffer_mapped(bh);
2550 }
2551 return 0;
64769240 2552}
61628a3f 2553
b920c755
TT
2554/*
2555 * This function is used as a standard get_block_t calback function
2556 * when there is no desire to allocate any blocks. It is used as a
206f7ab4
CH
2557 * callback function for block_prepare_write() and block_write_full_page().
2558 * These functions should only try to map a single block at a time.
b920c755
TT
2559 *
2560 * Since this function doesn't do block allocations even if the caller
2561 * requests it by passing in create=1, it is critically important that
2562 * any caller checks to make sure that any buffer heads are returned
2563 * by this function are either all already mapped or marked for
206f7ab4
CH
2564 * delayed allocation before calling block_write_full_page(). Otherwise,
2565 * b_blocknr could be left unitialized, and the page write functions will
2566 * be taken by surprise.
b920c755
TT
2567 */
2568static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
2569 struct buffer_head *bh_result, int create)
2570{
a2dc52b5 2571 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2ed88685 2572 return _ext4_get_block(inode, iblock, bh_result, 0);
61628a3f
MC
2573}
2574
62e086be
AK
2575static int bget_one(handle_t *handle, struct buffer_head *bh)
2576{
2577 get_bh(bh);
2578 return 0;
2579}
2580
2581static int bput_one(handle_t *handle, struct buffer_head *bh)
2582{
2583 put_bh(bh);
2584 return 0;
2585}
2586
2587static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
2588 unsigned int len)
2589{
2590 struct address_space *mapping = page->mapping;
2591 struct inode *inode = mapping->host;
2592 struct buffer_head *page_bufs;
2593 handle_t *handle = NULL;
2594 int ret = 0;
2595 int err;
2596
2597 page_bufs = page_buffers(page);
2598 BUG_ON(!page_bufs);
2599 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2600 /* As soon as we unlock the page, it can go away, but we have
2601 * references to buffers so we are safe */
2602 unlock_page(page);
2603
2604 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2605 if (IS_ERR(handle)) {
2606 ret = PTR_ERR(handle);
2607 goto out;
2608 }
2609
2610 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2611 do_journal_get_write_access);
2612
2613 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2614 write_end_fn);
2615 if (ret == 0)
2616 ret = err;
2617 err = ext4_journal_stop(handle);
2618 if (!ret)
2619 ret = err;
2620
2621 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
19f5fb7a 2622 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be
AK
2623out:
2624 return ret;
2625}
2626
744692dc
JZ
2627static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2628static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2629
61628a3f 2630/*
43ce1d23
AK
2631 * Note that we don't need to start a transaction unless we're journaling data
2632 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2633 * need to file the inode to the transaction's list in ordered mode because if
2634 * we are writing back data added by write(), the inode is already there and if
2635 * we are writing back data modified via mmap(), noone guarantees in which
2636 * transaction the data will hit the disk. In case we are journaling data, we
2637 * cannot start transaction directly because transaction start ranks above page
2638 * lock so we have to do some magic.
2639 *
b920c755
TT
2640 * This function can get called via...
2641 * - ext4_da_writepages after taking page lock (have journal handle)
2642 * - journal_submit_inode_data_buffers (no journal handle)
2643 * - shrink_page_list via pdflush (no journal handle)
2644 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2645 *
2646 * We don't do any block allocation in this function. If we have page with
2647 * multiple blocks we need to write those buffer_heads that are mapped. This
2648 * is important for mmaped based write. So if we do with blocksize 1K
2649 * truncate(f, 1024);
2650 * a = mmap(f, 0, 4096);
2651 * a[0] = 'a';
2652 * truncate(f, 4096);
2653 * we have in the page first buffer_head mapped via page_mkwrite call back
2654 * but other bufer_heads would be unmapped but dirty(dirty done via the
2655 * do_wp_page). So writepage should write the first block. If we modify
2656 * the mmap area beyond 1024 we will again get a page_fault and the
2657 * page_mkwrite callback will do the block allocation and mark the
2658 * buffer_heads mapped.
2659 *
2660 * We redirty the page if we have any buffer_heads that is either delay or
2661 * unwritten in the page.
2662 *
2663 * We can get recursively called as show below.
2664 *
2665 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2666 * ext4_writepage()
2667 *
2668 * But since we don't do any block allocation we should not deadlock.
2669 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2670 */
43ce1d23 2671static int ext4_writepage(struct page *page,
62e086be 2672 struct writeback_control *wbc)
64769240 2673{
64769240 2674 int ret = 0;
61628a3f 2675 loff_t size;
498e5f24 2676 unsigned int len;
744692dc 2677 struct buffer_head *page_bufs = NULL;
61628a3f
MC
2678 struct inode *inode = page->mapping->host;
2679
43ce1d23 2680 trace_ext4_writepage(inode, page);
f0e6c985
AK
2681 size = i_size_read(inode);
2682 if (page->index == size >> PAGE_CACHE_SHIFT)
2683 len = size & ~PAGE_CACHE_MASK;
2684 else
2685 len = PAGE_CACHE_SIZE;
64769240 2686
f0e6c985 2687 if (page_has_buffers(page)) {
61628a3f 2688 page_bufs = page_buffers(page);
f0e6c985 2689 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2690 ext4_bh_delay_or_unwritten)) {
61628a3f 2691 /*
f0e6c985
AK
2692 * We don't want to do block allocation
2693 * So redirty the page and return
cd1aac32
AK
2694 * We may reach here when we do a journal commit
2695 * via journal_submit_inode_data_buffers.
2696 * If we don't have mapping block we just ignore
f0e6c985
AK
2697 * them. We can also reach here via shrink_page_list
2698 */
2699 redirty_page_for_writepage(wbc, page);
2700 unlock_page(page);
2701 return 0;
2702 }
2703 } else {
2704 /*
2705 * The test for page_has_buffers() is subtle:
2706 * We know the page is dirty but it lost buffers. That means
2707 * that at some moment in time after write_begin()/write_end()
2708 * has been called all buffers have been clean and thus they
2709 * must have been written at least once. So they are all
2710 * mapped and we can happily proceed with mapping them
2711 * and writing the page.
2712 *
2713 * Try to initialize the buffer_heads and check whether
2714 * all are mapped and non delay. We don't want to
2715 * do block allocation here.
2716 */
b767e78a 2717 ret = block_prepare_write(page, 0, len,
b920c755 2718 noalloc_get_block_write);
f0e6c985
AK
2719 if (!ret) {
2720 page_bufs = page_buffers(page);
2721 /* check whether all are mapped and non delay */
2722 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2723 ext4_bh_delay_or_unwritten)) {
f0e6c985
AK
2724 redirty_page_for_writepage(wbc, page);
2725 unlock_page(page);
2726 return 0;
2727 }
2728 } else {
2729 /*
2730 * We can't do block allocation here
2731 * so just redity the page and unlock
2732 * and return
61628a3f 2733 */
61628a3f
MC
2734 redirty_page_for_writepage(wbc, page);
2735 unlock_page(page);
2736 return 0;
2737 }
ed9b3e33 2738 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 2739 block_commit_write(page, 0, len);
64769240
AT
2740 }
2741
43ce1d23
AK
2742 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2743 /*
2744 * It's mmapped pagecache. Add buffers and journal it. There
2745 * doesn't seem much point in redirtying the page here.
2746 */
2747 ClearPageChecked(page);
3f0ca309 2748 return __ext4_journalled_writepage(page, len);
43ce1d23
AK
2749 }
2750
206f7ab4 2751 if (page_bufs && buffer_uninit(page_bufs)) {
744692dc
JZ
2752 ext4_set_bh_endio(page_bufs, inode);
2753 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2754 wbc, ext4_end_io_buffer_write);
2755 } else
b920c755
TT
2756 ret = block_write_full_page(page, noalloc_get_block_write,
2757 wbc);
64769240 2758
64769240
AT
2759 return ret;
2760}
2761
61628a3f 2762/*
525f4ed8
MC
2763 * This is called via ext4_da_writepages() to
2764 * calulate the total number of credits to reserve to fit
2765 * a single extent allocation into a single transaction,
2766 * ext4_da_writpeages() will loop calling this before
2767 * the block allocation.
61628a3f 2768 */
525f4ed8
MC
2769
2770static int ext4_da_writepages_trans_blocks(struct inode *inode)
2771{
2772 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2773
2774 /*
2775 * With non-extent format the journal credit needed to
2776 * insert nrblocks contiguous block is dependent on
2777 * number of contiguous block. So we will limit
2778 * number of contiguous block to a sane value
2779 */
12e9b892 2780 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
2781 (max_blocks > EXT4_MAX_TRANS_DATA))
2782 max_blocks = EXT4_MAX_TRANS_DATA;
2783
2784 return ext4_chunk_trans_blocks(inode, max_blocks);
2785}
61628a3f 2786
8e48dcfb
TT
2787/*
2788 * write_cache_pages_da - walk the list of dirty pages of the given
2789 * address space and call the callback function (which usually writes
2790 * the pages).
2791 *
2792 * This is a forked version of write_cache_pages(). Differences:
2793 * Range cyclic is ignored.
2794 * no_nrwrite_index_update is always presumed true
2795 */
2796static int write_cache_pages_da(struct address_space *mapping,
2797 struct writeback_control *wbc,
2798 struct mpage_da_data *mpd)
2799{
2800 int ret = 0;
2801 int done = 0;
2802 struct pagevec pvec;
2803 int nr_pages;
2804 pgoff_t index;
2805 pgoff_t end; /* Inclusive */
2806 long nr_to_write = wbc->nr_to_write;
2807
2808 pagevec_init(&pvec, 0);
2809 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2810 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2811
2812 while (!done && (index <= end)) {
2813 int i;
2814
2815 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2816 PAGECACHE_TAG_DIRTY,
2817 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2818 if (nr_pages == 0)
2819 break;
2820
2821 for (i = 0; i < nr_pages; i++) {
2822 struct page *page = pvec.pages[i];
2823
2824 /*
2825 * At this point, the page may be truncated or
2826 * invalidated (changing page->mapping to NULL), or
2827 * even swizzled back from swapper_space to tmpfs file
2828 * mapping. However, page->index will not change
2829 * because we have a reference on the page.
2830 */
2831 if (page->index > end) {
2832 done = 1;
2833 break;
2834 }
2835
2836 lock_page(page);
2837
2838 /*
2839 * Page truncated or invalidated. We can freely skip it
2840 * then, even for data integrity operations: the page
2841 * has disappeared concurrently, so there could be no
2842 * real expectation of this data interity operation
2843 * even if there is now a new, dirty page at the same
2844 * pagecache address.
2845 */
2846 if (unlikely(page->mapping != mapping)) {
2847continue_unlock:
2848 unlock_page(page);
2849 continue;
2850 }
2851
2852 if (!PageDirty(page)) {
2853 /* someone wrote it for us */
2854 goto continue_unlock;
2855 }
2856
2857 if (PageWriteback(page)) {
2858 if (wbc->sync_mode != WB_SYNC_NONE)
2859 wait_on_page_writeback(page);
2860 else
2861 goto continue_unlock;
2862 }
2863
2864 BUG_ON(PageWriteback(page));
2865 if (!clear_page_dirty_for_io(page))
2866 goto continue_unlock;
2867
2868 ret = __mpage_da_writepage(page, wbc, mpd);
2869 if (unlikely(ret)) {
2870 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2871 unlock_page(page);
2872 ret = 0;
2873 } else {
2874 done = 1;
2875 break;
2876 }
2877 }
2878
2879 if (nr_to_write > 0) {
2880 nr_to_write--;
2881 if (nr_to_write == 0 &&
2882 wbc->sync_mode == WB_SYNC_NONE) {
2883 /*
2884 * We stop writing back only if we are
2885 * not doing integrity sync. In case of
2886 * integrity sync we have to keep going
2887 * because someone may be concurrently
2888 * dirtying pages, and we might have
2889 * synced a lot of newly appeared dirty
2890 * pages, but have not synced all of the
2891 * old dirty pages.
2892 */
2893 done = 1;
2894 break;
2895 }
2896 }
2897 }
2898 pagevec_release(&pvec);
2899 cond_resched();
2900 }
2901 return ret;
2902}
2903
2904
64769240 2905static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2906 struct writeback_control *wbc)
64769240 2907{
22208ded
AK
2908 pgoff_t index;
2909 int range_whole = 0;
61628a3f 2910 handle_t *handle = NULL;
df22291f 2911 struct mpage_da_data mpd;
5e745b04 2912 struct inode *inode = mapping->host;
498e5f24
TT
2913 int pages_written = 0;
2914 long pages_skipped;
55138e0b 2915 unsigned int max_pages;
2acf2c26 2916 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2917 int needed_blocks, ret = 0;
2918 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2919 loff_t range_start = wbc->range_start;
5e745b04 2920 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f 2921
9bffad1e 2922 trace_ext4_da_writepages(inode, wbc);
ba80b101 2923
61628a3f
MC
2924 /*
2925 * No pages to write? This is mainly a kludge to avoid starting
2926 * a transaction for special inodes like journal inode on last iput()
2927 * because that could violate lock ordering on umount
2928 */
a1d6cc56 2929 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2930 return 0;
2a21e37e
TT
2931
2932 /*
2933 * If the filesystem has aborted, it is read-only, so return
2934 * right away instead of dumping stack traces later on that
2935 * will obscure the real source of the problem. We test
4ab2f15b 2936 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2937 * the latter could be true if the filesystem is mounted
2938 * read-only, and in that case, ext4_da_writepages should
2939 * *never* be called, so if that ever happens, we would want
2940 * the stack trace.
2941 */
4ab2f15b 2942 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2943 return -EROFS;
2944
22208ded
AK
2945 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2946 range_whole = 1;
61628a3f 2947
2acf2c26
AK
2948 range_cyclic = wbc->range_cyclic;
2949 if (wbc->range_cyclic) {
22208ded 2950 index = mapping->writeback_index;
2acf2c26
AK
2951 if (index)
2952 cycled = 0;
2953 wbc->range_start = index << PAGE_CACHE_SHIFT;
2954 wbc->range_end = LLONG_MAX;
2955 wbc->range_cyclic = 0;
2956 } else
22208ded 2957 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 2958
55138e0b
TT
2959 /*
2960 * This works around two forms of stupidity. The first is in
2961 * the writeback code, which caps the maximum number of pages
2962 * written to be 1024 pages. This is wrong on multiple
2963 * levels; different architectues have a different page size,
2964 * which changes the maximum amount of data which gets
2965 * written. Secondly, 4 megabytes is way too small. XFS
2966 * forces this value to be 16 megabytes by multiplying
2967 * nr_to_write parameter by four, and then relies on its
2968 * allocator to allocate larger extents to make them
2969 * contiguous. Unfortunately this brings us to the second
2970 * stupidity, which is that ext4's mballoc code only allocates
2971 * at most 2048 blocks. So we force contiguous writes up to
2972 * the number of dirty blocks in the inode, or
2973 * sbi->max_writeback_mb_bump whichever is smaller.
