]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/s2io.c
net: convert print_mac to %pM
[net-next-2.6.git] / drivers / net / s2io.c
CommitLineData
1da177e4 1/************************************************************************
776bd20f 2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
0c61ed5f 3 * Copyright(c) 2002-2007 Neterion Inc.
1da177e4
LT
4
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
20346722
K
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
1da177e4
LT
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
20346722 21 * Francois Romieu : For pointing out all code part that were
1da177e4 22 * deprecated and also styling related comments.
20346722 23 * Grant Grundler : For helping me get rid of some Architecture
1da177e4
LT
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
20346722 26 *
1da177e4
LT
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
9dc737a7 29 *
20346722
K
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
9dc737a7
AR
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
da6971d8 34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
6d517a27 35 * values are 1, 2.
1da177e4 36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
20346722 37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
1da177e4 38 * Tx descriptors that can be associated with each corresponding FIFO.
9dc737a7 39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
8abc4d5b 40 * 2(MSI_X). Default value is '2(MSI_X)'
43b7c451 41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
9dc737a7
AR
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
926930b2
SS
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
3a3d5756
SH
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
1da177e4
LT
55 ************************************************************************/
56
1da177e4
LT
57#include <linux/module.h>
58#include <linux/types.h>
59#include <linux/errno.h>
60#include <linux/ioport.h>
61#include <linux/pci.h>
1e7f0bd8 62#include <linux/dma-mapping.h>
1da177e4
LT
63#include <linux/kernel.h>
64#include <linux/netdevice.h>
65#include <linux/etherdevice.h>
66#include <linux/skbuff.h>
67#include <linux/init.h>
68#include <linux/delay.h>
69#include <linux/stddef.h>
70#include <linux/ioctl.h>
71#include <linux/timex.h>
1da177e4 72#include <linux/ethtool.h>
1da177e4 73#include <linux/workqueue.h>
be3a6b02 74#include <linux/if_vlan.h>
7d3d0439
RA
75#include <linux/ip.h>
76#include <linux/tcp.h>
77#include <net/tcp.h>
1da177e4 78
1da177e4
LT
79#include <asm/system.h>
80#include <asm/uaccess.h>
20346722 81#include <asm/io.h>
fe931395 82#include <asm/div64.h>
330ce0de 83#include <asm/irq.h>
1da177e4
LT
84
85/* local include */
86#include "s2io.h"
87#include "s2io-regs.h"
88
29d0a2b0 89#define DRV_VERSION "2.0.26.25"
6c1792f4 90
1da177e4 91/* S2io Driver name & version. */
20346722 92static char s2io_driver_name[] = "Neterion";
6c1792f4 93static char s2io_driver_version[] = DRV_VERSION;
1da177e4 94
6d517a27
VP
95static int rxd_size[2] = {32,48};
96static int rxd_count[2] = {127,85};
da6971d8 97
1ee6dd77 98static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
5e25b9dd
K
99{
100 int ret;
101
102 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
103 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
104
105 return ret;
106}
107
20346722 108/*
1da177e4
LT
109 * Cards with following subsystem_id have a link state indication
110 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
111 * macro below identifies these cards given the subsystem_id.
112 */
541ae68f
K
113#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
114 (dev_type == XFRAME_I_DEVICE) ? \
115 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
116 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
1da177e4
LT
117
118#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
119 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
1da177e4 120
92b84437
SS
121static inline int is_s2io_card_up(const struct s2io_nic * sp)
122{
123 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
124}
125
1da177e4
LT
126/* Ethtool related variables and Macros. */
127static char s2io_gstrings[][ETH_GSTRING_LEN] = {
128 "Register test\t(offline)",
129 "Eeprom test\t(offline)",
130 "Link test\t(online)",
131 "RLDRAM test\t(offline)",
132 "BIST Test\t(offline)"
133};
134
fa1f0cb3 135static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
1da177e4
LT
136 {"tmac_frms"},
137 {"tmac_data_octets"},
138 {"tmac_drop_frms"},
139 {"tmac_mcst_frms"},
140 {"tmac_bcst_frms"},
141 {"tmac_pause_ctrl_frms"},
bd1034f0
AR
142 {"tmac_ttl_octets"},
143 {"tmac_ucst_frms"},
144 {"tmac_nucst_frms"},
1da177e4 145 {"tmac_any_err_frms"},
bd1034f0 146 {"tmac_ttl_less_fb_octets"},
1da177e4
LT
147 {"tmac_vld_ip_octets"},
148 {"tmac_vld_ip"},
149 {"tmac_drop_ip"},
150 {"tmac_icmp"},
151 {"tmac_rst_tcp"},
152 {"tmac_tcp"},
153 {"tmac_udp"},
154 {"rmac_vld_frms"},
155 {"rmac_data_octets"},
156 {"rmac_fcs_err_frms"},
157 {"rmac_drop_frms"},
158 {"rmac_vld_mcst_frms"},
159 {"rmac_vld_bcst_frms"},
160 {"rmac_in_rng_len_err_frms"},
bd1034f0 161 {"rmac_out_rng_len_err_frms"},
1da177e4
LT
162 {"rmac_long_frms"},
163 {"rmac_pause_ctrl_frms"},
bd1034f0
AR
164 {"rmac_unsup_ctrl_frms"},
165 {"rmac_ttl_octets"},
166 {"rmac_accepted_ucst_frms"},
167 {"rmac_accepted_nucst_frms"},
1da177e4 168 {"rmac_discarded_frms"},
bd1034f0
AR
169 {"rmac_drop_events"},
170 {"rmac_ttl_less_fb_octets"},
171 {"rmac_ttl_frms"},
1da177e4
LT
172 {"rmac_usized_frms"},
173 {"rmac_osized_frms"},
174 {"rmac_frag_frms"},
175 {"rmac_jabber_frms"},
bd1034f0
AR
176 {"rmac_ttl_64_frms"},
177 {"rmac_ttl_65_127_frms"},
178 {"rmac_ttl_128_255_frms"},
179 {"rmac_ttl_256_511_frms"},
180 {"rmac_ttl_512_1023_frms"},
181 {"rmac_ttl_1024_1518_frms"},
1da177e4
LT
182 {"rmac_ip"},
183 {"rmac_ip_octets"},
184 {"rmac_hdr_err_ip"},
185 {"rmac_drop_ip"},
186 {"rmac_icmp"},
187 {"rmac_tcp"},
188 {"rmac_udp"},
189 {"rmac_err_drp_udp"},
bd1034f0
AR
190 {"rmac_xgmii_err_sym"},
191 {"rmac_frms_q0"},
192 {"rmac_frms_q1"},
193 {"rmac_frms_q2"},
194 {"rmac_frms_q3"},
195 {"rmac_frms_q4"},
196 {"rmac_frms_q5"},
197 {"rmac_frms_q6"},
198 {"rmac_frms_q7"},
199 {"rmac_full_q0"},
200 {"rmac_full_q1"},
201 {"rmac_full_q2"},
202 {"rmac_full_q3"},
203 {"rmac_full_q4"},
204 {"rmac_full_q5"},
205 {"rmac_full_q6"},
206 {"rmac_full_q7"},
1da177e4 207 {"rmac_pause_cnt"},
bd1034f0
AR
208 {"rmac_xgmii_data_err_cnt"},
209 {"rmac_xgmii_ctrl_err_cnt"},
1da177e4
LT
210 {"rmac_accepted_ip"},
211 {"rmac_err_tcp"},
bd1034f0
AR
212 {"rd_req_cnt"},
213 {"new_rd_req_cnt"},
214 {"new_rd_req_rtry_cnt"},
215 {"rd_rtry_cnt"},
216 {"wr_rtry_rd_ack_cnt"},
217 {"wr_req_cnt"},
218 {"new_wr_req_cnt"},
219 {"new_wr_req_rtry_cnt"},
220 {"wr_rtry_cnt"},
221 {"wr_disc_cnt"},
222 {"rd_rtry_wr_ack_cnt"},
223 {"txp_wr_cnt"},
224 {"txd_rd_cnt"},
225 {"txd_wr_cnt"},
226 {"rxd_rd_cnt"},
227 {"rxd_wr_cnt"},
228 {"txf_rd_cnt"},
fa1f0cb3
SS
229 {"rxf_wr_cnt"}
230};
231
232static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
bd1034f0
AR
233 {"rmac_ttl_1519_4095_frms"},
234 {"rmac_ttl_4096_8191_frms"},
235 {"rmac_ttl_8192_max_frms"},
236 {"rmac_ttl_gt_max_frms"},
237 {"rmac_osized_alt_frms"},
238 {"rmac_jabber_alt_frms"},
239 {"rmac_gt_max_alt_frms"},
240 {"rmac_vlan_frms"},
241 {"rmac_len_discard"},
242 {"rmac_fcs_discard"},
243 {"rmac_pf_discard"},
244 {"rmac_da_discard"},
245 {"rmac_red_discard"},
246 {"rmac_rts_discard"},
247 {"rmac_ingm_full_discard"},
fa1f0cb3
SS
248 {"link_fault_cnt"}
249};
250
251static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
7ba013ac
K
252 {"\n DRIVER STATISTICS"},
253 {"single_bit_ecc_errs"},
254 {"double_bit_ecc_errs"},
bd1034f0
AR
255 {"parity_err_cnt"},
256 {"serious_err_cnt"},
257 {"soft_reset_cnt"},
258 {"fifo_full_cnt"},
8116f3cf
SS
259 {"ring_0_full_cnt"},
260 {"ring_1_full_cnt"},
261 {"ring_2_full_cnt"},
262 {"ring_3_full_cnt"},
263 {"ring_4_full_cnt"},
264 {"ring_5_full_cnt"},
265 {"ring_6_full_cnt"},
266 {"ring_7_full_cnt"},
43b7c451
SH
267 {"alarm_transceiver_temp_high"},
268 {"alarm_transceiver_temp_low"},
269 {"alarm_laser_bias_current_high"},
270 {"alarm_laser_bias_current_low"},
271 {"alarm_laser_output_power_high"},
272 {"alarm_laser_output_power_low"},
273 {"warn_transceiver_temp_high"},
274 {"warn_transceiver_temp_low"},
275 {"warn_laser_bias_current_high"},
276 {"warn_laser_bias_current_low"},
277 {"warn_laser_output_power_high"},
278 {"warn_laser_output_power_low"},
279 {"lro_aggregated_pkts"},
280 {"lro_flush_both_count"},
281 {"lro_out_of_sequence_pkts"},
282 {"lro_flush_due_to_max_pkts"},
283 {"lro_avg_aggr_pkts"},
284 {"mem_alloc_fail_cnt"},
285 {"pci_map_fail_cnt"},
286 {"watchdog_timer_cnt"},
287 {"mem_allocated"},
288 {"mem_freed"},
289 {"link_up_cnt"},
290 {"link_down_cnt"},
291 {"link_up_time"},
292 {"link_down_time"},
293 {"tx_tcode_buf_abort_cnt"},
294 {"tx_tcode_desc_abort_cnt"},
295 {"tx_tcode_parity_err_cnt"},
296 {"tx_tcode_link_loss_cnt"},
297 {"tx_tcode_list_proc_err_cnt"},
298 {"rx_tcode_parity_err_cnt"},
299 {"rx_tcode_abort_cnt"},
300 {"rx_tcode_parity_abort_cnt"},
301 {"rx_tcode_rda_fail_cnt"},
302 {"rx_tcode_unkn_prot_cnt"},
303 {"rx_tcode_fcs_err_cnt"},
304 {"rx_tcode_buf_size_err_cnt"},
305 {"rx_tcode_rxd_corrupt_cnt"},
306 {"rx_tcode_unkn_err_cnt"},
8116f3cf
SS
307 {"tda_err_cnt"},
308 {"pfc_err_cnt"},
309 {"pcc_err_cnt"},
310 {"tti_err_cnt"},
311 {"tpa_err_cnt"},
312 {"sm_err_cnt"},
313 {"lso_err_cnt"},
314 {"mac_tmac_err_cnt"},
315 {"mac_rmac_err_cnt"},
316 {"xgxs_txgxs_err_cnt"},
317 {"xgxs_rxgxs_err_cnt"},
318 {"rc_err_cnt"},
319 {"prc_pcix_err_cnt"},
320 {"rpa_err_cnt"},
321 {"rda_err_cnt"},
322 {"rti_err_cnt"},
323 {"mc_err_cnt"}
1da177e4
LT
324};
325
4c3616cd
AMR
326#define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
327#define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
328#define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
fa1f0cb3
SS
329
330#define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
331#define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
332
333#define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
334#define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
1da177e4 335
4c3616cd 336#define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
1da177e4
LT
337#define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
338
25fff88e
K
339#define S2IO_TIMER_CONF(timer, handle, arg, exp) \
340 init_timer(&timer); \
341 timer.function = handle; \
342 timer.data = (unsigned long) arg; \
343 mod_timer(&timer, (jiffies + exp)) \
344
2fd37688
SS
345/* copy mac addr to def_mac_addr array */
346static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
347{
348 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
349 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
350 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
351 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
352 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
353 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
354}
be3a6b02
K
355/* Add the vlan */
356static void s2io_vlan_rx_register(struct net_device *dev,
357 struct vlan_group *grp)
358{
2fda096d 359 int i;
1ee6dd77 360 struct s2io_nic *nic = dev->priv;
2fda096d
SR
361 unsigned long flags[MAX_TX_FIFOS];
362 struct mac_info *mac_control = &nic->mac_control;
363 struct config_param *config = &nic->config;
364
365 for (i = 0; i < config->tx_fifo_num; i++)
366 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
be3a6b02 367
be3a6b02 368 nic->vlgrp = grp;
2fda096d
SR
369 for (i = config->tx_fifo_num - 1; i >= 0; i--)
370 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
371 flags[i]);
be3a6b02
K
372}
373
cdb5bf02
SH
374/* Unregister the vlan */
375static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
376{
377 int i;
378 struct s2io_nic *nic = dev->priv;
379 unsigned long flags[MAX_TX_FIFOS];
380 struct mac_info *mac_control = &nic->mac_control;
381 struct config_param *config = &nic->config;
382
383 for (i = 0; i < config->tx_fifo_num; i++)
384 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
385
386 if (nic->vlgrp)
387 vlan_group_set_device(nic->vlgrp, vid, NULL);
388
389 for (i = config->tx_fifo_num - 1; i >= 0; i--)
390 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
391 flags[i]);
392}
393
20346722 394/*
1da177e4
LT
395 * Constants to be programmed into the Xena's registers, to configure
396 * the XAUI.
