]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ext4/inode.c
ext4: re-inline ext4_rec_len_(to|from)_disk functions
[net-next-2.6.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
4c0425ff 40#include <linux/workqueue.h>
744692dc 41#include <linux/kernel.h>
5a0e3ad6 42#include <linux/slab.h>
9bffad1e 43
3dcf5451 44#include "ext4_jbd2.h"
ac27a0ec
DK
45#include "xattr.h"
46#include "acl.h"
d2a17637 47#include "ext4_extents.h"
ac27a0ec 48
9bffad1e
TT
49#include <trace/events/ext4.h>
50
a1d6cc56
AK
51#define MPAGE_DA_EXTENT_TAIL 0x01
52
678aaf48
JK
53static inline int ext4_begin_ordered_truncate(struct inode *inode,
54 loff_t new_size)
55{
7f5aa215
JK
56 return jbd2_journal_begin_ordered_truncate(
57 EXT4_SB(inode->i_sb)->s_journal,
58 &EXT4_I(inode)->jinode,
59 new_size);
678aaf48
JK
60}
61
64769240
AT
62static void ext4_invalidatepage(struct page *page, unsigned long offset);
63
ac27a0ec
DK
64/*
65 * Test whether an inode is a fast symlink.
66 */
617ba13b 67static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 68{
617ba13b 69 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
70 (inode->i_sb->s_blocksize >> 9) : 0;
71
72 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
73}
74
ac27a0ec
DK
75/*
76 * Work out how many blocks we need to proceed with the next chunk of a
77 * truncate transaction.
78 */
79static unsigned long blocks_for_truncate(struct inode *inode)
80{
725d26d3 81 ext4_lblk_t needed;
ac27a0ec
DK
82
83 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
84
85 /* Give ourselves just enough room to cope with inodes in which
86 * i_blocks is corrupt: we've seen disk corruptions in the past
87 * which resulted in random data in an inode which looked enough
617ba13b 88 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
89 * will go a bit crazy if that happens, but at least we should
90 * try not to panic the whole kernel. */
91 if (needed < 2)
92 needed = 2;
93
94 /* But we need to bound the transaction so we don't overflow the
95 * journal. */
617ba13b
MC
96 if (needed > EXT4_MAX_TRANS_DATA)
97 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 98
617ba13b 99 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
100}
101
102/*
103 * Truncate transactions can be complex and absolutely huge. So we need to
104 * be able to restart the transaction at a conventient checkpoint to make
105 * sure we don't overflow the journal.
106 *
107 * start_transaction gets us a new handle for a truncate transaction,
108 * and extend_transaction tries to extend the existing one a bit. If
109 * extend fails, we need to propagate the failure up and restart the
110 * transaction in the top-level truncate loop. --sct
111 */
112static handle_t *start_transaction(struct inode *inode)
113{
114 handle_t *result;
115
617ba13b 116 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
117 if (!IS_ERR(result))
118 return result;
119
617ba13b 120 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
121 return result;
122}
123
124/*
125 * Try to extend this transaction for the purposes of truncation.
126 *
127 * Returns 0 if we managed to create more room. If we can't create more
128 * room, and the transaction must be restarted we return 1.
129 */
130static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
131{
0390131b
FM
132 if (!ext4_handle_valid(handle))
133 return 0;
134 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
ac27a0ec 135 return 0;
617ba13b 136 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
137 return 0;
138 return 1;
139}
140
141/*
142 * Restart the transaction associated with *handle. This does a commit,
143 * so before we call here everything must be consistently dirtied against
144 * this transaction.
145 */
fa5d1113 146int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 147 int nblocks)
ac27a0ec 148{
487caeef
JK
149 int ret;
150
151 /*
e35fd660 152 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
153 * moment, get_block can be called only for blocks inside i_size since
154 * page cache has been already dropped and writes are blocked by
155 * i_mutex. So we can safely drop the i_data_sem here.
156 */
0390131b 157 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 158 jbd_debug(2, "restarting handle %p\n", handle);
487caeef
JK
159 up_write(&EXT4_I(inode)->i_data_sem);
160 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
161 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 162 ext4_discard_preallocations(inode);
487caeef
JK
163
164 return ret;
ac27a0ec
DK
165}
166
167/*
168 * Called at the last iput() if i_nlink is zero.
169 */
af5bc92d 170void ext4_delete_inode(struct inode *inode)
ac27a0ec
DK
171{
172 handle_t *handle;
bc965ab3 173 int err;
ac27a0ec 174
907f4554 175 if (!is_bad_inode(inode))
871a2931 176 dquot_initialize(inode);
907f4554 177
678aaf48
JK
178 if (ext4_should_order_data(inode))
179 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
180 truncate_inode_pages(&inode->i_data, 0);
181
182 if (is_bad_inode(inode))
183 goto no_delete;
184
bc965ab3 185 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 186 if (IS_ERR(handle)) {
bc965ab3 187 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
188 /*
189 * If we're going to skip the normal cleanup, we still need to
190 * make sure that the in-core orphan linked list is properly
191 * cleaned up.
192 */
617ba13b 193 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
194 goto no_delete;
195 }
196
197 if (IS_SYNC(inode))
0390131b 198 ext4_handle_sync(handle);
ac27a0ec 199 inode->i_size = 0;
bc965ab3
TT
200 err = ext4_mark_inode_dirty(handle, inode);
201 if (err) {
12062ddd 202 ext4_warning(inode->i_sb,
bc965ab3
TT
203 "couldn't mark inode dirty (err %d)", err);
204 goto stop_handle;
205 }
ac27a0ec 206 if (inode->i_blocks)
617ba13b 207 ext4_truncate(inode);
bc965ab3
TT
208
209 /*
210 * ext4_ext_truncate() doesn't reserve any slop when it
211 * restarts journal transactions; therefore there may not be
212 * enough credits left in the handle to remove the inode from
213 * the orphan list and set the dtime field.
214 */
0390131b 215 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
216 err = ext4_journal_extend(handle, 3);
217 if (err > 0)
218 err = ext4_journal_restart(handle, 3);
219 if (err != 0) {
12062ddd 220 ext4_warning(inode->i_sb,
bc965ab3
TT
221 "couldn't extend journal (err %d)", err);
222 stop_handle:
223 ext4_journal_stop(handle);
45388219 224 ext4_orphan_del(NULL, inode);
bc965ab3
TT
225 goto no_delete;
226 }
227 }
228
ac27a0ec 229 /*
617ba13b 230 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 231 * AKPM: I think this can be inside the above `if'.
617ba13b 232 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 233 * deletion of a non-existent orphan - this is because we don't
617ba13b 234 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
235 * (Well, we could do this if we need to, but heck - it works)
236 */
617ba13b
MC
237 ext4_orphan_del(handle, inode);
238 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
239
240 /*
241 * One subtle ordering requirement: if anything has gone wrong
242 * (transaction abort, IO errors, whatever), then we can still
243 * do these next steps (the fs will already have been marked as
244 * having errors), but we can't free the inode if the mark_dirty
245 * fails.
246 */
617ba13b 247 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
248 /* If that failed, just do the required in-core inode clear. */
249 clear_inode(inode);
250 else
617ba13b
MC
251 ext4_free_inode(handle, inode);
252 ext4_journal_stop(handle);
ac27a0ec
DK
253 return;
254no_delete:
255 clear_inode(inode); /* We must guarantee clearing of inode... */
256}
257
258typedef struct {
259 __le32 *p;
260 __le32 key;
261 struct buffer_head *bh;
262} Indirect;
263
264static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
265{
266 p->key = *(p->p = v);
267 p->bh = bh;
268}
269
ac27a0ec 270/**
617ba13b 271 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
272 * @inode: inode in question (we are only interested in its superblock)
273 * @i_block: block number to be parsed
274 * @offsets: array to store the offsets in
8c55e204
DK
275 * @boundary: set this non-zero if the referred-to block is likely to be
276 * followed (on disk) by an indirect block.
ac27a0ec 277 *
617ba13b 278 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
279 * for UNIX filesystems - tree of pointers anchored in the inode, with
280 * data blocks at leaves and indirect blocks in intermediate nodes.
281 * This function translates the block number into path in that tree -
282 * return value is the path length and @offsets[n] is the offset of
283 * pointer to (n+1)th node in the nth one. If @block is out of range
284 * (negative or too large) warning is printed and zero returned.
285 *
286 * Note: function doesn't find node addresses, so no IO is needed. All
287 * we need to know is the capacity of indirect blocks (taken from the
288 * inode->i_sb).
289 */
290
291/*
292 * Portability note: the last comparison (check that we fit into triple
293 * indirect block) is spelled differently, because otherwise on an
294 * architecture with 32-bit longs and 8Kb pages we might get into trouble
295 * if our filesystem had 8Kb blocks. We might use long long, but that would
296 * kill us on x86. Oh, well, at least the sign propagation does not matter -
297 * i_block would have to be negative in the very beginning, so we would not
298 * get there at all.
299 */
300
617ba13b 301static int ext4_block_to_path(struct inode *inode,
de9a55b8
TT
302 ext4_lblk_t i_block,
303 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 304{
617ba13b
MC
305 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
306 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
307 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
308 indirect_blocks = ptrs,
309 double_blocks = (1 << (ptrs_bits * 2));
310 int n = 0;
311 int final = 0;
312
c333e073 313 if (i_block < direct_blocks) {
ac27a0ec
DK
314 offsets[n++] = i_block;
315 final = direct_blocks;
af5bc92d 316 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 317 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
318 offsets[n++] = i_block;
319 final = ptrs;
320 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 321 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
322 offsets[n++] = i_block >> ptrs_bits;
323 offsets[n++] = i_block & (ptrs - 1);
324 final = ptrs;
325 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 326 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
327 offsets[n++] = i_block >> (ptrs_bits * 2);
328 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
329 offsets[n++] = i_block & (ptrs - 1);
330 final = ptrs;
331 } else {
12062ddd 332 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
de9a55b8
TT
333 i_block + direct_blocks +
334 indirect_blocks + double_blocks, inode->i_ino);
ac27a0ec
DK
335 }
336 if (boundary)
337 *boundary = final - 1 - (i_block & (ptrs - 1));
338 return n;
339}
340
c398eda0
TT
341static int __ext4_check_blockref(const char *function, unsigned int line,
342 struct inode *inode,
6fd058f7
TT
343 __le32 *p, unsigned int max)
344{
1c13d5c0 345 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
f73953c0 346 __le32 *bref = p;
6fd058f7
TT
347 unsigned int blk;
348
fe2c8191 349 while (bref < p+max) {
6fd058f7 350 blk = le32_to_cpu(*bref++);
de9a55b8
TT
351 if (blk &&
352 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
6fd058f7 353 blk, 1))) {
1c13d5c0 354 es->s_last_error_block = cpu_to_le64(blk);
c398eda0
TT
355 ext4_error_inode(inode, function, line, blk,
356 "invalid block");
de9a55b8
TT
357 return -EIO;
358 }
359 }
360 return 0;
fe2c8191
TN
361}
362
363
364#define ext4_check_indirect_blockref(inode, bh) \
c398eda0
TT
365 __ext4_check_blockref(__func__, __LINE__, inode, \
366 (__le32 *)(bh)->b_data, \
fe2c8191
TN
367 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
368
369#define ext4_check_inode_blockref(inode) \
c398eda0
TT
370 __ext4_check_blockref(__func__, __LINE__, inode, \
371 EXT4_I(inode)->i_data, \
fe2c8191
TN
372 EXT4_NDIR_BLOCKS)
373
ac27a0ec 374/**
617ba13b 375 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
376 * @inode: inode in question
377 * @depth: depth of the chain (1 - direct pointer, etc.)
378 * @offsets: offsets of pointers in inode/indirect blocks
379 * @chain: place to store the result
380 * @err: here we store the error value
381 *
382 * Function fills the array of triples <key, p, bh> and returns %NULL
383 * if everything went OK or the pointer to the last filled triple
384 * (incomplete one) otherwise. Upon the return chain[i].key contains
385 * the number of (i+1)-th block in the chain (as it is stored in memory,
386 * i.e. little-endian 32-bit), chain[i].p contains the address of that
387 * number (it points into struct inode for i==0 and into the bh->b_data
388 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
389 * block for i>0 and NULL for i==0. In other words, it holds the block
390 * numbers of the chain, addresses they were taken from (and where we can
391 * verify that chain did not change) and buffer_heads hosting these
392 * numbers.
393 *
394 * Function stops when it stumbles upon zero pointer (absent block)
395 * (pointer to last triple returned, *@err == 0)
396 * or when it gets an IO error reading an indirect block
397 * (ditto, *@err == -EIO)
ac27a0ec
DK
398 * or when it reads all @depth-1 indirect blocks successfully and finds
399 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
400 *
401 * Need to be called with
0e855ac8 402 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 403 */
725d26d3
AK
404static Indirect *ext4_get_branch(struct inode *inode, int depth,
405 ext4_lblk_t *offsets,
ac27a0ec
DK
406 Indirect chain[4], int *err)
407{
408 struct super_block *sb = inode->i_sb;
409 Indirect *p = chain;
410 struct buffer_head *bh;
411
412 *err = 0;
413 /* i_data is not going away, no lock needed */
af5bc92d 414 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
415 if (!p->key)
416 goto no_block;
417 while (--depth) {
fe2c8191
TN
418 bh = sb_getblk(sb, le32_to_cpu(p->key));
419 if (unlikely(!bh))
ac27a0ec 420 goto failure;
de9a55b8 421
fe2c8191
TN
422 if (!bh_uptodate_or_lock(bh)) {
423 if (bh_submit_read(bh) < 0) {
424 put_bh(bh);
425 goto failure;
426 }
427 /* validate block references */
428 if (ext4_check_indirect_blockref(inode, bh)) {
429 put_bh(bh);
430 goto failure;
431 }
432 }
de9a55b8 433
af5bc92d 434 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
435 /* Reader: end */
436 if (!p->key)
437 goto no_block;
438 }
439 return NULL;
440
ac27a0ec
DK
441failure:
442 *err = -EIO;
443no_block:
444 return p;
445}
446
447/**
617ba13b 448 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
449 * @inode: owner
450 * @ind: descriptor of indirect block.
451 *
1cc8dcf5 452 * This function returns the preferred place for block allocation.
ac27a0ec
DK
453 * It is used when heuristic for sequential allocation fails.
454 * Rules are:
455 * + if there is a block to the left of our position - allocate near it.
456 * + if pointer will live in indirect block - allocate near that block.
457 * + if pointer will live in inode - allocate in the same
458 * cylinder group.
459 *
460 * In the latter case we colour the starting block by the callers PID to
461 * prevent it from clashing with concurrent allocations for a different inode
462 * in the same block group. The PID is used here so that functionally related
463 * files will be close-by on-disk.
464 *
465 * Caller must make sure that @ind is valid and will stay that way.
466 */
617ba13b 467static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 468{
617ba13b 469 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 470 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 471 __le32 *p;
617ba13b 472 ext4_fsblk_t bg_start;
74d3487f 473 ext4_fsblk_t last_block;
617ba13b 474 ext4_grpblk_t colour;
a4912123
TT
475 ext4_group_t block_group;
476 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
ac27a0ec
DK
477
478 /* Try to find previous block */
479 for (p = ind->p - 1; p >= start; p--) {
480 if (*p)
481 return le32_to_cpu(*p);
482 }
483
484 /* No such thing, so let's try location of indirect block */
485 if (ind->bh)
486 return ind->bh->b_blocknr;
487
488 /*
489 * It is going to be referred to from the inode itself? OK, just put it
490 * into the same cylinder group then.
491 */
a4912123
TT
492 block_group = ei->i_block_group;
493 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
494 block_group &= ~(flex_size-1);
495 if (S_ISREG(inode->i_mode))
496 block_group++;
497 }
498 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
74d3487f
VC
499 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
500
a4912123
TT
501 /*
502 * If we are doing delayed allocation, we don't need take
503 * colour into account.
504 */
505 if (test_opt(inode->i_sb, DELALLOC))
506 return bg_start;
507
74d3487f
VC
508 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
509 colour = (current->pid % 16) *
617ba13b 510 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
511 else
512 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
513 return bg_start + colour;
514}
515
516/**
1cc8dcf5 517 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
518 * @inode: owner
519 * @block: block we want
ac27a0ec 520 * @partial: pointer to the last triple within a chain
ac27a0ec 521 *
1cc8dcf5 522 * Normally this function find the preferred place for block allocation,
fb01bfda 523 * returns it.
fb0a387d
ES
524 * Because this is only used for non-extent files, we limit the block nr
525 * to 32 bits.
ac27a0ec 526 */
725d26d3 527static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
de9a55b8 528 Indirect *partial)
ac27a0ec 529{
fb0a387d
ES
530 ext4_fsblk_t goal;
531
ac27a0ec 532 /*
c2ea3fde 533 * XXX need to get goal block from mballoc's data structures
ac27a0ec 534 */
ac27a0ec 535
fb0a387d
ES
536 goal = ext4_find_near(inode, partial);
537 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
538 return goal;
ac27a0ec
DK
539}
540
541/**
617ba13b 542 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
543 * of direct blocks need to be allocated for the given branch.
544 *
545 * @branch: chain of indirect blocks
546 * @k: number of blocks need for indirect blocks
547 * @blks: number of data blocks to be mapped.
548 * @blocks_to_boundary: the offset in the indirect block
549 *
550 * return the total number of blocks to be allocate, including the
551 * direct and indirect blocks.
552 */
498e5f24 553static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
de9a55b8 554 int blocks_to_boundary)
ac27a0ec 555{
498e5f24 556 unsigned int count = 0;
ac27a0ec
DK
557
558 /*
559 * Simple case, [t,d]Indirect block(s) has not allocated yet
560 * then it's clear blocks on that path have not allocated
561 */
562 if (k > 0) {
563 /* right now we don't handle cross boundary allocation */
564 if (blks < blocks_to_boundary + 1)
565 count += blks;
566 else
567 count += blocks_to_boundary + 1;
568 return count;
569 }
570
571 count++;
572 while (count < blks && count <= blocks_to_boundary &&
573 le32_to_cpu(*(branch[0].p + count)) == 0) {
574 count++;
575 }
576 return count;
577}
578
579/**
617ba13b 580 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
581 * @indirect_blks: the number of blocks need to allocate for indirect
582 * blocks
583 *
584 * @new_blocks: on return it will store the new block numbers for
585 * the indirect blocks(if needed) and the first direct block,
586 * @blks: on return it will store the total number of allocated
587 * direct blocks
588 */
617ba13b 589static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
590 ext4_lblk_t iblock, ext4_fsblk_t goal,
591 int indirect_blks, int blks,
592 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 593{
815a1130 594 struct ext4_allocation_request ar;
ac27a0ec 595 int target, i;
7061eba7 596 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 597 int index = 0;
617ba13b 598 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
599 int ret = 0;
600
601 /*
602 * Here we try to allocate the requested multiple blocks at once,
603 * on a best-effort basis.
604 * To build a branch, we should allocate blocks for
605 * the indirect blocks(if not allocated yet), and at least
606 * the first direct block of this branch. That's the
607 * minimum number of blocks need to allocate(required)
608 */
7061eba7
AK
609 /* first we try to allocate the indirect blocks */
610 target = indirect_blks;
611 while (target > 0) {
ac27a0ec
DK
612 count = target;
613 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
614 current_block = ext4_new_meta_blocks(handle, inode,
615 goal, &count, err);
ac27a0ec
DK
616 if (*err)
617 goto failed_out;
618
273df556
FM
619 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
620 EXT4_ERROR_INODE(inode,
621 "current_block %llu + count %lu > %d!",
622 current_block, count,
623 EXT4_MAX_BLOCK_FILE_PHYS);
624 *err = -EIO;
625 goto failed_out;
626 }
fb0a387d 627
ac27a0ec
DK
628 target -= count;
629 /* allocate blocks for indirect blocks */
630 while (index < indirect_blks && count) {
631 new_blocks[index++] = current_block++;
632 count--;
633 }
7061eba7
AK
634 if (count > 0) {
635 /*
636 * save the new block number
637 * for the first direct block
638 */
639 new_blocks[index] = current_block;
640 printk(KERN_INFO "%s returned more blocks than "
641 "requested\n", __func__);
642 WARN_ON(1);
ac27a0ec 643 break;
7061eba7 644 }
ac27a0ec
DK
645 }
646
7061eba7
AK
647 target = blks - count ;
648 blk_allocated = count;
649 if (!target)
650 goto allocated;
651 /* Now allocate data blocks */
815a1130
TT
652 memset(&ar, 0, sizeof(ar));
653 ar.inode = inode;
654 ar.goal = goal;
655 ar.len = target;
656 ar.logical = iblock;
657 if (S_ISREG(inode->i_mode))
658 /* enable in-core preallocation only for regular files */
659 ar.flags = EXT4_MB_HINT_DATA;
660
661 current_block = ext4_mb_new_blocks(handle, &ar, err);
273df556
FM
662 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
663 EXT4_ERROR_INODE(inode,
664 "current_block %llu + ar.len %d > %d!",
665 current_block, ar.len,
666 EXT4_MAX_BLOCK_FILE_PHYS);
667 *err = -EIO;
668 goto failed_out;
669 }
815a1130 670
7061eba7
AK
671 if (*err && (target == blks)) {
672 /*
673 * if the allocation failed and we didn't allocate
674 * any blocks before
675 */
676 goto failed_out;
677 }
678 if (!*err) {
679 if (target == blks) {
de9a55b8
TT
680 /*
681 * save the new block number
682 * for the first direct block
683 */
7061eba7
AK
684 new_blocks[index] = current_block;
685 }
815a1130 686 blk_allocated += ar.len;
7061eba7
AK
687 }
688allocated:
ac27a0ec 689 /* total number of blocks allocated for direct blocks */
7061eba7 690 ret = blk_allocated;
ac27a0ec
DK
691 *err = 0;
692 return ret;
693failed_out:
af5bc92d 694 for (i = 0; i < index; i++)
e6362609 695 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
ac27a0ec
DK
696 return ret;
697}
698
699/**
617ba13b 700 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
701 * @inode: owner
702 * @indirect_blks: number of allocated indirect blocks
703 * @blks: number of allocated direct blocks
704 * @offsets: offsets (in the blocks) to store the pointers to next.
705 * @branch: place to store the chain in.
706 *
707 * This function allocates blocks, zeroes out all but the last one,
708 * links them into chain and (if we are synchronous) writes them to disk.
709 * In other words, it prepares a branch that can be spliced onto the
710 * inode. It stores the information about that chain in the branch[], in
617ba13b 711 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
712 * we had read the existing part of chain and partial points to the last
713 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 714 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
715 * place chain is disconnected - *branch->p is still zero (we did not
716 * set the last link), but branch->key contains the number that should
717 * be placed into *branch->p to fill that gap.
718 *
719 * If allocation fails we free all blocks we've allocated (and forget
720 * their buffer_heads) and return the error value the from failed
617ba13b 721 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
722 * as described above and return 0.
723 */
617ba13b 724static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
725 ext4_lblk_t iblock, int indirect_blks,
726 int *blks, ext4_fsblk_t goal,
727 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
728{
729 int blocksize = inode->i_sb->s_blocksize;
730 int i, n = 0;
731 int err = 0;
732 struct buffer_head *bh;
733 int num;
617ba13b
MC
734 ext4_fsblk_t new_blocks[4];
735 ext4_fsblk_t current_block;
ac27a0ec 736
7061eba7 737 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
738 *blks, new_blocks, &err);
739 if (err)
740 return err;
741
742 branch[0].key = cpu_to_le32(new_blocks[0]);
743 /*
744 * metadata blocks and data blocks are allocated.
745 */
746 for (n = 1; n <= indirect_blks; n++) {
747 /*
748 * Get buffer_head for parent block, zero it out
749 * and set the pointer to new one, then send
750 * parent to disk.
751 */
752 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
753 branch[n].bh = bh;
754 lock_buffer(bh);
755 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 756 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec 757 if (err) {
6487a9d3
CW
758 /* Don't brelse(bh) here; it's done in
759 * ext4_journal_forget() below */
ac27a0ec 760 unlock_buffer(bh);
ac27a0ec
DK
761 goto failed;
762 }
763
764 memset(bh->b_data, 0, blocksize);
765 branch[n].p = (__le32 *) bh->b_data + offsets[n];
766 branch[n].key = cpu_to_le32(new_blocks[n]);
767 *branch[n].p = branch[n].key;
af5bc92d 768 if (n == indirect_blks) {
ac27a0ec
DK
769 current_block = new_blocks[n];
770 /*
771 * End of chain, update the last new metablock of
772 * the chain to point to the new allocated
773 * data blocks numbers
774 */
de9a55b8 775 for (i = 1; i < num; i++)
ac27a0ec
DK
776 *(branch[n].p + i) = cpu_to_le32(++current_block);
777 }
778 BUFFER_TRACE(bh, "marking uptodate");
779 set_buffer_uptodate(bh);
780 unlock_buffer(bh);
781
0390131b
FM
782 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
783 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
784 if (err)
785 goto failed;
786 }
787 *blks = num;
788 return err;
789failed:
790 /* Allocation failed, free what we already allocated */
e6362609 791 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
ac27a0ec 792 for (i = 1; i <= n ; i++) {
60e6679e 793 /*
e6362609
TT
794 * branch[i].bh is newly allocated, so there is no
795 * need to revoke the block, which is why we don't
796 * need to set EXT4_FREE_BLOCKS_METADATA.
b7e57e7c 797 */
e6362609
TT
798 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
799 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec 800 }
e6362609
TT
801 for (i = n+1; i < indirect_blks; i++)
802 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
ac27a0ec 803
e6362609 804 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
ac27a0ec
DK
805
806 return err;
807}
808
809/**
617ba13b 810 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
811 * @inode: owner
812 * @block: (logical) number of block we are adding
813 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 814 * ext4_alloc_branch)
ac27a0ec
DK
815 * @where: location of missing link
816 * @num: number of indirect blocks we are adding
817 * @blks: number of direct blocks we are adding
818 *
819 * This function fills the missing link and does all housekeeping needed in
820 * inode (->i_blocks, etc.). In case of success we end up with the full
821 * chain to new block and return 0.