2974 */
2975 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2976 if (!range_cyclic && range_whole)
2977 desired_nr_to_write = wbc->nr_to_write * 8;
2978 else
2979 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2980 max_pages);
2981 if (desired_nr_to_write > max_pages)
2982 desired_nr_to_write = max_pages;
2983
2984 if (wbc->nr_to_write < desired_nr_to_write) {
2985 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2986 wbc->nr_to_write = desired_nr_to_write;
2987 }
2988
df22291f
AK
2989 mpd.wbc = wbc;
2990 mpd.inode = mapping->host;
2991
22208ded
AK
2992 pages_skipped = wbc->pages_skipped;
2993
2acf2c26 2994retry:
22208ded 2995 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2996
2997 /*
2998 * we insert one extent at a time. So we need
2999 * credit needed for single extent allocation.
3000 * journalled mode is currently not supported
3001 * by delalloc
3002 */
3003 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 3004 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 3005
61628a3f
MC
3006 /* start a new transaction*/
3007 handle = ext4_journal_start(inode, needed_blocks);
3008 if (IS_ERR(handle)) {
3009 ret = PTR_ERR(handle);
1693918e 3010 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 3011 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 3012 wbc->nr_to_write, inode->i_ino, ret);
61628a3f
MC
3013 goto out_writepages;
3014 }
f63e6005
TT
3015
3016 /*
3017 * Now call __mpage_da_writepage to find the next
3018 * contiguous region of logical blocks that need
3019 * blocks to be allocated by ext4. We don't actually
3020 * submit the blocks for I/O here, even though
3021 * write_cache_pages thinks it will, and will set the
3022 * pages as clean for write before calling
3023 * __mpage_da_writepage().
3024 */
3025 mpd.b_size = 0;
3026 mpd.b_state = 0;
3027 mpd.b_blocknr = 0;
3028 mpd.first_page = 0;
3029 mpd.next_page = 0;
3030 mpd.io_done = 0;
3031 mpd.pages_written = 0;
3032 mpd.retval = 0;
8e48dcfb 3033 ret = write_cache_pages_da(mapping, wbc, &mpd);
f63e6005 3034 /*
af901ca1 3035 * If we have a contiguous extent of pages and we
f63e6005
TT
3036 * haven't done the I/O yet, map the blocks and submit
3037 * them for I/O.
3038 */
3039 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3040 if (mpage_da_map_blocks(&mpd) == 0)
3041 mpage_da_submit_io(&mpd);
3042 mpd.io_done = 1;
3043 ret = MPAGE_DA_EXTENT_TAIL;
3044 }
b3a3ca8c 3045 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 3046 wbc->nr_to_write -= mpd.pages_written;
df22291f 3047
61628a3f 3048 ext4_journal_stop(handle);
df22291f 3049
8f64b32e 3050 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
3051 /* commit the transaction which would
3052 * free blocks released in the transaction
3053 * and try again
3054 */
df22291f 3055 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
3056 wbc->pages_skipped = pages_skipped;
3057 ret = 0;
3058 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
3059 /*
3060 * got one extent now try with
3061 * rest of the pages
3062 */
22208ded
AK
3063 pages_written += mpd.pages_written;
3064 wbc->pages_skipped = pages_skipped;
a1d6cc56 3065 ret = 0;
2acf2c26 3066 io_done = 1;
22208ded 3067 } else if (wbc->nr_to_write)
61628a3f
MC
3068 /*
3069 * There is no more writeout needed
3070 * or we requested for a noblocking writeout
3071 * and we found the device congested
3072 */
61628a3f 3073 break;
a1d6cc56 3074 }
2acf2c26
AK
3075 if (!io_done && !cycled) {
3076 cycled = 1;
3077 index = 0;
3078 wbc->range_start = index << PAGE_CACHE_SHIFT;
3079 wbc->range_end = mapping->writeback_index - 1;
3080 goto retry;
3081 }
22208ded 3082 if (pages_skipped != wbc->pages_skipped)
1693918e
TT
3083 ext4_msg(inode->i_sb, KERN_CRIT,
3084 "This should not happen leaving %s "
fbe845dd 3085 "with nr_to_write = %ld ret = %d",
1693918e 3086 __func__, wbc->nr_to_write, ret);
22208ded
AK
3087
3088 /* Update index */
3089 index += pages_written;
2acf2c26 3090 wbc->range_cyclic = range_cyclic;
22208ded
AK
3091 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3092 /*
3093 * set the writeback_index so that range_cyclic
3094 * mode will write it back later
3095 */
3096 mapping->writeback_index = index;
a1d6cc56 3097
61628a3f 3098out_writepages:
2faf2e19 3099 wbc->nr_to_write -= nr_to_writebump;
de89de6e 3100 wbc->range_start = range_start;
9bffad1e 3101 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 3102 return ret;
64769240
AT
3103}
3104
79f0be8d
AK
3105#define FALL_BACK_TO_NONDELALLOC 1
3106static int ext4_nonda_switch(struct super_block *sb)
3107{
3108 s64 free_blocks, dirty_blocks;
3109 struct ext4_sb_info *sbi = EXT4_SB(sb);
3110
3111 /*
3112 * switch to non delalloc mode if we are running low
3113 * on free block. The free block accounting via percpu
179f7ebf 3114 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
3115 * accumulated on each CPU without updating global counters
3116 * Delalloc need an accurate free block accounting. So switch
3117 * to non delalloc when we are near to error range.
3118 */
3119 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3120 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3121 if (2 * free_blocks < 3 * dirty_blocks ||
3122 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3123 /*
c8afb446
ES
3124 * free block count is less than 150% of dirty blocks
3125 * or free blocks is less than watermark
79f0be8d
AK
3126 */
3127 return 1;
3128 }
c8afb446
ES
3129 /*
3130 * Even if we don't switch but are nearing capacity,
3131 * start pushing delalloc when 1/2 of free blocks are dirty.
3132 */
3133 if (free_blocks < 2 * dirty_blocks)
3134 writeback_inodes_sb_if_idle(sb);
3135
79f0be8d
AK
3136 return 0;
3137}
3138
64769240 3139static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
3140 loff_t pos, unsigned len, unsigned flags,
3141 struct page **pagep, void **fsdata)
64769240 3142{
72b8ab9d 3143 int ret, retries = 0;
64769240
AT
3144 struct page *page;
3145 pgoff_t index;
64769240
AT
3146 struct inode *inode = mapping->host;
3147 handle_t *handle;
3148
3149 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
3150
3151 if (ext4_nonda_switch(inode->i_sb)) {
3152 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3153 return ext4_write_begin(file, mapping, pos,
3154 len, flags, pagep, fsdata);
3155 }
3156 *fsdata = (void *)0;
9bffad1e 3157 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 3158retry:
64769240
AT
3159 /*
3160 * With delayed allocation, we don't log the i_disksize update
3161 * if there is delayed block allocation. But we still need
3162 * to journalling the i_disksize update if writes to the end
3163 * of file which has an already mapped buffer.
3164 */
3165 handle = ext4_journal_start(inode, 1);
3166 if (IS_ERR(handle)) {
3167 ret = PTR_ERR(handle);
3168 goto out;
3169 }
ebd3610b
JK
3170 /* We cannot recurse into the filesystem as the transaction is already
3171 * started */
3172 flags |= AOP_FLAG_NOFS;
64769240 3173
54566b2c 3174 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
3175 if (!page) {
3176 ext4_journal_stop(handle);
3177 ret = -ENOMEM;
3178 goto out;
3179 }
64769240
AT
3180 *pagep = page;
3181
3182 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
b920c755 3183 ext4_da_get_block_prep);
64769240
AT
3184 if (ret < 0) {
3185 unlock_page(page);
3186 ext4_journal_stop(handle);
3187 page_cache_release(page);
ae4d5372
AK
3188 /*
3189 * block_write_begin may have instantiated a few blocks
3190 * outside i_size. Trim these off again. Don't need
3191 * i_size_read because we hold i_mutex.
3192 */
3193 if (pos + len > inode->i_size)
b9a4207d 3194 ext4_truncate_failed_write(inode);
64769240
AT
3195 }
3196
d2a17637
MC
3197 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3198 goto retry;
64769240
AT
3199out:
3200 return ret;
3201}
3202
632eaeab
MC
3203/*
3204 * Check if we should update i_disksize
3205 * when write to the end of file but not require block allocation
3206 */
3207static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3208 unsigned long offset)
632eaeab
MC
3209{
3210 struct buffer_head *bh;
3211 struct inode *inode = page->mapping->host;
3212 unsigned int idx;
3213 int i;
3214
3215 bh = page_buffers(page);
3216 idx = offset >> inode->i_blkbits;
3217
af5bc92d 3218 for (i = 0; i < idx; i++)
632eaeab
MC
3219 bh = bh->b_this_page;
3220
29fa89d0 3221 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3222 return 0;
3223 return 1;
3224}
3225
64769240 3226static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3227 struct address_space *mapping,
3228 loff_t pos, unsigned len, unsigned copied,
3229 struct page *page, void *fsdata)
64769240
AT
3230{
3231 struct inode *inode = mapping->host;
3232 int ret = 0, ret2;
3233 handle_t *handle = ext4_journal_current_handle();
3234 loff_t new_i_size;
632eaeab 3235 unsigned long start, end;
79f0be8d
AK
3236 int write_mode = (int)(unsigned long)fsdata;
3237
3238 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3239 if (ext4_should_order_data(inode)) {
3240 return ext4_ordered_write_end(file, mapping, pos,
3241 len, copied, page, fsdata);
3242 } else if (ext4_should_writeback_data(inode)) {
3243 return ext4_writeback_write_end(file, mapping, pos,
3244 len, copied, page, fsdata);
3245 } else {
3246 BUG();
3247 }
3248 }
632eaeab 3249
9bffad1e 3250 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 3251 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 3252 end = start + copied - 1;
64769240
AT
3253
3254 /*
3255 * generic_write_end() will run mark_inode_dirty() if i_size
3256 * changes. So let's piggyback the i_disksize mark_inode_dirty
3257 * into that.
3258 */
3259
3260 new_i_size = pos + copied;
632eaeab
MC
3261 if (new_i_size > EXT4_I(inode)->i_disksize) {
3262 if (ext4_da_should_update_i_disksize(page, end)) {
3263 down_write(&EXT4_I(inode)->i_data_sem);
3264 if (new_i_size > EXT4_I(inode)->i_disksize) {
3265 /*
3266 * Updating i_disksize when extending file
3267 * without needing block allocation
3268 */
3269 if (ext4_should_order_data(inode))
3270 ret = ext4_jbd2_file_inode(handle,
3271 inode);
64769240 3272
632eaeab
MC
3273 EXT4_I(inode)->i_disksize = new_i_size;
3274 }
3275 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
3276 /* We need to mark inode dirty even if
3277 * new_i_size is less that inode->i_size
3278 * bu greater than i_disksize.(hint delalloc)
3279 */
3280 ext4_mark_inode_dirty(handle, inode);
64769240 3281 }
632eaeab 3282 }
64769240
AT
3283 ret2 = generic_write_end(file, mapping, pos, len, copied,
3284 page, fsdata);
3285 copied = ret2;
3286 if (ret2 < 0)
3287 ret = ret2;
3288 ret2 = ext4_journal_stop(handle);
3289 if (!ret)
3290 ret = ret2;
3291
3292 return ret ? ret : copied;
3293}
3294
3295static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3296{
64769240
AT
3297 /*
3298 * Drop reserved blocks
3299 */
3300 BUG_ON(!PageLocked(page));
3301 if (!page_has_buffers(page))
3302 goto out;
3303
d2a17637 3304 ext4_da_page_release_reservation(page, offset);
64769240
AT
3305
3306out:
3307 ext4_invalidatepage(page, offset);
3308
3309 return;
3310}
3311
ccd2506b
TT
3312/*
3313 * Force all delayed allocation blocks to be allocated for a given inode.
3314 */
3315int ext4_alloc_da_blocks(struct inode *inode)
3316{
fb40ba0d
TT
3317 trace_ext4_alloc_da_blocks(inode);
3318
ccd2506b
TT
3319 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3320 !EXT4_I(inode)->i_reserved_meta_blocks)
3321 return 0;
3322
3323 /*
3324 * We do something simple for now. The filemap_flush() will
3325 * also start triggering a write of the data blocks, which is
3326 * not strictly speaking necessary (and for users of
3327 * laptop_mode, not even desirable). However, to do otherwise
3328 * would require replicating code paths in:
de9a55b8 3329 *
ccd2506b
TT
3330 * ext4_da_writepages() ->
3331 * write_cache_pages() ---> (via passed in callback function)
3332 * __mpage_da_writepage() -->
3333 * mpage_add_bh_to_extent()
3334 * mpage_da_map_blocks()
3335 *
3336 * The problem is that write_cache_pages(), located in
3337 * mm/page-writeback.c, marks pages clean in preparation for
3338 * doing I/O, which is not desirable if we're not planning on
3339 * doing I/O at all.
3340 *
3341 * We could call write_cache_pages(), and then redirty all of
3342 * the pages by calling redirty_page_for_writeback() but that
3343 * would be ugly in the extreme. So instead we would need to
3344 * replicate parts of the code in the above functions,
3345 * simplifying them becuase we wouldn't actually intend to
3346 * write out the pages, but rather only collect contiguous
3347 * logical block extents, call the multi-block allocator, and
3348 * then update the buffer heads with the block allocations.
de9a55b8 3349 *
ccd2506b
TT
3350 * For now, though, we'll cheat by calling filemap_flush(),
3351 * which will map the blocks, and start the I/O, but not
3352 * actually wait for the I/O to complete.
3353 */
3354 return filemap_flush(inode->i_mapping);
3355}
64769240 3356
ac27a0ec
DK
3357/*
3358 * bmap() is special. It gets used by applications such as lilo and by
3359 * the swapper to find the on-disk block of a specific piece of data.
3360 *
3361 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3362 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3363 * filesystem and enables swap, then they may get a nasty shock when the
3364 * data getting swapped to that swapfile suddenly gets overwritten by
3365 * the original zero's written out previously to the journal and
3366 * awaiting writeback in the kernel's buffer cache.
3367 *
3368 * So, if we see any bmap calls here on a modified, data-journaled file,
3369 * take extra steps to flush any blocks which might be in the cache.
3370 */
617ba13b 3371static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3372{
3373 struct inode *inode = mapping->host;
3374 journal_t *journal;
3375 int err;
3376
64769240
AT
3377 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3378 test_opt(inode->i_sb, DELALLOC)) {
3379 /*
3380 * With delalloc we want to sync the file
3381 * so that we can make sure we allocate
3382 * blocks for file
3383 */
3384 filemap_write_and_wait(mapping);
3385 }
3386
19f5fb7a
TT
3387 if (EXT4_JOURNAL(inode) &&
3388 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
3389 /*
3390 * This is a REALLY heavyweight approach, but the use of
3391 * bmap on dirty files is expected to be extremely rare:
3392 * only if we run lilo or swapon on a freshly made file
3393 * do we expect this to happen.
