]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ext4/inode.c
ext4: fix a BUG_ON crash by checking that page has buffers attached to it
[net-next-2.6.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
4c0425ff 40#include <linux/workqueue.h>
9bffad1e 41
3dcf5451 42#include "ext4_jbd2.h"
ac27a0ec
DK
43#include "xattr.h"
44#include "acl.h"
d2a17637 45#include "ext4_extents.h"
ac27a0ec 46
9bffad1e
TT
47#include <trace/events/ext4.h>
48
a1d6cc56
AK
49#define MPAGE_DA_EXTENT_TAIL 0x01
50
678aaf48
JK
51static inline int ext4_begin_ordered_truncate(struct inode *inode,
52 loff_t new_size)
53{
7f5aa215
JK
54 return jbd2_journal_begin_ordered_truncate(
55 EXT4_SB(inode->i_sb)->s_journal,
56 &EXT4_I(inode)->jinode,
57 new_size);
678aaf48
JK
58}
59
64769240
AT
60static void ext4_invalidatepage(struct page *page, unsigned long offset);
61
ac27a0ec
DK
62/*
63 * Test whether an inode is a fast symlink.
64 */
617ba13b 65static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 66{
617ba13b 67 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
68 (inode->i_sb->s_blocksize >> 9) : 0;
69
70 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
71}
72
73/*
617ba13b 74 * The ext4 forget function must perform a revoke if we are freeing data
ac27a0ec
DK
75 * which has been journaled. Metadata (eg. indirect blocks) must be
76 * revoked in all cases.
77 *
78 * "bh" may be NULL: a metadata block may have been freed from memory
79 * but there may still be a record of it in the journal, and that record
80 * still needs to be revoked.
0390131b 81 *
e6b5d301
CW
82 * If the handle isn't valid we're not journaling, but we still need to
83 * call into ext4_journal_revoke() to put the buffer head.
ac27a0ec 84 */
617ba13b 85int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
de9a55b8 86 struct buffer_head *bh, ext4_fsblk_t blocknr)
ac27a0ec
DK
87{
88 int err;
89
90 might_sleep();
91
92 BUFFER_TRACE(bh, "enter");
93
94 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
7f4520cc 95 "data mode %x\n",
ac27a0ec
DK
96 bh, is_metadata, inode->i_mode,
97 test_opt(inode->i_sb, DATA_FLAGS));
98
99 /* Never use the revoke function if we are doing full data
100 * journaling: there is no need to, and a V1 superblock won't
101 * support it. Otherwise, only skip the revoke on un-journaled
102 * data blocks. */
103
617ba13b
MC
104 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
105 (!is_metadata && !ext4_should_journal_data(inode))) {
ac27a0ec 106 if (bh) {
dab291af 107 BUFFER_TRACE(bh, "call jbd2_journal_forget");
617ba13b 108 return ext4_journal_forget(handle, bh);
ac27a0ec
DK
109 }
110 return 0;
111 }
112
113 /*
114 * data!=journal && (is_metadata || should_journal_data(inode))
115 */
617ba13b
MC
116 BUFFER_TRACE(bh, "call ext4_journal_revoke");
117 err = ext4_journal_revoke(handle, blocknr, bh);
ac27a0ec 118 if (err)
46e665e9 119 ext4_abort(inode->i_sb, __func__,
ac27a0ec
DK
120 "error %d when attempting revoke", err);
121 BUFFER_TRACE(bh, "exit");
122 return err;
123}
124
125/*
126 * Work out how many blocks we need to proceed with the next chunk of a
127 * truncate transaction.
128 */
129static unsigned long blocks_for_truncate(struct inode *inode)
130{
725d26d3 131 ext4_lblk_t needed;
ac27a0ec
DK
132
133 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
134
135 /* Give ourselves just enough room to cope with inodes in which
136 * i_blocks is corrupt: we've seen disk corruptions in the past
137 * which resulted in random data in an inode which looked enough
617ba13b 138 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
139 * will go a bit crazy if that happens, but at least we should
140 * try not to panic the whole kernel. */
141 if (needed < 2)
142 needed = 2;
143
144 /* But we need to bound the transaction so we don't overflow the
145 * journal. */
617ba13b
MC
146 if (needed > EXT4_MAX_TRANS_DATA)
147 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 148
617ba13b 149 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
150}
151
152/*
153 * Truncate transactions can be complex and absolutely huge. So we need to
154 * be able to restart the transaction at a conventient checkpoint to make
155 * sure we don't overflow the journal.
156 *
157 * start_transaction gets us a new handle for a truncate transaction,
158 * and extend_transaction tries to extend the existing one a bit. If
159 * extend fails, we need to propagate the failure up and restart the
160 * transaction in the top-level truncate loop. --sct
161 */
162static handle_t *start_transaction(struct inode *inode)
163{
164 handle_t *result;
165
617ba13b 166 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
167 if (!IS_ERR(result))
168 return result;
169
617ba13b 170 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
171 return result;
172}
173
174/*
175 * Try to extend this transaction for the purposes of truncation.
176 *
177 * Returns 0 if we managed to create more room. If we can't create more
178 * room, and the transaction must be restarted we return 1.
179 */
180static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
181{
0390131b
FM
182 if (!ext4_handle_valid(handle))
183 return 0;
184 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
ac27a0ec 185 return 0;
617ba13b 186 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
187 return 0;
188 return 1;
189}
190
191/*
192 * Restart the transaction associated with *handle. This does a commit,
193 * so before we call here everything must be consistently dirtied against
194 * this transaction.
195 */
487caeef
JK
196 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
197 int nblocks)
ac27a0ec 198{
487caeef
JK
199 int ret;
200
201 /*
202 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
203 * moment, get_block can be called only for blocks inside i_size since
204 * page cache has been already dropped and writes are blocked by
205 * i_mutex. So we can safely drop the i_data_sem here.
206 */
0390131b 207 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 208 jbd_debug(2, "restarting handle %p\n", handle);
487caeef
JK
209 up_write(&EXT4_I(inode)->i_data_sem);
210 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
211 down_write(&EXT4_I(inode)->i_data_sem);
212
213 return ret;
ac27a0ec
DK
214}
215
216/*
217 * Called at the last iput() if i_nlink is zero.
218 */
af5bc92d 219void ext4_delete_inode(struct inode *inode)
ac27a0ec
DK
220{
221 handle_t *handle;
bc965ab3 222 int err;
ac27a0ec 223
678aaf48
JK
224 if (ext4_should_order_data(inode))
225 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
226 truncate_inode_pages(&inode->i_data, 0);
227
228 if (is_bad_inode(inode))
229 goto no_delete;
230
bc965ab3 231 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 232 if (IS_ERR(handle)) {
bc965ab3 233 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
234 /*
235 * If we're going to skip the normal cleanup, we still need to
236 * make sure that the in-core orphan linked list is properly
237 * cleaned up.
238 */
617ba13b 239 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
240 goto no_delete;
241 }
242
243 if (IS_SYNC(inode))
0390131b 244 ext4_handle_sync(handle);
ac27a0ec 245 inode->i_size = 0;
bc965ab3
TT
246 err = ext4_mark_inode_dirty(handle, inode);
247 if (err) {
248 ext4_warning(inode->i_sb, __func__,
249 "couldn't mark inode dirty (err %d)", err);
250 goto stop_handle;
251 }
ac27a0ec 252 if (inode->i_blocks)
617ba13b 253 ext4_truncate(inode);
bc965ab3
TT
254
255 /*
256 * ext4_ext_truncate() doesn't reserve any slop when it
257 * restarts journal transactions; therefore there may not be
258 * enough credits left in the handle to remove the inode from
259 * the orphan list and set the dtime field.
260 */
0390131b 261 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
262 err = ext4_journal_extend(handle, 3);
263 if (err > 0)
264 err = ext4_journal_restart(handle, 3);
265 if (err != 0) {
266 ext4_warning(inode->i_sb, __func__,
267 "couldn't extend journal (err %d)", err);
268 stop_handle:
269 ext4_journal_stop(handle);
270 goto no_delete;
271 }
272 }
273
ac27a0ec 274 /*
617ba13b 275 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 276 * AKPM: I think this can be inside the above `if'.
617ba13b 277 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 278 * deletion of a non-existent orphan - this is because we don't
617ba13b 279 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
280 * (Well, we could do this if we need to, but heck - it works)
281 */
617ba13b
MC
282 ext4_orphan_del(handle, inode);
283 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
284
285 /*
286 * One subtle ordering requirement: if anything has gone wrong
287 * (transaction abort, IO errors, whatever), then we can still
288 * do these next steps (the fs will already have been marked as
289 * having errors), but we can't free the inode if the mark_dirty
290 * fails.
291 */
617ba13b 292 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
293 /* If that failed, just do the required in-core inode clear. */
294 clear_inode(inode);
295 else
617ba13b
MC
296 ext4_free_inode(handle, inode);
297 ext4_journal_stop(handle);
ac27a0ec
DK
298 return;
299no_delete:
300 clear_inode(inode); /* We must guarantee clearing of inode... */
301}
302
303typedef struct {
304 __le32 *p;
305 __le32 key;
306 struct buffer_head *bh;
307} Indirect;
308
309static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
310{
311 p->key = *(p->p = v);
312 p->bh = bh;
313}
314
ac27a0ec 315/**
617ba13b 316 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
317 * @inode: inode in question (we are only interested in its superblock)
318 * @i_block: block number to be parsed
319 * @offsets: array to store the offsets in
8c55e204
DK
320 * @boundary: set this non-zero if the referred-to block is likely to be
321 * followed (on disk) by an indirect block.
ac27a0ec 322 *
617ba13b 323 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
324 * for UNIX filesystems - tree of pointers anchored in the inode, with
325 * data blocks at leaves and indirect blocks in intermediate nodes.
326 * This function translates the block number into path in that tree -
327 * return value is the path length and @offsets[n] is the offset of
328 * pointer to (n+1)th node in the nth one. If @block is out of range
329 * (negative or too large) warning is printed and zero returned.
330 *
331 * Note: function doesn't find node addresses, so no IO is needed. All
332 * we need to know is the capacity of indirect blocks (taken from the
333 * inode->i_sb).
334 */
335
336/*
337 * Portability note: the last comparison (check that we fit into triple
338 * indirect block) is spelled differently, because otherwise on an
339 * architecture with 32-bit longs and 8Kb pages we might get into trouble
340 * if our filesystem had 8Kb blocks. We might use long long, but that would
341 * kill us on x86. Oh, well, at least the sign propagation does not matter -
342 * i_block would have to be negative in the very beginning, so we would not
343 * get there at all.
344 */
345
617ba13b 346static int ext4_block_to_path(struct inode *inode,
de9a55b8
TT
347 ext4_lblk_t i_block,
348 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 349{
617ba13b
MC
350 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
351 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
352 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
353 indirect_blocks = ptrs,
354 double_blocks = (1 << (ptrs_bits * 2));
355 int n = 0;
356 int final = 0;
357
c333e073 358 if (i_block < direct_blocks) {
ac27a0ec
DK
359 offsets[n++] = i_block;
360 final = direct_blocks;
af5bc92d 361 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 362 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
363 offsets[n++] = i_block;
364 final = ptrs;
365 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 366 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
367 offsets[n++] = i_block >> ptrs_bits;
368 offsets[n++] = i_block & (ptrs - 1);
369 final = ptrs;
370 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 371 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
372 offsets[n++] = i_block >> (ptrs_bits * 2);
373 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
374 offsets[n++] = i_block & (ptrs - 1);
375 final = ptrs;
376 } else {
e2b46574 377 ext4_warning(inode->i_sb, "ext4_block_to_path",
de9a55b8
TT
378 "block %lu > max in inode %lu",
379 i_block + direct_blocks +
380 indirect_blocks + double_blocks, inode->i_ino);
ac27a0ec
DK
381 }
382 if (boundary)
383 *boundary = final - 1 - (i_block & (ptrs - 1));
384 return n;
385}
386
fe2c8191 387static int __ext4_check_blockref(const char *function, struct inode *inode,
6fd058f7
TT
388 __le32 *p, unsigned int max)
389{
f73953c0 390 __le32 *bref = p;
6fd058f7
TT
391 unsigned int blk;
392
fe2c8191 393 while (bref < p+max) {
6fd058f7 394 blk = le32_to_cpu(*bref++);
de9a55b8
TT
395 if (blk &&
396 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
6fd058f7 397 blk, 1))) {
fe2c8191 398 ext4_error(inode->i_sb, function,
6fd058f7
TT
399 "invalid block reference %u "
400 "in inode #%lu", blk, inode->i_ino);
de9a55b8
TT
401 return -EIO;
402 }
403 }
404 return 0;
fe2c8191
TN
405}
406
407
408#define ext4_check_indirect_blockref(inode, bh) \
de9a55b8 409 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
fe2c8191
TN
410 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
411
412#define ext4_check_inode_blockref(inode) \
de9a55b8 413 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
fe2c8191
TN
414 EXT4_NDIR_BLOCKS)
415
ac27a0ec 416/**
617ba13b 417 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
418 * @inode: inode in question
419 * @depth: depth of the chain (1 - direct pointer, etc.)
420 * @offsets: offsets of pointers in inode/indirect blocks
421 * @chain: place to store the result
422 * @err: here we store the error value
423 *
424 * Function fills the array of triples <key, p, bh> and returns %NULL
425 * if everything went OK or the pointer to the last filled triple
426 * (incomplete one) otherwise. Upon the return chain[i].key contains
427 * the number of (i+1)-th block in the chain (as it is stored in memory,
428 * i.e. little-endian 32-bit), chain[i].p contains the address of that
429 * number (it points into struct inode for i==0 and into the bh->b_data
430 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
431 * block for i>0 and NULL for i==0. In other words, it holds the block
432 * numbers of the chain, addresses they were taken from (and where we can
433 * verify that chain did not change) and buffer_heads hosting these
434 * numbers.
435 *
436 * Function stops when it stumbles upon zero pointer (absent block)
437 * (pointer to last triple returned, *@err == 0)
438 * or when it gets an IO error reading an indirect block
439 * (ditto, *@err == -EIO)
ac27a0ec
DK
440 * or when it reads all @depth-1 indirect blocks successfully and finds
441 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
442 *
443 * Need to be called with
0e855ac8 444 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 445 */
725d26d3
AK
446static Indirect *ext4_get_branch(struct inode *inode, int depth,
447 ext4_lblk_t *offsets,
ac27a0ec
DK
448 Indirect chain[4], int *err)
449{
450 struct super_block *sb = inode->i_sb;
451 Indirect *p = chain;
452 struct buffer_head *bh;
453
454 *err = 0;
455 /* i_data is not going away, no lock needed */
af5bc92d 456 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
457 if (!p->key)
458 goto no_block;
459 while (--depth) {
fe2c8191
TN
460 bh = sb_getblk(sb, le32_to_cpu(p->key));
461 if (unlikely(!bh))
ac27a0ec 462 goto failure;
de9a55b8 463
fe2c8191
TN
464 if (!bh_uptodate_or_lock(bh)) {
465 if (bh_submit_read(bh) < 0) {
466 put_bh(bh);
467 goto failure;
468 }
469 /* validate block references */
470 if (ext4_check_indirect_blockref(inode, bh)) {
471 put_bh(bh);
472 goto failure;
473 }
474 }
de9a55b8 475
af5bc92d 476 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
477 /* Reader: end */
478 if (!p->key)
479 goto no_block;
480 }
481 return NULL;
482
ac27a0ec
DK
483failure:
484 *err = -EIO;
485no_block:
486 return p;
487}
488
489/**
617ba13b 490 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
491 * @inode: owner
492 * @ind: descriptor of indirect block.
493 *
1cc8dcf5 494 * This function returns the preferred place for block allocation.
ac27a0ec
DK
495 * It is used when heuristic for sequential allocation fails.
496 * Rules are:
497 * + if there is a block to the left of our position - allocate near it.
498 * + if pointer will live in indirect block - allocate near that block.
499 * + if pointer will live in inode - allocate in the same
500 * cylinder group.
501 *
502 * In the latter case we colour the starting block by the callers PID to
503 * prevent it from clashing with concurrent allocations for a different inode
504 * in the same block group. The PID is used here so that functionally related
505 * files will be close-by on-disk.
506 *
507 * Caller must make sure that @ind is valid and will stay that way.
508 */
617ba13b 509static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 510{
617ba13b 511 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 512 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 513 __le32 *p;
617ba13b 514 ext4_fsblk_t bg_start;
74d3487f 515 ext4_fsblk_t last_block;
617ba13b 516 ext4_grpblk_t colour;
a4912123
TT
517 ext4_group_t block_group;
518 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
ac27a0ec
DK
519
520 /* Try to find previous block */
521 for (p = ind->p - 1; p >= start; p--) {
522 if (*p)
523 return le32_to_cpu(*p);
524 }
525
526 /* No such thing, so let's try location of indirect block */
527 if (ind->bh)
528 return ind->bh->b_blocknr;
529
530 /*
531 * It is going to be referred to from the inode itself? OK, just put it
532 * into the same cylinder group then.
533 */
a4912123
TT
534 block_group = ei->i_block_group;
535 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
536 block_group &= ~(flex_size-1);
537 if (S_ISREG(inode->i_mode))
538 block_group++;
539 }
540 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
74d3487f
VC
541 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
542
a4912123
TT
543 /*
544 * If we are doing delayed allocation, we don't need take
545 * colour into account.
546 */
547 if (test_opt(inode->i_sb, DELALLOC))
548 return bg_start;
549
74d3487f
VC
550 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
551 colour = (current->pid % 16) *
617ba13b 552 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
553 else
554 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
555 return bg_start + colour;
556}
557
558/**
1cc8dcf5 559 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
560 * @inode: owner
561 * @block: block we want
ac27a0ec 562 * @partial: pointer to the last triple within a chain
ac27a0ec 563 *
1cc8dcf5 564 * Normally this function find the preferred place for block allocation,
fb01bfda 565 * returns it.
fb0a387d
ES
566 * Because this is only used for non-extent files, we limit the block nr
567 * to 32 bits.
ac27a0ec 568 */
725d26d3 569static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
de9a55b8 570 Indirect *partial)
ac27a0ec 571{
fb0a387d
ES
572 ext4_fsblk_t goal;
573
ac27a0ec 574 /*
c2ea3fde 575 * XXX need to get goal block from mballoc's data structures
ac27a0ec 576 */
ac27a0ec 577
fb0a387d
ES
578 goal = ext4_find_near(inode, partial);
579 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
580 return goal;
ac27a0ec
DK
581}
582
583/**
617ba13b 584 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
585 * of direct blocks need to be allocated for the given branch.
586 *
587 * @branch: chain of indirect blocks
588 * @k: number of blocks need for indirect blocks
589 * @blks: number of data blocks to be mapped.
590 * @blocks_to_boundary: the offset in the indirect block
591 *
592 * return the total number of blocks to be allocate, including the
593 * direct and indirect blocks.
594 */
498e5f24 595static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
de9a55b8 596 int blocks_to_boundary)
ac27a0ec 597{
498e5f24 598 unsigned int count = 0;
ac27a0ec
DK
599
600 /*
601 * Simple case, [t,d]Indirect block(s) has not allocated yet
602 * then it's clear blocks on that path have not allocated
603 */
604 if (k > 0) {
605 /* right now we don't handle cross boundary allocation */
606 if (blks < blocks_to_boundary + 1)
607 count += blks;
608 else
609 count += blocks_to_boundary + 1;
610 return count;
611 }
612
613 count++;
614 while (count < blks && count <= blocks_to_boundary &&
615 le32_to_cpu(*(branch[0].p + count)) == 0) {
616 count++;
617 }
618 return count;
619}
620
621/**
617ba13b 622 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
623 * @indirect_blks: the number of blocks need to allocate for indirect
624 * blocks
625 *
626 * @new_blocks: on return it will store the new block numbers for
627 * the indirect blocks(if needed) and the first direct block,
628 * @blks: on return it will store the total number of allocated
629 * direct blocks
630 */
617ba13b 631static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
632 ext4_lblk_t iblock, ext4_fsblk_t goal,
633 int indirect_blks, int blks,
634 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 635{
815a1130 636 struct ext4_allocation_request ar;
ac27a0ec 637 int target, i;
7061eba7 638 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 639 int index = 0;
617ba13b 640 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
641 int ret = 0;
642
643 /*
644 * Here we try to allocate the requested multiple blocks at once,
645 * on a best-effort basis.
646 * To build a branch, we should allocate blocks for
647 * the indirect blocks(if not allocated yet), and at least
648 * the first direct block of this branch. That's the
649 * minimum number of blocks need to allocate(required)
650 */
7061eba7
AK
651 /* first we try to allocate the indirect blocks */
652 target = indirect_blks;
653 while (target > 0) {
ac27a0ec
DK
654 count = target;
655 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
656 current_block = ext4_new_meta_blocks(handle, inode,
657 goal, &count, err);
ac27a0ec
DK
658 if (*err)
659 goto failed_out;
660
fb0a387d
ES
661 BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
662
ac27a0ec
DK
663 target -= count;
664 /* allocate blocks for indirect blocks */
665 while (index < indirect_blks && count) {
666 new_blocks[index++] = current_block++;
667 count--;
668 }
7061eba7
AK
669 if (count > 0) {
670 /*
671 * save the new block number
672 * for the first direct block
673 */
674 new_blocks[index] = current_block;
675 printk(KERN_INFO "%s returned more blocks than "
676 "requested\n", __func__);
677 WARN_ON(1);
ac27a0ec 678 break;
7061eba7 679 }
ac27a0ec
DK
680 }
681
7061eba7
AK
682 target = blks - count ;
683 blk_allocated = count;
684 if (!target)
685 goto allocated;
686 /* Now allocate data blocks */
815a1130
TT
687 memset(&ar, 0, sizeof(ar));
688 ar.inode = inode;
689 ar.goal = goal;
690 ar.len = target;
691 ar.logical = iblock;
692 if (S_ISREG(inode->i_mode))
693 /* enable in-core preallocation only for regular files */
694 ar.flags = EXT4_MB_HINT_DATA;
695
696 current_block = ext4_mb_new_blocks(handle, &ar, err);
fb0a387d 697 BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
815a1130 698
7061eba7
AK
699 if (*err && (target == blks)) {
700 /*
701 * if the allocation failed and we didn't allocate
702 * any blocks before
703 */
704 goto failed_out;
705 }
706 if (!*err) {
707 if (target == blks) {
de9a55b8
TT
708 /*
709 * save the new block number
710 * for the first direct block
711 */
7061eba7
AK
712 new_blocks[index] = current_block;
713 }
815a1130 714 blk_allocated += ar.len;
7061eba7
AK
715 }
716allocated:
ac27a0ec 717 /* total number of blocks allocated for direct blocks */
7061eba7 718 ret = blk_allocated;
ac27a0ec
DK
719 *err = 0;
720 return ret;
721failed_out:
af5bc92d 722 for (i = 0; i < index; i++)
c9de560d 723 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec
DK
724 return ret;
725}
726
727/**
617ba13b 728 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
729 * @inode: owner
730 * @indirect_blks: number of allocated indirect blocks
731 * @blks: number of allocated direct blocks
732 * @offsets: offsets (in the blocks) to store the pointers to next.
733 * @branch: place to store the chain in.
734 *
735 * This function allocates blocks, zeroes out all but the last one,
736 * links them into chain and (if we are synchronous) writes them to disk.
737 * In other words, it prepares a branch that can be spliced onto the
738 * inode. It stores the information about that chain in the branch[], in
617ba13b 739 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
740 * we had read the existing part of chain and partial points to the last
741 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 742 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
743 * place chain is disconnected - *branch->p is still zero (we did not
744 * set the last link), but branch->key contains the number that should
745 * be placed into *branch->p to fill that gap.
746 *
747 * If allocation fails we free all blocks we've allocated (and forget
748 * their buffer_heads) and return the error value the from failed
617ba13b 749 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
750 * as described above and return 0.
751 */
617ba13b 752static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
753 ext4_lblk_t iblock, int indirect_blks,
754 int *blks, ext4_fsblk_t goal,
755 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
756{
757 int blocksize = inode->i_sb->s_blocksize;
758 int i, n = 0;
759 int err = 0;
760 struct buffer_head *bh;
761 int num;
617ba13b
MC
762 ext4_fsblk_t new_blocks[4];
763 ext4_fsblk_t current_block;
ac27a0ec 764
7061eba7 765 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
766 *blks, new_blocks, &err);
767 if (err)
768 return err;
769
770 branch[0].key = cpu_to_le32(new_blocks[0]);
771 /*
772 * metadata blocks and data blocks are allocated.