822 */
617ba13b 823static int ext4_splice_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
824 ext4_lblk_t block, Indirect *where, int num,
825 int blks)
ac27a0ec
DK
826{
827 int i;
828 int err = 0;
617ba13b 829 ext4_fsblk_t current_block;
ac27a0ec 830
ac27a0ec
DK
831 /*
832 * If we're splicing into a [td]indirect block (as opposed to the
833 * inode) then we need to get write access to the [td]indirect block
834 * before the splice.
835 */
836 if (where->bh) {
837 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 838 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
839 if (err)
840 goto err_out;
841 }
842 /* That's it */
843
844 *where->p = where->key;
845
846 /*
847 * Update the host buffer_head or inode to point to more just allocated
848 * direct blocks blocks
849 */
850 if (num == 0 && blks > 1) {
851 current_block = le32_to_cpu(where->key) + 1;
852 for (i = 1; i < blks; i++)
af5bc92d 853 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
854 }
855
ac27a0ec 856 /* We are done with atomic stuff, now do the rest of housekeeping */
ac27a0ec
DK
857 /* had we spliced it onto indirect block? */
858 if (where->bh) {
859 /*
860 * If we spliced it onto an indirect block, we haven't
861 * altered the inode. Note however that if it is being spliced
862 * onto an indirect block at the very end of the file (the
863 * file is growing) then we *will* alter the inode to reflect
864 * the new i_size. But that is not done here - it is done in
617ba13b 865 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
866 */
867 jbd_debug(5, "splicing indirect only\n");
0390131b
FM
868 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
869 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
ac27a0ec
DK
870 if (err)
871 goto err_out;
872 } else {
873 /*
874 * OK, we spliced it into the inode itself on a direct block.
ac27a0ec 875 */
41591750 876 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
877 jbd_debug(5, "splicing direct\n");
878 }
879 return err;
880
881err_out:
882 for (i = 1; i <= num; i++) {
60e6679e 883 /*
e6362609
TT
884 * branch[i].bh is newly allocated, so there is no
885 * need to revoke the block, which is why we don't
886 * need to set EXT4_FREE_BLOCKS_METADATA.
b7e57e7c 887 */
e6362609
TT
888 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
889 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec 890 }
e6362609
TT
891 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
892 blks, 0);
ac27a0ec
DK
893
894 return err;
895}
896
897/*
e35fd660 898 * The ext4_ind_map_blocks() function handles non-extents inodes
b920c755 899 * (i.e., using the traditional indirect/double-indirect i_blocks
e35fd660 900 * scheme) for ext4_map_blocks().
b920c755 901 *
ac27a0ec
DK
902 * Allocation strategy is simple: if we have to allocate something, we will
903 * have to go the whole way to leaf. So let's do it before attaching anything
904 * to tree, set linkage between the newborn blocks, write them if sync is
905 * required, recheck the path, free and repeat if check fails, otherwise
906 * set the last missing link (that will protect us from any truncate-generated
907 * removals - all blocks on the path are immune now) and possibly force the
908 * write on the parent block.
909 * That has a nice additional property: no special recovery from the failed
910 * allocations is needed - we simply release blocks and do not touch anything
911 * reachable from inode.
912 *
913 * `handle' can be NULL if create == 0.
914 *
ac27a0ec
DK
915 * return > 0, # of blocks mapped or allocated.
916 * return = 0, if plain lookup failed.
917 * return < 0, error case.
c278bfec 918 *
b920c755
TT
919 * The ext4_ind_get_blocks() function should be called with
920 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
921 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
922 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
923 * blocks.
ac27a0ec 924 */
e35fd660
TT
925static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
926 struct ext4_map_blocks *map,
de9a55b8 927 int flags)
ac27a0ec
DK
928{
929 int err = -EIO;
725d26d3 930 ext4_lblk_t offsets[4];
ac27a0ec
DK
931 Indirect chain[4];
932 Indirect *partial;
617ba13b 933 ext4_fsblk_t goal;
ac27a0ec
DK
934 int indirect_blks;
935 int blocks_to_boundary = 0;
936 int depth;
ac27a0ec 937 int count = 0;
617ba13b 938 ext4_fsblk_t first_block = 0;
ac27a0ec 939
12e9b892 940 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
c2177057 941 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
e35fd660 942 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
de9a55b8 943 &blocks_to_boundary);
ac27a0ec
DK
944
945 if (depth == 0)
946 goto out;
947
617ba13b 948 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
949
950 /* Simplest case - block found, no allocation needed */
951 if (!partial) {
952 first_block = le32_to_cpu(chain[depth - 1].key);
ac27a0ec
DK
953 count++;
954 /*map more blocks*/
e35fd660 955 while (count < map->m_len && count <= blocks_to_boundary) {
617ba13b 956 ext4_fsblk_t blk;
ac27a0ec 957
ac27a0ec
DK
958 blk = le32_to_cpu(*(chain[depth-1].p + count));
959
960 if (blk == first_block + count)
961 count++;
962 else
963 break;
964 }
c278bfec 965 goto got_it;
ac27a0ec
DK
966 }
967
968 /* Next simple case - plain lookup or failed read of indirect block */
c2177057 969 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
ac27a0ec
DK
970 goto cleanup;
971
ac27a0ec 972 /*
c2ea3fde 973 * Okay, we need to do block allocation.
ac27a0ec 974 */
e35fd660 975 goal = ext4_find_goal(inode, map->m_lblk, partial);
ac27a0ec
DK
976
977 /* the number of blocks need to allocate for [d,t]indirect blocks */
978 indirect_blks = (chain + depth) - partial - 1;
979
980 /*
981 * Next look up the indirect map to count the totoal number of
982 * direct blocks to allocate for this branch.
983 */
617ba13b 984 count = ext4_blks_to_allocate(partial, indirect_blks,
e35fd660 985 map->m_len, blocks_to_boundary);
ac27a0ec 986 /*
617ba13b 987 * Block out ext4_truncate while we alter the tree
ac27a0ec 988 */
e35fd660 989 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
de9a55b8
TT
990 &count, goal,
991 offsets + (partial - chain), partial);
ac27a0ec
DK
992
993 /*
617ba13b 994 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
995 * on the new chain if there is a failure, but that risks using
996 * up transaction credits, especially for bitmaps where the
997 * credits cannot be returned. Can we handle this somehow? We
998 * may need to return -EAGAIN upwards in the worst case. --sct
999 */
1000 if (!err)
e35fd660 1001 err = ext4_splice_branch(handle, inode, map->m_lblk,
de9a55b8 1002 partial, indirect_blks, count);
2bba702d 1003 if (err)
ac27a0ec
DK
1004 goto cleanup;
1005
e35fd660 1006 map->m_flags |= EXT4_MAP_NEW;
b436b9be
JK
1007
1008 ext4_update_inode_fsync_trans(handle, inode, 1);
ac27a0ec 1009got_it:
e35fd660
TT
1010 map->m_flags |= EXT4_MAP_MAPPED;
1011 map->m_pblk = le32_to_cpu(chain[depth-1].key);
1012 map->m_len = count;
ac27a0ec 1013 if (count > blocks_to_boundary)
e35fd660 1014 map->m_flags |= EXT4_MAP_BOUNDARY;
ac27a0ec
DK
1015 err = count;
1016 /* Clean up and exit */
1017 partial = chain + depth - 1; /* the whole chain */
1018cleanup:
1019 while (partial > chain) {
1020 BUFFER_TRACE(partial->bh, "call brelse");
1021 brelse(partial->bh);
1022 partial--;
1023 }
ac27a0ec
DK
1024out:
1025 return err;
1026}
1027
a9e7f447
DM
1028#ifdef CONFIG_QUOTA
1029qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 1030{
a9e7f447 1031 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 1032}
a9e7f447 1033#endif
9d0be502 1034
12219aea
AK
1035/*
1036 * Calculate the number of metadata blocks need to reserve
9d0be502 1037 * to allocate a new block at @lblocks for non extent file based file
12219aea 1038 */
9d0be502
TT
1039static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1040 sector_t lblock)
12219aea 1041{
9d0be502 1042 struct ext4_inode_info *ei = EXT4_I(inode);
d330a5be 1043 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
9d0be502 1044 int blk_bits;
12219aea 1045
9d0be502
TT
1046 if (lblock < EXT4_NDIR_BLOCKS)
1047 return 0;
12219aea 1048
9d0be502 1049 lblock -= EXT4_NDIR_BLOCKS;
12219aea 1050
9d0be502
TT
1051 if (ei->i_da_metadata_calc_len &&
1052 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1053 ei->i_da_metadata_calc_len++;
1054 return 0;
1055 }
1056 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1057 ei->i_da_metadata_calc_len = 1;
d330a5be 1058 blk_bits = order_base_2(lblock);
9d0be502 1059 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
12219aea
AK
1060}
1061
1062/*
1063 * Calculate the number of metadata blocks need to reserve
9d0be502 1064 * to allocate a block located at @lblock
12219aea 1065 */
9d0be502 1066static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
12219aea 1067{
12e9b892 1068 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 1069 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 1070
9d0be502 1071 return ext4_indirect_calc_metadata_amount(inode, lblock);
12219aea
AK
1072}
1073
0637c6f4
TT
1074/*
1075 * Called with i_data_sem down, which is important since we can call
1076 * ext4_discard_preallocations() from here.
1077 */
5f634d06
AK
1078void ext4_da_update_reserve_space(struct inode *inode,
1079 int used, int quota_claim)
12219aea
AK
1080{
1081 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1082 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
1083
1084 spin_lock(&ei->i_block_reservation_lock);
f8ec9d68 1085 trace_ext4_da_update_reserve_space(inode, used);
0637c6f4
TT
1086 if (unlikely(used > ei->i_reserved_data_blocks)) {
1087 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1088 "with only %d reserved data blocks\n",
1089 __func__, inode->i_ino, used,
1090 ei->i_reserved_data_blocks);
1091 WARN_ON(1);
1092 used = ei->i_reserved_data_blocks;
1093 }
12219aea 1094
0637c6f4
TT
1095 /* Update per-inode reservations */
1096 ei->i_reserved_data_blocks -= used;
0637c6f4 1097 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
72b8ab9d
ES
1098 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1099 used + ei->i_allocated_meta_blocks);
0637c6f4 1100 ei->i_allocated_meta_blocks = 0;
6bc6e63f 1101
0637c6f4
TT
1102 if (ei->i_reserved_data_blocks == 0) {
1103 /*
1104 * We can release all of the reserved metadata blocks
1105 * only when we have written all of the delayed
1106 * allocation blocks.
1107 */
72b8ab9d
ES
1108 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1109 ei->i_reserved_meta_blocks);
ee5f4d9c 1110 ei->i_reserved_meta_blocks = 0;
9d0be502 1111 ei->i_da_metadata_calc_len = 0;
6bc6e63f 1112 }
12219aea 1113 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1114
72b8ab9d
ES
1115 /* Update quota subsystem for data blocks */
1116 if (quota_claim)
5dd4056d 1117 dquot_claim_block(inode, used);
72b8ab9d 1118 else {
5f634d06
AK
1119 /*
1120 * We did fallocate with an offset that is already delayed
1121 * allocated. So on delayed allocated writeback we should
72b8ab9d 1122 * not re-claim the quota for fallocated blocks.
5f634d06 1123 */
72b8ab9d 1124 dquot_release_reservation_block(inode, used);
5f634d06 1125 }
d6014301
AK
1126
1127 /*
1128 * If we have done all the pending block allocations and if
1129 * there aren't any writers on the inode, we can discard the
1130 * inode's preallocations.
1131 */
0637c6f4
TT
1132 if ((ei->i_reserved_data_blocks == 0) &&
1133 (atomic_read(&inode->i_writecount) == 0))
d6014301 1134 ext4_discard_preallocations(inode);
12219aea
AK
1135}
1136
e29136f8 1137static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
1138 unsigned int line,
1139 struct ext4_map_blocks *map)
6fd058f7 1140{
24676da4
TT
1141 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1142 map->m_len)) {
c398eda0
TT
1143 ext4_error_inode(inode, func, line, map->m_pblk,
1144 "lblock %lu mapped to illegal pblock "
1145 "(length %d)", (unsigned long) map->m_lblk,
1146 map->m_len);
6fd058f7
TT
1147 return -EIO;
1148 }
1149 return 0;
1150}
1151
e29136f8 1152#define check_block_validity(inode, map) \
c398eda0 1153 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 1154
55138e0b 1155/*
1f94533d
TT
1156 * Return the number of contiguous dirty pages in a given inode
1157 * starting at page frame idx.
55138e0b
TT
1158 */
1159static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1160 unsigned int max_pages)
1161{
1162 struct address_space *mapping = inode->i_mapping;
1163 pgoff_t index;
1164 struct pagevec pvec;
1165 pgoff_t num = 0;
1166 int i, nr_pages, done = 0;
1167
1168 if (max_pages == 0)
1169 return 0;
1170 pagevec_init(&pvec, 0);
1171 while (!done) {
1172 index = idx;
1173 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1174 PAGECACHE_TAG_DIRTY,
1175 (pgoff_t)PAGEVEC_SIZE);
1176 if (nr_pages == 0)
1177 break;
1178 for (i = 0; i < nr_pages; i++) {
1179 struct page *page = pvec.pages[i];
1180 struct buffer_head *bh, *head;
1181
1182 lock_page(page);
1183 if (unlikely(page->mapping != mapping) ||
1184 !PageDirty(page) ||
1185 PageWriteback(page) ||
1186 page->index != idx) {
1187 done = 1;
1188 unlock_page(page);
1189 break;
1190 }
1f94533d
TT
1191 if (page_has_buffers(page)) {
1192 bh = head = page_buffers(page);
1193 do {
1194 if (!buffer_delay(bh) &&
1195 !buffer_unwritten(bh))
1196 done = 1;
1197 bh = bh->b_this_page;
1198 } while (!done && (bh != head));
1199 }
55138e0b
TT
1200 unlock_page(page);
1201 if (done)
1202 break;
1203 idx++;
1204 num++;
1205 if (num >= max_pages)
1206 break;
1207 }
1208 pagevec_release(&pvec);
1209 }
1210 return num;
1211}
1212
f5ab0d1f 1213/*
e35fd660 1214 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 1215 * and returns if the blocks are already mapped.
f5ab0d1f 1216 *
f5ab0d1f
MC
1217 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1218 * and store the allocated blocks in the result buffer head and mark it
1219 * mapped.
1220 *
e35fd660
TT
1221 * If file type is extents based, it will call ext4_ext_map_blocks(),
1222 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
1223 * based files
1224 *
1225 * On success, it returns the number of blocks being mapped or allocate.
1226 * if create==0 and the blocks are pre-allocated and uninitialized block,
1227 * the result buffer head is unmapped. If the create ==1, it will make sure
1228 * the buffer head is mapped.
1229 *
1230 * It returns 0 if plain look up failed (blocks have not been allocated), in
1231 * that casem, buffer head is unmapped
1232 *
1233 * It returns the error in case of allocation failure.
1234 */
e35fd660
TT
1235int ext4_map_blocks(handle_t *handle, struct inode *inode,
1236 struct ext4_map_blocks *map, int flags)
0e855ac8
AK
1237{
1238 int retval;
f5ab0d1f 1239
e35fd660
TT
1240 map->m_flags = 0;
1241 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1242 "logical block %lu\n", inode->i_ino, flags, map->m_len,
1243 (unsigned long) map->m_lblk);
4df3d265 1244 /*
b920c755
TT
1245 * Try to see if we can get the block without requesting a new
1246 * file system block.
4df3d265
AK
1247 */
1248 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 1249 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 1250 retval = ext4_ext_map_blocks(handle, inode, map, 0);
0e855ac8 1251 } else {
e35fd660 1252 retval = ext4_ind_map_blocks(handle, inode, map, 0);
0e855ac8 1253 }
4df3d265 1254 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 1255
e35fd660 1256 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 1257 int ret = check_block_validity(inode, map);
6fd058f7
TT
1258 if (ret != 0)
1259 return ret;
1260 }
1261
f5ab0d1f 1262 /* If it is only a block(s) look up */
c2177057 1263 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
1264 return retval;
1265
1266 /*
1267 * Returns if the blocks have already allocated
1268 *
1269 * Note that if blocks have been preallocated
1270 * ext4_ext_get_block() returns th create = 0
1271 * with buffer head unmapped.
1272 */
e35fd660 1273 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
1274 return retval;
1275
2a8964d6
AK
1276 /*
1277 * When we call get_blocks without the create flag, the
1278 * BH_Unwritten flag could have gotten set if the blocks
1279 * requested were part of a uninitialized extent. We need to
1280 * clear this flag now that we are committed to convert all or
1281 * part of the uninitialized extent to be an initialized
1282 * extent. This is because we need to avoid the combination
1283 * of BH_Unwritten and BH_Mapped flags being simultaneously
1284 * set on the buffer_head.
1285 */
e35fd660 1286 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
2a8964d6 1287
4df3d265 1288 /*
f5ab0d1f
MC
1289 * New blocks allocate and/or writing to uninitialized extent
1290 * will possibly result in updating i_data, so we take
1291 * the write lock of i_data_sem, and call get_blocks()
1292 * with create == 1 flag.
4df3d265
AK
1293 */
1294 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1295
1296 /*
1297 * if the caller is from delayed allocation writeout path
1298 * we have already reserved fs blocks for allocation
1299 * let the underlying get_block() function know to
1300 * avoid double accounting
1301 */
c2177057 1302 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1303 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1304 /*
1305 * We need to check for EXT4 here because migrate
1306 * could have changed the inode type in between
1307 */
12e9b892 1308 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 1309 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 1310 } else {
e35fd660 1311 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 1312
e35fd660 1313 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
1314 /*
1315 * We allocated new blocks which will result in
1316 * i_data's format changing. Force the migrate
1317 * to fail by clearing migrate flags
1318 */
19f5fb7a 1319 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 1320 }
d2a17637 1321
5f634d06
AK
1322 /*
1323 * Update reserved blocks/metadata blocks after successful
1324 * block allocation which had been deferred till now. We don't
1325 * support fallocate for non extent files. So we can update
1326 * reserve space here.
1327 */
1328 if ((retval > 0) &&
1296cc85 1329 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
1330 ext4_da_update_reserve_space(inode, retval, 1);
1331 }
2ac3b6e0 1332 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1333 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
2ac3b6e0 1334
4df3d265 1335 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 1336 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 1337 int ret = check_block_validity(inode, map);
6fd058f7
TT
1338 if (ret != 0)
1339 return ret;
1340 }
0e855ac8
AK
1341 return retval;
1342}
1343
f3bd1f3f
MC
1344/* Maximum number of blocks we map for direct IO at once. */
1345#define DIO_MAX_BLOCKS 4096
1346
2ed88685
TT
1347static int _ext4_get_block(struct inode *inode, sector_t iblock,
1348 struct buffer_head *bh, int flags)
ac27a0ec 1349{
3e4fdaf8 1350 handle_t *handle = ext4_journal_current_handle();
2ed88685 1351 struct ext4_map_blocks map;
7fb5409d 1352 int ret = 0, started = 0;
f3bd1f3f 1353 int dio_credits;
ac27a0ec 1354
2ed88685
TT
1355 map.m_lblk = iblock;
1356 map.m_len = bh->b_size >> inode->i_blkbits;
1357
1358 if (flags && !handle) {
7fb5409d 1359 /* Direct IO write... */
2ed88685
TT
1360 if (map.m_len > DIO_MAX_BLOCKS)
1361 map.m_len = DIO_MAX_BLOCKS;
1362 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
f3bd1f3f 1363 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1364 if (IS_ERR(handle)) {
ac27a0ec 1365 ret = PTR_ERR(handle);
2ed88685 1366 return ret;
ac27a0ec 1367 }
7fb5409d 1368 started = 1;
ac27a0ec
DK
1369 }
1370
2ed88685 1371 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 1372 if (ret > 0) {
2ed88685
TT
1373 map_bh(bh, inode->i_sb, map.m_pblk);
1374 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1375 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 1376 ret = 0;
ac27a0ec 1377 }
7fb5409d
JK
1378 if (started)
1379 ext4_journal_stop(handle);
ac27a0ec
DK
1380 return ret;
1381}
1382
2ed88685
TT
1383int ext4_get_block(struct inode *inode, sector_t iblock,
1384 struct buffer_head *bh, int create)
1385{
1386 return _ext4_get_block(inode, iblock, bh,
1387 create ? EXT4_GET_BLOCKS_CREATE : 0);
1388}
1389
ac27a0ec
DK
1390/*
1391 * `handle' can be NULL if create is zero
1392 */
617ba13b 1393struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1394 ext4_lblk_t block, int create, int *errp)
ac27a0ec 1395{
2ed88685
TT
1396 struct ext4_map_blocks map;
1397 struct buffer_head *bh;
ac27a0ec
DK
1398 int fatal = 0, err;
1399
1400 J_ASSERT(handle != NULL || create == 0);
1401
2ed88685
TT
1402 map.m_lblk = block;
1403 map.m_len = 1;
1404 err = ext4_map_blocks(handle, inode, &map,
1405 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 1406
2ed88685
TT
1407 if (err < 0)
1408 *errp = err;
1409 if (err <= 0)
1410 return NULL;
1411 *errp = 0;
1412
1413 bh = sb_getblk(inode->i_sb, map.m_pblk);
1414 if (!bh) {
1415 *errp = -EIO;
1416 return NULL;
ac27a0ec 1417 }
2ed88685
TT
1418 if (map.m_flags & EXT4_MAP_NEW) {
1419 J_ASSERT(create != 0);
1420 J_ASSERT(handle != NULL);
ac27a0ec 1421
2ed88685
TT
1422 /*
1423 * Now that we do not always journal data, we should
1424 * keep in mind whether this should always journal the
1425 * new buffer as metadata. For now, regular file
1426 * writes use ext4_get_block instead, so it's not a
1427 * problem.
1428 */
1429 lock_buffer(bh);
1430 BUFFER_TRACE(bh, "call get_create_access");
1431 fatal = ext4_journal_get_create_access(handle, bh);
1432 if (!fatal && !buffer_uptodate(bh)) {
1433 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1434 set_buffer_uptodate(bh);
ac27a0ec 1435 }
2ed88685
TT
1436 unlock_buffer(bh);
1437 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1438 err = ext4_handle_dirty_metadata(handle, inode, bh);
1439 if (!fatal)
1440 fatal = err;
1441 } else {
1442 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 1443 }
2ed88685
TT
1444 if (fatal) {
1445 *errp = fatal;
1446 brelse(bh);
1447 bh = NULL;
1448 }
1449 return bh;
ac27a0ec
DK
1450}
1451
617ba13b 1452struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1453 ext4_lblk_t block, int create, int *err)
ac27a0ec 1454{
af5bc92d 1455 struct buffer_head *bh;
ac27a0ec 1456
617ba13b 1457 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1458 if (!bh)
1459 return bh;
1460 if (buffer_uptodate(bh))
1461 return bh;
1462 ll_rw_block(READ_META, 1, &bh);
1463 wait_on_buffer(bh);
1464 if (buffer_uptodate(bh))
1465 return bh;
1466 put_bh(bh);
1467 *err = -EIO;
1468 return NULL;
1469}
1470
af5bc92d
TT
1471static int walk_page_buffers(handle_t *handle,
1472 struct buffer_head *head,
1473 unsigned from,
1474 unsigned to,
1475 int *partial,
1476 int (*fn)(handle_t *handle,
1477 struct buffer_head *bh))
ac27a0ec
DK
1478{
1479 struct buffer_head *bh;
1480 unsigned block_start, block_end;
1481 unsigned blocksize = head->b_size;
1482 int err, ret = 0;
1483 struct buffer_head *next;
1484
af5bc92d
TT
1485 for (bh = head, block_start = 0;
1486 ret == 0 && (bh != head || !block_start);
de9a55b8 1487 block_start = block_end, bh = next) {
ac27a0ec
DK
1488 next = bh->b_this_page;
1489 block_end = block_start + blocksize;
1490 if (block_end <= from || block_start >= to) {
1491 if (partial && !buffer_uptodate(bh))
1492 *partial = 1;
1493 continue;
1494 }
1495 err = (*fn)(handle, bh);
1496 if (!ret)
1497 ret = err;
1498 }
1499 return ret;
1500}
1501
1502/*
1503 * To preserve ordering, it is essential that the hole instantiation and
1504 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1505 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1506 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1507 * prepare_write() is the right place.
1508 *
617ba13b
MC
1509 * Also, this function can nest inside ext4_writepage() ->
1510 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1511 * has generated enough buffer credits to do the whole page. So we won't
1512 * block on the journal in that case, which is good, because the caller may
1513 * be PF_MEMALLOC.
1514 *
617ba13b 1515 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1516 * quota file writes. If we were to commit the transaction while thus
1517 * reentered, there can be a deadlock - we would be holding a quota
1518 * lock, and the commit would never complete if another thread had a
1519 * transaction open and was blocking on the quota lock - a ranking
1520 * violation.
1521 *
dab291af 1522 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1523 * will _not_ run commit under these circumstances because handle->h_ref
1524 * is elevated. We'll still have enough credits for the tiny quotafile
1525 * write.
1526 */
1527static int do_journal_get_write_access(handle_t *handle,
de9a55b8 1528 struct buffer_head *bh)
ac27a0ec
DK
1529{
1530 if (!buffer_mapped(bh) || buffer_freed(bh))
1531 return 0;
617ba13b 1532 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1533}
1534
b9a4207d
JK
1535/*
1536 * Truncate blocks that were not used by write. We have to truncate the
1537 * pagecache as well so that corresponding buffers get properly unmapped.