3394 *
3395 * (bmap requires CAP_SYS_RAWIO so this does not
3396 * represent an unprivileged user DOS attack --- we'd be
3397 * in trouble if mortal users could trigger this path at
3398 * will.)
3399 *
617ba13b 3400 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3401 * regular files. If somebody wants to bmap a directory
3402 * or symlink and gets confused because the buffer
3403 * hasn't yet been flushed to disk, they deserve
3404 * everything they get.
3405 */
3406
19f5fb7a 3407 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 3408 journal = EXT4_JOURNAL(inode);
dab291af
MC
3409 jbd2_journal_lock_updates(journal);
3410 err = jbd2_journal_flush(journal);
3411 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3412
3413 if (err)
3414 return 0;
3415 }
3416
af5bc92d 3417 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3418}
3419
617ba13b 3420static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3421{
617ba13b 3422 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
3423}
3424
3425static int
617ba13b 3426ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3427 struct list_head *pages, unsigned nr_pages)
3428{
617ba13b 3429 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3430}
3431
744692dc
JZ
3432static void ext4_free_io_end(ext4_io_end_t *io)
3433{
3434 BUG_ON(!io);
3435 if (io->page)
3436 put_page(io->page);
3437 iput(io->inode);
3438 kfree(io);
3439}
3440
3441static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3442{
3443 struct buffer_head *head, *bh;
3444 unsigned int curr_off = 0;
3445
3446 if (!page_has_buffers(page))
3447 return;
3448 head = bh = page_buffers(page);
3449 do {
3450 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3451 && bh->b_private) {
3452 ext4_free_io_end(bh->b_private);
3453 bh->b_private = NULL;
3454 bh->b_end_io = NULL;
3455 }
3456 curr_off = curr_off + bh->b_size;
3457 bh = bh->b_this_page;
3458 } while (bh != head);
3459}
3460
617ba13b 3461static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3462{
617ba13b 3463 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3464
744692dc
JZ
3465 /*
3466 * free any io_end structure allocated for buffers to be discarded
3467 */
3468 if (ext4_should_dioread_nolock(page->mapping->host))
3469 ext4_invalidatepage_free_endio(page, offset);
ac27a0ec
DK
3470 /*
3471 * If it's a full truncate we just forget about the pending dirtying
3472 */
3473 if (offset == 0)
3474 ClearPageChecked(page);
3475
0390131b
FM
3476 if (journal)
3477 jbd2_journal_invalidatepage(journal, page, offset);
3478 else
3479 block_invalidatepage(page, offset);
ac27a0ec
DK
3480}
3481
617ba13b 3482static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3483{
617ba13b 3484 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3485
3486 WARN_ON(PageChecked(page));
3487 if (!page_has_buffers(page))
3488 return 0;
0390131b
FM
3489 if (journal)
3490 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3491 else
3492 return try_to_free_buffers(page);
ac27a0ec
DK
3493}
3494
3495/*
4c0425ff
MC
3496 * O_DIRECT for ext3 (or indirect map) based files
3497 *
ac27a0ec
DK
3498 * If the O_DIRECT write will extend the file then add this inode to the
3499 * orphan list. So recovery will truncate it back to the original size
3500 * if the machine crashes during the write.
3501 *
3502 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3503 * crashes then stale disk data _may_ be exposed inside the file. But current
3504 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3505 */
4c0425ff 3506static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
de9a55b8
TT
3507 const struct iovec *iov, loff_t offset,
3508 unsigned long nr_segs)
ac27a0ec
DK
3509{
3510 struct file *file = iocb->ki_filp;
3511 struct inode *inode = file->f_mapping->host;
617ba13b 3512 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3513 handle_t *handle;
ac27a0ec
DK
3514 ssize_t ret;
3515 int orphan = 0;
3516 size_t count = iov_length(iov, nr_segs);
fbbf6945 3517 int retries = 0;
ac27a0ec
DK
3518
3519 if (rw == WRITE) {
3520 loff_t final_size = offset + count;
3521
ac27a0ec 3522 if (final_size > inode->i_size) {
7fb5409d
JK
3523 /* Credits for sb + inode write */
3524 handle = ext4_journal_start(inode, 2);
3525 if (IS_ERR(handle)) {
3526 ret = PTR_ERR(handle);
3527 goto out;
3528 }
617ba13b 3529 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3530 if (ret) {
3531 ext4_journal_stop(handle);
3532 goto out;
3533 }
ac27a0ec
DK
3534 orphan = 1;
3535 ei->i_disksize = inode->i_size;
7fb5409d 3536 ext4_journal_stop(handle);
ac27a0ec
DK
3537 }
3538 }
3539
fbbf6945 3540retry:
b7adc1f3
JZ
3541 if (rw == READ && ext4_should_dioread_nolock(inode))
3542 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
3543 inode->i_sb->s_bdev, iov,
3544 offset, nr_segs,
3545 ext4_get_block, NULL);
3546 else
3547 ret = blockdev_direct_IO(rw, iocb, inode,
3548 inode->i_sb->s_bdev, iov,
ac27a0ec 3549 offset, nr_segs,
617ba13b 3550 ext4_get_block, NULL);
fbbf6945
ES
3551 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3552 goto retry;
ac27a0ec 3553
7fb5409d 3554 if (orphan) {
ac27a0ec
DK
3555 int err;
3556
7fb5409d
JK
3557 /* Credits for sb + inode write */
3558 handle = ext4_journal_start(inode, 2);
3559 if (IS_ERR(handle)) {
3560 /* This is really bad luck. We've written the data
3561 * but cannot extend i_size. Bail out and pretend
3562 * the write failed... */
3563 ret = PTR_ERR(handle);
da1dafca
DM
3564 if (inode->i_nlink)
3565 ext4_orphan_del(NULL, inode);
3566
7fb5409d
JK
3567 goto out;
3568 }
3569 if (inode->i_nlink)
617ba13b 3570 ext4_orphan_del(handle, inode);
7fb5409d 3571 if (ret > 0) {
ac27a0ec
DK
3572 loff_t end = offset + ret;
3573 if (end > inode->i_size) {
3574 ei->i_disksize = end;
3575 i_size_write(inode, end);
3576 /*
3577 * We're going to return a positive `ret'
3578 * here due to non-zero-length I/O, so there's
3579 * no way of reporting error returns from
617ba13b 3580 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3581 * ignore it.
3582 */
617ba13b 3583 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3584 }
3585 }
617ba13b 3586 err = ext4_journal_stop(handle);
ac27a0ec
DK
3587 if (ret == 0)
3588 ret = err;
3589 }
3590out:
3591 return ret;
3592}
3593
2ed88685
TT
3594/*
3595 * ext4_get_block used when preparing for a DIO write or buffer write.
3596 * We allocate an uinitialized extent if blocks haven't been allocated.
3597 * The extent will be converted to initialized after the IO is complete.
3598 */
c7064ef1 3599static int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
3600 struct buffer_head *bh_result, int create)
3601{
c7064ef1 3602 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 3603 inode->i_ino, create);
2ed88685
TT
3604 return _ext4_get_block(inode, iblock, bh_result,
3605 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
3606}
3607
c7064ef1 3608static void dump_completed_IO(struct inode * inode)
8d5d02e6
MC
3609{
3610#ifdef EXT4_DEBUG
3611 struct list_head *cur, *before, *after;
3612 ext4_io_end_t *io, *io0, *io1;
744692dc 3613 unsigned long flags;
8d5d02e6 3614
c7064ef1
JZ
3615 if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
3616 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
8d5d02e6
MC
3617 return;
3618 }
3619
c7064ef1 3620 ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
744692dc 3621 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
c7064ef1 3622 list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
8d5d02e6
MC
3623 cur = &io->list;
3624 before = cur->prev;
3625 io0 = container_of(before, ext4_io_end_t, list);
3626 after = cur->next;
3627 io1 = container_of(after, ext4_io_end_t, list);
3628
3629 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3630 io, inode->i_ino, io0, io1);
3631 }
744692dc 3632 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
8d5d02e6
MC
3633#endif
3634}
4c0425ff
MC
3635
3636/*
4c0425ff
MC
3637 * check a range of space and convert unwritten extents to written.
3638 */
c7064ef1 3639static int ext4_end_io_nolock(ext4_io_end_t *io)
4c0425ff 3640{
4c0425ff
MC
3641 struct inode *inode = io->inode;
3642 loff_t offset = io->offset;
a1de02dc 3643 ssize_t size = io->size;
4c0425ff 3644 int ret = 0;
4c0425ff 3645
c7064ef1 3646 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
8d5d02e6
MC
3647 "list->prev 0x%p\n",
3648 io, inode->i_ino, io->list.next, io->list.prev);
3649
3650 if (list_empty(&io->list))
3651 return ret;
3652
c7064ef1 3653 if (io->flag != EXT4_IO_UNWRITTEN)
8d5d02e6
MC
3654 return ret;
3655
744692dc 3656 ret = ext4_convert_unwritten_extents(inode, offset, size);
8d5d02e6 3657 if (ret < 0) {
4c0425ff 3658 printk(KERN_EMERG "%s: failed to convert unwritten"
8d5d02e6
MC
3659 "extents to written extents, error is %d"
3660 " io is still on inode %lu aio dio list\n",
3661 __func__, ret, inode->i_ino);
3662 return ret;
3663 }
4c0425ff 3664
8d5d02e6
MC
3665 /* clear the DIO AIO unwritten flag */
3666 io->flag = 0;
3667 return ret;
4c0425ff 3668}
c7064ef1 3669
8d5d02e6
MC
3670/*
3671 * work on completed aio dio IO, to convert unwritten extents to extents
3672 */
c7064ef1 3673static void ext4_end_io_work(struct work_struct *work)
8d5d02e6 3674{
744692dc
JZ
3675 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3676 struct inode *inode = io->inode;
3677 struct ext4_inode_info *ei = EXT4_I(inode);
3678 unsigned long flags;
3679 int ret;
4c0425ff 3680
8d5d02e6 3681 mutex_lock(&inode->i_mutex);
c7064ef1 3682 ret = ext4_end_io_nolock(io);
744692dc
JZ
3683 if (ret < 0) {
3684 mutex_unlock(&inode->i_mutex);
3685 return;
8d5d02e6 3686 }
744692dc
JZ
3687
3688 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3689 if (!list_empty(&io->list))
3690 list_del_init(&io->list);
3691 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
8d5d02e6 3692 mutex_unlock(&inode->i_mutex);
744692dc 3693 ext4_free_io_end(io);
8d5d02e6 3694}
c7064ef1 3695
8d5d02e6
MC
3696/*
3697 * This function is called from ext4_sync_file().
3698 *
c7064ef1
JZ
3699 * When IO is completed, the work to convert unwritten extents to
3700 * written is queued on workqueue but may not get immediately
8d5d02e6
MC
3701 * scheduled. When fsync is called, we need to ensure the
3702 * conversion is complete before fsync returns.
c7064ef1
JZ
3703 * The inode keeps track of a list of pending/completed IO that
3704 * might needs to do the conversion. This function walks through
3705 * the list and convert the related unwritten extents for completed IO
3706 * to written.
3707 * The function return the number of pending IOs on success.
8d5d02e6 3708 */
c7064ef1 3709int flush_completed_IO(struct inode *inode)
8d5d02e6
MC
3710{
3711 ext4_io_end_t *io;
744692dc
JZ
3712 struct ext4_inode_info *ei = EXT4_I(inode);
3713 unsigned long flags;
8d5d02e6
MC
3714 int ret = 0;
3715 int ret2 = 0;
3716
744692dc 3717 if (list_empty(&ei->i_completed_io_list))
8d5d02e6
MC
3718 return ret;
3719
c7064ef1 3720 dump_completed_IO(inode);
744692dc
JZ
3721 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3722 while (!list_empty(&ei->i_completed_io_list)){
3723 io = list_entry(ei->i_completed_io_list.next,
8d5d02e6
MC
3724 ext4_io_end_t, list);
3725 /*
c7064ef1 3726 * Calling ext4_end_io_nolock() to convert completed
8d5d02e6
MC
3727 * IO to written.
3728 *
3729 * When ext4_sync_file() is called, run_queue() may already
3730 * about to flush the work corresponding to this io structure.
3731 * It will be upset if it founds the io structure related
3732 * to the work-to-be schedule is freed.
3733 *
3734 * Thus we need to keep the io structure still valid here after
3735 * convertion finished. The io structure has a flag to
3736 * avoid double converting from both fsync and background work
3737 * queue work.
3738 */
744692dc 3739 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
c7064ef1 3740 ret = ext4_end_io_nolock(io);
744692dc 3741 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
8d5d02e6
MC
3742 if (ret < 0)
3743 ret2 = ret;
3744 else
3745 list_del_init(&io->list);
3746 }
744692dc 3747 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
8d5d02e6
MC
3748 return (ret2 < 0) ? ret2 : 0;
3749}
3750
744692dc 3751static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
4c0425ff
MC
3752{
3753 ext4_io_end_t *io = NULL;
3754
744692dc 3755 io = kmalloc(sizeof(*io), flags);
4c0425ff
MC
3756
3757 if (io) {
8d5d02e6 3758 igrab(inode);
4c0425ff 3759 io->inode = inode;
8d5d02e6 3760 io->flag = 0;
4c0425ff
MC
3761 io->offset = 0;
3762 io->size = 0;
744692dc 3763 io->page = NULL;
c7064ef1 3764 INIT_WORK(&io->work, ext4_end_io_work);
8d5d02e6 3765 INIT_LIST_HEAD(&io->list);
4c0425ff
MC
3766 }
3767
3768 return io;
3769}
3770
3771static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3772 ssize_t size, void *private)
3773{
3774 ext4_io_end_t *io_end = iocb->private;
3775 struct workqueue_struct *wq;
744692dc
JZ
3776 unsigned long flags;
3777 struct ext4_inode_info *ei;
4c0425ff 3778
4b70df18
M
3779 /* if not async direct IO or dio with 0 bytes write, just return */
3780 if (!io_end || !size)
3781 return;
3782
8d5d02e6
MC
3783 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3784 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3785 iocb->private, io_end->inode->i_ino, iocb, offset,
3786 size);
8d5d02e6
MC
3787
3788 /* if not aio dio with unwritten extents, just free io and return */
c7064ef1 3789 if (io_end->flag != EXT4_IO_UNWRITTEN){
8d5d02e6
MC
3790 ext4_free_io_end(io_end);
3791 iocb->private = NULL;
4c0425ff 3792 return;
8d5d02e6
MC
3793 }
3794
4c0425ff
MC
3795 io_end->offset = offset;
3796 io_end->size = size;
744692dc 3797 io_end->flag = EXT4_IO_UNWRITTEN;
4c0425ff
MC
3798 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3799
8d5d02e6 3800 /* queue the work to convert unwritten extents to written */
4c0425ff
MC
3801 queue_work(wq, &io_end->work);
3802
8d5d02e6 3803 /* Add the io_end to per-inode completed aio dio list*/
744692dc
JZ
3804 ei = EXT4_I(io_end->inode);
3805 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3806 list_add_tail(&io_end->list, &ei->i_completed_io_list);
3807 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
4c0425ff
MC
3808 iocb->private = NULL;
3809}
c7064ef1 3810
744692dc
JZ
3811static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3812{
3813 ext4_io_end_t *io_end = bh->b_private;
3814 struct workqueue_struct *wq;
3815 struct inode *inode;
3816 unsigned long flags;
3817
3818 if (!test_clear_buffer_uninit(bh) || !io_end)
3819 goto out;
3820
3821 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3822 printk("sb umounted, discard end_io request for inode %lu\n",
3823 io_end->inode->i_ino);
3824 ext4_free_io_end(io_end);
3825 goto out;
3826 }
3827
3828 io_end->flag = EXT4_IO_UNWRITTEN;
3829 inode = io_end->inode;
3830
3831 /* Add the io_end to per-inode completed io list*/
3832 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3833 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3834 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3835
3836 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3837 /* queue the work to convert unwritten extents to written */
3838 queue_work(wq, &io_end->work);
3839out:
3840 bh->b_private = NULL;
3841 bh->b_end_io = NULL;
3842 clear_buffer_uninit(bh);
3843 end_buffer_async_write(bh, uptodate);
3844}
3845
3846static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3847{
3848 ext4_io_end_t *io_end;
3849 struct page *page = bh->b_page;
3850 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3851 size_t size = bh->b_size;
3852
3853retry:
3854 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3855 if (!io_end) {
3856 if (printk_ratelimit())
3857 printk(KERN_WARNING "%s: allocation fail\n", __func__);
3858 schedule();
3859 goto retry;
3860 }
3861 io_end->offset = offset;
3862 io_end->size = size;
3863 /*
3864 * We need to hold a reference to the page to make sure it
3865 * doesn't get evicted before ext4_end_io_work() has a chance
3866 * to convert the extent from written to unwritten.