397 */
398
1da177e4 399#define END_SIGN 0x0
f71e1309 400static const u64 herc_act_dtx_cfg[] = {
541ae68f 401 /* Set address */
e960fc5c 402 0x8000051536750000ULL, 0x80000515367500E0ULL,
541ae68f 403 /* Write data */
e960fc5c 404 0x8000051536750004ULL, 0x80000515367500E4ULL,
541ae68f
K
405 /* Set address */
406 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
407 /* Write data */
408 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
409 /* Set address */
e960fc5c 410 0x801205150D440000ULL, 0x801205150D4400E0ULL,
411 /* Write data */
412 0x801205150D440004ULL, 0x801205150D4400E4ULL,
413 /* Set address */
541ae68f
K
414 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
415 /* Write data */
416 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
417 /* Done */
418 END_SIGN
419};
420
f71e1309 421static const u64 xena_dtx_cfg[] = {
c92ca04b 422 /* Set address */
1da177e4 423 0x8000051500000000ULL, 0x80000515000000E0ULL,
c92ca04b
AR
424 /* Write data */
425 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
426 /* Set address */
427 0x8001051500000000ULL, 0x80010515000000E0ULL,
428 /* Write data */
429 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
430 /* Set address */
1da177e4 431 0x8002051500000000ULL, 0x80020515000000E0ULL,
c92ca04b
AR
432 /* Write data */
433 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
1da177e4
LT
434 END_SIGN
435};
436
20346722 437/*
1da177e4
LT
438 * Constants for Fixing the MacAddress problem seen mostly on
439 * Alpha machines.
440 */
f71e1309 441static const u64 fix_mac[] = {
1da177e4
LT
442 0x0060000000000000ULL, 0x0060600000000000ULL,
443 0x0040600000000000ULL, 0x0000600000000000ULL,
444 0x0020600000000000ULL, 0x0060600000000000ULL,
445 0x0020600000000000ULL, 0x0060600000000000ULL,
446 0x0020600000000000ULL, 0x0060600000000000ULL,
447 0x0020600000000000ULL, 0x0060600000000000ULL,
448 0x0020600000000000ULL, 0x0060600000000000ULL,
449 0x0020600000000000ULL, 0x0060600000000000ULL,
450 0x0020600000000000ULL, 0x0060600000000000ULL,
451 0x0020600000000000ULL, 0x0060600000000000ULL,
452 0x0020600000000000ULL, 0x0060600000000000ULL,
453 0x0020600000000000ULL, 0x0060600000000000ULL,
454 0x0020600000000000ULL, 0x0000600000000000ULL,
455 0x0040600000000000ULL, 0x0060600000000000ULL,
456 END_SIGN
457};
458
b41477f3
AR
459MODULE_LICENSE("GPL");
460MODULE_VERSION(DRV_VERSION);
461
462
1da177e4 463/* Module Loadable parameters. */
6cfc482b 464S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
b41477f3 465S2IO_PARM_INT(rx_ring_num, 1);
3a3d5756 466S2IO_PARM_INT(multiq, 0);
b41477f3
AR
467S2IO_PARM_INT(rx_ring_mode, 1);
468S2IO_PARM_INT(use_continuous_tx_intrs, 1);
469S2IO_PARM_INT(rmac_pause_time, 0x100);
470S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
471S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
472S2IO_PARM_INT(shared_splits, 0);
473S2IO_PARM_INT(tmac_util_period, 5);
474S2IO_PARM_INT(rmac_util_period, 5);
b41477f3 475S2IO_PARM_INT(l3l4hdr_size, 128);
6cfc482b
SH
476/* 0 is no steering, 1 is Priority steering, 2 is Default steering */
477S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
303bcb4b 478/* Frequency of Rx desc syncs expressed as power of 2 */
b41477f3 479S2IO_PARM_INT(rxsync_frequency, 3);
eccb8628 480/* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
8abc4d5b 481S2IO_PARM_INT(intr_type, 2);
7d3d0439 482/* Large receive offload feature */
43b7c451
SH
483static unsigned int lro_enable;
484module_param_named(lro, lro_enable, uint, 0);
485
7d3d0439
RA
486/* Max pkts to be aggregated by LRO at one time. If not specified,
487 * aggregation happens until we hit max IP pkt size(64K)
488 */
b41477f3 489S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
b41477f3 490S2IO_PARM_INT(indicate_max_pkts, 0);
db874e65
SS
491
492S2IO_PARM_INT(napi, 1);
493S2IO_PARM_INT(ufo, 0);
926930b2 494S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
b41477f3
AR
495
496static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
497 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
498static unsigned int rx_ring_sz[MAX_RX_RINGS] =
499 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
500static unsigned int rts_frm_len[MAX_RX_RINGS] =
501 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
502
503module_param_array(tx_fifo_len, uint, NULL, 0);
504module_param_array(rx_ring_sz, uint, NULL, 0);
505module_param_array(rts_frm_len, uint, NULL, 0);
1da177e4 506
20346722 507/*
1da177e4 508 * S2IO device table.
20346722 509 * This table lists all the devices that this driver supports.
1da177e4
LT
510 */
511static struct pci_device_id s2io_tbl[] __devinitdata = {
512 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
513 PCI_ANY_ID, PCI_ANY_ID},
514 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
515 PCI_ANY_ID, PCI_ANY_ID},
516 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
20346722
K
517 PCI_ANY_ID, PCI_ANY_ID},
518 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
519 PCI_ANY_ID, PCI_ANY_ID},
1da177e4
LT
520 {0,}
521};
522
523MODULE_DEVICE_TABLE(pci, s2io_tbl);
524
d796fdb7
LV
525static struct pci_error_handlers s2io_err_handler = {
526 .error_detected = s2io_io_error_detected,
527 .slot_reset = s2io_io_slot_reset,
528 .resume = s2io_io_resume,
529};
530
1da177e4
LT
531static struct pci_driver s2io_driver = {
532 .name = "S2IO",
533 .id_table = s2io_tbl,
534 .probe = s2io_init_nic,
535 .remove = __devexit_p(s2io_rem_nic),
d796fdb7 536 .err_handler = &s2io_err_handler,
1da177e4
LT
537};
538
539/* A simplifier macro used both by init and free shared_mem Fns(). */
540#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
541
3a3d5756
SH
542/* netqueue manipulation helper functions */
543static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
544{
fd2ea0a7
DM
545 if (!sp->config.multiq) {
546 int i;
547
3a3d5756
SH
548 for (i = 0; i < sp->config.tx_fifo_num; i++)
549 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
3a3d5756 550 }
fd2ea0a7 551 netif_tx_stop_all_queues(sp->dev);
3a3d5756
SH
552}
553
554static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
555{
fd2ea0a7 556 if (!sp->config.multiq)
3a3d5756
SH
557 sp->mac_control.fifos[fifo_no].queue_state =
558 FIFO_QUEUE_STOP;
fd2ea0a7
DM
559
560 netif_tx_stop_all_queues(sp->dev);
3a3d5756
SH
561}
562
563static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
564{
fd2ea0a7
DM
565 if (!sp->config.multiq) {
566 int i;
567
3a3d5756
SH
568 for (i = 0; i < sp->config.tx_fifo_num; i++)
569 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
3a3d5756 570 }
fd2ea0a7 571 netif_tx_start_all_queues(sp->dev);
3a3d5756
SH
572}
573
574static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
575{
fd2ea0a7 576 if (!sp->config.multiq)
3a3d5756
SH
577 sp->mac_control.fifos[fifo_no].queue_state =
578 FIFO_QUEUE_START;
fd2ea0a7
DM
579
580 netif_tx_start_all_queues(sp->dev);
3a3d5756
SH
581}
582
583static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
584{
fd2ea0a7
DM
585 if (!sp->config.multiq) {
586 int i;
587
3a3d5756
SH
588 for (i = 0; i < sp->config.tx_fifo_num; i++)
589 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
3a3d5756 590 }
fd2ea0a7 591 netif_tx_wake_all_queues(sp->dev);
3a3d5756
SH
592}
593
594static inline void s2io_wake_tx_queue(
595 struct fifo_info *fifo, int cnt, u8 multiq)
596{
597
3a3d5756
SH
598 if (multiq) {
599 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
600 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
b19fa1fa 601 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
3a3d5756
SH
602 if (netif_queue_stopped(fifo->dev)) {
603 fifo->queue_state = FIFO_QUEUE_START;
604 netif_wake_queue(fifo->dev);
605 }
606 }
607}
608
1da177e4
LT
609/**
610 * init_shared_mem - Allocation and Initialization of Memory
611 * @nic: Device private variable.
20346722
K
612 * Description: The function allocates all the memory areas shared
613 * between the NIC and the driver. This includes Tx descriptors,
1da177e4
LT
614 * Rx descriptors and the statistics block.