1538 */
1539static void ext4_truncate_failed_write(struct inode *inode)
1540{
1541 truncate_inode_pages(inode->i_mapping, inode->i_size);
1542 ext4_truncate(inode);
1543}
1544
744692dc
JZ
1545static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1546 struct buffer_head *bh_result, int create);
bfc1af65 1547static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1548 loff_t pos, unsigned len, unsigned flags,
1549 struct page **pagep, void **fsdata)
ac27a0ec 1550{
af5bc92d 1551 struct inode *inode = mapping->host;
1938a150 1552 int ret, needed_blocks;
ac27a0ec
DK
1553 handle_t *handle;
1554 int retries = 0;
af5bc92d 1555 struct page *page;
de9a55b8 1556 pgoff_t index;
af5bc92d 1557 unsigned from, to;
bfc1af65 1558
9bffad1e 1559 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1560 /*
1561 * Reserve one block more for addition to orphan list in case
1562 * we allocate blocks but write fails for some reason
1563 */
1564 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 1565 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1566 from = pos & (PAGE_CACHE_SIZE - 1);
1567 to = from + len;
ac27a0ec
DK
1568
1569retry:
af5bc92d
TT
1570 handle = ext4_journal_start(inode, needed_blocks);
1571 if (IS_ERR(handle)) {
1572 ret = PTR_ERR(handle);
1573 goto out;
7479d2b9 1574 }
ac27a0ec 1575
ebd3610b
JK
1576 /* We cannot recurse into the filesystem as the transaction is already
1577 * started */
1578 flags |= AOP_FLAG_NOFS;
1579
54566b2c 1580 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1581 if (!page) {
1582 ext4_journal_stop(handle);
1583 ret = -ENOMEM;
1584 goto out;
1585 }
1586 *pagep = page;
1587
744692dc
JZ
1588 if (ext4_should_dioread_nolock(inode))
1589 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1590 fsdata, ext4_get_block_write);
1591 else
1592 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1593 fsdata, ext4_get_block);
bfc1af65
NP
1594
1595 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1596 ret = walk_page_buffers(handle, page_buffers(page),
1597 from, to, NULL, do_journal_get_write_access);
1598 }
bfc1af65
NP
1599
1600 if (ret) {
af5bc92d 1601 unlock_page(page);
af5bc92d 1602 page_cache_release(page);
ae4d5372
AK
1603 /*
1604 * block_write_begin may have instantiated a few blocks
1605 * outside i_size. Trim these off again. Don't need
1606 * i_size_read because we hold i_mutex.
1938a150
AK
1607 *
1608 * Add inode to orphan list in case we crash before
1609 * truncate finishes
ae4d5372 1610 */
ffacfa7a 1611 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1612 ext4_orphan_add(handle, inode);
1613
1614 ext4_journal_stop(handle);
1615 if (pos + len > inode->i_size) {
b9a4207d 1616 ext4_truncate_failed_write(inode);
de9a55b8 1617 /*
ffacfa7a 1618 * If truncate failed early the inode might
1938a150
AK
1619 * still be on the orphan list; we need to
1620 * make sure the inode is removed from the
1621 * orphan list in that case.
1622 */
1623 if (inode->i_nlink)
1624 ext4_orphan_del(NULL, inode);
1625 }
bfc1af65
NP
1626 }
1627
617ba13b 1628 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1629 goto retry;
7479d2b9 1630out:
ac27a0ec
DK
1631 return ret;
1632}
1633
bfc1af65
NP
1634/* For write_end() in data=journal mode */
1635static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1636{
1637 if (!buffer_mapped(bh) || buffer_freed(bh))
1638 return 0;
1639 set_buffer_uptodate(bh);
0390131b 1640 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1641}
1642
f8514083 1643static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
1644 struct address_space *mapping,
1645 loff_t pos, unsigned len, unsigned copied,
1646 struct page *page, void *fsdata)
f8514083
AK
1647{
1648 int i_size_changed = 0;
1649 struct inode *inode = mapping->host;
1650 handle_t *handle = ext4_journal_current_handle();
1651
1652 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1653
1654 /*
1655 * No need to use i_size_read() here, the i_size
1656 * cannot change under us because we hold i_mutex.
1657 *
1658 * But it's important to update i_size while still holding page lock:
1659 * page writeout could otherwise come in and zero beyond i_size.
1660 */
1661 if (pos + copied > inode->i_size) {
1662 i_size_write(inode, pos + copied);
1663 i_size_changed = 1;
1664 }
1665
1666 if (pos + copied > EXT4_I(inode)->i_disksize) {
1667 /* We need to mark inode dirty even if
1668 * new_i_size is less that inode->i_size
1669 * bu greater than i_disksize.(hint delalloc)
1670 */
1671 ext4_update_i_disksize(inode, (pos + copied));
1672 i_size_changed = 1;
1673 }
1674 unlock_page(page);
1675 page_cache_release(page);
1676
1677 /*
1678 * Don't mark the inode dirty under page lock. First, it unnecessarily
1679 * makes the holding time of page lock longer. Second, it forces lock
1680 * ordering of page lock and transaction start for journaling
1681 * filesystems.
1682 */
1683 if (i_size_changed)
1684 ext4_mark_inode_dirty(handle, inode);
1685
1686 return copied;
1687}
1688
ac27a0ec
DK
1689/*
1690 * We need to pick up the new inode size which generic_commit_write gave us
1691 * `file' can be NULL - eg, when called from page_symlink().
1692 *
617ba13b 1693 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1694 * buffers are managed internally.
1695 */
bfc1af65 1696static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
1697 struct address_space *mapping,
1698 loff_t pos, unsigned len, unsigned copied,
1699 struct page *page, void *fsdata)
ac27a0ec 1700{
617ba13b 1701 handle_t *handle = ext4_journal_current_handle();
cf108bca 1702 struct inode *inode = mapping->host;
ac27a0ec
DK
1703 int ret = 0, ret2;
1704
9bffad1e 1705 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 1706 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1707
1708 if (ret == 0) {
f8514083 1709 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1710 page, fsdata);
f8a87d89 1711 copied = ret2;
ffacfa7a 1712 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1713 /* if we have allocated more blocks and copied
1714 * less. We will have blocks allocated outside
1715 * inode->i_size. So truncate them
1716 */
1717 ext4_orphan_add(handle, inode);
f8a87d89
RK
1718 if (ret2 < 0)
1719 ret = ret2;
ac27a0ec 1720 }
617ba13b 1721 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1722 if (!ret)
1723 ret = ret2;
bfc1af65 1724
f8514083 1725 if (pos + len > inode->i_size) {
b9a4207d 1726 ext4_truncate_failed_write(inode);
de9a55b8 1727 /*
ffacfa7a 1728 * If truncate failed early the inode might still be
f8514083
AK
1729 * on the orphan list; we need to make sure the inode
1730 * is removed from the orphan list in that case.
1731 */
1732 if (inode->i_nlink)
1733 ext4_orphan_del(NULL, inode);
1734 }
1735
1736
bfc1af65 1737 return ret ? ret : copied;
ac27a0ec
DK
1738}
1739
bfc1af65 1740static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
1741 struct address_space *mapping,
1742 loff_t pos, unsigned len, unsigned copied,
1743 struct page *page, void *fsdata)
ac27a0ec 1744{
617ba13b 1745 handle_t *handle = ext4_journal_current_handle();
cf108bca 1746 struct inode *inode = mapping->host;
ac27a0ec 1747 int ret = 0, ret2;
ac27a0ec 1748
9bffad1e 1749 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 1750 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1751 page, fsdata);
f8a87d89 1752 copied = ret2;
ffacfa7a 1753 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1754 /* if we have allocated more blocks and copied
1755 * less. We will have blocks allocated outside
1756 * inode->i_size. So truncate them
1757 */
1758 ext4_orphan_add(handle, inode);
1759
f8a87d89
RK
1760 if (ret2 < 0)
1761 ret = ret2;
ac27a0ec 1762
617ba13b 1763 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1764 if (!ret)
1765 ret = ret2;
bfc1af65 1766
f8514083 1767 if (pos + len > inode->i_size) {
b9a4207d 1768 ext4_truncate_failed_write(inode);
de9a55b8 1769 /*
ffacfa7a 1770 * If truncate failed early the inode might still be
f8514083
AK
1771 * on the orphan list; we need to make sure the inode
1772 * is removed from the orphan list in that case.
1773 */
1774 if (inode->i_nlink)
1775 ext4_orphan_del(NULL, inode);
1776 }
1777
bfc1af65 1778 return ret ? ret : copied;
ac27a0ec
DK
1779}
1780
bfc1af65 1781static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1782 struct address_space *mapping,
1783 loff_t pos, unsigned len, unsigned copied,
1784 struct page *page, void *fsdata)
ac27a0ec 1785{
617ba13b 1786 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1787 struct inode *inode = mapping->host;
ac27a0ec
DK
1788 int ret = 0, ret2;
1789 int partial = 0;
bfc1af65 1790 unsigned from, to;
cf17fea6 1791 loff_t new_i_size;
ac27a0ec 1792
9bffad1e 1793 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1794 from = pos & (PAGE_CACHE_SIZE - 1);
1795 to = from + len;
1796
1797 if (copied < len) {
1798 if (!PageUptodate(page))
1799 copied = 0;
1800 page_zero_new_buffers(page, from+copied, to);
1801 }
ac27a0ec
DK
1802
1803 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1804 to, &partial, write_end_fn);
ac27a0ec
DK
1805 if (!partial)
1806 SetPageUptodate(page);
cf17fea6
AK
1807 new_i_size = pos + copied;
1808 if (new_i_size > inode->i_size)
bfc1af65 1809 i_size_write(inode, pos+copied);
19f5fb7a 1810 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
cf17fea6
AK
1811 if (new_i_size > EXT4_I(inode)->i_disksize) {
1812 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1813 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1814 if (!ret)
1815 ret = ret2;
1816 }
bfc1af65 1817
cf108bca 1818 unlock_page(page);
f8514083 1819 page_cache_release(page);
ffacfa7a 1820 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1821 /* if we have allocated more blocks and copied
1822 * less. We will have blocks allocated outside
1823 * inode->i_size. So truncate them
1824 */
1825 ext4_orphan_add(handle, inode);
1826
617ba13b 1827 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1828 if (!ret)
1829 ret = ret2;
f8514083 1830 if (pos + len > inode->i_size) {
b9a4207d 1831 ext4_truncate_failed_write(inode);
de9a55b8 1832 /*
ffacfa7a 1833 * If truncate failed early the inode might still be
f8514083
AK
1834 * on the orphan list; we need to make sure the inode
1835 * is removed from the orphan list in that case.
1836 */
1837 if (inode->i_nlink)
1838 ext4_orphan_del(NULL, inode);
1839 }
bfc1af65
NP
1840
1841 return ret ? ret : copied;
ac27a0ec 1842}
d2a17637 1843
9d0be502
TT
1844/*
1845 * Reserve a single block located at lblock
1846 */
1847static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
d2a17637 1848{
030ba6bc 1849 int retries = 0;
60e58e0f 1850 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1851 struct ext4_inode_info *ei = EXT4_I(inode);
72b8ab9d 1852 unsigned long md_needed;
5dd4056d 1853 int ret;
d2a17637
MC
1854
1855 /*
1856 * recalculate the amount of metadata blocks to reserve
1857 * in order to allocate nrblocks
1858 * worse case is one extent per block
1859 */
030ba6bc 1860repeat:
0637c6f4 1861 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1862 md_needed = ext4_calc_metadata_amount(inode, lblock);
f8ec9d68 1863 trace_ext4_da_reserve_space(inode, md_needed);
0637c6f4 1864 spin_unlock(&ei->i_block_reservation_lock);
d2a17637 1865
60e58e0f 1866 /*
72b8ab9d
ES
1867 * We will charge metadata quota at writeout time; this saves
1868 * us from metadata over-estimation, though we may go over by
1869 * a small amount in the end. Here we just reserve for data.
60e58e0f 1870 */
72b8ab9d 1871 ret = dquot_reserve_block(inode, 1);
5dd4056d
CH
1872 if (ret)
1873 return ret;
72b8ab9d
ES
1874 /*
1875 * We do still charge estimated metadata to the sb though;
1876 * we cannot afford to run out of free blocks.
1877 */
9d0be502 1878 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
72b8ab9d 1879 dquot_release_reservation_block(inode, 1);
030ba6bc
AK
1880 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1881 yield();
1882 goto repeat;
1883 }
d2a17637
MC
1884 return -ENOSPC;
1885 }
0637c6f4 1886 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1887 ei->i_reserved_data_blocks++;
0637c6f4
TT
1888 ei->i_reserved_meta_blocks += md_needed;
1889 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1890
d2a17637
MC
1891 return 0; /* success */
1892}
1893
12219aea 1894static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1895{
1896 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1897 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1898
cd213226
MC
1899 if (!to_free)
1900 return; /* Nothing to release, exit */
1901
d2a17637 1902 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1903
5a58ec87 1904 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1905 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1906 /*
0637c6f4
TT
1907 * if there aren't enough reserved blocks, then the
1908 * counter is messed up somewhere. Since this
1909 * function is called from invalidate page, it's
1910 * harmless to return without any action.
cd213226 1911 */
0637c6f4
TT
1912 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1913 "ino %lu, to_free %d with only %d reserved "
1914 "data blocks\n", inode->i_ino, to_free,
1915 ei->i_reserved_data_blocks);
1916 WARN_ON(1);
1917 to_free = ei->i_reserved_data_blocks;
cd213226 1918 }
0637c6f4 1919 ei->i_reserved_data_blocks -= to_free;
cd213226 1920
0637c6f4
TT
1921 if (ei->i_reserved_data_blocks == 0) {
1922 /*
1923 * We can release all of the reserved metadata blocks
1924 * only when we have written all of the delayed
1925 * allocation blocks.
1926 */
72b8ab9d
ES
1927 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1928 ei->i_reserved_meta_blocks);
ee5f4d9c 1929 ei->i_reserved_meta_blocks = 0;
9d0be502 1930 ei->i_da_metadata_calc_len = 0;
0637c6f4 1931 }
d2a17637 1932
72b8ab9d 1933 /* update fs dirty data blocks counter */
0637c6f4 1934 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
d2a17637 1935
d2a17637 1936 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1937
5dd4056d 1938 dquot_release_reservation_block(inode, to_free);
d2a17637
MC
1939}
1940
1941static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1942 unsigned long offset)
d2a17637
MC
1943{
1944 int to_release = 0;
1945 struct buffer_head *head, *bh;
1946 unsigned int curr_off = 0;
1947
1948 head = page_buffers(page);
1949 bh = head;
1950 do {
1951 unsigned int next_off = curr_off + bh->b_size;
1952
1953 if ((offset <= curr_off) && (buffer_delay(bh))) {
1954 to_release++;
1955 clear_buffer_delay(bh);
1956 }
1957 curr_off = next_off;
1958 } while ((bh = bh->b_this_page) != head);
12219aea 1959 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1960}
ac27a0ec 1961
64769240
AT
1962/*
1963 * Delayed allocation stuff
1964 */
1965
64769240
AT
1966/*
1967 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1968 * them with writepage() call back
64769240
AT
1969 *
1970 * @mpd->inode: inode
1971 * @mpd->first_page: first page of the extent
1972 * @mpd->next_page: page after the last page of the extent
64769240
AT
1973 *
1974 * By the time mpage_da_submit_io() is called we expect all blocks
1975 * to be allocated. this may be wrong if allocation failed.
1976 *
1977 * As pages are already locked by write_cache_pages(), we can't use it
1978 */
1979static int mpage_da_submit_io(struct mpage_da_data *mpd)
1980{
22208ded 1981 long pages_skipped;
791b7f08
AK
1982 struct pagevec pvec;
1983 unsigned long index, end;
1984 int ret = 0, err, nr_pages, i;
1985 struct inode *inode = mpd->inode;
1986 struct address_space *mapping = inode->i_mapping;
64769240
AT
1987
1988 BUG_ON(mpd->next_page <= mpd->first_page);
791b7f08
AK
1989 /*
1990 * We need to start from the first_page to the next_page - 1
1991 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1992 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1993 * at the currently mapped buffer_heads.
1994 */
64769240
AT
1995 index = mpd->first_page;
1996 end = mpd->next_page - 1;
1997
791b7f08 1998 pagevec_init(&pvec, 0);
64769240 1999 while (index <= end) {
791b7f08 2000 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
2001 if (nr_pages == 0)
2002 break;
2003 for (i = 0; i < nr_pages; i++) {
2004 struct page *page = pvec.pages[i];
2005
791b7f08
AK
2006 index = page->index;
2007 if (index > end)
2008 break;
2009 index++;
2010
2011 BUG_ON(!PageLocked(page));
2012 BUG_ON(PageWriteback(page));
2013
22208ded 2014 pages_skipped = mpd->wbc->pages_skipped;
a1d6cc56 2015 err = mapping->a_ops->writepage(page, mpd->wbc);
22208ded
AK
2016 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2017 /*
2018 * have successfully written the page
2019 * without skipping the same
2020 */
a1d6cc56 2021 mpd->pages_written++;
64769240
AT
2022 /*
2023 * In error case, we have to continue because
2024 * remaining pages are still locked
2025 * XXX: unlock and re-dirty them?
2026 */
2027 if (ret == 0)
2028 ret = err;
2029 }
2030 pagevec_release(&pvec);
2031 }
64769240
AT
2032 return ret;
2033}
2034
2035/*
2036 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2037 *
64769240 2038 * the function goes through all passed space and put actual disk
29fa89d0 2039 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
64769240 2040 */
2ed88685
TT
2041static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd,
2042 struct ext4_map_blocks *map)
64769240
AT
2043{
2044 struct inode *inode = mpd->inode;
2045 struct address_space *mapping = inode->i_mapping;
2ed88685
TT
2046 int blocks = map->m_len;
2047 sector_t pblock = map->m_pblk, cur_logical;
64769240 2048 struct buffer_head *head, *bh;
a1d6cc56 2049 pgoff_t index, end;
64769240
AT
2050 struct pagevec pvec;
2051 int nr_pages, i;
2052
2ed88685
TT
2053 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2054 end = (map->m_lblk + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
64769240
AT
2055 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2056
2057 pagevec_init(&pvec, 0);
2058
2059 while (index <= end) {
2060 /* XXX: optimize tail */
2061 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2062 if (nr_pages == 0)
2063 break;
2064 for (i = 0; i < nr_pages; i++) {
2065 struct page *page = pvec.pages[i];
2066
2067 index = page->index;
2068 if (index > end)
2069 break;
2070 index++;
2071
2072 BUG_ON(!PageLocked(page));
2073 BUG_ON(PageWriteback(page));
2074 BUG_ON(!page_has_buffers(page));
2075
2076 bh = page_buffers(page);
2077 head = bh;
2078
2079 /* skip blocks out of the range */
2080 do {
2ed88685 2081 if (cur_logical >= map->m_lblk)
64769240
AT
2082 break;
2083 cur_logical++;
2084 } while ((bh = bh->b_this_page) != head);
2085
2086 do {
2ed88685 2087 if (cur_logical >= map->m_lblk + blocks)
64769240 2088 break;
29fa89d0 2089
2ed88685 2090 if (buffer_delay(bh) || buffer_unwritten(bh)) {
29fa89d0
AK
2091
2092 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2093
2094 if (buffer_delay(bh)) {
2095 clear_buffer_delay(bh);
2096 bh->b_blocknr = pblock;
2097 } else {
2098 /*
2099 * unwritten already should have
2100 * blocknr assigned. Verify that
2101 */
2102 clear_buffer_unwritten(bh);
2103 BUG_ON(bh->b_blocknr != pblock);
2104 }
2105
61628a3f 2106 } else if (buffer_mapped(bh))
64769240 2107 BUG_ON(bh->b_blocknr != pblock);
64769240 2108
2ed88685 2109 if (map->m_flags & EXT4_MAP_UNINIT)
744692dc 2110 set_buffer_uninit(bh);
64769240
AT
2111 cur_logical++;
2112 pblock++;
2113 } while ((bh = bh->b_this_page) != head);
2114 }
2115 pagevec_release(&pvec);
2116 }
2117}
2118
2119
c4a0c46e
AK
2120static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2121 sector_t logical, long blk_cnt)
2122{
2123 int nr_pages, i;
2124 pgoff_t index, end;
2125 struct pagevec pvec;
2126 struct inode *inode = mpd->inode;
2127 struct address_space *mapping = inode->i_mapping;
2128
2129 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2130 end = (logical + blk_cnt - 1) >>
2131 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2132 while (index <= end) {
2133 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2134 if (nr_pages == 0)
2135 break;
2136 for (i = 0; i < nr_pages; i++) {
2137 struct page *page = pvec.pages[i];
9b1d0998 2138 if (page->index > end)
c4a0c46e 2139 break;
c4a0c46e
AK
2140 BUG_ON(!PageLocked(page));
2141 BUG_ON(PageWriteback(page));
2142 block_invalidatepage(page, 0);
2143 ClearPageUptodate(page);
2144 unlock_page(page);
2145 }
9b1d0998
JK
2146 index = pvec.pages[nr_pages - 1]->index + 1;
2147 pagevec_release(&pvec);
c4a0c46e
AK
2148 }
2149 return;
2150}
2151
df22291f
AK
2152static void ext4_print_free_blocks(struct inode *inode)
2153{
2154 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1693918e
TT
2155 printk(KERN_CRIT "Total free blocks count %lld\n",
2156 ext4_count_free_blocks(inode->i_sb));
2157 printk(KERN_CRIT "Free/Dirty block details\n");
2158 printk(KERN_CRIT "free_blocks=%lld\n",
2159 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2160 printk(KERN_CRIT "dirty_blocks=%lld\n",
2161 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2162 printk(KERN_CRIT "Block reservation details\n");
2163 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2164 EXT4_I(inode)->i_reserved_data_blocks);
2165 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2166 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
2167 return;
2168}
2169
64769240
AT
2170/*
2171 * mpage_da_map_blocks - go through given space
2172 *
8dc207c0 2173 * @mpd - bh describing space
64769240
AT
2174 *
2175 * The function skips space we know is already mapped to disk blocks.
2176 *
64769240 2177 */
ed5bde0b 2178static int mpage_da_map_blocks(struct mpage_da_data *mpd)
64769240 2179{
2ac3b6e0 2180 int err, blks, get_blocks_flags;
2ed88685 2181 struct ext4_map_blocks map;
2fa3cdfb
TT
2182 sector_t next = mpd->b_blocknr;
2183 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2184 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2185 handle_t *handle = NULL;
64769240
AT
2186
2187 /*
2188 * We consider only non-mapped and non-allocated blocks
2189 */
8dc207c0 2190 if ((mpd->b_state & (1 << BH_Mapped)) &&
29fa89d0
AK
2191 !(mpd->b_state & (1 << BH_Delay)) &&
2192 !(mpd->b_state & (1 << BH_Unwritten)))
c4a0c46e 2193 return 0;
2fa3cdfb
TT
2194
2195 /*
2196 * If we didn't accumulate anything to write simply return
2197 */
2198 if (!mpd->b_size)
2199 return 0;
2200
2201 handle = ext4_journal_current_handle();
2202 BUG_ON(!handle);
2203
79ffab34 2204 /*
79e83036 2205 * Call ext4_map_blocks() to allocate any delayed allocation
2ac3b6e0
TT
2206 * blocks, or to convert an uninitialized extent to be
2207 * initialized (in the case where we have written into
2208 * one or more preallocated blocks).
2209 *
2210 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2211 * indicate that we are on the delayed allocation path. This
2212 * affects functions in many different parts of the allocation
2213 * call path. This flag exists primarily because we don't
79e83036 2214 * want to change *many* call functions, so ext4_map_blocks()
2ac3b6e0
TT
2215 * will set the magic i_delalloc_reserved_flag once the
2216 * inode's allocation semaphore is taken.
2217 *
2218 * If the blocks in questions were delalloc blocks, set
2219 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2220 * variables are updated after the blocks have been allocated.