773 */
774 for (n = 1; n <= indirect_blks; n++) {
775 /*
776 * Get buffer_head for parent block, zero it out
777 * and set the pointer to new one, then send
778 * parent to disk.
779 */
780 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
781 branch[n].bh = bh;
782 lock_buffer(bh);
783 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 784 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec 785 if (err) {
6487a9d3
CW
786 /* Don't brelse(bh) here; it's done in
787 * ext4_journal_forget() below */
ac27a0ec 788 unlock_buffer(bh);
ac27a0ec
DK
789 goto failed;
790 }
791
792 memset(bh->b_data, 0, blocksize);
793 branch[n].p = (__le32 *) bh->b_data + offsets[n];
794 branch[n].key = cpu_to_le32(new_blocks[n]);
795 *branch[n].p = branch[n].key;
af5bc92d 796 if (n == indirect_blks) {
ac27a0ec
DK
797 current_block = new_blocks[n];
798 /*
799 * End of chain, update the last new metablock of
800 * the chain to point to the new allocated
801 * data blocks numbers
802 */
de9a55b8 803 for (i = 1; i < num; i++)
ac27a0ec
DK
804 *(branch[n].p + i) = cpu_to_le32(++current_block);
805 }
806 BUFFER_TRACE(bh, "marking uptodate");
807 set_buffer_uptodate(bh);
808 unlock_buffer(bh);
809
0390131b
FM
810 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
811 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
812 if (err)
813 goto failed;
814 }
815 *blks = num;
816 return err;
817failed:
818 /* Allocation failed, free what we already allocated */
819 for (i = 1; i <= n ; i++) {
dab291af 820 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
617ba13b 821 ext4_journal_forget(handle, branch[i].bh);
ac27a0ec 822 }
af5bc92d 823 for (i = 0; i < indirect_blks; i++)
c9de560d 824 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec 825
c9de560d 826 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
ac27a0ec
DK
827
828 return err;
829}
830
831/**
617ba13b 832 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
833 * @inode: owner
834 * @block: (logical) number of block we are adding
835 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 836 * ext4_alloc_branch)
ac27a0ec
DK
837 * @where: location of missing link
838 * @num: number of indirect blocks we are adding
839 * @blks: number of direct blocks we are adding
840 *
841 * This function fills the missing link and does all housekeeping needed in
842 * inode (->i_blocks, etc.). In case of success we end up with the full
843 * chain to new block and return 0.
844 */
617ba13b 845static int ext4_splice_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
846 ext4_lblk_t block, Indirect *where, int num,
847 int blks)
ac27a0ec
DK
848{
849 int i;
850 int err = 0;
617ba13b 851 ext4_fsblk_t current_block;
ac27a0ec 852
ac27a0ec
DK
853 /*
854 * If we're splicing into a [td]indirect block (as opposed to the
855 * inode) then we need to get write access to the [td]indirect block
856 * before the splice.
857 */
858 if (where->bh) {
859 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 860 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
861 if (err)
862 goto err_out;
863 }
864 /* That's it */
865
866 *where->p = where->key;
867
868 /*
869 * Update the host buffer_head or inode to point to more just allocated
870 * direct blocks blocks
871 */
872 if (num == 0 && blks > 1) {
873 current_block = le32_to_cpu(where->key) + 1;
874 for (i = 1; i < blks; i++)
af5bc92d 875 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
876 }
877
ac27a0ec 878 /* We are done with atomic stuff, now do the rest of housekeeping */
ac27a0ec
DK
879 /* had we spliced it onto indirect block? */
880 if (where->bh) {
881 /*
882 * If we spliced it onto an indirect block, we haven't
883 * altered the inode. Note however that if it is being spliced
884 * onto an indirect block at the very end of the file (the
885 * file is growing) then we *will* alter the inode to reflect
886 * the new i_size. But that is not done here - it is done in
617ba13b 887 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
888 */
889 jbd_debug(5, "splicing indirect only\n");
0390131b
FM
890 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
891 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
ac27a0ec
DK
892 if (err)
893 goto err_out;
894 } else {
895 /*
896 * OK, we spliced it into the inode itself on a direct block.
ac27a0ec 897 */
41591750 898 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
899 jbd_debug(5, "splicing direct\n");
900 }
901 return err;
902
903err_out:
904 for (i = 1; i <= num; i++) {
dab291af 905 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
617ba13b 906 ext4_journal_forget(handle, where[i].bh);
c9de560d
AT
907 ext4_free_blocks(handle, inode,
908 le32_to_cpu(where[i-1].key), 1, 0);
ac27a0ec 909 }
c9de560d 910 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
ac27a0ec
DK
911
912 return err;
913}
914
915/*
b920c755
TT
916 * The ext4_ind_get_blocks() function handles non-extents inodes
917 * (i.e., using the traditional indirect/double-indirect i_blocks
918 * scheme) for ext4_get_blocks().
919 *
ac27a0ec
DK
920 * Allocation strategy is simple: if we have to allocate something, we will
921 * have to go the whole way to leaf. So let's do it before attaching anything
922 * to tree, set linkage between the newborn blocks, write them if sync is
923 * required, recheck the path, free and repeat if check fails, otherwise
924 * set the last missing link (that will protect us from any truncate-generated
925 * removals - all blocks on the path are immune now) and possibly force the
926 * write on the parent block.
927 * That has a nice additional property: no special recovery from the failed
928 * allocations is needed - we simply release blocks and do not touch anything
929 * reachable from inode.
930 *
931 * `handle' can be NULL if create == 0.
932 *
ac27a0ec
DK
933 * return > 0, # of blocks mapped or allocated.
934 * return = 0, if plain lookup failed.
935 * return < 0, error case.
c278bfec 936 *
b920c755
TT
937 * The ext4_ind_get_blocks() function should be called with
938 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
939 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
940 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
941 * blocks.
ac27a0ec 942 */
e4d996ca 943static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
944 ext4_lblk_t iblock, unsigned int maxblocks,
945 struct buffer_head *bh_result,
946 int flags)
ac27a0ec
DK
947{
948 int err = -EIO;
725d26d3 949 ext4_lblk_t offsets[4];
ac27a0ec
DK
950 Indirect chain[4];
951 Indirect *partial;
617ba13b 952 ext4_fsblk_t goal;
ac27a0ec
DK
953 int indirect_blks;
954 int blocks_to_boundary = 0;
955 int depth;
ac27a0ec 956 int count = 0;
617ba13b 957 ext4_fsblk_t first_block = 0;
ac27a0ec 958
a86c6181 959 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
c2177057 960 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
725d26d3 961 depth = ext4_block_to_path(inode, iblock, offsets,
de9a55b8 962 &blocks_to_boundary);
ac27a0ec
DK
963
964 if (depth == 0)
965 goto out;
966
617ba13b 967 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
968
969 /* Simplest case - block found, no allocation needed */
970 if (!partial) {
971 first_block = le32_to_cpu(chain[depth - 1].key);
972 clear_buffer_new(bh_result);
973 count++;
974 /*map more blocks*/
975 while (count < maxblocks && count <= blocks_to_boundary) {
617ba13b 976 ext4_fsblk_t blk;
ac27a0ec 977
ac27a0ec
DK
978 blk = le32_to_cpu(*(chain[depth-1].p + count));
979
980 if (blk == first_block + count)
981 count++;
982 else
983 break;
984 }
c278bfec 985 goto got_it;
ac27a0ec
DK
986 }
987
988 /* Next simple case - plain lookup or failed read of indirect block */
c2177057 989 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
ac27a0ec
DK
990 goto cleanup;
991
ac27a0ec 992 /*
c2ea3fde 993 * Okay, we need to do block allocation.
ac27a0ec 994 */
fb01bfda 995 goal = ext4_find_goal(inode, iblock, partial);
ac27a0ec
DK
996
997 /* the number of blocks need to allocate for [d,t]indirect blocks */
998 indirect_blks = (chain + depth) - partial - 1;
999
1000 /*
1001 * Next look up the indirect map to count the totoal number of
1002 * direct blocks to allocate for this branch.
1003 */
617ba13b 1004 count = ext4_blks_to_allocate(partial, indirect_blks,
ac27a0ec
DK
1005 maxblocks, blocks_to_boundary);
1006 /*
617ba13b 1007 * Block out ext4_truncate while we alter the tree
ac27a0ec 1008 */
7061eba7 1009 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
de9a55b8
TT
1010 &count, goal,
1011 offsets + (partial - chain), partial);
ac27a0ec
DK
1012
1013 /*
617ba13b 1014 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
1015 * on the new chain if there is a failure, but that risks using
1016 * up transaction credits, especially for bitmaps where the
1017 * credits cannot be returned. Can we handle this somehow? We
1018 * may need to return -EAGAIN upwards in the worst case. --sct
1019 */
1020 if (!err)
617ba13b 1021 err = ext4_splice_branch(handle, inode, iblock,
de9a55b8
TT
1022 partial, indirect_blks, count);
1023 else
ac27a0ec
DK
1024 goto cleanup;
1025
1026 set_buffer_new(bh_result);
1027got_it:
1028 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1029 if (count > blocks_to_boundary)
1030 set_buffer_boundary(bh_result);
1031 err = count;
1032 /* Clean up and exit */
1033 partial = chain + depth - 1; /* the whole chain */
1034cleanup:
1035 while (partial > chain) {
1036 BUFFER_TRACE(partial->bh, "call brelse");
1037 brelse(partial->bh);
1038 partial--;
1039 }
1040 BUFFER_TRACE(bh_result, "returned");
1041out:
1042 return err;
1043}
1044
60e58e0f
MC
1045qsize_t ext4_get_reserved_space(struct inode *inode)
1046{
1047 unsigned long long total;
1048
1049 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1050 total = EXT4_I(inode)->i_reserved_data_blocks +
1051 EXT4_I(inode)->i_reserved_meta_blocks;
1052 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1053
1054 return total;
1055}
12219aea
AK
1056/*
1057 * Calculate the number of metadata blocks need to reserve
1058 * to allocate @blocks for non extent file based file
1059 */
1060static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1061{
1062 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1063 int ind_blks, dind_blks, tind_blks;
1064
1065 /* number of new indirect blocks needed */
1066 ind_blks = (blocks + icap - 1) / icap;
1067
1068 dind_blks = (ind_blks + icap - 1) / icap;
1069
1070 tind_blks = 1;
1071
1072 return ind_blks + dind_blks + tind_blks;
1073}
1074
1075/*
1076 * Calculate the number of metadata blocks need to reserve
1077 * to allocate given number of blocks
1078 */
1079static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1080{
cd213226
MC
1081 if (!blocks)
1082 return 0;
1083
12219aea
AK
1084 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1085 return ext4_ext_calc_metadata_amount(inode, blocks);
1086
1087 return ext4_indirect_calc_metadata_amount(inode, blocks);
1088}
1089
1090static void ext4_da_update_reserve_space(struct inode *inode, int used)
1091{
1092 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1093 int total, mdb, mdb_free;
1094
1095 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1096 /* recalculate the number of metablocks still need to be reserved */
1097 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1098 mdb = ext4_calc_metadata_amount(inode, total);
1099
1100 /* figure out how many metablocks to release */
1101 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1102 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1103
6bc6e63f
AK
1104 if (mdb_free) {
1105 /* Account for allocated meta_blocks */
1106 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1107
1108 /* update fs dirty blocks counter */
1109 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1110 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1111 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1112 }
12219aea
AK
1113
1114 /* update per-inode reservations */
1115 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1116 EXT4_I(inode)->i_reserved_data_blocks -= used;
12219aea 1117 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f
MC
1118
1119 /*
1120 * free those over-booking quota for metadata blocks
1121 */
60e58e0f
MC
1122 if (mdb_free)
1123 vfs_dq_release_reservation_block(inode, mdb_free);
d6014301
AK
1124
1125 /*
1126 * If we have done all the pending block allocations and if
1127 * there aren't any writers on the inode, we can discard the
1128 * inode's preallocations.
1129 */
1130 if (!total && (atomic_read(&inode->i_writecount) == 0))
1131 ext4_discard_preallocations(inode);
12219aea
AK
1132}
1133
80e42468
TT
1134static int check_block_validity(struct inode *inode, const char *msg,
1135 sector_t logical, sector_t phys, int len)
6fd058f7
TT
1136{
1137 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
80e42468 1138 ext4_error(inode->i_sb, msg,
6fd058f7
TT
1139 "inode #%lu logical block %llu mapped to %llu "
1140 "(size %d)", inode->i_ino,
1141 (unsigned long long) logical,
1142 (unsigned long long) phys, len);
6fd058f7
TT
1143 return -EIO;
1144 }
1145 return 0;
1146}
1147
55138e0b 1148/*
1f94533d
TT
1149 * Return the number of contiguous dirty pages in a given inode
1150 * starting at page frame idx.
55138e0b
TT
1151 */
1152static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1153 unsigned int max_pages)
1154{
1155 struct address_space *mapping = inode->i_mapping;
1156 pgoff_t index;
1157 struct pagevec pvec;
1158 pgoff_t num = 0;
1159 int i, nr_pages, done = 0;
1160
1161 if (max_pages == 0)
1162 return 0;
1163 pagevec_init(&pvec, 0);
1164 while (!done) {
1165 index = idx;
1166 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1167 PAGECACHE_TAG_DIRTY,
1168 (pgoff_t)PAGEVEC_SIZE);
1169 if (nr_pages == 0)
1170 break;
1171 for (i = 0; i < nr_pages; i++) {
1172 struct page *page = pvec.pages[i];
1173 struct buffer_head *bh, *head;
1174
1175 lock_page(page);
1176 if (unlikely(page->mapping != mapping) ||
1177 !PageDirty(page) ||
1178 PageWriteback(page) ||
1179 page->index != idx) {
1180 done = 1;
1181 unlock_page(page);
1182 break;
1183 }
1f94533d
TT
1184 if (page_has_buffers(page)) {
1185 bh = head = page_buffers(page);
1186 do {
1187 if (!buffer_delay(bh) &&
1188 !buffer_unwritten(bh))
1189 done = 1;
1190 bh = bh->b_this_page;
1191 } while (!done && (bh != head));
1192 }
55138e0b
TT
1193 unlock_page(page);
1194 if (done)
1195 break;
1196 idx++;
1197 num++;
1198 if (num >= max_pages)
1199 break;
1200 }
1201 pagevec_release(&pvec);
1202 }
1203 return num;
1204}
1205
f5ab0d1f 1206/*
12b7ac17 1207 * The ext4_get_blocks() function tries to look up the requested blocks,
2b2d6d01 1208 * and returns if the blocks are already mapped.
f5ab0d1f 1209 *
f5ab0d1f
MC
1210 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1211 * and store the allocated blocks in the result buffer head and mark it
1212 * mapped.
1213 *
1214 * If file type is extents based, it will call ext4_ext_get_blocks(),
e4d996ca 1215 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
f5ab0d1f
MC
1216 * based files
1217 *
1218 * On success, it returns the number of blocks being mapped or allocate.
1219 * if create==0 and the blocks are pre-allocated and uninitialized block,
1220 * the result buffer head is unmapped. If the create ==1, it will make sure
1221 * the buffer head is mapped.
1222 *
1223 * It returns 0 if plain look up failed (blocks have not been allocated), in
1224 * that casem, buffer head is unmapped
1225 *
1226 * It returns the error in case of allocation failure.
1227 */
12b7ac17
TT
1228int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1229 unsigned int max_blocks, struct buffer_head *bh,
c2177057 1230 int flags)
0e855ac8
AK
1231{
1232 int retval;
f5ab0d1f
MC
1233
1234 clear_buffer_mapped(bh);
2a8964d6 1235 clear_buffer_unwritten(bh);
f5ab0d1f 1236
0031462b
MC
1237 ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1238 "logical block %lu\n", inode->i_ino, flags, max_blocks,
1239 (unsigned long)block);
4df3d265 1240 /*
b920c755
TT
1241 * Try to see if we can get the block without requesting a new
1242 * file system block.
4df3d265
AK
1243 */
1244 down_read((&EXT4_I(inode)->i_data_sem));
1245 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1246 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
c2177057 1247 bh, 0);
0e855ac8 1248 } else {
e4d996ca 1249 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
c2177057 1250 bh, 0);
0e855ac8 1251 }
4df3d265 1252 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 1253
6fd058f7 1254 if (retval > 0 && buffer_mapped(bh)) {
80e42468
TT
1255 int ret = check_block_validity(inode, "file system corruption",
1256 block, bh->b_blocknr, retval);
6fd058f7
TT
1257 if (ret != 0)
1258 return ret;
1259 }
1260
f5ab0d1f 1261 /* If it is only a block(s) look up */
c2177057 1262 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
1263 return retval;
1264
1265 /*
1266 * Returns if the blocks have already allocated
1267 *
1268 * Note that if blocks have been preallocated
1269 * ext4_ext_get_block() returns th create = 0
1270 * with buffer head unmapped.
1271 */
1272 if (retval > 0 && buffer_mapped(bh))
4df3d265
AK
1273 return retval;
1274
2a8964d6
AK
1275 /*
1276 * When we call get_blocks without the create flag, the
1277 * BH_Unwritten flag could have gotten set if the blocks
1278 * requested were part of a uninitialized extent. We need to
1279 * clear this flag now that we are committed to convert all or
1280 * part of the uninitialized extent to be an initialized
1281 * extent. This is because we need to avoid the combination
1282 * of BH_Unwritten and BH_Mapped flags being simultaneously
1283 * set on the buffer_head.
1284 */
1285 clear_buffer_unwritten(bh);
1286
4df3d265 1287 /*
f5ab0d1f
MC
1288 * New blocks allocate and/or writing to uninitialized extent
1289 * will possibly result in updating i_data, so we take
1290 * the write lock of i_data_sem, and call get_blocks()
1291 * with create == 1 flag.
4df3d265
AK
1292 */
1293 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1294
1295 /*
1296 * if the caller is from delayed allocation writeout path
1297 * we have already reserved fs blocks for allocation
1298 * let the underlying get_block() function know to
1299 * avoid double accounting
1300 */
c2177057 1301 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1302 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1303 /*
1304 * We need to check for EXT4 here because migrate
1305 * could have changed the inode type in between
1306 */
0e855ac8
AK
1307 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1308 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
c2177057 1309 bh, flags);
0e855ac8 1310 } else {
e4d996ca 1311 retval = ext4_ind_get_blocks(handle, inode, block,
c2177057 1312 max_blocks, bh, flags);
267e4db9
AK
1313
1314 if (retval > 0 && buffer_new(bh)) {
1315 /*
1316 * We allocated new blocks which will result in
1317 * i_data's format changing. Force the migrate
1318 * to fail by clearing migrate flags
1319 */
1b9c12f4 1320 EXT4_I(inode)->i_state &= ~EXT4_STATE_EXT_MIGRATE;
267e4db9 1321 }
0e855ac8 1322 }
d2a17637 1323
2ac3b6e0 1324 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1325 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
2ac3b6e0
TT
1326
1327 /*
1328 * Update reserved blocks/metadata blocks after successful
1329 * block allocation which had been deferred till now.
1330 */
1331 if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1332 ext4_da_update_reserve_space(inode, retval);
d2a17637 1333
4df3d265 1334 up_write((&EXT4_I(inode)->i_data_sem));
6fd058f7 1335 if (retval > 0 && buffer_mapped(bh)) {
80e42468
TT
1336 int ret = check_block_validity(inode, "file system "
1337 "corruption after allocation",
1338 block, bh->b_blocknr, retval);
6fd058f7
TT
1339 if (ret != 0)
1340 return ret;
1341 }
0e855ac8
AK
1342 return retval;
1343}
1344
f3bd1f3f
MC
1345/* Maximum number of blocks we map for direct IO at once. */
1346#define DIO_MAX_BLOCKS 4096
1347
6873fa0d
ES
1348int ext4_get_block(struct inode *inode, sector_t iblock,
1349 struct buffer_head *bh_result, int create)
ac27a0ec 1350{
3e4fdaf8 1351 handle_t *handle = ext4_journal_current_handle();
7fb5409d 1352 int ret = 0, started = 0;
ac27a0ec 1353 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
f3bd1f3f 1354 int dio_credits;
ac27a0ec 1355
7fb5409d
JK
1356 if (create && !handle) {
1357 /* Direct IO write... */
1358 if (max_blocks > DIO_MAX_BLOCKS)
1359 max_blocks = DIO_MAX_BLOCKS;
f3bd1f3f
MC
1360 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1361 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1362 if (IS_ERR(handle)) {
ac27a0ec 1363 ret = PTR_ERR(handle);
7fb5409d 1364 goto out;
ac27a0ec 1365 }
7fb5409d 1366 started = 1;
ac27a0ec
DK
1367 }
1368
12b7ac17 1369 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
c2177057 1370 create ? EXT4_GET_BLOCKS_CREATE : 0);
7fb5409d
JK
1371 if (ret > 0) {
1372 bh_result->b_size = (ret << inode->i_blkbits);
1373 ret = 0;
ac27a0ec 1374 }
7fb5409d
JK
1375 if (started)
1376 ext4_journal_stop(handle);
1377out:
ac27a0ec
DK
1378 return ret;
1379}
1380
1381/*
1382 * `handle' can be NULL if create is zero
1383 */
617ba13b 1384struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1385 ext4_lblk_t block, int create, int *errp)
ac27a0ec
DK
1386{
1387 struct buffer_head dummy;
1388 int fatal = 0, err;
03f5d8bc 1389 int flags = 0;
ac27a0ec
DK
1390
1391 J_ASSERT(handle != NULL || create == 0);
1392
1393 dummy.b_state = 0;
1394 dummy.b_blocknr = -1000;
1395 buffer_trace_init(&dummy.b_history);
c2177057
TT
1396 if (create)
1397 flags |= EXT4_GET_BLOCKS_CREATE;
1398 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
ac27a0ec 1399 /*
c2177057
TT
1400 * ext4_get_blocks() returns number of blocks mapped. 0 in
1401 * case of a HOLE.
ac27a0ec
DK
1402 */
1403 if (err > 0) {
1404 if (err > 1)
1405 WARN_ON(1);
1406 err = 0;
1407 }
1408 *errp = err;
1409 if (!err && buffer_mapped(&dummy)) {
1410 struct buffer_head *bh;
1411 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1412 if (!bh) {
1413 *errp = -EIO;
1414 goto err;
1415 }
1416 if (buffer_new(&dummy)) {
1417 J_ASSERT(create != 0);
ac39849d 1418 J_ASSERT(handle != NULL);
ac27a0ec
DK
1419
1420 /*
1421 * Now that we do not always journal data, we should
1422 * keep in mind whether this should always journal the
1423 * new buffer as metadata. For now, regular file
617ba13b 1424 * writes use ext4_get_block instead, so it's not a
ac27a0ec
DK
1425 * problem.
1426 */
1427 lock_buffer(bh);
1428 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 1429 fatal = ext4_journal_get_create_access(handle, bh);
ac27a0ec 1430 if (!fatal && !buffer_uptodate(bh)) {
af5bc92d 1431 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
ac27a0ec
DK
1432 set_buffer_uptodate(bh);
1433 }
1434 unlock_buffer(bh);
0390131b
FM
1435 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1436 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
1437 if (!fatal)
1438 fatal = err;
1439 } else {
1440 BUFFER_TRACE(bh, "not a new buffer");
1441 }
1442 if (fatal) {
1443 *errp = fatal;
1444 brelse(bh);
1445 bh = NULL;
1446 }
1447 return bh;
1448 }
1449err:
1450 return NULL;
1451}
1452
617ba13b 1453struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1454 ext4_lblk_t block, int create, int *err)
ac27a0ec 1455{
af5bc92d 1456 struct buffer_head *bh;
ac27a0ec 1457
617ba13b 1458 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1459 if (!bh)
1460 return bh;
1461 if (buffer_uptodate(bh))
1462 return bh;
1463 ll_rw_block(READ_META, 1, &bh);
1464 wait_on_buffer(bh);
1465 if (buffer_uptodate(bh))
1466 return bh;
1467 put_bh(bh);
1468 *err = -EIO;
1469 return NULL;
1470}
1471
af5bc92d
TT
1472static int walk_page_buffers(handle_t *handle,
1473 struct buffer_head *head,
1474 unsigned from,
1475 unsigned to,
1476 int *partial,
1477 int (*fn)(handle_t *handle,
1478 struct buffer_head *bh))
ac27a0ec
DK
1479{
1480 struct buffer_head *bh;
1481 unsigned block_start, block_end;
1482 unsigned blocksize = head->b_size;
1483 int err, ret = 0;
1484 struct buffer_head *next;
1485
af5bc92d
TT
1486 for (bh = head, block_start = 0;
1487 ret == 0 && (bh != head || !block_start);
de9a55b8 1488 block_start = block_end, bh = next) {
ac27a0ec
DK
1489 next = bh->b_this_page;
1490 block_end = block_start + blocksize;
1491 if (block_end <= from || block_start >= to) {
1492 if (partial && !buffer_uptodate(bh))
1493 *partial = 1;
1494 continue;
1495 }
1496 err = (*fn)(handle, bh);
1497 if (!ret)
1498 ret = err;
1499 }
1500 return ret;
1501}
1502
1503/*
1504 * To preserve ordering, it is essential that the hole instantiation and
1505 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1506 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1507 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1508 * prepare_write() is the right place.
