]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ext4/inode.c
ext4: Support discard requests when running in no-journal mode
[net-next-2.6.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
4c0425ff 40#include <linux/workqueue.h>
744692dc 41#include <linux/kernel.h>
5a0e3ad6 42#include <linux/slab.h>
9bffad1e 43
3dcf5451 44#include "ext4_jbd2.h"
ac27a0ec
DK
45#include "xattr.h"
46#include "acl.h"
d2a17637 47#include "ext4_extents.h"
ac27a0ec 48
9bffad1e
TT
49#include <trace/events/ext4.h>
50
a1d6cc56
AK
51#define MPAGE_DA_EXTENT_TAIL 0x01
52
678aaf48
JK
53static inline int ext4_begin_ordered_truncate(struct inode *inode,
54 loff_t new_size)
55{
7f5aa215
JK
56 return jbd2_journal_begin_ordered_truncate(
57 EXT4_SB(inode->i_sb)->s_journal,
58 &EXT4_I(inode)->jinode,
59 new_size);
678aaf48
JK
60}
61
64769240
AT
62static void ext4_invalidatepage(struct page *page, unsigned long offset);
63
ac27a0ec
DK
64/*
65 * Test whether an inode is a fast symlink.
66 */
617ba13b 67static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 68{
617ba13b 69 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
70 (inode->i_sb->s_blocksize >> 9) : 0;
71
72 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
73}
74
ac27a0ec
DK
75/*
76 * Work out how many blocks we need to proceed with the next chunk of a
77 * truncate transaction.
78 */
79static unsigned long blocks_for_truncate(struct inode *inode)
80{
725d26d3 81 ext4_lblk_t needed;
ac27a0ec
DK
82
83 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
84
85 /* Give ourselves just enough room to cope with inodes in which
86 * i_blocks is corrupt: we've seen disk corruptions in the past
87 * which resulted in random data in an inode which looked enough
617ba13b 88 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
89 * will go a bit crazy if that happens, but at least we should
90 * try not to panic the whole kernel. */
91 if (needed < 2)
92 needed = 2;
93
94 /* But we need to bound the transaction so we don't overflow the
95 * journal. */
617ba13b
MC
96 if (needed > EXT4_MAX_TRANS_DATA)
97 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 98
617ba13b 99 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
100}
101
102/*
103 * Truncate transactions can be complex and absolutely huge. So we need to
104 * be able to restart the transaction at a conventient checkpoint to make
105 * sure we don't overflow the journal.
106 *
107 * start_transaction gets us a new handle for a truncate transaction,
108 * and extend_transaction tries to extend the existing one a bit. If
109 * extend fails, we need to propagate the failure up and restart the
110 * transaction in the top-level truncate loop. --sct
111 */
112static handle_t *start_transaction(struct inode *inode)
113{
114 handle_t *result;
115
617ba13b 116 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
117 if (!IS_ERR(result))
118 return result;
119
617ba13b 120 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
121 return result;
122}
123
124/*
125 * Try to extend this transaction for the purposes of truncation.
126 *
127 * Returns 0 if we managed to create more room. If we can't create more
128 * room, and the transaction must be restarted we return 1.
129 */
130static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
131{
0390131b
FM
132 if (!ext4_handle_valid(handle))
133 return 0;
134 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
ac27a0ec 135 return 0;
617ba13b 136 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
137 return 0;
138 return 1;
139}
140
141/*
142 * Restart the transaction associated with *handle. This does a commit,
143 * so before we call here everything must be consistently dirtied against
144 * this transaction.
145 */
fa5d1113 146int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 147 int nblocks)
ac27a0ec 148{
487caeef
JK
149 int ret;
150
151 /*
e35fd660 152 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
153 * moment, get_block can be called only for blocks inside i_size since
154 * page cache has been already dropped and writes are blocked by
155 * i_mutex. So we can safely drop the i_data_sem here.
156 */
0390131b 157 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 158 jbd_debug(2, "restarting handle %p\n", handle);
487caeef
JK
159 up_write(&EXT4_I(inode)->i_data_sem);
160 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
161 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 162 ext4_discard_preallocations(inode);
487caeef
JK
163
164 return ret;
ac27a0ec
DK
165}
166
167/*
168 * Called at the last iput() if i_nlink is zero.
169 */
af5bc92d 170void ext4_delete_inode(struct inode *inode)
ac27a0ec
DK
171{
172 handle_t *handle;
bc965ab3 173 int err;
ac27a0ec 174
907f4554 175 if (!is_bad_inode(inode))
871a2931 176 dquot_initialize(inode);
907f4554 177
678aaf48
JK
178 if (ext4_should_order_data(inode))
179 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
180 truncate_inode_pages(&inode->i_data, 0);
181
182 if (is_bad_inode(inode))
183 goto no_delete;
184
bc965ab3 185 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 186 if (IS_ERR(handle)) {
bc965ab3 187 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
188 /*
189 * If we're going to skip the normal cleanup, we still need to
190 * make sure that the in-core orphan linked list is properly
191 * cleaned up.
192 */
617ba13b 193 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
194 goto no_delete;
195 }
196
197 if (IS_SYNC(inode))
0390131b 198 ext4_handle_sync(handle);
ac27a0ec 199 inode->i_size = 0;
bc965ab3
TT
200 err = ext4_mark_inode_dirty(handle, inode);
201 if (err) {
12062ddd 202 ext4_warning(inode->i_sb,
bc965ab3
TT
203 "couldn't mark inode dirty (err %d)", err);
204 goto stop_handle;
205 }
ac27a0ec 206 if (inode->i_blocks)
617ba13b 207 ext4_truncate(inode);
bc965ab3
TT
208
209 /*
210 * ext4_ext_truncate() doesn't reserve any slop when it
211 * restarts journal transactions; therefore there may not be
212 * enough credits left in the handle to remove the inode from
213 * the orphan list and set the dtime field.
214 */
0390131b 215 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
216 err = ext4_journal_extend(handle, 3);
217 if (err > 0)
218 err = ext4_journal_restart(handle, 3);
219 if (err != 0) {
12062ddd 220 ext4_warning(inode->i_sb,
bc965ab3
TT
221 "couldn't extend journal (err %d)", err);
222 stop_handle:
223 ext4_journal_stop(handle);
224 goto no_delete;
225 }
226 }
227
ac27a0ec 228 /*
617ba13b 229 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 230 * AKPM: I think this can be inside the above `if'.
617ba13b 231 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 232 * deletion of a non-existent orphan - this is because we don't
617ba13b 233 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
234 * (Well, we could do this if we need to, but heck - it works)
235 */
617ba13b
MC
236 ext4_orphan_del(handle, inode);
237 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
238
239 /*
240 * One subtle ordering requirement: if anything has gone wrong
241 * (transaction abort, IO errors, whatever), then we can still
242 * do these next steps (the fs will already have been marked as
243 * having errors), but we can't free the inode if the mark_dirty
244 * fails.
245 */
617ba13b 246 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
247 /* If that failed, just do the required in-core inode clear. */
248 clear_inode(inode);
249 else
617ba13b
MC
250 ext4_free_inode(handle, inode);
251 ext4_journal_stop(handle);
ac27a0ec
DK
252 return;
253no_delete:
254 clear_inode(inode); /* We must guarantee clearing of inode... */
255}
256
257typedef struct {
258 __le32 *p;
259 __le32 key;
260 struct buffer_head *bh;
261} Indirect;
262
263static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
264{
265 p->key = *(p->p = v);
266 p->bh = bh;
267}
268
ac27a0ec 269/**
617ba13b 270 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
271 * @inode: inode in question (we are only interested in its superblock)
272 * @i_block: block number to be parsed
273 * @offsets: array to store the offsets in
8c55e204
DK
274 * @boundary: set this non-zero if the referred-to block is likely to be
275 * followed (on disk) by an indirect block.
ac27a0ec 276 *
617ba13b 277 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
278 * for UNIX filesystems - tree of pointers anchored in the inode, with
279 * data blocks at leaves and indirect blocks in intermediate nodes.
280 * This function translates the block number into path in that tree -
281 * return value is the path length and @offsets[n] is the offset of
282 * pointer to (n+1)th node in the nth one. If @block is out of range
283 * (negative or too large) warning is printed and zero returned.
284 *
285 * Note: function doesn't find node addresses, so no IO is needed. All
286 * we need to know is the capacity of indirect blocks (taken from the
287 * inode->i_sb).
288 */
289
290/*
291 * Portability note: the last comparison (check that we fit into triple
292 * indirect block) is spelled differently, because otherwise on an
293 * architecture with 32-bit longs and 8Kb pages we might get into trouble
294 * if our filesystem had 8Kb blocks. We might use long long, but that would
295 * kill us on x86. Oh, well, at least the sign propagation does not matter -
296 * i_block would have to be negative in the very beginning, so we would not
297 * get there at all.
298 */
299
617ba13b 300static int ext4_block_to_path(struct inode *inode,
de9a55b8
TT
301 ext4_lblk_t i_block,
302 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 303{
617ba13b
MC
304 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
305 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
306 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
307 indirect_blocks = ptrs,
308 double_blocks = (1 << (ptrs_bits * 2));
309 int n = 0;
310 int final = 0;
311
c333e073 312 if (i_block < direct_blocks) {
ac27a0ec
DK
313 offsets[n++] = i_block;
314 final = direct_blocks;
af5bc92d 315 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 316 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
317 offsets[n++] = i_block;
318 final = ptrs;
319 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 320 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
321 offsets[n++] = i_block >> ptrs_bits;
322 offsets[n++] = i_block & (ptrs - 1);
323 final = ptrs;
324 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 325 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
326 offsets[n++] = i_block >> (ptrs_bits * 2);
327 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
328 offsets[n++] = i_block & (ptrs - 1);
329 final = ptrs;
330 } else {
12062ddd 331 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
de9a55b8
TT
332 i_block + direct_blocks +
333 indirect_blocks + double_blocks, inode->i_ino);
ac27a0ec
DK
334 }
335 if (boundary)
336 *boundary = final - 1 - (i_block & (ptrs - 1));
337 return n;
338}
339
c398eda0
TT
340static int __ext4_check_blockref(const char *function, unsigned int line,
341 struct inode *inode,
6fd058f7
TT
342 __le32 *p, unsigned int max)
343{
1c13d5c0 344 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
f73953c0 345 __le32 *bref = p;
6fd058f7
TT
346 unsigned int blk;
347
fe2c8191 348 while (bref < p+max) {
6fd058f7 349 blk = le32_to_cpu(*bref++);
de9a55b8
TT
350 if (blk &&
351 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
6fd058f7 352 blk, 1))) {
1c13d5c0 353 es->s_last_error_block = cpu_to_le64(blk);
c398eda0
TT
354 ext4_error_inode(inode, function, line, blk,
355 "invalid block");
de9a55b8
TT
356 return -EIO;
357 }
358 }
359 return 0;
fe2c8191
TN
360}
361
362
363#define ext4_check_indirect_blockref(inode, bh) \
c398eda0
TT
364 __ext4_check_blockref(__func__, __LINE__, inode, \
365 (__le32 *)(bh)->b_data, \
fe2c8191
TN
366 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
367
368#define ext4_check_inode_blockref(inode) \
c398eda0
TT
369 __ext4_check_blockref(__func__, __LINE__, inode, \
370 EXT4_I(inode)->i_data, \
fe2c8191
TN
371 EXT4_NDIR_BLOCKS)
372
ac27a0ec 373/**
617ba13b 374 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
375 * @inode: inode in question
376 * @depth: depth of the chain (1 - direct pointer, etc.)
377 * @offsets: offsets of pointers in inode/indirect blocks
378 * @chain: place to store the result
379 * @err: here we store the error value
380 *
381 * Function fills the array of triples <key, p, bh> and returns %NULL
382 * if everything went OK or the pointer to the last filled triple
383 * (incomplete one) otherwise. Upon the return chain[i].key contains
384 * the number of (i+1)-th block in the chain (as it is stored in memory,
385 * i.e. little-endian 32-bit), chain[i].p contains the address of that
386 * number (it points into struct inode for i==0 and into the bh->b_data
387 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
388 * block for i>0 and NULL for i==0. In other words, it holds the block
389 * numbers of the chain, addresses they were taken from (and where we can
390 * verify that chain did not change) and buffer_heads hosting these
391 * numbers.
392 *
393 * Function stops when it stumbles upon zero pointer (absent block)
394 * (pointer to last triple returned, *@err == 0)
395 * or when it gets an IO error reading an indirect block
396 * (ditto, *@err == -EIO)
ac27a0ec
DK
397 * or when it reads all @depth-1 indirect blocks successfully and finds
398 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
399 *
400 * Need to be called with
0e855ac8 401 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 402 */
725d26d3
AK
403static Indirect *ext4_get_branch(struct inode *inode, int depth,
404 ext4_lblk_t *offsets,
ac27a0ec
DK
405 Indirect chain[4], int *err)
406{
407 struct super_block *sb = inode->i_sb;
408 Indirect *p = chain;
409 struct buffer_head *bh;
410
411 *err = 0;
412 /* i_data is not going away, no lock needed */
af5bc92d 413 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
414 if (!p->key)
415 goto no_block;
416 while (--depth) {
fe2c8191
TN
417 bh = sb_getblk(sb, le32_to_cpu(p->key));
418 if (unlikely(!bh))
ac27a0ec 419 goto failure;
de9a55b8 420
fe2c8191
TN
421 if (!bh_uptodate_or_lock(bh)) {
422 if (bh_submit_read(bh) < 0) {
423 put_bh(bh);
424 goto failure;
425 }
426 /* validate block references */
427 if (ext4_check_indirect_blockref(inode, bh)) {
428 put_bh(bh);
429 goto failure;
430 }
431 }
de9a55b8 432
af5bc92d 433 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
434 /* Reader: end */
435 if (!p->key)
436 goto no_block;
437 }
438 return NULL;
439
ac27a0ec
DK
440failure:
441 *err = -EIO;
442no_block:
443 return p;
444}
445
446/**
617ba13b 447 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
448 * @inode: owner
449 * @ind: descriptor of indirect block.
450 *
1cc8dcf5 451 * This function returns the preferred place for block allocation.
ac27a0ec
DK
452 * It is used when heuristic for sequential allocation fails.
453 * Rules are:
454 * + if there is a block to the left of our position - allocate near it.
455 * + if pointer will live in indirect block - allocate near that block.
456 * + if pointer will live in inode - allocate in the same
457 * cylinder group.
458 *
459 * In the latter case we colour the starting block by the callers PID to
460 * prevent it from clashing with concurrent allocations for a different inode
461 * in the same block group. The PID is used here so that functionally related
462 * files will be close-by on-disk.
463 *
464 * Caller must make sure that @ind is valid and will stay that way.
465 */
617ba13b 466static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 467{
617ba13b 468 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 469 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 470 __le32 *p;
617ba13b 471 ext4_fsblk_t bg_start;
74d3487f 472 ext4_fsblk_t last_block;
617ba13b 473 ext4_grpblk_t colour;
a4912123
TT
474 ext4_group_t block_group;
475 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
ac27a0ec
DK
476
477 /* Try to find previous block */
478 for (p = ind->p - 1; p >= start; p--) {
479 if (*p)
480 return le32_to_cpu(*p);
481 }
482
483 /* No such thing, so let's try location of indirect block */
484 if (ind->bh)
485 return ind->bh->b_blocknr;
486
487 /*
488 * It is going to be referred to from the inode itself? OK, just put it
489 * into the same cylinder group then.
490 */
a4912123
TT
491 block_group = ei->i_block_group;
492 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
493 block_group &= ~(flex_size-1);
494 if (S_ISREG(inode->i_mode))
495 block_group++;
496 }
497 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
74d3487f
VC
498 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
499
a4912123
TT
500 /*
501 * If we are doing delayed allocation, we don't need take
502 * colour into account.
503 */
504 if (test_opt(inode->i_sb, DELALLOC))
505 return bg_start;
506
74d3487f
VC
507 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
508 colour = (current->pid % 16) *
617ba13b 509 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
510 else
511 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
512 return bg_start + colour;
513}
514
515/**
1cc8dcf5 516 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
517 * @inode: owner
518 * @block: block we want
ac27a0ec 519 * @partial: pointer to the last triple within a chain
ac27a0ec 520 *
1cc8dcf5 521 * Normally this function find the preferred place for block allocation,
fb01bfda 522 * returns it.
fb0a387d
ES
523 * Because this is only used for non-extent files, we limit the block nr
524 * to 32 bits.
ac27a0ec 525 */
725d26d3 526static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
de9a55b8 527 Indirect *partial)
ac27a0ec 528{
fb0a387d
ES
529 ext4_fsblk_t goal;
530
ac27a0ec 531 /*
c2ea3fde 532 * XXX need to get goal block from mballoc's data structures
ac27a0ec 533 */
ac27a0ec 534
fb0a387d
ES
535 goal = ext4_find_near(inode, partial);
536 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
537 return goal;
ac27a0ec
DK
538}
539
540/**
617ba13b 541 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
542 * of direct blocks need to be allocated for the given branch.
543 *
544 * @branch: chain of indirect blocks
545 * @k: number of blocks need for indirect blocks
546 * @blks: number of data blocks to be mapped.
547 * @blocks_to_boundary: the offset in the indirect block
548 *
549 * return the total number of blocks to be allocate, including the
550 * direct and indirect blocks.
551 */
498e5f24 552static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
de9a55b8 553 int blocks_to_boundary)
ac27a0ec 554{
498e5f24 555 unsigned int count = 0;
ac27a0ec
DK
556
557 /*
558 * Simple case, [t,d]Indirect block(s) has not allocated yet
559 * then it's clear blocks on that path have not allocated
560 */
561 if (k > 0) {
562 /* right now we don't handle cross boundary allocation */
563 if (blks < blocks_to_boundary + 1)
564 count += blks;
565 else
566 count += blocks_to_boundary + 1;
567 return count;
568 }
569
570 count++;
571 while (count < blks && count <= blocks_to_boundary &&
572 le32_to_cpu(*(branch[0].p + count)) == 0) {
573 count++;
574 }
575 return count;
576}
577
578/**
617ba13b 579 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
580 * @indirect_blks: the number of blocks need to allocate for indirect
581 * blocks
582 *
583 * @new_blocks: on return it will store the new block numbers for
584 * the indirect blocks(if needed) and the first direct block,
585 * @blks: on return it will store the total number of allocated
586 * direct blocks
587 */
617ba13b 588static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
589 ext4_lblk_t iblock, ext4_fsblk_t goal,
590 int indirect_blks, int blks,
591 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 592{
815a1130 593 struct ext4_allocation_request ar;
ac27a0ec 594 int target, i;
7061eba7 595 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 596 int index = 0;
617ba13b 597 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
598 int ret = 0;
599
600 /*
601 * Here we try to allocate the requested multiple blocks at once,
602 * on a best-effort basis.
603 * To build a branch, we should allocate blocks for
604 * the indirect blocks(if not allocated yet), and at least
605 * the first direct block of this branch. That's the
606 * minimum number of blocks need to allocate(required)
607 */
7061eba7
AK
608 /* first we try to allocate the indirect blocks */
609 target = indirect_blks;
610 while (target > 0) {
ac27a0ec
DK
611 count = target;
612 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
613 current_block = ext4_new_meta_blocks(handle, inode,
614 goal, &count, err);
ac27a0ec
DK
615 if (*err)
616 goto failed_out;
617
273df556
FM
618 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
619 EXT4_ERROR_INODE(inode,
620 "current_block %llu + count %lu > %d!",
621 current_block, count,
622 EXT4_MAX_BLOCK_FILE_PHYS);
623 *err = -EIO;
624 goto failed_out;
625 }
fb0a387d 626
ac27a0ec
DK
627 target -= count;
628 /* allocate blocks for indirect blocks */
629 while (index < indirect_blks && count) {
630 new_blocks[index++] = current_block++;
631 count--;
632 }
7061eba7
AK
633 if (count > 0) {
634 /*
635 * save the new block number
636 * for the first direct block
637 */
638 new_blocks[index] = current_block;
639 printk(KERN_INFO "%s returned more blocks than "
640 "requested\n", __func__);
641 WARN_ON(1);
ac27a0ec 642 break;
7061eba7 643 }
ac27a0ec
DK
644 }
645
7061eba7
AK
646 target = blks - count ;
647 blk_allocated = count;
648 if (!target)
649 goto allocated;
650 /* Now allocate data blocks */
815a1130
TT
651 memset(&ar, 0, sizeof(ar));
652 ar.inode = inode;
653 ar.goal = goal;
654 ar.len = target;
655 ar.logical = iblock;
656 if (S_ISREG(inode->i_mode))
657 /* enable in-core preallocation only for regular files */
658 ar.flags = EXT4_MB_HINT_DATA;
659
660 current_block = ext4_mb_new_blocks(handle, &ar, err);
273df556
FM
661 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
662 EXT4_ERROR_INODE(inode,
663 "current_block %llu + ar.len %d > %d!",
664 current_block, ar.len,
665 EXT4_MAX_BLOCK_FILE_PHYS);
666 *err = -EIO;
667 goto failed_out;
668 }
815a1130 669
7061eba7
AK
670 if (*err && (target == blks)) {
671 /*
672 * if the allocation failed and we didn't allocate
673 * any blocks before
674 */
675 goto failed_out;
676 }
677 if (!*err) {
678 if (target == blks) {
de9a55b8
TT
679 /*
680 * save the new block number
681 * for the first direct block
682 */
7061eba7
AK
683 new_blocks[index] = current_block;
684 }
815a1130 685 blk_allocated += ar.len;
7061eba7
AK
686 }
687allocated:
ac27a0ec 688 /* total number of blocks allocated for direct blocks */
7061eba7 689 ret = blk_allocated;
ac27a0ec
DK
690 *err = 0;
691 return ret;
692failed_out:
af5bc92d 693 for (i = 0; i < index; i++)
e6362609 694 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
ac27a0ec
DK
695 return ret;
696}
697
698/**
617ba13b 699 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
700 * @inode: owner
701 * @indirect_blks: number of allocated indirect blocks
702 * @blks: number of allocated direct blocks
703 * @offsets: offsets (in the blocks) to store the pointers to next.
704 * @branch: place to store the chain in.
705 *
706 * This function allocates blocks, zeroes out all but the last one,
707 * links them into chain and (if we are synchronous) writes them to disk.
708 * In other words, it prepares a branch that can be spliced onto the
709 * inode. It stores the information about that chain in the branch[], in
617ba13b 710 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
711 * we had read the existing part of chain and partial points to the last
712 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 713 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
714 * place chain is disconnected - *branch->p is still zero (we did not
715 * set the last link), but branch->key contains the number that should
716 * be placed into *branch->p to fill that gap.
717 *
718 * If allocation fails we free all blocks we've allocated (and forget
719 * their buffer_heads) and return the error value the from failed
617ba13b 720 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
721 * as described above and return 0.
722 */
617ba13b 723static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
724 ext4_lblk_t iblock, int indirect_blks,
725 int *blks, ext4_fsblk_t goal,
726 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
727{
728 int blocksize = inode->i_sb->s_blocksize;
729 int i, n = 0;
730 int err = 0;
731 struct buffer_head *bh;
732 int num;
617ba13b
MC
733 ext4_fsblk_t new_blocks[4];
734 ext4_fsblk_t current_block;
ac27a0ec 735
7061eba7 736 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
737 *blks, new_blocks, &err);
738 if (err)
739 return err;
740
741 branch[0].key = cpu_to_le32(new_blocks[0]);
742 /*
743 * metadata blocks and data blocks are allocated.
744 */
745 for (n = 1; n <= indirect_blks; n++) {
746 /*
747 * Get buffer_head for parent block, zero it out
748 * and set the pointer to new one, then send
749 * parent to disk.
750 */
751 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
752 branch[n].bh = bh;
753 lock_buffer(bh);
754 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 755 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec 756 if (err) {
6487a9d3
CW
757 /* Don't brelse(bh) here; it's done in
758 * ext4_journal_forget() below */
ac27a0ec 759 unlock_buffer(bh);
ac27a0ec
DK
760 goto failed;
761 }
762
763 memset(bh->b_data, 0, blocksize);
764 branch[n].p = (__le32 *) bh->b_data + offsets[n];
765 branch[n].key = cpu_to_le32(new_blocks[n]);
766 *branch[n].p = branch[n].key;
af5bc92d 767 if (n == indirect_blks) {
ac27a0ec
DK
768 current_block = new_blocks[n];
769 /*
770 * End of chain, update the last new metablock of
771 * the chain to point to the new allocated
772 * data blocks numbers
773 */
de9a55b8 774 for (i = 1; i < num; i++)
ac27a0ec
DK
775 *(branch[n].p + i) = cpu_to_le32(++current_block);
776 }
777 BUFFER_TRACE(bh, "marking uptodate");
778 set_buffer_uptodate(bh);
779 unlock_buffer(bh);
780
0390131b
FM
781 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
782 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
783 if (err)
784 goto failed;
785 }
786 *blks = num;
787 return err;
788failed:
789 /* Allocation failed, free what we already allocated */
e6362609 790 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
ac27a0ec 791 for (i = 1; i <= n ; i++) {
60e6679e 792 /*
e6362609
TT
793 * branch[i].bh is newly allocated, so there is no
794 * need to revoke the block, which is why we don't
795 * need to set EXT4_FREE_BLOCKS_METADATA.
b7e57e7c 796 */
e6362609
TT
797 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
798 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec 799 }
e6362609
TT
800 for (i = n+1; i < indirect_blks; i++)
801 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
ac27a0ec 802
e6362609 803 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
ac27a0ec
DK
804
805 return err;
806}
807
808/**
617ba13b 809 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
810 * @inode: owner
811 * @block: (logical) number of block we are adding
812 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 813 * ext4_alloc_branch)
ac27a0ec
DK
814 * @where: location of missing link
815 * @num: number of indirect blocks we are adding
816 * @blks: number of direct blocks we are adding
817 *
818 * This function fills the missing link and does all housekeeping needed in
819 * inode (->i_blocks, etc.). In case of success we end up with the full
820 * chain to new block and return 0.