79ffab34 2221 */
2ed88685
TT
2222 map.m_lblk = next;
2223 map.m_len = max_blocks;
1296cc85 2224 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
744692dc
JZ
2225 if (ext4_should_dioread_nolock(mpd->inode))
2226 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 2227 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
2228 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2229
2ed88685 2230 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb 2231 if (blks < 0) {
e3570639
ES
2232 struct super_block *sb = mpd->inode->i_sb;
2233
2fa3cdfb 2234 err = blks;
ed5bde0b
TT
2235 /*
2236 * If get block returns with error we simply
2237 * return. Later writepage will redirty the page and
2238 * writepages will find the dirty page again
c4a0c46e
AK
2239 */
2240 if (err == -EAGAIN)
2241 return 0;
df22291f
AK
2242
2243 if (err == -ENOSPC &&
e3570639 2244 ext4_count_free_blocks(sb)) {
df22291f
AK
2245 mpd->retval = err;
2246 return 0;
2247 }
2248
c4a0c46e 2249 /*
ed5bde0b
TT
2250 * get block failure will cause us to loop in
2251 * writepages, because a_ops->writepage won't be able
2252 * to make progress. The page will be redirtied by
2253 * writepage and writepages will again try to write
2254 * the same.
c4a0c46e 2255 */
e3570639
ES
2256 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2257 ext4_msg(sb, KERN_CRIT,
2258 "delayed block allocation failed for inode %lu "
2259 "at logical offset %llu with max blocks %zd "
2260 "with error %d", mpd->inode->i_ino,
2261 (unsigned long long) next,
2262 mpd->b_size >> mpd->inode->i_blkbits, err);
2263 ext4_msg(sb, KERN_CRIT,
2264 "This should not happen!! Data will be lost\n");
2265 if (err == -ENOSPC)
2266 ext4_print_free_blocks(mpd->inode);
030ba6bc 2267 }
2fa3cdfb 2268 /* invalidate all the pages */
c4a0c46e 2269 ext4_da_block_invalidatepages(mpd, next,
8dc207c0 2270 mpd->b_size >> mpd->inode->i_blkbits);
c4a0c46e
AK
2271 return err;
2272 }
2fa3cdfb
TT
2273 BUG_ON(blks == 0);
2274
2ed88685
TT
2275 if (map.m_flags & EXT4_MAP_NEW) {
2276 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2277 int i;
64769240 2278
2ed88685
TT
2279 for (i = 0; i < map.m_len; i++)
2280 unmap_underlying_metadata(bdev, map.m_pblk + i);
2281 }
64769240 2282
a1d6cc56
AK
2283 /*
2284 * If blocks are delayed marked, we need to
2285 * put actual blocknr and drop delayed bit
2286 */
8dc207c0
TT
2287 if ((mpd->b_state & (1 << BH_Delay)) ||
2288 (mpd->b_state & (1 << BH_Unwritten)))
2ed88685 2289 mpage_put_bnr_to_bhs(mpd, &map);
64769240 2290
2fa3cdfb
TT
2291 if (ext4_should_order_data(mpd->inode)) {
2292 err = ext4_jbd2_file_inode(handle, mpd->inode);
2293 if (err)
2294 return err;
2295 }
2296
2297 /*
03f5d8bc 2298 * Update on-disk size along with block allocation.
2fa3cdfb
TT
2299 */
2300 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2301 if (disksize > i_size_read(mpd->inode))
2302 disksize = i_size_read(mpd->inode);
2303 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2304 ext4_update_i_disksize(mpd->inode, disksize);
2305 return ext4_mark_inode_dirty(handle, mpd->inode);
2306 }
2307
c4a0c46e 2308 return 0;
64769240
AT
2309}
2310
bf068ee2
AK
2311#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2312 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
2313
2314/*
2315 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2316 *
2317 * @mpd->lbh - extent of blocks
2318 * @logical - logical number of the block in the file
2319 * @bh - bh of the block (used to access block's state)
2320 *
2321 * the function is used to collect contig. blocks in same state
2322 */
2323static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
2324 sector_t logical, size_t b_size,
2325 unsigned long b_state)
64769240 2326{
64769240 2327 sector_t next;
8dc207c0 2328 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 2329
c445e3e0
ES
2330 /*
2331 * XXX Don't go larger than mballoc is willing to allocate
2332 * This is a stopgap solution. We eventually need to fold
2333 * mpage_da_submit_io() into this function and then call
79e83036 2334 * ext4_map_blocks() multiple times in a loop
c445e3e0
ES
2335 */
2336 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2337 goto flush_it;
2338
525f4ed8 2339 /* check if thereserved journal credits might overflow */
12e9b892 2340 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
525f4ed8
MC
2341 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2342 /*
2343 * With non-extent format we are limited by the journal
2344 * credit available. Total credit needed to insert
2345 * nrblocks contiguous blocks is dependent on the
2346 * nrblocks. So limit nrblocks.
2347 */
2348 goto flush_it;
2349 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2350 EXT4_MAX_TRANS_DATA) {
2351 /*
2352 * Adding the new buffer_head would make it cross the
2353 * allowed limit for which we have journal credit
2354 * reserved. So limit the new bh->b_size
2355 */
2356 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2357 mpd->inode->i_blkbits;
2358 /* we will do mpage_da_submit_io in the next loop */
2359 }
2360 }
64769240
AT
2361 /*
2362 * First block in the extent
2363 */
8dc207c0
TT
2364 if (mpd->b_size == 0) {
2365 mpd->b_blocknr = logical;
2366 mpd->b_size = b_size;
2367 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
2368 return;
2369 }
2370
8dc207c0 2371 next = mpd->b_blocknr + nrblocks;
64769240
AT
2372 /*
2373 * Can we merge the block to our big extent?
2374 */
8dc207c0
TT
2375 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2376 mpd->b_size += b_size;
64769240
AT
2377 return;
2378 }
2379
525f4ed8 2380flush_it:
64769240
AT
2381 /*
2382 * We couldn't merge the block to our extent, so we
2383 * need to flush current extent and start new one
2384 */
c4a0c46e
AK
2385 if (mpage_da_map_blocks(mpd) == 0)
2386 mpage_da_submit_io(mpd);
a1d6cc56
AK
2387 mpd->io_done = 1;
2388 return;
64769240
AT
2389}
2390
c364b22c 2391static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 2392{
c364b22c 2393 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
2394}
2395
64769240
AT
2396/*
2397 * __mpage_da_writepage - finds extent of pages and blocks
2398 *
2399 * @page: page to consider
2400 * @wbc: not used, we just follow rules
2401 * @data: context
2402 *
2403 * The function finds extents of pages and scan them for all blocks.
2404 */
2405static int __mpage_da_writepage(struct page *page,
2406 struct writeback_control *wbc, void *data)
2407{
2408 struct mpage_da_data *mpd = data;
2409 struct inode *inode = mpd->inode;
8dc207c0 2410 struct buffer_head *bh, *head;
64769240
AT
2411 sector_t logical;
2412
2413 /*
2414 * Can we merge this page to current extent?
2415 */
2416 if (mpd->next_page != page->index) {
2417 /*
2418 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 2419 * and start IO on them using writepage()
64769240
AT
2420 */
2421 if (mpd->next_page != mpd->first_page) {
c4a0c46e
AK
2422 if (mpage_da_map_blocks(mpd) == 0)
2423 mpage_da_submit_io(mpd);
a1d6cc56
AK
2424 /*
2425 * skip rest of the page in the page_vec
2426 */
2427 mpd->io_done = 1;
2428 redirty_page_for_writepage(wbc, page);
2429 unlock_page(page);
2430 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2431 }
2432
2433 /*
2434 * Start next extent of pages ...
2435 */
2436 mpd->first_page = page->index;
2437
2438 /*
2439 * ... and blocks
2440 */
8dc207c0
TT
2441 mpd->b_size = 0;
2442 mpd->b_state = 0;
2443 mpd->b_blocknr = 0;
64769240
AT
2444 }
2445
2446 mpd->next_page = page->index + 1;
2447 logical = (sector_t) page->index <<
2448 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2449
2450 if (!page_has_buffers(page)) {
8dc207c0
TT
2451 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2452 (1 << BH_Dirty) | (1 << BH_Uptodate));
a1d6cc56
AK
2453 if (mpd->io_done)
2454 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2455 } else {
2456 /*
2457 * Page with regular buffer heads, just add all dirty ones
2458 */
2459 head = page_buffers(page);
2460 bh = head;
2461 do {
2462 BUG_ON(buffer_locked(bh));
791b7f08
AK
2463 /*
2464 * We need to try to allocate
2465 * unmapped blocks in the same page.
2466 * Otherwise we won't make progress
43ce1d23 2467 * with the page in ext4_writepage
791b7f08 2468 */
c364b22c 2469 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
8dc207c0
TT
2470 mpage_add_bh_to_extent(mpd, logical,
2471 bh->b_size,
2472 bh->b_state);
a1d6cc56
AK
2473 if (mpd->io_done)
2474 return MPAGE_DA_EXTENT_TAIL;
791b7f08
AK
2475 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2476 /*
2477 * mapped dirty buffer. We need to update
2478 * the b_state because we look at
2479 * b_state in mpage_da_map_blocks. We don't
2480 * update b_size because if we find an
2481 * unmapped buffer_head later we need to
2482 * use the b_state flag of that buffer_head.
2483 */
8dc207c0
TT
2484 if (mpd->b_size == 0)
2485 mpd->b_state = bh->b_state & BH_FLAGS;
a1d6cc56 2486 }
64769240
AT
2487 logical++;
2488 } while ((bh = bh->b_this_page) != head);
2489 }
2490
2491 return 0;
2492}
2493
64769240 2494/*
b920c755
TT
2495 * This is a special get_blocks_t callback which is used by
2496 * ext4_da_write_begin(). It will either return mapped block or
2497 * reserve space for a single block.
29fa89d0
AK
2498 *
2499 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2500 * We also have b_blocknr = -1 and b_bdev initialized properly
2501 *
2502 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2503 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2504 * initialized properly.
64769240
AT
2505 */
2506static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2ed88685 2507 struct buffer_head *bh, int create)
64769240 2508{
2ed88685 2509 struct ext4_map_blocks map;
64769240 2510 int ret = 0;
33b9817e
AK
2511 sector_t invalid_block = ~((sector_t) 0xffff);
2512
2513 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2514 invalid_block = ~0;
64769240
AT
2515
2516 BUG_ON(create == 0);
2ed88685
TT
2517 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2518
2519 map.m_lblk = iblock;
2520 map.m_len = 1;
64769240
AT
2521
2522 /*
2523 * first, we need to know whether the block is allocated already
2524 * preallocated blocks are unmapped but should treated
2525 * the same as allocated blocks.
2526 */
2ed88685
TT
2527 ret = ext4_map_blocks(NULL, inode, &map, 0);
2528 if (ret < 0)
2529 return ret;
2530 if (ret == 0) {
2531 if (buffer_delay(bh))
2532 return 0; /* Not sure this could or should happen */
64769240
AT
2533 /*
2534 * XXX: __block_prepare_write() unmaps passed block,
2535 * is it OK?
2536 */
9d0be502 2537 ret = ext4_da_reserve_space(inode, iblock);
d2a17637
MC
2538 if (ret)
2539 /* not enough space to reserve */
2540 return ret;
2541
2ed88685
TT
2542 map_bh(bh, inode->i_sb, invalid_block);
2543 set_buffer_new(bh);
2544 set_buffer_delay(bh);
2545 return 0;
64769240
AT
2546 }
2547
2ed88685
TT
2548 map_bh(bh, inode->i_sb, map.m_pblk);
2549 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2550
2551 if (buffer_unwritten(bh)) {
2552 /* A delayed write to unwritten bh should be marked
2553 * new and mapped. Mapped ensures that we don't do
2554 * get_block multiple times when we write to the same
2555 * offset and new ensures that we do proper zero out
2556 * for partial write.
2557 */
2558 set_buffer_new(bh);
2559 set_buffer_mapped(bh);
2560 }
2561 return 0;
64769240 2562}
61628a3f 2563
b920c755
TT
2564/*
2565 * This function is used as a standard get_block_t calback function
2566 * when there is no desire to allocate any blocks. It is used as a
206f7ab4
CH
2567 * callback function for block_prepare_write() and block_write_full_page().
2568 * These functions should only try to map a single block at a time.
b920c755
TT
2569 *
2570 * Since this function doesn't do block allocations even if the caller
2571 * requests it by passing in create=1, it is critically important that
2572 * any caller checks to make sure that any buffer heads are returned
2573 * by this function are either all already mapped or marked for
206f7ab4
CH
2574 * delayed allocation before calling block_write_full_page(). Otherwise,
2575 * b_blocknr could be left unitialized, and the page write functions will
2576 * be taken by surprise.
b920c755
TT
2577 */
2578static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
2579 struct buffer_head *bh_result, int create)
2580{
a2dc52b5 2581 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2ed88685 2582 return _ext4_get_block(inode, iblock, bh_result, 0);
61628a3f
MC
2583}
2584
62e086be
AK
2585static int bget_one(handle_t *handle, struct buffer_head *bh)
2586{
2587 get_bh(bh);
2588 return 0;
2589}
2590
2591static int bput_one(handle_t *handle, struct buffer_head *bh)
2592{
2593 put_bh(bh);
2594 return 0;
2595}
2596
2597static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
2598 unsigned int len)
2599{
2600 struct address_space *mapping = page->mapping;
2601 struct inode *inode = mapping->host;
2602 struct buffer_head *page_bufs;
2603 handle_t *handle = NULL;
2604 int ret = 0;
2605 int err;
2606
2607 page_bufs = page_buffers(page);
2608 BUG_ON(!page_bufs);
2609 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2610 /* As soon as we unlock the page, it can go away, but we have
2611 * references to buffers so we are safe */
2612 unlock_page(page);
2613
2614 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2615 if (IS_ERR(handle)) {
2616 ret = PTR_ERR(handle);
2617 goto out;
2618 }
2619
2620 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2621 do_journal_get_write_access);
2622
2623 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2624 write_end_fn);
2625 if (ret == 0)
2626 ret = err;
2627 err = ext4_journal_stop(handle);
2628 if (!ret)
2629 ret = err;
2630
2631 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
19f5fb7a 2632 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be
AK
2633out:
2634 return ret;
2635}
2636
744692dc
JZ
2637static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2638static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2639
61628a3f 2640/*
43ce1d23
AK
2641 * Note that we don't need to start a transaction unless we're journaling data
2642 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2643 * need to file the inode to the transaction's list in ordered mode because if
2644 * we are writing back data added by write(), the inode is already there and if
2645 * we are writing back data modified via mmap(), noone guarantees in which
2646 * transaction the data will hit the disk. In case we are journaling data, we
2647 * cannot start transaction directly because transaction start ranks above page
2648 * lock so we have to do some magic.
2649 *
b920c755
TT
2650 * This function can get called via...
2651 * - ext4_da_writepages after taking page lock (have journal handle)
2652 * - journal_submit_inode_data_buffers (no journal handle)
2653 * - shrink_page_list via pdflush (no journal handle)
2654 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2655 *
2656 * We don't do any block allocation in this function. If we have page with
2657 * multiple blocks we need to write those buffer_heads that are mapped. This
2658 * is important for mmaped based write. So if we do with blocksize 1K
2659 * truncate(f, 1024);
2660 * a = mmap(f, 0, 4096);
2661 * a[0] = 'a';
2662 * truncate(f, 4096);
2663 * we have in the page first buffer_head mapped via page_mkwrite call back
2664 * but other bufer_heads would be unmapped but dirty(dirty done via the
2665 * do_wp_page). So writepage should write the first block. If we modify
2666 * the mmap area beyond 1024 we will again get a page_fault and the
2667 * page_mkwrite callback will do the block allocation and mark the
2668 * buffer_heads mapped.
2669 *
2670 * We redirty the page if we have any buffer_heads that is either delay or
2671 * unwritten in the page.
2672 *
2673 * We can get recursively called as show below.
2674 *
2675 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2676 * ext4_writepage()
2677 *
2678 * But since we don't do any block allocation we should not deadlock.
2679 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2680 */
43ce1d23 2681static int ext4_writepage(struct page *page,
62e086be 2682 struct writeback_control *wbc)
64769240 2683{
64769240 2684 int ret = 0;
61628a3f 2685 loff_t size;
498e5f24 2686 unsigned int len;
744692dc 2687 struct buffer_head *page_bufs = NULL;
61628a3f
MC
2688 struct inode *inode = page->mapping->host;
2689
43ce1d23 2690 trace_ext4_writepage(inode, page);
f0e6c985
AK
2691 size = i_size_read(inode);
2692 if (page->index == size >> PAGE_CACHE_SHIFT)
2693 len = size & ~PAGE_CACHE_MASK;
2694 else
2695 len = PAGE_CACHE_SIZE;
64769240 2696
f0e6c985 2697 if (page_has_buffers(page)) {
61628a3f 2698 page_bufs = page_buffers(page);
f0e6c985 2699 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2700 ext4_bh_delay_or_unwritten)) {
61628a3f 2701 /*
f0e6c985
AK
2702 * We don't want to do block allocation
2703 * So redirty the page and return
cd1aac32
AK
2704 * We may reach here when we do a journal commit
2705 * via journal_submit_inode_data_buffers.
2706 * If we don't have mapping block we just ignore
f0e6c985
AK
2707 * them. We can also reach here via shrink_page_list
2708 */
2709 redirty_page_for_writepage(wbc, page);
2710 unlock_page(page);
2711 return 0;
2712 }
2713 } else {
2714 /*
2715 * The test for page_has_buffers() is subtle:
2716 * We know the page is dirty but it lost buffers. That means
2717 * that at some moment in time after write_begin()/write_end()
2718 * has been called all buffers have been clean and thus they
2719 * must have been written at least once. So they are all
2720 * mapped and we can happily proceed with mapping them
2721 * and writing the page.
2722 *
2723 * Try to initialize the buffer_heads and check whether
2724 * all are mapped and non delay. We don't want to
2725 * do block allocation here.
2726 */
b767e78a 2727 ret = block_prepare_write(page, 0, len,
b920c755 2728 noalloc_get_block_write);
f0e6c985
AK
2729 if (!ret) {
2730 page_bufs = page_buffers(page);
2731 /* check whether all are mapped and non delay */
2732 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2733 ext4_bh_delay_or_unwritten)) {
f0e6c985
AK
2734 redirty_page_for_writepage(wbc, page);
2735 unlock_page(page);
2736 return 0;
2737 }
2738 } else {
2739 /*
2740 * We can't do block allocation here
2741 * so just redity the page and unlock
2742 * and return
61628a3f 2743 */
61628a3f
MC
2744 redirty_page_for_writepage(wbc, page);
2745 unlock_page(page);
2746 return 0;
2747 }
ed9b3e33 2748 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 2749 block_commit_write(page, 0, len);
64769240
AT
2750 }
2751
43ce1d23
AK
2752 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2753 /*
2754 * It's mmapped pagecache. Add buffers and journal it. There
2755 * doesn't seem much point in redirtying the page here.
2756 */
2757 ClearPageChecked(page);
3f0ca309 2758 return __ext4_journalled_writepage(page, len);
43ce1d23
AK
2759 }
2760
206f7ab4 2761 if (page_bufs && buffer_uninit(page_bufs)) {
744692dc
JZ
2762 ext4_set_bh_endio(page_bufs, inode);
2763 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2764 wbc, ext4_end_io_buffer_write);
2765 } else
b920c755
TT
2766 ret = block_write_full_page(page, noalloc_get_block_write,
2767 wbc);
64769240 2768
64769240
AT
2769 return ret;
2770}
2771
61628a3f 2772/*
525f4ed8
MC
2773 * This is called via ext4_da_writepages() to
2774 * calulate the total number of credits to reserve to fit
2775 * a single extent allocation into a single transaction,
2776 * ext4_da_writpeages() will loop calling this before
2777 * the block allocation.
61628a3f 2778 */
525f4ed8
MC
2779
2780static int ext4_da_writepages_trans_blocks(struct inode *inode)
2781{
2782 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2783
2784 /*
2785 * With non-extent format the journal credit needed to
2786 * insert nrblocks contiguous block is dependent on
2787 * number of contiguous block. So we will limit
2788 * number of contiguous block to a sane value
2789 */
12e9b892 2790 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
2791 (max_blocks > EXT4_MAX_TRANS_DATA))
2792 max_blocks = EXT4_MAX_TRANS_DATA;
2793
2794 return ext4_chunk_trans_blocks(inode, max_blocks);
2795}
61628a3f 2796
8e48dcfb
TT
2797/*
2798 * write_cache_pages_da - walk the list of dirty pages of the given
2799 * address space and call the callback function (which usually writes
2800 * the pages).
2801 *
2802 * This is a forked version of write_cache_pages(). Differences:
2803 * Range cyclic is ignored.
2804 * no_nrwrite_index_update is always presumed true
2805 */
2806static int write_cache_pages_da(struct address_space *mapping,
2807 struct writeback_control *wbc,
2808 struct mpage_da_data *mpd)
2809{
2810 int ret = 0;
2811 int done = 0;
2812 struct pagevec pvec;
2813 int nr_pages;
2814 pgoff_t index;
2815 pgoff_t end; /* Inclusive */
2816 long nr_to_write = wbc->nr_to_write;
2817
2818 pagevec_init(&pvec, 0);
2819 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2820 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2821
2822 while (!done && (index <= end)) {
2823 int i;
2824
2825 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2826 PAGECACHE_TAG_DIRTY,
2827 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2828 if (nr_pages == 0)
2829 break;
2830
2831 for (i = 0; i < nr_pages; i++) {
2832 struct page *page = pvec.pages[i];
2833
2834 /*
2835 * At this point, the page may be truncated or
2836 * invalidated (changing page->mapping to NULL), or
2837 * even swizzled back from swapper_space to tmpfs file
2838 * mapping. However, page->index will not change
2839 * because we have a reference on the page.
2840 */
2841 if (page->index > end) {
2842 done = 1;
2843 break;
2844 }
2845
2846 lock_page(page);
2847
2848 /*
2849 * Page truncated or invalidated. We can freely skip it
2850 * then, even for data integrity operations: the page
2851 * has disappeared concurrently, so there could be no
2852 * real expectation of this data interity operation
2853 * even if there is now a new, dirty page at the same
2854 * pagecache address.
2855 */
2856 if (unlikely(page->mapping != mapping)) {
2857continue_unlock:
2858 unlock_page(page);
2859 continue;
2860 }
2861
2862 if (!PageDirty(page)) {
2863 /* someone wrote it for us */
2864 goto continue_unlock;
2865 }
2866
2867 if (PageWriteback(page)) {
2868 if (wbc->sync_mode != WB_SYNC_NONE)
2869 wait_on_page_writeback(page);
2870 else
2871 goto continue_unlock;
2872 }
2873
2874 BUG_ON(PageWriteback(page));
2875 if (!clear_page_dirty_for_io(page))
2876 goto continue_unlock;
2877
2878 ret = __mpage_da_writepage(page, wbc, mpd);
2879 if (unlikely(ret)) {
2880 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2881 unlock_page(page);
2882 ret = 0;
2883 } else {
2884 done = 1;
2885 break;
2886 }
2887 }
2888
2889 if (nr_to_write > 0) {
2890 nr_to_write--;
2891 if (nr_to_write == 0 &&
2892 wbc->sync_mode == WB_SYNC_NONE) {
2893 /*
2894 * We stop writing back only if we are
2895 * not doing integrity sync. In case of
2896 * integrity sync we have to keep going
2897 * because someone may be concurrently
2898 * dirtying pages, and we might have
2899 * synced a lot of newly appeared dirty
2900 * pages, but have not synced all of the
2901 * old dirty pages.
2902 */
2903 done = 1;
2904 break;
2905 }
2906 }
2907 }
2908 pagevec_release(&pvec);
2909 cond_resched();
2910 }
2911 return ret;
2912}
2913
2914
64769240 2915static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2916 struct writeback_control *wbc)
64769240 2917{
22208ded
AK
2918 pgoff_t index;
2919 int range_whole = 0;
61628a3f 2920 handle_t *handle = NULL;
df22291f 2921 struct mpage_da_data mpd;
5e745b04 2922 struct inode *inode = mapping->host;
498e5f24
TT
2923 int pages_written = 0;
2924 long pages_skipped;
55138e0b 2925 unsigned int max_pages;
2acf2c26 2926 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2927 int needed_blocks, ret = 0;
2928 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2929 loff_t range_start = wbc->range_start;
5e745b04 2930 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f 2931
9bffad1e 2932 trace_ext4_da_writepages(inode, wbc);
ba80b101 2933
61628a3f
MC
2934 /*
2935 * No pages to write? This is mainly a kludge to avoid starting
2936 * a transaction for special inodes like journal inode on last iput()
2937 * because that could violate lock ordering on umount
2938 */
a1d6cc56 2939 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2940 return 0;
2a21e37e
TT
2941
2942 /*
2943 * If the filesystem has aborted, it is read-only, so return
2944 * right away instead of dumping stack traces later on that
2945 * will obscure the real source of the problem. We test
4ab2f15b 2946 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2947 * the latter could be true if the filesystem is mounted
2948 * read-only, and in that case, ext4_da_writepages should
2949 * *never* be called, so if that ever happens, we would want
2950 * the stack trace.
2951 */
4ab2f15b 2952 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2953 return -EROFS;
2954
22208ded
AK
2955 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2956 range_whole = 1;
61628a3f 2957
2acf2c26
AK
2958 range_cyclic = wbc->range_cyclic;
2959 if (wbc->range_cyclic) {
22208ded 2960 index = mapping->writeback_index;
2acf2c26
AK
2961 if (index)
2962 cycled = 0;
2963 wbc->range_start = index << PAGE_CACHE_SHIFT;
2964 wbc->range_end = LLONG_MAX;
2965 wbc->range_cyclic = 0;
2966 } else
22208ded 2967 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 2968
55138e0b
TT
2969 /*
2970 * This works around two forms of stupidity. The first is in
2971 * the writeback code, which caps the maximum number of pages
2972 * written to be 1024 pages. This is wrong on multiple
2973 * levels; different architectues have a different page size,
2974 * which changes the maximum amount of data which gets
2975 * written. Secondly, 4 megabytes is way too small. XFS
2976 * forces this value to be 16 megabytes by multiplying
2977 * nr_to_write parameter by four, and then relies on its
2978 * allocator to allocate larger extents to make them
2979 * contiguous. Unfortunately this brings us to the second
2980 * stupidity, which is that ext4's mballoc code only allocates
2981 * at most 2048 blocks. So we force contiguous writes up to
2982 * the number of dirty blocks in the inode, or
2983 * sbi->max_writeback_mb_bump whichever is smaller.
2984 */
2985 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2986 if (!range_cyclic && range_whole)
2987 desired_nr_to_write = wbc->nr_to_write * 8;
2988 else
2989 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2990 max_pages);
2991 if (desired_nr_to_write > max_pages)
2992 desired_nr_to_write = max_pages;
2993
2994 if (wbc->nr_to_write < desired_nr_to_write) {
2995 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2996 wbc->nr_to_write = desired_nr_to_write;
2997 }
2998
df22291f
AK
2999 mpd.wbc = wbc;
3000 mpd.inode = mapping->host;
3001
22208ded
AK
3002 pages_skipped = wbc->pages_skipped;
3003
2acf2c26 3004retry:
22208ded 3005 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
3006
3007 /*
3008 * we insert one extent at a time. So we need
3009 * credit needed for single extent allocation.