1509 *
617ba13b
MC
1510 * Also, this function can nest inside ext4_writepage() ->
1511 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1512 * has generated enough buffer credits to do the whole page. So we won't
1513 * block on the journal in that case, which is good, because the caller may
1514 * be PF_MEMALLOC.
1515 *
617ba13b 1516 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1517 * quota file writes. If we were to commit the transaction while thus
1518 * reentered, there can be a deadlock - we would be holding a quota
1519 * lock, and the commit would never complete if another thread had a
1520 * transaction open and was blocking on the quota lock - a ranking
1521 * violation.
1522 *
dab291af 1523 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1524 * will _not_ run commit under these circumstances because handle->h_ref
1525 * is elevated. We'll still have enough credits for the tiny quotafile
1526 * write.
1527 */
1528static int do_journal_get_write_access(handle_t *handle,
de9a55b8 1529 struct buffer_head *bh)
ac27a0ec
DK
1530{
1531 if (!buffer_mapped(bh) || buffer_freed(bh))
1532 return 0;
617ba13b 1533 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1534}
1535
bfc1af65 1536static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1537 loff_t pos, unsigned len, unsigned flags,
1538 struct page **pagep, void **fsdata)
ac27a0ec 1539{
af5bc92d 1540 struct inode *inode = mapping->host;
1938a150 1541 int ret, needed_blocks;
ac27a0ec
DK
1542 handle_t *handle;
1543 int retries = 0;
af5bc92d 1544 struct page *page;
de9a55b8 1545 pgoff_t index;
af5bc92d 1546 unsigned from, to;
bfc1af65 1547
9bffad1e 1548 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1549 /*
1550 * Reserve one block more for addition to orphan list in case
1551 * we allocate blocks but write fails for some reason
1552 */
1553 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 1554 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1555 from = pos & (PAGE_CACHE_SIZE - 1);
1556 to = from + len;
ac27a0ec
DK
1557
1558retry:
af5bc92d
TT
1559 handle = ext4_journal_start(inode, needed_blocks);
1560 if (IS_ERR(handle)) {
1561 ret = PTR_ERR(handle);
1562 goto out;
7479d2b9 1563 }
ac27a0ec 1564
ebd3610b
JK
1565 /* We cannot recurse into the filesystem as the transaction is already
1566 * started */
1567 flags |= AOP_FLAG_NOFS;
1568
54566b2c 1569 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1570 if (!page) {
1571 ext4_journal_stop(handle);
1572 ret = -ENOMEM;
1573 goto out;
1574 }
1575 *pagep = page;
1576
bfc1af65 1577 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
ebd3610b 1578 ext4_get_block);
bfc1af65
NP
1579
1580 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1581 ret = walk_page_buffers(handle, page_buffers(page),
1582 from, to, NULL, do_journal_get_write_access);
1583 }
bfc1af65
NP
1584
1585 if (ret) {
af5bc92d 1586 unlock_page(page);
af5bc92d 1587 page_cache_release(page);
ae4d5372
AK
1588 /*
1589 * block_write_begin may have instantiated a few blocks
1590 * outside i_size. Trim these off again. Don't need
1591 * i_size_read because we hold i_mutex.
1938a150
AK
1592 *
1593 * Add inode to orphan list in case we crash before
1594 * truncate finishes
ae4d5372 1595 */
ffacfa7a 1596 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1597 ext4_orphan_add(handle, inode);
1598
1599 ext4_journal_stop(handle);
1600 if (pos + len > inode->i_size) {
ffacfa7a 1601 ext4_truncate(inode);
de9a55b8 1602 /*
ffacfa7a 1603 * If truncate failed early the inode might
1938a150
AK
1604 * still be on the orphan list; we need to
1605 * make sure the inode is removed from the
1606 * orphan list in that case.
1607 */
1608 if (inode->i_nlink)
1609 ext4_orphan_del(NULL, inode);
1610 }
bfc1af65
NP
1611 }
1612
617ba13b 1613 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1614 goto retry;
7479d2b9 1615out:
ac27a0ec
DK
1616 return ret;
1617}
1618
bfc1af65
NP
1619/* For write_end() in data=journal mode */
1620static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1621{
1622 if (!buffer_mapped(bh) || buffer_freed(bh))
1623 return 0;
1624 set_buffer_uptodate(bh);
0390131b 1625 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1626}
1627
f8514083 1628static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
1629 struct address_space *mapping,
1630 loff_t pos, unsigned len, unsigned copied,
1631 struct page *page, void *fsdata)
f8514083
AK
1632{
1633 int i_size_changed = 0;
1634 struct inode *inode = mapping->host;
1635 handle_t *handle = ext4_journal_current_handle();
1636
1637 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1638
1639 /*
1640 * No need to use i_size_read() here, the i_size
1641 * cannot change under us because we hold i_mutex.
1642 *
1643 * But it's important to update i_size while still holding page lock:
1644 * page writeout could otherwise come in and zero beyond i_size.
1645 */
1646 if (pos + copied > inode->i_size) {
1647 i_size_write(inode, pos + copied);
1648 i_size_changed = 1;
1649 }
1650
1651 if (pos + copied > EXT4_I(inode)->i_disksize) {
1652 /* We need to mark inode dirty even if
1653 * new_i_size is less that inode->i_size
1654 * bu greater than i_disksize.(hint delalloc)
1655 */
1656 ext4_update_i_disksize(inode, (pos + copied));
1657 i_size_changed = 1;
1658 }
1659 unlock_page(page);
1660 page_cache_release(page);
1661
1662 /*
1663 * Don't mark the inode dirty under page lock. First, it unnecessarily
1664 * makes the holding time of page lock longer. Second, it forces lock
1665 * ordering of page lock and transaction start for journaling
1666 * filesystems.
1667 */
1668 if (i_size_changed)
1669 ext4_mark_inode_dirty(handle, inode);
1670
1671 return copied;
1672}
1673
ac27a0ec
DK
1674/*
1675 * We need to pick up the new inode size which generic_commit_write gave us
1676 * `file' can be NULL - eg, when called from page_symlink().
1677 *
617ba13b 1678 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1679 * buffers are managed internally.
1680 */
bfc1af65 1681static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
1682 struct address_space *mapping,
1683 loff_t pos, unsigned len, unsigned copied,
1684 struct page *page, void *fsdata)
ac27a0ec 1685{
617ba13b 1686 handle_t *handle = ext4_journal_current_handle();
cf108bca 1687 struct inode *inode = mapping->host;
ac27a0ec
DK
1688 int ret = 0, ret2;
1689
9bffad1e 1690 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 1691 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1692
1693 if (ret == 0) {
f8514083 1694 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1695 page, fsdata);
f8a87d89 1696 copied = ret2;
ffacfa7a 1697 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1698 /* if we have allocated more blocks and copied
1699 * less. We will have blocks allocated outside
1700 * inode->i_size. So truncate them
1701 */
1702 ext4_orphan_add(handle, inode);
f8a87d89
RK
1703 if (ret2 < 0)
1704 ret = ret2;
ac27a0ec 1705 }
617ba13b 1706 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1707 if (!ret)
1708 ret = ret2;
bfc1af65 1709
f8514083 1710 if (pos + len > inode->i_size) {
ffacfa7a 1711 ext4_truncate(inode);
de9a55b8 1712 /*
ffacfa7a 1713 * If truncate failed early the inode might still be
f8514083
AK
1714 * on the orphan list; we need to make sure the inode
1715 * is removed from the orphan list in that case.
1716 */
1717 if (inode->i_nlink)
1718 ext4_orphan_del(NULL, inode);
1719 }
1720
1721
bfc1af65 1722 return ret ? ret : copied;
ac27a0ec
DK
1723}
1724
bfc1af65 1725static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
1726 struct address_space *mapping,
1727 loff_t pos, unsigned len, unsigned copied,
1728 struct page *page, void *fsdata)
ac27a0ec 1729{
617ba13b 1730 handle_t *handle = ext4_journal_current_handle();
cf108bca 1731 struct inode *inode = mapping->host;
ac27a0ec 1732 int ret = 0, ret2;
ac27a0ec 1733
9bffad1e 1734 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 1735 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1736 page, fsdata);
f8a87d89 1737 copied = ret2;
ffacfa7a 1738 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1739 /* if we have allocated more blocks and copied
1740 * less. We will have blocks allocated outside
1741 * inode->i_size. So truncate them
1742 */
1743 ext4_orphan_add(handle, inode);
1744
f8a87d89
RK
1745 if (ret2 < 0)
1746 ret = ret2;
ac27a0ec 1747
617ba13b 1748 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1749 if (!ret)
1750 ret = ret2;
bfc1af65 1751
f8514083 1752 if (pos + len > inode->i_size) {
ffacfa7a 1753 ext4_truncate(inode);
de9a55b8 1754 /*
ffacfa7a 1755 * If truncate failed early the inode might still be
f8514083
AK
1756 * on the orphan list; we need to make sure the inode
1757 * is removed from the orphan list in that case.
1758 */
1759 if (inode->i_nlink)
1760 ext4_orphan_del(NULL, inode);
1761 }
1762
bfc1af65 1763 return ret ? ret : copied;
ac27a0ec
DK
1764}
1765
bfc1af65 1766static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1767 struct address_space *mapping,
1768 loff_t pos, unsigned len, unsigned copied,
1769 struct page *page, void *fsdata)
ac27a0ec 1770{
617ba13b 1771 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1772 struct inode *inode = mapping->host;
ac27a0ec
DK
1773 int ret = 0, ret2;
1774 int partial = 0;
bfc1af65 1775 unsigned from, to;
cf17fea6 1776 loff_t new_i_size;
ac27a0ec 1777
9bffad1e 1778 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1779 from = pos & (PAGE_CACHE_SIZE - 1);
1780 to = from + len;
1781
1782 if (copied < len) {
1783 if (!PageUptodate(page))
1784 copied = 0;
1785 page_zero_new_buffers(page, from+copied, to);
1786 }
ac27a0ec
DK
1787
1788 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1789 to, &partial, write_end_fn);
ac27a0ec
DK
1790 if (!partial)
1791 SetPageUptodate(page);
cf17fea6
AK
1792 new_i_size = pos + copied;
1793 if (new_i_size > inode->i_size)
bfc1af65 1794 i_size_write(inode, pos+copied);
617ba13b 1795 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
cf17fea6
AK
1796 if (new_i_size > EXT4_I(inode)->i_disksize) {
1797 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1798 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1799 if (!ret)
1800 ret = ret2;
1801 }
bfc1af65 1802
cf108bca 1803 unlock_page(page);
f8514083 1804 page_cache_release(page);
ffacfa7a 1805 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1806 /* if we have allocated more blocks and copied
1807 * less. We will have blocks allocated outside
1808 * inode->i_size. So truncate them
1809 */
1810 ext4_orphan_add(handle, inode);
1811
617ba13b 1812 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1813 if (!ret)
1814 ret = ret2;
f8514083 1815 if (pos + len > inode->i_size) {
ffacfa7a 1816 ext4_truncate(inode);
de9a55b8 1817 /*
ffacfa7a 1818 * If truncate failed early the inode might still be
f8514083
AK
1819 * on the orphan list; we need to make sure the inode
1820 * is removed from the orphan list in that case.
1821 */
1822 if (inode->i_nlink)
1823 ext4_orphan_del(NULL, inode);
1824 }
bfc1af65
NP
1825
1826 return ret ? ret : copied;
ac27a0ec 1827}
d2a17637
MC
1828
1829static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1830{
030ba6bc 1831 int retries = 0;
60e58e0f
MC
1832 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1833 unsigned long md_needed, mdblocks, total = 0;
d2a17637
MC
1834
1835 /*
1836 * recalculate the amount of metadata blocks to reserve
1837 * in order to allocate nrblocks
1838 * worse case is one extent per block
1839 */
030ba6bc 1840repeat:
d2a17637
MC
1841 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1842 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1843 mdblocks = ext4_calc_metadata_amount(inode, total);
1844 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1845
1846 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1847 total = md_needed + nrblocks;
1848
60e58e0f
MC
1849 /*
1850 * Make quota reservation here to prevent quota overflow
1851 * later. Real quota accounting is done at pages writeout
1852 * time.
1853 */
1854 if (vfs_dq_reserve_block(inode, total)) {
1855 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1856 return -EDQUOT;
1857 }
1858
a30d542a 1859 if (ext4_claim_free_blocks(sbi, total)) {
d2a17637 1860 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
9f0ccfd8 1861 vfs_dq_release_reservation_block(inode, total);
030ba6bc
AK
1862 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1863 yield();
1864 goto repeat;
1865 }
d2a17637
MC
1866 return -ENOSPC;
1867 }
d2a17637
MC
1868 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1869 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1870
1871 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1872 return 0; /* success */
1873}
1874
12219aea 1875static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1876{
1877 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1878 int total, mdb, mdb_free, release;
1879
cd213226
MC
1880 if (!to_free)
1881 return; /* Nothing to release, exit */
1882
d2a17637 1883 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226
MC
1884
1885 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1886 /*
1887 * if there is no reserved blocks, but we try to free some
1888 * then the counter is messed up somewhere.
1889 * but since this function is called from invalidate
1890 * page, it's harmless to return without any action
1891 */
1892 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1893 "blocks for inode %lu, but there is no reserved "
1894 "data blocks\n", to_free, inode->i_ino);
1895 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1896 return;
1897 }
1898
d2a17637 1899 /* recalculate the number of metablocks still need to be reserved */
12219aea 1900 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
d2a17637
MC
1901 mdb = ext4_calc_metadata_amount(inode, total);
1902
1903 /* figure out how many metablocks to release */
1904 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1905 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1906
d2a17637
MC
1907 release = to_free + mdb_free;
1908
6bc6e63f
AK
1909 /* update fs dirty blocks counter for truncate case */
1910 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
d2a17637
MC
1911
1912 /* update per-inode reservations */
12219aea
AK
1913 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1914 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
d2a17637
MC
1915
1916 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1917 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
d2a17637 1918 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f
MC
1919
1920 vfs_dq_release_reservation_block(inode, release);
d2a17637
MC
1921}
1922
1923static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1924 unsigned long offset)
d2a17637
MC
1925{
1926 int to_release = 0;
1927 struct buffer_head *head, *bh;
1928 unsigned int curr_off = 0;
1929
1930 head = page_buffers(page);
1931 bh = head;
1932 do {
1933 unsigned int next_off = curr_off + bh->b_size;
1934
1935 if ((offset <= curr_off) && (buffer_delay(bh))) {
1936 to_release++;
1937 clear_buffer_delay(bh);
1938 }
1939 curr_off = next_off;
1940 } while ((bh = bh->b_this_page) != head);
12219aea 1941 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1942}
ac27a0ec 1943
64769240
AT
1944/*
1945 * Delayed allocation stuff
1946 */
1947
64769240
AT
1948/*
1949 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1950 * them with writepage() call back
64769240
AT
1951 *
1952 * @mpd->inode: inode
1953 * @mpd->first_page: first page of the extent
1954 * @mpd->next_page: page after the last page of the extent
64769240
AT
1955 *
1956 * By the time mpage_da_submit_io() is called we expect all blocks
1957 * to be allocated. this may be wrong if allocation failed.
1958 *
1959 * As pages are already locked by write_cache_pages(), we can't use it
1960 */
1961static int mpage_da_submit_io(struct mpage_da_data *mpd)
1962{
22208ded 1963 long pages_skipped;
791b7f08
AK
1964 struct pagevec pvec;
1965 unsigned long index, end;
1966 int ret = 0, err, nr_pages, i;
1967 struct inode *inode = mpd->inode;
1968 struct address_space *mapping = inode->i_mapping;
64769240
AT
1969
1970 BUG_ON(mpd->next_page <= mpd->first_page);
791b7f08
AK
1971 /*
1972 * We need to start from the first_page to the next_page - 1
1973 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1974 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1975 * at the currently mapped buffer_heads.
1976 */
64769240
AT
1977 index = mpd->first_page;
1978 end = mpd->next_page - 1;
1979
791b7f08 1980 pagevec_init(&pvec, 0);
64769240 1981 while (index <= end) {
791b7f08 1982 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1983 if (nr_pages == 0)
1984 break;
1985 for (i = 0; i < nr_pages; i++) {
1986 struct page *page = pvec.pages[i];
1987
791b7f08
AK
1988 index = page->index;
1989 if (index > end)
1990 break;
1991 index++;
1992
1993 BUG_ON(!PageLocked(page));
1994 BUG_ON(PageWriteback(page));
1995
22208ded 1996 pages_skipped = mpd->wbc->pages_skipped;
a1d6cc56 1997 err = mapping->a_ops->writepage(page, mpd->wbc);
22208ded
AK
1998 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1999 /*
2000 * have successfully written the page
2001 * without skipping the same
2002 */
a1d6cc56 2003 mpd->pages_written++;
64769240
AT
2004 /*
2005 * In error case, we have to continue because
2006 * remaining pages are still locked
2007 * XXX: unlock and re-dirty them?
2008 */
2009 if (ret == 0)
2010 ret = err;
2011 }
2012 pagevec_release(&pvec);
2013 }
64769240
AT
2014 return ret;
2015}
2016
2017/*
2018 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2019 *
2020 * @mpd->inode - inode to walk through
2021 * @exbh->b_blocknr - first block on a disk
2022 * @exbh->b_size - amount of space in bytes
2023 * @logical - first logical block to start assignment with
2024 *
2025 * the function goes through all passed space and put actual disk
29fa89d0 2026 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
64769240
AT
2027 */
2028static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
2029 struct buffer_head *exbh)
2030{
2031 struct inode *inode = mpd->inode;
2032 struct address_space *mapping = inode->i_mapping;
2033 int blocks = exbh->b_size >> inode->i_blkbits;
2034 sector_t pblock = exbh->b_blocknr, cur_logical;
2035 struct buffer_head *head, *bh;
a1d6cc56 2036 pgoff_t index, end;
64769240
AT
2037 struct pagevec pvec;
2038 int nr_pages, i;
2039
2040 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2041 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2042 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2043
2044 pagevec_init(&pvec, 0);
2045
2046 while (index <= end) {
2047 /* XXX: optimize tail */
2048 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2049 if (nr_pages == 0)
2050 break;
2051 for (i = 0; i < nr_pages; i++) {
2052 struct page *page = pvec.pages[i];
2053
2054 index = page->index;
2055 if (index > end)
2056 break;
2057 index++;
2058
2059 BUG_ON(!PageLocked(page));
2060 BUG_ON(PageWriteback(page));
2061 BUG_ON(!page_has_buffers(page));
2062
2063 bh = page_buffers(page);
2064 head = bh;
2065
2066 /* skip blocks out of the range */
2067 do {
2068 if (cur_logical >= logical)
2069 break;
2070 cur_logical++;
2071 } while ((bh = bh->b_this_page) != head);
2072
2073 do {
2074 if (cur_logical >= logical + blocks)
2075 break;
29fa89d0
AK
2076
2077 if (buffer_delay(bh) ||
2078 buffer_unwritten(bh)) {
2079
2080 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2081
2082 if (buffer_delay(bh)) {
2083 clear_buffer_delay(bh);
2084 bh->b_blocknr = pblock;
2085 } else {
2086 /*
2087 * unwritten already should have
2088 * blocknr assigned. Verify that
2089 */
2090 clear_buffer_unwritten(bh);
2091 BUG_ON(bh->b_blocknr != pblock);
2092 }
2093
61628a3f 2094 } else if (buffer_mapped(bh))
64769240 2095 BUG_ON(bh->b_blocknr != pblock);
64769240
AT
2096
2097 cur_logical++;
2098 pblock++;
2099 } while ((bh = bh->b_this_page) != head);
2100 }
2101 pagevec_release(&pvec);
2102 }
2103}
2104
2105
2106/*
2107 * __unmap_underlying_blocks - just a helper function to unmap
2108 * set of blocks described by @bh
2109 */
2110static inline void __unmap_underlying_blocks(struct inode *inode,
2111 struct buffer_head *bh)
2112{
2113 struct block_device *bdev = inode->i_sb->s_bdev;
2114 int blocks, i;
2115
2116 blocks = bh->b_size >> inode->i_blkbits;
2117 for (i = 0; i < blocks; i++)
2118 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2119}
2120
c4a0c46e
AK
2121static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2122 sector_t logical, long blk_cnt)
2123{
2124 int nr_pages, i;
2125 pgoff_t index, end;
2126 struct pagevec pvec;
2127 struct inode *inode = mpd->inode;
2128 struct address_space *mapping = inode->i_mapping;
2129
2130 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2131 end = (logical + blk_cnt - 1) >>
2132 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2133 while (index <= end) {
2134 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2135 if (nr_pages == 0)
2136 break;
2137 for (i = 0; i < nr_pages; i++) {
2138 struct page *page = pvec.pages[i];
2139 index = page->index;
2140 if (index > end)
2141 break;
2142 index++;
2143
2144 BUG_ON(!PageLocked(page));
2145 BUG_ON(PageWriteback(page));
2146 block_invalidatepage(page, 0);
2147 ClearPageUptodate(page);
2148 unlock_page(page);
2149 }
2150 }
2151 return;
2152}
2153
df22291f
AK
2154static void ext4_print_free_blocks(struct inode *inode)
2155{
2156 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1693918e
TT
2157 printk(KERN_CRIT "Total free blocks count %lld\n",
2158 ext4_count_free_blocks(inode->i_sb));
2159 printk(KERN_CRIT "Free/Dirty block details\n");
2160 printk(KERN_CRIT "free_blocks=%lld\n",
2161 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2162 printk(KERN_CRIT "dirty_blocks=%lld\n",
2163 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2164 printk(KERN_CRIT "Block reservation details\n");
2165 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2166 EXT4_I(inode)->i_reserved_data_blocks);
2167 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2168 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
2169 return;
2170}
2171
64769240
AT
2172/*
2173 * mpage_da_map_blocks - go through given space
2174 *
8dc207c0 2175 * @mpd - bh describing space
64769240
AT
2176 *
2177 * The function skips space we know is already mapped to disk blocks.
2178 *
64769240 2179 */
ed5bde0b 2180static int mpage_da_map_blocks(struct mpage_da_data *mpd)
64769240 2181{
2ac3b6e0 2182 int err, blks, get_blocks_flags;
030ba6bc 2183 struct buffer_head new;
2fa3cdfb
TT
2184 sector_t next = mpd->b_blocknr;
2185 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2186 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2187 handle_t *handle = NULL;
64769240
AT
2188
2189 /*
2190 * We consider only non-mapped and non-allocated blocks
2191 */
8dc207c0 2192 if ((mpd->b_state & (1 << BH_Mapped)) &&
29fa89d0
AK
2193 !(mpd->b_state & (1 << BH_Delay)) &&
2194 !(mpd->b_state & (1 << BH_Unwritten)))
c4a0c46e 2195 return 0;
2fa3cdfb
TT
2196
2197 /*
2198 * If we didn't accumulate anything to write simply return
2199 */
2200 if (!mpd->b_size)
2201 return 0;
2202
2203 handle = ext4_journal_current_handle();
2204 BUG_ON(!handle);
2205
79ffab34 2206 /*
2ac3b6e0
TT
2207 * Call ext4_get_blocks() to allocate any delayed allocation
2208 * blocks, or to convert an uninitialized extent to be
2209 * initialized (in the case where we have written into
2210 * one or more preallocated blocks).
2211 *
2212 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2213 * indicate that we are on the delayed allocation path. This
2214 * affects functions in many different parts of the allocation
2215 * call path. This flag exists primarily because we don't
2216 * want to change *many* call functions, so ext4_get_blocks()
2217 * will set the magic i_delalloc_reserved_flag once the
2218 * inode's allocation semaphore is taken.