615 */
616
617static int init_shared_mem(struct s2io_nic *nic)
618{
619 u32 size;
620 void *tmp_v_addr, *tmp_v_addr_next;
621 dma_addr_t tmp_p_addr, tmp_p_addr_next;
1ee6dd77 622 struct RxD_block *pre_rxd_blk = NULL;
372cc597 623 int i, j, blk_cnt;
1da177e4
LT
624 int lst_size, lst_per_page;
625 struct net_device *dev = nic->dev;
8ae418cf 626 unsigned long tmp;
1ee6dd77 627 struct buffAdd *ba;
1da177e4 628
1ee6dd77 629 struct mac_info *mac_control;
1da177e4 630 struct config_param *config;
491976b2 631 unsigned long long mem_allocated = 0;
1da177e4
LT
632
633 mac_control = &nic->mac_control;
634 config = &nic->config;
635
636
637 /* Allocation and initialization of TXDLs in FIOFs */
638 size = 0;
639 for (i = 0; i < config->tx_fifo_num; i++) {
640 size += config->tx_cfg[i].fifo_len;
641 }
642 if (size > MAX_AVAILABLE_TXDS) {
b41477f3 643 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
0b1f7ebe 644 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
b41477f3 645 return -EINVAL;
1da177e4
LT
646 }
647
2fda096d
SR
648 size = 0;
649 for (i = 0; i < config->tx_fifo_num; i++) {
650 size = config->tx_cfg[i].fifo_len;
651 /*
652 * Legal values are from 2 to 8192
653 */
654 if (size < 2) {
655 DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size);
656 DBG_PRINT(ERR_DBG, "for fifo %d\n", i);
657 DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len"
658 "are 2 to 8192\n");
659 return -EINVAL;
660 }
661 }
662
1ee6dd77 663 lst_size = (sizeof(struct TxD) * config->max_txds);
1da177e4
LT
664 lst_per_page = PAGE_SIZE / lst_size;
665
666 for (i = 0; i < config->tx_fifo_num; i++) {
667 int fifo_len = config->tx_cfg[i].fifo_len;
1ee6dd77 668 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
bd684e43 669 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
20346722
K
670 GFP_KERNEL);
671 if (!mac_control->fifos[i].list_info) {
0c61ed5f 672 DBG_PRINT(INFO_DBG,
1da177e4
LT
673 "Malloc failed for list_info\n");
674 return -ENOMEM;
675 }
491976b2 676 mem_allocated += list_holder_size;
1da177e4
LT
677 }
678 for (i = 0; i < config->tx_fifo_num; i++) {
679 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
680 lst_per_page);
20346722
K
681 mac_control->fifos[i].tx_curr_put_info.offset = 0;
682 mac_control->fifos[i].tx_curr_put_info.fifo_len =
1da177e4 683 config->tx_cfg[i].fifo_len - 1;
20346722
K
684 mac_control->fifos[i].tx_curr_get_info.offset = 0;
685 mac_control->fifos[i].tx_curr_get_info.fifo_len =
1da177e4 686 config->tx_cfg[i].fifo_len - 1;
20346722
K
687 mac_control->fifos[i].fifo_no = i;
688 mac_control->fifos[i].nic = nic;
fed5eccd 689 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
3a3d5756 690 mac_control->fifos[i].dev = dev;
20346722 691
1da177e4
LT
692 for (j = 0; j < page_num; j++) {
693 int k = 0;
694 dma_addr_t tmp_p;
695 void *tmp_v;
696 tmp_v = pci_alloc_consistent(nic->pdev,
697 PAGE_SIZE, &tmp_p);
698 if (!tmp_v) {
0c61ed5f 699 DBG_PRINT(INFO_DBG,
1da177e4 700 "pci_alloc_consistent ");
0c61ed5f 701 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
1da177e4
LT
702 return -ENOMEM;
703 }
776bd20f 704 /* If we got a zero DMA address(can happen on
705 * certain platforms like PPC), reallocate.
706 * Store virtual address of page we don't want,
707 * to be freed later.
708 */
709 if (!tmp_p) {
710 mac_control->zerodma_virt_addr = tmp_v;
6aa20a22 711 DBG_PRINT(INIT_DBG,
776bd20f 712 "%s: Zero DMA address for TxDL. ", dev->name);
6aa20a22 713 DBG_PRINT(INIT_DBG,
6b4d617d 714 "Virtual address %p\n", tmp_v);
776bd20f 715 tmp_v = pci_alloc_consistent(nic->pdev,
716 PAGE_SIZE, &tmp_p);
717 if (!tmp_v) {
0c61ed5f 718 DBG_PRINT(INFO_DBG,
776bd20f 719 "pci_alloc_consistent ");
0c61ed5f 720 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
776bd20f 721 return -ENOMEM;
722 }
491976b2 723 mem_allocated += PAGE_SIZE;
776bd20f 724 }
1da177e4
LT
725 while (k < lst_per_page) {
726 int l = (j * lst_per_page) + k;
727 if (l == config->tx_cfg[i].fifo_len)
20346722
K
728 break;
729 mac_control->fifos[i].list_info[l].list_virt_addr =
1da177e4 730 tmp_v + (k * lst_size);
20346722 731 mac_control->fifos[i].list_info[l].list_phy_addr =
1da177e4
LT
732 tmp_p + (k * lst_size);
733 k++;
734 }
735 }
736 }
1da177e4 737
2fda096d
SR
738 for (i = 0; i < config->tx_fifo_num; i++) {
739 size = config->tx_cfg[i].fifo_len;
740 mac_control->fifos[i].ufo_in_band_v
741 = kcalloc(size, sizeof(u64), GFP_KERNEL);
742 if (!mac_control->fifos[i].ufo_in_band_v)
743 return -ENOMEM;
744 mem_allocated += (size * sizeof(u64));
745 }
fed5eccd 746
1da177e4
LT
747 /* Allocation and initialization of RXDs in Rings */
748 size = 0;
749 for (i = 0; i < config->rx_ring_num; i++) {
da6971d8
AR
750 if (config->rx_cfg[i].num_rxd %
751 (rxd_count[nic->rxd_mode] + 1)) {
1da177e4
LT
752 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
753 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
754 i);
755 DBG_PRINT(ERR_DBG, "RxDs per Block");
756 return FAILURE;
757 }
758 size += config->rx_cfg[i].num_rxd;
20346722 759 mac_control->rings[i].block_count =
da6971d8
AR
760 config->rx_cfg[i].num_rxd /
761 (rxd_count[nic->rxd_mode] + 1 );
762 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
763 mac_control->rings[i].block_count;
1da177e4 764 }
da6971d8 765 if (nic->rxd_mode == RXD_MODE_1)
1ee6dd77 766 size = (size * (sizeof(struct RxD1)));
da6971d8 767 else
1ee6dd77 768 size = (size * (sizeof(struct RxD3)));
1da177e4
LT
769
770 for (i = 0; i < config->rx_ring_num; i++) {
20346722
K
771 mac_control->rings[i].rx_curr_get_info.block_index = 0;
772 mac_control->rings[i].rx_curr_get_info.offset = 0;
773 mac_control->rings[i].rx_curr_get_info.ring_len =
1da177e4 774 config->rx_cfg[i].num_rxd - 1;
20346722
K
775 mac_control->rings[i].rx_curr_put_info.block_index = 0;
776 mac_control->rings[i].rx_curr_put_info.offset = 0;
777 mac_control->rings[i].rx_curr_put_info.ring_len =
1da177e4 778 config->rx_cfg[i].num_rxd - 1;
20346722
K
779 mac_control->rings[i].nic = nic;
780 mac_control->rings[i].ring_no = i;
0425b46a 781 mac_control->rings[i].lro = lro_enable;
20346722 782
da6971d8
AR
783 blk_cnt = config->rx_cfg[i].num_rxd /
784 (rxd_count[nic->rxd_mode] + 1);
1da177e4
LT
785 /* Allocating all the Rx blocks */
786 for (j = 0; j < blk_cnt; j++) {
1ee6dd77 787 struct rx_block_info *rx_blocks;
da6971d8
AR
788 int l;
789
790 rx_blocks = &mac_control->rings[i].rx_blocks[j];
791 size = SIZE_OF_BLOCK; //size is always page size
1da177e4
LT
792 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
793 &tmp_p_addr);
794 if (tmp_v_addr == NULL) {
795 /*
20346722
K
796 * In case of failure, free_shared_mem()
797 * is called, which should free any
798 * memory that was alloced till the
1da177e4
LT
799 * failure happened.
800 */
da6971d8 801 rx_blocks->block_virt_addr = tmp_v_addr;
1da177e4
LT
802 return -ENOMEM;
803 }
491976b2 804 mem_allocated += size;
1da177e4 805 memset(tmp_v_addr, 0, size);
da6971d8
AR
806 rx_blocks->block_virt_addr = tmp_v_addr;
807 rx_blocks->block_dma_addr = tmp_p_addr;
1ee6dd77 808 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
da6971d8
AR
809 rxd_count[nic->rxd_mode],
810 GFP_KERNEL);
372cc597
SS
811 if (!rx_blocks->rxds)
812 return -ENOMEM;
8a4bdbaa 813 mem_allocated +=
491976b2 814 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
da6971d8
AR
815 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
816 rx_blocks->rxds[l].virt_addr =
817 rx_blocks->block_virt_addr +
818 (rxd_size[nic->rxd_mode] * l);
819 rx_blocks->rxds[l].dma_addr =
820 rx_blocks->block_dma_addr +
821 (rxd_size[nic->rxd_mode] * l);
822 }
1da177e4
LT
823 }
824 /* Interlinking all Rx Blocks */
825 for (j = 0; j < blk_cnt; j++) {
20346722
K
826 tmp_v_addr =
827 mac_control->rings[i].rx_blocks[j].block_virt_addr;
1da177e4 828 tmp_v_addr_next =
20346722 829 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4 830 blk_cnt].block_virt_addr;
20346722
K
831 tmp_p_addr =
832 mac_control->rings[i].rx_blocks[j].block_dma_addr;
1da177e4 833 tmp_p_addr_next =
20346722 834 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4
LT
835 blk_cnt].block_dma_addr;
836
1ee6dd77 837 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
1da177e4
LT
838 pre_rxd_blk->reserved_2_pNext_RxD_block =
839 (unsigned long) tmp_v_addr_next;
1da177e4
LT
840 pre_rxd_blk->pNext_RxD_Blk_physical =
841 (u64) tmp_p_addr_next;
842 }
843 }
6d517a27 844 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
845 /*
846 * Allocation of Storages for buffer addresses in 2BUFF mode
847 * and the buffers as well.