3010 * journalled mode is currently not supported
3011 * by delalloc
3012 */
3013 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 3014 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 3015
61628a3f
MC
3016 /* start a new transaction*/
3017 handle = ext4_journal_start(inode, needed_blocks);
3018 if (IS_ERR(handle)) {
3019 ret = PTR_ERR(handle);
1693918e 3020 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 3021 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 3022 wbc->nr_to_write, inode->i_ino, ret);
61628a3f
MC
3023 goto out_writepages;
3024 }
f63e6005
TT
3025
3026 /*
3027 * Now call __mpage_da_writepage to find the next
3028 * contiguous region of logical blocks that need
3029 * blocks to be allocated by ext4. We don't actually
3030 * submit the blocks for I/O here, even though
3031 * write_cache_pages thinks it will, and will set the
3032 * pages as clean for write before calling
3033 * __mpage_da_writepage().
3034 */
3035 mpd.b_size = 0;
3036 mpd.b_state = 0;
3037 mpd.b_blocknr = 0;
3038 mpd.first_page = 0;
3039 mpd.next_page = 0;
3040 mpd.io_done = 0;
3041 mpd.pages_written = 0;
3042 mpd.retval = 0;
8e48dcfb 3043 ret = write_cache_pages_da(mapping, wbc, &mpd);
f63e6005 3044 /*
af901ca1 3045 * If we have a contiguous extent of pages and we
f63e6005
TT
3046 * haven't done the I/O yet, map the blocks and submit
3047 * them for I/O.
3048 */
3049 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3050 if (mpage_da_map_blocks(&mpd) == 0)
3051 mpage_da_submit_io(&mpd);
3052 mpd.io_done = 1;
3053 ret = MPAGE_DA_EXTENT_TAIL;
3054 }
b3a3ca8c 3055 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 3056 wbc->nr_to_write -= mpd.pages_written;
df22291f 3057
61628a3f 3058 ext4_journal_stop(handle);
df22291f 3059
8f64b32e 3060 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
3061 /* commit the transaction which would
3062 * free blocks released in the transaction
3063 * and try again
3064 */
df22291f 3065 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
3066 wbc->pages_skipped = pages_skipped;
3067 ret = 0;
3068 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
3069 /*
3070 * got one extent now try with
3071 * rest of the pages
3072 */
22208ded
AK
3073 pages_written += mpd.pages_written;
3074 wbc->pages_skipped = pages_skipped;
a1d6cc56 3075 ret = 0;
2acf2c26 3076 io_done = 1;
22208ded 3077 } else if (wbc->nr_to_write)
61628a3f
MC
3078 /*
3079 * There is no more writeout needed
3080 * or we requested for a noblocking writeout
3081 * and we found the device congested
3082 */
61628a3f 3083 break;
a1d6cc56 3084 }
2acf2c26
AK
3085 if (!io_done && !cycled) {
3086 cycled = 1;
3087 index = 0;
3088 wbc->range_start = index << PAGE_CACHE_SHIFT;
3089 wbc->range_end = mapping->writeback_index - 1;
3090 goto retry;
3091 }
22208ded 3092 if (pages_skipped != wbc->pages_skipped)
1693918e
TT
3093 ext4_msg(inode->i_sb, KERN_CRIT,
3094 "This should not happen leaving %s "
fbe845dd 3095 "with nr_to_write = %ld ret = %d",
1693918e 3096 __func__, wbc->nr_to_write, ret);
22208ded
AK
3097
3098 /* Update index */
3099 index += pages_written;
2acf2c26 3100 wbc->range_cyclic = range_cyclic;
22208ded
AK
3101 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3102 /*
3103 * set the writeback_index so that range_cyclic
3104 * mode will write it back later
3105 */
3106 mapping->writeback_index = index;
a1d6cc56 3107
61628a3f 3108out_writepages:
2faf2e19 3109 wbc->nr_to_write -= nr_to_writebump;
de89de6e 3110 wbc->range_start = range_start;
9bffad1e 3111 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 3112 return ret;
64769240
AT
3113}
3114
79f0be8d
AK
3115#define FALL_BACK_TO_NONDELALLOC 1
3116static int ext4_nonda_switch(struct super_block *sb)
3117{
3118 s64 free_blocks, dirty_blocks;
3119 struct ext4_sb_info *sbi = EXT4_SB(sb);
3120
3121 /*
3122 * switch to non delalloc mode if we are running low
3123 * on free block. The free block accounting via percpu
179f7ebf 3124 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
3125 * accumulated on each CPU without updating global counters
3126 * Delalloc need an accurate free block accounting. So switch
3127 * to non delalloc when we are near to error range.
3128 */
3129 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3130 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3131 if (2 * free_blocks < 3 * dirty_blocks ||
3132 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3133 /*
c8afb446
ES
3134 * free block count is less than 150% of dirty blocks
3135 * or free blocks is less than watermark
79f0be8d
AK
3136 */
3137 return 1;
3138 }
c8afb446
ES
3139 /*
3140 * Even if we don't switch but are nearing capacity,
3141 * start pushing delalloc when 1/2 of free blocks are dirty.
3142 */
3143 if (free_blocks < 2 * dirty_blocks)
3144 writeback_inodes_sb_if_idle(sb);
3145
79f0be8d
AK
3146 return 0;
3147}
3148
64769240 3149static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
3150 loff_t pos, unsigned len, unsigned flags,
3151 struct page **pagep, void **fsdata)
64769240 3152{
72b8ab9d 3153 int ret, retries = 0;
64769240
AT
3154 struct page *page;
3155 pgoff_t index;
64769240
AT
3156 struct inode *inode = mapping->host;
3157 handle_t *handle;
3158
3159 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
3160
3161 if (ext4_nonda_switch(inode->i_sb)) {
3162 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3163 return ext4_write_begin(file, mapping, pos,
3164 len, flags, pagep, fsdata);
3165 }
3166 *fsdata = (void *)0;
9bffad1e 3167 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 3168retry:
64769240
AT
3169 /*
3170 * With delayed allocation, we don't log the i_disksize update
3171 * if there is delayed block allocation. But we still need
3172 * to journalling the i_disksize update if writes to the end
3173 * of file which has an already mapped buffer.
3174 */
3175 handle = ext4_journal_start(inode, 1);
3176 if (IS_ERR(handle)) {
3177 ret = PTR_ERR(handle);
3178 goto out;
3179 }
ebd3610b
JK
3180 /* We cannot recurse into the filesystem as the transaction is already
3181 * started */
3182 flags |= AOP_FLAG_NOFS;
64769240 3183
54566b2c 3184 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
3185 if (!page) {
3186 ext4_journal_stop(handle);
3187 ret = -ENOMEM;
3188 goto out;
3189 }
64769240
AT
3190 *pagep = page;
3191
3192 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
b920c755 3193 ext4_da_get_block_prep);
64769240
AT
3194 if (ret < 0) {
3195 unlock_page(page);
3196 ext4_journal_stop(handle);
3197 page_cache_release(page);
ae4d5372
AK
3198 /*
3199 * block_write_begin may have instantiated a few blocks
3200 * outside i_size. Trim these off again. Don't need
3201 * i_size_read because we hold i_mutex.
3202 */
3203 if (pos + len > inode->i_size)
b9a4207d 3204 ext4_truncate_failed_write(inode);
64769240
AT
3205 }
3206
d2a17637
MC
3207 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3208 goto retry;
64769240
AT
3209out:
3210 return ret;
3211}
3212
632eaeab
MC
3213/*
3214 * Check if we should update i_disksize
3215 * when write to the end of file but not require block allocation
3216 */
3217static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3218 unsigned long offset)
632eaeab
MC
3219{
3220 struct buffer_head *bh;
3221 struct inode *inode = page->mapping->host;
3222 unsigned int idx;
3223 int i;
3224
3225 bh = page_buffers(page);
3226 idx = offset >> inode->i_blkbits;
3227
af5bc92d 3228 for (i = 0; i < idx; i++)
632eaeab
MC
3229 bh = bh->b_this_page;
3230
29fa89d0 3231 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3232 return 0;
3233 return 1;
3234}
3235
64769240 3236static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3237 struct address_space *mapping,
3238 loff_t pos, unsigned len, unsigned copied,
3239 struct page *page, void *fsdata)
64769240
AT
3240{
3241 struct inode *inode = mapping->host;
3242 int ret = 0, ret2;
3243 handle_t *handle = ext4_journal_current_handle();
3244 loff_t new_i_size;
632eaeab 3245 unsigned long start, end;
79f0be8d
AK
3246 int write_mode = (int)(unsigned long)fsdata;
3247
3248 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3249 if (ext4_should_order_data(inode)) {
3250 return ext4_ordered_write_end(file, mapping, pos,
3251 len, copied, page, fsdata);
3252 } else if (ext4_should_writeback_data(inode)) {
3253 return ext4_writeback_write_end(file, mapping, pos,
3254 len, copied, page, fsdata);
3255 } else {
3256 BUG();
3257 }
3258 }
632eaeab 3259
9bffad1e 3260 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 3261 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 3262 end = start + copied - 1;
64769240
AT
3263
3264 /*
3265 * generic_write_end() will run mark_inode_dirty() if i_size
3266 * changes. So let's piggyback the i_disksize mark_inode_dirty
3267 * into that.
3268 */
3269
3270 new_i_size = pos + copied;
632eaeab
MC
3271 if (new_i_size > EXT4_I(inode)->i_disksize) {
3272 if (ext4_da_should_update_i_disksize(page, end)) {
3273 down_write(&EXT4_I(inode)->i_data_sem);
3274 if (new_i_size > EXT4_I(inode)->i_disksize) {
3275 /*
3276 * Updating i_disksize when extending file
3277 * without needing block allocation
3278 */
3279 if (ext4_should_order_data(inode))
3280 ret = ext4_jbd2_file_inode(handle,
3281 inode);
64769240 3282
632eaeab
MC
3283 EXT4_I(inode)->i_disksize = new_i_size;
3284 }
3285 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
3286 /* We need to mark inode dirty even if
3287 * new_i_size is less that inode->i_size
3288 * bu greater than i_disksize.(hint delalloc)
3289 */
3290 ext4_mark_inode_dirty(handle, inode);
64769240 3291 }
632eaeab 3292 }
64769240
AT
3293 ret2 = generic_write_end(file, mapping, pos, len, copied,
3294 page, fsdata);
3295 copied = ret2;
3296 if (ret2 < 0)
3297 ret = ret2;
3298 ret2 = ext4_journal_stop(handle);
3299 if (!ret)
3300 ret = ret2;
3301
3302 return ret ? ret : copied;
3303}
3304
3305static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3306{
64769240
AT
3307 /*
3308 * Drop reserved blocks
3309 */
3310 BUG_ON(!PageLocked(page));
3311 if (!page_has_buffers(page))
3312 goto out;
3313
d2a17637 3314 ext4_da_page_release_reservation(page, offset);
64769240
AT
3315
3316out:
3317 ext4_invalidatepage(page, offset);
3318
3319 return;
3320}
3321
ccd2506b
TT
3322/*
3323 * Force all delayed allocation blocks to be allocated for a given inode.
3324 */
3325int ext4_alloc_da_blocks(struct inode *inode)
3326{
fb40ba0d
TT
3327 trace_ext4_alloc_da_blocks(inode);
3328
ccd2506b
TT
3329 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3330 !EXT4_I(inode)->i_reserved_meta_blocks)
3331 return 0;
3332
3333 /*
3334 * We do something simple for now. The filemap_flush() will
3335 * also start triggering a write of the data blocks, which is
3336 * not strictly speaking necessary (and for users of
3337 * laptop_mode, not even desirable). However, to do otherwise
3338 * would require replicating code paths in:
de9a55b8 3339 *
ccd2506b
TT
3340 * ext4_da_writepages() ->
3341 * write_cache_pages() ---> (via passed in callback function)
3342 * __mpage_da_writepage() -->
3343 * mpage_add_bh_to_extent()
3344 * mpage_da_map_blocks()
3345 *
3346 * The problem is that write_cache_pages(), located in
3347 * mm/page-writeback.c, marks pages clean in preparation for
3348 * doing I/O, which is not desirable if we're not planning on
3349 * doing I/O at all.
3350 *
3351 * We could call write_cache_pages(), and then redirty all of
3352 * the pages by calling redirty_page_for_writeback() but that
3353 * would be ugly in the extreme. So instead we would need to
3354 * replicate parts of the code in the above functions,
3355 * simplifying them becuase we wouldn't actually intend to
3356 * write out the pages, but rather only collect contiguous
3357 * logical block extents, call the multi-block allocator, and
3358 * then update the buffer heads with the block allocations.
de9a55b8 3359 *
ccd2506b
TT
3360 * For now, though, we'll cheat by calling filemap_flush(),
3361 * which will map the blocks, and start the I/O, but not
3362 * actually wait for the I/O to complete.
3363 */
3364 return filemap_flush(inode->i_mapping);
3365}
64769240 3366
ac27a0ec
DK
3367/*
3368 * bmap() is special. It gets used by applications such as lilo and by
3369 * the swapper to find the on-disk block of a specific piece of data.
3370 *
3371 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3372 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3373 * filesystem and enables swap, then they may get a nasty shock when the
3374 * data getting swapped to that swapfile suddenly gets overwritten by
3375 * the original zero's written out previously to the journal and
3376 * awaiting writeback in the kernel's buffer cache.
3377 *
3378 * So, if we see any bmap calls here on a modified, data-journaled file,
3379 * take extra steps to flush any blocks which might be in the cache.
3380 */
617ba13b 3381static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3382{
3383 struct inode *inode = mapping->host;
3384 journal_t *journal;
3385 int err;
3386
64769240
AT
3387 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3388 test_opt(inode->i_sb, DELALLOC)) {
3389 /*
3390 * With delalloc we want to sync the file
3391 * so that we can make sure we allocate
3392 * blocks for file
3393 */
3394 filemap_write_and_wait(mapping);
3395 }
3396
19f5fb7a
TT
3397 if (EXT4_JOURNAL(inode) &&
3398 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
3399 /*
3400 * This is a REALLY heavyweight approach, but the use of
3401 * bmap on dirty files is expected to be extremely rare:
3402 * only if we run lilo or swapon on a freshly made file
3403 * do we expect this to happen.
3404 *
3405 * (bmap requires CAP_SYS_RAWIO so this does not
3406 * represent an unprivileged user DOS attack --- we'd be
3407 * in trouble if mortal users could trigger this path at
3408 * will.)
3409 *
617ba13b 3410 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3411 * regular files. If somebody wants to bmap a directory
3412 * or symlink and gets confused because the buffer
3413 * hasn't yet been flushed to disk, they deserve
3414 * everything they get.
3415 */
3416
19f5fb7a 3417 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 3418 journal = EXT4_JOURNAL(inode);
dab291af
MC
3419 jbd2_journal_lock_updates(journal);
3420 err = jbd2_journal_flush(journal);
3421 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3422
3423 if (err)
3424 return 0;
3425 }
3426
af5bc92d 3427 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3428}
3429
617ba13b 3430static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3431{
617ba13b 3432 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
3433}
3434
3435static int
617ba13b 3436ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3437 struct list_head *pages, unsigned nr_pages)
3438{
617ba13b 3439 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3440}
3441
744692dc
JZ
3442static void ext4_free_io_end(ext4_io_end_t *io)
3443{
3444 BUG_ON(!io);
3445 if (io->page)
3446 put_page(io->page);
3447 iput(io->inode);
3448 kfree(io);
3449}
3450
3451static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3452{
3453 struct buffer_head *head, *bh;
3454 unsigned int curr_off = 0;
3455
3456 if (!page_has_buffers(page))
3457 return;
3458 head = bh = page_buffers(page);
3459 do {
3460 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3461 && bh->b_private) {
3462 ext4_free_io_end(bh->b_private);
3463 bh->b_private = NULL;
3464 bh->b_end_io = NULL;
3465 }
3466 curr_off = curr_off + bh->b_size;
3467 bh = bh->b_this_page;
3468 } while (bh != head);
3469}
3470
617ba13b 3471static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3472{
617ba13b 3473 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3474
744692dc
JZ
3475 /*
3476 * free any io_end structure allocated for buffers to be discarded
3477 */
3478 if (ext4_should_dioread_nolock(page->mapping->host))
3479 ext4_invalidatepage_free_endio(page, offset);
ac27a0ec
DK
3480 /*
3481 * If it's a full truncate we just forget about the pending dirtying
3482 */
3483 if (offset == 0)
3484 ClearPageChecked(page);
3485
0390131b
FM
3486 if (journal)
3487 jbd2_journal_invalidatepage(journal, page, offset);
3488 else
3489 block_invalidatepage(page, offset);
ac27a0ec
DK
3490}
3491
617ba13b 3492static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3493{
617ba13b 3494 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3495
3496 WARN_ON(PageChecked(page));
3497 if (!page_has_buffers(page))
3498 return 0;
0390131b
FM
3499 if (journal)
3500 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3501 else
3502 return try_to_free_buffers(page);
ac27a0ec
DK
3503}
3504
3505/*
4c0425ff
MC
3506 * O_DIRECT for ext3 (or indirect map) based files
3507 *
ac27a0ec
DK
3508 * If the O_DIRECT write will extend the file then add this inode to the
3509 * orphan list. So recovery will truncate it back to the original size
3510 * if the machine crashes during the write.
3511 *
3512 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3513 * crashes then stale disk data _may_ be exposed inside the file. But current
3514 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3515 */
4c0425ff 3516static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
de9a55b8
TT
3517 const struct iovec *iov, loff_t offset,
3518 unsigned long nr_segs)
ac27a0ec
DK
3519{
3520 struct file *file = iocb->ki_filp;
3521 struct inode *inode = file->f_mapping->host;
617ba13b 3522 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3523 handle_t *handle;
ac27a0ec
DK
3524 ssize_t ret;
3525 int orphan = 0;
3526 size_t count = iov_length(iov, nr_segs);
fbbf6945 3527 int retries = 0;
ac27a0ec
DK
3528
3529 if (rw == WRITE) {
3530 loff_t final_size = offset + count;
3531
ac27a0ec 3532 if (final_size > inode->i_size) {
7fb5409d
JK
3533 /* Credits for sb + inode write */
3534 handle = ext4_journal_start(inode, 2);
3535 if (IS_ERR(handle)) {
3536 ret = PTR_ERR(handle);
3537 goto out;
3538 }
617ba13b 3539 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3540 if (ret) {
3541 ext4_journal_stop(handle);
3542 goto out;
3543 }
ac27a0ec
DK
3544 orphan = 1;
3545 ei->i_disksize = inode->i_size;
7fb5409d 3546 ext4_journal_stop(handle);
ac27a0ec
DK
3547 }
3548 }
3549
fbbf6945 3550retry:
b7adc1f3
JZ
3551 if (rw == READ && ext4_should_dioread_nolock(inode))
3552 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
3553 inode->i_sb->s_bdev, iov,
3554 offset, nr_segs,
3555 ext4_get_block, NULL);
3556 else
3557 ret = blockdev_direct_IO(rw, iocb, inode,
3558 inode->i_sb->s_bdev, iov,
ac27a0ec 3559 offset, nr_segs,
617ba13b 3560 ext4_get_block, NULL);
fbbf6945
ES
3561 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3562 goto retry;
ac27a0ec 3563
7fb5409d 3564 if (orphan) {
ac27a0ec
DK
3565 int err;
3566
7fb5409d
JK
3567 /* Credits for sb + inode write */
3568 handle = ext4_journal_start(inode, 2);
3569 if (IS_ERR(handle)) {
3570 /* This is really bad luck. We've written the data
3571 * but cannot extend i_size. Bail out and pretend
3572 * the write failed... */
3573 ret = PTR_ERR(handle);
da1dafca
DM
3574 if (inode->i_nlink)
3575 ext4_orphan_del(NULL, inode);
3576
7fb5409d
JK
3577 goto out;
3578 }
3579 if (inode->i_nlink)
617ba13b 3580 ext4_orphan_del(handle, inode);
7fb5409d 3581 if (ret > 0) {
ac27a0ec
DK
3582 loff_t end = offset + ret;
3583 if (end > inode->i_size) {
3584 ei->i_disksize = end;
3585 i_size_write(inode, end);
3586 /*
3587 * We're going to return a positive `ret'
3588 * here due to non-zero-length I/O, so there's
3589 * no way of reporting error returns from
617ba13b 3590 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3591 * ignore it.
3592 */
617ba13b 3593 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3594 }
3595 }
617ba13b 3596 err = ext4_journal_stop(handle);
ac27a0ec
DK
3597 if (ret == 0)
3598 ret = err;
3599 }
3600out:
3601 return ret;
3602}
3603
2ed88685
TT
3604/*
3605 * ext4_get_block used when preparing for a DIO write or buffer write.
3606 * We allocate an uinitialized extent if blocks haven't been allocated.
3607 * The extent will be converted to initialized after the IO is complete.
3608 */
c7064ef1 3609static int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
3610 struct buffer_head *bh_result, int create)
3611{
c7064ef1 3612 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 3613 inode->i_ino, create);
2ed88685
TT
3614 return _ext4_get_block(inode, iblock, bh_result,
3615 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
3616}
3617
c7064ef1 3618static void dump_completed_IO(struct inode * inode)
8d5d02e6
MC
3619{
3620#ifdef EXT4_DEBUG
3621 struct list_head *cur, *before, *after;
3622 ext4_io_end_t *io, *io0, *io1;
744692dc 3623 unsigned long flags;
8d5d02e6 3624
c7064ef1
JZ
3625 if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
3626 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
8d5d02e6
MC
3627 return;
3628 }
3629
c7064ef1 3630 ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
744692dc 3631 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
c7064ef1 3632 list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
8d5d02e6
MC
3633 cur = &io->list;
3634 before = cur->prev;
3635 io0 = container_of(before, ext4_io_end_t, list);
3636 after = cur->next;
3637 io1 = container_of(after, ext4_io_end_t, list);
3638
3639 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3640 io, inode->i_ino, io0, io1);
3641 }
744692dc 3642 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
8d5d02e6
MC
3643#endif
3644}
4c0425ff
MC
3645
3646/*
4c0425ff
MC
3647 * check a range of space and convert unwritten extents to written.
3648 */
c7064ef1 3649static int ext4_end_io_nolock(ext4_io_end_t *io)
4c0425ff 3650{
4c0425ff
MC
3651 struct inode *inode = io->inode;
3652 loff_t offset = io->offset;
a1de02dc 3653 ssize_t size = io->size;
4c0425ff 3654 int ret = 0;
4c0425ff 3655
c7064ef1 3656 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
8d5d02e6
MC
3657 "list->prev 0x%p\n",
3658 io, inode->i_ino, io->list.next, io->list.prev);
3659
3660 if (list_empty(&io->list))
3661 return ret;
3662
c7064ef1 3663 if (io->flag != EXT4_IO_UNWRITTEN)
8d5d02e6
MC
3664 return ret;
3665
744692dc 3666 ret = ext4_convert_unwritten_extents(inode, offset, size);
8d5d02e6 3667 if (ret < 0) {
4c0425ff 3668 printk(KERN_EMERG "%s: failed to convert unwritten"
8d5d02e6
MC
3669 "extents to written extents, error is %d"
3670 " io is still on inode %lu aio dio list\n",
3671 __func__, ret, inode->i_ino);
3672 return ret;
3673 }
4c0425ff 3674
5b3ff237
JZ
3675 if (io->iocb)
3676 aio_complete(io->iocb, io->result, 0);
8d5d02e6
MC
3677 /* clear the DIO AIO unwritten flag */
3678 io->flag = 0;
3679 return ret;
4c0425ff 3680}
c7064ef1 3681
8d5d02e6
MC
3682/*
3683 * work on completed aio dio IO, to convert unwritten extents to extents
3684 */
c7064ef1 3685static void ext4_end_io_work(struct work_struct *work)
8d5d02e6 3686{
744692dc
JZ
3687 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3688 struct inode *inode = io->inode;
3689 struct ext4_inode_info *ei = EXT4_I(inode);
3690 unsigned long flags;
3691 int ret;
4c0425ff 3692
8d5d02e6 3693 mutex_lock(&inode->i_mutex);
c7064ef1 3694 ret = ext4_end_io_nolock(io);
744692dc
JZ
3695 if (ret < 0) {
3696 mutex_unlock(&inode->i_mutex);
3697 return;
8d5d02e6 3698 }
744692dc
JZ
3699
3700 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3701 if (!list_empty(&io->list))
3702 list_del_init(&io->list);
3703 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
8d5d02e6 3704 mutex_unlock(&inode->i_mutex);
744692dc 3705 ext4_free_io_end(io);
8d5d02e6 3706}
c7064ef1 3707
8d5d02e6
MC
3708/*
3709 * This function is called from ext4_sync_file().
3710 *
c7064ef1
JZ
3711 * When IO is completed, the work to convert unwritten extents to
3712 * written is queued on workqueue but may not get immediately
8d5d02e6
MC
3713 * scheduled. When fsync is called, we need to ensure the
3714 * conversion is complete before fsync returns.
c7064ef1
JZ
3715 * The inode keeps track of a list of pending/completed IO that
3716 * might needs to do the conversion. This function walks through
3717 * the list and convert the related unwritten extents for completed IO
3718 * to written.
3719 * The function return the number of pending IOs on success.