2219 *
2220 * If the blocks in questions were delalloc blocks, set
2221 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2222 * variables are updated after the blocks have been allocated.
79ffab34 2223 */
2ac3b6e0
TT
2224 new.b_state = 0;
2225 get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2226 EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2227 if (mpd->b_state & (1 << BH_Delay))
2228 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2fa3cdfb 2229 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2ac3b6e0 2230 &new, get_blocks_flags);
2fa3cdfb
TT
2231 if (blks < 0) {
2232 err = blks;
ed5bde0b
TT
2233 /*
2234 * If get block returns with error we simply
2235 * return. Later writepage will redirty the page and
2236 * writepages will find the dirty page again
c4a0c46e
AK
2237 */
2238 if (err == -EAGAIN)
2239 return 0;
df22291f
AK
2240
2241 if (err == -ENOSPC &&
ed5bde0b 2242 ext4_count_free_blocks(mpd->inode->i_sb)) {
df22291f
AK
2243 mpd->retval = err;
2244 return 0;
2245 }
2246
c4a0c46e 2247 /*
ed5bde0b
TT
2248 * get block failure will cause us to loop in
2249 * writepages, because a_ops->writepage won't be able
2250 * to make progress. The page will be redirtied by
2251 * writepage and writepages will again try to write
2252 * the same.
c4a0c46e 2253 */
1693918e
TT
2254 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2255 "delayed block allocation failed for inode %lu at "
2256 "logical offset %llu with max blocks %zd with "
2257 "error %d\n", mpd->inode->i_ino,
2258 (unsigned long long) next,
2259 mpd->b_size >> mpd->inode->i_blkbits, err);
2260 printk(KERN_CRIT "This should not happen!! "
2261 "Data will be lost\n");
030ba6bc 2262 if (err == -ENOSPC) {
df22291f 2263 ext4_print_free_blocks(mpd->inode);
030ba6bc 2264 }
2fa3cdfb 2265 /* invalidate all the pages */
c4a0c46e 2266 ext4_da_block_invalidatepages(mpd, next,
8dc207c0 2267 mpd->b_size >> mpd->inode->i_blkbits);
c4a0c46e
AK
2268 return err;
2269 }
2fa3cdfb
TT
2270 BUG_ON(blks == 0);
2271
2272 new.b_size = (blks << mpd->inode->i_blkbits);
64769240 2273
a1d6cc56
AK
2274 if (buffer_new(&new))
2275 __unmap_underlying_blocks(mpd->inode, &new);
64769240 2276
a1d6cc56
AK
2277 /*
2278 * If blocks are delayed marked, we need to
2279 * put actual blocknr and drop delayed bit
2280 */
8dc207c0
TT
2281 if ((mpd->b_state & (1 << BH_Delay)) ||
2282 (mpd->b_state & (1 << BH_Unwritten)))
a1d6cc56 2283 mpage_put_bnr_to_bhs(mpd, next, &new);
64769240 2284
2fa3cdfb
TT
2285 if (ext4_should_order_data(mpd->inode)) {
2286 err = ext4_jbd2_file_inode(handle, mpd->inode);
2287 if (err)
2288 return err;
2289 }
2290
2291 /*
03f5d8bc 2292 * Update on-disk size along with block allocation.
2fa3cdfb
TT
2293 */
2294 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2295 if (disksize > i_size_read(mpd->inode))
2296 disksize = i_size_read(mpd->inode);
2297 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2298 ext4_update_i_disksize(mpd->inode, disksize);
2299 return ext4_mark_inode_dirty(handle, mpd->inode);
2300 }
2301
c4a0c46e 2302 return 0;
64769240
AT
2303}
2304
bf068ee2
AK
2305#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2306 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
2307
2308/*
2309 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2310 *
2311 * @mpd->lbh - extent of blocks
2312 * @logical - logical number of the block in the file
2313 * @bh - bh of the block (used to access block's state)
2314 *
2315 * the function is used to collect contig. blocks in same state
2316 */
2317static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
2318 sector_t logical, size_t b_size,
2319 unsigned long b_state)
64769240 2320{
64769240 2321 sector_t next;
8dc207c0 2322 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 2323
525f4ed8
MC
2324 /* check if thereserved journal credits might overflow */
2325 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2326 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2327 /*
2328 * With non-extent format we are limited by the journal
2329 * credit available. Total credit needed to insert
2330 * nrblocks contiguous blocks is dependent on the
2331 * nrblocks. So limit nrblocks.
2332 */
2333 goto flush_it;
2334 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2335 EXT4_MAX_TRANS_DATA) {
2336 /*
2337 * Adding the new buffer_head would make it cross the
2338 * allowed limit for which we have journal credit
2339 * reserved. So limit the new bh->b_size
2340 */
2341 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2342 mpd->inode->i_blkbits;
2343 /* we will do mpage_da_submit_io in the next loop */
2344 }
2345 }
64769240
AT
2346 /*
2347 * First block in the extent
2348 */
8dc207c0
TT
2349 if (mpd->b_size == 0) {
2350 mpd->b_blocknr = logical;
2351 mpd->b_size = b_size;
2352 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
2353 return;
2354 }
2355
8dc207c0 2356 next = mpd->b_blocknr + nrblocks;
64769240
AT
2357 /*
2358 * Can we merge the block to our big extent?
2359 */
8dc207c0
TT
2360 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2361 mpd->b_size += b_size;
64769240
AT
2362 return;
2363 }
2364
525f4ed8 2365flush_it:
64769240
AT
2366 /*
2367 * We couldn't merge the block to our extent, so we
2368 * need to flush current extent and start new one
2369 */
c4a0c46e
AK
2370 if (mpage_da_map_blocks(mpd) == 0)
2371 mpage_da_submit_io(mpd);
a1d6cc56
AK
2372 mpd->io_done = 1;
2373 return;
64769240
AT
2374}
2375
c364b22c 2376static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 2377{
c364b22c 2378 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
2379}
2380
64769240
AT
2381/*
2382 * __mpage_da_writepage - finds extent of pages and blocks
2383 *
2384 * @page: page to consider
2385 * @wbc: not used, we just follow rules
2386 * @data: context
2387 *
2388 * The function finds extents of pages and scan them for all blocks.
2389 */
2390static int __mpage_da_writepage(struct page *page,
2391 struct writeback_control *wbc, void *data)
2392{
2393 struct mpage_da_data *mpd = data;
2394 struct inode *inode = mpd->inode;
8dc207c0 2395 struct buffer_head *bh, *head;
64769240
AT
2396 sector_t logical;
2397
a1d6cc56
AK
2398 if (mpd->io_done) {
2399 /*
2400 * Rest of the page in the page_vec
2401 * redirty then and skip then. We will
fd589a8f 2402 * try to write them again after
a1d6cc56
AK
2403 * starting a new transaction
2404 */
2405 redirty_page_for_writepage(wbc, page);
2406 unlock_page(page);
2407 return MPAGE_DA_EXTENT_TAIL;
2408 }
64769240
AT
2409 /*
2410 * Can we merge this page to current extent?
2411 */
2412 if (mpd->next_page != page->index) {
2413 /*
2414 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 2415 * and start IO on them using writepage()
64769240
AT
2416 */
2417 if (mpd->next_page != mpd->first_page) {
c4a0c46e
AK
2418 if (mpage_da_map_blocks(mpd) == 0)
2419 mpage_da_submit_io(mpd);
a1d6cc56
AK
2420 /*
2421 * skip rest of the page in the page_vec
2422 */
2423 mpd->io_done = 1;
2424 redirty_page_for_writepage(wbc, page);
2425 unlock_page(page);
2426 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2427 }
2428
2429 /*
2430 * Start next extent of pages ...
2431 */
2432 mpd->first_page = page->index;
2433
2434 /*
2435 * ... and blocks
2436 */
8dc207c0
TT
2437 mpd->b_size = 0;
2438 mpd->b_state = 0;
2439 mpd->b_blocknr = 0;
64769240
AT
2440 }
2441
2442 mpd->next_page = page->index + 1;
2443 logical = (sector_t) page->index <<
2444 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2445
2446 if (!page_has_buffers(page)) {
8dc207c0
TT
2447 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2448 (1 << BH_Dirty) | (1 << BH_Uptodate));
a1d6cc56
AK
2449 if (mpd->io_done)
2450 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2451 } else {
2452 /*
2453 * Page with regular buffer heads, just add all dirty ones
2454 */
2455 head = page_buffers(page);
2456 bh = head;
2457 do {
2458 BUG_ON(buffer_locked(bh));
791b7f08
AK
2459 /*
2460 * We need to try to allocate
2461 * unmapped blocks in the same page.
2462 * Otherwise we won't make progress
43ce1d23 2463 * with the page in ext4_writepage
791b7f08 2464 */
c364b22c 2465 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
8dc207c0
TT
2466 mpage_add_bh_to_extent(mpd, logical,
2467 bh->b_size,
2468 bh->b_state);
a1d6cc56
AK
2469 if (mpd->io_done)
2470 return MPAGE_DA_EXTENT_TAIL;
791b7f08
AK
2471 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2472 /*
2473 * mapped dirty buffer. We need to update
2474 * the b_state because we look at
2475 * b_state in mpage_da_map_blocks. We don't
2476 * update b_size because if we find an
2477 * unmapped buffer_head later we need to
2478 * use the b_state flag of that buffer_head.
2479 */
8dc207c0
TT
2480 if (mpd->b_size == 0)
2481 mpd->b_state = bh->b_state & BH_FLAGS;
a1d6cc56 2482 }
64769240
AT
2483 logical++;
2484 } while ((bh = bh->b_this_page) != head);
2485 }
2486
2487 return 0;
2488}
2489
64769240 2490/*
b920c755
TT
2491 * This is a special get_blocks_t callback which is used by
2492 * ext4_da_write_begin(). It will either return mapped block or
2493 * reserve space for a single block.
29fa89d0
AK
2494 *
2495 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2496 * We also have b_blocknr = -1 and b_bdev initialized properly
2497 *
2498 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2499 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2500 * initialized properly.
64769240
AT
2501 */
2502static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2503 struct buffer_head *bh_result, int create)
2504{
2505 int ret = 0;
33b9817e
AK
2506 sector_t invalid_block = ~((sector_t) 0xffff);
2507
2508 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2509 invalid_block = ~0;
64769240
AT
2510
2511 BUG_ON(create == 0);
2512 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2513
2514 /*
2515 * first, we need to know whether the block is allocated already
2516 * preallocated blocks are unmapped but should treated
2517 * the same as allocated blocks.
2518 */
c2177057 2519 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
d2a17637
MC
2520 if ((ret == 0) && !buffer_delay(bh_result)) {
2521 /* the block isn't (pre)allocated yet, let's reserve space */
64769240
AT
2522 /*
2523 * XXX: __block_prepare_write() unmaps passed block,
2524 * is it OK?
2525 */
d2a17637
MC
2526 ret = ext4_da_reserve_space(inode, 1);
2527 if (ret)
2528 /* not enough space to reserve */
2529 return ret;
2530
33b9817e 2531 map_bh(bh_result, inode->i_sb, invalid_block);
64769240
AT
2532 set_buffer_new(bh_result);
2533 set_buffer_delay(bh_result);
2534 } else if (ret > 0) {
2535 bh_result->b_size = (ret << inode->i_blkbits);
29fa89d0
AK
2536 if (buffer_unwritten(bh_result)) {
2537 /* A delayed write to unwritten bh should
2538 * be marked new and mapped. Mapped ensures
2539 * that we don't do get_block multiple times
2540 * when we write to the same offset and new
2541 * ensures that we do proper zero out for
2542 * partial write.
2543 */
9c1ee184 2544 set_buffer_new(bh_result);
29fa89d0
AK
2545 set_buffer_mapped(bh_result);
2546 }
64769240
AT
2547 ret = 0;
2548 }
2549
2550 return ret;
2551}
61628a3f 2552
b920c755
TT
2553/*
2554 * This function is used as a standard get_block_t calback function
2555 * when there is no desire to allocate any blocks. It is used as a
2556 * callback function for block_prepare_write(), nobh_writepage(), and
2557 * block_write_full_page(). These functions should only try to map a
2558 * single block at a time.
2559 *
2560 * Since this function doesn't do block allocations even if the caller
2561 * requests it by passing in create=1, it is critically important that
2562 * any caller checks to make sure that any buffer heads are returned
2563 * by this function are either all already mapped or marked for
2564 * delayed allocation before calling nobh_writepage() or
2565 * block_write_full_page(). Otherwise, b_blocknr could be left
2566 * unitialized, and the page write functions will be taken by
2567 * surprise.
2568 */
2569static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
2570 struct buffer_head *bh_result, int create)
2571{
2572 int ret = 0;
2573 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2574
a2dc52b5
TT
2575 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2576
f0e6c985
AK
2577 /*
2578 * we don't want to do block allocation in writepage
2579 * so call get_block_wrap with create = 0
2580 */
c2177057 2581 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
f0e6c985
AK
2582 if (ret > 0) {
2583 bh_result->b_size = (ret << inode->i_blkbits);
2584 ret = 0;
2585 }
2586 return ret;
61628a3f
MC
2587}
2588
62e086be
AK
2589static int bget_one(handle_t *handle, struct buffer_head *bh)
2590{
2591 get_bh(bh);
2592 return 0;
2593}
2594
2595static int bput_one(handle_t *handle, struct buffer_head *bh)
2596{
2597 put_bh(bh);
2598 return 0;
2599}
2600
2601static int __ext4_journalled_writepage(struct page *page,
2602 struct writeback_control *wbc,
2603 unsigned int len)
2604{
2605 struct address_space *mapping = page->mapping;
2606 struct inode *inode = mapping->host;
2607 struct buffer_head *page_bufs;
2608 handle_t *handle = NULL;
2609 int ret = 0;
2610 int err;
2611
2612 page_bufs = page_buffers(page);
2613 BUG_ON(!page_bufs);
2614 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2615 /* As soon as we unlock the page, it can go away, but we have
2616 * references to buffers so we are safe */
2617 unlock_page(page);
2618
2619 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2620 if (IS_ERR(handle)) {
2621 ret = PTR_ERR(handle);
2622 goto out;
2623 }
2624
2625 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2626 do_journal_get_write_access);
2627
2628 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2629 write_end_fn);
2630 if (ret == 0)
2631 ret = err;
2632 err = ext4_journal_stop(handle);
2633 if (!ret)
2634 ret = err;
2635
2636 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2637 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2638out:
2639 return ret;
2640}
2641
61628a3f 2642/*
43ce1d23
AK
2643 * Note that we don't need to start a transaction unless we're journaling data
2644 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2645 * need to file the inode to the transaction's list in ordered mode because if
2646 * we are writing back data added by write(), the inode is already there and if
2647 * we are writing back data modified via mmap(), noone guarantees in which
2648 * transaction the data will hit the disk. In case we are journaling data, we
2649 * cannot start transaction directly because transaction start ranks above page
2650 * lock so we have to do some magic.
2651 *
b920c755
TT
2652 * This function can get called via...
2653 * - ext4_da_writepages after taking page lock (have journal handle)
2654 * - journal_submit_inode_data_buffers (no journal handle)
2655 * - shrink_page_list via pdflush (no journal handle)
2656 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2657 *
2658 * We don't do any block allocation in this function. If we have page with
2659 * multiple blocks we need to write those buffer_heads that are mapped. This
2660 * is important for mmaped based write. So if we do with blocksize 1K
2661 * truncate(f, 1024);
2662 * a = mmap(f, 0, 4096);
2663 * a[0] = 'a';
2664 * truncate(f, 4096);
2665 * we have in the page first buffer_head mapped via page_mkwrite call back
2666 * but other bufer_heads would be unmapped but dirty(dirty done via the
2667 * do_wp_page). So writepage should write the first block. If we modify
2668 * the mmap area beyond 1024 we will again get a page_fault and the
2669 * page_mkwrite callback will do the block allocation and mark the
2670 * buffer_heads mapped.
2671 *
2672 * We redirty the page if we have any buffer_heads that is either delay or
2673 * unwritten in the page.
2674 *
2675 * We can get recursively called as show below.
2676 *
2677 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2678 * ext4_writepage()
2679 *
2680 * But since we don't do any block allocation we should not deadlock.
2681 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2682 */
43ce1d23 2683static int ext4_writepage(struct page *page,
62e086be 2684 struct writeback_control *wbc)
64769240 2685{
64769240 2686 int ret = 0;
61628a3f 2687 loff_t size;
498e5f24 2688 unsigned int len;
61628a3f
MC
2689 struct buffer_head *page_bufs;
2690 struct inode *inode = page->mapping->host;
2691
43ce1d23 2692 trace_ext4_writepage(inode, page);
f0e6c985
AK
2693 size = i_size_read(inode);
2694 if (page->index == size >> PAGE_CACHE_SHIFT)
2695 len = size & ~PAGE_CACHE_MASK;
2696 else
2697 len = PAGE_CACHE_SIZE;
64769240 2698
f0e6c985 2699 if (page_has_buffers(page)) {
61628a3f 2700 page_bufs = page_buffers(page);
f0e6c985 2701 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2702 ext4_bh_delay_or_unwritten)) {
61628a3f 2703 /*
f0e6c985
AK
2704 * We don't want to do block allocation
2705 * So redirty the page and return
cd1aac32
AK
2706 * We may reach here when we do a journal commit
2707 * via journal_submit_inode_data_buffers.
2708 * If we don't have mapping block we just ignore
f0e6c985
AK
2709 * them. We can also reach here via shrink_page_list
2710 */
2711 redirty_page_for_writepage(wbc, page);
2712 unlock_page(page);
2713 return 0;
2714 }
2715 } else {
2716 /*
2717 * The test for page_has_buffers() is subtle:
2718 * We know the page is dirty but it lost buffers. That means
2719 * that at some moment in time after write_begin()/write_end()
2720 * has been called all buffers have been clean and thus they
2721 * must have been written at least once. So they are all
2722 * mapped and we can happily proceed with mapping them
2723 * and writing the page.
2724 *
2725 * Try to initialize the buffer_heads and check whether
2726 * all are mapped and non delay. We don't want to
2727 * do block allocation here.
2728 */
b767e78a 2729 ret = block_prepare_write(page, 0, len,
b920c755 2730 noalloc_get_block_write);
f0e6c985
AK
2731 if (!ret) {
2732 page_bufs = page_buffers(page);
2733 /* check whether all are mapped and non delay */
2734 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2735 ext4_bh_delay_or_unwritten)) {
f0e6c985
AK
2736 redirty_page_for_writepage(wbc, page);
2737 unlock_page(page);
2738 return 0;
2739 }
2740 } else {
2741 /*
2742 * We can't do block allocation here
2743 * so just redity the page and unlock
2744 * and return
61628a3f 2745 */
61628a3f
MC
2746 redirty_page_for_writepage(wbc, page);
2747 unlock_page(page);
2748 return 0;
2749 }
ed9b3e33 2750 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 2751 block_commit_write(page, 0, len);
64769240
AT
2752 }
2753
43ce1d23
AK
2754 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2755 /*
2756 * It's mmapped pagecache. Add buffers and journal it. There
2757 * doesn't seem much point in redirtying the page here.
2758 */
2759 ClearPageChecked(page);
2760 return __ext4_journalled_writepage(page, wbc, len);
2761 }
2762
64769240 2763 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
b920c755 2764 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
64769240 2765 else
b920c755
TT
2766 ret = block_write_full_page(page, noalloc_get_block_write,
2767 wbc);
64769240 2768
64769240
AT
2769 return ret;
2770}
2771
61628a3f 2772/*
525f4ed8
MC
2773 * This is called via ext4_da_writepages() to
2774 * calulate the total number of credits to reserve to fit
2775 * a single extent allocation into a single transaction,
2776 * ext4_da_writpeages() will loop calling this before
2777 * the block allocation.
61628a3f 2778 */
525f4ed8
MC
2779
2780static int ext4_da_writepages_trans_blocks(struct inode *inode)
2781{
2782 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2783
2784 /*
2785 * With non-extent format the journal credit needed to
2786 * insert nrblocks contiguous block is dependent on
2787 * number of contiguous block. So we will limit
2788 * number of contiguous block to a sane value
2789 */
2790 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2791 (max_blocks > EXT4_MAX_TRANS_DATA))
2792 max_blocks = EXT4_MAX_TRANS_DATA;
2793
2794 return ext4_chunk_trans_blocks(inode, max_blocks);
2795}
61628a3f 2796
64769240 2797static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2798 struct writeback_control *wbc)
64769240 2799{
22208ded
AK
2800 pgoff_t index;
2801 int range_whole = 0;
61628a3f 2802 handle_t *handle = NULL;
df22291f 2803 struct mpage_da_data mpd;
5e745b04 2804 struct inode *inode = mapping->host;
22208ded 2805 int no_nrwrite_index_update;
498e5f24
TT
2806 int pages_written = 0;
2807 long pages_skipped;
55138e0b 2808 unsigned int max_pages;
2acf2c26 2809 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2810 int needed_blocks, ret = 0;
2811 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2812 loff_t range_start = wbc->range_start;
5e745b04 2813 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f 2814
9bffad1e 2815 trace_ext4_da_writepages(inode, wbc);
ba80b101 2816
61628a3f
MC
2817 /*
2818 * No pages to write? This is mainly a kludge to avoid starting
2819 * a transaction for special inodes like journal inode on last iput()
2820 * because that could violate lock ordering on umount
2821 */
a1d6cc56 2822 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2823 return 0;
2a21e37e
TT
2824
2825 /*
2826 * If the filesystem has aborted, it is read-only, so return
2827 * right away instead of dumping stack traces later on that
2828 * will obscure the real source of the problem. We test
4ab2f15b 2829 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2830 * the latter could be true if the filesystem is mounted
2831 * read-only, and in that case, ext4_da_writepages should
2832 * *never* be called, so if that ever happens, we would want
2833 * the stack trace.
2834 */
4ab2f15b 2835 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2836 return -EROFS;
2837
22208ded
AK
2838 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2839 range_whole = 1;
61628a3f 2840
2acf2c26
AK
2841 range_cyclic = wbc->range_cyclic;
2842 if (wbc->range_cyclic) {
22208ded 2843 index = mapping->writeback_index;
2acf2c26
AK
2844 if (index)
2845 cycled = 0;
2846 wbc->range_start = index << PAGE_CACHE_SHIFT;
2847 wbc->range_end = LLONG_MAX;
2848 wbc->range_cyclic = 0;
2849 } else
22208ded 2850 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 2851
55138e0b
TT
2852 /*
2853 * This works around two forms of stupidity. The first is in
2854 * the writeback code, which caps the maximum number of pages
2855 * written to be 1024 pages. This is wrong on multiple
2856 * levels; different architectues have a different page size,
2857 * which changes the maximum amount of data which gets
2858 * written. Secondly, 4 megabytes is way too small. XFS
2859 * forces this value to be 16 megabytes by multiplying
2860 * nr_to_write parameter by four, and then relies on its
2861 * allocator to allocate larger extents to make them
2862 * contiguous. Unfortunately this brings us to the second
2863 * stupidity, which is that ext4's mballoc code only allocates
2864 * at most 2048 blocks. So we force contiguous writes up to
2865 * the number of dirty blocks in the inode, or
2866 * sbi->max_writeback_mb_bump whichever is smaller.
2867 */
2868 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2869 if (!range_cyclic && range_whole)
2870 desired_nr_to_write = wbc->nr_to_write * 8;
2871 else
2872 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2873 max_pages);
2874 if (desired_nr_to_write > max_pages)
2875 desired_nr_to_write = max_pages;
2876
2877 if (wbc->nr_to_write < desired_nr_to_write) {
2878 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2879 wbc->nr_to_write = desired_nr_to_write;
2880 }
2881
df22291f
AK
2882 mpd.wbc = wbc;
2883 mpd.inode = mapping->host;
2884
22208ded
AK
2885 /*
2886 * we don't want write_cache_pages to update
2887 * nr_to_write and writeback_index
2888 */
2889 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2890 wbc->no_nrwrite_index_update = 1;
2891 pages_skipped = wbc->pages_skipped;
2892
2acf2c26 2893retry:
22208ded 2894 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2895
2896 /*
2897 * we insert one extent at a time. So we need
2898 * credit needed for single extent allocation.