821 */
617ba13b 822static int ext4_splice_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
823 ext4_lblk_t block, Indirect *where, int num,
824 int blks)
ac27a0ec
DK
825{
826 int i;
827 int err = 0;
617ba13b 828 ext4_fsblk_t current_block;
ac27a0ec 829
ac27a0ec
DK
830 /*
831 * If we're splicing into a [td]indirect block (as opposed to the
832 * inode) then we need to get write access to the [td]indirect block
833 * before the splice.
834 */
835 if (where->bh) {
836 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 837 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
838 if (err)
839 goto err_out;
840 }
841 /* That's it */
842
843 *where->p = where->key;
844
845 /*
846 * Update the host buffer_head or inode to point to more just allocated
847 * direct blocks blocks
848 */
849 if (num == 0 && blks > 1) {
850 current_block = le32_to_cpu(where->key) + 1;
851 for (i = 1; i < blks; i++)
af5bc92d 852 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
853 }
854
ac27a0ec 855 /* We are done with atomic stuff, now do the rest of housekeeping */
ac27a0ec
DK
856 /* had we spliced it onto indirect block? */
857 if (where->bh) {
858 /*
859 * If we spliced it onto an indirect block, we haven't
860 * altered the inode. Note however that if it is being spliced
861 * onto an indirect block at the very end of the file (the
862 * file is growing) then we *will* alter the inode to reflect
863 * the new i_size. But that is not done here - it is done in
617ba13b 864 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
865 */
866 jbd_debug(5, "splicing indirect only\n");
0390131b
FM
867 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
868 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
ac27a0ec
DK
869 if (err)
870 goto err_out;
871 } else {
872 /*
873 * OK, we spliced it into the inode itself on a direct block.
ac27a0ec 874 */
41591750 875 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
876 jbd_debug(5, "splicing direct\n");
877 }
878 return err;
879
880err_out:
881 for (i = 1; i <= num; i++) {
60e6679e 882 /*
e6362609
TT
883 * branch[i].bh is newly allocated, so there is no
884 * need to revoke the block, which is why we don't
885 * need to set EXT4_FREE_BLOCKS_METADATA.
b7e57e7c 886 */
e6362609
TT
887 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
888 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec 889 }
e6362609
TT
890 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
891 blks, 0);
ac27a0ec
DK
892
893 return err;
894}
895
896/*
e35fd660 897 * The ext4_ind_map_blocks() function handles non-extents inodes
b920c755 898 * (i.e., using the traditional indirect/double-indirect i_blocks
e35fd660 899 * scheme) for ext4_map_blocks().
b920c755 900 *
ac27a0ec
DK
901 * Allocation strategy is simple: if we have to allocate something, we will
902 * have to go the whole way to leaf. So let's do it before attaching anything
903 * to tree, set linkage between the newborn blocks, write them if sync is
904 * required, recheck the path, free and repeat if check fails, otherwise
905 * set the last missing link (that will protect us from any truncate-generated
906 * removals - all blocks on the path are immune now) and possibly force the
907 * write on the parent block.
908 * That has a nice additional property: no special recovery from the failed
909 * allocations is needed - we simply release blocks and do not touch anything
910 * reachable from inode.
911 *
912 * `handle' can be NULL if create == 0.
913 *
ac27a0ec
DK
914 * return > 0, # of blocks mapped or allocated.
915 * return = 0, if plain lookup failed.
916 * return < 0, error case.
c278bfec 917 *
b920c755
TT
918 * The ext4_ind_get_blocks() function should be called with
919 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
920 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
921 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
922 * blocks.
ac27a0ec 923 */
e35fd660
TT
924static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
925 struct ext4_map_blocks *map,
de9a55b8 926 int flags)
ac27a0ec
DK
927{
928 int err = -EIO;
725d26d3 929 ext4_lblk_t offsets[4];
ac27a0ec
DK
930 Indirect chain[4];
931 Indirect *partial;
617ba13b 932 ext4_fsblk_t goal;
ac27a0ec
DK
933 int indirect_blks;
934 int blocks_to_boundary = 0;
935 int depth;
ac27a0ec 936 int count = 0;
617ba13b 937 ext4_fsblk_t first_block = 0;
ac27a0ec 938
12e9b892 939 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
c2177057 940 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
e35fd660 941 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
de9a55b8 942 &blocks_to_boundary);
ac27a0ec
DK
943
944 if (depth == 0)
945 goto out;
946
617ba13b 947 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
948
949 /* Simplest case - block found, no allocation needed */
950 if (!partial) {
951 first_block = le32_to_cpu(chain[depth - 1].key);
ac27a0ec
DK
952 count++;
953 /*map more blocks*/
e35fd660 954 while (count < map->m_len && count <= blocks_to_boundary) {
617ba13b 955 ext4_fsblk_t blk;
ac27a0ec 956
ac27a0ec
DK
957 blk = le32_to_cpu(*(chain[depth-1].p + count));
958
959 if (blk == first_block + count)
960 count++;
961 else
962 break;
963 }
c278bfec 964 goto got_it;
ac27a0ec
DK
965 }
966
967 /* Next simple case - plain lookup or failed read of indirect block */
c2177057 968 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
ac27a0ec
DK
969 goto cleanup;
970
ac27a0ec 971 /*
c2ea3fde 972 * Okay, we need to do block allocation.
ac27a0ec 973 */
e35fd660 974 goal = ext4_find_goal(inode, map->m_lblk, partial);
ac27a0ec
DK
975
976 /* the number of blocks need to allocate for [d,t]indirect blocks */
977 indirect_blks = (chain + depth) - partial - 1;
978
979 /*
980 * Next look up the indirect map to count the totoal number of
981 * direct blocks to allocate for this branch.
982 */
617ba13b 983 count = ext4_blks_to_allocate(partial, indirect_blks,
e35fd660 984 map->m_len, blocks_to_boundary);
ac27a0ec 985 /*
617ba13b 986 * Block out ext4_truncate while we alter the tree
ac27a0ec 987 */
e35fd660 988 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
de9a55b8
TT
989 &count, goal,
990 offsets + (partial - chain), partial);
ac27a0ec
DK
991
992 /*
617ba13b 993 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
994 * on the new chain if there is a failure, but that risks using
995 * up transaction credits, especially for bitmaps where the
996 * credits cannot be returned. Can we handle this somehow? We
997 * may need to return -EAGAIN upwards in the worst case. --sct
998 */
999 if (!err)
e35fd660 1000 err = ext4_splice_branch(handle, inode, map->m_lblk,
de9a55b8 1001 partial, indirect_blks, count);
2bba702d 1002 if (err)
ac27a0ec
DK
1003 goto cleanup;
1004
e35fd660 1005 map->m_flags |= EXT4_MAP_NEW;
b436b9be
JK
1006
1007 ext4_update_inode_fsync_trans(handle, inode, 1);
ac27a0ec 1008got_it:
e35fd660
TT
1009 map->m_flags |= EXT4_MAP_MAPPED;
1010 map->m_pblk = le32_to_cpu(chain[depth-1].key);
1011 map->m_len = count;
ac27a0ec 1012 if (count > blocks_to_boundary)
e35fd660 1013 map->m_flags |= EXT4_MAP_BOUNDARY;
ac27a0ec
DK
1014 err = count;
1015 /* Clean up and exit */
1016 partial = chain + depth - 1; /* the whole chain */
1017cleanup:
1018 while (partial > chain) {
1019 BUFFER_TRACE(partial->bh, "call brelse");
1020 brelse(partial->bh);
1021 partial--;
1022 }
ac27a0ec
DK
1023out:
1024 return err;
1025}
1026
a9e7f447
DM
1027#ifdef CONFIG_QUOTA
1028qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 1029{
a9e7f447 1030 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 1031}
a9e7f447 1032#endif
9d0be502 1033
12219aea
AK
1034/*
1035 * Calculate the number of metadata blocks need to reserve
9d0be502 1036 * to allocate a new block at @lblocks for non extent file based file
12219aea 1037 */
9d0be502
TT
1038static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1039 sector_t lblock)
12219aea 1040{
9d0be502 1041 struct ext4_inode_info *ei = EXT4_I(inode);
d330a5be 1042 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
9d0be502 1043 int blk_bits;
12219aea 1044
9d0be502
TT
1045 if (lblock < EXT4_NDIR_BLOCKS)
1046 return 0;
12219aea 1047
9d0be502 1048 lblock -= EXT4_NDIR_BLOCKS;
12219aea 1049
9d0be502
TT
1050 if (ei->i_da_metadata_calc_len &&
1051 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1052 ei->i_da_metadata_calc_len++;
1053 return 0;
1054 }
1055 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1056 ei->i_da_metadata_calc_len = 1;
d330a5be 1057 blk_bits = order_base_2(lblock);
9d0be502 1058 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
12219aea
AK
1059}
1060
1061/*
1062 * Calculate the number of metadata blocks need to reserve
9d0be502 1063 * to allocate a block located at @lblock
12219aea 1064 */
9d0be502 1065static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
12219aea 1066{
12e9b892 1067 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 1068 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 1069
9d0be502 1070 return ext4_indirect_calc_metadata_amount(inode, lblock);
12219aea
AK
1071}
1072
0637c6f4
TT
1073/*
1074 * Called with i_data_sem down, which is important since we can call
1075 * ext4_discard_preallocations() from here.
1076 */
5f634d06
AK
1077void ext4_da_update_reserve_space(struct inode *inode,
1078 int used, int quota_claim)
12219aea
AK
1079{
1080 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1081 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
1082
1083 spin_lock(&ei->i_block_reservation_lock);
f8ec9d68 1084 trace_ext4_da_update_reserve_space(inode, used);
0637c6f4
TT
1085 if (unlikely(used > ei->i_reserved_data_blocks)) {
1086 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1087 "with only %d reserved data blocks\n",
1088 __func__, inode->i_ino, used,
1089 ei->i_reserved_data_blocks);
1090 WARN_ON(1);
1091 used = ei->i_reserved_data_blocks;
1092 }
12219aea 1093
0637c6f4
TT
1094 /* Update per-inode reservations */
1095 ei->i_reserved_data_blocks -= used;
0637c6f4 1096 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
72b8ab9d
ES
1097 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1098 used + ei->i_allocated_meta_blocks);
0637c6f4 1099 ei->i_allocated_meta_blocks = 0;
6bc6e63f 1100
0637c6f4
TT
1101 if (ei->i_reserved_data_blocks == 0) {
1102 /*
1103 * We can release all of the reserved metadata blocks
1104 * only when we have written all of the delayed
1105 * allocation blocks.
1106 */
72b8ab9d
ES
1107 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1108 ei->i_reserved_meta_blocks);
ee5f4d9c 1109 ei->i_reserved_meta_blocks = 0;
9d0be502 1110 ei->i_da_metadata_calc_len = 0;
6bc6e63f 1111 }
12219aea 1112 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1113
72b8ab9d
ES
1114 /* Update quota subsystem for data blocks */
1115 if (quota_claim)
5dd4056d 1116 dquot_claim_block(inode, used);
72b8ab9d 1117 else {
5f634d06
AK
1118 /*
1119 * We did fallocate with an offset that is already delayed
1120 * allocated. So on delayed allocated writeback we should
72b8ab9d 1121 * not re-claim the quota for fallocated blocks.
5f634d06 1122 */
72b8ab9d 1123 dquot_release_reservation_block(inode, used);
5f634d06 1124 }
d6014301
AK
1125
1126 /*
1127 * If we have done all the pending block allocations and if
1128 * there aren't any writers on the inode, we can discard the
1129 * inode's preallocations.
1130 */
0637c6f4
TT
1131 if ((ei->i_reserved_data_blocks == 0) &&
1132 (atomic_read(&inode->i_writecount) == 0))
d6014301 1133 ext4_discard_preallocations(inode);
12219aea
AK
1134}
1135
e29136f8 1136static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
1137 unsigned int line,
1138 struct ext4_map_blocks *map)
6fd058f7 1139{
24676da4
TT
1140 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1141 map->m_len)) {
c398eda0
TT
1142 ext4_error_inode(inode, func, line, map->m_pblk,
1143 "lblock %lu mapped to illegal pblock "
1144 "(length %d)", (unsigned long) map->m_lblk,
1145 map->m_len);
6fd058f7
TT
1146 return -EIO;
1147 }
1148 return 0;
1149}
1150
e29136f8 1151#define check_block_validity(inode, map) \
c398eda0 1152 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 1153
55138e0b 1154/*
1f94533d
TT
1155 * Return the number of contiguous dirty pages in a given inode
1156 * starting at page frame idx.
55138e0b
TT
1157 */
1158static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1159 unsigned int max_pages)
1160{
1161 struct address_space *mapping = inode->i_mapping;
1162 pgoff_t index;
1163 struct pagevec pvec;
1164 pgoff_t num = 0;
1165 int i, nr_pages, done = 0;
1166
1167 if (max_pages == 0)
1168 return 0;
1169 pagevec_init(&pvec, 0);
1170 while (!done) {
1171 index = idx;
1172 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1173 PAGECACHE_TAG_DIRTY,
1174 (pgoff_t)PAGEVEC_SIZE);
1175 if (nr_pages == 0)
1176 break;
1177 for (i = 0; i < nr_pages; i++) {
1178 struct page *page = pvec.pages[i];
1179 struct buffer_head *bh, *head;
1180
1181 lock_page(page);
1182 if (unlikely(page->mapping != mapping) ||
1183 !PageDirty(page) ||
1184 PageWriteback(page) ||
1185 page->index != idx) {
1186 done = 1;
1187 unlock_page(page);
1188 break;
1189 }
1f94533d
TT
1190 if (page_has_buffers(page)) {
1191 bh = head = page_buffers(page);
1192 do {
1193 if (!buffer_delay(bh) &&
1194 !buffer_unwritten(bh))
1195 done = 1;
1196 bh = bh->b_this_page;
1197 } while (!done && (bh != head));
1198 }
55138e0b
TT
1199 unlock_page(page);
1200 if (done)
1201 break;
1202 idx++;
1203 num++;
1204 if (num >= max_pages)
1205 break;
1206 }
1207 pagevec_release(&pvec);
1208 }
1209 return num;
1210}
1211
f5ab0d1f 1212/*
e35fd660 1213 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 1214 * and returns if the blocks are already mapped.
f5ab0d1f 1215 *
f5ab0d1f
MC
1216 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1217 * and store the allocated blocks in the result buffer head and mark it
1218 * mapped.
1219 *
e35fd660
TT
1220 * If file type is extents based, it will call ext4_ext_map_blocks(),
1221 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
1222 * based files
1223 *
1224 * On success, it returns the number of blocks being mapped or allocate.
1225 * if create==0 and the blocks are pre-allocated and uninitialized block,
1226 * the result buffer head is unmapped. If the create ==1, it will make sure
1227 * the buffer head is mapped.
1228 *
1229 * It returns 0 if plain look up failed (blocks have not been allocated), in
1230 * that casem, buffer head is unmapped
1231 *
1232 * It returns the error in case of allocation failure.
1233 */
e35fd660
TT
1234int ext4_map_blocks(handle_t *handle, struct inode *inode,
1235 struct ext4_map_blocks *map, int flags)
0e855ac8
AK
1236{
1237 int retval;
f5ab0d1f 1238
e35fd660
TT
1239 map->m_flags = 0;
1240 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1241 "logical block %lu\n", inode->i_ino, flags, map->m_len,
1242 (unsigned long) map->m_lblk);
4df3d265 1243 /*
b920c755
TT
1244 * Try to see if we can get the block without requesting a new
1245 * file system block.
4df3d265
AK
1246 */
1247 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 1248 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 1249 retval = ext4_ext_map_blocks(handle, inode, map, 0);
0e855ac8 1250 } else {
e35fd660 1251 retval = ext4_ind_map_blocks(handle, inode, map, 0);
0e855ac8 1252 }
4df3d265 1253 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 1254
e35fd660 1255 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 1256 int ret = check_block_validity(inode, map);
6fd058f7
TT
1257 if (ret != 0)
1258 return ret;
1259 }
1260
f5ab0d1f 1261 /* If it is only a block(s) look up */
c2177057 1262 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
1263 return retval;
1264
1265 /*
1266 * Returns if the blocks have already allocated
1267 *
1268 * Note that if blocks have been preallocated
1269 * ext4_ext_get_block() returns th create = 0
1270 * with buffer head unmapped.
1271 */
e35fd660 1272 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
1273 return retval;
1274
2a8964d6
AK
1275 /*
1276 * When we call get_blocks without the create flag, the
1277 * BH_Unwritten flag could have gotten set if the blocks
1278 * requested were part of a uninitialized extent. We need to
1279 * clear this flag now that we are committed to convert all or
1280 * part of the uninitialized extent to be an initialized
1281 * extent. This is because we need to avoid the combination
1282 * of BH_Unwritten and BH_Mapped flags being simultaneously
1283 * set on the buffer_head.
1284 */
e35fd660 1285 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
2a8964d6 1286
4df3d265 1287 /*
f5ab0d1f
MC
1288 * New blocks allocate and/or writing to uninitialized extent
1289 * will possibly result in updating i_data, so we take
1290 * the write lock of i_data_sem, and call get_blocks()
1291 * with create == 1 flag.
4df3d265
AK
1292 */
1293 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1294
1295 /*
1296 * if the caller is from delayed allocation writeout path
1297 * we have already reserved fs blocks for allocation
1298 * let the underlying get_block() function know to
1299 * avoid double accounting
1300 */
c2177057 1301 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1302 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1303 /*
1304 * We need to check for EXT4 here because migrate
1305 * could have changed the inode type in between
1306 */
12e9b892 1307 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 1308 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 1309 } else {
e35fd660 1310 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 1311
e35fd660 1312 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
1313 /*
1314 * We allocated new blocks which will result in
1315 * i_data's format changing. Force the migrate
1316 * to fail by clearing migrate flags
1317 */
19f5fb7a 1318 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 1319 }
d2a17637 1320
5f634d06
AK
1321 /*
1322 * Update reserved blocks/metadata blocks after successful
1323 * block allocation which had been deferred till now. We don't
1324 * support fallocate for non extent files. So we can update
1325 * reserve space here.
1326 */
1327 if ((retval > 0) &&
1296cc85 1328 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
1329 ext4_da_update_reserve_space(inode, retval, 1);
1330 }
2ac3b6e0 1331 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1332 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
2ac3b6e0 1333
4df3d265 1334 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 1335 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 1336 int ret = check_block_validity(inode, map);
6fd058f7
TT
1337 if (ret != 0)
1338 return ret;
1339 }
0e855ac8
AK
1340 return retval;
1341}
1342
f3bd1f3f
MC
1343/* Maximum number of blocks we map for direct IO at once. */
1344#define DIO_MAX_BLOCKS 4096
1345
2ed88685
TT
1346static int _ext4_get_block(struct inode *inode, sector_t iblock,
1347 struct buffer_head *bh, int flags)
ac27a0ec 1348{
3e4fdaf8 1349 handle_t *handle = ext4_journal_current_handle();
2ed88685 1350 struct ext4_map_blocks map;
7fb5409d 1351 int ret = 0, started = 0;
f3bd1f3f 1352 int dio_credits;
ac27a0ec 1353
2ed88685
TT
1354 map.m_lblk = iblock;
1355 map.m_len = bh->b_size >> inode->i_blkbits;
1356
1357 if (flags && !handle) {
7fb5409d 1358 /* Direct IO write... */
2ed88685
TT
1359 if (map.m_len > DIO_MAX_BLOCKS)
1360 map.m_len = DIO_MAX_BLOCKS;
1361 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
f3bd1f3f 1362 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1363 if (IS_ERR(handle)) {
ac27a0ec 1364 ret = PTR_ERR(handle);
2ed88685 1365 return ret;
ac27a0ec 1366 }
7fb5409d 1367 started = 1;
ac27a0ec
DK
1368 }
1369
2ed88685 1370 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 1371 if (ret > 0) {
2ed88685
TT
1372 map_bh(bh, inode->i_sb, map.m_pblk);
1373 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1374 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 1375 ret = 0;
ac27a0ec 1376 }
7fb5409d
JK
1377 if (started)
1378 ext4_journal_stop(handle);
ac27a0ec
DK
1379 return ret;
1380}
1381
2ed88685
TT
1382int ext4_get_block(struct inode *inode, sector_t iblock,
1383 struct buffer_head *bh, int create)
1384{
1385 return _ext4_get_block(inode, iblock, bh,
1386 create ? EXT4_GET_BLOCKS_CREATE : 0);
1387}
1388
ac27a0ec
DK
1389/*
1390 * `handle' can be NULL if create is zero
1391 */
617ba13b 1392struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1393 ext4_lblk_t block, int create, int *errp)
ac27a0ec 1394{
2ed88685
TT
1395 struct ext4_map_blocks map;
1396 struct buffer_head *bh;
ac27a0ec
DK
1397 int fatal = 0, err;
1398
1399 J_ASSERT(handle != NULL || create == 0);
1400
2ed88685
TT
1401 map.m_lblk = block;
1402 map.m_len = 1;
1403 err = ext4_map_blocks(handle, inode, &map,
1404 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 1405
2ed88685
TT
1406 if (err < 0)
1407 *errp = err;
1408 if (err <= 0)
1409 return NULL;
1410 *errp = 0;
1411
1412 bh = sb_getblk(inode->i_sb, map.m_pblk);
1413 if (!bh) {
1414 *errp = -EIO;
1415 return NULL;
ac27a0ec 1416 }
2ed88685
TT
1417 if (map.m_flags & EXT4_MAP_NEW) {
1418 J_ASSERT(create != 0);
1419 J_ASSERT(handle != NULL);
ac27a0ec 1420
2ed88685
TT
1421 /*
1422 * Now that we do not always journal data, we should
1423 * keep in mind whether this should always journal the
1424 * new buffer as metadata. For now, regular file
1425 * writes use ext4_get_block instead, so it's not a
1426 * problem.
1427 */
1428 lock_buffer(bh);
1429 BUFFER_TRACE(bh, "call get_create_access");
1430 fatal = ext4_journal_get_create_access(handle, bh);
1431 if (!fatal && !buffer_uptodate(bh)) {
1432 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1433 set_buffer_uptodate(bh);
ac27a0ec 1434 }
2ed88685
TT
1435 unlock_buffer(bh);
1436 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1437 err = ext4_handle_dirty_metadata(handle, inode, bh);
1438 if (!fatal)
1439 fatal = err;
1440 } else {
1441 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 1442 }
2ed88685
TT
1443 if (fatal) {
1444 *errp = fatal;
1445 brelse(bh);
1446 bh = NULL;
1447 }
1448 return bh;
ac27a0ec
DK
1449}
1450
617ba13b 1451struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1452 ext4_lblk_t block, int create, int *err)
ac27a0ec 1453{
af5bc92d 1454 struct buffer_head *bh;
ac27a0ec 1455
617ba13b 1456 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1457 if (!bh)
1458 return bh;
1459 if (buffer_uptodate(bh))
1460 return bh;
1461 ll_rw_block(READ_META, 1, &bh);
1462 wait_on_buffer(bh);
1463 if (buffer_uptodate(bh))
1464 return bh;
1465 put_bh(bh);
1466 *err = -EIO;
1467 return NULL;
1468}
1469
af5bc92d
TT
1470static int walk_page_buffers(handle_t *handle,
1471 struct buffer_head *head,
1472 unsigned from,
1473 unsigned to,
1474 int *partial,
1475 int (*fn)(handle_t *handle,
1476 struct buffer_head *bh))
ac27a0ec
DK
1477{
1478 struct buffer_head *bh;
1479 unsigned block_start, block_end;
1480 unsigned blocksize = head->b_size;
1481 int err, ret = 0;
1482 struct buffer_head *next;
1483
af5bc92d
TT
1484 for (bh = head, block_start = 0;
1485 ret == 0 && (bh != head || !block_start);
de9a55b8 1486 block_start = block_end, bh = next) {
ac27a0ec
DK
1487 next = bh->b_this_page;
1488 block_end = block_start + blocksize;
1489 if (block_end <= from || block_start >= to) {
1490 if (partial && !buffer_uptodate(bh))
1491 *partial = 1;
1492 continue;
1493 }
1494 err = (*fn)(handle, bh);
1495 if (!ret)
1496 ret = err;
1497 }
1498 return ret;
1499}
1500
1501/*
1502 * To preserve ordering, it is essential that the hole instantiation and
1503 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1504 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1505 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1506 * prepare_write() is the right place.
1507 *
617ba13b
MC
1508 * Also, this function can nest inside ext4_writepage() ->
1509 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1510 * has generated enough buffer credits to do the whole page. So we won't
1511 * block on the journal in that case, which is good, because the caller may
1512 * be PF_MEMALLOC.
1513 *
617ba13b 1514 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1515 * quota file writes. If we were to commit the transaction while thus
1516 * reentered, there can be a deadlock - we would be holding a quota
1517 * lock, and the commit would never complete if another thread had a
1518 * transaction open and was blocking on the quota lock - a ranking
1519 * violation.
1520 *
dab291af 1521 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1522 * will _not_ run commit under these circumstances because handle->h_ref
1523 * is elevated. We'll still have enough credits for the tiny quotafile
1524 * write.