8d5d02e6 3720 */
c7064ef1 3721int flush_completed_IO(struct inode *inode)
8d5d02e6
MC
3722{
3723 ext4_io_end_t *io;
744692dc
JZ
3724 struct ext4_inode_info *ei = EXT4_I(inode);
3725 unsigned long flags;
8d5d02e6
MC
3726 int ret = 0;
3727 int ret2 = 0;
3728
744692dc 3729 if (list_empty(&ei->i_completed_io_list))
8d5d02e6
MC
3730 return ret;
3731
c7064ef1 3732 dump_completed_IO(inode);
744692dc
JZ
3733 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3734 while (!list_empty(&ei->i_completed_io_list)){
3735 io = list_entry(ei->i_completed_io_list.next,
8d5d02e6
MC
3736 ext4_io_end_t, list);
3737 /*
c7064ef1 3738 * Calling ext4_end_io_nolock() to convert completed
8d5d02e6
MC
3739 * IO to written.
3740 *
3741 * When ext4_sync_file() is called, run_queue() may already
3742 * about to flush the work corresponding to this io structure.
3743 * It will be upset if it founds the io structure related
3744 * to the work-to-be schedule is freed.
3745 *
3746 * Thus we need to keep the io structure still valid here after
3747 * convertion finished. The io structure has a flag to
3748 * avoid double converting from both fsync and background work
3749 * queue work.
3750 */
744692dc 3751 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
c7064ef1 3752 ret = ext4_end_io_nolock(io);
744692dc 3753 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
8d5d02e6
MC
3754 if (ret < 0)
3755 ret2 = ret;
3756 else
3757 list_del_init(&io->list);
3758 }
744692dc 3759 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
8d5d02e6
MC
3760 return (ret2 < 0) ? ret2 : 0;
3761}
3762
744692dc 3763static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
4c0425ff
MC
3764{
3765 ext4_io_end_t *io = NULL;
3766
744692dc 3767 io = kmalloc(sizeof(*io), flags);
4c0425ff
MC
3768
3769 if (io) {
8d5d02e6 3770 igrab(inode);
4c0425ff 3771 io->inode = inode;
8d5d02e6 3772 io->flag = 0;
4c0425ff
MC
3773 io->offset = 0;
3774 io->size = 0;
744692dc 3775 io->page = NULL;
5b3ff237
JZ
3776 io->iocb = NULL;
3777 io->result = 0;
c7064ef1 3778 INIT_WORK(&io->work, ext4_end_io_work);
8d5d02e6 3779 INIT_LIST_HEAD(&io->list);
4c0425ff
MC
3780 }
3781
3782 return io;
3783}
3784
3785static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
3786 ssize_t size, void *private, int ret,
3787 bool is_async)
4c0425ff
MC
3788{
3789 ext4_io_end_t *io_end = iocb->private;
3790 struct workqueue_struct *wq;
744692dc
JZ
3791 unsigned long flags;
3792 struct ext4_inode_info *ei;
4c0425ff 3793
4b70df18
M
3794 /* if not async direct IO or dio with 0 bytes write, just return */
3795 if (!io_end || !size)
552ef802 3796 goto out;
4b70df18 3797
8d5d02e6
MC
3798 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3799 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3800 iocb->private, io_end->inode->i_ino, iocb, offset,
3801 size);
8d5d02e6
MC
3802
3803 /* if not aio dio with unwritten extents, just free io and return */
c7064ef1 3804 if (io_end->flag != EXT4_IO_UNWRITTEN){
8d5d02e6
MC
3805 ext4_free_io_end(io_end);
3806 iocb->private = NULL;
5b3ff237
JZ
3807out:
3808 if (is_async)
3809 aio_complete(iocb, ret, 0);
3810 return;
8d5d02e6
MC
3811 }
3812
4c0425ff
MC
3813 io_end->offset = offset;
3814 io_end->size = size;
5b3ff237
JZ
3815 if (is_async) {
3816 io_end->iocb = iocb;
3817 io_end->result = ret;
3818 }
4c0425ff
MC
3819 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3820
8d5d02e6 3821 /* queue the work to convert unwritten extents to written */
4c0425ff
MC
3822 queue_work(wq, &io_end->work);
3823
8d5d02e6 3824 /* Add the io_end to per-inode completed aio dio list*/
744692dc
JZ
3825 ei = EXT4_I(io_end->inode);
3826 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3827 list_add_tail(&io_end->list, &ei->i_completed_io_list);
3828 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
4c0425ff
MC
3829 iocb->private = NULL;
3830}
c7064ef1 3831
744692dc
JZ
3832static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3833{
3834 ext4_io_end_t *io_end = bh->b_private;
3835 struct workqueue_struct *wq;
3836 struct inode *inode;
3837 unsigned long flags;
3838
3839 if (!test_clear_buffer_uninit(bh) || !io_end)
3840 goto out;
3841
3842 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3843 printk("sb umounted, discard end_io request for inode %lu\n",
3844 io_end->inode->i_ino);
3845 ext4_free_io_end(io_end);
3846 goto out;
3847 }
3848
3849 io_end->flag = EXT4_IO_UNWRITTEN;
3850 inode = io_end->inode;
3851
3852 /* Add the io_end to per-inode completed io list*/
3853 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3854 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3855 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3856
3857 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3858 /* queue the work to convert unwritten extents to written */
3859 queue_work(wq, &io_end->work);
3860out:
3861 bh->b_private = NULL;
3862 bh->b_end_io = NULL;
3863 clear_buffer_uninit(bh);
3864 end_buffer_async_write(bh, uptodate);
3865}
3866
3867static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3868{
3869 ext4_io_end_t *io_end;
3870 struct page *page = bh->b_page;
3871 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3872 size_t size = bh->b_size;
3873
3874retry:
3875 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3876 if (!io_end) {
3877 if (printk_ratelimit())
3878 printk(KERN_WARNING "%s: allocation fail\n", __func__);
3879 schedule();
3880 goto retry;
3881 }
3882 io_end->offset = offset;
3883 io_end->size = size;
3884 /*
3885 * We need to hold a reference to the page to make sure it
3886 * doesn't get evicted before ext4_end_io_work() has a chance
3887 * to convert the extent from written to unwritten.
3888 */
3889 io_end->page = page;
3890 get_page(io_end->page);
3891
3892 bh->b_private = io_end;
3893 bh->b_end_io = ext4_end_io_buffer_write;
3894 return 0;
3895}
3896
4c0425ff
MC
3897/*
3898 * For ext4 extent files, ext4 will do direct-io write to holes,
3899 * preallocated extents, and those write extend the file, no need to
3900 * fall back to buffered IO.
3901 *
3902 * For holes, we fallocate those blocks, mark them as unintialized
3903 * If those blocks were preallocated, we mark sure they are splited, but
3904 * still keep the range to write as unintialized.
3905 *
8d5d02e6
MC
3906 * The unwrritten extents will be converted to written when DIO is completed.
3907 * For async direct IO, since the IO may still pending when return, we
3908 * set up an end_io call back function, which will do the convertion
3909 * when async direct IO completed.
4c0425ff
MC
3910 *
3911 * If the O_DIRECT write will extend the file then add this inode to the
3912 * orphan list. So recovery will truncate it back to the original size
3913 * if the machine crashes during the write.
3914 *
3915 */
3916static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3917 const struct iovec *iov, loff_t offset,
3918 unsigned long nr_segs)
3919{
3920 struct file *file = iocb->ki_filp;
3921 struct inode *inode = file->f_mapping->host;
3922 ssize_t ret;
3923 size_t count = iov_length(iov, nr_segs);
3924
3925 loff_t final_size = offset + count;
3926 if (rw == WRITE && final_size <= inode->i_size) {
3927 /*
8d5d02e6
MC
3928 * We could direct write to holes and fallocate.
3929 *
3930 * Allocated blocks to fill the hole are marked as uninitialized
4c0425ff
MC
3931 * to prevent paralel buffered read to expose the stale data
3932 * before DIO complete the data IO.
8d5d02e6
MC
3933 *
3934 * As to previously fallocated extents, ext4 get_block
4c0425ff
MC
3935 * will just simply mark the buffer mapped but still
3936 * keep the extents uninitialized.
3937 *
8d5d02e6
MC
3938 * for non AIO case, we will convert those unwritten extents
3939 * to written after return back from blockdev_direct_IO.
3940 *
3941 * for async DIO, the conversion needs to be defered when
3942 * the IO is completed. The ext4 end_io callback function
3943 * will be called to take care of the conversion work.
3944 * Here for async case, we allocate an io_end structure to
3945 * hook to the iocb.
4c0425ff 3946 */
8d5d02e6
MC
3947 iocb->private = NULL;
3948 EXT4_I(inode)->cur_aio_dio = NULL;
3949 if (!is_sync_kiocb(iocb)) {
744692dc 3950 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
8d5d02e6
MC
3951 if (!iocb->private)
3952 return -ENOMEM;
3953 /*
3954 * we save the io structure for current async
79e83036 3955 * direct IO, so that later ext4_map_blocks()
8d5d02e6
MC
3956 * could flag the io structure whether there
3957 * is a unwritten extents needs to be converted
3958 * when IO is completed.
3959 */
3960 EXT4_I(inode)->cur_aio_dio = iocb->private;
3961 }
3962
4c0425ff
MC
3963 ret = blockdev_direct_IO(rw, iocb, inode,
3964 inode->i_sb->s_bdev, iov,
3965 offset, nr_segs,
c7064ef1 3966 ext4_get_block_write,
4c0425ff 3967 ext4_end_io_dio);
8d5d02e6
MC
3968 if (iocb->private)
3969 EXT4_I(inode)->cur_aio_dio = NULL;
3970 /*
3971 * The io_end structure takes a reference to the inode,
3972 * that structure needs to be destroyed and the
3973 * reference to the inode need to be dropped, when IO is
3974 * complete, even with 0 byte write, or failed.
3975 *
3976 * In the successful AIO DIO case, the io_end structure will be
3977 * desctroyed and the reference to the inode will be dropped
3978 * after the end_io call back function is called.
3979 *
3980 * In the case there is 0 byte write, or error case, since
3981 * VFS direct IO won't invoke the end_io call back function,
3982 * we need to free the end_io structure here.
3983 */
3984 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3985 ext4_free_io_end(iocb->private);
3986 iocb->private = NULL;
19f5fb7a
TT
3987 } else if (ret > 0 && ext4_test_inode_state(inode,
3988 EXT4_STATE_DIO_UNWRITTEN)) {
109f5565 3989 int err;
8d5d02e6
MC
3990 /*
3991 * for non AIO case, since the IO is already
3992 * completed, we could do the convertion right here
3993 */
109f5565
M
3994 err = ext4_convert_unwritten_extents(inode,
3995 offset, ret);
3996 if (err < 0)
3997 ret = err;
19f5fb7a 3998 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
109f5565 3999 }
4c0425ff
MC
4000 return ret;
4001 }
8d5d02e6
MC
4002
4003 /* for write the the end of file case, we fall back to old way */
4c0425ff
MC
4004 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4005}
4006
4007static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
4008 const struct iovec *iov, loff_t offset,
4009 unsigned long nr_segs)
4010{
4011 struct file *file = iocb->ki_filp;
4012 struct inode *inode = file->f_mapping->host;
4013
12e9b892 4014 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4c0425ff
MC
4015 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
4016
4017 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4018}
4019
ac27a0ec 4020/*
617ba13b 4021 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
4022 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
4023 * much here because ->set_page_dirty is called under VFS locks. The page is
4024 * not necessarily locked.
4025 *
4026 * We cannot just dirty the page and leave attached buffers clean, because the
4027 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
4028 * or jbddirty because all the journalling code will explode.
4029 *
4030 * So what we do is to mark the page "pending dirty" and next time writepage
4031 * is called, propagate that into the buffers appropriately.
4032 */
617ba13b 4033static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
4034{
4035 SetPageChecked(page);
4036 return __set_page_dirty_nobuffers(page);
4037}
4038
617ba13b 4039static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
4040 .readpage = ext4_readpage,
4041 .readpages = ext4_readpages,
43ce1d23 4042 .writepage = ext4_writepage,
8ab22b9a
HH
4043 .sync_page = block_sync_page,
4044 .write_begin = ext4_write_begin,
4045 .write_end = ext4_ordered_write_end,
4046 .bmap = ext4_bmap,
4047 .invalidatepage = ext4_invalidatepage,
4048 .releasepage = ext4_releasepage,
4049 .direct_IO = ext4_direct_IO,
4050 .migratepage = buffer_migrate_page,
4051 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4052 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
4053};
4054
617ba13b 4055static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
4056 .readpage = ext4_readpage,
4057 .readpages = ext4_readpages,
43ce1d23 4058 .writepage = ext4_writepage,
8ab22b9a
HH
4059 .sync_page = block_sync_page,
4060 .write_begin = ext4_write_begin,
4061 .write_end = ext4_writeback_write_end,
4062 .bmap = ext4_bmap,
4063 .invalidatepage = ext4_invalidatepage,
4064 .releasepage = ext4_releasepage,
4065 .direct_IO = ext4_direct_IO,
4066 .migratepage = buffer_migrate_page,
4067 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4068 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
4069};
4070
617ba13b 4071static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
4072 .readpage = ext4_readpage,
4073 .readpages = ext4_readpages,
43ce1d23 4074 .writepage = ext4_writepage,
8ab22b9a
HH
4075 .sync_page = block_sync_page,
4076 .write_begin = ext4_write_begin,
4077 .write_end = ext4_journalled_write_end,
4078 .set_page_dirty = ext4_journalled_set_page_dirty,
4079 .bmap = ext4_bmap,
4080 .invalidatepage = ext4_invalidatepage,
4081 .releasepage = ext4_releasepage,
4082 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4083 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
4084};
4085
64769240 4086static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
4087 .readpage = ext4_readpage,
4088 .readpages = ext4_readpages,
43ce1d23 4089 .writepage = ext4_writepage,
8ab22b9a
HH
4090 .writepages = ext4_da_writepages,
4091 .sync_page = block_sync_page,
4092 .write_begin = ext4_da_write_begin,
4093 .write_end = ext4_da_write_end,
4094 .bmap = ext4_bmap,
4095 .invalidatepage = ext4_da_invalidatepage,
4096 .releasepage = ext4_releasepage,
4097 .direct_IO = ext4_direct_IO,
4098 .migratepage = buffer_migrate_page,
4099 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4100 .error_remove_page = generic_error_remove_page,
64769240
AT
4101};
4102
617ba13b 4103void ext4_set_aops(struct inode *inode)
ac27a0ec 4104{
cd1aac32
AK
4105 if (ext4_should_order_data(inode) &&
4106 test_opt(inode->i_sb, DELALLOC))
4107 inode->i_mapping->a_ops = &ext4_da_aops;
4108 else if (ext4_should_order_data(inode))
617ba13b 4109 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
4110 else if (ext4_should_writeback_data(inode) &&
4111 test_opt(inode->i_sb, DELALLOC))
4112 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
4113 else if (ext4_should_writeback_data(inode))
4114 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 4115 else
617ba13b 4116 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
4117}
4118
4119/*
617ba13b 4120 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
4121 * up to the end of the block which corresponds to `from'.
4122 * This required during truncate. We need to physically zero the tail end
4123 * of that block so it doesn't yield old data if the file is later grown.
4124 */
cf108bca 4125int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
4126 struct address_space *mapping, loff_t from)
4127{
617ba13b 4128 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 4129 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
4130 unsigned blocksize, length, pos;
4131 ext4_lblk_t iblock;
ac27a0ec
DK
4132 struct inode *inode = mapping->host;
4133 struct buffer_head *bh;
cf108bca 4134 struct page *page;
ac27a0ec 4135 int err = 0;
ac27a0ec 4136
f4a01017
TT
4137 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4138 mapping_gfp_mask(mapping) & ~__GFP_FS);
cf108bca
JK
4139 if (!page)
4140 return -EINVAL;
4141
ac27a0ec
DK
4142 blocksize = inode->i_sb->s_blocksize;
4143 length = blocksize - (offset & (blocksize - 1));
4144 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4145
ac27a0ec
DK
4146 if (!page_has_buffers(page))
4147 create_empty_buffers(page, blocksize, 0);
4148
4149 /* Find the buffer that contains "offset" */
4150 bh = page_buffers(page);
4151 pos = blocksize;
4152 while (offset >= pos) {
4153 bh = bh->b_this_page;
4154 iblock++;
4155 pos += blocksize;
4156 }
4157
4158 err = 0;
4159 if (buffer_freed(bh)) {
4160 BUFFER_TRACE(bh, "freed: skip");
4161 goto unlock;
4162 }
4163
4164 if (!buffer_mapped(bh)) {
4165 BUFFER_TRACE(bh, "unmapped");
617ba13b 4166 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
4167 /* unmapped? It's a hole - nothing to do */
4168 if (!buffer_mapped(bh)) {
4169 BUFFER_TRACE(bh, "still unmapped");
4170 goto unlock;
4171 }
4172 }
4173
4174 /* Ok, it's mapped. Make sure it's up-to-date */
4175 if (PageUptodate(page))
4176 set_buffer_uptodate(bh);
4177
4178 if (!buffer_uptodate(bh)) {
4179 err = -EIO;
4180 ll_rw_block(READ, 1, &bh);
4181 wait_on_buffer(bh);
4182 /* Uhhuh. Read error. Complain and punt. */
4183 if (!buffer_uptodate(bh))
4184 goto unlock;
4185 }
4186
617ba13b 4187 if (ext4_should_journal_data(inode)) {
ac27a0ec 4188 BUFFER_TRACE(bh, "get write access");
617ba13b 4189 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
4190 if (err)
4191 goto unlock;
4192 }
4193
eebd2aa3 4194 zero_user(page, offset, length);
ac27a0ec
DK
4195
4196 BUFFER_TRACE(bh, "zeroed end of block");
4197
4198 err = 0;
617ba13b 4199 if (ext4_should_journal_data(inode)) {
0390131b 4200 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 4201 } else {
617ba13b 4202 if (ext4_should_order_data(inode))
678aaf48 4203 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
4204 mark_buffer_dirty(bh);
4205 }
4206
4207unlock:
4208 unlock_page(page);
4209 page_cache_release(page);
4210 return err;
4211}
4212
4213/*
4214 * Probably it should be a library function... search for first non-zero word
4215 * or memcmp with zero_page, whatever is better for particular architecture.
4216 * Linus?
4217 */
4218static inline int all_zeroes(__le32 *p, __le32 *q)
4219{
4220 while (p < q)
4221 if (*p++)
4222 return 0;
4223 return 1;
4224}
4225
4226/**
617ba13b 4227 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
4228 * @inode: inode in question
4229 * @depth: depth of the affected branch
617ba13b 4230 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
4231 * @chain: place to store the pointers to partial indirect blocks
4232 * @top: place to the (detached) top of branch
4233 *
617ba13b 4234 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
4235 *
4236 * When we do truncate() we may have to clean the ends of several
4237 * indirect blocks but leave the blocks themselves alive. Block is
4238 * partially truncated if some data below the new i_size is refered
4239 * from it (and it is on the path to the first completely truncated
4240 * data block, indeed). We have to free the top of that path along
4241 * with everything to the right of the path. Since no allocation
617ba13b 4242 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
4243 * finishes, we may safely do the latter, but top of branch may
4244 * require special attention - pageout below the truncation point
4245 * might try to populate it.
4246 *
4247 * We atomically detach the top of branch from the tree, store the
4248 * block number of its root in *@top, pointers to buffer_heads of
4249 * partially truncated blocks - in @chain[].bh and pointers to
4250 * their last elements that should not be removed - in
4251 * @chain[].p. Return value is the pointer to last filled element
4252 * of @chain.
4253 *
4254 * The work left to caller to do the actual freeing of subtrees:
4255 * a) free the subtree starting from *@top
4256 * b) free the subtrees whose roots are stored in
4257 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4258 * c) free the subtrees growing from the inode past the @chain[0].
4259 * (no partially truncated stuff there). */
4260
617ba13b 4261static Indirect *ext4_find_shared(struct inode *inode, int depth,
de9a55b8
TT
4262 ext4_lblk_t offsets[4], Indirect chain[4],
4263 __le32 *top)
ac27a0ec
DK
4264{
4265 Indirect *partial, *p;
4266 int k, err;
4267
4268 *top = 0;
bf48aabb 4269 /* Make k index the deepest non-null offset + 1 */
ac27a0ec
DK
4270 for (k = depth; k > 1 && !offsets[k-1]; k--)
4271 ;
617ba13b 4272 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
4273 /* Writer: pointers */
4274 if (!partial)
4275 partial = chain + k-1;
4276 /*
4277 * If the branch acquired continuation since we've looked at it -
4278 * fine, it should all survive and (new) top doesn't belong to us.
4279 */
4280 if (!partial->key && *partial->p)
4281 /* Writer: end */
4282 goto no_top;
af5bc92d 4283 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
4284 ;
4285 /*
4286 * OK, we've found the last block that must survive. The rest of our
4287 * branch should be detached before unlocking. However, if that rest
4288 * of branch is all ours and does not grow immediately from the inode
4289 * it's easier to cheat and just decrement partial->p.
4290 */
4291 if (p == chain + k - 1 && p > chain) {
4292 p->p--;
4293 } else {
4294 *top = *p->p;
617ba13b 4295 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
4296#if 0
4297 *p->p = 0;
4298#endif
4299 }
4300 /* Writer: end */
4301
af5bc92d 4302 while (partial > p) {
ac27a0ec
DK
4303 brelse(partial->bh);
4304 partial--;
4305 }
4306no_top:
4307 return partial;
4308}
4309
4310/*
4311 * Zero a number of block pointers in either an inode or an indirect block.
4312 * If we restart the transaction we must again get write access to the
4313 * indirect block for further modification.
4314 *
4315 * We release `count' blocks on disk, but (last - first) may be greater
4316 * than `count' because there can be holes in there.
4317 */
1f2acb60
TT
4318static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4319 struct buffer_head *bh,
4320 ext4_fsblk_t block_to_free,
4321 unsigned long count, __le32 *first,
4322 __le32 *last)
ac27a0ec
DK
4323{
4324 __le32 *p;
1f2acb60 4325 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
e6362609
TT
4326
4327 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4328 flags |= EXT4_FREE_BLOCKS_METADATA;
50689696 4329
1f2acb60
TT
4330 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4331 count)) {
24676da4
TT
4332 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4333 "blocks %llu len %lu",
4334 (unsigned long long) block_to_free, count);
1f2acb60
TT
4335 return 1;
4336 }
4337
ac27a0ec
DK
4338 if (try_to_extend_transaction(handle, inode)) {
4339 if (bh) {
0390131b
FM
4340 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4341 ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 4342 }
617ba13b 4343 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4344 ext4_truncate_restart_trans(handle, inode,
4345 blocks_for_truncate(inode));
ac27a0ec
DK
4346 if (bh) {
4347 BUFFER_TRACE(bh, "retaking write access");
617ba13b 4348 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
4349 }
4350 }
4351
e6362609
TT
4352 for (p = first; p < last; p++)
4353 *p = 0;
ac27a0ec 4354
e6362609 4355 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
1f2acb60 4356 return 0;
ac27a0ec
DK
4357}
4358
4359/**
617ba13b 4360 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
4361 * @handle: handle for this transaction
4362 * @inode: inode we are dealing with
4363 * @this_bh: indirect buffer_head which contains *@first and *@last
4364 * @first: array of block numbers
4365 * @last: points immediately past the end of array
4366 *
4367 * We are freeing all blocks refered from that array (numbers are stored as
4368 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4369 *
4370 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4371 * blocks are contiguous then releasing them at one time will only affect one
4372 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4373 * actually use a lot of journal space.
4374 *
4375 * @this_bh will be %NULL if @first and @last point into the inode's direct
4376 * block pointers.
4377 */
617ba13b 4378static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4379 struct buffer_head *this_bh,
4380 __le32 *first, __le32 *last)
4381{
617ba13b 4382 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
4383 unsigned long count = 0; /* Number of blocks in the run */
4384 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4385 corresponding to
4386 block_to_free */
617ba13b 4387 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
4388 __le32 *p; /* Pointer into inode/ind
4389 for current block */
4390 int err;
4391
4392 if (this_bh) { /* For indirect block */
4393 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 4394 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
4395 /* Important: if we can't update the indirect pointers
4396 * to the blocks, we can't free them. */
4397 if (err)
4398 return;
4399 }
4400
4401 for (p = first; p < last; p++) {
4402 nr = le32_to_cpu(*p);
4403 if (nr) {
4404 /* accumulate blocks to free if they're contiguous */
4405 if (count == 0) {
4406 block_to_free = nr;
4407 block_to_free_p = p;
4408 count = 1;
4409 } else if (nr == block_to_free + count) {
4410 count++;
4411 } else {
1f2acb60
TT
4412 if (ext4_clear_blocks(handle, inode, this_bh,
4413 block_to_free, count,
4414 block_to_free_p, p))
4415 break;
ac27a0ec
DK
4416 block_to_free = nr;
4417 block_to_free_p = p;
4418 count = 1;
4419 }
4420 }
4421 }
4422
4423 if (count > 0)
617ba13b 4424 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
4425 count, block_to_free_p, p);
4426
4427 if (this_bh) {
0390131b 4428 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
71dc8fbc
DG
4429
4430 /*
4431 * The buffer head should have an attached journal head at this
4432 * point. However, if the data is corrupted and an indirect
4433 * block pointed to itself, it would have been detached when
4434 * the block was cleared. Check for this instead of OOPSing.
4435 */
e7f07968 4436 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
0390131b 4437 ext4_handle_dirty_metadata(handle, inode, this_bh);
71dc8fbc 4438 else
24676da4
TT
4439 EXT4_ERROR_INODE(inode,
4440 "circular indirect block detected at "
4441 "block %llu",
4442 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
4443 }
4444}
4445
4446/**
617ba13b 4447 * ext4_free_branches - free an array of branches
ac27a0ec
DK
4448 * @handle: JBD handle for this transaction
4449 * @inode: inode we are dealing with
4450 * @parent_bh: the buffer_head which contains *@first and *@last
4451 * @first: array of block numbers
4452 * @last: pointer immediately past the end of array
4453 * @depth: depth of the branches to free
4454 *
4455 * We are freeing all blocks refered from these branches (numbers are
4456 * stored as little-endian 32-bit) and updating @inode->i_blocks
4457 * appropriately.