2899 * journalled mode is currently not supported
2900 * by delalloc
2901 */
2902 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2903 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2904
61628a3f
MC
2905 /* start a new transaction*/
2906 handle = ext4_journal_start(inode, needed_blocks);
2907 if (IS_ERR(handle)) {
2908 ret = PTR_ERR(handle);
1693918e 2909 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
a1d6cc56
AK
2910 "%ld pages, ino %lu; err %d\n", __func__,
2911 wbc->nr_to_write, inode->i_ino, ret);
61628a3f
MC
2912 goto out_writepages;
2913 }
f63e6005
TT
2914
2915 /*
2916 * Now call __mpage_da_writepage to find the next
2917 * contiguous region of logical blocks that need
2918 * blocks to be allocated by ext4. We don't actually
2919 * submit the blocks for I/O here, even though
2920 * write_cache_pages thinks it will, and will set the
2921 * pages as clean for write before calling
2922 * __mpage_da_writepage().
2923 */
2924 mpd.b_size = 0;
2925 mpd.b_state = 0;
2926 mpd.b_blocknr = 0;
2927 mpd.first_page = 0;
2928 mpd.next_page = 0;
2929 mpd.io_done = 0;
2930 mpd.pages_written = 0;
2931 mpd.retval = 0;
2932 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2933 &mpd);
2934 /*
2935 * If we have a contigous extent of pages and we
2936 * haven't done the I/O yet, map the blocks and submit
2937 * them for I/O.
2938 */
2939 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2940 if (mpage_da_map_blocks(&mpd) == 0)
2941 mpage_da_submit_io(&mpd);
2942 mpd.io_done = 1;
2943 ret = MPAGE_DA_EXTENT_TAIL;
2944 }
b3a3ca8c 2945 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 2946 wbc->nr_to_write -= mpd.pages_written;
df22291f 2947
61628a3f 2948 ext4_journal_stop(handle);
df22291f 2949
8f64b32e 2950 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2951 /* commit the transaction which would
2952 * free blocks released in the transaction
2953 * and try again
2954 */
df22291f 2955 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2956 wbc->pages_skipped = pages_skipped;
2957 ret = 0;
2958 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
2959 /*
2960 * got one extent now try with
2961 * rest of the pages
2962 */
22208ded
AK
2963 pages_written += mpd.pages_written;
2964 wbc->pages_skipped = pages_skipped;
a1d6cc56 2965 ret = 0;
2acf2c26 2966 io_done = 1;
22208ded 2967 } else if (wbc->nr_to_write)
61628a3f
MC
2968 /*
2969 * There is no more writeout needed
2970 * or we requested for a noblocking writeout
2971 * and we found the device congested
2972 */
61628a3f 2973 break;
a1d6cc56 2974 }
2acf2c26
AK
2975 if (!io_done && !cycled) {
2976 cycled = 1;
2977 index = 0;
2978 wbc->range_start = index << PAGE_CACHE_SHIFT;
2979 wbc->range_end = mapping->writeback_index - 1;
2980 goto retry;
2981 }
22208ded 2982 if (pages_skipped != wbc->pages_skipped)
1693918e
TT
2983 ext4_msg(inode->i_sb, KERN_CRIT,
2984 "This should not happen leaving %s "
2985 "with nr_to_write = %ld ret = %d\n",
2986 __func__, wbc->nr_to_write, ret);
22208ded
AK
2987
2988 /* Update index */
2989 index += pages_written;
2acf2c26 2990 wbc->range_cyclic = range_cyclic;
22208ded
AK
2991 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2992 /*
2993 * set the writeback_index so that range_cyclic
2994 * mode will write it back later
2995 */
2996 mapping->writeback_index = index;
a1d6cc56 2997
61628a3f 2998out_writepages:
22208ded
AK
2999 if (!no_nrwrite_index_update)
3000 wbc->no_nrwrite_index_update = 0;
55138e0b
TT
3001 if (wbc->nr_to_write > nr_to_writebump)
3002 wbc->nr_to_write -= nr_to_writebump;
de89de6e 3003 wbc->range_start = range_start;
9bffad1e 3004 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 3005 return ret;
64769240
AT
3006}
3007
79f0be8d
AK
3008#define FALL_BACK_TO_NONDELALLOC 1
3009static int ext4_nonda_switch(struct super_block *sb)
3010{
3011 s64 free_blocks, dirty_blocks;
3012 struct ext4_sb_info *sbi = EXT4_SB(sb);
3013
3014 /*
3015 * switch to non delalloc mode if we are running low
3016 * on free block. The free block accounting via percpu
179f7ebf 3017 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
3018 * accumulated on each CPU without updating global counters
3019 * Delalloc need an accurate free block accounting. So switch
3020 * to non delalloc when we are near to error range.
3021 */
3022 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3023 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3024 if (2 * free_blocks < 3 * dirty_blocks ||
3025 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3026 /*
3027 * free block count is less that 150% of dirty blocks
3028 * or free blocks is less that watermark
3029 */
3030 return 1;
3031 }
3032 return 0;
3033}
3034
64769240 3035static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
3036 loff_t pos, unsigned len, unsigned flags,
3037 struct page **pagep, void **fsdata)
64769240 3038{
d2a17637 3039 int ret, retries = 0;
64769240
AT
3040 struct page *page;
3041 pgoff_t index;
3042 unsigned from, to;
3043 struct inode *inode = mapping->host;
3044 handle_t *handle;
3045
3046 index = pos >> PAGE_CACHE_SHIFT;
3047 from = pos & (PAGE_CACHE_SIZE - 1);
3048 to = from + len;
79f0be8d
AK
3049
3050 if (ext4_nonda_switch(inode->i_sb)) {
3051 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3052 return ext4_write_begin(file, mapping, pos,
3053 len, flags, pagep, fsdata);
3054 }
3055 *fsdata = (void *)0;
9bffad1e 3056 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 3057retry:
64769240
AT
3058 /*
3059 * With delayed allocation, we don't log the i_disksize update
3060 * if there is delayed block allocation. But we still need
3061 * to journalling the i_disksize update if writes to the end
3062 * of file which has an already mapped buffer.
3063 */
3064 handle = ext4_journal_start(inode, 1);
3065 if (IS_ERR(handle)) {
3066 ret = PTR_ERR(handle);
3067 goto out;
3068 }
ebd3610b
JK
3069 /* We cannot recurse into the filesystem as the transaction is already
3070 * started */
3071 flags |= AOP_FLAG_NOFS;
64769240 3072
54566b2c 3073 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
3074 if (!page) {
3075 ext4_journal_stop(handle);
3076 ret = -ENOMEM;
3077 goto out;
3078 }
64769240
AT
3079 *pagep = page;
3080
3081 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
b920c755 3082 ext4_da_get_block_prep);
64769240
AT
3083 if (ret < 0) {
3084 unlock_page(page);
3085 ext4_journal_stop(handle);
3086 page_cache_release(page);
ae4d5372
AK
3087 /*
3088 * block_write_begin may have instantiated a few blocks
3089 * outside i_size. Trim these off again. Don't need
3090 * i_size_read because we hold i_mutex.
3091 */
3092 if (pos + len > inode->i_size)
ffacfa7a 3093 ext4_truncate(inode);
64769240
AT
3094 }
3095
d2a17637
MC
3096 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3097 goto retry;
64769240
AT
3098out:
3099 return ret;
3100}
3101
632eaeab
MC
3102/*
3103 * Check if we should update i_disksize
3104 * when write to the end of file but not require block allocation
3105 */
3106static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3107 unsigned long offset)
632eaeab
MC
3108{
3109 struct buffer_head *bh;
3110 struct inode *inode = page->mapping->host;
3111 unsigned int idx;
3112 int i;
3113
3114 bh = page_buffers(page);
3115 idx = offset >> inode->i_blkbits;
3116
af5bc92d 3117 for (i = 0; i < idx; i++)
632eaeab
MC
3118 bh = bh->b_this_page;
3119
29fa89d0 3120 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3121 return 0;
3122 return 1;
3123}
3124
64769240 3125static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3126 struct address_space *mapping,
3127 loff_t pos, unsigned len, unsigned copied,
3128 struct page *page, void *fsdata)
64769240
AT
3129{
3130 struct inode *inode = mapping->host;
3131 int ret = 0, ret2;
3132 handle_t *handle = ext4_journal_current_handle();
3133 loff_t new_i_size;
632eaeab 3134 unsigned long start, end;
79f0be8d
AK
3135 int write_mode = (int)(unsigned long)fsdata;
3136
3137 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3138 if (ext4_should_order_data(inode)) {
3139 return ext4_ordered_write_end(file, mapping, pos,
3140 len, copied, page, fsdata);
3141 } else if (ext4_should_writeback_data(inode)) {
3142 return ext4_writeback_write_end(file, mapping, pos,
3143 len, copied, page, fsdata);
3144 } else {
3145 BUG();
3146 }
3147 }
632eaeab 3148
9bffad1e 3149 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 3150 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 3151 end = start + copied - 1;
64769240
AT
3152
3153 /*
3154 * generic_write_end() will run mark_inode_dirty() if i_size
3155 * changes. So let's piggyback the i_disksize mark_inode_dirty
3156 * into that.
3157 */
3158
3159 new_i_size = pos + copied;
632eaeab
MC
3160 if (new_i_size > EXT4_I(inode)->i_disksize) {
3161 if (ext4_da_should_update_i_disksize(page, end)) {
3162 down_write(&EXT4_I(inode)->i_data_sem);
3163 if (new_i_size > EXT4_I(inode)->i_disksize) {
3164 /*
3165 * Updating i_disksize when extending file
3166 * without needing block allocation
3167 */
3168 if (ext4_should_order_data(inode))
3169 ret = ext4_jbd2_file_inode(handle,
3170 inode);
64769240 3171
632eaeab
MC
3172 EXT4_I(inode)->i_disksize = new_i_size;
3173 }
3174 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
3175 /* We need to mark inode dirty even if
3176 * new_i_size is less that inode->i_size
3177 * bu greater than i_disksize.(hint delalloc)
3178 */
3179 ext4_mark_inode_dirty(handle, inode);
64769240 3180 }
632eaeab 3181 }
64769240
AT
3182 ret2 = generic_write_end(file, mapping, pos, len, copied,
3183 page, fsdata);
3184 copied = ret2;
3185 if (ret2 < 0)
3186 ret = ret2;
3187 ret2 = ext4_journal_stop(handle);
3188 if (!ret)
3189 ret = ret2;
3190
3191 return ret ? ret : copied;
3192}
3193
3194static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3195{
64769240
AT
3196 /*
3197 * Drop reserved blocks
3198 */
3199 BUG_ON(!PageLocked(page));
3200 if (!page_has_buffers(page))
3201 goto out;
3202
d2a17637 3203 ext4_da_page_release_reservation(page, offset);
64769240
AT
3204
3205out:
3206 ext4_invalidatepage(page, offset);
3207
3208 return;
3209}
3210
ccd2506b
TT
3211/*
3212 * Force all delayed allocation blocks to be allocated for a given inode.
3213 */
3214int ext4_alloc_da_blocks(struct inode *inode)
3215{
fb40ba0d
TT
3216 trace_ext4_alloc_da_blocks(inode);
3217
ccd2506b
TT
3218 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3219 !EXT4_I(inode)->i_reserved_meta_blocks)
3220 return 0;
3221
3222 /*
3223 * We do something simple for now. The filemap_flush() will
3224 * also start triggering a write of the data blocks, which is
3225 * not strictly speaking necessary (and for users of
3226 * laptop_mode, not even desirable). However, to do otherwise
3227 * would require replicating code paths in:
de9a55b8 3228 *
ccd2506b
TT
3229 * ext4_da_writepages() ->
3230 * write_cache_pages() ---> (via passed in callback function)
3231 * __mpage_da_writepage() -->
3232 * mpage_add_bh_to_extent()
3233 * mpage_da_map_blocks()
3234 *
3235 * The problem is that write_cache_pages(), located in
3236 * mm/page-writeback.c, marks pages clean in preparation for
3237 * doing I/O, which is not desirable if we're not planning on
3238 * doing I/O at all.
3239 *
3240 * We could call write_cache_pages(), and then redirty all of
3241 * the pages by calling redirty_page_for_writeback() but that
3242 * would be ugly in the extreme. So instead we would need to
3243 * replicate parts of the code in the above functions,
3244 * simplifying them becuase we wouldn't actually intend to
3245 * write out the pages, but rather only collect contiguous
3246 * logical block extents, call the multi-block allocator, and
3247 * then update the buffer heads with the block allocations.
de9a55b8 3248 *
ccd2506b
TT
3249 * For now, though, we'll cheat by calling filemap_flush(),
3250 * which will map the blocks, and start the I/O, but not
3251 * actually wait for the I/O to complete.
3252 */
3253 return filemap_flush(inode->i_mapping);
3254}
64769240 3255
ac27a0ec
DK
3256/*
3257 * bmap() is special. It gets used by applications such as lilo and by
3258 * the swapper to find the on-disk block of a specific piece of data.
3259 *
3260 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3261 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3262 * filesystem and enables swap, then they may get a nasty shock when the
3263 * data getting swapped to that swapfile suddenly gets overwritten by
3264 * the original zero's written out previously to the journal and
3265 * awaiting writeback in the kernel's buffer cache.
3266 *
3267 * So, if we see any bmap calls here on a modified, data-journaled file,
3268 * take extra steps to flush any blocks which might be in the cache.
3269 */
617ba13b 3270static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3271{
3272 struct inode *inode = mapping->host;
3273 journal_t *journal;
3274 int err;
3275
64769240
AT
3276 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3277 test_opt(inode->i_sb, DELALLOC)) {
3278 /*
3279 * With delalloc we want to sync the file
3280 * so that we can make sure we allocate
3281 * blocks for file
3282 */
3283 filemap_write_and_wait(mapping);
3284 }
3285
0390131b 3286 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
ac27a0ec
DK
3287 /*
3288 * This is a REALLY heavyweight approach, but the use of
3289 * bmap on dirty files is expected to be extremely rare:
3290 * only if we run lilo or swapon on a freshly made file
3291 * do we expect this to happen.
3292 *
3293 * (bmap requires CAP_SYS_RAWIO so this does not
3294 * represent an unprivileged user DOS attack --- we'd be
3295 * in trouble if mortal users could trigger this path at
3296 * will.)
3297 *
617ba13b 3298 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3299 * regular files. If somebody wants to bmap a directory
3300 * or symlink and gets confused because the buffer
3301 * hasn't yet been flushed to disk, they deserve
3302 * everything they get.
3303 */
3304
617ba13b
MC
3305 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3306 journal = EXT4_JOURNAL(inode);
dab291af
MC
3307 jbd2_journal_lock_updates(journal);
3308 err = jbd2_journal_flush(journal);
3309 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3310
3311 if (err)
3312 return 0;
3313 }
3314
af5bc92d 3315 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3316}
3317
617ba13b 3318static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3319{
617ba13b 3320 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
3321}
3322
3323static int
617ba13b 3324ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3325 struct list_head *pages, unsigned nr_pages)
3326{
617ba13b 3327 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3328}
3329
617ba13b 3330static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3331{
617ba13b 3332 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3333
3334 /*
3335 * If it's a full truncate we just forget about the pending dirtying
3336 */
3337 if (offset == 0)
3338 ClearPageChecked(page);
3339
0390131b
FM
3340 if (journal)
3341 jbd2_journal_invalidatepage(journal, page, offset);
3342 else
3343 block_invalidatepage(page, offset);
ac27a0ec
DK
3344}
3345
617ba13b 3346static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3347{
617ba13b 3348 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3349
3350 WARN_ON(PageChecked(page));
3351 if (!page_has_buffers(page))
3352 return 0;
0390131b
FM
3353 if (journal)
3354 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3355 else
3356 return try_to_free_buffers(page);
ac27a0ec
DK
3357}
3358
3359/*
4c0425ff
MC
3360 * O_DIRECT for ext3 (or indirect map) based files
3361 *
ac27a0ec
DK
3362 * If the O_DIRECT write will extend the file then add this inode to the
3363 * orphan list. So recovery will truncate it back to the original size
3364 * if the machine crashes during the write.
3365 *
3366 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3367 * crashes then stale disk data _may_ be exposed inside the file. But current
3368 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3369 */
4c0425ff 3370static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
de9a55b8
TT
3371 const struct iovec *iov, loff_t offset,
3372 unsigned long nr_segs)
ac27a0ec
DK
3373{
3374 struct file *file = iocb->ki_filp;
3375 struct inode *inode = file->f_mapping->host;
617ba13b 3376 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3377 handle_t *handle;
ac27a0ec
DK
3378 ssize_t ret;
3379 int orphan = 0;
3380 size_t count = iov_length(iov, nr_segs);
3381
3382 if (rw == WRITE) {
3383 loff_t final_size = offset + count;
3384
ac27a0ec 3385 if (final_size > inode->i_size) {
7fb5409d
JK
3386 /* Credits for sb + inode write */
3387 handle = ext4_journal_start(inode, 2);
3388 if (IS_ERR(handle)) {
3389 ret = PTR_ERR(handle);
3390 goto out;
3391 }
617ba13b 3392 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3393 if (ret) {
3394 ext4_journal_stop(handle);
3395 goto out;
3396 }
ac27a0ec
DK
3397 orphan = 1;
3398 ei->i_disksize = inode->i_size;
7fb5409d 3399 ext4_journal_stop(handle);
ac27a0ec
DK
3400 }
3401 }
3402
3403 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3404 offset, nr_segs,
617ba13b 3405 ext4_get_block, NULL);
ac27a0ec 3406
7fb5409d 3407 if (orphan) {
ac27a0ec
DK
3408 int err;
3409
7fb5409d
JK
3410 /* Credits for sb + inode write */
3411 handle = ext4_journal_start(inode, 2);
3412 if (IS_ERR(handle)) {
3413 /* This is really bad luck. We've written the data
3414 * but cannot extend i_size. Bail out and pretend
3415 * the write failed... */
3416 ret = PTR_ERR(handle);
3417 goto out;
3418 }
3419 if (inode->i_nlink)
617ba13b 3420 ext4_orphan_del(handle, inode);
7fb5409d 3421 if (ret > 0) {
ac27a0ec
DK
3422 loff_t end = offset + ret;
3423 if (end > inode->i_size) {
3424 ei->i_disksize = end;
3425 i_size_write(inode, end);
3426 /*
3427 * We're going to return a positive `ret'
3428 * here due to non-zero-length I/O, so there's
3429 * no way of reporting error returns from
617ba13b 3430 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3431 * ignore it.
3432 */
617ba13b 3433 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3434 }
3435 }
617ba13b 3436 err = ext4_journal_stop(handle);
ac27a0ec
DK
3437 if (ret == 0)
3438 ret = err;
3439 }
3440out:
3441 return ret;
3442}
3443
4c0425ff
MC
3444/* Maximum number of blocks we map for direct IO at once. */
3445
3446static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock,
3447 struct buffer_head *bh_result, int create)
3448{
3449 handle_t *handle = NULL;
3450 int ret = 0;
3451 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3452 int dio_credits;
3453
8d5d02e6
MC
3454 ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
3455 inode->i_ino, create);
4c0425ff
MC
3456 /*
3457 * DIO VFS code passes create = 0 flag for write to
3458 * the middle of file. It does this to avoid block
3459 * allocation for holes, to prevent expose stale data
3460 * out when there is parallel buffered read (which does
3461 * not hold the i_mutex lock) while direct IO write has
3462 * not completed. DIO request on holes finally falls back
3463 * to buffered IO for this reason.
3464 *
3465 * For ext4 extent based file, since we support fallocate,
3466 * new allocated extent as uninitialized, for holes, we
3467 * could fallocate blocks for holes, thus parallel
3468 * buffered IO read will zero out the page when read on
3469 * a hole while parallel DIO write to the hole has not completed.
3470 *
3471 * when we come here, we know it's a direct IO write to
3472 * to the middle of file (<i_size)
3473 * so it's safe to override the create flag from VFS.
3474 */
3475 create = EXT4_GET_BLOCKS_DIO_CREATE_EXT;
3476
3477 if (max_blocks > DIO_MAX_BLOCKS)
3478 max_blocks = DIO_MAX_BLOCKS;
3479 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3480 handle = ext4_journal_start(inode, dio_credits);
3481 if (IS_ERR(handle)) {
3482 ret = PTR_ERR(handle);
3483 goto out;
3484 }
3485 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3486 create);
3487 if (ret > 0) {
3488 bh_result->b_size = (ret << inode->i_blkbits);
3489 ret = 0;
3490 }
3491 ext4_journal_stop(handle);
3492out:
3493 return ret;
3494}
3495
4c0425ff
MC
3496static void ext4_free_io_end(ext4_io_end_t *io)
3497{
8d5d02e6
MC
3498 BUG_ON(!io);
3499 iput(io->inode);
4c0425ff
MC
3500 kfree(io);
3501}
8d5d02e6
MC
3502static void dump_aio_dio_list(struct inode * inode)
3503{
3504#ifdef EXT4_DEBUG
3505 struct list_head *cur, *before, *after;
3506 ext4_io_end_t *io, *io0, *io1;
3507
3508 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3509 ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino);
3510 return;
3511 }
3512
3513 ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino);
3514 list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){
3515 cur = &io->list;
3516 before = cur->prev;
3517 io0 = container_of(before, ext4_io_end_t, list);
3518 after = cur->next;
3519 io1 = container_of(after, ext4_io_end_t, list);
3520
3521 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3522 io, inode->i_ino, io0, io1);
3523 }
3524#endif
3525}
4c0425ff
MC
3526
3527/*
4c0425ff
MC
3528 * check a range of space and convert unwritten extents to written.
3529 */
8d5d02e6 3530static int ext4_end_aio_dio_nolock(ext4_io_end_t *io)
4c0425ff 3531{
4c0425ff
MC
3532 struct inode *inode = io->inode;
3533 loff_t offset = io->offset;
3534 size_t size = io->size;
3535 int ret = 0;
4c0425ff 3536
8d5d02e6
MC
3537 ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
3538 "list->prev 0x%p\n",
3539 io, inode->i_ino, io->list.next, io->list.prev);
3540
3541 if (list_empty(&io->list))
3542 return ret;
3543
3544 if (io->flag != DIO_AIO_UNWRITTEN)
3545 return ret;
3546
4c0425ff
MC
3547 if (offset + size <= i_size_read(inode))
3548 ret = ext4_convert_unwritten_extents(inode, offset, size);
3549
8d5d02e6 3550 if (ret < 0) {
4c0425ff 3551 printk(KERN_EMERG "%s: failed to convert unwritten"
8d5d02e6
MC
3552 "extents to written extents, error is %d"
3553 " io is still on inode %lu aio dio list\n",
3554 __func__, ret, inode->i_ino);
3555 return ret;
3556 }
4c0425ff 3557
8d5d02e6
MC
3558 /* clear the DIO AIO unwritten flag */
3559 io->flag = 0;
3560 return ret;
4c0425ff 3561}
8d5d02e6
MC
3562/*
3563 * work on completed aio dio IO, to convert unwritten extents to extents
3564 */
3565static void ext4_end_aio_dio_work(struct work_struct *work)
3566{
3567 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3568 struct inode *inode = io->inode;
3569 int ret = 0;
4c0425ff 3570
8d5d02e6
MC
3571 mutex_lock(&inode->i_mutex);
3572 ret = ext4_end_aio_dio_nolock(io);
3573 if (ret >= 0) {
3574 if (!list_empty(&io->list))
3575 list_del_init(&io->list);
3576 ext4_free_io_end(io);
3577 }
3578 mutex_unlock(&inode->i_mutex);
3579}
3580/*
3581 * This function is called from ext4_sync_file().
3582 *
3583 * When AIO DIO IO is completed, the work to convert unwritten
3584 * extents to written is queued on workqueue but may not get immediately
3585 * scheduled. When fsync is called, we need to ensure the
3586 * conversion is complete before fsync returns.
3587 * The inode keeps track of a list of completed AIO from DIO path
3588 * that might needs to do the conversion. This function walks through
3589 * the list and convert the related unwritten extents to written.
3590 */
3591int flush_aio_dio_completed_IO(struct inode *inode)
3592{
3593 ext4_io_end_t *io;
3594 int ret = 0;
3595 int ret2 = 0;
3596
3597 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list))
3598 return ret;
3599
3600 dump_aio_dio_list(inode);
3601 while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3602 io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next,
3603 ext4_io_end_t, list);
3604 /*
3605 * Calling ext4_end_aio_dio_nolock() to convert completed
3606 * IO to written.
3607 *
3608 * When ext4_sync_file() is called, run_queue() may already
3609 * about to flush the work corresponding to this io structure.
3610 * It will be upset if it founds the io structure related
3611 * to the work-to-be schedule is freed.