1525 */
1526static int do_journal_get_write_access(handle_t *handle,
de9a55b8 1527 struct buffer_head *bh)
ac27a0ec
DK
1528{
1529 if (!buffer_mapped(bh) || buffer_freed(bh))
1530 return 0;
617ba13b 1531 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1532}
1533
b9a4207d
JK
1534/*
1535 * Truncate blocks that were not used by write. We have to truncate the
1536 * pagecache as well so that corresponding buffers get properly unmapped.
1537 */
1538static void ext4_truncate_failed_write(struct inode *inode)
1539{
1540 truncate_inode_pages(inode->i_mapping, inode->i_size);
1541 ext4_truncate(inode);
1542}
1543
744692dc
JZ
1544static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1545 struct buffer_head *bh_result, int create);
bfc1af65 1546static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1547 loff_t pos, unsigned len, unsigned flags,
1548 struct page **pagep, void **fsdata)
ac27a0ec 1549{
af5bc92d 1550 struct inode *inode = mapping->host;
1938a150 1551 int ret, needed_blocks;
ac27a0ec
DK
1552 handle_t *handle;
1553 int retries = 0;
af5bc92d 1554 struct page *page;
de9a55b8 1555 pgoff_t index;
af5bc92d 1556 unsigned from, to;
bfc1af65 1557
9bffad1e 1558 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1559 /*
1560 * Reserve one block more for addition to orphan list in case
1561 * we allocate blocks but write fails for some reason
1562 */
1563 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 1564 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1565 from = pos & (PAGE_CACHE_SIZE - 1);
1566 to = from + len;
ac27a0ec
DK
1567
1568retry:
af5bc92d
TT
1569 handle = ext4_journal_start(inode, needed_blocks);
1570 if (IS_ERR(handle)) {
1571 ret = PTR_ERR(handle);
1572 goto out;
7479d2b9 1573 }
ac27a0ec 1574
ebd3610b
JK
1575 /* We cannot recurse into the filesystem as the transaction is already
1576 * started */
1577 flags |= AOP_FLAG_NOFS;
1578
54566b2c 1579 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1580 if (!page) {
1581 ext4_journal_stop(handle);
1582 ret = -ENOMEM;
1583 goto out;
1584 }
1585 *pagep = page;
1586
744692dc
JZ
1587 if (ext4_should_dioread_nolock(inode))
1588 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1589 fsdata, ext4_get_block_write);
1590 else
1591 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1592 fsdata, ext4_get_block);
bfc1af65
NP
1593
1594 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1595 ret = walk_page_buffers(handle, page_buffers(page),
1596 from, to, NULL, do_journal_get_write_access);
1597 }
bfc1af65
NP
1598
1599 if (ret) {
af5bc92d 1600 unlock_page(page);
af5bc92d 1601 page_cache_release(page);
ae4d5372
AK
1602 /*
1603 * block_write_begin may have instantiated a few blocks
1604 * outside i_size. Trim these off again. Don't need
1605 * i_size_read because we hold i_mutex.
1938a150
AK
1606 *
1607 * Add inode to orphan list in case we crash before
1608 * truncate finishes
ae4d5372 1609 */
ffacfa7a 1610 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1611 ext4_orphan_add(handle, inode);
1612
1613 ext4_journal_stop(handle);
1614 if (pos + len > inode->i_size) {
b9a4207d 1615 ext4_truncate_failed_write(inode);
de9a55b8 1616 /*
ffacfa7a 1617 * If truncate failed early the inode might
1938a150
AK
1618 * still be on the orphan list; we need to
1619 * make sure the inode is removed from the
1620 * orphan list in that case.
1621 */
1622 if (inode->i_nlink)
1623 ext4_orphan_del(NULL, inode);
1624 }
bfc1af65
NP
1625 }
1626
617ba13b 1627 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1628 goto retry;
7479d2b9 1629out:
ac27a0ec
DK
1630 return ret;
1631}
1632
bfc1af65
NP
1633/* For write_end() in data=journal mode */
1634static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1635{
1636 if (!buffer_mapped(bh) || buffer_freed(bh))
1637 return 0;
1638 set_buffer_uptodate(bh);
0390131b 1639 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1640}
1641
f8514083 1642static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
1643 struct address_space *mapping,
1644 loff_t pos, unsigned len, unsigned copied,
1645 struct page *page, void *fsdata)
f8514083
AK
1646{
1647 int i_size_changed = 0;
1648 struct inode *inode = mapping->host;
1649 handle_t *handle = ext4_journal_current_handle();
1650
1651 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1652
1653 /*
1654 * No need to use i_size_read() here, the i_size
1655 * cannot change under us because we hold i_mutex.
1656 *
1657 * But it's important to update i_size while still holding page lock:
1658 * page writeout could otherwise come in and zero beyond i_size.
1659 */
1660 if (pos + copied > inode->i_size) {
1661 i_size_write(inode, pos + copied);
1662 i_size_changed = 1;
1663 }
1664
1665 if (pos + copied > EXT4_I(inode)->i_disksize) {
1666 /* We need to mark inode dirty even if
1667 * new_i_size is less that inode->i_size
1668 * bu greater than i_disksize.(hint delalloc)
1669 */
1670 ext4_update_i_disksize(inode, (pos + copied));
1671 i_size_changed = 1;
1672 }
1673 unlock_page(page);
1674 page_cache_release(page);
1675
1676 /*
1677 * Don't mark the inode dirty under page lock. First, it unnecessarily
1678 * makes the holding time of page lock longer. Second, it forces lock
1679 * ordering of page lock and transaction start for journaling
1680 * filesystems.
1681 */
1682 if (i_size_changed)
1683 ext4_mark_inode_dirty(handle, inode);
1684
1685 return copied;
1686}
1687
ac27a0ec
DK
1688/*
1689 * We need to pick up the new inode size which generic_commit_write gave us
1690 * `file' can be NULL - eg, when called from page_symlink().
1691 *
617ba13b 1692 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1693 * buffers are managed internally.
1694 */
bfc1af65 1695static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
1696 struct address_space *mapping,
1697 loff_t pos, unsigned len, unsigned copied,
1698 struct page *page, void *fsdata)
ac27a0ec 1699{
617ba13b 1700 handle_t *handle = ext4_journal_current_handle();
cf108bca 1701 struct inode *inode = mapping->host;
ac27a0ec
DK
1702 int ret = 0, ret2;
1703
9bffad1e 1704 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 1705 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1706
1707 if (ret == 0) {
f8514083 1708 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1709 page, fsdata);
f8a87d89 1710 copied = ret2;
ffacfa7a 1711 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1712 /* if we have allocated more blocks and copied
1713 * less. We will have blocks allocated outside
1714 * inode->i_size. So truncate them
1715 */
1716 ext4_orphan_add(handle, inode);
f8a87d89
RK
1717 if (ret2 < 0)
1718 ret = ret2;
ac27a0ec 1719 }
617ba13b 1720 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1721 if (!ret)
1722 ret = ret2;
bfc1af65 1723
f8514083 1724 if (pos + len > inode->i_size) {
b9a4207d 1725 ext4_truncate_failed_write(inode);
de9a55b8 1726 /*
ffacfa7a 1727 * If truncate failed early the inode might still be
f8514083
AK
1728 * on the orphan list; we need to make sure the inode
1729 * is removed from the orphan list in that case.
1730 */
1731 if (inode->i_nlink)
1732 ext4_orphan_del(NULL, inode);
1733 }
1734
1735
bfc1af65 1736 return ret ? ret : copied;
ac27a0ec
DK
1737}
1738
bfc1af65 1739static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
1740 struct address_space *mapping,
1741 loff_t pos, unsigned len, unsigned copied,
1742 struct page *page, void *fsdata)
ac27a0ec 1743{
617ba13b 1744 handle_t *handle = ext4_journal_current_handle();
cf108bca 1745 struct inode *inode = mapping->host;
ac27a0ec 1746 int ret = 0, ret2;
ac27a0ec 1747
9bffad1e 1748 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 1749 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1750 page, fsdata);
f8a87d89 1751 copied = ret2;
ffacfa7a 1752 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1753 /* if we have allocated more blocks and copied
1754 * less. We will have blocks allocated outside
1755 * inode->i_size. So truncate them
1756 */
1757 ext4_orphan_add(handle, inode);
1758
f8a87d89
RK
1759 if (ret2 < 0)
1760 ret = ret2;
ac27a0ec 1761
617ba13b 1762 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1763 if (!ret)
1764 ret = ret2;
bfc1af65 1765
f8514083 1766 if (pos + len > inode->i_size) {
b9a4207d 1767 ext4_truncate_failed_write(inode);
de9a55b8 1768 /*
ffacfa7a 1769 * If truncate failed early the inode might still be
f8514083
AK
1770 * on the orphan list; we need to make sure the inode
1771 * is removed from the orphan list in that case.
1772 */
1773 if (inode->i_nlink)
1774 ext4_orphan_del(NULL, inode);
1775 }
1776
bfc1af65 1777 return ret ? ret : copied;
ac27a0ec
DK
1778}
1779
bfc1af65 1780static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1781 struct address_space *mapping,
1782 loff_t pos, unsigned len, unsigned copied,
1783 struct page *page, void *fsdata)
ac27a0ec 1784{
617ba13b 1785 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1786 struct inode *inode = mapping->host;
ac27a0ec
DK
1787 int ret = 0, ret2;
1788 int partial = 0;
bfc1af65 1789 unsigned from, to;
cf17fea6 1790 loff_t new_i_size;
ac27a0ec 1791
9bffad1e 1792 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1793 from = pos & (PAGE_CACHE_SIZE - 1);
1794 to = from + len;
1795
1796 if (copied < len) {
1797 if (!PageUptodate(page))
1798 copied = 0;
1799 page_zero_new_buffers(page, from+copied, to);
1800 }
ac27a0ec
DK
1801
1802 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1803 to, &partial, write_end_fn);
ac27a0ec
DK
1804 if (!partial)
1805 SetPageUptodate(page);
cf17fea6
AK
1806 new_i_size = pos + copied;
1807 if (new_i_size > inode->i_size)
bfc1af65 1808 i_size_write(inode, pos+copied);
19f5fb7a 1809 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
cf17fea6
AK
1810 if (new_i_size > EXT4_I(inode)->i_disksize) {
1811 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1812 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1813 if (!ret)
1814 ret = ret2;
1815 }
bfc1af65 1816
cf108bca 1817 unlock_page(page);
f8514083 1818 page_cache_release(page);
ffacfa7a 1819 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1820 /* if we have allocated more blocks and copied
1821 * less. We will have blocks allocated outside
1822 * inode->i_size. So truncate them
1823 */
1824 ext4_orphan_add(handle, inode);
1825
617ba13b 1826 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1827 if (!ret)
1828 ret = ret2;
f8514083 1829 if (pos + len > inode->i_size) {
b9a4207d 1830 ext4_truncate_failed_write(inode);
de9a55b8 1831 /*
ffacfa7a 1832 * If truncate failed early the inode might still be
f8514083
AK
1833 * on the orphan list; we need to make sure the inode
1834 * is removed from the orphan list in that case.
1835 */
1836 if (inode->i_nlink)
1837 ext4_orphan_del(NULL, inode);
1838 }
bfc1af65
NP
1839
1840 return ret ? ret : copied;
ac27a0ec 1841}
d2a17637 1842
9d0be502
TT
1843/*
1844 * Reserve a single block located at lblock
1845 */
1846static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
d2a17637 1847{
030ba6bc 1848 int retries = 0;
60e58e0f 1849 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1850 struct ext4_inode_info *ei = EXT4_I(inode);
72b8ab9d 1851 unsigned long md_needed;
5dd4056d 1852 int ret;
d2a17637
MC
1853
1854 /*
1855 * recalculate the amount of metadata blocks to reserve
1856 * in order to allocate nrblocks
1857 * worse case is one extent per block
1858 */
030ba6bc 1859repeat:
0637c6f4 1860 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1861 md_needed = ext4_calc_metadata_amount(inode, lblock);
f8ec9d68 1862 trace_ext4_da_reserve_space(inode, md_needed);
0637c6f4 1863 spin_unlock(&ei->i_block_reservation_lock);
d2a17637 1864
60e58e0f 1865 /*
72b8ab9d
ES
1866 * We will charge metadata quota at writeout time; this saves
1867 * us from metadata over-estimation, though we may go over by
1868 * a small amount in the end. Here we just reserve for data.
60e58e0f 1869 */
72b8ab9d 1870 ret = dquot_reserve_block(inode, 1);
5dd4056d
CH
1871 if (ret)
1872 return ret;
72b8ab9d
ES
1873 /*
1874 * We do still charge estimated metadata to the sb though;
1875 * we cannot afford to run out of free blocks.
1876 */
9d0be502 1877 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
72b8ab9d 1878 dquot_release_reservation_block(inode, 1);
030ba6bc
AK
1879 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1880 yield();
1881 goto repeat;
1882 }
d2a17637
MC
1883 return -ENOSPC;
1884 }
0637c6f4 1885 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1886 ei->i_reserved_data_blocks++;
0637c6f4
TT
1887 ei->i_reserved_meta_blocks += md_needed;
1888 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1889
d2a17637
MC
1890 return 0; /* success */
1891}
1892
12219aea 1893static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1894{
1895 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1896 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1897
cd213226
MC
1898 if (!to_free)
1899 return; /* Nothing to release, exit */
1900
d2a17637 1901 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1902
5a58ec87 1903 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1904 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1905 /*
0637c6f4
TT
1906 * if there aren't enough reserved blocks, then the
1907 * counter is messed up somewhere. Since this
1908 * function is called from invalidate page, it's
1909 * harmless to return without any action.
cd213226 1910 */
0637c6f4
TT
1911 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1912 "ino %lu, to_free %d with only %d reserved "
1913 "data blocks\n", inode->i_ino, to_free,
1914 ei->i_reserved_data_blocks);
1915 WARN_ON(1);
1916 to_free = ei->i_reserved_data_blocks;
cd213226 1917 }
0637c6f4 1918 ei->i_reserved_data_blocks -= to_free;
cd213226 1919
0637c6f4
TT
1920 if (ei->i_reserved_data_blocks == 0) {
1921 /*
1922 * We can release all of the reserved metadata blocks
1923 * only when we have written all of the delayed
1924 * allocation blocks.
1925 */
72b8ab9d
ES
1926 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1927 ei->i_reserved_meta_blocks);
ee5f4d9c 1928 ei->i_reserved_meta_blocks = 0;
9d0be502 1929 ei->i_da_metadata_calc_len = 0;
0637c6f4 1930 }
d2a17637 1931
72b8ab9d 1932 /* update fs dirty data blocks counter */
0637c6f4 1933 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
d2a17637 1934
d2a17637 1935 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1936
5dd4056d 1937 dquot_release_reservation_block(inode, to_free);
d2a17637
MC
1938}
1939
1940static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1941 unsigned long offset)
d2a17637
MC
1942{
1943 int to_release = 0;
1944 struct buffer_head *head, *bh;
1945 unsigned int curr_off = 0;
1946
1947 head = page_buffers(page);
1948 bh = head;
1949 do {
1950 unsigned int next_off = curr_off + bh->b_size;
1951
1952 if ((offset <= curr_off) && (buffer_delay(bh))) {
1953 to_release++;
1954 clear_buffer_delay(bh);
1955 }
1956 curr_off = next_off;
1957 } while ((bh = bh->b_this_page) != head);
12219aea 1958 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1959}
ac27a0ec 1960
64769240
AT
1961/*
1962 * Delayed allocation stuff
1963 */
1964
64769240
AT
1965/*
1966 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1967 * them with writepage() call back
64769240
AT
1968 *
1969 * @mpd->inode: inode
1970 * @mpd->first_page: first page of the extent
1971 * @mpd->next_page: page after the last page of the extent
64769240
AT
1972 *
1973 * By the time mpage_da_submit_io() is called we expect all blocks
1974 * to be allocated. this may be wrong if allocation failed.
1975 *
1976 * As pages are already locked by write_cache_pages(), we can't use it
1977 */
1978static int mpage_da_submit_io(struct mpage_da_data *mpd)
1979{
22208ded 1980 long pages_skipped;
791b7f08
AK
1981 struct pagevec pvec;
1982 unsigned long index, end;
1983 int ret = 0, err, nr_pages, i;
1984 struct inode *inode = mpd->inode;
1985 struct address_space *mapping = inode->i_mapping;
64769240
AT
1986
1987 BUG_ON(mpd->next_page <= mpd->first_page);
791b7f08
AK
1988 /*
1989 * We need to start from the first_page to the next_page - 1
1990 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1991 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1992 * at the currently mapped buffer_heads.
1993 */
64769240
AT
1994 index = mpd->first_page;
1995 end = mpd->next_page - 1;
1996
791b7f08 1997 pagevec_init(&pvec, 0);
64769240 1998 while (index <= end) {
791b7f08 1999 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
2000 if (nr_pages == 0)
2001 break;
2002 for (i = 0; i < nr_pages; i++) {
2003 struct page *page = pvec.pages[i];
2004
791b7f08
AK
2005 index = page->index;
2006 if (index > end)
2007 break;
2008 index++;
2009
2010 BUG_ON(!PageLocked(page));
2011 BUG_ON(PageWriteback(page));
2012
22208ded 2013 pages_skipped = mpd->wbc->pages_skipped;
a1d6cc56 2014 err = mapping->a_ops->writepage(page, mpd->wbc);
22208ded
AK
2015 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2016 /*
2017 * have successfully written the page
2018 * without skipping the same
2019 */
a1d6cc56 2020 mpd->pages_written++;
64769240
AT
2021 /*
2022 * In error case, we have to continue because
2023 * remaining pages are still locked
2024 * XXX: unlock and re-dirty them?
2025 */
2026 if (ret == 0)
2027 ret = err;
2028 }
2029 pagevec_release(&pvec);
2030 }
64769240
AT
2031 return ret;
2032}
2033
2034/*
2035 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2036 *
64769240 2037 * the function goes through all passed space and put actual disk
29fa89d0 2038 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
64769240 2039 */
2ed88685
TT
2040static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd,
2041 struct ext4_map_blocks *map)
64769240
AT
2042{
2043 struct inode *inode = mpd->inode;
2044 struct address_space *mapping = inode->i_mapping;
2ed88685
TT
2045 int blocks = map->m_len;
2046 sector_t pblock = map->m_pblk, cur_logical;
64769240 2047 struct buffer_head *head, *bh;
a1d6cc56 2048 pgoff_t index, end;
64769240
AT
2049 struct pagevec pvec;
2050 int nr_pages, i;
2051
2ed88685
TT
2052 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2053 end = (map->m_lblk + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
64769240
AT
2054 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2055
2056 pagevec_init(&pvec, 0);
2057
2058 while (index <= end) {
2059 /* XXX: optimize tail */
2060 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2061 if (nr_pages == 0)
2062 break;
2063 for (i = 0; i < nr_pages; i++) {
2064 struct page *page = pvec.pages[i];
2065
2066 index = page->index;
2067 if (index > end)
2068 break;
2069 index++;
2070
2071 BUG_ON(!PageLocked(page));
2072 BUG_ON(PageWriteback(page));
2073 BUG_ON(!page_has_buffers(page));
2074
2075 bh = page_buffers(page);
2076 head = bh;
2077
2078 /* skip blocks out of the range */
2079 do {
2ed88685 2080 if (cur_logical >= map->m_lblk)
64769240
AT
2081 break;
2082 cur_logical++;
2083 } while ((bh = bh->b_this_page) != head);
2084
2085 do {
2ed88685 2086 if (cur_logical >= map->m_lblk + blocks)
64769240 2087 break;
29fa89d0 2088
2ed88685 2089 if (buffer_delay(bh) || buffer_unwritten(bh)) {
29fa89d0
AK
2090
2091 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2092
2093 if (buffer_delay(bh)) {
2094 clear_buffer_delay(bh);
2095 bh->b_blocknr = pblock;
2096 } else {
2097 /*
2098 * unwritten already should have
2099 * blocknr assigned. Verify that
2100 */
2101 clear_buffer_unwritten(bh);
2102 BUG_ON(bh->b_blocknr != pblock);
2103 }
2104
61628a3f 2105 } else if (buffer_mapped(bh))
64769240 2106 BUG_ON(bh->b_blocknr != pblock);
64769240 2107
2ed88685 2108 if (map->m_flags & EXT4_MAP_UNINIT)
744692dc 2109 set_buffer_uninit(bh);
64769240
AT
2110 cur_logical++;
2111 pblock++;
2112 } while ((bh = bh->b_this_page) != head);
2113 }
2114 pagevec_release(&pvec);
2115 }
2116}
2117
2118
c4a0c46e
AK
2119static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2120 sector_t logical, long blk_cnt)
2121{
2122 int nr_pages, i;
2123 pgoff_t index, end;
2124 struct pagevec pvec;
2125 struct inode *inode = mpd->inode;
2126 struct address_space *mapping = inode->i_mapping;
2127
2128 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2129 end = (logical + blk_cnt - 1) >>
2130 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2131 while (index <= end) {
2132 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2133 if (nr_pages == 0)
2134 break;
2135 for (i = 0; i < nr_pages; i++) {
2136 struct page *page = pvec.pages[i];
9b1d0998 2137 if (page->index > end)
c4a0c46e 2138 break;
c4a0c46e
AK
2139 BUG_ON(!PageLocked(page));
2140 BUG_ON(PageWriteback(page));
2141 block_invalidatepage(page, 0);
2142 ClearPageUptodate(page);
2143 unlock_page(page);
2144 }
9b1d0998
JK
2145 index = pvec.pages[nr_pages - 1]->index + 1;
2146 pagevec_release(&pvec);
c4a0c46e
AK
2147 }
2148 return;
2149}
2150
df22291f
AK
2151static void ext4_print_free_blocks(struct inode *inode)
2152{
2153 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1693918e
TT
2154 printk(KERN_CRIT "Total free blocks count %lld\n",
2155 ext4_count_free_blocks(inode->i_sb));
2156 printk(KERN_CRIT "Free/Dirty block details\n");
2157 printk(KERN_CRIT "free_blocks=%lld\n",
2158 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2159 printk(KERN_CRIT "dirty_blocks=%lld\n",
2160 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2161 printk(KERN_CRIT "Block reservation details\n");
2162 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2163 EXT4_I(inode)->i_reserved_data_blocks);
2164 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2165 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
2166 return;
2167}
2168
64769240
AT
2169/*
2170 * mpage_da_map_blocks - go through given space
2171 *
8dc207c0 2172 * @mpd - bh describing space
64769240
AT
2173 *
2174 * The function skips space we know is already mapped to disk blocks.
2175 *
64769240 2176 */
ed5bde0b 2177static int mpage_da_map_blocks(struct mpage_da_data *mpd)
64769240 2178{
2ac3b6e0 2179 int err, blks, get_blocks_flags;
2ed88685 2180 struct ext4_map_blocks map;
2fa3cdfb
TT
2181 sector_t next = mpd->b_blocknr;
2182 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2183 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2184 handle_t *handle = NULL;
64769240
AT
2185
2186 /*
2187 * We consider only non-mapped and non-allocated blocks
2188 */
8dc207c0 2189 if ((mpd->b_state & (1 << BH_Mapped)) &&
29fa89d0
AK
2190 !(mpd->b_state & (1 << BH_Delay)) &&
2191 !(mpd->b_state & (1 << BH_Unwritten)))
c4a0c46e 2192 return 0;
2fa3cdfb
TT
2193
2194 /*
2195 * If we didn't accumulate anything to write simply return
2196 */
2197 if (!mpd->b_size)
2198 return 0;
2199
2200 handle = ext4_journal_current_handle();
2201 BUG_ON(!handle);
2202
79ffab34 2203 /*
2ac3b6e0
TT
2204 * Call ext4_get_blocks() to allocate any delayed allocation
2205 * blocks, or to convert an uninitialized extent to be
2206 * initialized (in the case where we have written into
2207 * one or more preallocated blocks).
2208 *
2209 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2210 * indicate that we are on the delayed allocation path. This
2211 * affects functions in many different parts of the allocation
2212 * call path. This flag exists primarily because we don't
2213 * want to change *many* call functions, so ext4_get_blocks()
2214 * will set the magic i_delalloc_reserved_flag once the
2215 * inode's allocation semaphore is taken.
2216 *
2217 * If the blocks in questions were delalloc blocks, set
2218 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2219 * variables are updated after the blocks have been allocated.