4458 */
617ba13b 4459static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4460 struct buffer_head *parent_bh,
4461 __le32 *first, __le32 *last, int depth)
4462{
617ba13b 4463 ext4_fsblk_t nr;
ac27a0ec
DK
4464 __le32 *p;
4465
0390131b 4466 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4467 return;
4468
4469 if (depth--) {
4470 struct buffer_head *bh;
617ba13b 4471 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
4472 p = last;
4473 while (--p >= first) {
4474 nr = le32_to_cpu(*p);
4475 if (!nr)
4476 continue; /* A hole */
4477
1f2acb60
TT
4478 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4479 nr, 1)) {
24676da4
TT
4480 EXT4_ERROR_INODE(inode,
4481 "invalid indirect mapped "
4482 "block %lu (level %d)",
4483 (unsigned long) nr, depth);
1f2acb60
TT
4484 break;
4485 }
4486
ac27a0ec
DK
4487 /* Go read the buffer for the next level down */
4488 bh = sb_bread(inode->i_sb, nr);
4489
4490 /*
4491 * A read failure? Report error and clear slot
4492 * (should be rare).
4493 */
4494 if (!bh) {
c398eda0
TT
4495 EXT4_ERROR_INODE_BLOCK(inode, nr,
4496 "Read failure");
ac27a0ec
DK
4497 continue;
4498 }
4499
4500 /* This zaps the entire block. Bottom up. */
4501 BUFFER_TRACE(bh, "free child branches");
617ba13b 4502 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
4503 (__le32 *) bh->b_data,
4504 (__le32 *) bh->b_data + addr_per_block,
4505 depth);
ac27a0ec 4506
ac27a0ec
DK
4507 /*
4508 * Everything below this this pointer has been
4509 * released. Now let this top-of-subtree go.
4510 *
4511 * We want the freeing of this indirect block to be
4512 * atomic in the journal with the updating of the
4513 * bitmap block which owns it. So make some room in
4514 * the journal.
4515 *
4516 * We zero the parent pointer *after* freeing its
4517 * pointee in the bitmaps, so if extend_transaction()
4518 * for some reason fails to put the bitmap changes and
4519 * the release into the same transaction, recovery
4520 * will merely complain about releasing a free block,
4521 * rather than leaking blocks.
4522 */
0390131b 4523 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4524 return;
4525 if (try_to_extend_transaction(handle, inode)) {
617ba13b 4526 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4527 ext4_truncate_restart_trans(handle, inode,
4528 blocks_for_truncate(inode));
ac27a0ec
DK
4529 }
4530
40389687
A
4531 /*
4532 * The forget flag here is critical because if
4533 * we are journaling (and not doing data
4534 * journaling), we have to make sure a revoke
4535 * record is written to prevent the journal
4536 * replay from overwriting the (former)
4537 * indirect block if it gets reallocated as a
4538 * data block. This must happen in the same
4539 * transaction where the data blocks are
4540 * actually freed.
4541 */
e6362609 4542 ext4_free_blocks(handle, inode, 0, nr, 1,
40389687
A
4543 EXT4_FREE_BLOCKS_METADATA|
4544 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec
DK
4545
4546 if (parent_bh) {
4547 /*
4548 * The block which we have just freed is
4549 * pointed to by an indirect block: journal it
4550 */
4551 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 4552 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
4553 parent_bh)){
4554 *p = 0;
4555 BUFFER_TRACE(parent_bh,
0390131b
FM
4556 "call ext4_handle_dirty_metadata");
4557 ext4_handle_dirty_metadata(handle,
4558 inode,
4559 parent_bh);
ac27a0ec
DK
4560 }
4561 }
4562 }
4563 } else {
4564 /* We have reached the bottom of the tree. */
4565 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 4566 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
4567 }
4568}
4569
91ef4caf
DG
4570int ext4_can_truncate(struct inode *inode)
4571{
4572 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4573 return 0;
4574 if (S_ISREG(inode->i_mode))
4575 return 1;
4576 if (S_ISDIR(inode->i_mode))
4577 return 1;
4578 if (S_ISLNK(inode->i_mode))
4579 return !ext4_inode_is_fast_symlink(inode);
4580 return 0;
4581}
4582
ac27a0ec 4583/*
617ba13b 4584 * ext4_truncate()
ac27a0ec 4585 *
617ba13b
MC
4586 * We block out ext4_get_block() block instantiations across the entire
4587 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4588 * simultaneously on behalf of the same inode.
4589 *
4590 * As we work through the truncate and commmit bits of it to the journal there
4591 * is one core, guiding principle: the file's tree must always be consistent on
4592 * disk. We must be able to restart the truncate after a crash.
4593 *
4594 * The file's tree may be transiently inconsistent in memory (although it
4595 * probably isn't), but whenever we close off and commit a journal transaction,
4596 * the contents of (the filesystem + the journal) must be consistent and
4597 * restartable. It's pretty simple, really: bottom up, right to left (although
4598 * left-to-right works OK too).
4599 *
4600 * Note that at recovery time, journal replay occurs *before* the restart of
4601 * truncate against the orphan inode list.
4602 *
4603 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4604 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4605 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4606 * ext4_truncate() to have another go. So there will be instantiated blocks
4607 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4608 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4609 * ext4_truncate() run will find them and release them.
ac27a0ec 4610 */
617ba13b 4611void ext4_truncate(struct inode *inode)
ac27a0ec
DK
4612{
4613 handle_t *handle;
617ba13b 4614 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4615 __le32 *i_data = ei->i_data;
617ba13b 4616 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 4617 struct address_space *mapping = inode->i_mapping;
725d26d3 4618 ext4_lblk_t offsets[4];
ac27a0ec
DK
4619 Indirect chain[4];
4620 Indirect *partial;
4621 __le32 nr = 0;
4622 int n;
725d26d3 4623 ext4_lblk_t last_block;
ac27a0ec 4624 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 4625
91ef4caf 4626 if (!ext4_can_truncate(inode))
ac27a0ec
DK
4627 return;
4628
12e9b892 4629 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 4630
5534fb5b 4631 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 4632 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 4633
12e9b892 4634 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
cf108bca 4635 ext4_ext_truncate(inode);
1d03ec98
AK
4636 return;
4637 }
a86c6181 4638
ac27a0ec 4639 handle = start_transaction(inode);
cf108bca 4640 if (IS_ERR(handle))
ac27a0ec 4641 return; /* AKPM: return what? */
ac27a0ec
DK
4642
4643 last_block = (inode->i_size + blocksize-1)
617ba13b 4644 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 4645
cf108bca
JK
4646 if (inode->i_size & (blocksize - 1))
4647 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4648 goto out_stop;
ac27a0ec 4649
617ba13b 4650 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
4651 if (n == 0)
4652 goto out_stop; /* error */
4653
4654 /*
4655 * OK. This truncate is going to happen. We add the inode to the
4656 * orphan list, so that if this truncate spans multiple transactions,
4657 * and we crash, we will resume the truncate when the filesystem
4658 * recovers. It also marks the inode dirty, to catch the new size.
4659 *
4660 * Implication: the file must always be in a sane, consistent
4661 * truncatable state while each transaction commits.
4662 */
617ba13b 4663 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
4664 goto out_stop;
4665
632eaeab
MC
4666 /*
4667 * From here we block out all ext4_get_block() callers who want to
4668 * modify the block allocation tree.
4669 */
4670 down_write(&ei->i_data_sem);
b4df2030 4671
c2ea3fde 4672 ext4_discard_preallocations(inode);
b4df2030 4673
ac27a0ec
DK
4674 /*
4675 * The orphan list entry will now protect us from any crash which
4676 * occurs before the truncate completes, so it is now safe to propagate
4677 * the new, shorter inode size (held for now in i_size) into the
4678 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 4679 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
4680 */
4681 ei->i_disksize = inode->i_size;
4682
ac27a0ec 4683 if (n == 1) { /* direct blocks */
617ba13b
MC
4684 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4685 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
4686 goto do_indirects;
4687 }
4688
617ba13b 4689 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
4690 /* Kill the top of shared branch (not detached) */
4691 if (nr) {
4692 if (partial == chain) {
4693 /* Shared branch grows from the inode */
617ba13b 4694 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
4695 &nr, &nr+1, (chain+n-1) - partial);
4696 *partial->p = 0;
4697 /*
4698 * We mark the inode dirty prior to restart,
4699 * and prior to stop. No need for it here.
4700 */
4701 } else {
4702 /* Shared branch grows from an indirect block */
4703 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 4704 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
4705 partial->p,
4706 partial->p+1, (chain+n-1) - partial);
4707 }
4708 }
4709 /* Clear the ends of indirect blocks on the shared branch */
4710 while (partial > chain) {
617ba13b 4711 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
4712 (__le32*)partial->bh->b_data+addr_per_block,
4713 (chain+n-1) - partial);
4714 BUFFER_TRACE(partial->bh, "call brelse");
de9a55b8 4715 brelse(partial->bh);
ac27a0ec
DK
4716 partial--;
4717 }
4718do_indirects:
4719 /* Kill the remaining (whole) subtrees */
4720 switch (offsets[0]) {
4721 default:
617ba13b 4722 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 4723 if (nr) {
617ba13b
MC
4724 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4725 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 4726 }
617ba13b
MC
4727 case EXT4_IND_BLOCK:
4728 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 4729 if (nr) {
617ba13b
MC
4730 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4731 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 4732 }
617ba13b
MC
4733 case EXT4_DIND_BLOCK:
4734 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 4735 if (nr) {
617ba13b
MC
4736 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4737 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 4738 }
617ba13b 4739 case EXT4_TIND_BLOCK:
ac27a0ec
DK
4740 ;
4741 }
4742
0e855ac8 4743 up_write(&ei->i_data_sem);
ef7f3835 4744 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 4745 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4746
4747 /*
4748 * In a multi-transaction truncate, we only make the final transaction
4749 * synchronous
4750 */
4751 if (IS_SYNC(inode))
0390131b 4752 ext4_handle_sync(handle);
ac27a0ec
DK
4753out_stop:
4754 /*
4755 * If this was a simple ftruncate(), and the file will remain alive
4756 * then we need to clear up the orphan record which we created above.
4757 * However, if this was a real unlink then we were called by
617ba13b 4758 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
4759 * orphan info for us.
4760 */
4761 if (inode->i_nlink)
617ba13b 4762 ext4_orphan_del(handle, inode);
ac27a0ec 4763
617ba13b 4764 ext4_journal_stop(handle);
ac27a0ec
DK
4765}
4766
ac27a0ec 4767/*
617ba13b 4768 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4769 * underlying buffer_head on success. If 'in_mem' is true, we have all
4770 * data in memory that is needed to recreate the on-disk version of this
4771 * inode.
4772 */
617ba13b
MC
4773static int __ext4_get_inode_loc(struct inode *inode,
4774 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4775{
240799cd
TT
4776 struct ext4_group_desc *gdp;
4777 struct buffer_head *bh;
4778 struct super_block *sb = inode->i_sb;
4779 ext4_fsblk_t block;
4780 int inodes_per_block, inode_offset;
4781
3a06d778 4782 iloc->bh = NULL;
240799cd
TT
4783 if (!ext4_valid_inum(sb, inode->i_ino))
4784 return -EIO;
ac27a0ec 4785
240799cd
TT
4786 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4787 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4788 if (!gdp)
ac27a0ec
DK
4789 return -EIO;
4790
240799cd
TT
4791 /*
4792 * Figure out the offset within the block group inode table
4793 */
4794 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4795 inode_offset = ((inode->i_ino - 1) %
4796 EXT4_INODES_PER_GROUP(sb));
4797 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4798 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4799
4800 bh = sb_getblk(sb, block);
ac27a0ec 4801 if (!bh) {
c398eda0
TT
4802 EXT4_ERROR_INODE_BLOCK(inode, block,
4803 "unable to read itable block");
ac27a0ec
DK
4804 return -EIO;
4805 }
4806 if (!buffer_uptodate(bh)) {
4807 lock_buffer(bh);
9c83a923
HK
4808
4809 /*
4810 * If the buffer has the write error flag, we have failed
4811 * to write out another inode in the same block. In this
4812 * case, we don't have to read the block because we may
4813 * read the old inode data successfully.
4814 */
4815 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4816 set_buffer_uptodate(bh);
4817
ac27a0ec
DK
4818 if (buffer_uptodate(bh)) {
4819 /* someone brought it uptodate while we waited */
4820 unlock_buffer(bh);
4821 goto has_buffer;
4822 }
4823
4824 /*
4825 * If we have all information of the inode in memory and this
4826 * is the only valid inode in the block, we need not read the
4827 * block.
4828 */
4829 if (in_mem) {
4830 struct buffer_head *bitmap_bh;
240799cd 4831 int i, start;
ac27a0ec 4832
240799cd 4833 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4834
240799cd
TT
4835 /* Is the inode bitmap in cache? */
4836 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
4837 if (!bitmap_bh)
4838 goto make_io;
4839
4840 /*
4841 * If the inode bitmap isn't in cache then the
4842 * optimisation may end up performing two reads instead
4843 * of one, so skip it.
4844 */
4845 if (!buffer_uptodate(bitmap_bh)) {
4846 brelse(bitmap_bh);
4847 goto make_io;
4848 }
240799cd 4849 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4850 if (i == inode_offset)
4851 continue;
617ba13b 4852 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4853 break;
4854 }
4855 brelse(bitmap_bh);
240799cd 4856 if (i == start + inodes_per_block) {
ac27a0ec
DK
4857 /* all other inodes are free, so skip I/O */
4858 memset(bh->b_data, 0, bh->b_size);
4859 set_buffer_uptodate(bh);
4860 unlock_buffer(bh);
4861 goto has_buffer;
4862 }
4863 }
4864
4865make_io:
240799cd
TT
4866 /*
4867 * If we need to do any I/O, try to pre-readahead extra
4868 * blocks from the inode table.
4869 */
4870 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4871 ext4_fsblk_t b, end, table;
4872 unsigned num;
4873
4874 table = ext4_inode_table(sb, gdp);
b713a5ec 4875 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
4876 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4877 if (table > b)
4878 b = table;
4879 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4880 num = EXT4_INODES_PER_GROUP(sb);
4881 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4882 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 4883 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4884 table += num / inodes_per_block;
4885 if (end > table)
4886 end = table;
4887 while (b <= end)
4888 sb_breadahead(sb, b++);
4889 }
4890
ac27a0ec
DK
4891 /*
4892 * There are other valid inodes in the buffer, this inode
4893 * has in-inode xattrs, or we don't have this inode in memory.
4894 * Read the block from disk.
4895 */
4896 get_bh(bh);
4897 bh->b_end_io = end_buffer_read_sync;
4898 submit_bh(READ_META, bh);
4899 wait_on_buffer(bh);
4900 if (!buffer_uptodate(bh)) {
c398eda0
TT
4901 EXT4_ERROR_INODE_BLOCK(inode, block,
4902 "unable to read itable block");
ac27a0ec
DK
4903 brelse(bh);
4904 return -EIO;
4905 }
4906 }
4907has_buffer:
4908 iloc->bh = bh;
4909 return 0;
4910}
4911
617ba13b 4912int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4913{
4914 /* We have all inode data except xattrs in memory here. */
617ba13b 4915 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4916 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4917}
4918
617ba13b 4919void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4920{
617ba13b 4921 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4922
4923 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4924 if (flags & EXT4_SYNC_FL)
ac27a0ec 4925 inode->i_flags |= S_SYNC;
617ba13b 4926 if (flags & EXT4_APPEND_FL)
ac27a0ec 4927 inode->i_flags |= S_APPEND;
617ba13b 4928 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4929 inode->i_flags |= S_IMMUTABLE;
617ba13b 4930 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4931 inode->i_flags |= S_NOATIME;
617ba13b 4932 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4933 inode->i_flags |= S_DIRSYNC;
4934}
4935
ff9ddf7e
JK
4936/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4937void ext4_get_inode_flags(struct ext4_inode_info *ei)
4938{
84a8dce2
DM
4939 unsigned int vfs_fl;
4940 unsigned long old_fl, new_fl;
4941
4942 do {
4943 vfs_fl = ei->vfs_inode.i_flags;
4944 old_fl = ei->i_flags;
4945 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4946 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4947 EXT4_DIRSYNC_FL);
4948 if (vfs_fl & S_SYNC)
4949 new_fl |= EXT4_SYNC_FL;
4950 if (vfs_fl & S_APPEND)
4951 new_fl |= EXT4_APPEND_FL;
4952 if (vfs_fl & S_IMMUTABLE)
4953 new_fl |= EXT4_IMMUTABLE_FL;
4954 if (vfs_fl & S_NOATIME)
4955 new_fl |= EXT4_NOATIME_FL;
4956 if (vfs_fl & S_DIRSYNC)
4957 new_fl |= EXT4_DIRSYNC_FL;
4958 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 4959}
de9a55b8 4960
0fc1b451 4961static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4962 struct ext4_inode_info *ei)
0fc1b451
AK
4963{
4964 blkcnt_t i_blocks ;
8180a562
AK
4965 struct inode *inode = &(ei->vfs_inode);
4966 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4967
4968 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4969 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4970 /* we are using combined 48 bit field */
4971 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4972 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4973 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4974 /* i_blocks represent file system block size */
4975 return i_blocks << (inode->i_blkbits - 9);
4976 } else {
4977 return i_blocks;
4978 }
0fc1b451
AK
4979 } else {
4980 return le32_to_cpu(raw_inode->i_blocks_lo);
4981 }
4982}
ff9ddf7e 4983
1d1fe1ee 4984struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4985{
617ba13b
MC
4986 struct ext4_iloc iloc;
4987 struct ext4_inode *raw_inode;
1d1fe1ee 4988 struct ext4_inode_info *ei;
1d1fe1ee 4989 struct inode *inode;
b436b9be 4990 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4991 long ret;
ac27a0ec
DK
4992 int block;
4993
1d1fe1ee
DH
4994 inode = iget_locked(sb, ino);
4995 if (!inode)
4996 return ERR_PTR(-ENOMEM);
4997 if (!(inode->i_state & I_NEW))
4998 return inode;
4999
5000 ei = EXT4_I(inode);
567f3e9a 5001 iloc.bh = 0;
ac27a0ec 5002
1d1fe1ee
DH
5003 ret = __ext4_get_inode_loc(inode, &iloc, 0);
5004 if (ret < 0)
ac27a0ec 5005 goto bad_inode;
617ba13b 5006 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
5007 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
5008 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
5009 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 5010 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
5011 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
5012 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
5013 }
5014 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec 5015
19f5fb7a 5016 ei->i_state_flags = 0;
ac27a0ec
DK
5017 ei->i_dir_start_lookup = 0;
5018 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
5019 /* We now have enough fields to check if the inode was active or not.
5020 * This is needed because nfsd might try to access dead inodes
5021 * the test is that same one that e2fsck uses
5022 * NeilBrown 1999oct15
5023 */
5024 if (inode->i_nlink == 0) {
5025 if (inode->i_mode == 0 ||
617ba13b 5026 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 5027 /* this inode is deleted */
1d1fe1ee 5028 ret = -ESTALE;
ac27a0ec
DK
5029 goto bad_inode;
5030 }
5031 /* The only unlinked inodes we let through here have
5032 * valid i_mode and are being read by the orphan
5033 * recovery code: that's fine, we're about to complete
5034 * the process of deleting those. */
5035 }
ac27a0ec 5036 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 5037 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 5038 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 5039 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
5040 ei->i_file_acl |=
5041 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 5042 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 5043 ei->i_disksize = inode->i_size;
a9e7f447
DM
5044#ifdef CONFIG_QUOTA
5045 ei->i_reserved_quota = 0;
5046#endif
ac27a0ec
DK
5047 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5048 ei->i_block_group = iloc.block_group;
a4912123 5049 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
5050 /*
5051 * NOTE! The in-memory inode i_data array is in little-endian order
5052 * even on big-endian machines: we do NOT byteswap the block numbers!
5053 */
617ba13b 5054 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
5055 ei->i_data[block] = raw_inode->i_block[block];
5056 INIT_LIST_HEAD(&ei->i_orphan);
5057
b436b9be
JK
5058 /*
5059 * Set transaction id's of transactions that have to be committed
5060 * to finish f[data]sync. We set them to currently running transaction
5061 * as we cannot be sure that the inode or some of its metadata isn't
5062 * part of the transaction - the inode could have been reclaimed and
5063 * now it is reread from disk.
5064 */
5065 if (journal) {
5066 transaction_t *transaction;
5067 tid_t tid;
5068
a931da6a 5069 read_lock(&journal->j_state_lock);
b436b9be
JK
5070 if (journal->j_running_transaction)
5071 transaction = journal->j_running_transaction;
5072 else
5073 transaction = journal->j_committing_transaction;
5074 if (transaction)
5075 tid = transaction->t_tid;
5076 else
5077 tid = journal->j_commit_sequence;
a931da6a 5078 read_unlock(&journal->j_state_lock);
b436b9be
JK
5079 ei->i_sync_tid = tid;
5080 ei->i_datasync_tid = tid;
5081 }
5082
0040d987 5083 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 5084 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 5085 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 5086 EXT4_INODE_SIZE(inode->i_sb)) {
1d1fe1ee 5087 ret = -EIO;
ac27a0ec 5088 goto bad_inode;
e5d2861f 5089 }
ac27a0ec
DK
5090 if (ei->i_extra_isize == 0) {
5091 /* The extra space is currently unused. Use it. */
617ba13b
MC
5092 ei->i_extra_isize = sizeof(struct ext4_inode) -
5093 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
5094 } else {
5095 __le32 *magic = (void *)raw_inode +
617ba13b 5096 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 5097 ei->i_extra_isize;
617ba13b 5098 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
19f5fb7a 5099 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
ac27a0ec
DK
5100 }
5101 } else
5102 ei->i_extra_isize = 0;
5103
ef7f3835
KS
5104 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5105 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5106 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5107 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5108
25ec56b5
JNC
5109 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5110 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5111 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5112 inode->i_version |=
5113 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5114 }
5115
c4b5a614 5116 ret = 0;
485c26ec 5117 if (ei->i_file_acl &&
1032988c 5118 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
5119 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
5120 ei->i_file_acl);
485c26ec
TT
5121 ret = -EIO;
5122 goto bad_inode;
07a03824 5123 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
c4b5a614
TT
5124 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5125 (S_ISLNK(inode->i_mode) &&
5126 !ext4_inode_is_fast_symlink(inode)))
5127 /* Validate extent which is part of inode */
5128 ret = ext4_ext_check_inode(inode);
de9a55b8 5129 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
fe2c8191
TN
5130 (S_ISLNK(inode->i_mode) &&
5131 !ext4_inode_is_fast_symlink(inode))) {
de9a55b8 5132 /* Validate block references which are part of inode */
fe2c8191
TN
5133 ret = ext4_check_inode_blockref(inode);
5134 }
567f3e9a 5135 if (ret)
de9a55b8 5136 goto bad_inode;
7a262f7c 5137
ac27a0ec 5138 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
5139 inode->i_op = &ext4_file_inode_operations;
5140 inode->i_fop = &ext4_file_operations;
5141 ext4_set_aops(inode);
ac27a0ec 5142 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
5143 inode->i_op = &ext4_dir_inode_operations;
5144 inode->i_fop = &ext4_dir_operations;
ac27a0ec 5145 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 5146 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 5147 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
5148 nd_terminate_link(ei->i_data, inode->i_size,
5149 sizeof(ei->i_data) - 1);
5150 } else {
617ba13b
MC
5151 inode->i_op = &ext4_symlink_inode_operations;
5152 ext4_set_aops(inode);
ac27a0ec 5153 }
563bdd61
TT
5154 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5155 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 5156 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
5157 if (raw_inode->i_block[0])
5158 init_special_inode(inode, inode->i_mode,
5159 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5160 else
5161 init_special_inode(inode, inode->i_mode,
5162 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 5163 } else {
563bdd61 5164 ret = -EIO;
24676da4 5165 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 5166 goto bad_inode;
ac27a0ec 5167 }
af5bc92d 5168 brelse(iloc.bh);
617ba13b 5169 ext4_set_inode_flags(inode);
1d1fe1ee
DH
5170 unlock_new_inode(inode);
5171 return inode;
ac27a0ec
DK
5172
5173bad_inode:
567f3e9a 5174 brelse(iloc.bh);
1d1fe1ee
DH
5175 iget_failed(inode);
5176 return ERR_PTR(ret);
ac27a0ec
DK
5177}
5178
0fc1b451
AK
5179static int ext4_inode_blocks_set(handle_t *handle,
5180 struct ext4_inode *raw_inode,
5181 struct ext4_inode_info *ei)
5182{
5183 struct inode *inode = &(ei->vfs_inode);
5184 u64 i_blocks = inode->i_blocks;
5185 struct super_block *sb = inode->i_sb;
0fc1b451
AK
5186
5187 if (i_blocks <= ~0U) {
5188 /*
5189 * i_blocks can be represnted in a 32 bit variable
5190 * as multiple of 512 bytes
5191 */
8180a562 5192 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5193 raw_inode->i_blocks_high = 0;
84a8dce2 5194 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
5195 return 0;
5196 }
5197 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5198 return -EFBIG;
5199
5200 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
5201 /*
5202 * i_blocks can be represented in a 48 bit variable
5203 * as multiple of 512 bytes
5204 */
8180a562 5205 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5206 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 5207 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 5208 } else {
84a8dce2 5209 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
5210 /* i_block is stored in file system block size */
5211 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5212 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5213 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 5214 }
f287a1a5 5215 return 0;
0fc1b451
AK
5216}
5217
ac27a0ec
DK
5218/*
5219 * Post the struct inode info into an on-disk inode location in the
5220 * buffer-cache. This gobbles the caller's reference to the
5221 * buffer_head in the inode location struct.