3612 *
3613 * Thus we need to keep the io structure still valid here after
3614 * convertion finished. The io structure has a flag to
3615 * avoid double converting from both fsync and background work
3616 * queue work.
3617 */
3618 ret = ext4_end_aio_dio_nolock(io);
3619 if (ret < 0)
3620 ret2 = ret;
3621 else
3622 list_del_init(&io->list);
3623 }
3624 return (ret2 < 0) ? ret2 : 0;
3625}
3626
3627static ext4_io_end_t *ext4_init_io_end (struct inode *inode)
4c0425ff
MC
3628{
3629 ext4_io_end_t *io = NULL;
3630
3631 io = kmalloc(sizeof(*io), GFP_NOFS);
3632
3633 if (io) {
8d5d02e6 3634 igrab(inode);
4c0425ff 3635 io->inode = inode;
8d5d02e6 3636 io->flag = 0;
4c0425ff
MC
3637 io->offset = 0;
3638 io->size = 0;
3639 io->error = 0;
8d5d02e6
MC
3640 INIT_WORK(&io->work, ext4_end_aio_dio_work);
3641 INIT_LIST_HEAD(&io->list);
4c0425ff
MC
3642 }
3643
3644 return io;
3645}
3646
3647static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3648 ssize_t size, void *private)
3649{
3650 ext4_io_end_t *io_end = iocb->private;
3651 struct workqueue_struct *wq;
3652
8d5d02e6
MC
3653 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3654 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3655 iocb->private, io_end->inode->i_ino, iocb, offset,
3656 size);
3657 /* if not async direct IO or dio with 0 bytes write, just return */
3658 if (!io_end || !size)
3659 return;
3660
3661 /* if not aio dio with unwritten extents, just free io and return */
3662 if (io_end->flag != DIO_AIO_UNWRITTEN){
3663 ext4_free_io_end(io_end);
3664 iocb->private = NULL;
4c0425ff 3665 return;
8d5d02e6
MC
3666 }
3667
4c0425ff
MC
3668 io_end->offset = offset;
3669 io_end->size = size;
3670 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3671
8d5d02e6 3672 /* queue the work to convert unwritten extents to written */
4c0425ff
MC
3673 queue_work(wq, &io_end->work);
3674
8d5d02e6
MC
3675 /* Add the io_end to per-inode completed aio dio list*/
3676 list_add_tail(&io_end->list,
3677 &EXT4_I(io_end->inode)->i_aio_dio_complete_list);
4c0425ff
MC
3678 iocb->private = NULL;
3679}
3680/*
3681 * For ext4 extent files, ext4 will do direct-io write to holes,
3682 * preallocated extents, and those write extend the file, no need to
3683 * fall back to buffered IO.
3684 *
3685 * For holes, we fallocate those blocks, mark them as unintialized
3686 * If those blocks were preallocated, we mark sure they are splited, but
3687 * still keep the range to write as unintialized.
3688 *
8d5d02e6
MC
3689 * The unwrritten extents will be converted to written when DIO is completed.
3690 * For async direct IO, since the IO may still pending when return, we
3691 * set up an end_io call back function, which will do the convertion
3692 * when async direct IO completed.
4c0425ff
MC
3693 *
3694 * If the O_DIRECT write will extend the file then add this inode to the
3695 * orphan list. So recovery will truncate it back to the original size
3696 * if the machine crashes during the write.
3697 *
3698 */
3699static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3700 const struct iovec *iov, loff_t offset,
3701 unsigned long nr_segs)
3702{
3703 struct file *file = iocb->ki_filp;
3704 struct inode *inode = file->f_mapping->host;
3705 ssize_t ret;
3706 size_t count = iov_length(iov, nr_segs);
3707
3708 loff_t final_size = offset + count;
3709 if (rw == WRITE && final_size <= inode->i_size) {
3710 /*
8d5d02e6
MC
3711 * We could direct write to holes and fallocate.
3712 *
3713 * Allocated blocks to fill the hole are marked as uninitialized
4c0425ff
MC
3714 * to prevent paralel buffered read to expose the stale data
3715 * before DIO complete the data IO.
8d5d02e6
MC
3716 *
3717 * As to previously fallocated extents, ext4 get_block
4c0425ff
MC
3718 * will just simply mark the buffer mapped but still
3719 * keep the extents uninitialized.
3720 *
8d5d02e6
MC
3721 * for non AIO case, we will convert those unwritten extents
3722 * to written after return back from blockdev_direct_IO.
3723 *
3724 * for async DIO, the conversion needs to be defered when
3725 * the IO is completed. The ext4 end_io callback function
3726 * will be called to take care of the conversion work.
3727 * Here for async case, we allocate an io_end structure to
3728 * hook to the iocb.
4c0425ff 3729 */
8d5d02e6
MC
3730 iocb->private = NULL;
3731 EXT4_I(inode)->cur_aio_dio = NULL;
3732 if (!is_sync_kiocb(iocb)) {
3733 iocb->private = ext4_init_io_end(inode);
3734 if (!iocb->private)
3735 return -ENOMEM;
3736 /*
3737 * we save the io structure for current async
3738 * direct IO, so that later ext4_get_blocks()
3739 * could flag the io structure whether there
3740 * is a unwritten extents needs to be converted
3741 * when IO is completed.
3742 */
3743 EXT4_I(inode)->cur_aio_dio = iocb->private;
3744 }
3745
4c0425ff
MC
3746 ret = blockdev_direct_IO(rw, iocb, inode,
3747 inode->i_sb->s_bdev, iov,
3748 offset, nr_segs,
3749 ext4_get_block_dio_write,
3750 ext4_end_io_dio);
8d5d02e6
MC
3751 if (iocb->private)
3752 EXT4_I(inode)->cur_aio_dio = NULL;
3753 /*
3754 * The io_end structure takes a reference to the inode,
3755 * that structure needs to be destroyed and the
3756 * reference to the inode need to be dropped, when IO is
3757 * complete, even with 0 byte write, or failed.
3758 *
3759 * In the successful AIO DIO case, the io_end structure will be
3760 * desctroyed and the reference to the inode will be dropped
3761 * after the end_io call back function is called.
3762 *
3763 * In the case there is 0 byte write, or error case, since
3764 * VFS direct IO won't invoke the end_io call back function,
3765 * we need to free the end_io structure here.
3766 */
3767 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3768 ext4_free_io_end(iocb->private);
3769 iocb->private = NULL;
3770 } else if (ret > 0)
3771 /*
3772 * for non AIO case, since the IO is already
3773 * completed, we could do the convertion right here
3774 */
3775 ret = ext4_convert_unwritten_extents(inode,
3776 offset, ret);
4c0425ff
MC
3777 return ret;
3778 }
8d5d02e6
MC
3779
3780 /* for write the the end of file case, we fall back to old way */
4c0425ff
MC
3781 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3782}
3783
3784static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3785 const struct iovec *iov, loff_t offset,
3786 unsigned long nr_segs)
3787{
3788 struct file *file = iocb->ki_filp;
3789 struct inode *inode = file->f_mapping->host;
3790
3791 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3792 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3793
3794 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3795}
3796
ac27a0ec 3797/*
617ba13b 3798 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3799 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3800 * much here because ->set_page_dirty is called under VFS locks. The page is
3801 * not necessarily locked.
3802 *
3803 * We cannot just dirty the page and leave attached buffers clean, because the
3804 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3805 * or jbddirty because all the journalling code will explode.
3806 *
3807 * So what we do is to mark the page "pending dirty" and next time writepage
3808 * is called, propagate that into the buffers appropriately.
3809 */
617ba13b 3810static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3811{
3812 SetPageChecked(page);
3813 return __set_page_dirty_nobuffers(page);
3814}
3815
617ba13b 3816static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3817 .readpage = ext4_readpage,
3818 .readpages = ext4_readpages,
43ce1d23 3819 .writepage = ext4_writepage,
8ab22b9a
HH
3820 .sync_page = block_sync_page,
3821 .write_begin = ext4_write_begin,
3822 .write_end = ext4_ordered_write_end,
3823 .bmap = ext4_bmap,
3824 .invalidatepage = ext4_invalidatepage,
3825 .releasepage = ext4_releasepage,
3826 .direct_IO = ext4_direct_IO,
3827 .migratepage = buffer_migrate_page,
3828 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3829 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3830};
3831
617ba13b 3832static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3833 .readpage = ext4_readpage,
3834 .readpages = ext4_readpages,
43ce1d23 3835 .writepage = ext4_writepage,
8ab22b9a
HH
3836 .sync_page = block_sync_page,
3837 .write_begin = ext4_write_begin,
3838 .write_end = ext4_writeback_write_end,
3839 .bmap = ext4_bmap,
3840 .invalidatepage = ext4_invalidatepage,
3841 .releasepage = ext4_releasepage,
3842 .direct_IO = ext4_direct_IO,
3843 .migratepage = buffer_migrate_page,
3844 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3845 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3846};
3847
617ba13b 3848static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3849 .readpage = ext4_readpage,
3850 .readpages = ext4_readpages,
43ce1d23 3851 .writepage = ext4_writepage,
8ab22b9a
HH
3852 .sync_page = block_sync_page,
3853 .write_begin = ext4_write_begin,
3854 .write_end = ext4_journalled_write_end,
3855 .set_page_dirty = ext4_journalled_set_page_dirty,
3856 .bmap = ext4_bmap,
3857 .invalidatepage = ext4_invalidatepage,
3858 .releasepage = ext4_releasepage,
3859 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3860 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3861};
3862
64769240 3863static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3864 .readpage = ext4_readpage,
3865 .readpages = ext4_readpages,
43ce1d23 3866 .writepage = ext4_writepage,
8ab22b9a
HH
3867 .writepages = ext4_da_writepages,
3868 .sync_page = block_sync_page,
3869 .write_begin = ext4_da_write_begin,
3870 .write_end = ext4_da_write_end,
3871 .bmap = ext4_bmap,
3872 .invalidatepage = ext4_da_invalidatepage,
3873 .releasepage = ext4_releasepage,
3874 .direct_IO = ext4_direct_IO,
3875 .migratepage = buffer_migrate_page,
3876 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3877 .error_remove_page = generic_error_remove_page,
64769240
AT
3878};
3879
617ba13b 3880void ext4_set_aops(struct inode *inode)
ac27a0ec 3881{
cd1aac32
AK
3882 if (ext4_should_order_data(inode) &&
3883 test_opt(inode->i_sb, DELALLOC))
3884 inode->i_mapping->a_ops = &ext4_da_aops;
3885 else if (ext4_should_order_data(inode))
617ba13b 3886 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
3887 else if (ext4_should_writeback_data(inode) &&
3888 test_opt(inode->i_sb, DELALLOC))
3889 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
3890 else if (ext4_should_writeback_data(inode))
3891 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 3892 else
617ba13b 3893 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
3894}
3895
3896/*
617ba13b 3897 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
3898 * up to the end of the block which corresponds to `from'.
3899 * This required during truncate. We need to physically zero the tail end
3900 * of that block so it doesn't yield old data if the file is later grown.
3901 */
cf108bca 3902int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
3903 struct address_space *mapping, loff_t from)
3904{
617ba13b 3905 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 3906 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
3907 unsigned blocksize, length, pos;
3908 ext4_lblk_t iblock;
ac27a0ec
DK
3909 struct inode *inode = mapping->host;
3910 struct buffer_head *bh;
cf108bca 3911 struct page *page;
ac27a0ec 3912 int err = 0;
ac27a0ec 3913
f4a01017
TT
3914 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3915 mapping_gfp_mask(mapping) & ~__GFP_FS);
cf108bca
JK
3916 if (!page)
3917 return -EINVAL;
3918
ac27a0ec
DK
3919 blocksize = inode->i_sb->s_blocksize;
3920 length = blocksize - (offset & (blocksize - 1));
3921 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3922
3923 /*
3924 * For "nobh" option, we can only work if we don't need to
3925 * read-in the page - otherwise we create buffers to do the IO.
3926 */
3927 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 3928 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 3929 zero_user(page, offset, length);
ac27a0ec
DK
3930 set_page_dirty(page);
3931 goto unlock;
3932 }
3933
3934 if (!page_has_buffers(page))
3935 create_empty_buffers(page, blocksize, 0);
3936
3937 /* Find the buffer that contains "offset" */
3938 bh = page_buffers(page);
3939 pos = blocksize;
3940 while (offset >= pos) {
3941 bh = bh->b_this_page;
3942 iblock++;
3943 pos += blocksize;
3944 }
3945
3946 err = 0;
3947 if (buffer_freed(bh)) {
3948 BUFFER_TRACE(bh, "freed: skip");
3949 goto unlock;
3950 }
3951
3952 if (!buffer_mapped(bh)) {
3953 BUFFER_TRACE(bh, "unmapped");
617ba13b 3954 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
3955 /* unmapped? It's a hole - nothing to do */
3956 if (!buffer_mapped(bh)) {
3957 BUFFER_TRACE(bh, "still unmapped");
3958 goto unlock;
3959 }
3960 }
3961
3962 /* Ok, it's mapped. Make sure it's up-to-date */
3963 if (PageUptodate(page))
3964 set_buffer_uptodate(bh);
3965
3966 if (!buffer_uptodate(bh)) {
3967 err = -EIO;
3968 ll_rw_block(READ, 1, &bh);
3969 wait_on_buffer(bh);
3970 /* Uhhuh. Read error. Complain and punt. */
3971 if (!buffer_uptodate(bh))
3972 goto unlock;
3973 }
3974
617ba13b 3975 if (ext4_should_journal_data(inode)) {
ac27a0ec 3976 BUFFER_TRACE(bh, "get write access");
617ba13b 3977 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3978 if (err)
3979 goto unlock;
3980 }
3981
eebd2aa3 3982 zero_user(page, offset, length);
ac27a0ec
DK
3983
3984 BUFFER_TRACE(bh, "zeroed end of block");
3985
3986 err = 0;
617ba13b 3987 if (ext4_should_journal_data(inode)) {
0390131b 3988 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3989 } else {
617ba13b 3990 if (ext4_should_order_data(inode))
678aaf48 3991 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
3992 mark_buffer_dirty(bh);
3993 }
3994
3995unlock:
3996 unlock_page(page);
3997 page_cache_release(page);
3998 return err;
3999}
4000
4001/*
4002 * Probably it should be a library function... search for first non-zero word
4003 * or memcmp with zero_page, whatever is better for particular architecture.
4004 * Linus?
4005 */
4006static inline int all_zeroes(__le32 *p, __le32 *q)
4007{
4008 while (p < q)
4009 if (*p++)
4010 return 0;
4011 return 1;
4012}
4013
4014/**
617ba13b 4015 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
4016 * @inode: inode in question
4017 * @depth: depth of the affected branch
617ba13b 4018 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
4019 * @chain: place to store the pointers to partial indirect blocks
4020 * @top: place to the (detached) top of branch
4021 *
617ba13b 4022 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
4023 *
4024 * When we do truncate() we may have to clean the ends of several
4025 * indirect blocks but leave the blocks themselves alive. Block is
4026 * partially truncated if some data below the new i_size is refered
4027 * from it (and it is on the path to the first completely truncated
4028 * data block, indeed). We have to free the top of that path along
4029 * with everything to the right of the path. Since no allocation
617ba13b 4030 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
4031 * finishes, we may safely do the latter, but top of branch may
4032 * require special attention - pageout below the truncation point
4033 * might try to populate it.
4034 *
4035 * We atomically detach the top of branch from the tree, store the
4036 * block number of its root in *@top, pointers to buffer_heads of
4037 * partially truncated blocks - in @chain[].bh and pointers to
4038 * their last elements that should not be removed - in
4039 * @chain[].p. Return value is the pointer to last filled element
4040 * of @chain.
4041 *
4042 * The work left to caller to do the actual freeing of subtrees:
4043 * a) free the subtree starting from *@top
4044 * b) free the subtrees whose roots are stored in
4045 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4046 * c) free the subtrees growing from the inode past the @chain[0].
4047 * (no partially truncated stuff there). */
4048
617ba13b 4049static Indirect *ext4_find_shared(struct inode *inode, int depth,
de9a55b8
TT
4050 ext4_lblk_t offsets[4], Indirect chain[4],
4051 __le32 *top)
ac27a0ec
DK
4052{
4053 Indirect *partial, *p;
4054 int k, err;
4055
4056 *top = 0;
4057 /* Make k index the deepest non-null offest + 1 */
4058 for (k = depth; k > 1 && !offsets[k-1]; k--)
4059 ;
617ba13b 4060 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
4061 /* Writer: pointers */
4062 if (!partial)
4063 partial = chain + k-1;
4064 /*
4065 * If the branch acquired continuation since we've looked at it -
4066 * fine, it should all survive and (new) top doesn't belong to us.
4067 */
4068 if (!partial->key && *partial->p)
4069 /* Writer: end */
4070 goto no_top;
af5bc92d 4071 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
4072 ;
4073 /*
4074 * OK, we've found the last block that must survive. The rest of our
4075 * branch should be detached before unlocking. However, if that rest
4076 * of branch is all ours and does not grow immediately from the inode
4077 * it's easier to cheat and just decrement partial->p.
4078 */
4079 if (p == chain + k - 1 && p > chain) {
4080 p->p--;
4081 } else {
4082 *top = *p->p;
617ba13b 4083 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
4084#if 0
4085 *p->p = 0;
4086#endif
4087 }
4088 /* Writer: end */
4089
af5bc92d 4090 while (partial > p) {
ac27a0ec
DK
4091 brelse(partial->bh);
4092 partial--;
4093 }
4094no_top:
4095 return partial;
4096}
4097
4098/*
4099 * Zero a number of block pointers in either an inode or an indirect block.
4100 * If we restart the transaction we must again get write access to the
4101 * indirect block for further modification.
4102 *
4103 * We release `count' blocks on disk, but (last - first) may be greater
4104 * than `count' because there can be holes in there.
4105 */
617ba13b 4106static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
4107 struct buffer_head *bh,
4108 ext4_fsblk_t block_to_free,
4109 unsigned long count, __le32 *first,
4110 __le32 *last)
ac27a0ec
DK
4111{
4112 __le32 *p;
4113 if (try_to_extend_transaction(handle, inode)) {
4114 if (bh) {
0390131b
FM
4115 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4116 ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 4117 }
617ba13b 4118 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4119 ext4_truncate_restart_trans(handle, inode,
4120 blocks_for_truncate(inode));
ac27a0ec
DK
4121 if (bh) {
4122 BUFFER_TRACE(bh, "retaking write access");
617ba13b 4123 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
4124 }
4125 }
4126
4127 /*
de9a55b8
TT
4128 * Any buffers which are on the journal will be in memory. We
4129 * find them on the hash table so jbd2_journal_revoke() will
4130 * run jbd2_journal_forget() on them. We've already detached
4131 * each block from the file, so bforget() in
4132 * jbd2_journal_forget() should be safe.
ac27a0ec 4133 *
dab291af 4134 * AKPM: turn on bforget in jbd2_journal_forget()!!!
ac27a0ec
DK
4135 */
4136 for (p = first; p < last; p++) {
4137 u32 nr = le32_to_cpu(*p);
4138 if (nr) {
1d03ec98 4139 struct buffer_head *tbh;
ac27a0ec
DK
4140
4141 *p = 0;
1d03ec98
AK
4142 tbh = sb_find_get_block(inode->i_sb, nr);
4143 ext4_forget(handle, 0, inode, tbh, nr);
ac27a0ec
DK
4144 }
4145 }
4146
c9de560d 4147 ext4_free_blocks(handle, inode, block_to_free, count, 0);
ac27a0ec
DK
4148}
4149
4150/**
617ba13b 4151 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
4152 * @handle: handle for this transaction
4153 * @inode: inode we are dealing with
4154 * @this_bh: indirect buffer_head which contains *@first and *@last
4155 * @first: array of block numbers
4156 * @last: points immediately past the end of array
4157 *
4158 * We are freeing all blocks refered from that array (numbers are stored as
4159 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4160 *
4161 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4162 * blocks are contiguous then releasing them at one time will only affect one
4163 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4164 * actually use a lot of journal space.
4165 *
4166 * @this_bh will be %NULL if @first and @last point into the inode's direct
4167 * block pointers.
4168 */
617ba13b 4169static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4170 struct buffer_head *this_bh,
4171 __le32 *first, __le32 *last)
4172{
617ba13b 4173 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
4174 unsigned long count = 0; /* Number of blocks in the run */
4175 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4176 corresponding to
4177 block_to_free */
617ba13b 4178 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
4179 __le32 *p; /* Pointer into inode/ind
4180 for current block */
4181 int err;
4182
4183 if (this_bh) { /* For indirect block */
4184 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 4185 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
4186 /* Important: if we can't update the indirect pointers
4187 * to the blocks, we can't free them. */
4188 if (err)
4189 return;
4190 }
4191
4192 for (p = first; p < last; p++) {
4193 nr = le32_to_cpu(*p);
4194 if (nr) {
4195 /* accumulate blocks to free if they're contiguous */
4196 if (count == 0) {
4197 block_to_free = nr;
4198 block_to_free_p = p;
4199 count = 1;
4200 } else if (nr == block_to_free + count) {
4201 count++;
4202 } else {
617ba13b 4203 ext4_clear_blocks(handle, inode, this_bh,
ac27a0ec
DK
4204 block_to_free,
4205 count, block_to_free_p, p);
4206 block_to_free = nr;
4207 block_to_free_p = p;
4208 count = 1;
4209 }
4210 }
4211 }
4212
4213 if (count > 0)
617ba13b 4214 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
4215 count, block_to_free_p, p);
4216
4217 if (this_bh) {
0390131b 4218 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
71dc8fbc
DG
4219
4220 /*
4221 * The buffer head should have an attached journal head at this
4222 * point. However, if the data is corrupted and an indirect
4223 * block pointed to itself, it would have been detached when
4224 * the block was cleared. Check for this instead of OOPSing.
4225 */
e7f07968 4226 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
0390131b 4227 ext4_handle_dirty_metadata(handle, inode, this_bh);
71dc8fbc
DG
4228 else
4229 ext4_error(inode->i_sb, __func__,
4230 "circular indirect block detected, "
4231 "inode=%lu, block=%llu",
4232 inode->i_ino,
4233 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
4234 }
4235}
4236
4237/**
617ba13b 4238 * ext4_free_branches - free an array of branches
ac27a0ec
DK
4239 * @handle: JBD handle for this transaction
4240 * @inode: inode we are dealing with
4241 * @parent_bh: the buffer_head which contains *@first and *@last
4242 * @first: array of block numbers
4243 * @last: pointer immediately past the end of array
4244 * @depth: depth of the branches to free
4245 *
4246 * We are freeing all blocks refered from these branches (numbers are
4247 * stored as little-endian 32-bit) and updating @inode->i_blocks
4248 * appropriately.
4249 */
617ba13b 4250static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4251 struct buffer_head *parent_bh,
4252 __le32 *first, __le32 *last, int depth)
4253{
617ba13b 4254 ext4_fsblk_t nr;
ac27a0ec
DK
4255 __le32 *p;
4256
0390131b 4257 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4258 return;
4259
4260 if (depth--) {
4261 struct buffer_head *bh;
617ba13b 4262 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
4263 p = last;
4264 while (--p >= first) {
4265 nr = le32_to_cpu(*p);
4266 if (!nr)
4267 continue; /* A hole */
4268
4269 /* Go read the buffer for the next level down */
4270 bh = sb_bread(inode->i_sb, nr);
4271
4272 /*
4273 * A read failure? Report error and clear slot
4274 * (should be rare).
4275 */
4276 if (!bh) {
617ba13b 4277 ext4_error(inode->i_sb, "ext4_free_branches",
2ae02107 4278 "Read failure, inode=%lu, block=%llu",
ac27a0ec
DK
4279 inode->i_ino, nr);
4280 continue;
4281 }
4282
4283 /* This zaps the entire block. Bottom up. */
4284 BUFFER_TRACE(bh, "free child branches");
617ba13b 4285 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
4286 (__le32 *) bh->b_data,
4287 (__le32 *) bh->b_data + addr_per_block,
4288 depth);
ac27a0ec
DK
4289
4290 /*
4291 * We've probably journalled the indirect block several
4292 * times during the truncate. But it's no longer
4293 * needed and we now drop it from the transaction via
dab291af 4294 * jbd2_journal_revoke().
ac27a0ec
DK
4295 *
4296 * That's easy if it's exclusively part of this
4297 * transaction. But if it's part of the committing
dab291af 4298 * transaction then jbd2_journal_forget() will simply
ac27a0ec 4299 * brelse() it. That means that if the underlying
617ba13b 4300 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
4301 * unmap_underlying_metadata() will find this block
4302 * and will try to get rid of it. damn, damn.