848 */
849 for (i = 0; i < config->rx_ring_num; i++) {
850 blk_cnt = config->rx_cfg[i].num_rxd /
851 (rxd_count[nic->rxd_mode]+ 1);
852 mac_control->rings[i].ba =
1ee6dd77 853 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
1da177e4 854 GFP_KERNEL);
da6971d8 855 if (!mac_control->rings[i].ba)
1da177e4 856 return -ENOMEM;
491976b2 857 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
da6971d8
AR
858 for (j = 0; j < blk_cnt; j++) {
859 int k = 0;
860 mac_control->rings[i].ba[j] =
1ee6dd77 861 kmalloc((sizeof(struct buffAdd) *
da6971d8
AR
862 (rxd_count[nic->rxd_mode] + 1)),
863 GFP_KERNEL);
864 if (!mac_control->rings[i].ba[j])
1da177e4 865 return -ENOMEM;
491976b2
SH
866 mem_allocated += (sizeof(struct buffAdd) * \
867 (rxd_count[nic->rxd_mode] + 1));
da6971d8
AR
868 while (k != rxd_count[nic->rxd_mode]) {
869 ba = &mac_control->rings[i].ba[j][k];
870
871 ba->ba_0_org = (void *) kmalloc
872 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
873 if (!ba->ba_0_org)
874 return -ENOMEM;
8a4bdbaa 875 mem_allocated +=
491976b2 876 (BUF0_LEN + ALIGN_SIZE);
da6971d8
AR
877 tmp = (unsigned long)ba->ba_0_org;
878 tmp += ALIGN_SIZE;
879 tmp &= ~((unsigned long) ALIGN_SIZE);
880 ba->ba_0 = (void *) tmp;
881
882 ba->ba_1_org = (void *) kmalloc
883 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
884 if (!ba->ba_1_org)
885 return -ENOMEM;
8a4bdbaa 886 mem_allocated
491976b2 887 += (BUF1_LEN + ALIGN_SIZE);
da6971d8
AR
888 tmp = (unsigned long) ba->ba_1_org;
889 tmp += ALIGN_SIZE;
890 tmp &= ~((unsigned long) ALIGN_SIZE);
891 ba->ba_1 = (void *) tmp;
892 k++;
893 }
1da177e4
LT
894 }
895 }
896 }
1da177e4
LT
897
898 /* Allocation and initialization of Statistics block */
1ee6dd77 899 size = sizeof(struct stat_block);
1da177e4
LT
900 mac_control->stats_mem = pci_alloc_consistent
901 (nic->pdev, size, &mac_control->stats_mem_phy);
902
903 if (!mac_control->stats_mem) {
20346722
K
904 /*
905 * In case of failure, free_shared_mem() is called, which
906 * should free any memory that was alloced till the
1da177e4
LT
907 * failure happened.
908 */
909 return -ENOMEM;
910 }
491976b2 911 mem_allocated += size;
1da177e4
LT
912 mac_control->stats_mem_sz = size;
913
914 tmp_v_addr = mac_control->stats_mem;
1ee6dd77 915 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
1da177e4 916 memset(tmp_v_addr, 0, size);
1da177e4
LT
917 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
918 (unsigned long long) tmp_p_addr);
491976b2 919 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
1da177e4
LT
920 return SUCCESS;
921}
922
20346722
K
923/**
924 * free_shared_mem - Free the allocated Memory
1da177e4
LT
925 * @nic: Device private variable.
926 * Description: This function is to free all memory locations allocated by
927 * the init_shared_mem() function and return it to the kernel.
928 */
929
930static void free_shared_mem(struct s2io_nic *nic)
931{
932 int i, j, blk_cnt, size;
933 void *tmp_v_addr;
934 dma_addr_t tmp_p_addr;
1ee6dd77 935 struct mac_info *mac_control;
1da177e4
LT
936 struct config_param *config;
937 int lst_size, lst_per_page;
8910b49f 938 struct net_device *dev;
491976b2 939 int page_num = 0;
1da177e4
LT
940
941 if (!nic)
942 return;
943
8910b49f
MG
944 dev = nic->dev;
945
1da177e4
LT
946 mac_control = &nic->mac_control;
947 config = &nic->config;
948
1ee6dd77 949 lst_size = (sizeof(struct TxD) * config->max_txds);
1da177e4
LT
950 lst_per_page = PAGE_SIZE / lst_size;
951
952 for (i = 0; i < config->tx_fifo_num; i++) {
491976b2
SH
953 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
954 lst_per_page);
1da177e4
LT
955 for (j = 0; j < page_num; j++) {
956 int mem_blks = (j * lst_per_page);
776bd20f 957 if (!mac_control->fifos[i].list_info)
6aa20a22 958 return;
776bd20f 959 if (!mac_control->fifos[i].list_info[mem_blks].
960 list_virt_addr)
1da177e4
LT
961 break;
962 pci_free_consistent(nic->pdev, PAGE_SIZE,
20346722
K
963 mac_control->fifos[i].
964 list_info[mem_blks].
1da177e4 965 list_virt_addr,
20346722
K
966 mac_control->fifos[i].
967 list_info[mem_blks].
1da177e4 968 list_phy_addr);
8a4bdbaa 969 nic->mac_control.stats_info->sw_stat.mem_freed
491976b2 970 += PAGE_SIZE;
1da177e4 971 }
776bd20f 972 /* If we got a zero DMA address during allocation,
973 * free the page now
974 */
975 if (mac_control->zerodma_virt_addr) {
976 pci_free_consistent(nic->pdev, PAGE_SIZE,
977 mac_control->zerodma_virt_addr,
978 (dma_addr_t)0);
6aa20a22 979 DBG_PRINT(INIT_DBG,
6b4d617d
AM
980 "%s: Freeing TxDL with zero DMA addr. ",
981 dev->name);
982 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
983 mac_control->zerodma_virt_addr);
8a4bdbaa 984 nic->mac_control.stats_info->sw_stat.mem_freed
491976b2 985 += PAGE_SIZE;
776bd20f 986 }
20346722 987 kfree(mac_control->fifos[i].list_info);
8a4bdbaa 988 nic->mac_control.stats_info->sw_stat.mem_freed +=
491976b2 989 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
1da177e4
LT
990 }
991
1da177e4 992 size = SIZE_OF_BLOCK;
1da177e4 993 for (i = 0; i < config->rx_ring_num; i++) {
20346722 994 blk_cnt = mac_control->rings[i].block_count;
1da177e4 995 for (j = 0; j < blk_cnt; j++) {
20346722
K
996 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
997 block_virt_addr;
998 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
999 block_dma_addr;
1da177e4
LT
1000 if (tmp_v_addr == NULL)
1001 break;
1002 pci_free_consistent(nic->pdev, size,
1003 tmp_v_addr, tmp_p_addr);
491976b2 1004 nic->mac_control.stats_info->sw_stat.mem_freed += size;
da6971d8 1005 kfree(mac_control->rings[i].rx_blocks[j].rxds);
8a4bdbaa 1006 nic->mac_control.stats_info->sw_stat.mem_freed +=
491976b2 1007 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
1da177e4
LT
1008 }
1009 }
1010
6d517a27 1011 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
1012 /* Freeing buffer storage addresses in 2BUFF mode. */
1013 for (i = 0; i < config->rx_ring_num; i++) {
1014 blk_cnt = config->rx_cfg[i].num_rxd /
1015 (rxd_count[nic->rxd_mode] + 1);
1016 for (j = 0; j < blk_cnt; j++) {
1017 int k = 0;
1018 if (!mac_control->rings[i].ba[j])
1019 continue;
1020 while (k != rxd_count[nic->rxd_mode]) {
1ee6dd77 1021 struct buffAdd *ba =
da6971d8
AR
1022 &mac_control->rings[i].ba[j][k];
1023 kfree(ba->ba_0_org);
491976b2
SH
1024 nic->mac_control.stats_info->sw_stat.\
1025 mem_freed += (BUF0_LEN + ALIGN_SIZE);
da6971d8 1026 kfree(ba->ba_1_org);
491976b2
SH
1027 nic->mac_control.stats_info->sw_stat.\
1028 mem_freed += (BUF1_LEN + ALIGN_SIZE);
da6971d8
AR
1029 k++;
1030 }
1031 kfree(mac_control->rings[i].ba[j]);
9caab458
SS
1032 nic->mac_control.stats_info->sw_stat.mem_freed +=
1033 (sizeof(struct buffAdd) *
1034 (rxd_count[nic->rxd_mode] + 1));
1da177e4 1035 }
da6971d8 1036 kfree(mac_control->rings[i].ba);
8a4bdbaa 1037 nic->mac_control.stats_info->sw_stat.mem_freed +=
491976b2 1038 (sizeof(struct buffAdd *) * blk_cnt);
1da177e4 1039 }
1da177e4 1040 }
1da177e4 1041
2fda096d
SR
1042 for (i = 0; i < nic->config.tx_fifo_num; i++) {
1043 if (mac_control->fifos[i].ufo_in_band_v) {
1044 nic->mac_control.stats_info->sw_stat.mem_freed
1045 += (config->tx_cfg[i].fifo_len * sizeof(u64));
1046 kfree(mac_control->fifos[i].ufo_in_band_v);
1047 }
1048 }
1049
1da177e4 1050 if (mac_control->stats_mem) {
2fda096d
SR
1051 nic->mac_control.stats_info->sw_stat.mem_freed +=
1052 mac_control->stats_mem_sz;
1da177e4
LT
1053 pci_free_consistent(nic->pdev,
1054 mac_control->stats_mem_sz,
1055 mac_control->stats_mem,
1056 mac_control->stats_mem_phy);
491976b2 1057 }
1da177e4
LT
1058}
1059
541ae68f
K
1060/**
1061 * s2io_verify_pci_mode -
1062 */
1063
1ee6dd77 1064static int s2io_verify_pci_mode(struct s2io_nic *nic)
541ae68f 1065{
1ee6dd77 1066 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f
K
1067 register u64 val64 = 0;
1068 int mode;
1069
1070 val64 = readq(&bar0->pci_mode);
1071 mode = (u8)GET_PCI_MODE(val64);
1072
1073 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1074 return -1; /* Unknown PCI mode */
1075 return mode;
1076}
1077
c92ca04b
AR
1078#define NEC_VENID 0x1033
1079#define NEC_DEVID 0x0125
1080static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1081{
1082 struct pci_dev *tdev = NULL;
26d36b64
AC
1083 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1084 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
7ad62dbc 1085 if (tdev->bus == s2io_pdev->bus->parent) {
26d36b64 1086 pci_dev_put(tdev);
c92ca04b 1087 return 1;
7ad62dbc 1088 }
c92ca04b
AR
1089 }
1090 }
1091 return 0;
1092}
541ae68f 1093
7b32a312 1094static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
541ae68f
K
1095/**
1096 * s2io_print_pci_mode -
1097 */
1ee6dd77 1098static int s2io_print_pci_mode(struct s2io_nic *nic)
541ae68f 1099{
1ee6dd77 1100 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f
K
1101 register u64 val64 = 0;
1102 int mode;
1103 struct config_param *config = &nic->config;
1104
1105 val64 = readq(&bar0->pci_mode);
1106 mode = (u8)GET_PCI_MODE(val64);
1107
1108 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1109 return -1; /* Unknown PCI mode */
1110
c92ca04b
AR
1111 config->bus_speed = bus_speed[mode];
1112
1113 if (s2io_on_nec_bridge(nic->pdev)) {
1114 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1115 nic->dev->name);
1116 return mode;
1117 }
1118
541ae68f
K
1119 if (val64 & PCI_MODE_32_BITS) {
1120 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1121 } else {
1122 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1123 }
1124
1125 switch(mode) {
1126 case PCI_MODE_PCI_33:
1127 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
541ae68f
K
1128 break;
1129 case PCI_MODE_PCI_66:
1130 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
541ae68f
K
1131 break;
1132 case PCI_MODE_PCIX_M1_66:
1133 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
541ae68f
K
1134 break;
1135 case PCI_MODE_PCIX_M1_100:
1136 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
541ae68f
K
1137 break;
1138 case PCI_MODE_PCIX_M1_133:
1139 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
541ae68f
K
1140 break;
1141 case PCI_MODE_PCIX_M2_66:
1142 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
541ae68f
K
1143 break;
1144 case PCI_MODE_PCIX_M2_100:
1145 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
541ae68f
K
1146 break;
1147 case PCI_MODE_PCIX_M2_133:
1148 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
541ae68f
K
1149 break;
1150 default:
1151 return -1; /* Unsupported bus speed */
1152 }
1153
1154 return mode;
1155}
1156
b7c5678f
RV
1157/**
1158 * init_tti - Initialization transmit traffic interrupt scheme
1159 * @nic: device private variable
1160 * @link: link status (UP/DOWN) used to enable/disable continuous
1161 * transmit interrupts
1162 * Description: The function configures transmit traffic interrupts
1163 * Return Value: SUCCESS on success and
1164 * '-1' on failure
1165 */
1166
0d66afe7 1167static int init_tti(struct s2io_nic *nic, int link)
b7c5678f
RV
1168{
1169 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1170 register u64 val64 = 0;
1171 int i;
1172 struct config_param *config;
1173
1174 config = &nic->config;
1175
1176 for (i = 0; i < config->tx_fifo_num; i++) {
1177 /*
1178 * TTI Initialization. Default Tx timer gets us about
1179 * 250 interrupts per sec. Continuous interrupts are enabled
1180 * by default.