5222 *
5223 * The caller must have write access to iloc->bh.
5224 */
617ba13b 5225static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 5226 struct inode *inode,
830156c7 5227 struct ext4_iloc *iloc)
ac27a0ec 5228{
617ba13b
MC
5229 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5230 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
5231 struct buffer_head *bh = iloc->bh;
5232 int err = 0, rc, block;
5233
5234 /* For fields not not tracking in the in-memory inode,
5235 * initialise them to zero for new inodes. */
19f5fb7a 5236 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 5237 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 5238
ff9ddf7e 5239 ext4_get_inode_flags(ei);
ac27a0ec 5240 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 5241 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
5242 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5243 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5244/*
5245 * Fix up interoperability with old kernels. Otherwise, old inodes get
5246 * re-used with the upper 16 bits of the uid/gid intact
5247 */
af5bc92d 5248 if (!ei->i_dtime) {
ac27a0ec
DK
5249 raw_inode->i_uid_high =
5250 cpu_to_le16(high_16_bits(inode->i_uid));
5251 raw_inode->i_gid_high =
5252 cpu_to_le16(high_16_bits(inode->i_gid));
5253 } else {
5254 raw_inode->i_uid_high = 0;
5255 raw_inode->i_gid_high = 0;
5256 }
5257 } else {
5258 raw_inode->i_uid_low =
5259 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5260 raw_inode->i_gid_low =
5261 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5262 raw_inode->i_uid_high = 0;
5263 raw_inode->i_gid_high = 0;
5264 }
5265 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
5266
5267 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5268 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5269 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5270 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5271
0fc1b451
AK
5272 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5273 goto out_brelse;
ac27a0ec 5274 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1b9c12f4 5275 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
9b8f1f01
MC
5276 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5277 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
5278 raw_inode->i_file_acl_high =
5279 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 5280 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
5281 ext4_isize_set(raw_inode, ei->i_disksize);
5282 if (ei->i_disksize > 0x7fffffffULL) {
5283 struct super_block *sb = inode->i_sb;
5284 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5285 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5286 EXT4_SB(sb)->s_es->s_rev_level ==
5287 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5288 /* If this is the first large file
5289 * created, add a flag to the superblock.
5290 */
5291 err = ext4_journal_get_write_access(handle,
5292 EXT4_SB(sb)->s_sbh);
5293 if (err)
5294 goto out_brelse;
5295 ext4_update_dynamic_rev(sb);
5296 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 5297 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 5298 sb->s_dirt = 1;
0390131b 5299 ext4_handle_sync(handle);
73b50c1c 5300 err = ext4_handle_dirty_metadata(handle, NULL,
a48380f7 5301 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
5302 }
5303 }
5304 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5305 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5306 if (old_valid_dev(inode->i_rdev)) {
5307 raw_inode->i_block[0] =
5308 cpu_to_le32(old_encode_dev(inode->i_rdev));
5309 raw_inode->i_block[1] = 0;
5310 } else {
5311 raw_inode->i_block[0] = 0;
5312 raw_inode->i_block[1] =
5313 cpu_to_le32(new_encode_dev(inode->i_rdev));
5314 raw_inode->i_block[2] = 0;
5315 }
de9a55b8
TT
5316 } else
5317 for (block = 0; block < EXT4_N_BLOCKS; block++)
5318 raw_inode->i_block[block] = ei->i_data[block];
ac27a0ec 5319
25ec56b5
JNC
5320 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5321 if (ei->i_extra_isize) {
5322 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5323 raw_inode->i_version_hi =
5324 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 5325 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
5326 }
5327
830156c7 5328 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 5329 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
5330 if (!err)
5331 err = rc;
19f5fb7a 5332 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 5333
b436b9be 5334 ext4_update_inode_fsync_trans(handle, inode, 0);
ac27a0ec 5335out_brelse:
af5bc92d 5336 brelse(bh);
617ba13b 5337 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5338 return err;
5339}
5340
5341/*
617ba13b 5342 * ext4_write_inode()
ac27a0ec
DK
5343 *
5344 * We are called from a few places:
5345 *
5346 * - Within generic_file_write() for O_SYNC files.
5347 * Here, there will be no transaction running. We wait for any running
5348 * trasnaction to commit.
5349 *
5350 * - Within sys_sync(), kupdate and such.
5351 * We wait on commit, if tol to.
5352 *
5353 * - Within prune_icache() (PF_MEMALLOC == true)
5354 * Here we simply return. We can't afford to block kswapd on the
5355 * journal commit.
5356 *
5357 * In all cases it is actually safe for us to return without doing anything,
5358 * because the inode has been copied into a raw inode buffer in
617ba13b 5359 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
5360 * knfsd.
5361 *
5362 * Note that we are absolutely dependent upon all inode dirtiers doing the
5363 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5364 * which we are interested.
5365 *
5366 * It would be a bug for them to not do this. The code:
5367 *
5368 * mark_inode_dirty(inode)
5369 * stuff();
5370 * inode->i_size = expr;
5371 *
5372 * is in error because a kswapd-driven write_inode() could occur while
5373 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5374 * will no longer be on the superblock's dirty inode list.
5375 */
a9185b41 5376int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 5377{
91ac6f43
FM
5378 int err;
5379
ac27a0ec
DK
5380 if (current->flags & PF_MEMALLOC)
5381 return 0;
5382
91ac6f43
FM
5383 if (EXT4_SB(inode->i_sb)->s_journal) {
5384 if (ext4_journal_current_handle()) {
5385 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5386 dump_stack();
5387 return -EIO;
5388 }
ac27a0ec 5389
a9185b41 5390 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
5391 return 0;
5392
5393 err = ext4_force_commit(inode->i_sb);
5394 } else {
5395 struct ext4_iloc iloc;
ac27a0ec 5396
8b472d73 5397 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
5398 if (err)
5399 return err;
a9185b41 5400 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
5401 sync_dirty_buffer(iloc.bh);
5402 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
5403 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5404 "IO error syncing inode");
830156c7
FM
5405 err = -EIO;
5406 }
fd2dd9fb 5407 brelse(iloc.bh);
91ac6f43
FM
5408 }
5409 return err;
ac27a0ec
DK
5410}
5411
5412/*
617ba13b 5413 * ext4_setattr()
ac27a0ec
DK
5414 *
5415 * Called from notify_change.
5416 *
5417 * We want to trap VFS attempts to truncate the file as soon as
5418 * possible. In particular, we want to make sure that when the VFS
5419 * shrinks i_size, we put the inode on the orphan list and modify
5420 * i_disksize immediately, so that during the subsequent flushing of
5421 * dirty pages and freeing of disk blocks, we can guarantee that any
5422 * commit will leave the blocks being flushed in an unused state on
5423 * disk. (On recovery, the inode will get truncated and the blocks will
5424 * be freed, so we have a strong guarantee that no future commit will
5425 * leave these blocks visible to the user.)
5426 *
678aaf48
JK
5427 * Another thing we have to assure is that if we are in ordered mode
5428 * and inode is still attached to the committing transaction, we must
5429 * we start writeout of all the dirty pages which are being truncated.
5430 * This way we are sure that all the data written in the previous
5431 * transaction are already on disk (truncate waits for pages under
5432 * writeback).
5433 *
5434 * Called with inode->i_mutex down.
ac27a0ec 5435 */
617ba13b 5436int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
5437{
5438 struct inode *inode = dentry->d_inode;
5439 int error, rc = 0;
5440 const unsigned int ia_valid = attr->ia_valid;
5441
5442 error = inode_change_ok(inode, attr);
5443 if (error)
5444 return error;
5445
12755627 5446 if (is_quota_modification(inode, attr))
871a2931 5447 dquot_initialize(inode);
ac27a0ec
DK
5448 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5449 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5450 handle_t *handle;
5451
5452 /* (user+group)*(old+new) structure, inode write (sb,
5453 * inode block, ? - but truncate inode update has it) */
5aca07eb 5454 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
194074ac 5455 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
5456 if (IS_ERR(handle)) {
5457 error = PTR_ERR(handle);
5458 goto err_out;
5459 }
b43fa828 5460 error = dquot_transfer(inode, attr);
ac27a0ec 5461 if (error) {
617ba13b 5462 ext4_journal_stop(handle);
ac27a0ec
DK
5463 return error;
5464 }
5465 /* Update corresponding info in inode so that everything is in
5466 * one transaction */
5467 if (attr->ia_valid & ATTR_UID)
5468 inode->i_uid = attr->ia_uid;
5469 if (attr->ia_valid & ATTR_GID)
5470 inode->i_gid = attr->ia_gid;
617ba13b
MC
5471 error = ext4_mark_inode_dirty(handle, inode);
5472 ext4_journal_stop(handle);
ac27a0ec
DK
5473 }
5474
e2b46574 5475 if (attr->ia_valid & ATTR_SIZE) {
12e9b892 5476 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
5477 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5478
0c095c7f
TT
5479 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5480 return -EFBIG;
e2b46574
ES
5481 }
5482 }
5483
ac27a0ec 5484 if (S_ISREG(inode->i_mode) &&
c8d46e41
JZ
5485 attr->ia_valid & ATTR_SIZE &&
5486 (attr->ia_size < inode->i_size ||
12e9b892 5487 (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
ac27a0ec
DK
5488 handle_t *handle;
5489
617ba13b 5490 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
5491 if (IS_ERR(handle)) {
5492 error = PTR_ERR(handle);
5493 goto err_out;
5494 }
5495
617ba13b
MC
5496 error = ext4_orphan_add(handle, inode);
5497 EXT4_I(inode)->i_disksize = attr->ia_size;
5498 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
5499 if (!error)
5500 error = rc;
617ba13b 5501 ext4_journal_stop(handle);
678aaf48
JK
5502
5503 if (ext4_should_order_data(inode)) {
5504 error = ext4_begin_ordered_truncate(inode,
5505 attr->ia_size);
5506 if (error) {
5507 /* Do as much error cleanup as possible */
5508 handle = ext4_journal_start(inode, 3);
5509 if (IS_ERR(handle)) {
5510 ext4_orphan_del(NULL, inode);
5511 goto err_out;
5512 }
5513 ext4_orphan_del(handle, inode);
5514 ext4_journal_stop(handle);
5515 goto err_out;
5516 }
5517 }
c8d46e41 5518 /* ext4_truncate will clear the flag */
12e9b892 5519 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
c8d46e41 5520 ext4_truncate(inode);
ac27a0ec
DK
5521 }
5522
5523 rc = inode_setattr(inode, attr);
5524
617ba13b 5525 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
5526 * transaction handle at all, we need to clean up the in-core
5527 * orphan list manually. */
5528 if (inode->i_nlink)
617ba13b 5529 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
5530
5531 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 5532 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
5533
5534err_out:
617ba13b 5535 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5536 if (!error)
5537 error = rc;
5538 return error;
5539}
5540
3e3398a0
MC
5541int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5542 struct kstat *stat)
5543{
5544 struct inode *inode;
5545 unsigned long delalloc_blocks;
5546
5547 inode = dentry->d_inode;
5548 generic_fillattr(inode, stat);
5549
5550 /*
5551 * We can't update i_blocks if the block allocation is delayed
5552 * otherwise in the case of system crash before the real block
5553 * allocation is done, we will have i_blocks inconsistent with
5554 * on-disk file blocks.
5555 * We always keep i_blocks updated together with real
5556 * allocation. But to not confuse with user, stat
5557 * will return the blocks that include the delayed allocation
5558 * blocks for this file.
5559 */
5560 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5561 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5562 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5563
5564 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5565 return 0;
5566}
ac27a0ec 5567
a02908f1
MC
5568static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5569 int chunk)
5570{
5571 int indirects;
5572
5573 /* if nrblocks are contiguous */
5574 if (chunk) {
5575 /*
5576 * With N contiguous data blocks, it need at most
5577 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5578 * 2 dindirect blocks
5579 * 1 tindirect block
5580 */
5581 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5582 return indirects + 3;
5583 }
5584 /*
5585 * if nrblocks are not contiguous, worse case, each block touch
5586 * a indirect block, and each indirect block touch a double indirect
5587 * block, plus a triple indirect block
5588 */
5589 indirects = nrblocks * 2 + 1;
5590 return indirects;
5591}
5592
5593static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5594{
12e9b892 5595 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
ac51d837
TT
5596 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5597 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 5598}
ac51d837 5599
ac27a0ec 5600/*
a02908f1
MC
5601 * Account for index blocks, block groups bitmaps and block group
5602 * descriptor blocks if modify datablocks and index blocks
5603 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5604 *
a02908f1 5605 * If datablocks are discontiguous, they are possible to spread over
af901ca1 5606 * different block groups too. If they are contiuguous, with flexbg,
a02908f1 5607 * they could still across block group boundary.
ac27a0ec 5608 *
a02908f1
MC
5609 * Also account for superblock, inode, quota and xattr blocks
5610 */
5611int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5612{
8df9675f
TT
5613 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5614 int gdpblocks;
a02908f1
MC
5615 int idxblocks;
5616 int ret = 0;
5617
5618 /*
5619 * How many index blocks need to touch to modify nrblocks?
5620 * The "Chunk" flag indicating whether the nrblocks is
5621 * physically contiguous on disk
5622 *
5623 * For Direct IO and fallocate, they calls get_block to allocate
5624 * one single extent at a time, so they could set the "Chunk" flag
5625 */
5626 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5627
5628 ret = idxblocks;
5629
5630 /*
5631 * Now let's see how many group bitmaps and group descriptors need
5632 * to account
5633 */
5634 groups = idxblocks;
5635 if (chunk)
5636 groups += 1;
5637 else
5638 groups += nrblocks;
5639
5640 gdpblocks = groups;
8df9675f
TT
5641 if (groups > ngroups)
5642 groups = ngroups;
a02908f1
MC
5643 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5644 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5645
5646 /* bitmaps and block group descriptor blocks */
5647 ret += groups + gdpblocks;
5648
5649 /* Blocks for super block, inode, quota and xattr blocks */
5650 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5651
5652 return ret;
5653}
5654
5655/*
5656 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
5657 * the modification of a single pages into a single transaction,
5658 * which may include multiple chunks of block allocations.
ac27a0ec 5659 *
525f4ed8 5660 * This could be called via ext4_write_begin()
ac27a0ec 5661 *
525f4ed8 5662 * We need to consider the worse case, when
a02908f1 5663 * one new block per extent.
ac27a0ec 5664 */
a86c6181 5665int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5666{
617ba13b 5667 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5668 int ret;
5669
a02908f1 5670 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 5671
a02908f1 5672 /* Account for data blocks for journalled mode */
617ba13b 5673 if (ext4_should_journal_data(inode))
a02908f1 5674 ret += bpp;
ac27a0ec
DK
5675 return ret;
5676}
f3bd1f3f
MC
5677
5678/*
5679 * Calculate the journal credits for a chunk of data modification.
5680 *
5681 * This is called from DIO, fallocate or whoever calling
79e83036 5682 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5683 *
5684 * journal buffers for data blocks are not included here, as DIO
5685 * and fallocate do no need to journal data buffers.
5686 */
5687int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5688{
5689 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5690}
5691
ac27a0ec 5692/*
617ba13b 5693 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5694 * Give this, we know that the caller already has write access to iloc->bh.
5695 */
617ba13b 5696int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5697 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5698{
5699 int err = 0;
5700
25ec56b5
JNC
5701 if (test_opt(inode->i_sb, I_VERSION))
5702 inode_inc_iversion(inode);
5703
ac27a0ec
DK
5704 /* the do_update_inode consumes one bh->b_count */
5705 get_bh(iloc->bh);
5706
dab291af 5707 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5708 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5709 put_bh(iloc->bh);
5710 return err;
5711}
5712
5713/*
5714 * On success, We end up with an outstanding reference count against
5715 * iloc->bh. This _must_ be cleaned up later.
5716 */
5717
5718int
617ba13b
MC
5719ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5720 struct ext4_iloc *iloc)
ac27a0ec 5721{
0390131b
FM
5722 int err;
5723
5724 err = ext4_get_inode_loc(inode, iloc);
5725 if (!err) {
5726 BUFFER_TRACE(iloc->bh, "get_write_access");
5727 err = ext4_journal_get_write_access(handle, iloc->bh);
5728 if (err) {
5729 brelse(iloc->bh);
5730 iloc->bh = NULL;
ac27a0ec
DK
5731 }
5732 }
617ba13b 5733 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5734 return err;
5735}
5736
6dd4ee7c
KS
5737/*
5738 * Expand an inode by new_extra_isize bytes.
5739 * Returns 0 on success or negative error number on failure.
5740 */
1d03ec98
AK
5741static int ext4_expand_extra_isize(struct inode *inode,
5742 unsigned int new_extra_isize,
5743 struct ext4_iloc iloc,
5744 handle_t *handle)
6dd4ee7c
KS
5745{
5746 struct ext4_inode *raw_inode;
5747 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
5748
5749 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5750 return 0;
5751
5752 raw_inode = ext4_raw_inode(&iloc);
5753
5754 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
5755
5756 /* No extended attributes present */
19f5fb7a
TT
5757 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5758 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
5759 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5760 new_extra_isize);
5761 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5762 return 0;
5763 }
5764
5765 /* try to expand with EAs present */
5766 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5767 raw_inode, handle);
5768}
5769
ac27a0ec
DK
5770/*
5771 * What we do here is to mark the in-core inode as clean with respect to inode
5772 * dirtiness (it may still be data-dirty).
5773 * This means that the in-core inode may be reaped by prune_icache
5774 * without having to perform any I/O. This is a very good thing,
5775 * because *any* task may call prune_icache - even ones which
5776 * have a transaction open against a different journal.
5777 *
5778 * Is this cheating? Not really. Sure, we haven't written the
5779 * inode out, but prune_icache isn't a user-visible syncing function.
5780 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5781 * we start and wait on commits.
5782 *
5783 * Is this efficient/effective? Well, we're being nice to the system
5784 * by cleaning up our inodes proactively so they can be reaped
5785 * without I/O. But we are potentially leaving up to five seconds'
5786 * worth of inodes floating about which prune_icache wants us to
5787 * write out. One way to fix that would be to get prune_icache()
5788 * to do a write_super() to free up some memory. It has the desired
5789 * effect.
5790 */
617ba13b 5791int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5792{
617ba13b 5793 struct ext4_iloc iloc;
6dd4ee7c
KS
5794 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5795 static unsigned int mnt_count;
5796 int err, ret;
ac27a0ec
DK
5797
5798 might_sleep();
617ba13b 5799 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5800 if (ext4_handle_valid(handle) &&
5801 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5802 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
5803 /*
5804 * We need extra buffer credits since we may write into EA block
5805 * with this same handle. If journal_extend fails, then it will
5806 * only result in a minor loss of functionality for that inode.
5807 * If this is felt to be critical, then e2fsck should be run to
5808 * force a large enough s_min_extra_isize.
5809 */
5810 if ((jbd2_journal_extend(handle,
5811 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5812 ret = ext4_expand_extra_isize(inode,
5813 sbi->s_want_extra_isize,
5814 iloc, handle);
5815 if (ret) {
19f5fb7a
TT
5816 ext4_set_inode_state(inode,
5817 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
5818 if (mnt_count !=
5819 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5820 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5821 "Unable to expand inode %lu. Delete"
5822 " some EAs or run e2fsck.",
5823 inode->i_ino);
c1bddad9
AK
5824 mnt_count =
5825 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5826 }
5827 }
5828 }
5829 }
ac27a0ec 5830 if (!err)
617ba13b 5831 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5832 return err;
5833}
5834
5835/*
617ba13b 5836 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5837 *
5838 * We're really interested in the case where a file is being extended.
5839 * i_size has been changed by generic_commit_write() and we thus need
5840 * to include the updated inode in the current transaction.
5841 *
5dd4056d 5842 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5843 * are allocated to the file.
5844 *
5845 * If the inode is marked synchronous, we don't honour that here - doing
5846 * so would cause a commit on atime updates, which we don't bother doing.
5847 * We handle synchronous inodes at the highest possible level.
5848 */
617ba13b 5849void ext4_dirty_inode(struct inode *inode)
ac27a0ec 5850{
ac27a0ec
DK
5851 handle_t *handle;
5852
617ba13b 5853 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
5854 if (IS_ERR(handle))
5855 goto out;
f3dc272f 5856
f3dc272f
CW
5857 ext4_mark_inode_dirty(handle, inode);
5858
617ba13b 5859 ext4_journal_stop(handle);
ac27a0ec
DK
5860out:
5861 return;
5862}
5863
5864#if 0
5865/*
5866 * Bind an inode's backing buffer_head into this transaction, to prevent
5867 * it from being flushed to disk early. Unlike
617ba13b 5868 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5869 * returns no iloc structure, so the caller needs to repeat the iloc
5870 * lookup to mark the inode dirty later.
5871 */
617ba13b 5872static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5873{
617ba13b 5874 struct ext4_iloc iloc;
ac27a0ec
DK
5875
5876 int err = 0;
5877 if (handle) {
617ba13b 5878 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5879 if (!err) {
5880 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5881 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5882 if (!err)
0390131b 5883 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5884 NULL,
0390131b 5885 iloc.bh);
ac27a0ec
DK
5886 brelse(iloc.bh);
5887 }
5888 }
617ba13b 5889 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5890 return err;
5891}
5892#endif
5893
617ba13b 5894int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5895{
5896 journal_t *journal;
5897 handle_t *handle;
5898 int err;
5899
5900 /*
5901 * We have to be very careful here: changing a data block's
5902 * journaling status dynamically is dangerous. If we write a
5903 * data block to the journal, change the status and then delete
5904 * that block, we risk forgetting to revoke the old log record
5905 * from the journal and so a subsequent replay can corrupt data.
5906 * So, first we make sure that the journal is empty and that
5907 * nobody is changing anything.
5908 */
5909
617ba13b 5910 journal = EXT4_JOURNAL(inode);
0390131b
FM
5911 if (!journal)
5912 return 0;
d699594d 5913 if (is_journal_aborted(journal))
ac27a0ec
DK
5914 return -EROFS;
5915
dab291af
MC
5916 jbd2_journal_lock_updates(journal);
5917 jbd2_journal_flush(journal);
ac27a0ec
DK
5918
5919 /*
5920 * OK, there are no updates running now, and all cached data is
5921 * synced to disk. We are now in a completely consistent state
5922 * which doesn't have anything in the journal, and we know that
5923 * no filesystem updates are running, so it is safe to modify
5924 * the inode's in-core data-journaling state flag now.
5925 */
5926
5927 if (val)
12e9b892 5928 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
ac27a0ec 5929 else
12e9b892 5930 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
617ba13b 5931 ext4_set_aops(inode);
ac27a0ec 5932
dab291af 5933 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
5934
5935 /* Finally we can mark the inode as dirty. */
5936
617ba13b 5937 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
5938 if (IS_ERR(handle))
5939 return PTR_ERR(handle);
5940
617ba13b 5941 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5942 ext4_handle_sync(handle);
617ba13b
MC
5943 ext4_journal_stop(handle);
5944 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5945
5946 return err;
5947}
2e9ee850
AK
5948
5949static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5950{
5951 return !buffer_mapped(bh);
5952}
5953
c2ec175c 5954int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5955{
c2ec175c 5956 struct page *page = vmf->page;
2e9ee850
AK
5957 loff_t size;
5958 unsigned long len;
5959 int ret = -EINVAL;
79f0be8d 5960 void *fsdata;
2e9ee850
AK
5961 struct file *file = vma->vm_file;
5962 struct inode *inode = file->f_path.dentry->d_inode;
5963 struct address_space *mapping = inode->i_mapping;
5964
5965 /*
5966 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5967 * get i_mutex because we are already holding mmap_sem.
5968 */
5969 down_read(&inode->i_alloc_sem);
5970 size = i_size_read(inode);
5971 if (page->mapping != mapping || size <= page_offset(page)
5972 || !PageUptodate(page)) {
5973 /* page got truncated from under us? */
5974 goto out_unlock;
5975 }
5976 ret = 0;
5977 if (PageMappedToDisk(page))
5978 goto out_unlock;
5979
5980 if (page->index == size >> PAGE_CACHE_SHIFT)
5981 len = size & ~PAGE_CACHE_MASK;
5982 else
5983 len = PAGE_CACHE_SIZE;
5984
a827eaff
AK
5985 lock_page(page);
5986 /*
5987 * return if we have all the buffers mapped. This avoid
5988 * the need to call write_begin/write_end which does a
5989 * journal_start/journal_stop which can block and take
5990 * long time
5991 */
2e9ee850 5992 if (page_has_buffers(page)) {
2e9ee850 5993 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
a827eaff
AK
5994 ext4_bh_unmapped)) {
5995 unlock_page(page);
2e9ee850 5996 goto out_unlock;
a827eaff 5997 }
2e9ee850 5998 }
a827eaff 5999 unlock_page(page);
2e9ee850
AK
6000 /*
6001 * OK, we need to fill the hole... Do write_begin write_end
6002 * to do block allocation/reservation.We are not holding
6003 * inode.i__mutex here. That allow * parallel write_begin,
6004 * write_end call. lock_page prevent this from happening
6005 * on the same page though
6006 */
6007 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 6008 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
6009 if (ret < 0)
6010 goto out_unlock;
6011 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 6012 len, len, page, fsdata);
2e9ee850
AK
6013 if (ret < 0)
6014 goto out_unlock;
6015 ret = 0;
6016out_unlock:
c2ec175c
NP
6017 if (ret)
6018 ret = VM_FAULT_SIGBUS;
2e9ee850
AK
6019 up_read(&inode->i_alloc_sem);
6020 return ret;
6021}