3867 */
3868 io_end->page = page;
3869 get_page(io_end->page);
3870
3871 bh->b_private = io_end;
3872 bh->b_end_io = ext4_end_io_buffer_write;
3873 return 0;
3874}
3875
4c0425ff
MC
3876/*
3877 * For ext4 extent files, ext4 will do direct-io write to holes,
3878 * preallocated extents, and those write extend the file, no need to
3879 * fall back to buffered IO.
3880 *
3881 * For holes, we fallocate those blocks, mark them as unintialized
3882 * If those blocks were preallocated, we mark sure they are splited, but
3883 * still keep the range to write as unintialized.
3884 *
8d5d02e6
MC
3885 * The unwrritten extents will be converted to written when DIO is completed.
3886 * For async direct IO, since the IO may still pending when return, we
3887 * set up an end_io call back function, which will do the convertion
3888 * when async direct IO completed.
4c0425ff
MC
3889 *
3890 * If the O_DIRECT write will extend the file then add this inode to the
3891 * orphan list. So recovery will truncate it back to the original size
3892 * if the machine crashes during the write.
3893 *
3894 */
3895static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3896 const struct iovec *iov, loff_t offset,
3897 unsigned long nr_segs)
3898{
3899 struct file *file = iocb->ki_filp;
3900 struct inode *inode = file->f_mapping->host;
3901 ssize_t ret;
3902 size_t count = iov_length(iov, nr_segs);
3903
3904 loff_t final_size = offset + count;
3905 if (rw == WRITE && final_size <= inode->i_size) {
3906 /*
8d5d02e6
MC
3907 * We could direct write to holes and fallocate.
3908 *
3909 * Allocated blocks to fill the hole are marked as uninitialized
4c0425ff
MC
3910 * to prevent paralel buffered read to expose the stale data
3911 * before DIO complete the data IO.
8d5d02e6
MC
3912 *
3913 * As to previously fallocated extents, ext4 get_block
4c0425ff
MC
3914 * will just simply mark the buffer mapped but still
3915 * keep the extents uninitialized.
3916 *
8d5d02e6
MC
3917 * for non AIO case, we will convert those unwritten extents
3918 * to written after return back from blockdev_direct_IO.
3919 *
3920 * for async DIO, the conversion needs to be defered when
3921 * the IO is completed. The ext4 end_io callback function
3922 * will be called to take care of the conversion work.
3923 * Here for async case, we allocate an io_end structure to
3924 * hook to the iocb.
4c0425ff 3925 */
8d5d02e6
MC
3926 iocb->private = NULL;
3927 EXT4_I(inode)->cur_aio_dio = NULL;
3928 if (!is_sync_kiocb(iocb)) {
744692dc 3929 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
8d5d02e6
MC
3930 if (!iocb->private)
3931 return -ENOMEM;
3932 /*
3933 * we save the io structure for current async
3934 * direct IO, so that later ext4_get_blocks()
3935 * could flag the io structure whether there
3936 * is a unwritten extents needs to be converted
3937 * when IO is completed.
3938 */
3939 EXT4_I(inode)->cur_aio_dio = iocb->private;
3940 }
3941
4c0425ff
MC
3942 ret = blockdev_direct_IO(rw, iocb, inode,
3943 inode->i_sb->s_bdev, iov,
3944 offset, nr_segs,
c7064ef1 3945 ext4_get_block_write,
4c0425ff 3946 ext4_end_io_dio);
8d5d02e6
MC
3947 if (iocb->private)
3948 EXT4_I(inode)->cur_aio_dio = NULL;
3949 /*
3950 * The io_end structure takes a reference to the inode,
3951 * that structure needs to be destroyed and the
3952 * reference to the inode need to be dropped, when IO is
3953 * complete, even with 0 byte write, or failed.
3954 *
3955 * In the successful AIO DIO case, the io_end structure will be
3956 * desctroyed and the reference to the inode will be dropped
3957 * after the end_io call back function is called.
3958 *
3959 * In the case there is 0 byte write, or error case, since
3960 * VFS direct IO won't invoke the end_io call back function,
3961 * we need to free the end_io structure here.
3962 */
3963 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3964 ext4_free_io_end(iocb->private);
3965 iocb->private = NULL;
19f5fb7a
TT
3966 } else if (ret > 0 && ext4_test_inode_state(inode,
3967 EXT4_STATE_DIO_UNWRITTEN)) {
109f5565 3968 int err;
8d5d02e6
MC
3969 /*
3970 * for non AIO case, since the IO is already
3971 * completed, we could do the convertion right here
3972 */
109f5565
M
3973 err = ext4_convert_unwritten_extents(inode,
3974 offset, ret);
3975 if (err < 0)
3976 ret = err;
19f5fb7a 3977 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
109f5565 3978 }
4c0425ff
MC
3979 return ret;
3980 }
8d5d02e6
MC
3981
3982 /* for write the the end of file case, we fall back to old way */
4c0425ff
MC
3983 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3984}
3985
3986static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3987 const struct iovec *iov, loff_t offset,
3988 unsigned long nr_segs)
3989{
3990 struct file *file = iocb->ki_filp;
3991 struct inode *inode = file->f_mapping->host;
3992
12e9b892 3993 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4c0425ff
MC
3994 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3995
3996 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3997}
3998
ac27a0ec 3999/*
617ba13b 4000 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
4001 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
4002 * much here because ->set_page_dirty is called under VFS locks. The page is
4003 * not necessarily locked.
4004 *
4005 * We cannot just dirty the page and leave attached buffers clean, because the
4006 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
4007 * or jbddirty because all the journalling code will explode.
4008 *
4009 * So what we do is to mark the page "pending dirty" and next time writepage
4010 * is called, propagate that into the buffers appropriately.
4011 */
617ba13b 4012static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
4013{
4014 SetPageChecked(page);
4015 return __set_page_dirty_nobuffers(page);
4016}
4017
617ba13b 4018static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
4019 .readpage = ext4_readpage,
4020 .readpages = ext4_readpages,
43ce1d23 4021 .writepage = ext4_writepage,
8ab22b9a
HH
4022 .sync_page = block_sync_page,
4023 .write_begin = ext4_write_begin,
4024 .write_end = ext4_ordered_write_end,
4025 .bmap = ext4_bmap,
4026 .invalidatepage = ext4_invalidatepage,
4027 .releasepage = ext4_releasepage,
4028 .direct_IO = ext4_direct_IO,
4029 .migratepage = buffer_migrate_page,
4030 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4031 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
4032};
4033
617ba13b 4034static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
4035 .readpage = ext4_readpage,
4036 .readpages = ext4_readpages,
43ce1d23 4037 .writepage = ext4_writepage,
8ab22b9a
HH
4038 .sync_page = block_sync_page,
4039 .write_begin = ext4_write_begin,
4040 .write_end = ext4_writeback_write_end,
4041 .bmap = ext4_bmap,
4042 .invalidatepage = ext4_invalidatepage,
4043 .releasepage = ext4_releasepage,
4044 .direct_IO = ext4_direct_IO,
4045 .migratepage = buffer_migrate_page,
4046 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4047 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
4048};
4049
617ba13b 4050static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
4051 .readpage = ext4_readpage,
4052 .readpages = ext4_readpages,
43ce1d23 4053 .writepage = ext4_writepage,
8ab22b9a
HH
4054 .sync_page = block_sync_page,
4055 .write_begin = ext4_write_begin,
4056 .write_end = ext4_journalled_write_end,
4057 .set_page_dirty = ext4_journalled_set_page_dirty,
4058 .bmap = ext4_bmap,
4059 .invalidatepage = ext4_invalidatepage,
4060 .releasepage = ext4_releasepage,
4061 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4062 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
4063};
4064
64769240 4065static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
4066 .readpage = ext4_readpage,
4067 .readpages = ext4_readpages,
43ce1d23 4068 .writepage = ext4_writepage,
8ab22b9a
HH
4069 .writepages = ext4_da_writepages,
4070 .sync_page = block_sync_page,
4071 .write_begin = ext4_da_write_begin,
4072 .write_end = ext4_da_write_end,
4073 .bmap = ext4_bmap,
4074 .invalidatepage = ext4_da_invalidatepage,
4075 .releasepage = ext4_releasepage,
4076 .direct_IO = ext4_direct_IO,
4077 .migratepage = buffer_migrate_page,
4078 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4079 .error_remove_page = generic_error_remove_page,
64769240
AT
4080};
4081
617ba13b 4082void ext4_set_aops(struct inode *inode)
ac27a0ec 4083{
cd1aac32
AK
4084 if (ext4_should_order_data(inode) &&
4085 test_opt(inode->i_sb, DELALLOC))
4086 inode->i_mapping->a_ops = &ext4_da_aops;
4087 else if (ext4_should_order_data(inode))
617ba13b 4088 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
4089 else if (ext4_should_writeback_data(inode) &&
4090 test_opt(inode->i_sb, DELALLOC))
4091 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
4092 else if (ext4_should_writeback_data(inode))
4093 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 4094 else
617ba13b 4095 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
4096}
4097
4098/*
617ba13b 4099 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
4100 * up to the end of the block which corresponds to `from'.
4101 * This required during truncate. We need to physically zero the tail end
4102 * of that block so it doesn't yield old data if the file is later grown.
4103 */
cf108bca 4104int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
4105 struct address_space *mapping, loff_t from)
4106{
617ba13b 4107 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 4108 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
4109 unsigned blocksize, length, pos;
4110 ext4_lblk_t iblock;
ac27a0ec
DK
4111 struct inode *inode = mapping->host;
4112 struct buffer_head *bh;
cf108bca 4113 struct page *page;
ac27a0ec 4114 int err = 0;
ac27a0ec 4115
f4a01017
TT
4116 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4117 mapping_gfp_mask(mapping) & ~__GFP_FS);
cf108bca
JK
4118 if (!page)
4119 return -EINVAL;
4120
ac27a0ec
DK
4121 blocksize = inode->i_sb->s_blocksize;
4122 length = blocksize - (offset & (blocksize - 1));
4123 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4124
ac27a0ec
DK
4125 if (!page_has_buffers(page))
4126 create_empty_buffers(page, blocksize, 0);
4127
4128 /* Find the buffer that contains "offset" */
4129 bh = page_buffers(page);
4130 pos = blocksize;
4131 while (offset >= pos) {
4132 bh = bh->b_this_page;
4133 iblock++;
4134 pos += blocksize;
4135 }
4136
4137 err = 0;
4138 if (buffer_freed(bh)) {
4139 BUFFER_TRACE(bh, "freed: skip");
4140 goto unlock;
4141 }
4142
4143 if (!buffer_mapped(bh)) {
4144 BUFFER_TRACE(bh, "unmapped");
617ba13b 4145 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
4146 /* unmapped? It's a hole - nothing to do */
4147 if (!buffer_mapped(bh)) {
4148 BUFFER_TRACE(bh, "still unmapped");
4149 goto unlock;
4150 }
4151 }
4152
4153 /* Ok, it's mapped. Make sure it's up-to-date */
4154 if (PageUptodate(page))
4155 set_buffer_uptodate(bh);
4156
4157 if (!buffer_uptodate(bh)) {
4158 err = -EIO;
4159 ll_rw_block(READ, 1, &bh);
4160 wait_on_buffer(bh);
4161 /* Uhhuh. Read error. Complain and punt. */
4162 if (!buffer_uptodate(bh))
4163 goto unlock;
4164 }
4165
617ba13b 4166 if (ext4_should_journal_data(inode)) {
ac27a0ec 4167 BUFFER_TRACE(bh, "get write access");
617ba13b 4168 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
4169 if (err)
4170 goto unlock;
4171 }
4172
eebd2aa3 4173 zero_user(page, offset, length);
ac27a0ec
DK
4174
4175 BUFFER_TRACE(bh, "zeroed end of block");
4176
4177 err = 0;
617ba13b 4178 if (ext4_should_journal_data(inode)) {
0390131b 4179 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 4180 } else {
617ba13b 4181 if (ext4_should_order_data(inode))
678aaf48 4182 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
4183 mark_buffer_dirty(bh);
4184 }
4185
4186unlock:
4187 unlock_page(page);
4188 page_cache_release(page);
4189 return err;
4190}
4191
4192/*
4193 * Probably it should be a library function... search for first non-zero word
4194 * or memcmp with zero_page, whatever is better for particular architecture.
4195 * Linus?
4196 */
4197static inline int all_zeroes(__le32 *p, __le32 *q)
4198{
4199 while (p < q)
4200 if (*p++)
4201 return 0;
4202 return 1;
4203}
4204
4205/**
617ba13b 4206 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
4207 * @inode: inode in question
4208 * @depth: depth of the affected branch
617ba13b 4209 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
4210 * @chain: place to store the pointers to partial indirect blocks
4211 * @top: place to the (detached) top of branch
4212 *
617ba13b 4213 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
4214 *
4215 * When we do truncate() we may have to clean the ends of several
4216 * indirect blocks but leave the blocks themselves alive. Block is
4217 * partially truncated if some data below the new i_size is refered
4218 * from it (and it is on the path to the first completely truncated
4219 * data block, indeed). We have to free the top of that path along
4220 * with everything to the right of the path. Since no allocation
617ba13b 4221 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
4222 * finishes, we may safely do the latter, but top of branch may
4223 * require special attention - pageout below the truncation point
4224 * might try to populate it.