79ffab34 2220 */
2ed88685
TT
2221 map.m_lblk = next;
2222 map.m_len = max_blocks;
1296cc85 2223 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
744692dc
JZ
2224 if (ext4_should_dioread_nolock(mpd->inode))
2225 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 2226 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
2227 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2228
2ed88685 2229 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb
TT
2230 if (blks < 0) {
2231 err = blks;
ed5bde0b
TT
2232 /*
2233 * If get block returns with error we simply
2234 * return. Later writepage will redirty the page and
2235 * writepages will find the dirty page again
c4a0c46e
AK
2236 */
2237 if (err == -EAGAIN)
2238 return 0;
df22291f
AK
2239
2240 if (err == -ENOSPC &&
ed5bde0b 2241 ext4_count_free_blocks(mpd->inode->i_sb)) {
df22291f
AK
2242 mpd->retval = err;
2243 return 0;
2244 }
2245
c4a0c46e 2246 /*
ed5bde0b
TT
2247 * get block failure will cause us to loop in
2248 * writepages, because a_ops->writepage won't be able
2249 * to make progress. The page will be redirtied by
2250 * writepage and writepages will again try to write
2251 * the same.
c4a0c46e 2252 */
1693918e
TT
2253 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2254 "delayed block allocation failed for inode %lu at "
2255 "logical offset %llu with max blocks %zd with "
fbe845dd 2256 "error %d", mpd->inode->i_ino,
1693918e
TT
2257 (unsigned long long) next,
2258 mpd->b_size >> mpd->inode->i_blkbits, err);
2259 printk(KERN_CRIT "This should not happen!! "
2260 "Data will be lost\n");
030ba6bc 2261 if (err == -ENOSPC) {
df22291f 2262 ext4_print_free_blocks(mpd->inode);
030ba6bc 2263 }
2fa3cdfb 2264 /* invalidate all the pages */
c4a0c46e 2265 ext4_da_block_invalidatepages(mpd, next,
8dc207c0 2266 mpd->b_size >> mpd->inode->i_blkbits);
c4a0c46e
AK
2267 return err;
2268 }
2fa3cdfb
TT
2269 BUG_ON(blks == 0);
2270
2ed88685
TT
2271 if (map.m_flags & EXT4_MAP_NEW) {
2272 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2273 int i;
64769240 2274
2ed88685
TT
2275 for (i = 0; i < map.m_len; i++)
2276 unmap_underlying_metadata(bdev, map.m_pblk + i);
2277 }
64769240 2278
a1d6cc56
AK
2279 /*
2280 * If blocks are delayed marked, we need to
2281 * put actual blocknr and drop delayed bit
2282 */
8dc207c0
TT
2283 if ((mpd->b_state & (1 << BH_Delay)) ||
2284 (mpd->b_state & (1 << BH_Unwritten)))
2ed88685 2285 mpage_put_bnr_to_bhs(mpd, &map);
64769240 2286
2fa3cdfb
TT
2287 if (ext4_should_order_data(mpd->inode)) {
2288 err = ext4_jbd2_file_inode(handle, mpd->inode);
2289 if (err)
2290 return err;
2291 }
2292
2293 /*
03f5d8bc 2294 * Update on-disk size along with block allocation.
2fa3cdfb
TT
2295 */
2296 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2297 if (disksize > i_size_read(mpd->inode))
2298 disksize = i_size_read(mpd->inode);
2299 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2300 ext4_update_i_disksize(mpd->inode, disksize);
2301 return ext4_mark_inode_dirty(handle, mpd->inode);
2302 }
2303
c4a0c46e 2304 return 0;
64769240
AT
2305}
2306
bf068ee2
AK
2307#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2308 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
2309
2310/*
2311 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2312 *
2313 * @mpd->lbh - extent of blocks
2314 * @logical - logical number of the block in the file
2315 * @bh - bh of the block (used to access block's state)
2316 *
2317 * the function is used to collect contig. blocks in same state
2318 */
2319static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
2320 sector_t logical, size_t b_size,
2321 unsigned long b_state)
64769240 2322{
64769240 2323 sector_t next;
8dc207c0 2324 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 2325
c445e3e0
ES
2326 /*
2327 * XXX Don't go larger than mballoc is willing to allocate
2328 * This is a stopgap solution. We eventually need to fold
2329 * mpage_da_submit_io() into this function and then call
2330 * ext4_get_blocks() multiple times in a loop
2331 */
2332 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2333 goto flush_it;
2334
525f4ed8 2335 /* check if thereserved journal credits might overflow */
12e9b892 2336 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
525f4ed8
MC
2337 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2338 /*
2339 * With non-extent format we are limited by the journal
2340 * credit available. Total credit needed to insert
2341 * nrblocks contiguous blocks is dependent on the
2342 * nrblocks. So limit nrblocks.
2343 */
2344 goto flush_it;
2345 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2346 EXT4_MAX_TRANS_DATA) {
2347 /*
2348 * Adding the new buffer_head would make it cross the
2349 * allowed limit for which we have journal credit
2350 * reserved. So limit the new bh->b_size
2351 */
2352 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2353 mpd->inode->i_blkbits;
2354 /* we will do mpage_da_submit_io in the next loop */
2355 }
2356 }
64769240
AT
2357 /*
2358 * First block in the extent
2359 */
8dc207c0
TT
2360 if (mpd->b_size == 0) {
2361 mpd->b_blocknr = logical;
2362 mpd->b_size = b_size;
2363 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
2364 return;
2365 }
2366
8dc207c0 2367 next = mpd->b_blocknr + nrblocks;
64769240
AT
2368 /*
2369 * Can we merge the block to our big extent?
2370 */
8dc207c0
TT
2371 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2372 mpd->b_size += b_size;
64769240
AT
2373 return;
2374 }
2375
525f4ed8 2376flush_it:
64769240
AT
2377 /*
2378 * We couldn't merge the block to our extent, so we
2379 * need to flush current extent and start new one
2380 */
c4a0c46e
AK
2381 if (mpage_da_map_blocks(mpd) == 0)
2382 mpage_da_submit_io(mpd);
a1d6cc56
AK
2383 mpd->io_done = 1;
2384 return;
64769240
AT
2385}
2386
c364b22c 2387static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 2388{
c364b22c 2389 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
2390}
2391
64769240
AT
2392/*
2393 * __mpage_da_writepage - finds extent of pages and blocks
2394 *
2395 * @page: page to consider
2396 * @wbc: not used, we just follow rules
2397 * @data: context
2398 *
2399 * The function finds extents of pages and scan them for all blocks.
2400 */
2401static int __mpage_da_writepage(struct page *page,
2402 struct writeback_control *wbc, void *data)
2403{
2404 struct mpage_da_data *mpd = data;
2405 struct inode *inode = mpd->inode;
8dc207c0 2406 struct buffer_head *bh, *head;
64769240
AT
2407 sector_t logical;
2408
2409 /*
2410 * Can we merge this page to current extent?
2411 */
2412 if (mpd->next_page != page->index) {
2413 /*
2414 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 2415 * and start IO on them using writepage()
64769240
AT
2416 */
2417 if (mpd->next_page != mpd->first_page) {
c4a0c46e
AK
2418 if (mpage_da_map_blocks(mpd) == 0)
2419 mpage_da_submit_io(mpd);
a1d6cc56
AK
2420 /*
2421 * skip rest of the page in the page_vec
2422 */
2423 mpd->io_done = 1;
2424 redirty_page_for_writepage(wbc, page);
2425 unlock_page(page);
2426 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2427 }
2428
2429 /*
2430 * Start next extent of pages ...
2431 */
2432 mpd->first_page = page->index;
2433
2434 /*
2435 * ... and blocks
2436 */
8dc207c0
TT
2437 mpd->b_size = 0;
2438 mpd->b_state = 0;
2439 mpd->b_blocknr = 0;
64769240
AT
2440 }
2441
2442 mpd->next_page = page->index + 1;
2443 logical = (sector_t) page->index <<
2444 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2445
2446 if (!page_has_buffers(page)) {
8dc207c0
TT
2447 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2448 (1 << BH_Dirty) | (1 << BH_Uptodate));
a1d6cc56
AK
2449 if (mpd->io_done)
2450 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2451 } else {
2452 /*
2453 * Page with regular buffer heads, just add all dirty ones
2454 */
2455 head = page_buffers(page);
2456 bh = head;
2457 do {
2458 BUG_ON(buffer_locked(bh));
791b7f08
AK
2459 /*
2460 * We need to try to allocate
2461 * unmapped blocks in the same page.
2462 * Otherwise we won't make progress
43ce1d23 2463 * with the page in ext4_writepage
791b7f08 2464 */
c364b22c 2465 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
8dc207c0
TT
2466 mpage_add_bh_to_extent(mpd, logical,
2467 bh->b_size,
2468 bh->b_state);
a1d6cc56
AK
2469 if (mpd->io_done)
2470 return MPAGE_DA_EXTENT_TAIL;
791b7f08
AK
2471 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2472 /*
2473 * mapped dirty buffer. We need to update
2474 * the b_state because we look at
2475 * b_state in mpage_da_map_blocks. We don't
2476 * update b_size because if we find an
2477 * unmapped buffer_head later we need to
2478 * use the b_state flag of that buffer_head.
2479 */
8dc207c0
TT
2480 if (mpd->b_size == 0)
2481 mpd->b_state = bh->b_state & BH_FLAGS;
a1d6cc56 2482 }
64769240
AT
2483 logical++;
2484 } while ((bh = bh->b_this_page) != head);
2485 }
2486
2487 return 0;
2488}
2489
64769240 2490/*
b920c755
TT
2491 * This is a special get_blocks_t callback which is used by
2492 * ext4_da_write_begin(). It will either return mapped block or
2493 * reserve space for a single block.
29fa89d0
AK
2494 *
2495 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2496 * We also have b_blocknr = -1 and b_bdev initialized properly
2497 *
2498 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2499 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2500 * initialized properly.
64769240
AT
2501 */
2502static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2ed88685 2503 struct buffer_head *bh, int create)
64769240 2504{
2ed88685 2505 struct ext4_map_blocks map;
64769240 2506 int ret = 0;
33b9817e
AK
2507 sector_t invalid_block = ~((sector_t) 0xffff);
2508
2509 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2510 invalid_block = ~0;
64769240
AT
2511
2512 BUG_ON(create == 0);
2ed88685
TT
2513 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2514
2515 map.m_lblk = iblock;
2516 map.m_len = 1;
64769240
AT
2517
2518 /*
2519 * first, we need to know whether the block is allocated already
2520 * preallocated blocks are unmapped but should treated
2521 * the same as allocated blocks.
2522 */
2ed88685
TT
2523 ret = ext4_map_blocks(NULL, inode, &map, 0);
2524 if (ret < 0)
2525 return ret;
2526 if (ret == 0) {
2527 if (buffer_delay(bh))
2528 return 0; /* Not sure this could or should happen */
64769240
AT
2529 /*
2530 * XXX: __block_prepare_write() unmaps passed block,
2531 * is it OK?
2532 */
9d0be502 2533 ret = ext4_da_reserve_space(inode, iblock);
d2a17637
MC
2534 if (ret)
2535 /* not enough space to reserve */
2536 return ret;
2537
2ed88685
TT
2538 map_bh(bh, inode->i_sb, invalid_block);
2539 set_buffer_new(bh);
2540 set_buffer_delay(bh);
2541 return 0;
64769240
AT
2542 }
2543
2ed88685
TT
2544 map_bh(bh, inode->i_sb, map.m_pblk);
2545 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2546
2547 if (buffer_unwritten(bh)) {
2548 /* A delayed write to unwritten bh should be marked
2549 * new and mapped. Mapped ensures that we don't do
2550 * get_block multiple times when we write to the same
2551 * offset and new ensures that we do proper zero out
2552 * for partial write.
2553 */
2554 set_buffer_new(bh);
2555 set_buffer_mapped(bh);
2556 }
2557 return 0;
64769240 2558}
61628a3f 2559
b920c755
TT
2560/*
2561 * This function is used as a standard get_block_t calback function
2562 * when there is no desire to allocate any blocks. It is used as a
206f7ab4
CH
2563 * callback function for block_prepare_write() and block_write_full_page().
2564 * These functions should only try to map a single block at a time.
b920c755
TT
2565 *
2566 * Since this function doesn't do block allocations even if the caller
2567 * requests it by passing in create=1, it is critically important that
2568 * any caller checks to make sure that any buffer heads are returned
2569 * by this function are either all already mapped or marked for
206f7ab4
CH
2570 * delayed allocation before calling block_write_full_page(). Otherwise,
2571 * b_blocknr could be left unitialized, and the page write functions will
2572 * be taken by surprise.
b920c755
TT
2573 */
2574static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
2575 struct buffer_head *bh_result, int create)
2576{
a2dc52b5 2577 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2ed88685 2578 return _ext4_get_block(inode, iblock, bh_result, 0);
61628a3f
MC
2579}
2580
62e086be
AK
2581static int bget_one(handle_t *handle, struct buffer_head *bh)
2582{
2583 get_bh(bh);
2584 return 0;
2585}
2586
2587static int bput_one(handle_t *handle, struct buffer_head *bh)
2588{
2589 put_bh(bh);
2590 return 0;
2591}
2592
2593static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
2594 unsigned int len)
2595{
2596 struct address_space *mapping = page->mapping;
2597 struct inode *inode = mapping->host;
2598 struct buffer_head *page_bufs;
2599 handle_t *handle = NULL;
2600 int ret = 0;
2601 int err;
2602
2603 page_bufs = page_buffers(page);
2604 BUG_ON(!page_bufs);
2605 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2606 /* As soon as we unlock the page, it can go away, but we have
2607 * references to buffers so we are safe */
2608 unlock_page(page);
2609
2610 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2611 if (IS_ERR(handle)) {
2612 ret = PTR_ERR(handle);
2613 goto out;
2614 }
2615
2616 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2617 do_journal_get_write_access);
2618
2619 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2620 write_end_fn);
2621 if (ret == 0)
2622 ret = err;
2623 err = ext4_journal_stop(handle);
2624 if (!ret)
2625 ret = err;
2626
2627 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
19f5fb7a 2628 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be
AK
2629out:
2630 return ret;
2631}
2632
744692dc
JZ
2633static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2634static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2635
61628a3f 2636/*
43ce1d23
AK
2637 * Note that we don't need to start a transaction unless we're journaling data
2638 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2639 * need to file the inode to the transaction's list in ordered mode because if
2640 * we are writing back data added by write(), the inode is already there and if
2641 * we are writing back data modified via mmap(), noone guarantees in which
2642 * transaction the data will hit the disk. In case we are journaling data, we
2643 * cannot start transaction directly because transaction start ranks above page
2644 * lock so we have to do some magic.
2645 *
b920c755
TT
2646 * This function can get called via...
2647 * - ext4_da_writepages after taking page lock (have journal handle)
2648 * - journal_submit_inode_data_buffers (no journal handle)
2649 * - shrink_page_list via pdflush (no journal handle)
2650 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2651 *
2652 * We don't do any block allocation in this function. If we have page with
2653 * multiple blocks we need to write those buffer_heads that are mapped. This
2654 * is important for mmaped based write. So if we do with blocksize 1K
2655 * truncate(f, 1024);
2656 * a = mmap(f, 0, 4096);
2657 * a[0] = 'a';
2658 * truncate(f, 4096);
2659 * we have in the page first buffer_head mapped via page_mkwrite call back
2660 * but other bufer_heads would be unmapped but dirty(dirty done via the
2661 * do_wp_page). So writepage should write the first block. If we modify
2662 * the mmap area beyond 1024 we will again get a page_fault and the
2663 * page_mkwrite callback will do the block allocation and mark the
2664 * buffer_heads mapped.
2665 *
2666 * We redirty the page if we have any buffer_heads that is either delay or
2667 * unwritten in the page.
2668 *
2669 * We can get recursively called as show below.
2670 *
2671 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2672 * ext4_writepage()
2673 *
2674 * But since we don't do any block allocation we should not deadlock.
2675 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2676 */
43ce1d23 2677static int ext4_writepage(struct page *page,
62e086be 2678 struct writeback_control *wbc)
64769240 2679{
64769240 2680 int ret = 0;
61628a3f 2681 loff_t size;
498e5f24 2682 unsigned int len;
744692dc 2683 struct buffer_head *page_bufs = NULL;
61628a3f
MC
2684 struct inode *inode = page->mapping->host;
2685
43ce1d23 2686 trace_ext4_writepage(inode, page);
f0e6c985
AK
2687 size = i_size_read(inode);
2688 if (page->index == size >> PAGE_CACHE_SHIFT)
2689 len = size & ~PAGE_CACHE_MASK;
2690 else
2691 len = PAGE_CACHE_SIZE;
64769240 2692
f0e6c985 2693 if (page_has_buffers(page)) {
61628a3f 2694 page_bufs = page_buffers(page);
f0e6c985 2695 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2696 ext4_bh_delay_or_unwritten)) {
61628a3f 2697 /*
f0e6c985
AK
2698 * We don't want to do block allocation
2699 * So redirty the page and return
cd1aac32
AK
2700 * We may reach here when we do a journal commit
2701 * via journal_submit_inode_data_buffers.
2702 * If we don't have mapping block we just ignore
f0e6c985
AK
2703 * them. We can also reach here via shrink_page_list
2704 */
2705 redirty_page_for_writepage(wbc, page);
2706 unlock_page(page);
2707 return 0;
2708 }
2709 } else {
2710 /*
2711 * The test for page_has_buffers() is subtle:
2712 * We know the page is dirty but it lost buffers. That means
2713 * that at some moment in time after write_begin()/write_end()
2714 * has been called all buffers have been clean and thus they
2715 * must have been written at least once. So they are all
2716 * mapped and we can happily proceed with mapping them
2717 * and writing the page.
2718 *
2719 * Try to initialize the buffer_heads and check whether
2720 * all are mapped and non delay. We don't want to
2721 * do block allocation here.
2722 */
b767e78a 2723 ret = block_prepare_write(page, 0, len,
b920c755 2724 noalloc_get_block_write);
f0e6c985
AK
2725 if (!ret) {
2726 page_bufs = page_buffers(page);
2727 /* check whether all are mapped and non delay */
2728 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2729 ext4_bh_delay_or_unwritten)) {
f0e6c985
AK
2730 redirty_page_for_writepage(wbc, page);
2731 unlock_page(page);
2732 return 0;
2733 }
2734 } else {
2735 /*
2736 * We can't do block allocation here
2737 * so just redity the page and unlock
2738 * and return
61628a3f 2739 */
61628a3f
MC
2740 redirty_page_for_writepage(wbc, page);
2741 unlock_page(page);
2742 return 0;
2743 }
ed9b3e33 2744 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 2745 block_commit_write(page, 0, len);
64769240
AT
2746 }
2747
43ce1d23
AK
2748 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2749 /*
2750 * It's mmapped pagecache. Add buffers and journal it. There
2751 * doesn't seem much point in redirtying the page here.
2752 */
2753 ClearPageChecked(page);
3f0ca309 2754 return __ext4_journalled_writepage(page, len);
43ce1d23
AK
2755 }
2756
206f7ab4 2757 if (page_bufs && buffer_uninit(page_bufs)) {
744692dc
JZ
2758 ext4_set_bh_endio(page_bufs, inode);
2759 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2760 wbc, ext4_end_io_buffer_write);
2761 } else
b920c755
TT
2762 ret = block_write_full_page(page, noalloc_get_block_write,
2763 wbc);
64769240 2764
64769240
AT
2765 return ret;
2766}
2767
61628a3f 2768/*
525f4ed8
MC
2769 * This is called via ext4_da_writepages() to
2770 * calulate the total number of credits to reserve to fit
2771 * a single extent allocation into a single transaction,
2772 * ext4_da_writpeages() will loop calling this before
2773 * the block allocation.
61628a3f 2774 */
525f4ed8
MC
2775
2776static int ext4_da_writepages_trans_blocks(struct inode *inode)
2777{
2778 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2779
2780 /*
2781 * With non-extent format the journal credit needed to
2782 * insert nrblocks contiguous block is dependent on
2783 * number of contiguous block. So we will limit
2784 * number of contiguous block to a sane value
2785 */
12e9b892 2786 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
2787 (max_blocks > EXT4_MAX_TRANS_DATA))
2788 max_blocks = EXT4_MAX_TRANS_DATA;
2789
2790 return ext4_chunk_trans_blocks(inode, max_blocks);
2791}
61628a3f 2792
8e48dcfb
TT
2793/*
2794 * write_cache_pages_da - walk the list of dirty pages of the given
2795 * address space and call the callback function (which usually writes
2796 * the pages).
2797 *
2798 * This is a forked version of write_cache_pages(). Differences:
2799 * Range cyclic is ignored.
2800 * no_nrwrite_index_update is always presumed true
2801 */
2802static int write_cache_pages_da(struct address_space *mapping,
2803 struct writeback_control *wbc,
2804 struct mpage_da_data *mpd)
2805{
2806 int ret = 0;
2807 int done = 0;
2808 struct pagevec pvec;
2809 int nr_pages;
2810 pgoff_t index;
2811 pgoff_t end; /* Inclusive */
2812 long nr_to_write = wbc->nr_to_write;
2813
2814 pagevec_init(&pvec, 0);
2815 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2816 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2817
2818 while (!done && (index <= end)) {
2819 int i;
2820
2821 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2822 PAGECACHE_TAG_DIRTY,
2823 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2824 if (nr_pages == 0)
2825 break;
2826
2827 for (i = 0; i < nr_pages; i++) {
2828 struct page *page = pvec.pages[i];
2829
2830 /*
2831 * At this point, the page may be truncated or
2832 * invalidated (changing page->mapping to NULL), or
2833 * even swizzled back from swapper_space to tmpfs file
2834 * mapping. However, page->index will not change
2835 * because we have a reference on the page.
2836 */
2837 if (page->index > end) {
2838 done = 1;
2839 break;
2840 }
2841
2842 lock_page(page);
2843
2844 /*
2845 * Page truncated or invalidated. We can freely skip it
2846 * then, even for data integrity operations: the page
2847 * has disappeared concurrently, so there could be no
2848 * real expectation of this data interity operation
2849 * even if there is now a new, dirty page at the same
2850 * pagecache address.
2851 */
2852 if (unlikely(page->mapping != mapping)) {
2853continue_unlock:
2854 unlock_page(page);
2855 continue;
2856 }
2857
2858 if (!PageDirty(page)) {
2859 /* someone wrote it for us */
2860 goto continue_unlock;
2861 }
2862
2863 if (PageWriteback(page)) {
2864 if (wbc->sync_mode != WB_SYNC_NONE)
2865 wait_on_page_writeback(page);
2866 else
2867 goto continue_unlock;
2868 }
2869
2870 BUG_ON(PageWriteback(page));
2871 if (!clear_page_dirty_for_io(page))
2872 goto continue_unlock;
2873
2874 ret = __mpage_da_writepage(page, wbc, mpd);
2875 if (unlikely(ret)) {
2876 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2877 unlock_page(page);
2878 ret = 0;
2879 } else {
2880 done = 1;
2881 break;
2882 }
2883 }
2884
2885 if (nr_to_write > 0) {
2886 nr_to_write--;
2887 if (nr_to_write == 0 &&
2888 wbc->sync_mode == WB_SYNC_NONE) {
2889 /*
2890 * We stop writing back only if we are
2891 * not doing integrity sync. In case of
2892 * integrity sync we have to keep going
2893 * because someone may be concurrently
2894 * dirtying pages, and we might have
2895 * synced a lot of newly appeared dirty
2896 * pages, but have not synced all of the
2897 * old dirty pages.
2898 */
2899 done = 1;
2900 break;
2901 }
2902 }
2903 }
2904 pagevec_release(&pvec);
2905 cond_resched();
2906 }
2907 return ret;
2908}
2909
2910
64769240 2911static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2912 struct writeback_control *wbc)
64769240 2913{
22208ded
AK
2914 pgoff_t index;
2915 int range_whole = 0;
61628a3f 2916 handle_t *handle = NULL;
df22291f 2917 struct mpage_da_data mpd;
5e745b04 2918 struct inode *inode = mapping->host;
498e5f24
TT
2919 int pages_written = 0;
2920 long pages_skipped;
55138e0b 2921 unsigned int max_pages;
2acf2c26 2922 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2923 int needed_blocks, ret = 0;
2924 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2925 loff_t range_start = wbc->range_start;
5e745b04 2926 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f 2927
9bffad1e 2928 trace_ext4_da_writepages(inode, wbc);
ba80b101 2929
61628a3f
MC
2930 /*
2931 * No pages to write? This is mainly a kludge to avoid starting
2932 * a transaction for special inodes like journal inode on last iput()
2933 * because that could violate lock ordering on umount
2934 */
a1d6cc56 2935 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2936 return 0;
2a21e37e
TT
2937
2938 /*
2939 * If the filesystem has aborted, it is read-only, so return
2940 * right away instead of dumping stack traces later on that
2941 * will obscure the real source of the problem. We test
4ab2f15b 2942 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2943 * the latter could be true if the filesystem is mounted
2944 * read-only, and in that case, ext4_da_writepages should
2945 * *never* be called, so if that ever happens, we would want
2946 * the stack trace.
2947 */
4ab2f15b 2948 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2949 return -EROFS;
2950
22208ded
AK
2951 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2952 range_whole = 1;
61628a3f 2953
2acf2c26
AK
2954 range_cyclic = wbc->range_cyclic;
2955 if (wbc->range_cyclic) {
22208ded 2956 index = mapping->writeback_index;
2acf2c26
AK
2957 if (index)
2958 cycled = 0;
2959 wbc->range_start = index << PAGE_CACHE_SHIFT;
2960 wbc->range_end = LLONG_MAX;
2961 wbc->range_cyclic = 0;
2962 } else
22208ded 2963 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 2964
55138e0b
TT
2965 /*
2966 * This works around two forms of stupidity. The first is in
2967 * the writeback code, which caps the maximum number of pages
2968 * written to be 1024 pages. This is wrong on multiple
2969 * levels; different architectues have a different page size,
2970 * which changes the maximum amount of data which gets
2971 * written. Secondly, 4 megabytes is way too small. XFS
2972 * forces this value to be 16 megabytes by multiplying
2973 * nr_to_write parameter by four, and then relies on its
2974 * allocator to allocate larger extents to make them
2975 * contiguous. Unfortunately this brings us to the second
2976 * stupidity, which is that ext4's mballoc code only allocates
2977 * at most 2048 blocks. So we force contiguous writes up to
2978 * the number of dirty blocks in the inode, or
2979 * sbi->max_writeback_mb_bump whichever is smaller.
2980 */
2981 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2982 if (!range_cyclic && range_whole)
2983 desired_nr_to_write = wbc->nr_to_write * 8;
2984 else
2985 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2986 max_pages);
2987 if (desired_nr_to_write > max_pages)
2988 desired_nr_to_write = max_pages;
2989
2990 if (wbc->nr_to_write < desired_nr_to_write) {
2991 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2992 wbc->nr_to_write = desired_nr_to_write;
2993 }
2994
df22291f
AK
2995 mpd.wbc = wbc;
2996 mpd.inode = mapping->host;
2997
22208ded
AK
2998 pages_skipped = wbc->pages_skipped;
2999
2acf2c26 3000retry:
22208ded 3001 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
3002
3003 /*
3004 * we insert one extent at a time. So we need
3005 * credit needed for single extent allocation.