4303 *
4304 * If this block has already been committed to the
4305 * journal, a revoke record will be written. And
4306 * revoke records must be emitted *before* clearing
4307 * this block's bit in the bitmaps.
4308 */
617ba13b 4309 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
4310
4311 /*
4312 * Everything below this this pointer has been
4313 * released. Now let this top-of-subtree go.
4314 *
4315 * We want the freeing of this indirect block to be
4316 * atomic in the journal with the updating of the
4317 * bitmap block which owns it. So make some room in
4318 * the journal.
4319 *
4320 * We zero the parent pointer *after* freeing its
4321 * pointee in the bitmaps, so if extend_transaction()
4322 * for some reason fails to put the bitmap changes and
4323 * the release into the same transaction, recovery
4324 * will merely complain about releasing a free block,
4325 * rather than leaking blocks.
4326 */
0390131b 4327 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4328 return;
4329 if (try_to_extend_transaction(handle, inode)) {
617ba13b 4330 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4331 ext4_truncate_restart_trans(handle, inode,
4332 blocks_for_truncate(inode));
ac27a0ec
DK
4333 }
4334
c9de560d 4335 ext4_free_blocks(handle, inode, nr, 1, 1);
ac27a0ec
DK
4336
4337 if (parent_bh) {
4338 /*
4339 * The block which we have just freed is
4340 * pointed to by an indirect block: journal it
4341 */
4342 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 4343 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
4344 parent_bh)){
4345 *p = 0;
4346 BUFFER_TRACE(parent_bh,
0390131b
FM
4347 "call ext4_handle_dirty_metadata");
4348 ext4_handle_dirty_metadata(handle,
4349 inode,
4350 parent_bh);
ac27a0ec
DK
4351 }
4352 }
4353 }
4354 } else {
4355 /* We have reached the bottom of the tree. */
4356 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 4357 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
4358 }
4359}
4360
91ef4caf
DG
4361int ext4_can_truncate(struct inode *inode)
4362{
4363 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4364 return 0;
4365 if (S_ISREG(inode->i_mode))
4366 return 1;
4367 if (S_ISDIR(inode->i_mode))
4368 return 1;
4369 if (S_ISLNK(inode->i_mode))
4370 return !ext4_inode_is_fast_symlink(inode);
4371 return 0;
4372}
4373
ac27a0ec 4374/*
617ba13b 4375 * ext4_truncate()
ac27a0ec 4376 *
617ba13b
MC
4377 * We block out ext4_get_block() block instantiations across the entire
4378 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4379 * simultaneously on behalf of the same inode.
4380 *
4381 * As we work through the truncate and commmit bits of it to the journal there
4382 * is one core, guiding principle: the file's tree must always be consistent on
4383 * disk. We must be able to restart the truncate after a crash.
4384 *
4385 * The file's tree may be transiently inconsistent in memory (although it
4386 * probably isn't), but whenever we close off and commit a journal transaction,
4387 * the contents of (the filesystem + the journal) must be consistent and
4388 * restartable. It's pretty simple, really: bottom up, right to left (although
4389 * left-to-right works OK too).
4390 *
4391 * Note that at recovery time, journal replay occurs *before* the restart of
4392 * truncate against the orphan inode list.
4393 *
4394 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4395 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4396 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4397 * ext4_truncate() to have another go. So there will be instantiated blocks
4398 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4399 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4400 * ext4_truncate() run will find them and release them.
ac27a0ec 4401 */
617ba13b 4402void ext4_truncate(struct inode *inode)
ac27a0ec
DK
4403{
4404 handle_t *handle;
617ba13b 4405 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4406 __le32 *i_data = ei->i_data;
617ba13b 4407 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 4408 struct address_space *mapping = inode->i_mapping;
725d26d3 4409 ext4_lblk_t offsets[4];
ac27a0ec
DK
4410 Indirect chain[4];
4411 Indirect *partial;
4412 __le32 nr = 0;
4413 int n;
725d26d3 4414 ext4_lblk_t last_block;
ac27a0ec 4415 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 4416
91ef4caf 4417 if (!ext4_can_truncate(inode))
ac27a0ec
DK
4418 return;
4419
5534fb5b 4420 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
7d8f9f7d
TT
4421 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4422
1d03ec98 4423 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
cf108bca 4424 ext4_ext_truncate(inode);
1d03ec98
AK
4425 return;
4426 }
a86c6181 4427
ac27a0ec 4428 handle = start_transaction(inode);
cf108bca 4429 if (IS_ERR(handle))
ac27a0ec 4430 return; /* AKPM: return what? */
ac27a0ec
DK
4431
4432 last_block = (inode->i_size + blocksize-1)
617ba13b 4433 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 4434
cf108bca
JK
4435 if (inode->i_size & (blocksize - 1))
4436 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4437 goto out_stop;
ac27a0ec 4438
617ba13b 4439 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
4440 if (n == 0)
4441 goto out_stop; /* error */
4442
4443 /*
4444 * OK. This truncate is going to happen. We add the inode to the
4445 * orphan list, so that if this truncate spans multiple transactions,
4446 * and we crash, we will resume the truncate when the filesystem
4447 * recovers. It also marks the inode dirty, to catch the new size.
4448 *
4449 * Implication: the file must always be in a sane, consistent
4450 * truncatable state while each transaction commits.
4451 */
617ba13b 4452 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
4453 goto out_stop;
4454
632eaeab
MC
4455 /*
4456 * From here we block out all ext4_get_block() callers who want to
4457 * modify the block allocation tree.
4458 */
4459 down_write(&ei->i_data_sem);
b4df2030 4460
c2ea3fde 4461 ext4_discard_preallocations(inode);
b4df2030 4462
ac27a0ec
DK
4463 /*
4464 * The orphan list entry will now protect us from any crash which
4465 * occurs before the truncate completes, so it is now safe to propagate
4466 * the new, shorter inode size (held for now in i_size) into the
4467 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 4468 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
4469 */
4470 ei->i_disksize = inode->i_size;
4471
ac27a0ec 4472 if (n == 1) { /* direct blocks */
617ba13b
MC
4473 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4474 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
4475 goto do_indirects;
4476 }
4477
617ba13b 4478 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
4479 /* Kill the top of shared branch (not detached) */
4480 if (nr) {
4481 if (partial == chain) {
4482 /* Shared branch grows from the inode */
617ba13b 4483 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
4484 &nr, &nr+1, (chain+n-1) - partial);
4485 *partial->p = 0;
4486 /*
4487 * We mark the inode dirty prior to restart,
4488 * and prior to stop. No need for it here.
4489 */
4490 } else {
4491 /* Shared branch grows from an indirect block */
4492 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 4493 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
4494 partial->p,
4495 partial->p+1, (chain+n-1) - partial);
4496 }
4497 }
4498 /* Clear the ends of indirect blocks on the shared branch */
4499 while (partial > chain) {
617ba13b 4500 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
4501 (__le32*)partial->bh->b_data+addr_per_block,
4502 (chain+n-1) - partial);
4503 BUFFER_TRACE(partial->bh, "call brelse");
de9a55b8 4504 brelse(partial->bh);
ac27a0ec
DK
4505 partial--;
4506 }
4507do_indirects:
4508 /* Kill the remaining (whole) subtrees */
4509 switch (offsets[0]) {
4510 default:
617ba13b 4511 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 4512 if (nr) {
617ba13b
MC
4513 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4514 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 4515 }
617ba13b
MC
4516 case EXT4_IND_BLOCK:
4517 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 4518 if (nr) {
617ba13b
MC
4519 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4520 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 4521 }
617ba13b
MC
4522 case EXT4_DIND_BLOCK:
4523 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 4524 if (nr) {
617ba13b
MC
4525 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4526 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 4527 }
617ba13b 4528 case EXT4_TIND_BLOCK:
ac27a0ec
DK
4529 ;
4530 }
4531
0e855ac8 4532 up_write(&ei->i_data_sem);
ef7f3835 4533 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 4534 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4535
4536 /*
4537 * In a multi-transaction truncate, we only make the final transaction
4538 * synchronous
4539 */
4540 if (IS_SYNC(inode))
0390131b 4541 ext4_handle_sync(handle);
ac27a0ec
DK
4542out_stop:
4543 /*
4544 * If this was a simple ftruncate(), and the file will remain alive
4545 * then we need to clear up the orphan record which we created above.
4546 * However, if this was a real unlink then we were called by
617ba13b 4547 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
4548 * orphan info for us.
4549 */
4550 if (inode->i_nlink)
617ba13b 4551 ext4_orphan_del(handle, inode);
ac27a0ec 4552
617ba13b 4553 ext4_journal_stop(handle);
ac27a0ec
DK
4554}
4555
ac27a0ec 4556/*
617ba13b 4557 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4558 * underlying buffer_head on success. If 'in_mem' is true, we have all
4559 * data in memory that is needed to recreate the on-disk version of this
4560 * inode.
4561 */
617ba13b
MC
4562static int __ext4_get_inode_loc(struct inode *inode,
4563 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4564{
240799cd
TT
4565 struct ext4_group_desc *gdp;
4566 struct buffer_head *bh;
4567 struct super_block *sb = inode->i_sb;
4568 ext4_fsblk_t block;
4569 int inodes_per_block, inode_offset;
4570
3a06d778 4571 iloc->bh = NULL;
240799cd
TT
4572 if (!ext4_valid_inum(sb, inode->i_ino))
4573 return -EIO;
ac27a0ec 4574
240799cd
TT
4575 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4576 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4577 if (!gdp)
ac27a0ec
DK
4578 return -EIO;
4579
240799cd
TT
4580 /*
4581 * Figure out the offset within the block group inode table
4582 */
4583 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4584 inode_offset = ((inode->i_ino - 1) %
4585 EXT4_INODES_PER_GROUP(sb));
4586 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4587 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4588
4589 bh = sb_getblk(sb, block);
ac27a0ec 4590 if (!bh) {
240799cd
TT
4591 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4592 "inode block - inode=%lu, block=%llu",
4593 inode->i_ino, block);
ac27a0ec
DK
4594 return -EIO;
4595 }
4596 if (!buffer_uptodate(bh)) {
4597 lock_buffer(bh);
9c83a923
HK
4598
4599 /*
4600 * If the buffer has the write error flag, we have failed
4601 * to write out another inode in the same block. In this
4602 * case, we don't have to read the block because we may
4603 * read the old inode data successfully.
4604 */
4605 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4606 set_buffer_uptodate(bh);
4607
ac27a0ec
DK
4608 if (buffer_uptodate(bh)) {
4609 /* someone brought it uptodate while we waited */
4610 unlock_buffer(bh);
4611 goto has_buffer;
4612 }
4613
4614 /*
4615 * If we have all information of the inode in memory and this
4616 * is the only valid inode in the block, we need not read the
4617 * block.
4618 */
4619 if (in_mem) {
4620 struct buffer_head *bitmap_bh;
240799cd 4621 int i, start;
ac27a0ec 4622
240799cd 4623 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4624
240799cd
TT
4625 /* Is the inode bitmap in cache? */
4626 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
4627 if (!bitmap_bh)
4628 goto make_io;
4629
4630 /*
4631 * If the inode bitmap isn't in cache then the
4632 * optimisation may end up performing two reads instead
4633 * of one, so skip it.
4634 */
4635 if (!buffer_uptodate(bitmap_bh)) {
4636 brelse(bitmap_bh);
4637 goto make_io;
4638 }
240799cd 4639 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4640 if (i == inode_offset)
4641 continue;
617ba13b 4642 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4643 break;
4644 }
4645 brelse(bitmap_bh);
240799cd 4646 if (i == start + inodes_per_block) {
ac27a0ec
DK
4647 /* all other inodes are free, so skip I/O */
4648 memset(bh->b_data, 0, bh->b_size);
4649 set_buffer_uptodate(bh);
4650 unlock_buffer(bh);
4651 goto has_buffer;
4652 }
4653 }
4654
4655make_io:
240799cd
TT
4656 /*
4657 * If we need to do any I/O, try to pre-readahead extra
4658 * blocks from the inode table.
4659 */
4660 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4661 ext4_fsblk_t b, end, table;
4662 unsigned num;
4663
4664 table = ext4_inode_table(sb, gdp);
b713a5ec 4665 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
4666 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4667 if (table > b)
4668 b = table;
4669 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4670 num = EXT4_INODES_PER_GROUP(sb);
4671 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4672 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 4673 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4674 table += num / inodes_per_block;
4675 if (end > table)
4676 end = table;
4677 while (b <= end)
4678 sb_breadahead(sb, b++);
4679 }
4680
ac27a0ec
DK
4681 /*
4682 * There are other valid inodes in the buffer, this inode
4683 * has in-inode xattrs, or we don't have this inode in memory.
4684 * Read the block from disk.
4685 */
4686 get_bh(bh);
4687 bh->b_end_io = end_buffer_read_sync;
4688 submit_bh(READ_META, bh);
4689 wait_on_buffer(bh);
4690 if (!buffer_uptodate(bh)) {
240799cd
TT
4691 ext4_error(sb, __func__,
4692 "unable to read inode block - inode=%lu, "
4693 "block=%llu", inode->i_ino, block);
ac27a0ec
DK
4694 brelse(bh);
4695 return -EIO;
4696 }
4697 }
4698has_buffer:
4699 iloc->bh = bh;
4700 return 0;
4701}
4702
617ba13b 4703int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4704{
4705 /* We have all inode data except xattrs in memory here. */
617ba13b
MC
4706 return __ext4_get_inode_loc(inode, iloc,
4707 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
ac27a0ec
DK
4708}
4709
617ba13b 4710void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4711{
617ba13b 4712 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4713
4714 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4715 if (flags & EXT4_SYNC_FL)
ac27a0ec 4716 inode->i_flags |= S_SYNC;
617ba13b 4717 if (flags & EXT4_APPEND_FL)
ac27a0ec 4718 inode->i_flags |= S_APPEND;
617ba13b 4719 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4720 inode->i_flags |= S_IMMUTABLE;
617ba13b 4721 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4722 inode->i_flags |= S_NOATIME;
617ba13b 4723 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4724 inode->i_flags |= S_DIRSYNC;
4725}
4726
ff9ddf7e
JK
4727/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4728void ext4_get_inode_flags(struct ext4_inode_info *ei)
4729{
4730 unsigned int flags = ei->vfs_inode.i_flags;
4731
4732 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4733 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4734 if (flags & S_SYNC)
4735 ei->i_flags |= EXT4_SYNC_FL;
4736 if (flags & S_APPEND)
4737 ei->i_flags |= EXT4_APPEND_FL;
4738 if (flags & S_IMMUTABLE)
4739 ei->i_flags |= EXT4_IMMUTABLE_FL;
4740 if (flags & S_NOATIME)
4741 ei->i_flags |= EXT4_NOATIME_FL;
4742 if (flags & S_DIRSYNC)
4743 ei->i_flags |= EXT4_DIRSYNC_FL;
4744}
de9a55b8 4745
0fc1b451 4746static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4747 struct ext4_inode_info *ei)
0fc1b451
AK
4748{
4749 blkcnt_t i_blocks ;
8180a562
AK
4750 struct inode *inode = &(ei->vfs_inode);
4751 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4752
4753 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4754 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4755 /* we are using combined 48 bit field */
4756 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4757 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
4758 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4759 /* i_blocks represent file system block size */
4760 return i_blocks << (inode->i_blkbits - 9);
4761 } else {
4762 return i_blocks;
4763 }
0fc1b451
AK
4764 } else {
4765 return le32_to_cpu(raw_inode->i_blocks_lo);
4766 }
4767}
ff9ddf7e 4768
1d1fe1ee 4769struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4770{
617ba13b
MC
4771 struct ext4_iloc iloc;
4772 struct ext4_inode *raw_inode;
1d1fe1ee 4773 struct ext4_inode_info *ei;
ac27a0ec 4774 struct buffer_head *bh;
1d1fe1ee
DH
4775 struct inode *inode;
4776 long ret;
ac27a0ec
DK
4777 int block;
4778
1d1fe1ee
DH
4779 inode = iget_locked(sb, ino);
4780 if (!inode)
4781 return ERR_PTR(-ENOMEM);
4782 if (!(inode->i_state & I_NEW))
4783 return inode;
4784
4785 ei = EXT4_I(inode);
ac27a0ec 4786
1d1fe1ee
DH
4787 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4788 if (ret < 0)
ac27a0ec
DK
4789 goto bad_inode;
4790 bh = iloc.bh;
617ba13b 4791 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
4792 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4793 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4794 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4795 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4796 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4797 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4798 }
4799 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec
DK
4800
4801 ei->i_state = 0;
4802 ei->i_dir_start_lookup = 0;
4803 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4804 /* We now have enough fields to check if the inode was active or not.
4805 * This is needed because nfsd might try to access dead inodes
4806 * the test is that same one that e2fsck uses
4807 * NeilBrown 1999oct15
4808 */
4809 if (inode->i_nlink == 0) {
4810 if (inode->i_mode == 0 ||
617ba13b 4811 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 4812 /* this inode is deleted */
af5bc92d 4813 brelse(bh);
1d1fe1ee 4814 ret = -ESTALE;
ac27a0ec
DK
4815 goto bad_inode;
4816 }
4817 /* The only unlinked inodes we let through here have
4818 * valid i_mode and are being read by the orphan
4819 * recovery code: that's fine, we're about to complete
4820 * the process of deleting those. */
4821 }
ac27a0ec 4822 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4823 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4824 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4825 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4826 ei->i_file_acl |=
4827 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4828 inode->i_size = ext4_isize(raw_inode);
ac27a0ec
DK
4829 ei->i_disksize = inode->i_size;
4830 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4831 ei->i_block_group = iloc.block_group;
a4912123 4832 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4833 /*
4834 * NOTE! The in-memory inode i_data array is in little-endian order
4835 * even on big-endian machines: we do NOT byteswap the block numbers!
4836 */
617ba13b 4837 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4838 ei->i_data[block] = raw_inode->i_block[block];
4839 INIT_LIST_HEAD(&ei->i_orphan);
4840
0040d987 4841 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 4842 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 4843 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 4844 EXT4_INODE_SIZE(inode->i_sb)) {
af5bc92d 4845 brelse(bh);
1d1fe1ee 4846 ret = -EIO;
ac27a0ec 4847 goto bad_inode;
e5d2861f 4848 }
ac27a0ec
DK
4849 if (ei->i_extra_isize == 0) {
4850 /* The extra space is currently unused. Use it. */
617ba13b
MC
4851 ei->i_extra_isize = sizeof(struct ext4_inode) -
4852 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
4853 } else {
4854 __le32 *magic = (void *)raw_inode +
617ba13b 4855 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 4856 ei->i_extra_isize;
617ba13b 4857 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
de9a55b8 4858 ei->i_state |= EXT4_STATE_XATTR;
ac27a0ec
DK
4859 }
4860 } else
4861 ei->i_extra_isize = 0;
4862
ef7f3835
KS
4863 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4864 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4865 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4866 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4867
25ec56b5
JNC
4868 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4869 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4870 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4871 inode->i_version |=
4872 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4873 }
4874
c4b5a614 4875 ret = 0;
485c26ec 4876 if (ei->i_file_acl &&
de9a55b8 4877 ((ei->i_file_acl <
485c26ec
TT
4878 (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4879 EXT4_SB(sb)->s_gdb_count)) ||
4880 (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4881 ext4_error(sb, __func__,
4882 "bad extended attribute block %llu in inode #%lu",
4883 ei->i_file_acl, inode->i_ino);
4884 ret = -EIO;
4885 goto bad_inode;
4886 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
c4b5a614
TT
4887 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4888 (S_ISLNK(inode->i_mode) &&
4889 !ext4_inode_is_fast_symlink(inode)))
4890 /* Validate extent which is part of inode */
4891 ret = ext4_ext_check_inode(inode);
de9a55b8 4892 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
fe2c8191
TN
4893 (S_ISLNK(inode->i_mode) &&
4894 !ext4_inode_is_fast_symlink(inode))) {
de9a55b8 4895 /* Validate block references which are part of inode */
fe2c8191
TN
4896 ret = ext4_check_inode_blockref(inode);
4897 }
4898 if (ret) {
de9a55b8
TT
4899 brelse(bh);
4900 goto bad_inode;
7a262f7c
AK
4901 }
4902
ac27a0ec 4903 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4904 inode->i_op = &ext4_file_inode_operations;
4905 inode->i_fop = &ext4_file_operations;
4906 ext4_set_aops(inode);
ac27a0ec 4907 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4908 inode->i_op = &ext4_dir_inode_operations;
4909 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4910 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4911 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4912 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4913 nd_terminate_link(ei->i_data, inode->i_size,
4914 sizeof(ei->i_data) - 1);
4915 } else {
617ba13b
MC
4916 inode->i_op = &ext4_symlink_inode_operations;
4917 ext4_set_aops(inode);
ac27a0ec 4918 }
563bdd61
TT
4919 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4920 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4921 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4922 if (raw_inode->i_block[0])
4923 init_special_inode(inode, inode->i_mode,
4924 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4925 else
4926 init_special_inode(inode, inode->i_mode,
4927 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61
TT
4928 } else {
4929 brelse(bh);
4930 ret = -EIO;
de9a55b8 4931 ext4_error(inode->i_sb, __func__,
563bdd61
TT
4932 "bogus i_mode (%o) for inode=%lu",
4933 inode->i_mode, inode->i_ino);
4934 goto bad_inode;
ac27a0ec 4935 }
af5bc92d 4936 brelse(iloc.bh);
617ba13b 4937 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4938 unlock_new_inode(inode);
4939 return inode;
ac27a0ec
DK
4940
4941bad_inode:
1d1fe1ee
DH
4942 iget_failed(inode);
4943 return ERR_PTR(ret);
ac27a0ec
DK
4944}
4945
0fc1b451
AK
4946static int ext4_inode_blocks_set(handle_t *handle,
4947 struct ext4_inode *raw_inode,
4948 struct ext4_inode_info *ei)
4949{
4950 struct inode *inode = &(ei->vfs_inode);
4951 u64 i_blocks = inode->i_blocks;
4952 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4953
4954 if (i_blocks <= ~0U) {
4955 /*
4956 * i_blocks can be represnted in a 32 bit variable
4957 * as multiple of 512 bytes
4958 */
8180a562 4959 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4960 raw_inode->i_blocks_high = 0;
8180a562 4961 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
f287a1a5
TT
4962 return 0;
4963 }
4964 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4965 return -EFBIG;
4966
4967 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4968 /*
4969 * i_blocks can be represented in a 48 bit variable
4970 * as multiple of 512 bytes
4971 */
8180a562 4972 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4973 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 4974 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 4975 } else {
8180a562
AK
4976 ei->i_flags |= EXT4_HUGE_FILE_FL;
4977 /* i_block is stored in file system block size */
4978 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4979 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4980 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4981 }
f287a1a5 4982 return 0;
0fc1b451
AK
4983}
4984
ac27a0ec
DK
4985/*
4986 * Post the struct inode info into an on-disk inode location in the
4987 * buffer-cache. This gobbles the caller's reference to the
4988 * buffer_head in the inode location struct.
4989 *
4990 * The caller must have write access to iloc->bh.
4991 */
617ba13b 4992static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4993 struct inode *inode,
830156c7 4994 struct ext4_iloc *iloc)
ac27a0ec 4995{
617ba13b
MC
4996 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4997 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4998 struct buffer_head *bh = iloc->bh;
4999 int err = 0, rc, block;
5000
5001 /* For fields not not tracking in the in-memory inode,
5002 * initialise them to zero for new inodes. */
617ba13b
MC
5003 if (ei->i_state & EXT4_STATE_NEW)
5004 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 5005
ff9ddf7e 5006 ext4_get_inode_flags(ei);
ac27a0ec 5007 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 5008 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
5009 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5010 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5011/*
5012 * Fix up interoperability with old kernels. Otherwise, old inodes get
5013 * re-used with the upper 16 bits of the uid/gid intact
5014 */
af5bc92d 5015 if (!ei->i_dtime) {
ac27a0ec
DK
5016 raw_inode->i_uid_high =
5017 cpu_to_le16(high_16_bits(inode->i_uid));
5018 raw_inode->i_gid_high =
5019 cpu_to_le16(high_16_bits(inode->i_gid));
5020 } else {
5021 raw_inode->i_uid_high = 0;
5022 raw_inode->i_gid_high = 0;
5023 }
5024 } else {
5025 raw_inode->i_uid_low =
5026 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5027 raw_inode->i_gid_low =
5028 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5029 raw_inode->i_uid_high = 0;
5030 raw_inode->i_gid_high = 0;
5031 }
5032 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
5033
5034 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5035 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5036 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5037 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5038
0fc1b451
AK
5039 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5040 goto out_brelse;
ac27a0ec 5041 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1b9c12f4 5042 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
9b8f1f01
MC
5043 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5044 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
5045 raw_inode->i_file_acl_high =
5046 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 5047 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
5048 ext4_isize_set(raw_inode, ei->i_disksize);
5049 if (ei->i_disksize > 0x7fffffffULL) {
5050 struct super_block *sb = inode->i_sb;
5051 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5052 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5053 EXT4_SB(sb)->s_es->s_rev_level ==
5054 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5055 /* If this is the first large file
5056 * created, add a flag to the superblock.