4225 *
4226 * We atomically detach the top of branch from the tree, store the
4227 * block number of its root in *@top, pointers to buffer_heads of
4228 * partially truncated blocks - in @chain[].bh and pointers to
4229 * their last elements that should not be removed - in
4230 * @chain[].p. Return value is the pointer to last filled element
4231 * of @chain.
4232 *
4233 * The work left to caller to do the actual freeing of subtrees:
4234 * a) free the subtree starting from *@top
4235 * b) free the subtrees whose roots are stored in
4236 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4237 * c) free the subtrees growing from the inode past the @chain[0].
4238 * (no partially truncated stuff there). */
4239
617ba13b 4240static Indirect *ext4_find_shared(struct inode *inode, int depth,
de9a55b8
TT
4241 ext4_lblk_t offsets[4], Indirect chain[4],
4242 __le32 *top)
ac27a0ec
DK
4243{
4244 Indirect *partial, *p;
4245 int k, err;
4246
4247 *top = 0;
bf48aabb 4248 /* Make k index the deepest non-null offset + 1 */
ac27a0ec
DK
4249 for (k = depth; k > 1 && !offsets[k-1]; k--)
4250 ;
617ba13b 4251 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
4252 /* Writer: pointers */
4253 if (!partial)
4254 partial = chain + k-1;
4255 /*
4256 * If the branch acquired continuation since we've looked at it -
4257 * fine, it should all survive and (new) top doesn't belong to us.
4258 */
4259 if (!partial->key && *partial->p)
4260 /* Writer: end */
4261 goto no_top;
af5bc92d 4262 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
4263 ;
4264 /*
4265 * OK, we've found the last block that must survive. The rest of our
4266 * branch should be detached before unlocking. However, if that rest
4267 * of branch is all ours and does not grow immediately from the inode
4268 * it's easier to cheat and just decrement partial->p.
4269 */
4270 if (p == chain + k - 1 && p > chain) {
4271 p->p--;
4272 } else {
4273 *top = *p->p;
617ba13b 4274 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
4275#if 0
4276 *p->p = 0;
4277#endif
4278 }
4279 /* Writer: end */
4280
af5bc92d 4281 while (partial > p) {
ac27a0ec
DK
4282 brelse(partial->bh);
4283 partial--;
4284 }
4285no_top:
4286 return partial;
4287}
4288
4289/*
4290 * Zero a number of block pointers in either an inode or an indirect block.
4291 * If we restart the transaction we must again get write access to the
4292 * indirect block for further modification.
4293 *
4294 * We release `count' blocks on disk, but (last - first) may be greater
4295 * than `count' because there can be holes in there.
4296 */
1f2acb60
TT
4297static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4298 struct buffer_head *bh,
4299 ext4_fsblk_t block_to_free,
4300 unsigned long count, __le32 *first,
4301 __le32 *last)
ac27a0ec
DK
4302{
4303 __le32 *p;
1f2acb60 4304 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
e6362609
TT
4305
4306 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4307 flags |= EXT4_FREE_BLOCKS_METADATA;
50689696 4308
1f2acb60
TT
4309 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4310 count)) {
24676da4
TT
4311 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4312 "blocks %llu len %lu",
4313 (unsigned long long) block_to_free, count);
1f2acb60
TT
4314 return 1;
4315 }
4316
ac27a0ec
DK
4317 if (try_to_extend_transaction(handle, inode)) {
4318 if (bh) {
0390131b
FM
4319 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4320 ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 4321 }
617ba13b 4322 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4323 ext4_truncate_restart_trans(handle, inode,
4324 blocks_for_truncate(inode));
ac27a0ec
DK
4325 if (bh) {
4326 BUFFER_TRACE(bh, "retaking write access");
617ba13b 4327 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
4328 }
4329 }
4330
e6362609
TT
4331 for (p = first; p < last; p++)
4332 *p = 0;
ac27a0ec 4333
e6362609 4334 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
1f2acb60 4335 return 0;
ac27a0ec
DK
4336}
4337
4338/**
617ba13b 4339 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
4340 * @handle: handle for this transaction
4341 * @inode: inode we are dealing with
4342 * @this_bh: indirect buffer_head which contains *@first and *@last
4343 * @first: array of block numbers
4344 * @last: points immediately past the end of array
4345 *
4346 * We are freeing all blocks refered from that array (numbers are stored as
4347 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4348 *
4349 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4350 * blocks are contiguous then releasing them at one time will only affect one
4351 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4352 * actually use a lot of journal space.
4353 *
4354 * @this_bh will be %NULL if @first and @last point into the inode's direct
4355 * block pointers.
4356 */
617ba13b 4357static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4358 struct buffer_head *this_bh,
4359 __le32 *first, __le32 *last)
4360{
617ba13b 4361 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
4362 unsigned long count = 0; /* Number of blocks in the run */
4363 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4364 corresponding to
4365 block_to_free */
617ba13b 4366 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
4367 __le32 *p; /* Pointer into inode/ind
4368 for current block */
4369 int err;
4370
4371 if (this_bh) { /* For indirect block */
4372 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 4373 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
4374 /* Important: if we can't update the indirect pointers
4375 * to the blocks, we can't free them. */
4376 if (err)
4377 return;
4378 }
4379
4380 for (p = first; p < last; p++) {
4381 nr = le32_to_cpu(*p);
4382 if (nr) {
4383 /* accumulate blocks to free if they're contiguous */
4384 if (count == 0) {
4385 block_to_free = nr;
4386 block_to_free_p = p;
4387 count = 1;
4388 } else if (nr == block_to_free + count) {
4389 count++;
4390 } else {
1f2acb60
TT
4391 if (ext4_clear_blocks(handle, inode, this_bh,
4392 block_to_free, count,
4393 block_to_free_p, p))
4394 break;
ac27a0ec
DK
4395 block_to_free = nr;
4396 block_to_free_p = p;
4397 count = 1;
4398 }
4399 }
4400 }
4401
4402 if (count > 0)
617ba13b 4403 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
4404 count, block_to_free_p, p);
4405
4406 if (this_bh) {
0390131b 4407 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
71dc8fbc
DG
4408
4409 /*
4410 * The buffer head should have an attached journal head at this
4411 * point. However, if the data is corrupted and an indirect
4412 * block pointed to itself, it would have been detached when
4413 * the block was cleared. Check for this instead of OOPSing.
4414 */
e7f07968 4415 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
0390131b 4416 ext4_handle_dirty_metadata(handle, inode, this_bh);
71dc8fbc 4417 else
24676da4
TT
4418 EXT4_ERROR_INODE(inode,
4419 "circular indirect block detected at "
4420 "block %llu",
4421 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
4422 }
4423}
4424
4425/**
617ba13b 4426 * ext4_free_branches - free an array of branches
ac27a0ec
DK
4427 * @handle: JBD handle for this transaction
4428 * @inode: inode we are dealing with
4429 * @parent_bh: the buffer_head which contains *@first and *@last
4430 * @first: array of block numbers
4431 * @last: pointer immediately past the end of array
4432 * @depth: depth of the branches to free
4433 *
4434 * We are freeing all blocks refered from these branches (numbers are
4435 * stored as little-endian 32-bit) and updating @inode->i_blocks
4436 * appropriately.
4437 */
617ba13b 4438static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4439 struct buffer_head *parent_bh,
4440 __le32 *first, __le32 *last, int depth)
4441{
617ba13b 4442 ext4_fsblk_t nr;
ac27a0ec
DK
4443 __le32 *p;
4444
0390131b 4445 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4446 return;
4447
4448 if (depth--) {
4449 struct buffer_head *bh;
617ba13b 4450 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
4451 p = last;
4452 while (--p >= first) {
4453 nr = le32_to_cpu(*p);
4454 if (!nr)
4455 continue; /* A hole */
4456
1f2acb60
TT
4457 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4458 nr, 1)) {
24676da4
TT
4459 EXT4_ERROR_INODE(inode,
4460 "invalid indirect mapped "
4461 "block %lu (level %d)",
4462 (unsigned long) nr, depth);
1f2acb60
TT
4463 break;
4464 }
4465
ac27a0ec
DK
4466 /* Go read the buffer for the next level down */
4467 bh = sb_bread(inode->i_sb, nr);
4468
4469 /*
4470 * A read failure? Report error and clear slot
4471 * (should be rare).
4472 */
4473 if (!bh) {
24676da4
TT
4474 EXT4_ERROR_INODE(inode,
4475 "Read failure block=%llu",
4476 (unsigned long long) nr);
ac27a0ec
DK
4477 continue;
4478 }
4479
4480 /* This zaps the entire block. Bottom up. */
4481 BUFFER_TRACE(bh, "free child branches");
617ba13b 4482 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
4483 (__le32 *) bh->b_data,
4484 (__le32 *) bh->b_data + addr_per_block,
4485 depth);
ac27a0ec
DK
4486
4487 /*
4488 * We've probably journalled the indirect block several
4489 * times during the truncate. But it's no longer
4490 * needed and we now drop it from the transaction via
dab291af 4491 * jbd2_journal_revoke().
ac27a0ec
DK
4492 *
4493 * That's easy if it's exclusively part of this
4494 * transaction. But if it's part of the committing
dab291af 4495 * transaction then jbd2_journal_forget() will simply
ac27a0ec 4496 * brelse() it. That means that if the underlying
617ba13b 4497 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
4498 * unmap_underlying_metadata() will find this block
4499 * and will try to get rid of it. damn, damn.
4500 *
4501 * If this block has already been committed to the
4502 * journal, a revoke record will be written. And
4503 * revoke records must be emitted *before* clearing
4504 * this block's bit in the bitmaps.
4505 */
617ba13b 4506 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
4507
4508 /*
4509 * Everything below this this pointer has been
4510 * released. Now let this top-of-subtree go.
4511 *
4512 * We want the freeing of this indirect block to be
4513 * atomic in the journal with the updating of the
4514 * bitmap block which owns it. So make some room in
4515 * the journal.
4516 *
4517 * We zero the parent pointer *after* freeing its
4518 * pointee in the bitmaps, so if extend_transaction()
4519 * for some reason fails to put the bitmap changes and
4520 * the release into the same transaction, recovery
4521 * will merely complain about releasing a free block,
4522 * rather than leaking blocks.
4523 */
0390131b 4524 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4525 return;
4526 if (try_to_extend_transaction(handle, inode)) {
617ba13b 4527 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4528 ext4_truncate_restart_trans(handle, inode,
4529 blocks_for_truncate(inode));
ac27a0ec
DK
4530 }
4531
e6362609
TT
4532 ext4_free_blocks(handle, inode, 0, nr, 1,
4533 EXT4_FREE_BLOCKS_METADATA);
ac27a0ec
DK
4534
4535 if (parent_bh) {
4536 /*
4537 * The block which we have just freed is
4538 * pointed to by an indirect block: journal it
4539 */
4540 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 4541 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
4542 parent_bh)){
4543 *p = 0;
4544 BUFFER_TRACE(parent_bh,
0390131b
FM
4545 "call ext4_handle_dirty_metadata");
4546 ext4_handle_dirty_metadata(handle,
4547 inode,
4548 parent_bh);
ac27a0ec
DK
4549 }
4550 }
4551 }
4552 } else {
4553 /* We have reached the bottom of the tree. */
4554 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 4555 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
4556 }
4557}
4558
91ef4caf
DG
4559int ext4_can_truncate(struct inode *inode)
4560{
4561 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4562 return 0;
4563 if (S_ISREG(inode->i_mode))
4564 return 1;
4565 if (S_ISDIR(inode->i_mode))
4566 return 1;
4567 if (S_ISLNK(inode->i_mode))
4568 return !ext4_inode_is_fast_symlink(inode);
4569 return 0;
4570}
4571
ac27a0ec 4572/*
617ba13b 4573 * ext4_truncate()
ac27a0ec 4574 *
617ba13b
MC
4575 * We block out ext4_get_block() block instantiations across the entire
4576 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4577 * simultaneously on behalf of the same inode.
4578 *
4579 * As we work through the truncate and commmit bits of it to the journal there
4580 * is one core, guiding principle: the file's tree must always be consistent on
4581 * disk. We must be able to restart the truncate after a crash.
4582 *
4583 * The file's tree may be transiently inconsistent in memory (although it
4584 * probably isn't), but whenever we close off and commit a journal transaction,
4585 * the contents of (the filesystem + the journal) must be consistent and
4586 * restartable. It's pretty simple, really: bottom up, right to left (although
4587 * left-to-right works OK too).
4588 *
4589 * Note that at recovery time, journal replay occurs *before* the restart of
4590 * truncate against the orphan inode list.
4591 *
4592 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4593 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4594 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4595 * ext4_truncate() to have another go. So there will be instantiated blocks
4596 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4597 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4598 * ext4_truncate() run will find them and release them.
ac27a0ec 4599 */
617ba13b 4600void ext4_truncate(struct inode *inode)
ac27a0ec
DK
4601{
4602 handle_t *handle;
617ba13b 4603 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4604 __le32 *i_data = ei->i_data;
617ba13b 4605 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 4606 struct address_space *mapping = inode->i_mapping;
725d26d3 4607 ext4_lblk_t offsets[4];
ac27a0ec
DK
4608 Indirect chain[4];
4609 Indirect *partial;
4610 __le32 nr = 0;
4611 int n;
725d26d3 4612 ext4_lblk_t last_block;
ac27a0ec 4613 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 4614
91ef4caf 4615 if (!ext4_can_truncate(inode))
ac27a0ec
DK
4616 return;
4617
12e9b892 4618 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 4619
5534fb5b 4620 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 4621 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 4622
12e9b892 4623 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
cf108bca 4624 ext4_ext_truncate(inode);
1d03ec98
AK
4625 return;
4626 }
a86c6181 4627
ac27a0ec 4628 handle = start_transaction(inode);
cf108bca 4629 if (IS_ERR(handle))
ac27a0ec 4630 return; /* AKPM: return what? */
ac27a0ec
DK
4631
4632 last_block = (inode->i_size + blocksize-1)
617ba13b 4633 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 4634
cf108bca
JK
4635 if (inode->i_size & (blocksize - 1))
4636 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4637 goto out_stop;
ac27a0ec 4638
617ba13b 4639 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
4640 if (n == 0)
4641 goto out_stop; /* error */
4642
4643 /*
4644 * OK. This truncate is going to happen. We add the inode to the
4645 * orphan list, so that if this truncate spans multiple transactions,
4646 * and we crash, we will resume the truncate when the filesystem
4647 * recovers. It also marks the inode dirty, to catch the new size.