3006 * journalled mode is currently not supported
3007 * by delalloc
3008 */
3009 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 3010 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 3011
61628a3f
MC
3012 /* start a new transaction*/
3013 handle = ext4_journal_start(inode, needed_blocks);
3014 if (IS_ERR(handle)) {
3015 ret = PTR_ERR(handle);
1693918e 3016 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 3017 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 3018 wbc->nr_to_write, inode->i_ino, ret);
61628a3f
MC
3019 goto out_writepages;
3020 }
f63e6005
TT
3021
3022 /*
3023 * Now call __mpage_da_writepage to find the next
3024 * contiguous region of logical blocks that need
3025 * blocks to be allocated by ext4. We don't actually
3026 * submit the blocks for I/O here, even though
3027 * write_cache_pages thinks it will, and will set the
3028 * pages as clean for write before calling
3029 * __mpage_da_writepage().
3030 */
3031 mpd.b_size = 0;
3032 mpd.b_state = 0;
3033 mpd.b_blocknr = 0;
3034 mpd.first_page = 0;
3035 mpd.next_page = 0;
3036 mpd.io_done = 0;
3037 mpd.pages_written = 0;
3038 mpd.retval = 0;
8e48dcfb 3039 ret = write_cache_pages_da(mapping, wbc, &mpd);
f63e6005 3040 /*
af901ca1 3041 * If we have a contiguous extent of pages and we
f63e6005
TT
3042 * haven't done the I/O yet, map the blocks and submit
3043 * them for I/O.
3044 */
3045 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3046 if (mpage_da_map_blocks(&mpd) == 0)
3047 mpage_da_submit_io(&mpd);
3048 mpd.io_done = 1;
3049 ret = MPAGE_DA_EXTENT_TAIL;
3050 }
b3a3ca8c 3051 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 3052 wbc->nr_to_write -= mpd.pages_written;
df22291f 3053
61628a3f 3054 ext4_journal_stop(handle);
df22291f 3055
8f64b32e 3056 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
3057 /* commit the transaction which would
3058 * free blocks released in the transaction
3059 * and try again
3060 */
df22291f 3061 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
3062 wbc->pages_skipped = pages_skipped;
3063 ret = 0;
3064 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
3065 /*
3066 * got one extent now try with
3067 * rest of the pages
3068 */
22208ded
AK
3069 pages_written += mpd.pages_written;
3070 wbc->pages_skipped = pages_skipped;
a1d6cc56 3071 ret = 0;
2acf2c26 3072 io_done = 1;
22208ded 3073 } else if (wbc->nr_to_write)
61628a3f
MC
3074 /*
3075 * There is no more writeout needed
3076 * or we requested for a noblocking writeout
3077 * and we found the device congested
3078 */
61628a3f 3079 break;
a1d6cc56 3080 }
2acf2c26
AK
3081 if (!io_done && !cycled) {
3082 cycled = 1;
3083 index = 0;
3084 wbc->range_start = index << PAGE_CACHE_SHIFT;
3085 wbc->range_end = mapping->writeback_index - 1;
3086 goto retry;
3087 }
22208ded 3088 if (pages_skipped != wbc->pages_skipped)
1693918e
TT
3089 ext4_msg(inode->i_sb, KERN_CRIT,
3090 "This should not happen leaving %s "
fbe845dd 3091 "with nr_to_write = %ld ret = %d",
1693918e 3092 __func__, wbc->nr_to_write, ret);
22208ded
AK
3093
3094 /* Update index */
3095 index += pages_written;
2acf2c26 3096 wbc->range_cyclic = range_cyclic;
22208ded
AK
3097 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3098 /*
3099 * set the writeback_index so that range_cyclic
3100 * mode will write it back later
3101 */
3102 mapping->writeback_index = index;
a1d6cc56 3103
61628a3f 3104out_writepages:
2faf2e19 3105 wbc->nr_to_write -= nr_to_writebump;
de89de6e 3106 wbc->range_start = range_start;
9bffad1e 3107 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 3108 return ret;
64769240
AT
3109}
3110
79f0be8d
AK
3111#define FALL_BACK_TO_NONDELALLOC 1
3112static int ext4_nonda_switch(struct super_block *sb)
3113{
3114 s64 free_blocks, dirty_blocks;
3115 struct ext4_sb_info *sbi = EXT4_SB(sb);
3116
3117 /*
3118 * switch to non delalloc mode if we are running low
3119 * on free block. The free block accounting via percpu
179f7ebf 3120 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
3121 * accumulated on each CPU without updating global counters
3122 * Delalloc need an accurate free block accounting. So switch
3123 * to non delalloc when we are near to error range.
3124 */
3125 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3126 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3127 if (2 * free_blocks < 3 * dirty_blocks ||
3128 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3129 /*
c8afb446
ES
3130 * free block count is less than 150% of dirty blocks
3131 * or free blocks is less than watermark
79f0be8d
AK
3132 */
3133 return 1;
3134 }
c8afb446
ES
3135 /*
3136 * Even if we don't switch but are nearing capacity,
3137 * start pushing delalloc when 1/2 of free blocks are dirty.
3138 */
3139 if (free_blocks < 2 * dirty_blocks)
3140 writeback_inodes_sb_if_idle(sb);
3141
79f0be8d
AK
3142 return 0;
3143}
3144
64769240 3145static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
3146 loff_t pos, unsigned len, unsigned flags,
3147 struct page **pagep, void **fsdata)
64769240 3148{
72b8ab9d 3149 int ret, retries = 0;
64769240
AT
3150 struct page *page;
3151 pgoff_t index;
64769240
AT
3152 struct inode *inode = mapping->host;
3153 handle_t *handle;
3154
3155 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
3156
3157 if (ext4_nonda_switch(inode->i_sb)) {
3158 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3159 return ext4_write_begin(file, mapping, pos,
3160 len, flags, pagep, fsdata);
3161 }
3162 *fsdata = (void *)0;
9bffad1e 3163 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 3164retry:
64769240
AT
3165 /*
3166 * With delayed allocation, we don't log the i_disksize update
3167 * if there is delayed block allocation. But we still need
3168 * to journalling the i_disksize update if writes to the end
3169 * of file which has an already mapped buffer.
3170 */
3171 handle = ext4_journal_start(inode, 1);
3172 if (IS_ERR(handle)) {
3173 ret = PTR_ERR(handle);
3174 goto out;
3175 }
ebd3610b
JK
3176 /* We cannot recurse into the filesystem as the transaction is already
3177 * started */
3178 flags |= AOP_FLAG_NOFS;
64769240 3179
54566b2c 3180 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
3181 if (!page) {
3182 ext4_journal_stop(handle);
3183 ret = -ENOMEM;
3184 goto out;
3185 }
64769240
AT
3186 *pagep = page;
3187
3188 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
b920c755 3189 ext4_da_get_block_prep);
64769240
AT
3190 if (ret < 0) {
3191 unlock_page(page);
3192 ext4_journal_stop(handle);
3193 page_cache_release(page);
ae4d5372
AK
3194 /*
3195 * block_write_begin may have instantiated a few blocks
3196 * outside i_size. Trim these off again. Don't need
3197 * i_size_read because we hold i_mutex.
3198 */
3199 if (pos + len > inode->i_size)
b9a4207d 3200 ext4_truncate_failed_write(inode);
64769240
AT
3201 }
3202
d2a17637
MC
3203 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3204 goto retry;
64769240
AT
3205out:
3206 return ret;
3207}
3208
632eaeab
MC
3209/*
3210 * Check if we should update i_disksize
3211 * when write to the end of file but not require block allocation
3212 */
3213static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3214 unsigned long offset)
632eaeab
MC
3215{
3216 struct buffer_head *bh;
3217 struct inode *inode = page->mapping->host;
3218 unsigned int idx;
3219 int i;
3220
3221 bh = page_buffers(page);
3222 idx = offset >> inode->i_blkbits;
3223
af5bc92d 3224 for (i = 0; i < idx; i++)
632eaeab
MC
3225 bh = bh->b_this_page;
3226
29fa89d0 3227 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3228 return 0;
3229 return 1;
3230}
3231
64769240 3232static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3233 struct address_space *mapping,
3234 loff_t pos, unsigned len, unsigned copied,
3235 struct page *page, void *fsdata)
64769240
AT
3236{
3237 struct inode *inode = mapping->host;
3238 int ret = 0, ret2;
3239 handle_t *handle = ext4_journal_current_handle();
3240 loff_t new_i_size;
632eaeab 3241 unsigned long start, end;
79f0be8d
AK
3242 int write_mode = (int)(unsigned long)fsdata;
3243
3244 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3245 if (ext4_should_order_data(inode)) {
3246 return ext4_ordered_write_end(file, mapping, pos,
3247 len, copied, page, fsdata);
3248 } else if (ext4_should_writeback_data(inode)) {
3249 return ext4_writeback_write_end(file, mapping, pos,
3250 len, copied, page, fsdata);
3251 } else {
3252 BUG();
3253 }
3254 }
632eaeab 3255
9bffad1e 3256 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 3257 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 3258 end = start + copied - 1;
64769240
AT
3259
3260 /*
3261 * generic_write_end() will run mark_inode_dirty() if i_size
3262 * changes. So let's piggyback the i_disksize mark_inode_dirty
3263 * into that.
3264 */
3265
3266 new_i_size = pos + copied;
632eaeab
MC
3267 if (new_i_size > EXT4_I(inode)->i_disksize) {
3268 if (ext4_da_should_update_i_disksize(page, end)) {
3269 down_write(&EXT4_I(inode)->i_data_sem);
3270 if (new_i_size > EXT4_I(inode)->i_disksize) {
3271 /*
3272 * Updating i_disksize when extending file
3273 * without needing block allocation
3274 */
3275 if (ext4_should_order_data(inode))
3276 ret = ext4_jbd2_file_inode(handle,
3277 inode);
64769240 3278
632eaeab
MC
3279 EXT4_I(inode)->i_disksize = new_i_size;
3280 }
3281 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
3282 /* We need to mark inode dirty even if
3283 * new_i_size is less that inode->i_size
3284 * bu greater than i_disksize.(hint delalloc)
3285 */
3286 ext4_mark_inode_dirty(handle, inode);
64769240 3287 }
632eaeab 3288 }
64769240
AT
3289 ret2 = generic_write_end(file, mapping, pos, len, copied,
3290 page, fsdata);
3291 copied = ret2;
3292 if (ret2 < 0)
3293 ret = ret2;
3294 ret2 = ext4_journal_stop(handle);
3295 if (!ret)
3296 ret = ret2;
3297
3298 return ret ? ret : copied;
3299}
3300
3301static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3302{
64769240
AT
3303 /*
3304 * Drop reserved blocks
3305 */
3306 BUG_ON(!PageLocked(page));
3307 if (!page_has_buffers(page))
3308 goto out;
3309
d2a17637 3310 ext4_da_page_release_reservation(page, offset);
64769240
AT
3311
3312out:
3313 ext4_invalidatepage(page, offset);
3314
3315 return;
3316}
3317
ccd2506b
TT
3318/*
3319 * Force all delayed allocation blocks to be allocated for a given inode.
3320 */
3321int ext4_alloc_da_blocks(struct inode *inode)
3322{
fb40ba0d
TT
3323 trace_ext4_alloc_da_blocks(inode);
3324
ccd2506b
TT
3325 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3326 !EXT4_I(inode)->i_reserved_meta_blocks)
3327 return 0;
3328
3329 /*
3330 * We do something simple for now. The filemap_flush() will
3331 * also start triggering a write of the data blocks, which is
3332 * not strictly speaking necessary (and for users of
3333 * laptop_mode, not even desirable). However, to do otherwise
3334 * would require replicating code paths in:
de9a55b8 3335 *
ccd2506b
TT
3336 * ext4_da_writepages() ->
3337 * write_cache_pages() ---> (via passed in callback function)
3338 * __mpage_da_writepage() -->
3339 * mpage_add_bh_to_extent()
3340 * mpage_da_map_blocks()
3341 *
3342 * The problem is that write_cache_pages(), located in
3343 * mm/page-writeback.c, marks pages clean in preparation for
3344 * doing I/O, which is not desirable if we're not planning on
3345 * doing I/O at all.
3346 *
3347 * We could call write_cache_pages(), and then redirty all of
3348 * the pages by calling redirty_page_for_writeback() but that
3349 * would be ugly in the extreme. So instead we would need to
3350 * replicate parts of the code in the above functions,
3351 * simplifying them becuase we wouldn't actually intend to
3352 * write out the pages, but rather only collect contiguous
3353 * logical block extents, call the multi-block allocator, and
3354 * then update the buffer heads with the block allocations.
de9a55b8 3355 *
ccd2506b
TT
3356 * For now, though, we'll cheat by calling filemap_flush(),
3357 * which will map the blocks, and start the I/O, but not
3358 * actually wait for the I/O to complete.
3359 */
3360 return filemap_flush(inode->i_mapping);
3361}
64769240 3362
ac27a0ec
DK
3363/*
3364 * bmap() is special. It gets used by applications such as lilo and by
3365 * the swapper to find the on-disk block of a specific piece of data.
3366 *
3367 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3368 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3369 * filesystem and enables swap, then they may get a nasty shock when the
3370 * data getting swapped to that swapfile suddenly gets overwritten by
3371 * the original zero's written out previously to the journal and
3372 * awaiting writeback in the kernel's buffer cache.
3373 *
3374 * So, if we see any bmap calls here on a modified, data-journaled file,
3375 * take extra steps to flush any blocks which might be in the cache.
3376 */
617ba13b 3377static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3378{
3379 struct inode *inode = mapping->host;
3380 journal_t *journal;
3381 int err;
3382
64769240
AT
3383 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3384 test_opt(inode->i_sb, DELALLOC)) {
3385 /*
3386 * With delalloc we want to sync the file
3387 * so that we can make sure we allocate
3388 * blocks for file
3389 */
3390 filemap_write_and_wait(mapping);
3391 }
3392
19f5fb7a
TT
3393 if (EXT4_JOURNAL(inode) &&
3394 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
3395 /*
3396 * This is a REALLY heavyweight approach, but the use of
3397 * bmap on dirty files is expected to be extremely rare:
3398 * only if we run lilo or swapon on a freshly made file
3399 * do we expect this to happen.
3400 *
3401 * (bmap requires CAP_SYS_RAWIO so this does not
3402 * represent an unprivileged user DOS attack --- we'd be
3403 * in trouble if mortal users could trigger this path at
3404 * will.)
3405 *
617ba13b 3406 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3407 * regular files. If somebody wants to bmap a directory
3408 * or symlink and gets confused because the buffer
3409 * hasn't yet been flushed to disk, they deserve
3410 * everything they get.
3411 */
3412
19f5fb7a 3413 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 3414 journal = EXT4_JOURNAL(inode);
dab291af
MC
3415 jbd2_journal_lock_updates(journal);
3416 err = jbd2_journal_flush(journal);
3417 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3418
3419 if (err)
3420 return 0;
3421 }
3422
af5bc92d 3423 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3424}
3425
617ba13b 3426static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3427{
617ba13b 3428 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
3429}
3430
3431static int
617ba13b 3432ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3433 struct list_head *pages, unsigned nr_pages)
3434{
617ba13b 3435 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3436}
3437
744692dc
JZ
3438static void ext4_free_io_end(ext4_io_end_t *io)
3439{
3440 BUG_ON(!io);
3441 if (io->page)
3442 put_page(io->page);
3443 iput(io->inode);
3444 kfree(io);
3445}
3446
3447static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3448{
3449 struct buffer_head *head, *bh;
3450 unsigned int curr_off = 0;
3451
3452 if (!page_has_buffers(page))
3453 return;
3454 head = bh = page_buffers(page);
3455 do {
3456 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3457 && bh->b_private) {
3458 ext4_free_io_end(bh->b_private);
3459 bh->b_private = NULL;
3460 bh->b_end_io = NULL;
3461 }
3462 curr_off = curr_off + bh->b_size;
3463 bh = bh->b_this_page;
3464 } while (bh != head);
3465}
3466
617ba13b 3467static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3468{
617ba13b 3469 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3470
744692dc
JZ
3471 /*
3472 * free any io_end structure allocated for buffers to be discarded
3473 */
3474 if (ext4_should_dioread_nolock(page->mapping->host))
3475 ext4_invalidatepage_free_endio(page, offset);
ac27a0ec
DK
3476 /*
3477 * If it's a full truncate we just forget about the pending dirtying
3478 */
3479 if (offset == 0)
3480 ClearPageChecked(page);
3481
0390131b
FM
3482 if (journal)
3483 jbd2_journal_invalidatepage(journal, page, offset);
3484 else
3485 block_invalidatepage(page, offset);
ac27a0ec
DK
3486}
3487
617ba13b 3488static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3489{
617ba13b 3490 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3491
3492 WARN_ON(PageChecked(page));
3493 if (!page_has_buffers(page))
3494 return 0;
0390131b
FM
3495 if (journal)
3496 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3497 else
3498 return try_to_free_buffers(page);
ac27a0ec
DK
3499}
3500
3501/*
4c0425ff
MC
3502 * O_DIRECT for ext3 (or indirect map) based files
3503 *
ac27a0ec
DK
3504 * If the O_DIRECT write will extend the file then add this inode to the
3505 * orphan list. So recovery will truncate it back to the original size
3506 * if the machine crashes during the write.
3507 *
3508 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3509 * crashes then stale disk data _may_ be exposed inside the file. But current
3510 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3511 */
4c0425ff 3512static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
de9a55b8
TT
3513 const struct iovec *iov, loff_t offset,
3514 unsigned long nr_segs)
ac27a0ec
DK
3515{
3516 struct file *file = iocb->ki_filp;
3517 struct inode *inode = file->f_mapping->host;
617ba13b 3518 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3519 handle_t *handle;
ac27a0ec
DK
3520 ssize_t ret;
3521 int orphan = 0;
3522 size_t count = iov_length(iov, nr_segs);
fbbf6945 3523 int retries = 0;
ac27a0ec
DK
3524
3525 if (rw == WRITE) {
3526 loff_t final_size = offset + count;
3527
ac27a0ec 3528 if (final_size > inode->i_size) {
7fb5409d
JK
3529 /* Credits for sb + inode write */
3530 handle = ext4_journal_start(inode, 2);
3531 if (IS_ERR(handle)) {
3532 ret = PTR_ERR(handle);
3533 goto out;
3534 }
617ba13b 3535 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3536 if (ret) {
3537 ext4_journal_stop(handle);
3538 goto out;
3539 }
ac27a0ec
DK
3540 orphan = 1;
3541 ei->i_disksize = inode->i_size;
7fb5409d 3542 ext4_journal_stop(handle);
ac27a0ec
DK
3543 }
3544 }
3545
fbbf6945 3546retry:
b7adc1f3
JZ
3547 if (rw == READ && ext4_should_dioread_nolock(inode))
3548 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
3549 inode->i_sb->s_bdev, iov,
3550 offset, nr_segs,
3551 ext4_get_block, NULL);
3552 else
3553 ret = blockdev_direct_IO(rw, iocb, inode,
3554 inode->i_sb->s_bdev, iov,
ac27a0ec 3555 offset, nr_segs,
617ba13b 3556 ext4_get_block, NULL);
fbbf6945
ES
3557 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3558 goto retry;
ac27a0ec 3559
7fb5409d 3560 if (orphan) {
ac27a0ec
DK
3561 int err;
3562
7fb5409d
JK
3563 /* Credits for sb + inode write */
3564 handle = ext4_journal_start(inode, 2);
3565 if (IS_ERR(handle)) {
3566 /* This is really bad luck. We've written the data
3567 * but cannot extend i_size. Bail out and pretend
3568 * the write failed... */
3569 ret = PTR_ERR(handle);
da1dafca
DM
3570 if (inode->i_nlink)
3571 ext4_orphan_del(NULL, inode);
3572
7fb5409d
JK
3573 goto out;
3574 }
3575 if (inode->i_nlink)
617ba13b 3576 ext4_orphan_del(handle, inode);
7fb5409d 3577 if (ret > 0) {
ac27a0ec
DK
3578 loff_t end = offset + ret;
3579 if (end > inode->i_size) {
3580 ei->i_disksize = end;
3581 i_size_write(inode, end);
3582 /*
3583 * We're going to return a positive `ret'
3584 * here due to non-zero-length I/O, so there's
3585 * no way of reporting error returns from
617ba13b 3586 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3587 * ignore it.
3588 */
617ba13b 3589 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3590 }
3591 }
617ba13b 3592 err = ext4_journal_stop(handle);
ac27a0ec
DK
3593 if (ret == 0)
3594 ret = err;
3595 }
3596out:
3597 return ret;
3598}
3599
2ed88685
TT
3600/*
3601 * ext4_get_block used when preparing for a DIO write or buffer write.
3602 * We allocate an uinitialized extent if blocks haven't been allocated.
3603 * The extent will be converted to initialized after the IO is complete.
3604 */
c7064ef1 3605static int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
3606 struct buffer_head *bh_result, int create)
3607{
c7064ef1 3608 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 3609 inode->i_ino, create);
2ed88685
TT
3610 return _ext4_get_block(inode, iblock, bh_result,
3611 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
3612}
3613
c7064ef1 3614static void dump_completed_IO(struct inode * inode)
8d5d02e6
MC
3615{
3616#ifdef EXT4_DEBUG
3617 struct list_head *cur, *before, *after;
3618 ext4_io_end_t *io, *io0, *io1;
744692dc 3619 unsigned long flags;
8d5d02e6 3620
c7064ef1
JZ
3621 if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
3622 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
8d5d02e6
MC
3623 return;
3624 }
3625
c7064ef1 3626 ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
744692dc 3627 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
c7064ef1 3628 list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
8d5d02e6
MC
3629 cur = &io->list;
3630 before = cur->prev;
3631 io0 = container_of(before, ext4_io_end_t, list);
3632 after = cur->next;
3633 io1 = container_of(after, ext4_io_end_t, list);
3634
3635 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3636 io, inode->i_ino, io0, io1);
3637 }
744692dc 3638 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
8d5d02e6
MC
3639#endif
3640}
4c0425ff
MC
3641
3642/*
4c0425ff
MC
3643 * check a range of space and convert unwritten extents to written.
3644 */
c7064ef1 3645static int ext4_end_io_nolock(ext4_io_end_t *io)
4c0425ff 3646{
4c0425ff
MC
3647 struct inode *inode = io->inode;
3648 loff_t offset = io->offset;
a1de02dc 3649 ssize_t size = io->size;
4c0425ff 3650 int ret = 0;
4c0425ff 3651
c7064ef1 3652 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
8d5d02e6
MC
3653 "list->prev 0x%p\n",
3654 io, inode->i_ino, io->list.next, io->list.prev);
3655
3656 if (list_empty(&io->list))
3657 return ret;
3658
c7064ef1 3659 if (io->flag != EXT4_IO_UNWRITTEN)
8d5d02e6
MC
3660 return ret;
3661
744692dc 3662 ret = ext4_convert_unwritten_extents(inode, offset, size);
8d5d02e6 3663 if (ret < 0) {
4c0425ff 3664 printk(KERN_EMERG "%s: failed to convert unwritten"
8d5d02e6
MC
3665 "extents to written extents, error is %d"
3666 " io is still on inode %lu aio dio list\n",
3667 __func__, ret, inode->i_ino);
3668 return ret;
3669 }
4c0425ff 3670
8d5d02e6
MC
3671 /* clear the DIO AIO unwritten flag */
3672 io->flag = 0;
3673 return ret;
4c0425ff 3674}
c7064ef1 3675
8d5d02e6
MC
3676/*
3677 * work on completed aio dio IO, to convert unwritten extents to extents
3678 */
c7064ef1 3679static void ext4_end_io_work(struct work_struct *work)
8d5d02e6 3680{
744692dc
JZ
3681 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3682 struct inode *inode = io->inode;
3683 struct ext4_inode_info *ei = EXT4_I(inode);
3684 unsigned long flags;
3685 int ret;
4c0425ff 3686
8d5d02e6 3687 mutex_lock(&inode->i_mutex);
c7064ef1 3688 ret = ext4_end_io_nolock(io);
744692dc
JZ
3689 if (ret < 0) {
3690 mutex_unlock(&inode->i_mutex);
3691 return;
8d5d02e6 3692 }
744692dc
JZ
3693
3694 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3695 if (!list_empty(&io->list))
3696 list_del_init(&io->list);
3697 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
8d5d02e6 3698 mutex_unlock(&inode->i_mutex);
744692dc 3699 ext4_free_io_end(io);
8d5d02e6 3700}
c7064ef1 3701
8d5d02e6
MC
3702/*
3703 * This function is called from ext4_sync_file().
3704 *
c7064ef1
JZ
3705 * When IO is completed, the work to convert unwritten extents to
3706 * written is queued on workqueue but may not get immediately
8d5d02e6
MC
3707 * scheduled. When fsync is called, we need to ensure the
3708 * conversion is complete before fsync returns.
c7064ef1
JZ
3709 * The inode keeps track of a list of pending/completed IO that
3710 * might needs to do the conversion. This function walks through
3711 * the list and convert the related unwritten extents for completed IO
3712 * to written.
3713 * The function return the number of pending IOs on success.