1181 */
1182 if (nic->device_type == XFRAME_II_DEVICE) {
1183 int count = (nic->config.bus_speed * 125)/2;
1184 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1185 } else
1186 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1187
1188 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1189 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1190 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1191 TTI_DATA1_MEM_TX_TIMER_AC_EN;
ac731ab6
SH
1192 if (i == 0)
1193 if (use_continuous_tx_intrs && (link == LINK_UP))
1194 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
b7c5678f
RV
1195 writeq(val64, &bar0->tti_data1_mem);
1196
ac731ab6
SH
1197 if (nic->config.intr_type == MSI_X) {
1198 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1199 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1200 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1201 TTI_DATA2_MEM_TX_UFC_D(0x300);
1202 } else {
1203 if ((nic->config.tx_steering_type ==
1204 TX_DEFAULT_STEERING) &&
1205 (config->tx_fifo_num > 1) &&
1206 (i >= nic->udp_fifo_idx) &&
1207 (i < (nic->udp_fifo_idx +
1208 nic->total_udp_fifos)))
1209 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1210 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1211 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1212 TTI_DATA2_MEM_TX_UFC_D(0x120);
1213 else
1214 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1215 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1216 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1217 TTI_DATA2_MEM_TX_UFC_D(0x80);
1218 }
b7c5678f
RV
1219
1220 writeq(val64, &bar0->tti_data2_mem);
1221
1222 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD |
1223 TTI_CMD_MEM_OFFSET(i);
1224 writeq(val64, &bar0->tti_command_mem);
1225
1226 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1227 TTI_CMD_MEM_STROBE_NEW_CMD, S2IO_BIT_RESET) != SUCCESS)
1228 return FAILURE;
1229 }
1230
1231 return SUCCESS;
1232}
1233
20346722
K
1234/**
1235 * init_nic - Initialization of hardware
b7c5678f 1236 * @nic: device private variable
20346722
K
1237 * Description: The function sequentially configures every block
1238 * of the H/W from their reset values.
1239 * Return Value: SUCCESS on success and
1da177e4
LT
1240 * '-1' on failure (endian settings incorrect).
1241 */
1242
1243static int init_nic(struct s2io_nic *nic)
1244{
1ee6dd77 1245 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
1246 struct net_device *dev = nic->dev;
1247 register u64 val64 = 0;
1248 void __iomem *add;
1249 u32 time;
1250 int i, j;
1ee6dd77 1251 struct mac_info *mac_control;
1da177e4 1252 struct config_param *config;
c92ca04b 1253 int dtx_cnt = 0;
1da177e4 1254 unsigned long long mem_share;
20346722 1255 int mem_size;
1da177e4
LT
1256
1257 mac_control = &nic->mac_control;
1258 config = &nic->config;
1259
5e25b9dd 1260 /* to set the swapper controle on the card */
20346722 1261 if(s2io_set_swapper(nic)) {
1da177e4 1262 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
9f74ffde 1263 return -EIO;
1da177e4
LT
1264 }
1265
541ae68f
K
1266 /*
1267 * Herc requires EOI to be removed from reset before XGXS, so..
1268 */
1269 if (nic->device_type & XFRAME_II_DEVICE) {
1270 val64 = 0xA500000000ULL;
1271 writeq(val64, &bar0->sw_reset);
1272 msleep(500);
1273 val64 = readq(&bar0->sw_reset);
1274 }
1275
1da177e4
LT
1276 /* Remove XGXS from reset state */
1277 val64 = 0;
1278 writeq(val64, &bar0->sw_reset);
1da177e4 1279 msleep(500);
20346722 1280 val64 = readq(&bar0->sw_reset);
1da177e4 1281
7962024e
SH
1282 /* Ensure that it's safe to access registers by checking
1283 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1284 */
1285 if (nic->device_type == XFRAME_II_DEVICE) {
1286 for (i = 0; i < 50; i++) {
1287 val64 = readq(&bar0->adapter_status);
1288 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1289 break;
1290 msleep(10);
1291 }
1292 if (i == 50)
1293 return -ENODEV;
1294 }
1295
1da177e4
LT
1296 /* Enable Receiving broadcasts */
1297 add = &bar0->mac_cfg;
1298 val64 = readq(&bar0->mac_cfg);
1299 val64 |= MAC_RMAC_BCAST_ENABLE;
1300 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1301 writel((u32) val64, add);
1302 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1303 writel((u32) (val64 >> 32), (add + 4));
1304
1305 /* Read registers in all blocks */
1306 val64 = readq(&bar0->mac_int_mask);
1307 val64 = readq(&bar0->mc_int_mask);
1308 val64 = readq(&bar0->xgxs_int_mask);
1309
1310 /* Set MTU */
1311 val64 = dev->mtu;
1312 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1313
541ae68f
K
1314 if (nic->device_type & XFRAME_II_DEVICE) {
1315 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
303bcb4b 1316 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1da177e4 1317 &bar0->dtx_control, UF);
541ae68f
K
1318 if (dtx_cnt & 0x1)
1319 msleep(1); /* Necessary!! */
1da177e4
LT
1320 dtx_cnt++;
1321 }
541ae68f 1322 } else {
c92ca04b
AR
1323 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1324 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1325 &bar0->dtx_control, UF);
1326 val64 = readq(&bar0->dtx_control);
1327 dtx_cnt++;
1da177e4
LT
1328 }
1329 }
1330
1331 /* Tx DMA Initialization */
1332 val64 = 0;
1333 writeq(val64, &bar0->tx_fifo_partition_0);
1334 writeq(val64, &bar0->tx_fifo_partition_1);
1335 writeq(val64, &bar0->tx_fifo_partition_2);
1336 writeq(val64, &bar0->tx_fifo_partition_3);
1337
1338
1339 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1340 val64 |=
b7c5678f 1341 vBIT(config->tx_cfg[i].fifo_len - 1, ((j * 32) + 19),
1da177e4 1342 13) | vBIT(config->tx_cfg[i].fifo_priority,
b7c5678f 1343 ((j * 32) + 5), 3);
1da177e4
LT
1344
1345 if (i == (config->tx_fifo_num - 1)) {
1346 if (i % 2 == 0)
1347 i++;
1348 }
1349
1350 switch (i) {
1351 case 1:
1352 writeq(val64, &bar0->tx_fifo_partition_0);
1353 val64 = 0;
b7c5678f 1354 j = 0;
1da177e4
LT
1355 break;
1356 case 3:
1357 writeq(val64, &bar0->tx_fifo_partition_1);
1358 val64 = 0;
b7c5678f 1359 j = 0;
1da177e4
LT
1360 break;
1361 case 5:
1362 writeq(val64, &bar0->tx_fifo_partition_2);
1363 val64 = 0;
b7c5678f 1364 j = 0;
1da177e4
LT
1365 break;
1366 case 7:
1367 writeq(val64, &bar0->tx_fifo_partition_3);
b7c5678f
RV
1368 val64 = 0;
1369 j = 0;
1370 break;
1371 default:
1372 j++;
1da177e4
LT
1373 break;
1374 }
1375 }
1376
5e25b9dd
K
1377 /*
1378 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1379 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1380 */
541ae68f 1381 if ((nic->device_type == XFRAME_I_DEVICE) &&
44c10138 1382 (nic->pdev->revision < 4))
5e25b9dd
K
1383 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1384
1da177e4
LT
1385 val64 = readq(&bar0->tx_fifo_partition_0);
1386 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1387 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1388
20346722
K
1389 /*
1390 * Initialization of Tx_PA_CONFIG register to ignore packet
1da177e4
LT
1391 * integrity checking.
1392 */
1393 val64 = readq(&bar0->tx_pa_cfg);
1394 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1395 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1396 writeq(val64, &bar0->tx_pa_cfg);
1397
1398 /* Rx DMA intialization. */
1399 val64 = 0;
1400 for (i = 0; i < config->rx_ring_num; i++) {
1401 val64 |=
1402 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1403 3);
1404 }
1405 writeq(val64, &bar0->rx_queue_priority);
1406
20346722
K
1407 /*
1408 * Allocating equal share of memory to all the
1da177e4
LT
1409 * configured Rings.
1410 */
1411 val64 = 0;
541ae68f
K
1412 if (nic->device_type & XFRAME_II_DEVICE)
1413 mem_size = 32;
1414 else
1415 mem_size = 64;
1416
1da177e4
LT
1417 for (i = 0; i < config->rx_ring_num; i++) {
1418 switch (i) {
1419 case 0:
20346722
K
1420 mem_share = (mem_size / config->rx_ring_num +
1421 mem_size % config->rx_ring_num);
1da177e4
LT
1422 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1423 continue;
1424 case 1:
20346722 1425 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1426 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1427 continue;
1428 case 2:
20346722 1429 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1430 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1431 continue;
1432 case 3:
20346722 1433 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1434 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1435 continue;
1436 case 4:
20346722 1437 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1438 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1439 continue;
1440 case 5:
20346722 1441 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1442 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1443 continue;
1444 case 6:
20346722 1445 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1446 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1447 continue;
1448 case 7:
20346722 1449 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1450 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1451 continue;
1452 }
1453 }
1454 writeq(val64, &bar0->rx_queue_cfg);
1455
20346722 1456 /*
5e25b9dd 1457 * Filling Tx round robin registers
b7c5678f 1458 * as per the number of FIFOs for equal scheduling priority
1da177e4 1459 */
5e25b9dd
K
1460 switch (config->tx_fifo_num) {
1461 case 1:
b7c5678f 1462 val64 = 0x0;
5e25b9dd
K
1463 writeq(val64, &bar0->tx_w_round_robin_0);
1464 writeq(val64, &bar0->tx_w_round_robin_1);
1465 writeq(val64, &bar0->tx_w_round_robin_2);
1466 writeq(val64, &bar0->tx_w_round_robin_3);
1467 writeq(val64, &bar0->tx_w_round_robin_4);
1468 break;
1469 case 2:
b7c5678f 1470 val64 = 0x0001000100010001ULL;
5e25b9dd 1471 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1472 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1473 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1474 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1475 val64 = 0x0001000100000000ULL;
5e25b9dd
K
1476 writeq(val64, &bar0->tx_w_round_robin_4);
1477 break;
1478 case 3:
b7c5678f 1479 val64 = 0x0001020001020001ULL;
5e25b9dd 1480 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1481 val64 = 0x0200010200010200ULL;
5e25b9dd 1482 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1483 val64 = 0x0102000102000102ULL;
5e25b9dd 1484 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1485 val64 = 0x0001020001020001ULL;
5e25b9dd 1486 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1487 val64 = 0x0200010200000000ULL;
5e25b9dd
K
1488 writeq(val64, &bar0->tx_w_round_robin_4);
1489 break;
1490 case 4:
b7c5678f 1491 val64 = 0x0001020300010203ULL;
5e25b9dd 1492 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1493 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1494 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1495 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1496 val64 = 0x0001020300000000ULL;
5e25b9dd
K
1497 writeq(val64, &bar0->tx_w_round_robin_4);
1498 break;
1499 case 5:
b7c5678f 1500 val64 = 0x0001020304000102ULL;
5e25b9dd 1501 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1502 val64 = 0x0304000102030400ULL;
5e25b9dd 1503 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1504 val64 = 0x0102030400010203ULL;
5e25b9dd 1505 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1506 val64 = 0x0400010203040001ULL;
5e25b9dd 1507 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1508 val64 = 0x0203040000000000ULL;
5e25b9dd
K
1509 writeq(val64, &bar0->tx_w_round_robin_4);
1510 break;
1511 case 6:
b7c5678f 1512 val64 = 0x0001020304050001ULL;
5e25b9dd 1513 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1514 val64 = 0x0203040500010203ULL;
5e25b9dd 1515 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1516 val64 = 0x0405000102030405ULL;
5e25b9dd 1517 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1518 val64 = 0x0001020304050001ULL;
5e25b9dd 1519 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1520 val64 = 0x0203040500000000ULL;
5e25b9dd
K
1521 writeq(val64, &bar0->tx_w_round_robin_4);
1522 break;
1523 case 7:
b7c5678f 1524 val64 = 0x0001020304050600ULL;
5e25b9dd 1525 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1526 val64 = 0x0102030405060001ULL;
5e25b9dd 1527 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1528 val64 = 0x0203040506000102ULL;
5e25b9dd 1529 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1530 val64 = 0x0304050600010203ULL;
5e25b9dd 1531 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1532 val64 = 0x0405060000000000ULL;
5e25b9dd
K
1533 writeq(val64, &bar0->tx_w_round_robin_4);
1534 break;
1535 case 8:
b7c5678f 1536 val64 = 0x0001020304050607ULL;
5e25b9dd 1537 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1538 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1539 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1540 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1541 val64 = 0x0001020300000000ULL;
5e25b9dd
K
1542 writeq(val64, &bar0->tx_w_round_robin_4);
1543 break;
1544 }
1545
b41477f3 1546 /* Enable all configured Tx FIFO partitions */
5d3213cc
AR
1547 val64 = readq(&bar0->tx_fifo_partition_0);
1548 val64 |= (TX_FIFO_PARTITION_EN);
1549 writeq(val64, &bar0->tx_fifo_partition_0);
1550
5e25b9dd 1551 /* Filling the Rx round robin registers as per the
0425b46a
SH
1552 * number of Rings and steering based on QoS with
1553 * equal priority.