4648 *
4649 * Implication: the file must always be in a sane, consistent
4650 * truncatable state while each transaction commits.
4651 */
617ba13b 4652 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
4653 goto out_stop;
4654
632eaeab
MC
4655 /*
4656 * From here we block out all ext4_get_block() callers who want to
4657 * modify the block allocation tree.
4658 */
4659 down_write(&ei->i_data_sem);
b4df2030 4660
c2ea3fde 4661 ext4_discard_preallocations(inode);
b4df2030 4662
ac27a0ec
DK
4663 /*
4664 * The orphan list entry will now protect us from any crash which
4665 * occurs before the truncate completes, so it is now safe to propagate
4666 * the new, shorter inode size (held for now in i_size) into the
4667 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 4668 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
4669 */
4670 ei->i_disksize = inode->i_size;
4671
ac27a0ec 4672 if (n == 1) { /* direct blocks */
617ba13b
MC
4673 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4674 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
4675 goto do_indirects;
4676 }
4677
617ba13b 4678 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
4679 /* Kill the top of shared branch (not detached) */
4680 if (nr) {
4681 if (partial == chain) {
4682 /* Shared branch grows from the inode */
617ba13b 4683 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
4684 &nr, &nr+1, (chain+n-1) - partial);
4685 *partial->p = 0;
4686 /*
4687 * We mark the inode dirty prior to restart,
4688 * and prior to stop. No need for it here.
4689 */
4690 } else {
4691 /* Shared branch grows from an indirect block */
4692 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 4693 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
4694 partial->p,
4695 partial->p+1, (chain+n-1) - partial);
4696 }
4697 }
4698 /* Clear the ends of indirect blocks on the shared branch */
4699 while (partial > chain) {
617ba13b 4700 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
4701 (__le32*)partial->bh->b_data+addr_per_block,
4702 (chain+n-1) - partial);
4703 BUFFER_TRACE(partial->bh, "call brelse");
de9a55b8 4704 brelse(partial->bh);
ac27a0ec
DK
4705 partial--;
4706 }
4707do_indirects:
4708 /* Kill the remaining (whole) subtrees */
4709 switch (offsets[0]) {
4710 default:
617ba13b 4711 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 4712 if (nr) {
617ba13b
MC
4713 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4714 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 4715 }
617ba13b
MC
4716 case EXT4_IND_BLOCK:
4717 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 4718 if (nr) {
617ba13b
MC
4719 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4720 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 4721 }
617ba13b
MC
4722 case EXT4_DIND_BLOCK:
4723 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 4724 if (nr) {
617ba13b
MC
4725 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4726 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 4727 }
617ba13b 4728 case EXT4_TIND_BLOCK:
ac27a0ec
DK
4729 ;
4730 }
4731
0e855ac8 4732 up_write(&ei->i_data_sem);
ef7f3835 4733 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 4734 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4735
4736 /*
4737 * In a multi-transaction truncate, we only make the final transaction
4738 * synchronous
4739 */
4740 if (IS_SYNC(inode))
0390131b 4741 ext4_handle_sync(handle);
ac27a0ec
DK
4742out_stop:
4743 /*
4744 * If this was a simple ftruncate(), and the file will remain alive
4745 * then we need to clear up the orphan record which we created above.
4746 * However, if this was a real unlink then we were called by
617ba13b 4747 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
4748 * orphan info for us.
4749 */
4750 if (inode->i_nlink)
617ba13b 4751 ext4_orphan_del(handle, inode);
ac27a0ec 4752
617ba13b 4753 ext4_journal_stop(handle);
ac27a0ec
DK
4754}
4755
ac27a0ec 4756/*
617ba13b 4757 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4758 * underlying buffer_head on success. If 'in_mem' is true, we have all
4759 * data in memory that is needed to recreate the on-disk version of this
4760 * inode.
4761 */
617ba13b
MC
4762static int __ext4_get_inode_loc(struct inode *inode,
4763 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4764{
240799cd
TT
4765 struct ext4_group_desc *gdp;
4766 struct buffer_head *bh;
4767 struct super_block *sb = inode->i_sb;
4768 ext4_fsblk_t block;
4769 int inodes_per_block, inode_offset;
4770
3a06d778 4771 iloc->bh = NULL;
240799cd
TT
4772 if (!ext4_valid_inum(sb, inode->i_ino))
4773 return -EIO;
ac27a0ec 4774
240799cd
TT
4775 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4776 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4777 if (!gdp)
ac27a0ec
DK
4778 return -EIO;
4779
240799cd
TT
4780 /*
4781 * Figure out the offset within the block group inode table
4782 */
4783 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4784 inode_offset = ((inode->i_ino - 1) %
4785 EXT4_INODES_PER_GROUP(sb));
4786 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4787 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4788
4789 bh = sb_getblk(sb, block);
ac27a0ec 4790 if (!bh) {
24676da4
TT
4791 EXT4_ERROR_INODE(inode, "unable to read inode block - "
4792 "block %llu", block);
ac27a0ec
DK
4793 return -EIO;
4794 }
4795 if (!buffer_uptodate(bh)) {
4796 lock_buffer(bh);
9c83a923
HK
4797
4798 /*
4799 * If the buffer has the write error flag, we have failed
4800 * to write out another inode in the same block. In this
4801 * case, we don't have to read the block because we may
4802 * read the old inode data successfully.
4803 */
4804 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4805 set_buffer_uptodate(bh);
4806
ac27a0ec
DK
4807 if (buffer_uptodate(bh)) {
4808 /* someone brought it uptodate while we waited */
4809 unlock_buffer(bh);
4810 goto has_buffer;
4811 }
4812
4813 /*
4814 * If we have all information of the inode in memory and this
4815 * is the only valid inode in the block, we need not read the
4816 * block.
4817 */
4818 if (in_mem) {
4819 struct buffer_head *bitmap_bh;
240799cd 4820 int i, start;
ac27a0ec 4821
240799cd 4822 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4823
240799cd
TT
4824 /* Is the inode bitmap in cache? */
4825 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
4826 if (!bitmap_bh)
4827 goto make_io;
4828
4829 /*
4830 * If the inode bitmap isn't in cache then the
4831 * optimisation may end up performing two reads instead
4832 * of one, so skip it.
4833 */
4834 if (!buffer_uptodate(bitmap_bh)) {
4835 brelse(bitmap_bh);
4836 goto make_io;
4837 }
240799cd 4838 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4839 if (i == inode_offset)
4840 continue;
617ba13b 4841 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4842 break;
4843 }
4844 brelse(bitmap_bh);
240799cd 4845 if (i == start + inodes_per_block) {
ac27a0ec
DK
4846 /* all other inodes are free, so skip I/O */
4847 memset(bh->b_data, 0, bh->b_size);
4848 set_buffer_uptodate(bh);
4849 unlock_buffer(bh);
4850 goto has_buffer;
4851 }
4852 }
4853
4854make_io:
240799cd
TT
4855 /*
4856 * If we need to do any I/O, try to pre-readahead extra
4857 * blocks from the inode table.
4858 */
4859 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4860 ext4_fsblk_t b, end, table;
4861 unsigned num;
4862
4863 table = ext4_inode_table(sb, gdp);
b713a5ec 4864 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
4865 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4866 if (table > b)
4867 b = table;
4868 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4869 num = EXT4_INODES_PER_GROUP(sb);
4870 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4871 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 4872 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4873 table += num / inodes_per_block;
4874 if (end > table)
4875 end = table;
4876 while (b <= end)
4877 sb_breadahead(sb, b++);
4878 }
4879
ac27a0ec
DK
4880 /*
4881 * There are other valid inodes in the buffer, this inode
4882 * has in-inode xattrs, or we don't have this inode in memory.
4883 * Read the block from disk.
4884 */
4885 get_bh(bh);
4886 bh->b_end_io = end_buffer_read_sync;
4887 submit_bh(READ_META, bh);
4888 wait_on_buffer(bh);
4889 if (!buffer_uptodate(bh)) {
24676da4
TT
4890 EXT4_ERROR_INODE(inode, "unable to read inode "
4891 "block %llu", block);
ac27a0ec
DK
4892 brelse(bh);
4893 return -EIO;
4894 }
4895 }
4896has_buffer:
4897 iloc->bh = bh;
4898 return 0;
4899}
4900
617ba13b 4901int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4902{
4903 /* We have all inode data except xattrs in memory here. */
617ba13b 4904 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4905 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4906}
4907
617ba13b 4908void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4909{
617ba13b 4910 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4911
4912 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4913 if (flags & EXT4_SYNC_FL)
ac27a0ec 4914 inode->i_flags |= S_SYNC;
617ba13b 4915 if (flags & EXT4_APPEND_FL)
ac27a0ec 4916 inode->i_flags |= S_APPEND;
617ba13b 4917 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4918 inode->i_flags |= S_IMMUTABLE;
617ba13b 4919 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4920 inode->i_flags |= S_NOATIME;
617ba13b 4921 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4922 inode->i_flags |= S_DIRSYNC;
4923}
4924
ff9ddf7e
JK
4925/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4926void ext4_get_inode_flags(struct ext4_inode_info *ei)
4927{
84a8dce2
DM
4928 unsigned int vfs_fl;
4929 unsigned long old_fl, new_fl;
4930
4931 do {
4932 vfs_fl = ei->vfs_inode.i_flags;
4933 old_fl = ei->i_flags;
4934 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4935 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4936 EXT4_DIRSYNC_FL);
4937 if (vfs_fl & S_SYNC)
4938 new_fl |= EXT4_SYNC_FL;
4939 if (vfs_fl & S_APPEND)
4940 new_fl |= EXT4_APPEND_FL;
4941 if (vfs_fl & S_IMMUTABLE)
4942 new_fl |= EXT4_IMMUTABLE_FL;
4943 if (vfs_fl & S_NOATIME)
4944 new_fl |= EXT4_NOATIME_FL;
4945 if (vfs_fl & S_DIRSYNC)
4946 new_fl |= EXT4_DIRSYNC_FL;
4947 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 4948}
de9a55b8 4949
0fc1b451 4950static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4951 struct ext4_inode_info *ei)
0fc1b451
AK
4952{
4953 blkcnt_t i_blocks ;
8180a562
AK
4954 struct inode *inode = &(ei->vfs_inode);
4955 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4956
4957 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4958 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4959 /* we are using combined 48 bit field */
4960 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4961 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4962 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4963 /* i_blocks represent file system block size */
4964 return i_blocks << (inode->i_blkbits - 9);
4965 } else {
4966 return i_blocks;
4967 }
0fc1b451
AK
4968 } else {
4969 return le32_to_cpu(raw_inode->i_blocks_lo);
4970 }
4971}
ff9ddf7e 4972
1d1fe1ee 4973struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4974{
617ba13b
MC
4975 struct ext4_iloc iloc;
4976 struct ext4_inode *raw_inode;
1d1fe1ee 4977 struct ext4_inode_info *ei;
1d1fe1ee 4978 struct inode *inode;
b436b9be 4979 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4980 long ret;
ac27a0ec
DK
4981 int block;
4982
1d1fe1ee
DH
4983 inode = iget_locked(sb, ino);
4984 if (!inode)
4985 return ERR_PTR(-ENOMEM);
4986 if (!(inode->i_state & I_NEW))
4987 return inode;
4988
4989 ei = EXT4_I(inode);
567f3e9a 4990 iloc.bh = 0;
ac27a0ec 4991
1d1fe1ee
DH
4992 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4993 if (ret < 0)
ac27a0ec 4994 goto bad_inode;
617ba13b 4995 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
4996 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4997 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4998 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4999 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
5000 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
5001 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
5002 }
5003 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec 5004
19f5fb7a 5005 ei->i_state_flags = 0;
ac27a0ec
DK
5006 ei->i_dir_start_lookup = 0;
5007 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
5008 /* We now have enough fields to check if the inode was active or not.
5009 * This is needed because nfsd might try to access dead inodes
5010 * the test is that same one that e2fsck uses
5011 * NeilBrown 1999oct15
5012 */
5013 if (inode->i_nlink == 0) {
5014 if (inode->i_mode == 0 ||
617ba13b 5015 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 5016 /* this inode is deleted */
1d1fe1ee 5017 ret = -ESTALE;
ac27a0ec
DK
5018 goto bad_inode;
5019 }
5020 /* The only unlinked inodes we let through here have
5021 * valid i_mode and are being read by the orphan
5022 * recovery code: that's fine, we're about to complete
5023 * the process of deleting those. */
5024 }
ac27a0ec 5025 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 5026 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 5027 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 5028 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
5029 ei->i_file_acl |=
5030 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 5031 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 5032 ei->i_disksize = inode->i_size;
a9e7f447
DM
5033#ifdef CONFIG_QUOTA
5034 ei->i_reserved_quota = 0;
5035#endif
ac27a0ec
DK
5036 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5037 ei->i_block_group = iloc.block_group;
a4912123 5038 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
5039 /*
5040 * NOTE! The in-memory inode i_data array is in little-endian order
5041 * even on big-endian machines: we do NOT byteswap the block numbers!
5042 */
617ba13b 5043 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
5044 ei->i_data[block] = raw_inode->i_block[block];
5045 INIT_LIST_HEAD(&ei->i_orphan);
5046
b436b9be
JK
5047 /*
5048 * Set transaction id's of transactions that have to be committed
5049 * to finish f[data]sync. We set them to currently running transaction
5050 * as we cannot be sure that the inode or some of its metadata isn't
5051 * part of the transaction - the inode could have been reclaimed and
5052 * now it is reread from disk.