8d5d02e6 3714 */
c7064ef1 3715int flush_completed_IO(struct inode *inode)
8d5d02e6
MC
3716{
3717 ext4_io_end_t *io;
744692dc
JZ
3718 struct ext4_inode_info *ei = EXT4_I(inode);
3719 unsigned long flags;
8d5d02e6
MC
3720 int ret = 0;
3721 int ret2 = 0;
3722
744692dc 3723 if (list_empty(&ei->i_completed_io_list))
8d5d02e6
MC
3724 return ret;
3725
c7064ef1 3726 dump_completed_IO(inode);
744692dc
JZ
3727 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3728 while (!list_empty(&ei->i_completed_io_list)){
3729 io = list_entry(ei->i_completed_io_list.next,
8d5d02e6
MC
3730 ext4_io_end_t, list);
3731 /*
c7064ef1 3732 * Calling ext4_end_io_nolock() to convert completed
8d5d02e6
MC
3733 * IO to written.
3734 *
3735 * When ext4_sync_file() is called, run_queue() may already
3736 * about to flush the work corresponding to this io structure.
3737 * It will be upset if it founds the io structure related
3738 * to the work-to-be schedule is freed.
3739 *
3740 * Thus we need to keep the io structure still valid here after
3741 * convertion finished. The io structure has a flag to
3742 * avoid double converting from both fsync and background work
3743 * queue work.
3744 */
744692dc 3745 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
c7064ef1 3746 ret = ext4_end_io_nolock(io);
744692dc 3747 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
8d5d02e6
MC
3748 if (ret < 0)
3749 ret2 = ret;
3750 else
3751 list_del_init(&io->list);
3752 }
744692dc 3753 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
8d5d02e6
MC
3754 return (ret2 < 0) ? ret2 : 0;
3755}
3756
744692dc 3757static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
4c0425ff
MC
3758{
3759 ext4_io_end_t *io = NULL;
3760
744692dc 3761 io = kmalloc(sizeof(*io), flags);
4c0425ff
MC
3762
3763 if (io) {
8d5d02e6 3764 igrab(inode);
4c0425ff 3765 io->inode = inode;
8d5d02e6 3766 io->flag = 0;
4c0425ff
MC
3767 io->offset = 0;
3768 io->size = 0;
744692dc 3769 io->page = NULL;
c7064ef1 3770 INIT_WORK(&io->work, ext4_end_io_work);
8d5d02e6 3771 INIT_LIST_HEAD(&io->list);
4c0425ff
MC
3772 }
3773
3774 return io;
3775}
3776
3777static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3778 ssize_t size, void *private)
3779{
3780 ext4_io_end_t *io_end = iocb->private;
3781 struct workqueue_struct *wq;
744692dc
JZ
3782 unsigned long flags;
3783 struct ext4_inode_info *ei;
4c0425ff 3784
4b70df18
M
3785 /* if not async direct IO or dio with 0 bytes write, just return */
3786 if (!io_end || !size)
3787 return;
3788
8d5d02e6
MC
3789 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3790 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3791 iocb->private, io_end->inode->i_ino, iocb, offset,
3792 size);
8d5d02e6
MC
3793
3794 /* if not aio dio with unwritten extents, just free io and return */
c7064ef1 3795 if (io_end->flag != EXT4_IO_UNWRITTEN){
8d5d02e6
MC
3796 ext4_free_io_end(io_end);
3797 iocb->private = NULL;
4c0425ff 3798 return;
8d5d02e6
MC
3799 }
3800
4c0425ff
MC
3801 io_end->offset = offset;
3802 io_end->size = size;
744692dc 3803 io_end->flag = EXT4_IO_UNWRITTEN;
4c0425ff
MC
3804 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3805
8d5d02e6 3806 /* queue the work to convert unwritten extents to written */
4c0425ff
MC
3807 queue_work(wq, &io_end->work);
3808
8d5d02e6 3809 /* Add the io_end to per-inode completed aio dio list*/
744692dc
JZ
3810 ei = EXT4_I(io_end->inode);
3811 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3812 list_add_tail(&io_end->list, &ei->i_completed_io_list);
3813 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
4c0425ff
MC
3814 iocb->private = NULL;
3815}
c7064ef1 3816
744692dc
JZ
3817static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3818{
3819 ext4_io_end_t *io_end = bh->b_private;
3820 struct workqueue_struct *wq;
3821 struct inode *inode;
3822 unsigned long flags;
3823
3824 if (!test_clear_buffer_uninit(bh) || !io_end)
3825 goto out;
3826
3827 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3828 printk("sb umounted, discard end_io request for inode %lu\n",
3829 io_end->inode->i_ino);
3830 ext4_free_io_end(io_end);
3831 goto out;
3832 }
3833
3834 io_end->flag = EXT4_IO_UNWRITTEN;
3835 inode = io_end->inode;
3836
3837 /* Add the io_end to per-inode completed io list*/
3838 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3839 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3840 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3841
3842 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3843 /* queue the work to convert unwritten extents to written */
3844 queue_work(wq, &io_end->work);
3845out:
3846 bh->b_private = NULL;
3847 bh->b_end_io = NULL;
3848 clear_buffer_uninit(bh);
3849 end_buffer_async_write(bh, uptodate);
3850}
3851
3852static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3853{
3854 ext4_io_end_t *io_end;
3855 struct page *page = bh->b_page;
3856 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3857 size_t size = bh->b_size;
3858
3859retry:
3860 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3861 if (!io_end) {
3862 if (printk_ratelimit())
3863 printk(KERN_WARNING "%s: allocation fail\n", __func__);
3864 schedule();
3865 goto retry;
3866 }
3867 io_end->offset = offset;
3868 io_end->size = size;
3869 /*
3870 * We need to hold a reference to the page to make sure it
3871 * doesn't get evicted before ext4_end_io_work() has a chance
3872 * to convert the extent from written to unwritten.
3873 */
3874 io_end->page = page;
3875 get_page(io_end->page);
3876
3877 bh->b_private = io_end;
3878 bh->b_end_io = ext4_end_io_buffer_write;
3879 return 0;
3880}
3881
4c0425ff
MC
3882/*
3883 * For ext4 extent files, ext4 will do direct-io write to holes,
3884 * preallocated extents, and those write extend the file, no need to
3885 * fall back to buffered IO.
3886 *
3887 * For holes, we fallocate those blocks, mark them as unintialized
3888 * If those blocks were preallocated, we mark sure they are splited, but
3889 * still keep the range to write as unintialized.
3890 *
8d5d02e6
MC
3891 * The unwrritten extents will be converted to written when DIO is completed.
3892 * For async direct IO, since the IO may still pending when return, we
3893 * set up an end_io call back function, which will do the convertion
3894 * when async direct IO completed.
4c0425ff
MC
3895 *
3896 * If the O_DIRECT write will extend the file then add this inode to the
3897 * orphan list. So recovery will truncate it back to the original size
3898 * if the machine crashes during the write.
3899 *
3900 */
3901static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3902 const struct iovec *iov, loff_t offset,
3903 unsigned long nr_segs)
3904{
3905 struct file *file = iocb->ki_filp;
3906 struct inode *inode = file->f_mapping->host;
3907 ssize_t ret;
3908 size_t count = iov_length(iov, nr_segs);
3909
3910 loff_t final_size = offset + count;
3911 if (rw == WRITE && final_size <= inode->i_size) {
3912 /*
8d5d02e6
MC
3913 * We could direct write to holes and fallocate.
3914 *
3915 * Allocated blocks to fill the hole are marked as uninitialized
4c0425ff
MC
3916 * to prevent paralel buffered read to expose the stale data
3917 * before DIO complete the data IO.
8d5d02e6
MC
3918 *
3919 * As to previously fallocated extents, ext4 get_block
4c0425ff
MC
3920 * will just simply mark the buffer mapped but still
3921 * keep the extents uninitialized.
3922 *
8d5d02e6
MC
3923 * for non AIO case, we will convert those unwritten extents
3924 * to written after return back from blockdev_direct_IO.
3925 *
3926 * for async DIO, the conversion needs to be defered when
3927 * the IO is completed. The ext4 end_io callback function
3928 * will be called to take care of the conversion work.
3929 * Here for async case, we allocate an io_end structure to
3930 * hook to the iocb.
4c0425ff 3931 */
8d5d02e6
MC
3932 iocb->private = NULL;
3933 EXT4_I(inode)->cur_aio_dio = NULL;
3934 if (!is_sync_kiocb(iocb)) {
744692dc 3935 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
8d5d02e6
MC
3936 if (!iocb->private)
3937 return -ENOMEM;
3938 /*
3939 * we save the io structure for current async
3940 * direct IO, so that later ext4_get_blocks()
3941 * could flag the io structure whether there
3942 * is a unwritten extents needs to be converted
3943 * when IO is completed.
3944 */
3945 EXT4_I(inode)->cur_aio_dio = iocb->private;
3946 }
3947
4c0425ff
MC
3948 ret = blockdev_direct_IO(rw, iocb, inode,
3949 inode->i_sb->s_bdev, iov,
3950 offset, nr_segs,
c7064ef1 3951 ext4_get_block_write,
4c0425ff 3952 ext4_end_io_dio);
8d5d02e6
MC
3953 if (iocb->private)
3954 EXT4_I(inode)->cur_aio_dio = NULL;
3955 /*
3956 * The io_end structure takes a reference to the inode,
3957 * that structure needs to be destroyed and the
3958 * reference to the inode need to be dropped, when IO is
3959 * complete, even with 0 byte write, or failed.
3960 *
3961 * In the successful AIO DIO case, the io_end structure will be
3962 * desctroyed and the reference to the inode will be dropped
3963 * after the end_io call back function is called.
3964 *
3965 * In the case there is 0 byte write, or error case, since
3966 * VFS direct IO won't invoke the end_io call back function,
3967 * we need to free the end_io structure here.
3968 */
3969 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3970 ext4_free_io_end(iocb->private);
3971 iocb->private = NULL;
19f5fb7a
TT
3972 } else if (ret > 0 && ext4_test_inode_state(inode,
3973 EXT4_STATE_DIO_UNWRITTEN)) {
109f5565 3974 int err;
8d5d02e6
MC
3975 /*
3976 * for non AIO case, since the IO is already
3977 * completed, we could do the convertion right here
3978 */
109f5565
M
3979 err = ext4_convert_unwritten_extents(inode,
3980 offset, ret);
3981 if (err < 0)
3982 ret = err;
19f5fb7a 3983 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
109f5565 3984 }
4c0425ff
MC
3985 return ret;
3986 }
8d5d02e6
MC
3987
3988 /* for write the the end of file case, we fall back to old way */
4c0425ff
MC
3989 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3990}
3991
3992static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3993 const struct iovec *iov, loff_t offset,
3994 unsigned long nr_segs)
3995{
3996 struct file *file = iocb->ki_filp;
3997 struct inode *inode = file->f_mapping->host;
3998
12e9b892 3999 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4c0425ff
MC
4000 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
4001
4002 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4003}
4004
ac27a0ec 4005/*
617ba13b 4006 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
4007 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
4008 * much here because ->set_page_dirty is called under VFS locks. The page is
4009 * not necessarily locked.
4010 *
4011 * We cannot just dirty the page and leave attached buffers clean, because the
4012 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
4013 * or jbddirty because all the journalling code will explode.
4014 *
4015 * So what we do is to mark the page "pending dirty" and next time writepage
4016 * is called, propagate that into the buffers appropriately.
4017 */
617ba13b 4018static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
4019{
4020 SetPageChecked(page);
4021 return __set_page_dirty_nobuffers(page);
4022}
4023
617ba13b 4024static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
4025 .readpage = ext4_readpage,
4026 .readpages = ext4_readpages,
43ce1d23 4027 .writepage = ext4_writepage,
8ab22b9a
HH
4028 .sync_page = block_sync_page,
4029 .write_begin = ext4_write_begin,
4030 .write_end = ext4_ordered_write_end,
4031 .bmap = ext4_bmap,
4032 .invalidatepage = ext4_invalidatepage,
4033 .releasepage = ext4_releasepage,
4034 .direct_IO = ext4_direct_IO,
4035 .migratepage = buffer_migrate_page,
4036 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4037 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
4038};
4039
617ba13b 4040static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
4041 .readpage = ext4_readpage,
4042 .readpages = ext4_readpages,
43ce1d23 4043 .writepage = ext4_writepage,
8ab22b9a
HH
4044 .sync_page = block_sync_page,
4045 .write_begin = ext4_write_begin,
4046 .write_end = ext4_writeback_write_end,
4047 .bmap = ext4_bmap,
4048 .invalidatepage = ext4_invalidatepage,
4049 .releasepage = ext4_releasepage,
4050 .direct_IO = ext4_direct_IO,
4051 .migratepage = buffer_migrate_page,
4052 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4053 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
4054};
4055
617ba13b 4056static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
4057 .readpage = ext4_readpage,
4058 .readpages = ext4_readpages,
43ce1d23 4059 .writepage = ext4_writepage,
8ab22b9a
HH
4060 .sync_page = block_sync_page,
4061 .write_begin = ext4_write_begin,
4062 .write_end = ext4_journalled_write_end,
4063 .set_page_dirty = ext4_journalled_set_page_dirty,
4064 .bmap = ext4_bmap,
4065 .invalidatepage = ext4_invalidatepage,
4066 .releasepage = ext4_releasepage,
4067 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4068 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
4069};
4070
64769240 4071static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
4072 .readpage = ext4_readpage,
4073 .readpages = ext4_readpages,
43ce1d23 4074 .writepage = ext4_writepage,
8ab22b9a
HH
4075 .writepages = ext4_da_writepages,
4076 .sync_page = block_sync_page,
4077 .write_begin = ext4_da_write_begin,
4078 .write_end = ext4_da_write_end,
4079 .bmap = ext4_bmap,
4080 .invalidatepage = ext4_da_invalidatepage,
4081 .releasepage = ext4_releasepage,
4082 .direct_IO = ext4_direct_IO,
4083 .migratepage = buffer_migrate_page,
4084 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4085 .error_remove_page = generic_error_remove_page,
64769240
AT
4086};
4087
617ba13b 4088void ext4_set_aops(struct inode *inode)
ac27a0ec 4089{
cd1aac32
AK
4090 if (ext4_should_order_data(inode) &&
4091 test_opt(inode->i_sb, DELALLOC))
4092 inode->i_mapping->a_ops = &ext4_da_aops;
4093 else if (ext4_should_order_data(inode))
617ba13b 4094 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
4095 else if (ext4_should_writeback_data(inode) &&
4096 test_opt(inode->i_sb, DELALLOC))
4097 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
4098 else if (ext4_should_writeback_data(inode))
4099 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 4100 else
617ba13b 4101 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
4102}
4103
4104/*
617ba13b 4105 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
4106 * up to the end of the block which corresponds to `from'.
4107 * This required during truncate. We need to physically zero the tail end
4108 * of that block so it doesn't yield old data if the file is later grown.
4109 */
cf108bca 4110int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
4111 struct address_space *mapping, loff_t from)
4112{
617ba13b 4113 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 4114 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
4115 unsigned blocksize, length, pos;
4116 ext4_lblk_t iblock;
ac27a0ec
DK
4117 struct inode *inode = mapping->host;
4118 struct buffer_head *bh;
cf108bca 4119 struct page *page;
ac27a0ec 4120 int err = 0;
ac27a0ec 4121
f4a01017
TT
4122 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4123 mapping_gfp_mask(mapping) & ~__GFP_FS);
cf108bca
JK
4124 if (!page)
4125 return -EINVAL;
4126
ac27a0ec
DK
4127 blocksize = inode->i_sb->s_blocksize;
4128 length = blocksize - (offset & (blocksize - 1));
4129 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4130
ac27a0ec
DK
4131 if (!page_has_buffers(page))
4132 create_empty_buffers(page, blocksize, 0);
4133
4134 /* Find the buffer that contains "offset" */
4135 bh = page_buffers(page);
4136 pos = blocksize;
4137 while (offset >= pos) {
4138 bh = bh->b_this_page;
4139 iblock++;
4140 pos += blocksize;
4141 }
4142
4143 err = 0;
4144 if (buffer_freed(bh)) {
4145 BUFFER_TRACE(bh, "freed: skip");
4146 goto unlock;
4147 }
4148
4149 if (!buffer_mapped(bh)) {
4150 BUFFER_TRACE(bh, "unmapped");
617ba13b 4151 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
4152 /* unmapped? It's a hole - nothing to do */
4153 if (!buffer_mapped(bh)) {
4154 BUFFER_TRACE(bh, "still unmapped");
4155 goto unlock;
4156 }
4157 }
4158
4159 /* Ok, it's mapped. Make sure it's up-to-date */
4160 if (PageUptodate(page))
4161 set_buffer_uptodate(bh);
4162
4163 if (!buffer_uptodate(bh)) {
4164 err = -EIO;
4165 ll_rw_block(READ, 1, &bh);
4166 wait_on_buffer(bh);
4167 /* Uhhuh. Read error. Complain and punt. */
4168 if (!buffer_uptodate(bh))
4169 goto unlock;
4170 }
4171
617ba13b 4172 if (ext4_should_journal_data(inode)) {
ac27a0ec 4173 BUFFER_TRACE(bh, "get write access");
617ba13b 4174 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
4175 if (err)
4176 goto unlock;
4177 }
4178
eebd2aa3 4179 zero_user(page, offset, length);
ac27a0ec
DK
4180
4181 BUFFER_TRACE(bh, "zeroed end of block");
4182
4183 err = 0;
617ba13b 4184 if (ext4_should_journal_data(inode)) {
0390131b 4185 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 4186 } else {
617ba13b 4187 if (ext4_should_order_data(inode))
678aaf48 4188 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
4189 mark_buffer_dirty(bh);
4190 }
4191
4192unlock:
4193 unlock_page(page);
4194 page_cache_release(page);
4195 return err;
4196}
4197
4198/*
4199 * Probably it should be a library function... search for first non-zero word
4200 * or memcmp with zero_page, whatever is better for particular architecture.
4201 * Linus?
4202 */
4203static inline int all_zeroes(__le32 *p, __le32 *q)
4204{
4205 while (p < q)
4206 if (*p++)
4207 return 0;
4208 return 1;
4209}
4210
4211/**
617ba13b 4212 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
4213 * @inode: inode in question
4214 * @depth: depth of the affected branch
617ba13b 4215 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
4216 * @chain: place to store the pointers to partial indirect blocks
4217 * @top: place to the (detached) top of branch
4218 *
617ba13b 4219 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
4220 *
4221 * When we do truncate() we may have to clean the ends of several
4222 * indirect blocks but leave the blocks themselves alive. Block is
4223 * partially truncated if some data below the new i_size is refered
4224 * from it (and it is on the path to the first completely truncated
4225 * data block, indeed). We have to free the top of that path along
4226 * with everything to the right of the path. Since no allocation
617ba13b 4227 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
4228 * finishes, we may safely do the latter, but top of branch may
4229 * require special attention - pageout below the truncation point
4230 * might try to populate it.
4231 *
4232 * We atomically detach the top of branch from the tree, store the
4233 * block number of its root in *@top, pointers to buffer_heads of
4234 * partially truncated blocks - in @chain[].bh and pointers to
4235 * their last elements that should not be removed - in
4236 * @chain[].p. Return value is the pointer to last filled element
4237 * of @chain.
4238 *
4239 * The work left to caller to do the actual freeing of subtrees:
4240 * a) free the subtree starting from *@top
4241 * b) free the subtrees whose roots are stored in
4242 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4243 * c) free the subtrees growing from the inode past the @chain[0].
4244 * (no partially truncated stuff there). */
4245
617ba13b 4246static Indirect *ext4_find_shared(struct inode *inode, int depth,
de9a55b8
TT
4247 ext4_lblk_t offsets[4], Indirect chain[4],
4248 __le32 *top)
ac27a0ec
DK
4249{
4250 Indirect *partial, *p;
4251 int k, err;
4252
4253 *top = 0;
bf48aabb 4254 /* Make k index the deepest non-null offset + 1 */
ac27a0ec
DK
4255 for (k = depth; k > 1 && !offsets[k-1]; k--)
4256 ;
617ba13b 4257 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
4258 /* Writer: pointers */
4259 if (!partial)
4260 partial = chain + k-1;
4261 /*
4262 * If the branch acquired continuation since we've looked at it -
4263 * fine, it should all survive and (new) top doesn't belong to us.
4264 */
4265 if (!partial->key && *partial->p)
4266 /* Writer: end */
4267 goto no_top;
af5bc92d 4268 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
4269 ;
4270 /*
4271 * OK, we've found the last block that must survive. The rest of our
4272 * branch should be detached before unlocking. However, if that rest
4273 * of branch is all ours and does not grow immediately from the inode
4274 * it's easier to cheat and just decrement partial->p.
4275 */
4276 if (p == chain + k - 1 && p > chain) {
4277 p->p--;
4278 } else {
4279 *top = *p->p;
617ba13b 4280 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
4281#if 0
4282 *p->p = 0;
4283#endif
4284 }
4285 /* Writer: end */
4286
af5bc92d 4287 while (partial > p) {
ac27a0ec
DK
4288 brelse(partial->bh);
4289 partial--;
4290 }
4291no_top:
4292 return partial;
4293}
4294
4295/*
4296 * Zero a number of block pointers in either an inode or an indirect block.
4297 * If we restart the transaction we must again get write access to the
4298 * indirect block for further modification.
4299 *
4300 * We release `count' blocks on disk, but (last - first) may be greater
4301 * than `count' because there can be holes in there.
4302 */
1f2acb60
TT
4303static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4304 struct buffer_head *bh,
4305 ext4_fsblk_t block_to_free,
4306 unsigned long count, __le32 *first,
4307 __le32 *last)
ac27a0ec
DK
4308{
4309 __le32 *p;
1f2acb60 4310 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
e6362609
TT
4311
4312 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4313 flags |= EXT4_FREE_BLOCKS_METADATA;
50689696 4314
1f2acb60
TT
4315 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4316 count)) {
24676da4
TT
4317 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4318 "blocks %llu len %lu",
4319 (unsigned long long) block_to_free, count);
1f2acb60
TT
4320 return 1;
4321 }
4322
ac27a0ec
DK
4323 if (try_to_extend_transaction(handle, inode)) {
4324 if (bh) {
0390131b
FM
4325 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4326 ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 4327 }
617ba13b 4328 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4329 ext4_truncate_restart_trans(handle, inode,
4330 blocks_for_truncate(inode));
ac27a0ec
DK
4331 if (bh) {
4332 BUFFER_TRACE(bh, "retaking write access");
617ba13b 4333 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
4334 }
4335 }
4336
e6362609
TT
4337 for (p = first; p < last; p++)
4338 *p = 0;
ac27a0ec 4339
e6362609 4340 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
1f2acb60 4341 return 0;
ac27a0ec
DK
4342}
4343
4344/**
617ba13b 4345 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
4346 * @handle: handle for this transaction
4347 * @inode: inode we are dealing with
4348 * @this_bh: indirect buffer_head which contains *@first and *@last
4349 * @first: array of block numbers
4350 * @last: points immediately past the end of array
4351 *
4352 * We are freeing all blocks refered from that array (numbers are stored as
4353 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4354 *
4355 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4356 * blocks are contiguous then releasing them at one time will only affect one
4357 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4358 * actually use a lot of journal space.
4359 *
4360 * @this_bh will be %NULL if @first and @last point into the inode's direct
4361 * block pointers.
4362 */
617ba13b 4363static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4364 struct buffer_head *this_bh,
4365 __le32 *first, __le32 *last)
4366{
617ba13b 4367 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
4368 unsigned long count = 0; /* Number of blocks in the run */
4369 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4370 corresponding to
4371 block_to_free */
617ba13b 4372 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
4373 __le32 *p; /* Pointer into inode/ind
4374 for current block */
4375 int err;
4376
4377 if (this_bh) { /* For indirect block */
4378 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 4379 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
4380 /* Important: if we can't update the indirect pointers
4381 * to the blocks, we can't free them. */
4382 if (err)
4383 return;
4384 }
4385
4386 for (p = first; p < last; p++) {
4387 nr = le32_to_cpu(*p);
4388 if (nr) {
4389 /* accumulate blocks to free if they're contiguous */
4390 if (count == 0) {
4391 block_to_free = nr;
4392 block_to_free_p = p;
4393 count = 1;
4394 } else if (nr == block_to_free + count) {
4395 count++;
4396 } else {
1f2acb60
TT
4397 if (ext4_clear_blocks(handle, inode, this_bh,
4398 block_to_free, count,
4399 block_to_free_p, p))
4400 break;
ac27a0ec
DK
4401 block_to_free = nr;
4402 block_to_free_p = p;
4403 count = 1;
4404 }
4405 }
4406 }
4407
4408 if (count > 0)
617ba13b 4409 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
4410 count, block_to_free_p, p);
4411
4412 if (this_bh) {
0390131b 4413 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
71dc8fbc
DG
4414
4415 /*
4416 * The buffer head should have an attached journal head at this
4417 * point. However, if the data is corrupted and an indirect
4418 * block pointed to itself, it would have been detached when
4419 * the block was cleared. Check for this instead of OOPSing.
4420 */
e7f07968 4421 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
0390131b 4422 ext4_handle_dirty_metadata(handle, inode, this_bh);
71dc8fbc 4423 else
24676da4
TT
4424 EXT4_ERROR_INODE(inode,
4425 "circular indirect block detected at "
4426 "block %llu",
4427 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
4428 }
4429}
4430
4431/**
617ba13b 4432 * ext4_free_branches - free an array of branches
ac27a0ec
DK
4433 * @handle: JBD handle for this transaction
4434 * @inode: inode we are dealing with
4435 * @parent_bh: the buffer_head which contains *@first and *@last
4436 * @first: array of block numbers
4437 * @last: pointer immediately past the end of array
4438 * @depth: depth of the branches to free
4439 *
4440 * We are freeing all blocks refered from these branches (numbers are
4441 * stored as little-endian 32-bit) and updating @inode->i_blocks
4442 * appropriately.