5057 */
5058 err = ext4_journal_get_write_access(handle,
5059 EXT4_SB(sb)->s_sbh);
5060 if (err)
5061 goto out_brelse;
5062 ext4_update_dynamic_rev(sb);
5063 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 5064 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 5065 sb->s_dirt = 1;
0390131b
FM
5066 ext4_handle_sync(handle);
5067 err = ext4_handle_dirty_metadata(handle, inode,
a48380f7 5068 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
5069 }
5070 }
5071 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5072 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5073 if (old_valid_dev(inode->i_rdev)) {
5074 raw_inode->i_block[0] =
5075 cpu_to_le32(old_encode_dev(inode->i_rdev));
5076 raw_inode->i_block[1] = 0;
5077 } else {
5078 raw_inode->i_block[0] = 0;
5079 raw_inode->i_block[1] =
5080 cpu_to_le32(new_encode_dev(inode->i_rdev));
5081 raw_inode->i_block[2] = 0;
5082 }
de9a55b8
TT
5083 } else
5084 for (block = 0; block < EXT4_N_BLOCKS; block++)
5085 raw_inode->i_block[block] = ei->i_data[block];
ac27a0ec 5086
25ec56b5
JNC
5087 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5088 if (ei->i_extra_isize) {
5089 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5090 raw_inode->i_version_hi =
5091 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 5092 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
5093 }
5094
830156c7
FM
5095 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5096 rc = ext4_handle_dirty_metadata(handle, inode, bh);
5097 if (!err)
5098 err = rc;
617ba13b 5099 ei->i_state &= ~EXT4_STATE_NEW;
ac27a0ec
DK
5100
5101out_brelse:
af5bc92d 5102 brelse(bh);
617ba13b 5103 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5104 return err;
5105}
5106
5107/*
617ba13b 5108 * ext4_write_inode()
ac27a0ec
DK
5109 *
5110 * We are called from a few places:
5111 *
5112 * - Within generic_file_write() for O_SYNC files.
5113 * Here, there will be no transaction running. We wait for any running
5114 * trasnaction to commit.
5115 *
5116 * - Within sys_sync(), kupdate and such.
5117 * We wait on commit, if tol to.
5118 *
5119 * - Within prune_icache() (PF_MEMALLOC == true)
5120 * Here we simply return. We can't afford to block kswapd on the
5121 * journal commit.
5122 *
5123 * In all cases it is actually safe for us to return without doing anything,
5124 * because the inode has been copied into a raw inode buffer in
617ba13b 5125 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
5126 * knfsd.
5127 *
5128 * Note that we are absolutely dependent upon all inode dirtiers doing the
5129 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5130 * which we are interested.
5131 *
5132 * It would be a bug for them to not do this. The code:
5133 *
5134 * mark_inode_dirty(inode)
5135 * stuff();
5136 * inode->i_size = expr;
5137 *
5138 * is in error because a kswapd-driven write_inode() could occur while
5139 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5140 * will no longer be on the superblock's dirty inode list.
5141 */
617ba13b 5142int ext4_write_inode(struct inode *inode, int wait)
ac27a0ec 5143{
91ac6f43
FM
5144 int err;
5145
ac27a0ec
DK
5146 if (current->flags & PF_MEMALLOC)
5147 return 0;
5148
91ac6f43
FM
5149 if (EXT4_SB(inode->i_sb)->s_journal) {
5150 if (ext4_journal_current_handle()) {
5151 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5152 dump_stack();
5153 return -EIO;
5154 }
ac27a0ec 5155
91ac6f43
FM
5156 if (!wait)
5157 return 0;
5158
5159 err = ext4_force_commit(inode->i_sb);
5160 } else {
5161 struct ext4_iloc iloc;
ac27a0ec 5162
91ac6f43
FM
5163 err = ext4_get_inode_loc(inode, &iloc);
5164 if (err)
5165 return err;
830156c7
FM
5166 if (wait)
5167 sync_dirty_buffer(iloc.bh);
5168 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5169 ext4_error(inode->i_sb, __func__,
5170 "IO error syncing inode, "
5171 "inode=%lu, block=%llu",
5172 inode->i_ino,
5173 (unsigned long long)iloc.bh->b_blocknr);
5174 err = -EIO;
5175 }
91ac6f43
FM
5176 }
5177 return err;
ac27a0ec
DK
5178}
5179
5180/*
617ba13b 5181 * ext4_setattr()
ac27a0ec
DK
5182 *
5183 * Called from notify_change.
5184 *
5185 * We want to trap VFS attempts to truncate the file as soon as
5186 * possible. In particular, we want to make sure that when the VFS
5187 * shrinks i_size, we put the inode on the orphan list and modify
5188 * i_disksize immediately, so that during the subsequent flushing of
5189 * dirty pages and freeing of disk blocks, we can guarantee that any
5190 * commit will leave the blocks being flushed in an unused state on
5191 * disk. (On recovery, the inode will get truncated and the blocks will
5192 * be freed, so we have a strong guarantee that no future commit will
5193 * leave these blocks visible to the user.)
5194 *
678aaf48
JK
5195 * Another thing we have to assure is that if we are in ordered mode
5196 * and inode is still attached to the committing transaction, we must
5197 * we start writeout of all the dirty pages which are being truncated.
5198 * This way we are sure that all the data written in the previous
5199 * transaction are already on disk (truncate waits for pages under
5200 * writeback).
5201 *
5202 * Called with inode->i_mutex down.
ac27a0ec 5203 */
617ba13b 5204int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
5205{
5206 struct inode *inode = dentry->d_inode;
5207 int error, rc = 0;
5208 const unsigned int ia_valid = attr->ia_valid;
5209
5210 error = inode_change_ok(inode, attr);
5211 if (error)
5212 return error;
5213
5214 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5215 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5216 handle_t *handle;
5217
5218 /* (user+group)*(old+new) structure, inode write (sb,
5219 * inode block, ? - but truncate inode update has it) */
617ba13b
MC
5220 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
5221 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
5222 if (IS_ERR(handle)) {
5223 error = PTR_ERR(handle);
5224 goto err_out;
5225 }
a269eb18 5226 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
ac27a0ec 5227 if (error) {
617ba13b 5228 ext4_journal_stop(handle);
ac27a0ec
DK
5229 return error;
5230 }
5231 /* Update corresponding info in inode so that everything is in
5232 * one transaction */
5233 if (attr->ia_valid & ATTR_UID)
5234 inode->i_uid = attr->ia_uid;
5235 if (attr->ia_valid & ATTR_GID)
5236 inode->i_gid = attr->ia_gid;
617ba13b
MC
5237 error = ext4_mark_inode_dirty(handle, inode);
5238 ext4_journal_stop(handle);
ac27a0ec
DK
5239 }
5240
e2b46574
ES
5241 if (attr->ia_valid & ATTR_SIZE) {
5242 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5243 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5244
5245 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5246 error = -EFBIG;
5247 goto err_out;
5248 }
5249 }
5250 }
5251
ac27a0ec
DK
5252 if (S_ISREG(inode->i_mode) &&
5253 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
5254 handle_t *handle;
5255
617ba13b 5256 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
5257 if (IS_ERR(handle)) {
5258 error = PTR_ERR(handle);
5259 goto err_out;
5260 }
5261
617ba13b
MC
5262 error = ext4_orphan_add(handle, inode);
5263 EXT4_I(inode)->i_disksize = attr->ia_size;
5264 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
5265 if (!error)
5266 error = rc;
617ba13b 5267 ext4_journal_stop(handle);
678aaf48
JK
5268
5269 if (ext4_should_order_data(inode)) {
5270 error = ext4_begin_ordered_truncate(inode,
5271 attr->ia_size);
5272 if (error) {
5273 /* Do as much error cleanup as possible */
5274 handle = ext4_journal_start(inode, 3);
5275 if (IS_ERR(handle)) {
5276 ext4_orphan_del(NULL, inode);
5277 goto err_out;
5278 }
5279 ext4_orphan_del(handle, inode);
5280 ext4_journal_stop(handle);
5281 goto err_out;
5282 }
5283 }
ac27a0ec
DK
5284 }
5285
5286 rc = inode_setattr(inode, attr);
5287
617ba13b 5288 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
5289 * transaction handle at all, we need to clean up the in-core
5290 * orphan list manually. */
5291 if (inode->i_nlink)
617ba13b 5292 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
5293
5294 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 5295 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
5296
5297err_out:
617ba13b 5298 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5299 if (!error)
5300 error = rc;
5301 return error;
5302}
5303
3e3398a0
MC
5304int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5305 struct kstat *stat)
5306{
5307 struct inode *inode;
5308 unsigned long delalloc_blocks;
5309
5310 inode = dentry->d_inode;
5311 generic_fillattr(inode, stat);
5312
5313 /*
5314 * We can't update i_blocks if the block allocation is delayed
5315 * otherwise in the case of system crash before the real block
5316 * allocation is done, we will have i_blocks inconsistent with
5317 * on-disk file blocks.
5318 * We always keep i_blocks updated together with real
5319 * allocation. But to not confuse with user, stat
5320 * will return the blocks that include the delayed allocation
5321 * blocks for this file.
5322 */
5323 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5324 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5325 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5326
5327 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5328 return 0;
5329}
ac27a0ec 5330
a02908f1
MC
5331static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5332 int chunk)
5333{
5334 int indirects;
5335
5336 /* if nrblocks are contiguous */
5337 if (chunk) {
5338 /*
5339 * With N contiguous data blocks, it need at most
5340 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5341 * 2 dindirect blocks
5342 * 1 tindirect block
5343 */
5344 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5345 return indirects + 3;
5346 }
5347 /*
5348 * if nrblocks are not contiguous, worse case, each block touch
5349 * a indirect block, and each indirect block touch a double indirect
5350 * block, plus a triple indirect block
5351 */
5352 indirects = nrblocks * 2 + 1;
5353 return indirects;
5354}
5355
5356static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5357{
5358 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
ac51d837
TT
5359 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5360 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 5361}
ac51d837 5362
ac27a0ec 5363/*
a02908f1
MC
5364 * Account for index blocks, block groups bitmaps and block group
5365 * descriptor blocks if modify datablocks and index blocks
5366 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5367 *
a02908f1
MC
5368 * If datablocks are discontiguous, they are possible to spread over
5369 * different block groups too. If they are contiugous, with flexbg,
5370 * they could still across block group boundary.
ac27a0ec 5371 *
a02908f1
MC
5372 * Also account for superblock, inode, quota and xattr blocks
5373 */
5374int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5375{
8df9675f
TT
5376 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5377 int gdpblocks;
a02908f1
MC
5378 int idxblocks;
5379 int ret = 0;
5380
5381 /*
5382 * How many index blocks need to touch to modify nrblocks?
5383 * The "Chunk" flag indicating whether the nrblocks is
5384 * physically contiguous on disk
5385 *
5386 * For Direct IO and fallocate, they calls get_block to allocate
5387 * one single extent at a time, so they could set the "Chunk" flag
5388 */
5389 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5390
5391 ret = idxblocks;
5392
5393 /*
5394 * Now let's see how many group bitmaps and group descriptors need
5395 * to account
5396 */
5397 groups = idxblocks;
5398 if (chunk)
5399 groups += 1;
5400 else
5401 groups += nrblocks;
5402
5403 gdpblocks = groups;
8df9675f
TT
5404 if (groups > ngroups)
5405 groups = ngroups;
a02908f1
MC
5406 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5407 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5408
5409 /* bitmaps and block group descriptor blocks */
5410 ret += groups + gdpblocks;
5411
5412 /* Blocks for super block, inode, quota and xattr blocks */
5413 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5414
5415 return ret;
5416}
5417
5418/*
5419 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
5420 * the modification of a single pages into a single transaction,
5421 * which may include multiple chunks of block allocations.
ac27a0ec 5422 *
525f4ed8 5423 * This could be called via ext4_write_begin()
ac27a0ec 5424 *
525f4ed8 5425 * We need to consider the worse case, when
a02908f1 5426 * one new block per extent.
ac27a0ec 5427 */
a86c6181 5428int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5429{
617ba13b 5430 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5431 int ret;
5432
a02908f1 5433 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 5434
a02908f1 5435 /* Account for data blocks for journalled mode */
617ba13b 5436 if (ext4_should_journal_data(inode))
a02908f1 5437 ret += bpp;
ac27a0ec
DK
5438 return ret;
5439}
f3bd1f3f
MC
5440
5441/*
5442 * Calculate the journal credits for a chunk of data modification.
5443 *
5444 * This is called from DIO, fallocate or whoever calling
12b7ac17 5445 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
f3bd1f3f
MC
5446 *
5447 * journal buffers for data blocks are not included here, as DIO
5448 * and fallocate do no need to journal data buffers.
5449 */
5450int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5451{
5452 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5453}
5454
ac27a0ec 5455/*
617ba13b 5456 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5457 * Give this, we know that the caller already has write access to iloc->bh.
5458 */
617ba13b 5459int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5460 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5461{
5462 int err = 0;
5463
25ec56b5
JNC
5464 if (test_opt(inode->i_sb, I_VERSION))
5465 inode_inc_iversion(inode);
5466
ac27a0ec
DK
5467 /* the do_update_inode consumes one bh->b_count */
5468 get_bh(iloc->bh);
5469
dab291af 5470 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5471 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5472 put_bh(iloc->bh);
5473 return err;
5474}
5475
5476/*
5477 * On success, We end up with an outstanding reference count against
5478 * iloc->bh. This _must_ be cleaned up later.
5479 */
5480
5481int
617ba13b
MC
5482ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5483 struct ext4_iloc *iloc)
ac27a0ec 5484{
0390131b
FM
5485 int err;
5486
5487 err = ext4_get_inode_loc(inode, iloc);
5488 if (!err) {
5489 BUFFER_TRACE(iloc->bh, "get_write_access");
5490 err = ext4_journal_get_write_access(handle, iloc->bh);
5491 if (err) {
5492 brelse(iloc->bh);
5493 iloc->bh = NULL;
ac27a0ec
DK
5494 }
5495 }
617ba13b 5496 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5497 return err;
5498}
5499
6dd4ee7c
KS
5500/*
5501 * Expand an inode by new_extra_isize bytes.
5502 * Returns 0 on success or negative error number on failure.
5503 */
1d03ec98
AK
5504static int ext4_expand_extra_isize(struct inode *inode,
5505 unsigned int new_extra_isize,
5506 struct ext4_iloc iloc,
5507 handle_t *handle)
6dd4ee7c
KS
5508{
5509 struct ext4_inode *raw_inode;
5510 struct ext4_xattr_ibody_header *header;
5511 struct ext4_xattr_entry *entry;
5512
5513 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5514 return 0;
5515
5516 raw_inode = ext4_raw_inode(&iloc);
5517
5518 header = IHDR(inode, raw_inode);
5519 entry = IFIRST(header);
5520
5521 /* No extended attributes present */
5522 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5523 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5524 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5525 new_extra_isize);
5526 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5527 return 0;
5528 }
5529
5530 /* try to expand with EAs present */
5531 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5532 raw_inode, handle);
5533}
5534
ac27a0ec
DK
5535/*
5536 * What we do here is to mark the in-core inode as clean with respect to inode
5537 * dirtiness (it may still be data-dirty).
5538 * This means that the in-core inode may be reaped by prune_icache
5539 * without having to perform any I/O. This is a very good thing,
5540 * because *any* task may call prune_icache - even ones which
5541 * have a transaction open against a different journal.
5542 *
5543 * Is this cheating? Not really. Sure, we haven't written the
5544 * inode out, but prune_icache isn't a user-visible syncing function.
5545 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5546 * we start and wait on commits.
5547 *
5548 * Is this efficient/effective? Well, we're being nice to the system
5549 * by cleaning up our inodes proactively so they can be reaped
5550 * without I/O. But we are potentially leaving up to five seconds'
5551 * worth of inodes floating about which prune_icache wants us to
5552 * write out. One way to fix that would be to get prune_icache()
5553 * to do a write_super() to free up some memory. It has the desired
5554 * effect.
5555 */
617ba13b 5556int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5557{
617ba13b 5558 struct ext4_iloc iloc;
6dd4ee7c
KS
5559 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5560 static unsigned int mnt_count;
5561 int err, ret;
ac27a0ec
DK
5562
5563 might_sleep();
617ba13b 5564 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5565 if (ext4_handle_valid(handle) &&
5566 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
6dd4ee7c
KS
5567 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5568 /*
5569 * We need extra buffer credits since we may write into EA block
5570 * with this same handle. If journal_extend fails, then it will
5571 * only result in a minor loss of functionality for that inode.
5572 * If this is felt to be critical, then e2fsck should be run to
5573 * force a large enough s_min_extra_isize.
5574 */
5575 if ((jbd2_journal_extend(handle,
5576 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5577 ret = ext4_expand_extra_isize(inode,
5578 sbi->s_want_extra_isize,
5579 iloc, handle);
5580 if (ret) {
5581 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
c1bddad9
AK
5582 if (mnt_count !=
5583 le16_to_cpu(sbi->s_es->s_mnt_count)) {
46e665e9 5584 ext4_warning(inode->i_sb, __func__,
6dd4ee7c
KS
5585 "Unable to expand inode %lu. Delete"
5586 " some EAs or run e2fsck.",
5587 inode->i_ino);
c1bddad9
AK
5588 mnt_count =
5589 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5590 }
5591 }
5592 }
5593 }
ac27a0ec 5594 if (!err)
617ba13b 5595 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5596 return err;
5597}
5598
5599/*
617ba13b 5600 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5601 *
5602 * We're really interested in the case where a file is being extended.
5603 * i_size has been changed by generic_commit_write() and we thus need
5604 * to include the updated inode in the current transaction.
5605 *
a269eb18 5606 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5607 * are allocated to the file.
5608 *
5609 * If the inode is marked synchronous, we don't honour that here - doing
5610 * so would cause a commit on atime updates, which we don't bother doing.
5611 * We handle synchronous inodes at the highest possible level.
5612 */
617ba13b 5613void ext4_dirty_inode(struct inode *inode)
ac27a0ec 5614{
617ba13b 5615 handle_t *current_handle = ext4_journal_current_handle();
ac27a0ec
DK
5616 handle_t *handle;
5617
617ba13b 5618 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
5619 if (IS_ERR(handle))
5620 goto out;
f3dc272f
CW
5621
5622 jbd_debug(5, "marking dirty. outer handle=%p\n", current_handle);
5623 ext4_mark_inode_dirty(handle, inode);
5624
617ba13b 5625 ext4_journal_stop(handle);
ac27a0ec
DK
5626out:
5627 return;
5628}
5629
5630#if 0
5631/*
5632 * Bind an inode's backing buffer_head into this transaction, to prevent
5633 * it from being flushed to disk early. Unlike
617ba13b 5634 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5635 * returns no iloc structure, so the caller needs to repeat the iloc
5636 * lookup to mark the inode dirty later.
5637 */
617ba13b 5638static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5639{
617ba13b 5640 struct ext4_iloc iloc;
ac27a0ec
DK
5641
5642 int err = 0;
5643 if (handle) {
617ba13b 5644 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5645 if (!err) {
5646 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5647 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5648 if (!err)
0390131b
FM
5649 err = ext4_handle_dirty_metadata(handle,
5650 inode,
5651 iloc.bh);
ac27a0ec
DK
5652 brelse(iloc.bh);
5653 }
5654 }
617ba13b 5655 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5656 return err;
5657}
5658#endif
5659
617ba13b 5660int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5661{
5662 journal_t *journal;
5663 handle_t *handle;
5664 int err;
5665
5666 /*
5667 * We have to be very careful here: changing a data block's
5668 * journaling status dynamically is dangerous. If we write a
5669 * data block to the journal, change the status and then delete
5670 * that block, we risk forgetting to revoke the old log record
5671 * from the journal and so a subsequent replay can corrupt data.
5672 * So, first we make sure that the journal is empty and that
5673 * nobody is changing anything.
5674 */
5675
617ba13b 5676 journal = EXT4_JOURNAL(inode);
0390131b
FM
5677 if (!journal)
5678 return 0;
d699594d 5679 if (is_journal_aborted(journal))
ac27a0ec
DK
5680 return -EROFS;
5681
dab291af
MC
5682 jbd2_journal_lock_updates(journal);
5683 jbd2_journal_flush(journal);
ac27a0ec
DK
5684
5685 /*
5686 * OK, there are no updates running now, and all cached data is
5687 * synced to disk. We are now in a completely consistent state
5688 * which doesn't have anything in the journal, and we know that
5689 * no filesystem updates are running, so it is safe to modify
5690 * the inode's in-core data-journaling state flag now.
5691 */
5692
5693 if (val)
617ba13b 5694 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
ac27a0ec 5695 else
617ba13b
MC
5696 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5697 ext4_set_aops(inode);
ac27a0ec 5698
dab291af 5699 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
5700
5701 /* Finally we can mark the inode as dirty. */
5702
617ba13b 5703 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
5704 if (IS_ERR(handle))
5705 return PTR_ERR(handle);
5706
617ba13b 5707 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5708 ext4_handle_sync(handle);
617ba13b
MC
5709 ext4_journal_stop(handle);
5710 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5711
5712 return err;
5713}
2e9ee850
AK
5714
5715static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5716{
5717 return !buffer_mapped(bh);
5718}
5719
c2ec175c 5720int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5721{
c2ec175c 5722 struct page *page = vmf->page;
2e9ee850
AK
5723 loff_t size;
5724 unsigned long len;
5725 int ret = -EINVAL;
79f0be8d 5726 void *fsdata;
2e9ee850
AK
5727 struct file *file = vma->vm_file;
5728 struct inode *inode = file->f_path.dentry->d_inode;
5729 struct address_space *mapping = inode->i_mapping;
5730
5731 /*
5732 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5733 * get i_mutex because we are already holding mmap_sem.
5734 */
5735 down_read(&inode->i_alloc_sem);
5736 size = i_size_read(inode);
5737 if (page->mapping != mapping || size <= page_offset(page)
5738 || !PageUptodate(page)) {
5739 /* page got truncated from under us? */
5740 goto out_unlock;
5741 }
5742 ret = 0;
5743 if (PageMappedToDisk(page))
5744 goto out_unlock;
5745
5746 if (page->index == size >> PAGE_CACHE_SHIFT)
5747 len = size & ~PAGE_CACHE_MASK;
5748 else
5749 len = PAGE_CACHE_SIZE;
5750
a827eaff
AK
5751 lock_page(page);
5752 /*
5753 * return if we have all the buffers mapped. This avoid
5754 * the need to call write_begin/write_end which does a
5755 * journal_start/journal_stop which can block and take
5756 * long time
5757 */
2e9ee850 5758 if (page_has_buffers(page)) {
2e9ee850 5759 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
a827eaff
AK
5760 ext4_bh_unmapped)) {
5761 unlock_page(page);
2e9ee850 5762 goto out_unlock;
a827eaff 5763 }
2e9ee850 5764 }
a827eaff 5765 unlock_page(page);
2e9ee850
AK
5766 /*
5767 * OK, we need to fill the hole... Do write_begin write_end
5768 * to do block allocation/reservation.We are not holding
5769 * inode.i__mutex here. That allow * parallel write_begin,
5770 * write_end call. lock_page prevent this from happening
5771 * on the same page though
5772 */
5773 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 5774 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
5775 if (ret < 0)
5776 goto out_unlock;
5777 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 5778 len, len, page, fsdata);
2e9ee850
AK
5779 if (ret < 0)
5780 goto out_unlock;
5781 ret = 0;
5782out_unlock:
c2ec175c
NP
5783 if (ret)
5784 ret = VM_FAULT_SIGBUS;
2e9ee850
AK
5785 up_read(&inode->i_alloc_sem);
5786 return ret;
5787}