5053 */
5054 if (journal) {
5055 transaction_t *transaction;
5056 tid_t tid;
5057
5058 spin_lock(&journal->j_state_lock);
5059 if (journal->j_running_transaction)
5060 transaction = journal->j_running_transaction;
5061 else
5062 transaction = journal->j_committing_transaction;
5063 if (transaction)
5064 tid = transaction->t_tid;
5065 else
5066 tid = journal->j_commit_sequence;
5067 spin_unlock(&journal->j_state_lock);
5068 ei->i_sync_tid = tid;
5069 ei->i_datasync_tid = tid;
5070 }
5071
0040d987 5072 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 5073 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 5074 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 5075 EXT4_INODE_SIZE(inode->i_sb)) {
1d1fe1ee 5076 ret = -EIO;
ac27a0ec 5077 goto bad_inode;
e5d2861f 5078 }
ac27a0ec
DK
5079 if (ei->i_extra_isize == 0) {
5080 /* The extra space is currently unused. Use it. */
617ba13b
MC
5081 ei->i_extra_isize = sizeof(struct ext4_inode) -
5082 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
5083 } else {
5084 __le32 *magic = (void *)raw_inode +
617ba13b 5085 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 5086 ei->i_extra_isize;
617ba13b 5087 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
19f5fb7a 5088 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
ac27a0ec
DK
5089 }
5090 } else
5091 ei->i_extra_isize = 0;
5092
ef7f3835
KS
5093 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5094 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5095 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5096 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5097
25ec56b5
JNC
5098 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5099 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5100 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5101 inode->i_version |=
5102 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5103 }
5104
c4b5a614 5105 ret = 0;
485c26ec 5106 if (ei->i_file_acl &&
1032988c 5107 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
5108 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
5109 ei->i_file_acl);
485c26ec
TT
5110 ret = -EIO;
5111 goto bad_inode;
07a03824 5112 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
c4b5a614
TT
5113 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5114 (S_ISLNK(inode->i_mode) &&
5115 !ext4_inode_is_fast_symlink(inode)))
5116 /* Validate extent which is part of inode */
5117 ret = ext4_ext_check_inode(inode);
de9a55b8 5118 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
fe2c8191
TN
5119 (S_ISLNK(inode->i_mode) &&
5120 !ext4_inode_is_fast_symlink(inode))) {
de9a55b8 5121 /* Validate block references which are part of inode */
fe2c8191
TN
5122 ret = ext4_check_inode_blockref(inode);
5123 }
567f3e9a 5124 if (ret)
de9a55b8 5125 goto bad_inode;
7a262f7c 5126
ac27a0ec 5127 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
5128 inode->i_op = &ext4_file_inode_operations;
5129 inode->i_fop = &ext4_file_operations;
5130 ext4_set_aops(inode);
ac27a0ec 5131 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
5132 inode->i_op = &ext4_dir_inode_operations;
5133 inode->i_fop = &ext4_dir_operations;
ac27a0ec 5134 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 5135 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 5136 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
5137 nd_terminate_link(ei->i_data, inode->i_size,
5138 sizeof(ei->i_data) - 1);
5139 } else {
617ba13b
MC
5140 inode->i_op = &ext4_symlink_inode_operations;
5141 ext4_set_aops(inode);
ac27a0ec 5142 }
563bdd61
TT
5143 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5144 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 5145 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
5146 if (raw_inode->i_block[0])
5147 init_special_inode(inode, inode->i_mode,
5148 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5149 else
5150 init_special_inode(inode, inode->i_mode,
5151 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 5152 } else {
563bdd61 5153 ret = -EIO;
24676da4 5154 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 5155 goto bad_inode;
ac27a0ec 5156 }
af5bc92d 5157 brelse(iloc.bh);
617ba13b 5158 ext4_set_inode_flags(inode);
1d1fe1ee
DH
5159 unlock_new_inode(inode);
5160 return inode;
ac27a0ec
DK
5161
5162bad_inode:
567f3e9a 5163 brelse(iloc.bh);
1d1fe1ee
DH
5164 iget_failed(inode);
5165 return ERR_PTR(ret);
ac27a0ec
DK
5166}
5167
0fc1b451
AK
5168static int ext4_inode_blocks_set(handle_t *handle,
5169 struct ext4_inode *raw_inode,
5170 struct ext4_inode_info *ei)
5171{
5172 struct inode *inode = &(ei->vfs_inode);
5173 u64 i_blocks = inode->i_blocks;
5174 struct super_block *sb = inode->i_sb;
0fc1b451
AK
5175
5176 if (i_blocks <= ~0U) {
5177 /*
5178 * i_blocks can be represnted in a 32 bit variable
5179 * as multiple of 512 bytes
5180 */
8180a562 5181 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5182 raw_inode->i_blocks_high = 0;
84a8dce2 5183 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
5184 return 0;
5185 }
5186 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5187 return -EFBIG;
5188
5189 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
5190 /*
5191 * i_blocks can be represented in a 48 bit variable
5192 * as multiple of 512 bytes
5193 */
8180a562 5194 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5195 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 5196 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 5197 } else {
84a8dce2 5198 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
5199 /* i_block is stored in file system block size */
5200 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5201 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5202 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 5203 }
f287a1a5 5204 return 0;
0fc1b451
AK
5205}
5206
ac27a0ec
DK
5207/*
5208 * Post the struct inode info into an on-disk inode location in the
5209 * buffer-cache. This gobbles the caller's reference to the
5210 * buffer_head in the inode location struct.
5211 *
5212 * The caller must have write access to iloc->bh.
5213 */
617ba13b 5214static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 5215 struct inode *inode,
830156c7 5216 struct ext4_iloc *iloc)
ac27a0ec 5217{
617ba13b
MC
5218 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5219 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
5220 struct buffer_head *bh = iloc->bh;
5221 int err = 0, rc, block;
5222
5223 /* For fields not not tracking in the in-memory inode,
5224 * initialise them to zero for new inodes. */
19f5fb7a 5225 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 5226 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 5227
ff9ddf7e 5228 ext4_get_inode_flags(ei);
ac27a0ec 5229 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 5230 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
5231 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5232 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5233/*
5234 * Fix up interoperability with old kernels. Otherwise, old inodes get
5235 * re-used with the upper 16 bits of the uid/gid intact
5236 */
af5bc92d 5237 if (!ei->i_dtime) {
ac27a0ec
DK
5238 raw_inode->i_uid_high =
5239 cpu_to_le16(high_16_bits(inode->i_uid));
5240 raw_inode->i_gid_high =
5241 cpu_to_le16(high_16_bits(inode->i_gid));
5242 } else {
5243 raw_inode->i_uid_high = 0;
5244 raw_inode->i_gid_high = 0;
5245 }
5246 } else {
5247 raw_inode->i_uid_low =
5248 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5249 raw_inode->i_gid_low =
5250 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5251 raw_inode->i_uid_high = 0;
5252 raw_inode->i_gid_high = 0;
5253 }
5254 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
5255
5256 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5257 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5258 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5259 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5260
0fc1b451
AK
5261 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5262 goto out_brelse;
ac27a0ec 5263 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1b9c12f4 5264 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
9b8f1f01
MC
5265 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5266 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
5267 raw_inode->i_file_acl_high =
5268 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 5269 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
5270 ext4_isize_set(raw_inode, ei->i_disksize);
5271 if (ei->i_disksize > 0x7fffffffULL) {
5272 struct super_block *sb = inode->i_sb;
5273 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5274 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5275 EXT4_SB(sb)->s_es->s_rev_level ==
5276 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5277 /* If this is the first large file
5278 * created, add a flag to the superblock.
5279 */
5280 err = ext4_journal_get_write_access(handle,
5281 EXT4_SB(sb)->s_sbh);
5282 if (err)
5283 goto out_brelse;
5284 ext4_update_dynamic_rev(sb);
5285 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 5286 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 5287 sb->s_dirt = 1;
0390131b 5288 ext4_handle_sync(handle);
73b50c1c 5289 err = ext4_handle_dirty_metadata(handle, NULL,
a48380f7 5290 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
5291 }
5292 }
5293 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5294 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5295 if (old_valid_dev(inode->i_rdev)) {
5296 raw_inode->i_block[0] =
5297 cpu_to_le32(old_encode_dev(inode->i_rdev));
5298 raw_inode->i_block[1] = 0;
5299 } else {
5300 raw_inode->i_block[0] = 0;
5301 raw_inode->i_block[1] =
5302 cpu_to_le32(new_encode_dev(inode->i_rdev));
5303 raw_inode->i_block[2] = 0;
5304 }
de9a55b8
TT
5305 } else
5306 for (block = 0; block < EXT4_N_BLOCKS; block++)
5307 raw_inode->i_block[block] = ei->i_data[block];
ac27a0ec 5308
25ec56b5
JNC
5309 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5310 if (ei->i_extra_isize) {
5311 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5312 raw_inode->i_version_hi =
5313 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 5314 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
5315 }
5316
830156c7 5317 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 5318 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
5319 if (!err)
5320 err = rc;
19f5fb7a 5321 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 5322
b436b9be 5323 ext4_update_inode_fsync_trans(handle, inode, 0);
ac27a0ec 5324out_brelse:
af5bc92d 5325 brelse(bh);
617ba13b 5326 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5327 return err;
5328}
5329
5330/*
617ba13b 5331 * ext4_write_inode()
ac27a0ec
DK
5332 *
5333 * We are called from a few places:
5334 *
5335 * - Within generic_file_write() for O_SYNC files.
5336 * Here, there will be no transaction running. We wait for any running
5337 * trasnaction to commit.
5338 *
5339 * - Within sys_sync(), kupdate and such.
5340 * We wait on commit, if tol to.
5341 *
5342 * - Within prune_icache() (PF_MEMALLOC == true)
5343 * Here we simply return. We can't afford to block kswapd on the
5344 * journal commit.
5345 *
5346 * In all cases it is actually safe for us to return without doing anything,
5347 * because the inode has been copied into a raw inode buffer in
617ba13b 5348 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
5349 * knfsd.
5350 *
5351 * Note that we are absolutely dependent upon all inode dirtiers doing the
5352 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5353 * which we are interested.
5354 *
5355 * It would be a bug for them to not do this. The code:
5356 *
5357 * mark_inode_dirty(inode)
5358 * stuff();
5359 * inode->i_size = expr;
5360 *
5361 * is in error because a kswapd-driven write_inode() could occur while
5362 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5363 * will no longer be on the superblock's dirty inode list.
5364 */
a9185b41 5365int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 5366{
91ac6f43
FM
5367 int err;
5368
ac27a0ec
DK
5369 if (current->flags & PF_MEMALLOC)
5370 return 0;
5371
91ac6f43
FM
5372 if (EXT4_SB(inode->i_sb)->s_journal) {
5373 if (ext4_journal_current_handle()) {
5374 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5375 dump_stack();
5376 return -EIO;
5377 }
ac27a0ec 5378
a9185b41 5379 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
5380 return 0;
5381
5382 err = ext4_force_commit(inode->i_sb);
5383 } else {
5384 struct ext4_iloc iloc;
ac27a0ec 5385
8b472d73 5386 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
5387 if (err)
5388 return err;
a9185b41 5389 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
5390 sync_dirty_buffer(iloc.bh);
5391 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
24676da4
TT
5392 EXT4_ERROR_INODE(inode,
5393 "IO error syncing inode (block=%llu)",
5394 (unsigned long long) iloc.bh->b_blocknr);
830156c7
FM
5395 err = -EIO;
5396 }
fd2dd9fb 5397 brelse(iloc.bh);
91ac6f43
FM
5398 }
5399 return err;
ac27a0ec
DK
5400}
5401
5402/*
617ba13b 5403 * ext4_setattr()
ac27a0ec
DK
5404 *
5405 * Called from notify_change.
5406 *
5407 * We want to trap VFS attempts to truncate the file as soon as
5408 * possible. In particular, we want to make sure that when the VFS
5409 * shrinks i_size, we put the inode on the orphan list and modify
5410 * i_disksize immediately, so that during the subsequent flushing of
5411 * dirty pages and freeing of disk blocks, we can guarantee that any
5412 * commit will leave the blocks being flushed in an unused state on
5413 * disk. (On recovery, the inode will get truncated and the blocks will
5414 * be freed, so we have a strong guarantee that no future commit will
5415 * leave these blocks visible to the user.)
5416 *
678aaf48
JK
5417 * Another thing we have to assure is that if we are in ordered mode
5418 * and inode is still attached to the committing transaction, we must
5419 * we start writeout of all the dirty pages which are being truncated.
5420 * This way we are sure that all the data written in the previous
5421 * transaction are already on disk (truncate waits for pages under
5422 * writeback).
5423 *
5424 * Called with inode->i_mutex down.
ac27a0ec 5425 */
617ba13b 5426int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
5427{
5428 struct inode *inode = dentry->d_inode;
5429 int error, rc = 0;
5430 const unsigned int ia_valid = attr->ia_valid;
5431
5432 error = inode_change_ok(inode, attr);
5433 if (error)
5434 return error;
5435
12755627 5436 if (is_quota_modification(inode, attr))
871a2931 5437 dquot_initialize(inode);
ac27a0ec
DK
5438 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5439 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5440 handle_t *handle;
5441
5442 /* (user+group)*(old+new) structure, inode write (sb,
5443 * inode block, ? - but truncate inode update has it) */
5aca07eb 5444 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
194074ac 5445 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
5446 if (IS_ERR(handle)) {
5447 error = PTR_ERR(handle);
5448 goto err_out;
5449 }
b43fa828 5450 error = dquot_transfer(inode, attr);
ac27a0ec 5451 if (error) {
617ba13b 5452 ext4_journal_stop(handle);
ac27a0ec
DK
5453 return error;
5454 }
5455 /* Update corresponding info in inode so that everything is in
5456 * one transaction */
5457 if (attr->ia_valid & ATTR_UID)
5458 inode->i_uid = attr->ia_uid;
5459 if (attr->ia_valid & ATTR_GID)
5460 inode->i_gid = attr->ia_gid;
617ba13b
MC
5461 error = ext4_mark_inode_dirty(handle, inode);
5462 ext4_journal_stop(handle);
ac27a0ec
DK
5463 }
5464
e2b46574 5465 if (attr->ia_valid & ATTR_SIZE) {
12e9b892 5466 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
5467 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5468
5469 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5470 error = -EFBIG;
5471 goto err_out;
5472 }
5473 }
5474 }
5475
ac27a0ec 5476 if (S_ISREG(inode->i_mode) &&
c8d46e41
JZ
5477 attr->ia_valid & ATTR_SIZE &&
5478 (attr->ia_size < inode->i_size ||
12e9b892 5479 (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
ac27a0ec
DK
5480 handle_t *handle;
5481
617ba13b 5482 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
5483 if (IS_ERR(handle)) {
5484 error = PTR_ERR(handle);
5485 goto err_out;
5486 }
5487
617ba13b
MC
5488 error = ext4_orphan_add(handle, inode);
5489 EXT4_I(inode)->i_disksize = attr->ia_size;
5490 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
5491 if (!error)
5492 error = rc;
617ba13b 5493 ext4_journal_stop(handle);
678aaf48
JK
5494
5495 if (ext4_should_order_data(inode)) {
5496 error = ext4_begin_ordered_truncate(inode,
5497 attr->ia_size);
5498 if (error) {
5499 /* Do as much error cleanup as possible */
5500 handle = ext4_journal_start(inode, 3);
5501 if (IS_ERR(handle)) {
5502 ext4_orphan_del(NULL, inode);
5503 goto err_out;
5504 }
5505 ext4_orphan_del(handle, inode);
5506 ext4_journal_stop(handle);
5507 goto err_out;
5508 }
5509 }
c8d46e41 5510 /* ext4_truncate will clear the flag */
12e9b892 5511 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
c8d46e41 5512 ext4_truncate(inode);
ac27a0ec
DK
5513 }
5514
5515 rc = inode_setattr(inode, attr);
5516
617ba13b 5517 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
5518 * transaction handle at all, we need to clean up the in-core
5519 * orphan list manually. */
5520 if (inode->i_nlink)
617ba13b 5521 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
5522
5523 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 5524 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
5525
5526err_out:
617ba13b 5527 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5528 if (!error)
5529 error = rc;
5530 return error;
5531}
5532
3e3398a0
MC
5533int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5534 struct kstat *stat)
5535{
5536 struct inode *inode;
5537 unsigned long delalloc_blocks;
5538
5539 inode = dentry->d_inode;
5540 generic_fillattr(inode, stat);
5541
5542 /*
5543 * We can't update i_blocks if the block allocation is delayed
5544 * otherwise in the case of system crash before the real block
5545 * allocation is done, we will have i_blocks inconsistent with
5546 * on-disk file blocks.