1554 */
5e25b9dd
K
1555 switch (config->rx_ring_num) {
1556 case 1:
0425b46a
SH
1557 val64 = 0x0;
1558 writeq(val64, &bar0->rx_w_round_robin_0);
1559 writeq(val64, &bar0->rx_w_round_robin_1);
1560 writeq(val64, &bar0->rx_w_round_robin_2);
1561 writeq(val64, &bar0->rx_w_round_robin_3);
1562 writeq(val64, &bar0->rx_w_round_robin_4);
1563
5e25b9dd
K
1564 val64 = 0x8080808080808080ULL;
1565 writeq(val64, &bar0->rts_qos_steering);
1566 break;
1567 case 2:
0425b46a 1568 val64 = 0x0001000100010001ULL;
5e25b9dd 1569 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1570 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1571 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1572 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1573 val64 = 0x0001000100000000ULL;
5e25b9dd
K
1574 writeq(val64, &bar0->rx_w_round_robin_4);
1575
1576 val64 = 0x8080808040404040ULL;
1577 writeq(val64, &bar0->rts_qos_steering);
1578 break;
1579 case 3:
0425b46a 1580 val64 = 0x0001020001020001ULL;
5e25b9dd 1581 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1582 val64 = 0x0200010200010200ULL;
5e25b9dd 1583 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1584 val64 = 0x0102000102000102ULL;
5e25b9dd 1585 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1586 val64 = 0x0001020001020001ULL;
5e25b9dd 1587 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1588 val64 = 0x0200010200000000ULL;
5e25b9dd
K
1589 writeq(val64, &bar0->rx_w_round_robin_4);
1590
1591 val64 = 0x8080804040402020ULL;
1592 writeq(val64, &bar0->rts_qos_steering);
1593 break;
1594 case 4:
0425b46a 1595 val64 = 0x0001020300010203ULL;
5e25b9dd 1596 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1597 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1598 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1599 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1600 val64 = 0x0001020300000000ULL;
5e25b9dd
K
1601 writeq(val64, &bar0->rx_w_round_robin_4);
1602
1603 val64 = 0x8080404020201010ULL;
1604 writeq(val64, &bar0->rts_qos_steering);
1605 break;
1606 case 5:
0425b46a 1607 val64 = 0x0001020304000102ULL;
5e25b9dd 1608 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1609 val64 = 0x0304000102030400ULL;
5e25b9dd 1610 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1611 val64 = 0x0102030400010203ULL;
5e25b9dd 1612 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1613 val64 = 0x0400010203040001ULL;
5e25b9dd 1614 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1615 val64 = 0x0203040000000000ULL;
5e25b9dd
K
1616 writeq(val64, &bar0->rx_w_round_robin_4);
1617
1618 val64 = 0x8080404020201008ULL;
1619 writeq(val64, &bar0->rts_qos_steering);
1620 break;
1621 case 6:
0425b46a 1622 val64 = 0x0001020304050001ULL;
5e25b9dd 1623 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1624 val64 = 0x0203040500010203ULL;
5e25b9dd 1625 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1626 val64 = 0x0405000102030405ULL;
5e25b9dd 1627 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1628 val64 = 0x0001020304050001ULL;
5e25b9dd 1629 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1630 val64 = 0x0203040500000000ULL;
5e25b9dd
K
1631 writeq(val64, &bar0->rx_w_round_robin_4);
1632
1633 val64 = 0x8080404020100804ULL;
1634 writeq(val64, &bar0->rts_qos_steering);
1635 break;
1636 case 7:
0425b46a 1637 val64 = 0x0001020304050600ULL;
5e25b9dd 1638 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1639 val64 = 0x0102030405060001ULL;
5e25b9dd 1640 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1641 val64 = 0x0203040506000102ULL;
5e25b9dd 1642 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1643 val64 = 0x0304050600010203ULL;
5e25b9dd 1644 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1645 val64 = 0x0405060000000000ULL;
5e25b9dd
K
1646 writeq(val64, &bar0->rx_w_round_robin_4);
1647
1648 val64 = 0x8080402010080402ULL;
1649 writeq(val64, &bar0->rts_qos_steering);
1650 break;
1651 case 8:
0425b46a 1652 val64 = 0x0001020304050607ULL;
5e25b9dd 1653 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1654 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1655 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1656 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1657 val64 = 0x0001020300000000ULL;
5e25b9dd
K
1658 writeq(val64, &bar0->rx_w_round_robin_4);
1659
1660 val64 = 0x8040201008040201ULL;
1661 writeq(val64, &bar0->rts_qos_steering);
1662 break;
1663 }
1da177e4
LT
1664
1665 /* UDP Fix */
1666 val64 = 0;
20346722 1667 for (i = 0; i < 8; i++)
1da177e4
LT
1668 writeq(val64, &bar0->rts_frm_len_n[i]);
1669
5e25b9dd
K
1670 /* Set the default rts frame length for the rings configured */
1671 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1672 for (i = 0 ; i < config->rx_ring_num ; i++)
1673 writeq(val64, &bar0->rts_frm_len_n[i]);
1674
1675 /* Set the frame length for the configured rings
1676 * desired by the user
1677 */
1678 for (i = 0; i < config->rx_ring_num; i++) {
1679 /* If rts_frm_len[i] == 0 then it is assumed that user not
1680 * specified frame length steering.
1681 * If the user provides the frame length then program
1682 * the rts_frm_len register for those values or else
1683 * leave it as it is.
1684 */
1685 if (rts_frm_len[i] != 0) {
1686 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1687 &bar0->rts_frm_len_n[i]);
1688 }
1689 }
8a4bdbaa 1690
9fc93a41
SS
1691 /* Disable differentiated services steering logic */
1692 for (i = 0; i < 64; i++) {
1693 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1694 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1695 dev->name);
1696 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
9f74ffde 1697 return -ENODEV;
9fc93a41
SS
1698 }
1699 }
1700
20346722 1701 /* Program statistics memory */
1da177e4 1702 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1da177e4 1703
541ae68f
K
1704 if (nic->device_type == XFRAME_II_DEVICE) {
1705 val64 = STAT_BC(0x320);
1706 writeq(val64, &bar0->stat_byte_cnt);
1707 }
1708
20346722 1709 /*
1da177e4
LT
1710 * Initializing the sampling rate for the device to calculate the
1711 * bandwidth utilization.
1712 */
1713 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1714 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1715 writeq(val64, &bar0->mac_link_util);
1716
20346722
K
1717 /*
1718 * Initializing the Transmit and Receive Traffic Interrupt
1da177e4
LT
1719 * Scheme.
1720 */
1da177e4 1721
b7c5678f
RV
1722 /* Initialize TTI */
1723 if (SUCCESS != init_tti(nic, nic->last_link_state))
1724 return -ENODEV;
1da177e4 1725
8a4bdbaa
SS
1726 /* RTI Initialization */
1727 if (nic->device_type == XFRAME_II_DEVICE) {
541ae68f 1728 /*
8a4bdbaa
SS
1729 * Programmed to generate Apprx 500 Intrs per
1730 * second
1731 */
1732 int count = (nic->config.bus_speed * 125)/4;
1733 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1734 } else
1735 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1736 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1737 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1738 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1739
1740 writeq(val64, &bar0->rti_data1_mem);
1741
1742 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1743 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1744 if (nic->config.intr_type == MSI_X)
1745 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1746 RTI_DATA2_MEM_RX_UFC_D(0x40));
1747 else
1748 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1749 RTI_DATA2_MEM_RX_UFC_D(0x80));
1750 writeq(val64, &bar0->rti_data2_mem);
1da177e4 1751
8a4bdbaa
SS
1752 for (i = 0; i < config->rx_ring_num; i++) {
1753 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1754 | RTI_CMD_MEM_OFFSET(i);
1755 writeq(val64, &bar0->rti_command_mem);
1da177e4 1756
8a4bdbaa
SS
1757 /*
1758 * Once the operation completes, the Strobe bit of the
1759 * command register will be reset. We poll for this
1760 * particular condition. We wait for a maximum of 500ms
1761 * for the operation to complete, if it's not complete
1762 * by then we return error.
1763 */
1764 time = 0;
1765 while (TRUE) {
1766 val64 = readq(&bar0->rti_command_mem);
1767 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1768 break;
b6e3f982 1769
8a4bdbaa
SS
1770 if (time > 10) {
1771 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1772 dev->name);
9f74ffde 1773 return -ENODEV;
b6e3f982 1774 }
8a4bdbaa
SS
1775 time++;
1776 msleep(50);
1da177e4 1777 }
1da177e4
LT
1778 }
1779
20346722
K
1780 /*
1781 * Initializing proper values as Pause threshold into all
1da177e4
LT
1782 * the 8 Queues on Rx side.
1783 */
1784 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1785 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1786
1787 /* Disable RMAC PAD STRIPPING */
509a2671 1788 add = &bar0->mac_cfg;
1da177e4
LT
1789 val64 = readq(&bar0->mac_cfg);
1790 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1791 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1792 writel((u32) (val64), add);
1793 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1794 writel((u32) (val64 >> 32), (add + 4));
1795 val64 = readq(&bar0->mac_cfg);
1796
7d3d0439
RA
1797 /* Enable FCS stripping by adapter */
1798 add = &bar0->mac_cfg;
1799 val64 = readq(&bar0->mac_cfg);
1800 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1801 if (nic->device_type == XFRAME_II_DEVICE)
1802 writeq(val64, &bar0->mac_cfg);
1803 else {
1804 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1805 writel((u32) (val64), add);
1806 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1807 writel((u32) (val64 >> 32), (add + 4));
1808 }
1809
20346722
K
1810 /*
1811 * Set the time value to be inserted in the pause frame
1da177e4
LT
1812 * generated by xena.