4443 */
617ba13b 4444static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4445 struct buffer_head *parent_bh,
4446 __le32 *first, __le32 *last, int depth)
4447{
617ba13b 4448 ext4_fsblk_t nr;
ac27a0ec
DK
4449 __le32 *p;
4450
0390131b 4451 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4452 return;
4453
4454 if (depth--) {
4455 struct buffer_head *bh;
617ba13b 4456 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
4457 p = last;
4458 while (--p >= first) {
4459 nr = le32_to_cpu(*p);
4460 if (!nr)
4461 continue; /* A hole */
4462
1f2acb60
TT
4463 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4464 nr, 1)) {
24676da4
TT
4465 EXT4_ERROR_INODE(inode,
4466 "invalid indirect mapped "
4467 "block %lu (level %d)",
4468 (unsigned long) nr, depth);
1f2acb60
TT
4469 break;
4470 }
4471
ac27a0ec
DK
4472 /* Go read the buffer for the next level down */
4473 bh = sb_bread(inode->i_sb, nr);
4474
4475 /*
4476 * A read failure? Report error and clear slot
4477 * (should be rare).
4478 */
4479 if (!bh) {
c398eda0
TT
4480 EXT4_ERROR_INODE_BLOCK(inode, nr,
4481 "Read failure");
ac27a0ec
DK
4482 continue;
4483 }
4484
4485 /* This zaps the entire block. Bottom up. */
4486 BUFFER_TRACE(bh, "free child branches");
617ba13b 4487 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
4488 (__le32 *) bh->b_data,
4489 (__le32 *) bh->b_data + addr_per_block,
4490 depth);
ac27a0ec 4491
ac27a0ec
DK
4492 /*
4493 * Everything below this this pointer has been
4494 * released. Now let this top-of-subtree go.
4495 *
4496 * We want the freeing of this indirect block to be
4497 * atomic in the journal with the updating of the
4498 * bitmap block which owns it. So make some room in
4499 * the journal.
4500 *
4501 * We zero the parent pointer *after* freeing its
4502 * pointee in the bitmaps, so if extend_transaction()
4503 * for some reason fails to put the bitmap changes and
4504 * the release into the same transaction, recovery
4505 * will merely complain about releasing a free block,
4506 * rather than leaking blocks.
4507 */
0390131b 4508 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4509 return;
4510 if (try_to_extend_transaction(handle, inode)) {
617ba13b 4511 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4512 ext4_truncate_restart_trans(handle, inode,
4513 blocks_for_truncate(inode));
ac27a0ec
DK
4514 }
4515
40389687
A
4516 /*
4517 * The forget flag here is critical because if
4518 * we are journaling (and not doing data
4519 * journaling), we have to make sure a revoke
4520 * record is written to prevent the journal
4521 * replay from overwriting the (former)
4522 * indirect block if it gets reallocated as a
4523 * data block. This must happen in the same
4524 * transaction where the data blocks are
4525 * actually freed.
4526 */
e6362609 4527 ext4_free_blocks(handle, inode, 0, nr, 1,
40389687
A
4528 EXT4_FREE_BLOCKS_METADATA|
4529 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec
DK
4530
4531 if (parent_bh) {
4532 /*
4533 * The block which we have just freed is
4534 * pointed to by an indirect block: journal it
4535 */
4536 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 4537 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
4538 parent_bh)){
4539 *p = 0;
4540 BUFFER_TRACE(parent_bh,
0390131b
FM
4541 "call ext4_handle_dirty_metadata");
4542 ext4_handle_dirty_metadata(handle,
4543 inode,
4544 parent_bh);
ac27a0ec
DK
4545 }
4546 }
4547 }
4548 } else {
4549 /* We have reached the bottom of the tree. */
4550 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 4551 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
4552 }
4553}
4554
91ef4caf
DG
4555int ext4_can_truncate(struct inode *inode)
4556{
4557 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4558 return 0;
4559 if (S_ISREG(inode->i_mode))
4560 return 1;
4561 if (S_ISDIR(inode->i_mode))
4562 return 1;
4563 if (S_ISLNK(inode->i_mode))
4564 return !ext4_inode_is_fast_symlink(inode);
4565 return 0;
4566}
4567
ac27a0ec 4568/*
617ba13b 4569 * ext4_truncate()
ac27a0ec 4570 *
617ba13b
MC
4571 * We block out ext4_get_block() block instantiations across the entire
4572 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4573 * simultaneously on behalf of the same inode.
4574 *
4575 * As we work through the truncate and commmit bits of it to the journal there
4576 * is one core, guiding principle: the file's tree must always be consistent on
4577 * disk. We must be able to restart the truncate after a crash.
4578 *
4579 * The file's tree may be transiently inconsistent in memory (although it
4580 * probably isn't), but whenever we close off and commit a journal transaction,
4581 * the contents of (the filesystem + the journal) must be consistent and
4582 * restartable. It's pretty simple, really: bottom up, right to left (although
4583 * left-to-right works OK too).
4584 *
4585 * Note that at recovery time, journal replay occurs *before* the restart of
4586 * truncate against the orphan inode list.
4587 *
4588 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4589 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4590 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4591 * ext4_truncate() to have another go. So there will be instantiated blocks
4592 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4593 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4594 * ext4_truncate() run will find them and release them.
ac27a0ec 4595 */
617ba13b 4596void ext4_truncate(struct inode *inode)
ac27a0ec
DK
4597{
4598 handle_t *handle;
617ba13b 4599 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4600 __le32 *i_data = ei->i_data;
617ba13b 4601 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 4602 struct address_space *mapping = inode->i_mapping;
725d26d3 4603 ext4_lblk_t offsets[4];
ac27a0ec
DK
4604 Indirect chain[4];
4605 Indirect *partial;
4606 __le32 nr = 0;
4607 int n;
725d26d3 4608 ext4_lblk_t last_block;
ac27a0ec 4609 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 4610
91ef4caf 4611 if (!ext4_can_truncate(inode))
ac27a0ec
DK
4612 return;
4613
12e9b892 4614 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 4615
5534fb5b 4616 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 4617 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 4618
12e9b892 4619 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
cf108bca 4620 ext4_ext_truncate(inode);
1d03ec98
AK
4621 return;
4622 }
a86c6181 4623
ac27a0ec 4624 handle = start_transaction(inode);
cf108bca 4625 if (IS_ERR(handle))
ac27a0ec 4626 return; /* AKPM: return what? */
ac27a0ec
DK
4627
4628 last_block = (inode->i_size + blocksize-1)
617ba13b 4629 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 4630
cf108bca
JK
4631 if (inode->i_size & (blocksize - 1))
4632 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4633 goto out_stop;
ac27a0ec 4634
617ba13b 4635 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
4636 if (n == 0)
4637 goto out_stop; /* error */
4638
4639 /*
4640 * OK. This truncate is going to happen. We add the inode to the
4641 * orphan list, so that if this truncate spans multiple transactions,
4642 * and we crash, we will resume the truncate when the filesystem
4643 * recovers. It also marks the inode dirty, to catch the new size.
4644 *
4645 * Implication: the file must always be in a sane, consistent
4646 * truncatable state while each transaction commits.
4647 */
617ba13b 4648 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
4649 goto out_stop;
4650
632eaeab
MC
4651 /*
4652 * From here we block out all ext4_get_block() callers who want to
4653 * modify the block allocation tree.
4654 */
4655 down_write(&ei->i_data_sem);
b4df2030 4656
c2ea3fde 4657 ext4_discard_preallocations(inode);
b4df2030 4658
ac27a0ec
DK
4659 /*
4660 * The orphan list entry will now protect us from any crash which
4661 * occurs before the truncate completes, so it is now safe to propagate
4662 * the new, shorter inode size (held for now in i_size) into the
4663 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 4664 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
4665 */
4666 ei->i_disksize = inode->i_size;
4667
ac27a0ec 4668 if (n == 1) { /* direct blocks */
617ba13b
MC
4669 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4670 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
4671 goto do_indirects;
4672 }
4673
617ba13b 4674 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
4675 /* Kill the top of shared branch (not detached) */
4676 if (nr) {
4677 if (partial == chain) {
4678 /* Shared branch grows from the inode */
617ba13b 4679 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
4680 &nr, &nr+1, (chain+n-1) - partial);
4681 *partial->p = 0;
4682 /*
4683 * We mark the inode dirty prior to restart,
4684 * and prior to stop. No need for it here.
4685 */
4686 } else {
4687 /* Shared branch grows from an indirect block */
4688 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 4689 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
4690 partial->p,
4691 partial->p+1, (chain+n-1) - partial);
4692 }
4693 }
4694 /* Clear the ends of indirect blocks on the shared branch */
4695 while (partial > chain) {
617ba13b 4696 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
4697 (__le32*)partial->bh->b_data+addr_per_block,
4698 (chain+n-1) - partial);
4699 BUFFER_TRACE(partial->bh, "call brelse");
de9a55b8 4700 brelse(partial->bh);
ac27a0ec
DK
4701 partial--;
4702 }
4703do_indirects:
4704 /* Kill the remaining (whole) subtrees */
4705 switch (offsets[0]) {
4706 default:
617ba13b 4707 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 4708 if (nr) {
617ba13b
MC
4709 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4710 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 4711 }
617ba13b
MC
4712 case EXT4_IND_BLOCK:
4713 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 4714 if (nr) {
617ba13b
MC
4715 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4716 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 4717 }
617ba13b
MC
4718 case EXT4_DIND_BLOCK:
4719 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 4720 if (nr) {
617ba13b
MC
4721 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4722 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 4723 }
617ba13b 4724 case EXT4_TIND_BLOCK:
ac27a0ec
DK
4725 ;
4726 }
4727
0e855ac8 4728 up_write(&ei->i_data_sem);
ef7f3835 4729 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 4730 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4731
4732 /*
4733 * In a multi-transaction truncate, we only make the final transaction
4734 * synchronous
4735 */
4736 if (IS_SYNC(inode))
0390131b 4737 ext4_handle_sync(handle);
ac27a0ec
DK
4738out_stop:
4739 /*
4740 * If this was a simple ftruncate(), and the file will remain alive
4741 * then we need to clear up the orphan record which we created above.
4742 * However, if this was a real unlink then we were called by
617ba13b 4743 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
4744 * orphan info for us.
4745 */
4746 if (inode->i_nlink)
617ba13b 4747 ext4_orphan_del(handle, inode);
ac27a0ec 4748
617ba13b 4749 ext4_journal_stop(handle);
ac27a0ec
DK
4750}
4751
ac27a0ec 4752/*
617ba13b 4753 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4754 * underlying buffer_head on success. If 'in_mem' is true, we have all
4755 * data in memory that is needed to recreate the on-disk version of this
4756 * inode.
4757 */
617ba13b
MC
4758static int __ext4_get_inode_loc(struct inode *inode,
4759 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4760{
240799cd
TT
4761 struct ext4_group_desc *gdp;
4762 struct buffer_head *bh;
4763 struct super_block *sb = inode->i_sb;
4764 ext4_fsblk_t block;
4765 int inodes_per_block, inode_offset;
4766
3a06d778 4767 iloc->bh = NULL;
240799cd
TT
4768 if (!ext4_valid_inum(sb, inode->i_ino))
4769 return -EIO;
ac27a0ec 4770
240799cd
TT
4771 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4772 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4773 if (!gdp)
ac27a0ec
DK
4774 return -EIO;
4775
240799cd
TT
4776 /*
4777 * Figure out the offset within the block group inode table
4778 */
4779 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4780 inode_offset = ((inode->i_ino - 1) %
4781 EXT4_INODES_PER_GROUP(sb));
4782 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4783 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4784
4785 bh = sb_getblk(sb, block);
ac27a0ec 4786 if (!bh) {
c398eda0
TT
4787 EXT4_ERROR_INODE_BLOCK(inode, block,
4788 "unable to read itable block");
ac27a0ec
DK
4789 return -EIO;
4790 }
4791 if (!buffer_uptodate(bh)) {
4792 lock_buffer(bh);
9c83a923
HK
4793
4794 /*
4795 * If the buffer has the write error flag, we have failed
4796 * to write out another inode in the same block. In this
4797 * case, we don't have to read the block because we may
4798 * read the old inode data successfully.
4799 */
4800 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4801 set_buffer_uptodate(bh);
4802
ac27a0ec
DK
4803 if (buffer_uptodate(bh)) {
4804 /* someone brought it uptodate while we waited */
4805 unlock_buffer(bh);
4806 goto has_buffer;
4807 }
4808
4809 /*
4810 * If we have all information of the inode in memory and this
4811 * is the only valid inode in the block, we need not read the
4812 * block.
4813 */
4814 if (in_mem) {
4815 struct buffer_head *bitmap_bh;
240799cd 4816 int i, start;
ac27a0ec 4817
240799cd 4818 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4819
240799cd
TT
4820 /* Is the inode bitmap in cache? */
4821 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
4822 if (!bitmap_bh)
4823 goto make_io;
4824
4825 /*
4826 * If the inode bitmap isn't in cache then the
4827 * optimisation may end up performing two reads instead
4828 * of one, so skip it.
4829 */
4830 if (!buffer_uptodate(bitmap_bh)) {
4831 brelse(bitmap_bh);
4832 goto make_io;
4833 }
240799cd 4834 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4835 if (i == inode_offset)
4836 continue;
617ba13b 4837 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4838 break;
4839 }
4840 brelse(bitmap_bh);
240799cd 4841 if (i == start + inodes_per_block) {
ac27a0ec
DK
4842 /* all other inodes are free, so skip I/O */
4843 memset(bh->b_data, 0, bh->b_size);
4844 set_buffer_uptodate(bh);
4845 unlock_buffer(bh);
4846 goto has_buffer;
4847 }
4848 }
4849
4850make_io:
240799cd
TT
4851 /*
4852 * If we need to do any I/O, try to pre-readahead extra
4853 * blocks from the inode table.
4854 */
4855 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4856 ext4_fsblk_t b, end, table;
4857 unsigned num;
4858
4859 table = ext4_inode_table(sb, gdp);
b713a5ec 4860 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
4861 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4862 if (table > b)
4863 b = table;
4864 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4865 num = EXT4_INODES_PER_GROUP(sb);
4866 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4867 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 4868 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4869 table += num / inodes_per_block;
4870 if (end > table)
4871 end = table;
4872 while (b <= end)
4873 sb_breadahead(sb, b++);
4874 }
4875
ac27a0ec
DK
4876 /*
4877 * There are other valid inodes in the buffer, this inode
4878 * has in-inode xattrs, or we don't have this inode in memory.
4879 * Read the block from disk.
4880 */
4881 get_bh(bh);
4882 bh->b_end_io = end_buffer_read_sync;
4883 submit_bh(READ_META, bh);
4884 wait_on_buffer(bh);
4885 if (!buffer_uptodate(bh)) {
c398eda0
TT
4886 EXT4_ERROR_INODE_BLOCK(inode, block,
4887 "unable to read itable block");
ac27a0ec
DK
4888 brelse(bh);
4889 return -EIO;
4890 }
4891 }
4892has_buffer:
4893 iloc->bh = bh;
4894 return 0;
4895}
4896
617ba13b 4897int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4898{
4899 /* We have all inode data except xattrs in memory here. */
617ba13b 4900 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4901 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4902}
4903
617ba13b 4904void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4905{
617ba13b 4906 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4907
4908 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4909 if (flags & EXT4_SYNC_FL)
ac27a0ec 4910 inode->i_flags |= S_SYNC;
617ba13b 4911 if (flags & EXT4_APPEND_FL)
ac27a0ec 4912 inode->i_flags |= S_APPEND;
617ba13b 4913 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4914 inode->i_flags |= S_IMMUTABLE;
617ba13b 4915 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4916 inode->i_flags |= S_NOATIME;
617ba13b 4917 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4918 inode->i_flags |= S_DIRSYNC;
4919}
4920
ff9ddf7e
JK
4921/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4922void ext4_get_inode_flags(struct ext4_inode_info *ei)
4923{
84a8dce2
DM
4924 unsigned int vfs_fl;
4925 unsigned long old_fl, new_fl;
4926
4927 do {
4928 vfs_fl = ei->vfs_inode.i_flags;
4929 old_fl = ei->i_flags;
4930 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4931 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4932 EXT4_DIRSYNC_FL);
4933 if (vfs_fl & S_SYNC)
4934 new_fl |= EXT4_SYNC_FL;
4935 if (vfs_fl & S_APPEND)
4936 new_fl |= EXT4_APPEND_FL;
4937 if (vfs_fl & S_IMMUTABLE)
4938 new_fl |= EXT4_IMMUTABLE_FL;
4939 if (vfs_fl & S_NOATIME)
4940 new_fl |= EXT4_NOATIME_FL;
4941 if (vfs_fl & S_DIRSYNC)
4942 new_fl |= EXT4_DIRSYNC_FL;
4943 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 4944}
de9a55b8 4945
0fc1b451 4946static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4947 struct ext4_inode_info *ei)
0fc1b451
AK
4948{
4949 blkcnt_t i_blocks ;
8180a562
AK
4950 struct inode *inode = &(ei->vfs_inode);
4951 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4952
4953 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4954 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4955 /* we are using combined 48 bit field */
4956 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4957 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4958 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4959 /* i_blocks represent file system block size */
4960 return i_blocks << (inode->i_blkbits - 9);
4961 } else {
4962 return i_blocks;
4963 }
0fc1b451
AK
4964 } else {
4965 return le32_to_cpu(raw_inode->i_blocks_lo);
4966 }
4967}
ff9ddf7e 4968
1d1fe1ee 4969struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4970{
617ba13b
MC
4971 struct ext4_iloc iloc;
4972 struct ext4_inode *raw_inode;
1d1fe1ee 4973 struct ext4_inode_info *ei;
1d1fe1ee 4974 struct inode *inode;
b436b9be 4975 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4976 long ret;
ac27a0ec
DK
4977 int block;
4978
1d1fe1ee
DH
4979 inode = iget_locked(sb, ino);
4980 if (!inode)
4981 return ERR_PTR(-ENOMEM);
4982 if (!(inode->i_state & I_NEW))
4983 return inode;
4984
4985 ei = EXT4_I(inode);
567f3e9a 4986 iloc.bh = 0;
ac27a0ec 4987
1d1fe1ee
DH
4988 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4989 if (ret < 0)
ac27a0ec 4990 goto bad_inode;
617ba13b 4991 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
4992 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4993 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4994 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4995 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4996 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4997 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4998 }
4999 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec 5000
19f5fb7a 5001 ei->i_state_flags = 0;
ac27a0ec
DK
5002 ei->i_dir_start_lookup = 0;
5003 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
5004 /* We now have enough fields to check if the inode was active or not.
5005 * This is needed because nfsd might try to access dead inodes
5006 * the test is that same one that e2fsck uses
5007 * NeilBrown 1999oct15
5008 */
5009 if (inode->i_nlink == 0) {
5010 if (inode->i_mode == 0 ||
617ba13b 5011 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 5012 /* this inode is deleted */
1d1fe1ee 5013 ret = -ESTALE;
ac27a0ec
DK
5014 goto bad_inode;
5015 }
5016 /* The only unlinked inodes we let through here have
5017 * valid i_mode and are being read by the orphan
5018 * recovery code: that's fine, we're about to complete
5019 * the process of deleting those. */
5020 }
ac27a0ec 5021 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 5022 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 5023 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 5024 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
5025 ei->i_file_acl |=
5026 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 5027 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 5028 ei->i_disksize = inode->i_size;
a9e7f447
DM
5029#ifdef CONFIG_QUOTA
5030 ei->i_reserved_quota = 0;
5031#endif
ac27a0ec
DK
5032 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5033 ei->i_block_group = iloc.block_group;
a4912123 5034 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
5035 /*
5036 * NOTE! The in-memory inode i_data array is in little-endian order
5037 * even on big-endian machines: we do NOT byteswap the block numbers!
5038 */
617ba13b 5039 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
5040 ei->i_data[block] = raw_inode->i_block[block];
5041 INIT_LIST_HEAD(&ei->i_orphan);
5042
b436b9be
JK
5043 /*
5044 * Set transaction id's of transactions that have to be committed
5045 * to finish f[data]sync. We set them to currently running transaction
5046 * as we cannot be sure that the inode or some of its metadata isn't
5047 * part of the transaction - the inode could have been reclaimed and
5048 * now it is reread from disk.
5049 */
5050 if (journal) {
5051 transaction_t *transaction;
5052 tid_t tid;
5053
5054 spin_lock(&journal->j_state_lock);
5055 if (journal->j_running_transaction)
5056 transaction = journal->j_running_transaction;
5057 else
5058 transaction = journal->j_committing_transaction;
5059 if (transaction)
5060 tid = transaction->t_tid;
5061 else
5062 tid = journal->j_commit_sequence;
5063 spin_unlock(&journal->j_state_lock);
5064 ei->i_sync_tid = tid;
5065 ei->i_datasync_tid = tid;
5066 }
5067
0040d987 5068 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 5069 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 5070 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 5071 EXT4_INODE_SIZE(inode->i_sb)) {
1d1fe1ee 5072 ret = -EIO;
ac27a0ec 5073 goto bad_inode;
e5d2861f 5074 }
ac27a0ec
DK
5075 if (ei->i_extra_isize == 0) {
5076 /* The extra space is currently unused. Use it. */
617ba13b
MC
5077 ei->i_extra_isize = sizeof(struct ext4_inode) -
5078 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
5079 } else {
5080 __le32 *magic = (void *)raw_inode +
617ba13b 5081 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 5082 ei->i_extra_isize;
617ba13b 5083 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
19f5fb7a 5084 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
ac27a0ec
DK
5085 }
5086 } else
5087 ei->i_extra_isize = 0;
5088
ef7f3835
KS
5089 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5090 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5091 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5092 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5093
25ec56b5
JNC
5094 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5095 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5096 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5097 inode->i_version |=
5098 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5099 }
5100
c4b5a614 5101 ret = 0;
485c26ec 5102 if (ei->i_file_acl &&
1032988c 5103 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
5104 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
5105 ei->i_file_acl);
485c26ec
TT
5106 ret = -EIO;
5107 goto bad_inode;
07a03824 5108 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
c4b5a614
TT
5109 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5110 (S_ISLNK(inode->i_mode) &&
5111 !ext4_inode_is_fast_symlink(inode)))
5112 /* Validate extent which is part of inode */
5113 ret = ext4_ext_check_inode(inode);
de9a55b8 5114 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
fe2c8191
TN
5115 (S_ISLNK(inode->i_mode) &&
5116 !ext4_inode_is_fast_symlink(inode))) {
de9a55b8 5117 /* Validate block references which are part of inode */
fe2c8191
TN
5118 ret = ext4_check_inode_blockref(inode);
5119 }
567f3e9a 5120 if (ret)
de9a55b8 5121 goto bad_inode;
7a262f7c 5122
ac27a0ec 5123 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
5124 inode->i_op = &ext4_file_inode_operations;
5125 inode->i_fop = &ext4_file_operations;
5126 ext4_set_aops(inode);
ac27a0ec 5127 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
5128 inode->i_op = &ext4_dir_inode_operations;
5129 inode->i_fop = &ext4_dir_operations;
ac27a0ec 5130 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 5131 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 5132 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
5133 nd_terminate_link(ei->i_data, inode->i_size,
5134 sizeof(ei->i_data) - 1);
5135 } else {
617ba13b
MC
5136 inode->i_op = &ext4_symlink_inode_operations;
5137 ext4_set_aops(inode);
ac27a0ec 5138 }
563bdd61
TT
5139 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5140 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 5141 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
5142 if (raw_inode->i_block[0])
5143 init_special_inode(inode, inode->i_mode,
5144 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5145 else
5146 init_special_inode(inode, inode->i_mode,
5147 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 5148 } else {
563bdd61 5149 ret = -EIO;
24676da4 5150 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 5151 goto bad_inode;
ac27a0ec 5152 }
af5bc92d 5153 brelse(iloc.bh);
617ba13b 5154 ext4_set_inode_flags(inode);
1d1fe1ee
DH
5155 unlock_new_inode(inode);
5156 return inode;
ac27a0ec
DK
5157
5158bad_inode:
567f3e9a 5159 brelse(iloc.bh);
1d1fe1ee
DH
5160 iget_failed(inode);
5161 return ERR_PTR(ret);
ac27a0ec
DK
5162}
5163
0fc1b451
AK
5164static int ext4_inode_blocks_set(handle_t *handle,
5165 struct ext4_inode *raw_inode,
5166 struct ext4_inode_info *ei)
5167{
5168 struct inode *inode = &(ei->vfs_inode);
5169 u64 i_blocks = inode->i_blocks;
5170 struct super_block *sb = inode->i_sb;
0fc1b451
AK
5171
5172 if (i_blocks <= ~0U) {
5173 /*
5174 * i_blocks can be represnted in a 32 bit variable
5175 * as multiple of 512 bytes
5176 */
8180a562 5177 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5178 raw_inode->i_blocks_high = 0;
84a8dce2 5179 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
5180 return 0;
5181 }
5182 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5183 return -EFBIG;
5184
5185 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
5186 /*
5187 * i_blocks can be represented in a 48 bit variable
5188 * as multiple of 512 bytes
5189 */
8180a562 5190 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5191 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 5192 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 5193 } else {
84a8dce2 5194 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
5195 /* i_block is stored in file system block size */
5196 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5197 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5198 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 5199 }
f287a1a5 5200 return 0;
0fc1b451
AK
5201}
5202
ac27a0ec
DK
5203/*
5204 * Post the struct inode info into an on-disk inode location in the
5205 * buffer-cache. This gobbles the caller's reference to the
5206 * buffer_head in the inode location struct.