5547 * We always keep i_blocks updated together with real
5548 * allocation. But to not confuse with user, stat
5549 * will return the blocks that include the delayed allocation
5550 * blocks for this file.
5551 */
5552 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5553 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5554 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5555
5556 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5557 return 0;
5558}
ac27a0ec 5559
a02908f1
MC
5560static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5561 int chunk)
5562{
5563 int indirects;
5564
5565 /* if nrblocks are contiguous */
5566 if (chunk) {
5567 /*
5568 * With N contiguous data blocks, it need at most
5569 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5570 * 2 dindirect blocks
5571 * 1 tindirect block
5572 */
5573 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5574 return indirects + 3;
5575 }
5576 /*
5577 * if nrblocks are not contiguous, worse case, each block touch
5578 * a indirect block, and each indirect block touch a double indirect
5579 * block, plus a triple indirect block
5580 */
5581 indirects = nrblocks * 2 + 1;
5582 return indirects;
5583}
5584
5585static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5586{
12e9b892 5587 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
ac51d837
TT
5588 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5589 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 5590}
ac51d837 5591
ac27a0ec 5592/*
a02908f1
MC
5593 * Account for index blocks, block groups bitmaps and block group
5594 * descriptor blocks if modify datablocks and index blocks
5595 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5596 *
a02908f1 5597 * If datablocks are discontiguous, they are possible to spread over
af901ca1 5598 * different block groups too. If they are contiuguous, with flexbg,
a02908f1 5599 * they could still across block group boundary.
ac27a0ec 5600 *
a02908f1
MC
5601 * Also account for superblock, inode, quota and xattr blocks
5602 */
5603int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5604{
8df9675f
TT
5605 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5606 int gdpblocks;
a02908f1
MC
5607 int idxblocks;
5608 int ret = 0;
5609
5610 /*
5611 * How many index blocks need to touch to modify nrblocks?
5612 * The "Chunk" flag indicating whether the nrblocks is
5613 * physically contiguous on disk
5614 *
5615 * For Direct IO and fallocate, they calls get_block to allocate
5616 * one single extent at a time, so they could set the "Chunk" flag
5617 */
5618 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5619
5620 ret = idxblocks;
5621
5622 /*
5623 * Now let's see how many group bitmaps and group descriptors need
5624 * to account
5625 */
5626 groups = idxblocks;
5627 if (chunk)
5628 groups += 1;
5629 else
5630 groups += nrblocks;
5631
5632 gdpblocks = groups;
8df9675f
TT
5633 if (groups > ngroups)
5634 groups = ngroups;
a02908f1
MC
5635 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5636 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5637
5638 /* bitmaps and block group descriptor blocks */
5639 ret += groups + gdpblocks;
5640
5641 /* Blocks for super block, inode, quota and xattr blocks */
5642 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5643
5644 return ret;
5645}
5646
5647/*
5648 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
5649 * the modification of a single pages into a single transaction,
5650 * which may include multiple chunks of block allocations.
ac27a0ec 5651 *
525f4ed8 5652 * This could be called via ext4_write_begin()
ac27a0ec 5653 *
525f4ed8 5654 * We need to consider the worse case, when
a02908f1 5655 * one new block per extent.
ac27a0ec 5656 */
a86c6181 5657int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5658{
617ba13b 5659 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5660 int ret;
5661
a02908f1 5662 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 5663
a02908f1 5664 /* Account for data blocks for journalled mode */
617ba13b 5665 if (ext4_should_journal_data(inode))
a02908f1 5666 ret += bpp;
ac27a0ec
DK
5667 return ret;
5668}
f3bd1f3f
MC
5669
5670/*
5671 * Calculate the journal credits for a chunk of data modification.
5672 *
5673 * This is called from DIO, fallocate or whoever calling
af901ca1 5674 * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5675 *
5676 * journal buffers for data blocks are not included here, as DIO
5677 * and fallocate do no need to journal data buffers.
5678 */
5679int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5680{
5681 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5682}
5683
ac27a0ec 5684/*
617ba13b 5685 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5686 * Give this, we know that the caller already has write access to iloc->bh.
5687 */
617ba13b 5688int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5689 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5690{
5691 int err = 0;
5692
25ec56b5
JNC
5693 if (test_opt(inode->i_sb, I_VERSION))
5694 inode_inc_iversion(inode);
5695
ac27a0ec
DK
5696 /* the do_update_inode consumes one bh->b_count */
5697 get_bh(iloc->bh);
5698
dab291af 5699 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5700 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5701 put_bh(iloc->bh);
5702 return err;
5703}
5704
5705/*
5706 * On success, We end up with an outstanding reference count against
5707 * iloc->bh. This _must_ be cleaned up later.
5708 */
5709
5710int
617ba13b
MC
5711ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5712 struct ext4_iloc *iloc)
ac27a0ec 5713{
0390131b
FM
5714 int err;
5715
5716 err = ext4_get_inode_loc(inode, iloc);
5717 if (!err) {
5718 BUFFER_TRACE(iloc->bh, "get_write_access");
5719 err = ext4_journal_get_write_access(handle, iloc->bh);
5720 if (err) {
5721 brelse(iloc->bh);
5722 iloc->bh = NULL;
ac27a0ec
DK
5723 }
5724 }
617ba13b 5725 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5726 return err;
5727}
5728
6dd4ee7c
KS
5729/*
5730 * Expand an inode by new_extra_isize bytes.
5731 * Returns 0 on success or negative error number on failure.
5732 */
1d03ec98
AK
5733static int ext4_expand_extra_isize(struct inode *inode,
5734 unsigned int new_extra_isize,
5735 struct ext4_iloc iloc,
5736 handle_t *handle)
6dd4ee7c
KS
5737{
5738 struct ext4_inode *raw_inode;
5739 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
5740
5741 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5742 return 0;
5743
5744 raw_inode = ext4_raw_inode(&iloc);
5745
5746 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
5747
5748 /* No extended attributes present */
19f5fb7a
TT
5749 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5750 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
5751 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5752 new_extra_isize);
5753 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5754 return 0;
5755 }
5756
5757 /* try to expand with EAs present */
5758 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5759 raw_inode, handle);
5760}
5761
ac27a0ec
DK
5762/*
5763 * What we do here is to mark the in-core inode as clean with respect to inode
5764 * dirtiness (it may still be data-dirty).
5765 * This means that the in-core inode may be reaped by prune_icache
5766 * without having to perform any I/O. This is a very good thing,
5767 * because *any* task may call prune_icache - even ones which
5768 * have a transaction open against a different journal.
5769 *
5770 * Is this cheating? Not really. Sure, we haven't written the
5771 * inode out, but prune_icache isn't a user-visible syncing function.
5772 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5773 * we start and wait on commits.
5774 *
5775 * Is this efficient/effective? Well, we're being nice to the system
5776 * by cleaning up our inodes proactively so they can be reaped
5777 * without I/O. But we are potentially leaving up to five seconds'
5778 * worth of inodes floating about which prune_icache wants us to
5779 * write out. One way to fix that would be to get prune_icache()
5780 * to do a write_super() to free up some memory. It has the desired
5781 * effect.
5782 */
617ba13b 5783int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5784{
617ba13b 5785 struct ext4_iloc iloc;
6dd4ee7c
KS
5786 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5787 static unsigned int mnt_count;
5788 int err, ret;
ac27a0ec
DK
5789
5790 might_sleep();
617ba13b 5791 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5792 if (ext4_handle_valid(handle) &&
5793 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5794 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
5795 /*
5796 * We need extra buffer credits since we may write into EA block
5797 * with this same handle. If journal_extend fails, then it will
5798 * only result in a minor loss of functionality for that inode.
5799 * If this is felt to be critical, then e2fsck should be run to
5800 * force a large enough s_min_extra_isize.
5801 */
5802 if ((jbd2_journal_extend(handle,
5803 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5804 ret = ext4_expand_extra_isize(inode,
5805 sbi->s_want_extra_isize,
5806 iloc, handle);
5807 if (ret) {
19f5fb7a
TT
5808 ext4_set_inode_state(inode,
5809 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
5810 if (mnt_count !=
5811 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5812 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5813 "Unable to expand inode %lu. Delete"
5814 " some EAs or run e2fsck.",
5815 inode->i_ino);
c1bddad9
AK
5816 mnt_count =
5817 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5818 }
5819 }
5820 }
5821 }
ac27a0ec 5822 if (!err)
617ba13b 5823 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5824 return err;
5825}
5826
5827/*
617ba13b 5828 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5829 *
5830 * We're really interested in the case where a file is being extended.
5831 * i_size has been changed by generic_commit_write() and we thus need
5832 * to include the updated inode in the current transaction.
5833 *
5dd4056d 5834 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5835 * are allocated to the file.
5836 *
5837 * If the inode is marked synchronous, we don't honour that here - doing
5838 * so would cause a commit on atime updates, which we don't bother doing.
5839 * We handle synchronous inodes at the highest possible level.
5840 */
617ba13b 5841void ext4_dirty_inode(struct inode *inode)
ac27a0ec 5842{
ac27a0ec
DK
5843 handle_t *handle;
5844
617ba13b 5845 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
5846 if (IS_ERR(handle))
5847 goto out;
f3dc272f 5848
f3dc272f
CW
5849 ext4_mark_inode_dirty(handle, inode);
5850
617ba13b 5851 ext4_journal_stop(handle);
ac27a0ec
DK
5852out:
5853 return;
5854}
5855
5856#if 0
5857/*
5858 * Bind an inode's backing buffer_head into this transaction, to prevent
5859 * it from being flushed to disk early. Unlike
617ba13b 5860 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5861 * returns no iloc structure, so the caller needs to repeat the iloc
5862 * lookup to mark the inode dirty later.
5863 */
617ba13b 5864static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5865{
617ba13b 5866 struct ext4_iloc iloc;
ac27a0ec
DK
5867
5868 int err = 0;
5869 if (handle) {
617ba13b 5870 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5871 if (!err) {
5872 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5873 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5874 if (!err)
0390131b 5875 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5876 NULL,
0390131b 5877 iloc.bh);
ac27a0ec
DK
5878 brelse(iloc.bh);
5879 }
5880 }
617ba13b 5881 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5882 return err;
5883}
5884#endif
5885
617ba13b 5886int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5887{
5888 journal_t *journal;
5889 handle_t *handle;
5890 int err;
5891
5892 /*
5893 * We have to be very careful here: changing a data block's
5894 * journaling status dynamically is dangerous. If we write a
5895 * data block to the journal, change the status and then delete
5896 * that block, we risk forgetting to revoke the old log record
5897 * from the journal and so a subsequent replay can corrupt data.
5898 * So, first we make sure that the journal is empty and that
5899 * nobody is changing anything.
5900 */
5901
617ba13b 5902 journal = EXT4_JOURNAL(inode);
0390131b
FM
5903 if (!journal)
5904 return 0;
d699594d 5905 if (is_journal_aborted(journal))
ac27a0ec
DK
5906 return -EROFS;
5907
dab291af
MC
5908 jbd2_journal_lock_updates(journal);
5909 jbd2_journal_flush(journal);
ac27a0ec
DK
5910
5911 /*
5912 * OK, there are no updates running now, and all cached data is
5913 * synced to disk. We are now in a completely consistent state
5914 * which doesn't have anything in the journal, and we know that
5915 * no filesystem updates are running, so it is safe to modify
5916 * the inode's in-core data-journaling state flag now.
5917 */
5918
5919 if (val)
12e9b892 5920 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
ac27a0ec 5921 else
12e9b892 5922 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
617ba13b 5923 ext4_set_aops(inode);
ac27a0ec 5924
dab291af 5925 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
5926
5927 /* Finally we can mark the inode as dirty. */
5928
617ba13b 5929 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
5930 if (IS_ERR(handle))
5931 return PTR_ERR(handle);
5932
617ba13b 5933 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5934 ext4_handle_sync(handle);
617ba13b
MC
5935 ext4_journal_stop(handle);
5936 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5937
5938 return err;
5939}
2e9ee850
AK
5940
5941static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5942{
5943 return !buffer_mapped(bh);
5944}
5945
c2ec175c 5946int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5947{
c2ec175c 5948 struct page *page = vmf->page;
2e9ee850
AK
5949 loff_t size;
5950 unsigned long len;
5951 int ret = -EINVAL;
79f0be8d 5952 void *fsdata;
2e9ee850
AK
5953 struct file *file = vma->vm_file;
5954 struct inode *inode = file->f_path.dentry->d_inode;
5955 struct address_space *mapping = inode->i_mapping;
5956
5957 /*
5958 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5959 * get i_mutex because we are already holding mmap_sem.
5960 */
5961 down_read(&inode->i_alloc_sem);
5962 size = i_size_read(inode);
5963 if (page->mapping != mapping || size <= page_offset(page)
5964 || !PageUptodate(page)) {
5965 /* page got truncated from under us? */
5966 goto out_unlock;
5967 }
5968 ret = 0;
5969 if (PageMappedToDisk(page))
5970 goto out_unlock;
5971
5972 if (page->index == size >> PAGE_CACHE_SHIFT)
5973 len = size & ~PAGE_CACHE_MASK;
5974 else
5975 len = PAGE_CACHE_SIZE;
5976
a827eaff
AK
5977 lock_page(page);
5978 /*
5979 * return if we have all the buffers mapped. This avoid
5980 * the need to call write_begin/write_end which does a
5981 * journal_start/journal_stop which can block and take
5982 * long time
5983 */
2e9ee850 5984 if (page_has_buffers(page)) {
2e9ee850 5985 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
a827eaff
AK
5986 ext4_bh_unmapped)) {
5987 unlock_page(page);
2e9ee850 5988 goto out_unlock;
a827eaff 5989 }
2e9ee850 5990 }
a827eaff 5991 unlock_page(page);
2e9ee850
AK
5992 /*
5993 * OK, we need to fill the hole... Do write_begin write_end
5994 * to do block allocation/reservation.We are not holding
5995 * inode.i__mutex here. That allow * parallel write_begin,
5996 * write_end call. lock_page prevent this from happening
5997 * on the same page though
5998 */
5999 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 6000 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
6001 if (ret < 0)
6002 goto out_unlock;
6003 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 6004 len, len, page, fsdata);
2e9ee850
AK
6005 if (ret < 0)
6006 goto out_unlock;
6007 ret = 0;
6008out_unlock:
c2ec175c
NP
6009 if (ret)
6010 ret = VM_FAULT_SIGBUS;
2e9ee850
AK
6011 up_read(&inode->i_alloc_sem);
6012 return ret;
6013}