1813 */
1814 val64 = readq(&bar0->rmac_pause_cfg);
1815 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1816 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1817 writeq(val64, &bar0->rmac_pause_cfg);
1818
20346722 1819 /*
1da177e4
LT
1820 * Set the Threshold Limit for Generating the pause frame
1821 * If the amount of data in any Queue exceeds ratio of
1822 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1823 * pause frame is generated
1824 */
1825 val64 = 0;
1826 for (i = 0; i < 4; i++) {
1827 val64 |=
1828 (((u64) 0xFF00 | nic->mac_control.
1829 mc_pause_threshold_q0q3)
1830 << (i * 2 * 8));
1831 }
1832 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1833
1834 val64 = 0;
1835 for (i = 0; i < 4; i++) {
1836 val64 |=
1837 (((u64) 0xFF00 | nic->mac_control.
1838 mc_pause_threshold_q4q7)
1839 << (i * 2 * 8));
1840 }
1841 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1842
20346722
K
1843 /*
1844 * TxDMA will stop Read request if the number of read split has
1da177e4
LT
1845 * exceeded the limit pointed by shared_splits
1846 */
1847 val64 = readq(&bar0->pic_control);
1848 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1849 writeq(val64, &bar0->pic_control);
1850
863c11a9
AR
1851 if (nic->config.bus_speed == 266) {
1852 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1853 writeq(0x0, &bar0->read_retry_delay);
1854 writeq(0x0, &bar0->write_retry_delay);
1855 }
1856
541ae68f
K
1857 /*
1858 * Programming the Herc to split every write transaction
1859 * that does not start on an ADB to reduce disconnects.
1860 */
1861 if (nic->device_type == XFRAME_II_DEVICE) {
19a60522
SS
1862 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1863 MISC_LINK_STABILITY_PRD(3);
863c11a9
AR
1864 writeq(val64, &bar0->misc_control);
1865 val64 = readq(&bar0->pic_control2);
b7b5a128 1866 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
863c11a9 1867 writeq(val64, &bar0->pic_control2);
541ae68f 1868 }
c92ca04b
AR
1869 if (strstr(nic->product_name, "CX4")) {
1870 val64 = TMAC_AVG_IPG(0x17);
1871 writeq(val64, &bar0->tmac_avg_ipg);
a371a07d
K
1872 }
1873
1da177e4
LT
1874 return SUCCESS;
1875}
a371a07d
K
1876#define LINK_UP_DOWN_INTERRUPT 1
1877#define MAC_RMAC_ERR_TIMER 2
1878
1ee6dd77 1879static int s2io_link_fault_indication(struct s2io_nic *nic)
a371a07d
K
1880{
1881 if (nic->device_type == XFRAME_II_DEVICE)
1882 return LINK_UP_DOWN_INTERRUPT;
1883 else
1884 return MAC_RMAC_ERR_TIMER;
1885}
8116f3cf 1886
9caab458
SS
1887/**
1888 * do_s2io_write_bits - update alarm bits in alarm register
1889 * @value: alarm bits
1890 * @flag: interrupt status
1891 * @addr: address value
1892 * Description: update alarm bits in alarm register
1893 * Return Value:
1894 * NONE.
1895 */
1896static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1897{
1898 u64 temp64;
1899
1900 temp64 = readq(addr);
1901
1902 if(flag == ENABLE_INTRS)
1903 temp64 &= ~((u64) value);
1904 else
1905 temp64 |= ((u64) value);
1906 writeq(temp64, addr);
1907}
1da177e4 1908
43b7c451 1909static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
9caab458
SS
1910{
1911 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1912 register u64 gen_int_mask = 0;
01e16faa 1913 u64 interruptible;
9caab458 1914
01e16faa 1915 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
9caab458
SS
1916 if (mask & TX_DMA_INTR) {
1917
1918 gen_int_mask |= TXDMA_INT_M;
1919
1920 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1921 TXDMA_PCC_INT | TXDMA_TTI_INT |
1922 TXDMA_LSO_INT | TXDMA_TPA_INT |
1923 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1924
1925 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1926 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1927 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1928 &bar0->pfc_err_mask);
1929
1930 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1931 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1932 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1933
1934 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1935 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1936 PCC_N_SERR | PCC_6_COF_OV_ERR |
1937 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1938 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1939 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1940
1941 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1942 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1943
1944 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1945 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1946 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1947 flag, &bar0->lso_err_mask);
1948
1949 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1950 flag, &bar0->tpa_err_mask);
1951
1952 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1953
1954 }
1955
1956 if (mask & TX_MAC_INTR) {
1957 gen_int_mask |= TXMAC_INT_M;
1958 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1959 &bar0->mac_int_mask);
1960 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1961 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1962 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1963 flag, &bar0->mac_tmac_err_mask);
1964 }
1965
1966 if (mask & TX_XGXS_INTR) {
1967 gen_int_mask |= TXXGXS_INT_M;
1968 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1969 &bar0->xgxs_int_mask);
1970 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1971 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1972 flag, &bar0->xgxs_txgxs_err_mask);
1973 }
1974
1975 if (mask & RX_DMA_INTR) {
1976 gen_int_mask |= RXDMA_INT_M;
1977 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1978 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1979 flag, &bar0->rxdma_int_mask);
1980 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1981 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1982 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1983 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1984 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1985 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1986 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1987 &bar0->prc_pcix_err_mask);
1988 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1989 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1990 &bar0->rpa_err_mask);
1991 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1992 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1993 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1994 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
1995 flag, &bar0->rda_err_mask);
1996 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1997 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1998 flag, &bar0->rti_err_mask);
1999 }
2000
2001 if (mask & RX_MAC_INTR) {
2002 gen_int_mask |= RXMAC_INT_M;
2003 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2004 &bar0->mac_int_mask);
01e16faa 2005 interruptible = RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
9caab458 2006 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
01e16faa
SH
2007 RMAC_DOUBLE_ECC_ERR;
2008 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2009 interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2010 do_s2io_write_bits(interruptible,
9caab458
SS
2011 flag, &bar0->mac_rmac_err_mask);
2012 }
2013
2014 if (mask & RX_XGXS_INTR)
2015 {
2016 gen_int_mask |= RXXGXS_INT_M;
2017 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2018 &bar0->xgxs_int_mask);
2019 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2020 &bar0->xgxs_rxgxs_err_mask);
2021 }
2022
2023 if (mask & MC_INTR) {
2024 gen_int_mask |= MC_INT_M;
2025 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
2026 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2027 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2028 &bar0->mc_err_mask);
2029 }
2030 nic->general_int_mask = gen_int_mask;
2031
2032 /* Remove this line when alarm interrupts are enabled */
2033 nic->general_int_mask = 0;
2034}
20346722
K
2035/**
2036 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1da177e4
LT
2037 * @nic: device private variable,
2038 * @mask: A mask indicating which Intr block must be modified and,
2039 * @flag: A flag indicating whether to enable or disable the Intrs.
2040 * Description: This function will either disable or enable the interrupts
20346722
K
2041 * depending on the flag argument. The mask argument can be used to
2042 * enable/disable any Intr block.
1da177e4
LT
2043 * Return Value: NONE.
2044 */
2045
2046static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2047{
1ee6dd77 2048 struct XENA_dev_config __iomem *bar0 = nic->bar0;
9caab458
SS
2049 register u64 temp64 = 0, intr_mask = 0;
2050
2051 intr_mask = nic->general_int_mask;
1da177e4
LT
2052
2053 /* Top level interrupt classification */
2054 /* PIC Interrupts */
9caab458 2055 if (mask & TX_PIC_INTR) {
1da177e4 2056 /* Enable PIC Intrs in the general intr mask register */
9caab458 2057 intr_mask |= TXPIC_INT_M;
1da177e4 2058 if (flag == ENABLE_INTRS) {
20346722 2059 /*
a371a07d 2060 * If Hercules adapter enable GPIO otherwise
b41477f3 2061 * disable all PCIX, Flash, MDIO, IIC and GPIO
20346722
K
2062 * interrupts for now.
2063 * TODO
1da177e4 2064 */
a371a07d
K
2065 if (s2io_link_fault_indication(nic) ==
2066 LINK_UP_DOWN_INTERRUPT ) {
9caab458
SS
2067 do_s2io_write_bits(PIC_INT_GPIO, flag,
2068 &bar0->pic_int_mask);
2069 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2070 &bar0->gpio_int_mask);
2071 } else
a371a07d 2072 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1da177e4 2073 } else if (flag == DISABLE_INTRS) {
20346722
K
2074 /*
2075 * Disable PIC Intrs in the general
2076 * intr mask register
1da177e4
LT
2077 */
2078 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1da177e4
LT
2079 }
2080 }
2081
1da177e4
LT
2082 /* Tx traffic interrupts */
2083 if (mask & TX_TRAFFIC_INTR) {
9caab458 2084 intr_mask |= TXTRAFFIC_INT_M;
1da177e4 2085 if (flag == ENABLE_INTRS) {
20346722 2086 /*
1da177e4 2087 * Enable all the Tx side interrupts
20346722 2088 * writing 0 Enables all 64 TX interrupt levels
1da177e4
LT
2089 */
2090 writeq(0x0, &bar0->tx_traffic_mask);
2091 } else if (flag == DISABLE_INTRS) {
20346722
K
2092 /*
2093 * Disable Tx Traffic Intrs in the general intr mask
1da177e4
LT
2094 * register.
2095 */
2096 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1da177e4
LT
2097 }
2098 }
2099
2100 /* Rx traffic interrupts */
2101 if (mask & RX_TRAFFIC_INTR) {
9caab458 2102 intr_mask |= RXTRAFFIC_INT_M;
1da177e4 2103 if (flag == ENABLE_INTRS) {
1da177e4
LT
2104 /* writing 0 Enables all 8 RX interrupt levels */
2105 writeq(0x0, &bar0->rx_traffic_mask);
2106 } else if (flag == DISABLE_INTRS) {
20346722
K
2107 /*
2108 * Disable Rx Traffic Intrs in the general intr mask
1da177e4
LT
2109 * register.
2110 */
2111 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1da177e4
LT
2112 }
2113 }
9caab458
SS
2114
2115 temp64 = readq(&bar0->general_int_mask);
2116 if (flag == ENABLE_INTRS)
2117 temp64 &= ~((u64) intr_mask);
2118 else
2119 temp64 = DISABLE_ALL_INTRS;
2120 writeq(temp64, &bar0->general_int_mask);
2121
2122 nic->general_int_mask = readq(&bar0->general_int_mask);
1da177e4
LT
2123}
2124
19a60522
SS
2125/**
2126 * verify_pcc_quiescent- Checks for PCC quiescent state
2127 * Return: 1 If PCC is quiescence
2128 * 0 If PCC is not quiescence
2129 */
1ee6dd77 2130static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
20346722 2131{
19a60522 2132 int ret = 0, herc;
1ee6dd77 2133 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522 2134 u64 val64 = readq(&bar0->adapter_status);
8a4bdbaa 2135
19a60522 2136 herc = (sp->device_type == XFRAME_II_DEVICE);
20346722
K
2137
2138 if (flag == FALSE) {
44c10138 2139 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
19a60522 2140 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 2141 ret = 1;
19a60522
SS
2142 } else {
2143 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 2144 ret = 1;
20346722
K
2145 }
2146 } else {
44c10138 2147 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
5e25b9dd 2148 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
19a60522 2149 ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 2150 ret = 1;
5e25b9dd
K
2151 } else {
2152 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
19a60522 2153 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 2154 ret = 1;
20346722
K
2155 }
2156 }
2157
2158 return ret;
2159}
2160/**
2161 * verify_xena_quiescence - Checks whether the H/W is ready
1da177e4 2162 * Description: Returns whether the H/W is ready to go or not. Depending
20346722 2163 * on whether adapter enable bit was written or not the comparison
1da177e4
LT
2164 * differs and the calling function passes the input argument flag to
2165 * indicate this.