5207 *
5208 * The caller must have write access to iloc->bh.
5209 */
617ba13b 5210static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 5211 struct inode *inode,
830156c7 5212 struct ext4_iloc *iloc)
ac27a0ec 5213{
617ba13b
MC
5214 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5215 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
5216 struct buffer_head *bh = iloc->bh;
5217 int err = 0, rc, block;
5218
5219 /* For fields not not tracking in the in-memory inode,
5220 * initialise them to zero for new inodes. */
19f5fb7a 5221 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 5222 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 5223
ff9ddf7e 5224 ext4_get_inode_flags(ei);
ac27a0ec 5225 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 5226 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
5227 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5228 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5229/*
5230 * Fix up interoperability with old kernels. Otherwise, old inodes get
5231 * re-used with the upper 16 bits of the uid/gid intact
5232 */
af5bc92d 5233 if (!ei->i_dtime) {
ac27a0ec
DK
5234 raw_inode->i_uid_high =
5235 cpu_to_le16(high_16_bits(inode->i_uid));
5236 raw_inode->i_gid_high =
5237 cpu_to_le16(high_16_bits(inode->i_gid));
5238 } else {
5239 raw_inode->i_uid_high = 0;
5240 raw_inode->i_gid_high = 0;
5241 }
5242 } else {
5243 raw_inode->i_uid_low =
5244 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5245 raw_inode->i_gid_low =
5246 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5247 raw_inode->i_uid_high = 0;
5248 raw_inode->i_gid_high = 0;
5249 }
5250 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
5251
5252 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5253 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5254 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5255 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5256
0fc1b451
AK
5257 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5258 goto out_brelse;
ac27a0ec 5259 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1b9c12f4 5260 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
9b8f1f01
MC
5261 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5262 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
5263 raw_inode->i_file_acl_high =
5264 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 5265 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
5266 ext4_isize_set(raw_inode, ei->i_disksize);
5267 if (ei->i_disksize > 0x7fffffffULL) {
5268 struct super_block *sb = inode->i_sb;
5269 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5270 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5271 EXT4_SB(sb)->s_es->s_rev_level ==
5272 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5273 /* If this is the first large file
5274 * created, add a flag to the superblock.
5275 */
5276 err = ext4_journal_get_write_access(handle,
5277 EXT4_SB(sb)->s_sbh);
5278 if (err)
5279 goto out_brelse;
5280 ext4_update_dynamic_rev(sb);
5281 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 5282 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 5283 sb->s_dirt = 1;
0390131b 5284 ext4_handle_sync(handle);
73b50c1c 5285 err = ext4_handle_dirty_metadata(handle, NULL,
a48380f7 5286 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
5287 }
5288 }
5289 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5290 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5291 if (old_valid_dev(inode->i_rdev)) {
5292 raw_inode->i_block[0] =
5293 cpu_to_le32(old_encode_dev(inode->i_rdev));
5294 raw_inode->i_block[1] = 0;
5295 } else {
5296 raw_inode->i_block[0] = 0;
5297 raw_inode->i_block[1] =
5298 cpu_to_le32(new_encode_dev(inode->i_rdev));
5299 raw_inode->i_block[2] = 0;
5300 }
de9a55b8
TT
5301 } else
5302 for (block = 0; block < EXT4_N_BLOCKS; block++)
5303 raw_inode->i_block[block] = ei->i_data[block];
ac27a0ec 5304
25ec56b5
JNC
5305 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5306 if (ei->i_extra_isize) {
5307 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5308 raw_inode->i_version_hi =
5309 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 5310 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
5311 }
5312
830156c7 5313 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 5314 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
5315 if (!err)
5316 err = rc;
19f5fb7a 5317 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 5318
b436b9be 5319 ext4_update_inode_fsync_trans(handle, inode, 0);
ac27a0ec 5320out_brelse:
af5bc92d 5321 brelse(bh);
617ba13b 5322 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5323 return err;
5324}
5325
5326/*
617ba13b 5327 * ext4_write_inode()
ac27a0ec
DK
5328 *
5329 * We are called from a few places:
5330 *
5331 * - Within generic_file_write() for O_SYNC files.
5332 * Here, there will be no transaction running. We wait for any running
5333 * trasnaction to commit.
5334 *
5335 * - Within sys_sync(), kupdate and such.
5336 * We wait on commit, if tol to.
5337 *
5338 * - Within prune_icache() (PF_MEMALLOC == true)
5339 * Here we simply return. We can't afford to block kswapd on the
5340 * journal commit.
5341 *
5342 * In all cases it is actually safe for us to return without doing anything,
5343 * because the inode has been copied into a raw inode buffer in
617ba13b 5344 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
5345 * knfsd.
5346 *
5347 * Note that we are absolutely dependent upon all inode dirtiers doing the
5348 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5349 * which we are interested.
5350 *
5351 * It would be a bug for them to not do this. The code:
5352 *
5353 * mark_inode_dirty(inode)
5354 * stuff();
5355 * inode->i_size = expr;
5356 *
5357 * is in error because a kswapd-driven write_inode() could occur while
5358 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5359 * will no longer be on the superblock's dirty inode list.
5360 */
a9185b41 5361int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 5362{
91ac6f43
FM
5363 int err;
5364
ac27a0ec
DK
5365 if (current->flags & PF_MEMALLOC)
5366 return 0;
5367
91ac6f43
FM
5368 if (EXT4_SB(inode->i_sb)->s_journal) {
5369 if (ext4_journal_current_handle()) {
5370 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5371 dump_stack();
5372 return -EIO;
5373 }
ac27a0ec 5374
a9185b41 5375 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
5376 return 0;
5377
5378 err = ext4_force_commit(inode->i_sb);
5379 } else {
5380 struct ext4_iloc iloc;
ac27a0ec 5381
8b472d73 5382 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
5383 if (err)
5384 return err;
a9185b41 5385 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
5386 sync_dirty_buffer(iloc.bh);
5387 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
5388 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5389 "IO error syncing inode");
830156c7
FM
5390 err = -EIO;
5391 }
fd2dd9fb 5392 brelse(iloc.bh);
91ac6f43
FM
5393 }
5394 return err;
ac27a0ec
DK
5395}
5396
5397/*
617ba13b 5398 * ext4_setattr()
ac27a0ec
DK
5399 *
5400 * Called from notify_change.
5401 *
5402 * We want to trap VFS attempts to truncate the file as soon as
5403 * possible. In particular, we want to make sure that when the VFS
5404 * shrinks i_size, we put the inode on the orphan list and modify
5405 * i_disksize immediately, so that during the subsequent flushing of
5406 * dirty pages and freeing of disk blocks, we can guarantee that any
5407 * commit will leave the blocks being flushed in an unused state on
5408 * disk. (On recovery, the inode will get truncated and the blocks will
5409 * be freed, so we have a strong guarantee that no future commit will
5410 * leave these blocks visible to the user.)
5411 *
678aaf48
JK
5412 * Another thing we have to assure is that if we are in ordered mode
5413 * and inode is still attached to the committing transaction, we must
5414 * we start writeout of all the dirty pages which are being truncated.
5415 * This way we are sure that all the data written in the previous
5416 * transaction are already on disk (truncate waits for pages under
5417 * writeback).
5418 *
5419 * Called with inode->i_mutex down.
ac27a0ec 5420 */
617ba13b 5421int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
5422{
5423 struct inode *inode = dentry->d_inode;
5424 int error, rc = 0;
5425 const unsigned int ia_valid = attr->ia_valid;
5426
5427 error = inode_change_ok(inode, attr);
5428 if (error)
5429 return error;
5430
12755627 5431 if (is_quota_modification(inode, attr))
871a2931 5432 dquot_initialize(inode);
ac27a0ec
DK
5433 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5434 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5435 handle_t *handle;
5436
5437 /* (user+group)*(old+new) structure, inode write (sb,
5438 * inode block, ? - but truncate inode update has it) */
5aca07eb 5439 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
194074ac 5440 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
5441 if (IS_ERR(handle)) {
5442 error = PTR_ERR(handle);
5443 goto err_out;
5444 }
b43fa828 5445 error = dquot_transfer(inode, attr);
ac27a0ec 5446 if (error) {
617ba13b 5447 ext4_journal_stop(handle);
ac27a0ec
DK
5448 return error;
5449 }
5450 /* Update corresponding info in inode so that everything is in
5451 * one transaction */
5452 if (attr->ia_valid & ATTR_UID)
5453 inode->i_uid = attr->ia_uid;
5454 if (attr->ia_valid & ATTR_GID)
5455 inode->i_gid = attr->ia_gid;
617ba13b
MC
5456 error = ext4_mark_inode_dirty(handle, inode);
5457 ext4_journal_stop(handle);
ac27a0ec
DK
5458 }
5459
e2b46574 5460 if (attr->ia_valid & ATTR_SIZE) {
12e9b892 5461 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
5462 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5463
5464 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5465 error = -EFBIG;
5466 goto err_out;
5467 }
5468 }
5469 }
5470
ac27a0ec 5471 if (S_ISREG(inode->i_mode) &&
c8d46e41
JZ
5472 attr->ia_valid & ATTR_SIZE &&
5473 (attr->ia_size < inode->i_size ||
12e9b892 5474 (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
ac27a0ec
DK
5475 handle_t *handle;
5476
617ba13b 5477 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
5478 if (IS_ERR(handle)) {
5479 error = PTR_ERR(handle);
5480 goto err_out;
5481 }
5482
617ba13b
MC
5483 error = ext4_orphan_add(handle, inode);
5484 EXT4_I(inode)->i_disksize = attr->ia_size;
5485 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
5486 if (!error)
5487 error = rc;
617ba13b 5488 ext4_journal_stop(handle);
678aaf48
JK
5489
5490 if (ext4_should_order_data(inode)) {
5491 error = ext4_begin_ordered_truncate(inode,
5492 attr->ia_size);
5493 if (error) {
5494 /* Do as much error cleanup as possible */
5495 handle = ext4_journal_start(inode, 3);
5496 if (IS_ERR(handle)) {
5497 ext4_orphan_del(NULL, inode);
5498 goto err_out;
5499 }
5500 ext4_orphan_del(handle, inode);
5501 ext4_journal_stop(handle);
5502 goto err_out;
5503 }
5504 }
c8d46e41 5505 /* ext4_truncate will clear the flag */
12e9b892 5506 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
c8d46e41 5507 ext4_truncate(inode);
ac27a0ec
DK
5508 }
5509
5510 rc = inode_setattr(inode, attr);
5511
617ba13b 5512 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
5513 * transaction handle at all, we need to clean up the in-core
5514 * orphan list manually. */
5515 if (inode->i_nlink)
617ba13b 5516 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
5517
5518 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 5519 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
5520
5521err_out:
617ba13b 5522 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5523 if (!error)
5524 error = rc;
5525 return error;
5526}
5527
3e3398a0
MC
5528int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5529 struct kstat *stat)
5530{
5531 struct inode *inode;
5532 unsigned long delalloc_blocks;
5533
5534 inode = dentry->d_inode;
5535 generic_fillattr(inode, stat);
5536
5537 /*
5538 * We can't update i_blocks if the block allocation is delayed
5539 * otherwise in the case of system crash before the real block
5540 * allocation is done, we will have i_blocks inconsistent with
5541 * on-disk file blocks.
5542 * We always keep i_blocks updated together with real
5543 * allocation. But to not confuse with user, stat
5544 * will return the blocks that include the delayed allocation
5545 * blocks for this file.
5546 */
5547 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5548 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5549 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5550
5551 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5552 return 0;
5553}
ac27a0ec 5554
a02908f1
MC
5555static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5556 int chunk)
5557{
5558 int indirects;
5559
5560 /* if nrblocks are contiguous */
5561 if (chunk) {
5562 /*
5563 * With N contiguous data blocks, it need at most
5564 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5565 * 2 dindirect blocks
5566 * 1 tindirect block
5567 */
5568 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5569 return indirects + 3;
5570 }
5571 /*
5572 * if nrblocks are not contiguous, worse case, each block touch
5573 * a indirect block, and each indirect block touch a double indirect
5574 * block, plus a triple indirect block
5575 */
5576 indirects = nrblocks * 2 + 1;
5577 return indirects;
5578}
5579
5580static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5581{
12e9b892 5582 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
ac51d837
TT
5583 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5584 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 5585}
ac51d837 5586
ac27a0ec 5587/*
a02908f1
MC
5588 * Account for index blocks, block groups bitmaps and block group
5589 * descriptor blocks if modify datablocks and index blocks
5590 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5591 *
a02908f1 5592 * If datablocks are discontiguous, they are possible to spread over
af901ca1 5593 * different block groups too. If they are contiuguous, with flexbg,
a02908f1 5594 * they could still across block group boundary.
ac27a0ec 5595 *
a02908f1
MC
5596 * Also account for superblock, inode, quota and xattr blocks
5597 */
5598int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5599{
8df9675f
TT
5600 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5601 int gdpblocks;
a02908f1
MC
5602 int idxblocks;
5603 int ret = 0;
5604
5605 /*
5606 * How many index blocks need to touch to modify nrblocks?
5607 * The "Chunk" flag indicating whether the nrblocks is
5608 * physically contiguous on disk
5609 *
5610 * For Direct IO and fallocate, they calls get_block to allocate
5611 * one single extent at a time, so they could set the "Chunk" flag
5612 */
5613 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5614
5615 ret = idxblocks;
5616
5617 /*
5618 * Now let's see how many group bitmaps and group descriptors need
5619 * to account
5620 */
5621 groups = idxblocks;
5622 if (chunk)
5623 groups += 1;
5624 else
5625 groups += nrblocks;
5626
5627 gdpblocks = groups;
8df9675f
TT
5628 if (groups > ngroups)
5629 groups = ngroups;
a02908f1
MC
5630 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5631 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5632
5633 /* bitmaps and block group descriptor blocks */
5634 ret += groups + gdpblocks;
5635
5636 /* Blocks for super block, inode, quota and xattr blocks */
5637 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5638
5639 return ret;
5640}
5641
5642/*
5643 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
5644 * the modification of a single pages into a single transaction,
5645 * which may include multiple chunks of block allocations.
ac27a0ec 5646 *
525f4ed8 5647 * This could be called via ext4_write_begin()
ac27a0ec 5648 *
525f4ed8 5649 * We need to consider the worse case, when
a02908f1 5650 * one new block per extent.
ac27a0ec 5651 */
a86c6181 5652int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5653{
617ba13b 5654 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5655 int ret;
5656
a02908f1 5657 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 5658
a02908f1 5659 /* Account for data blocks for journalled mode */
617ba13b 5660 if (ext4_should_journal_data(inode))
a02908f1 5661 ret += bpp;
ac27a0ec
DK
5662 return ret;
5663}
f3bd1f3f
MC
5664
5665/*
5666 * Calculate the journal credits for a chunk of data modification.
5667 *
5668 * This is called from DIO, fallocate or whoever calling
af901ca1 5669 * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5670 *
5671 * journal buffers for data blocks are not included here, as DIO
5672 * and fallocate do no need to journal data buffers.
5673 */
5674int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5675{
5676 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5677}
5678
ac27a0ec 5679/*
617ba13b 5680 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5681 * Give this, we know that the caller already has write access to iloc->bh.
5682 */
617ba13b 5683int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5684 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5685{
5686 int err = 0;
5687
25ec56b5
JNC
5688 if (test_opt(inode->i_sb, I_VERSION))
5689 inode_inc_iversion(inode);
5690
ac27a0ec
DK
5691 /* the do_update_inode consumes one bh->b_count */
5692 get_bh(iloc->bh);
5693
dab291af 5694 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5695 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5696 put_bh(iloc->bh);
5697 return err;
5698}
5699
5700/*
5701 * On success, We end up with an outstanding reference count against
5702 * iloc->bh. This _must_ be cleaned up later.
5703 */
5704
5705int
617ba13b
MC
5706ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5707 struct ext4_iloc *iloc)
ac27a0ec 5708{
0390131b
FM
5709 int err;
5710
5711 err = ext4_get_inode_loc(inode, iloc);
5712 if (!err) {
5713 BUFFER_TRACE(iloc->bh, "get_write_access");
5714 err = ext4_journal_get_write_access(handle, iloc->bh);
5715 if (err) {
5716 brelse(iloc->bh);
5717 iloc->bh = NULL;
ac27a0ec
DK
5718 }
5719 }
617ba13b 5720 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5721 return err;
5722}
5723
6dd4ee7c
KS
5724/*
5725 * Expand an inode by new_extra_isize bytes.
5726 * Returns 0 on success or negative error number on failure.
5727 */
1d03ec98
AK
5728static int ext4_expand_extra_isize(struct inode *inode,
5729 unsigned int new_extra_isize,
5730 struct ext4_iloc iloc,
5731 handle_t *handle)
6dd4ee7c
KS
5732{
5733 struct ext4_inode *raw_inode;
5734 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
5735
5736 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5737 return 0;
5738
5739 raw_inode = ext4_raw_inode(&iloc);
5740
5741 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
5742
5743 /* No extended attributes present */
19f5fb7a
TT
5744 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5745 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
5746 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5747 new_extra_isize);
5748 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5749 return 0;
5750 }
5751
5752 /* try to expand with EAs present */
5753 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5754 raw_inode, handle);
5755}
5756
ac27a0ec
DK
5757/*
5758 * What we do here is to mark the in-core inode as clean with respect to inode
5759 * dirtiness (it may still be data-dirty).
5760 * This means that the in-core inode may be reaped by prune_icache
5761 * without having to perform any I/O. This is a very good thing,
5762 * because *any* task may call prune_icache - even ones which
5763 * have a transaction open against a different journal.
5764 *
5765 * Is this cheating? Not really. Sure, we haven't written the
5766 * inode out, but prune_icache isn't a user-visible syncing function.
5767 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5768 * we start and wait on commits.
5769 *
5770 * Is this efficient/effective? Well, we're being nice to the system
5771 * by cleaning up our inodes proactively so they can be reaped
5772 * without I/O. But we are potentially leaving up to five seconds'
5773 * worth of inodes floating about which prune_icache wants us to
5774 * write out. One way to fix that would be to get prune_icache()
5775 * to do a write_super() to free up some memory. It has the desired
5776 * effect.
5777 */
617ba13b 5778int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5779{
617ba13b 5780 struct ext4_iloc iloc;
6dd4ee7c
KS
5781 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5782 static unsigned int mnt_count;
5783 int err, ret;
ac27a0ec
DK
5784
5785 might_sleep();
617ba13b 5786 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5787 if (ext4_handle_valid(handle) &&
5788 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5789 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
5790 /*
5791 * We need extra buffer credits since we may write into EA block
5792 * with this same handle. If journal_extend fails, then it will
5793 * only result in a minor loss of functionality for that inode.
5794 * If this is felt to be critical, then e2fsck should be run to
5795 * force a large enough s_min_extra_isize.
5796 */
5797 if ((jbd2_journal_extend(handle,
5798 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5799 ret = ext4_expand_extra_isize(inode,
5800 sbi->s_want_extra_isize,
5801 iloc, handle);
5802 if (ret) {
19f5fb7a
TT
5803 ext4_set_inode_state(inode,
5804 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
5805 if (mnt_count !=
5806 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5807 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5808 "Unable to expand inode %lu. Delete"
5809 " some EAs or run e2fsck.",
5810 inode->i_ino);
c1bddad9
AK
5811 mnt_count =
5812 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5813 }
5814 }
5815 }
5816 }
ac27a0ec 5817 if (!err)
617ba13b 5818 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5819 return err;
5820}
5821
5822/*
617ba13b 5823 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5824 *
5825 * We're really interested in the case where a file is being extended.
5826 * i_size has been changed by generic_commit_write() and we thus need
5827 * to include the updated inode in the current transaction.
5828 *
5dd4056d 5829 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5830 * are allocated to the file.
5831 *
5832 * If the inode is marked synchronous, we don't honour that here - doing
5833 * so would cause a commit on atime updates, which we don't bother doing.
5834 * We handle synchronous inodes at the highest possible level.
5835 */
617ba13b 5836void ext4_dirty_inode(struct inode *inode)
ac27a0ec 5837{
ac27a0ec
DK
5838 handle_t *handle;
5839
617ba13b 5840 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
5841 if (IS_ERR(handle))
5842 goto out;
f3dc272f 5843
f3dc272f
CW
5844 ext4_mark_inode_dirty(handle, inode);
5845
617ba13b 5846 ext4_journal_stop(handle);
ac27a0ec
DK
5847out:
5848 return;
5849}
5850
5851#if 0
5852/*
5853 * Bind an inode's backing buffer_head into this transaction, to prevent
5854 * it from being flushed to disk early. Unlike
617ba13b 5855 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5856 * returns no iloc structure, so the caller needs to repeat the iloc
5857 * lookup to mark the inode dirty later.
5858 */
617ba13b 5859static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5860{
617ba13b 5861 struct ext4_iloc iloc;
ac27a0ec
DK
5862
5863 int err = 0;
5864 if (handle) {
617ba13b 5865 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5866 if (!err) {
5867 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5868 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5869 if (!err)
0390131b 5870 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5871 NULL,
0390131b 5872 iloc.bh);
ac27a0ec
DK
5873 brelse(iloc.bh);
5874 }
5875 }
617ba13b 5876 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5877 return err;
5878}
5879#endif
5880
617ba13b 5881int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5882{
5883 journal_t *journal;
5884 handle_t *handle;
5885 int err;
5886
5887 /*
5888 * We have to be very careful here: changing a data block's
5889 * journaling status dynamically is dangerous. If we write a
5890 * data block to the journal, change the status and then delete
5891 * that block, we risk forgetting to revoke the old log record
5892 * from the journal and so a subsequent replay can corrupt data.
5893 * So, first we make sure that the journal is empty and that
5894 * nobody is changing anything.
5895 */
5896
617ba13b 5897 journal = EXT4_JOURNAL(inode);
0390131b
FM
5898 if (!journal)
5899 return 0;
d699594d 5900 if (is_journal_aborted(journal))
ac27a0ec
DK
5901 return -EROFS;
5902
dab291af
MC
5903 jbd2_journal_lock_updates(journal);
5904 jbd2_journal_flush(journal);
ac27a0ec
DK
5905
5906 /*
5907 * OK, there are no updates running now, and all cached data is
5908 * synced to disk. We are now in a completely consistent state
5909 * which doesn't have anything in the journal, and we know that
5910 * no filesystem updates are running, so it is safe to modify
5911 * the inode's in-core data-journaling state flag now.
5912 */
5913
5914 if (val)
12e9b892 5915 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
ac27a0ec 5916 else
12e9b892 5917 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
617ba13b 5918 ext4_set_aops(inode);
ac27a0ec 5919
dab291af 5920 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
5921
5922 /* Finally we can mark the inode as dirty. */
5923
617ba13b 5924 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
5925 if (IS_ERR(handle))
5926 return PTR_ERR(handle);
5927
617ba13b 5928 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5929 ext4_handle_sync(handle);
617ba13b
MC
5930 ext4_journal_stop(handle);
5931 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5932
5933 return err;
5934}
2e9ee850
AK
5935
5936static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5937{
5938 return !buffer_mapped(bh);
5939}
5940
c2ec175c 5941int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5942{
c2ec175c 5943 struct page *page = vmf->page;
2e9ee850
AK
5944 loff_t size;
5945 unsigned long len;
5946 int ret = -EINVAL;
79f0be8d 5947 void *fsdata;
2e9ee850
AK
5948 struct file *file = vma->vm_file;
5949 struct inode *inode = file->f_path.dentry->d_inode;
5950 struct address_space *mapping = inode->i_mapping;
5951
5952 /*
5953 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5954 * get i_mutex because we are already holding mmap_sem.
5955 */
5956 down_read(&inode->i_alloc_sem);
5957 size = i_size_read(inode);
5958 if (page->mapping != mapping || size <= page_offset(page)
5959 || !PageUptodate(page)) {
5960 /* page got truncated from under us? */
5961 goto out_unlock;
5962 }
5963 ret = 0;
5964 if (PageMappedToDisk(page))
5965 goto out_unlock;
5966
5967 if (page->index == size >> PAGE_CACHE_SHIFT)
5968 len = size & ~PAGE_CACHE_MASK;
5969 else
5970 len = PAGE_CACHE_SIZE;
5971
a827eaff
AK
5972 lock_page(page);
5973 /*
5974 * return if we have all the buffers mapped. This avoid
5975 * the need to call write_begin/write_end which does a
5976 * journal_start/journal_stop which can block and take
5977 * long time
5978 */
2e9ee850 5979 if (page_has_buffers(page)) {
2e9ee850 5980 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
a827eaff
AK
5981 ext4_bh_unmapped)) {
5982 unlock_page(page);
2e9ee850 5983 goto out_unlock;
a827eaff 5984 }
2e9ee850 5985 }
a827eaff 5986 unlock_page(page);
2e9ee850
AK
5987 /*
5988 * OK, we need to fill the hole... Do write_begin write_end
5989 * to do block allocation/reservation.We are not holding
5990 * inode.i__mutex here. That allow * parallel write_begin,
5991 * write_end call. lock_page prevent this from happening
5992 * on the same page though
5993 */
5994 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 5995 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
5996 if (ret < 0)
5997 goto out_unlock;
5998 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 5999 len, len, page, fsdata);
2e9ee850
AK
6000 if (ret < 0)
6001 goto out_unlock;
6002 ret = 0;
6003out_unlock:
c2ec175c
NP
6004 if (ret)
6005 ret = VM_FAULT_SIGBUS;
2e9ee850
AK
6006 up_read(&inode->i_alloc_sem);
6007 return ret;
6008}