20346722 2166 * Return: 1 If xena is quiescence
1da177e4
LT
2167 * 0 If Xena is not quiescence
2168 */
2169
1ee6dd77 2170static int verify_xena_quiescence(struct s2io_nic *sp)
1da177e4 2171{
19a60522 2172 int mode;
1ee6dd77 2173 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522
SS
2174 u64 val64 = readq(&bar0->adapter_status);
2175 mode = s2io_verify_pci_mode(sp);
1da177e4 2176
19a60522
SS
2177 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2178 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2179 return 0;
2180 }
2181 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2182 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2183 return 0;
2184 }
2185 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2186 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2187 return 0;
2188 }
2189 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2190 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2191 return 0;
2192 }
2193 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2194 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2195 return 0;
2196 }
2197 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2198 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2199 return 0;
2200 }
2201 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2202 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2203 return 0;
2204 }
2205 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2206 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2207 return 0;
1da177e4
LT
2208 }
2209
19a60522
SS
2210 /*
2211 * In PCI 33 mode, the P_PLL is not used, and therefore,
2212 * the the P_PLL_LOCK bit in the adapter_status register will
2213 * not be asserted.
2214 */
2215 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2216 sp->device_type == XFRAME_II_DEVICE && mode !=
2217 PCI_MODE_PCI_33) {
2218 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2219 return 0;
2220 }
2221 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2222 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2223 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2224 return 0;
2225 }
2226 return 1;
1da177e4
LT
2227}
2228
2229/**
2230 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2231 * @sp: Pointer to device specifc structure
20346722 2232 * Description :
1da177e4
LT
2233 * New procedure to clear mac address reading problems on Alpha platforms
2234 *
2235 */
2236
1ee6dd77 2237static void fix_mac_address(struct s2io_nic * sp)
1da177e4 2238{
1ee6dd77 2239 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
2240 u64 val64;
2241 int i = 0;
2242
2243 while (fix_mac[i] != END_SIGN) {
2244 writeq(fix_mac[i++], &bar0->gpio_control);
20346722 2245 udelay(10);
1da177e4
LT
2246 val64 = readq(&bar0->gpio_control);
2247 }
2248}
2249
2250/**
20346722 2251 * start_nic - Turns the device on
1da177e4 2252 * @nic : device private variable.
20346722
K
2253 * Description:
2254 * This function actually turns the device on. Before this function is
2255 * called,all Registers are configured from their reset states
2256 * and shared memory is allocated but the NIC is still quiescent. On
1da177e4
LT
2257 * calling this function, the device interrupts are cleared and the NIC is
2258 * literally switched on by writing into the adapter control register.
20346722 2259 * Return Value:
1da177e4
LT
2260 * SUCCESS on success and -1 on failure.
2261 */
2262
2263static int start_nic(struct s2io_nic *nic)
2264{
1ee6dd77 2265 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
2266 struct net_device *dev = nic->dev;
2267 register u64 val64 = 0;
20346722 2268 u16 subid, i;
1ee6dd77 2269 struct mac_info *mac_control;
1da177e4
LT
2270 struct config_param *config;
2271
2272 mac_control = &nic->mac_control;
2273 config = &nic->config;
2274
2275 /* PRC Initialization and configuration */
2276 for (i = 0; i < config->rx_ring_num; i++) {
20346722 2277 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1da177e4
LT
2278 &bar0->prc_rxd0_n[i]);
2279
2280 val64 = readq(&bar0->prc_ctrl_n[i]);
da6971d8
AR
2281 if (nic->rxd_mode == RXD_MODE_1)
2282 val64 |= PRC_CTRL_RC_ENABLED;
2283 else
2284 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
863c11a9
AR
2285 if (nic->device_type == XFRAME_II_DEVICE)
2286 val64 |= PRC_CTRL_GROUP_READS;
2287 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2288 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
1da177e4
LT
2289 writeq(val64, &bar0->prc_ctrl_n[i]);
2290 }
2291
da6971d8
AR
2292 if (nic->rxd_mode == RXD_MODE_3B) {
2293 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2294 val64 = readq(&bar0->rx_pa_cfg);
2295 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2296 writeq(val64, &bar0->rx_pa_cfg);
2297 }
1da177e4 2298
926930b2
SS
2299 if (vlan_tag_strip == 0) {
2300 val64 = readq(&bar0->rx_pa_cfg);
2301 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2302 writeq(val64, &bar0->rx_pa_cfg);
cd0fce03 2303 nic->vlan_strip_flag = 0;
926930b2
SS
2304 }
2305
20346722 2306 /*
1da177e4
LT
2307 * Enabling MC-RLDRAM. After enabling the device, we timeout
2308 * for around 100ms, which is approximately the time required
2309 * for the device to be ready for operation.
2310 */
2311 val64 = readq(&bar0->mc_rldram_mrs);
2312 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2313 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2314 val64 = readq(&bar0->mc_rldram_mrs);
2315
20346722 2316 msleep(100); /* Delay by around 100 ms. */
1da177e4
LT
2317
2318 /* Enabling ECC Protection. */
2319 val64 = readq(&bar0->adapter_control);
2320 val64 &= ~ADAPTER_ECC_EN;
2321 writeq(val64, &bar0->adapter_control);
2322
20346722
K
2323 /*
2324 * Verify if the device is ready to be enabled, if so enable
1da177e4
LT
2325 * it.
2326 */
2327 val64 = readq(&bar0->adapter_status);
19a60522 2328 if (!verify_xena_quiescence(nic)) {
1da177e4
LT
2329 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2330 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2331 (unsigned long long) val64);
2332 return FAILURE;
2333 }
2334
20346722 2335 /*
1da177e4 2336 * With some switches, link might be already up at this point.
20346722
K
2337 * Because of this weird behavior, when we enable laser,
2338 * we may not get link. We need to handle this. We cannot
2339 * figure out which switch is misbehaving. So we are forced to
2340 * make a global change.
1da177e4
LT
2341 */
2342
2343 /* Enabling Laser. */
2344 val64 = readq(&bar0->adapter_control);
2345 val64 |= ADAPTER_EOI_TX_ON;
2346 writeq(val64, &bar0->adapter_control);
2347
c92ca04b
AR
2348 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2349 /*
2350 * Dont see link state interrupts initally on some switches,
2351 * so directly scheduling the link state task here.
2352 */
2353 schedule_work(&nic->set_link_task);
2354 }
1da177e4
LT
2355 /* SXE-002: Initialize link and activity LED */
2356 subid = nic->pdev->subsystem_device;
541ae68f
K
2357 if (((subid & 0xFF) >= 0x07) &&
2358 (nic->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
2359 val64 = readq(&bar0->gpio_control);
2360 val64 |= 0x0000800000000000ULL;
2361 writeq(val64, &bar0->gpio_control);
2362 val64 = 0x0411040400000000ULL;
509a2671 2363 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
2364 }
2365
1da177e4
LT
2366 return SUCCESS;
2367}
fed5eccd
AR
2368/**
2369 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2370 */
1ee6dd77
RB
2371static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2372 TxD *txdlp, int get_off)
fed5eccd 2373{
1ee6dd77 2374 struct s2io_nic *nic = fifo_data->nic;
fed5eccd 2375 struct sk_buff *skb;
1ee6dd77 2376 struct TxD *txds;
fed5eccd
AR
2377 u16 j, frg_cnt;
2378
2379 txds = txdlp;
2fda096d 2380 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
fed5eccd
AR
2381 pci_unmap_single(nic->pdev, (dma_addr_t)
2382 txds->Buffer_Pointer, sizeof(u64),
2383 PCI_DMA_TODEVICE);
2384 txds++;
2385 }
2386
2387 skb = (struct sk_buff *) ((unsigned long)
2388 txds->Host_Control);
2389 if (!skb) {
1ee6dd77 2390 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
fed5eccd
AR
2391 return NULL;
2392 }
2393 pci_unmap_single(nic->pdev, (dma_addr_t)
2394 txds->Buffer_Pointer,
2395 skb->len - skb->data_len,
2396 PCI_DMA_TODEVICE);
2397 frg_cnt = skb_shinfo(skb)->nr_frags;
2398 if (frg_cnt) {
2399 txds++;
2400 for (j = 0; j < frg_cnt; j++, txds++) {
2401 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2402 if (!txds->Buffer_Pointer)
2403 break;
6aa20a22 2404 pci_unmap_page(nic->pdev, (dma_addr_t)
fed5eccd
AR
2405 txds->Buffer_Pointer,
2406 frag->size, PCI_DMA_TODEVICE);
2407 }
2408 }
1ee6dd77 2409 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
fed5eccd
AR
2410 return(skb);
2411}
1da177e4 2412
20346722
K
2413/**
2414 * free_tx_buffers - Free all queued Tx buffers
1da177e4 2415 * @nic : device private variable.
20346722 2416 * Description:
1da177e4 2417 * Free all queued Tx buffers.
20346722 2418 * Return Value: void
1da177e4
LT
2419*/
2420
2421static void free_tx_buffers(struct s2io_nic *nic)
2422{
2423 struct net_device *dev = nic->dev;
2424 struct sk_buff *skb;
1ee6dd77 2425 struct TxD *txdp;
1da177e4 2426 int i, j;
1ee6dd77 2427 struct mac_info *mac_control;
1da177e4 2428 struct config_param *config;
fed5eccd 2429 int cnt = 0;
1da177e4
LT
2430
2431 mac_control = &nic->mac_control;
2432 config = &nic->config;
2433
2434 for (i = 0; i < config->tx_fifo_num; i++) {
2fda096d
SR
2435 unsigned long flags;
2436 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags);
b35b3b49 2437 for (j = 0; j < config->tx_cfg[i].fifo_len; j++) {
491976b2
SH
2438 txdp = (struct TxD *) \
2439 mac_control->fifos[i].list_info[j].list_virt_addr;
fed5eccd
AR
2440 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2441 if (skb) {
8a4bdbaa 2442 nic->mac_control.stats_info->sw_stat.mem_freed
491976b2 2443 += skb->truesize;
fed5eccd
AR
2444 dev_kfree_skb(skb);
2445 cnt++;
1da177e4 2446 }
1da177e4
LT
2447 }
2448 DBG_PRINT(INTR_DBG,
2449 "%s:forcibly freeing %d skbs on FIFO%d\n",
2450 dev->name, cnt, i);
20346722
K
2451 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2452 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2fda096d 2453 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, flags);
1da177e4
LT
2454 }
2455}
2456
20346722
K
2457/**
2458 * stop_nic - To stop the nic
1da177e4 2459 * @nic ; device private variable.
20346722
K
2460 * Description:
2461 * This function does exactly the opposite of what the start_nic()
1da177e4
LT
2462 * function does. This function is called to stop the device.
2463 * Return Value:
2464 * void.
2465 */
2466
2467static void stop_nic(struct s2io_nic *nic)
2468{
1ee6dd77 2469 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4 2470 register u64 val64 = 0;
5d3213cc 2471 u16 interruptible;
1ee6dd77 2472 struct mac_info *mac_control;
1da177e4
LT
2473 struct config_param *config;
2474
2475 mac_control = &nic->mac_control;
2476 config = &nic->config;
2477
2478 /* Disable all interrupts */
9caab458 2479 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
e960fc5c 2480 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
9caab458 2481 interruptible |= TX_PIC_INTR;
1da177e4
LT
2482 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2483
5d3213cc
AR
2484 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2485 val64 = readq(&bar0->adapter_control);
2486 val64 &= ~(ADAPTER_CNTL_EN);
2487 writeq(val64, &bar0->adapter_control);
1da177e4
LT
2488}
2489
20346722
K
2490/**
2491 * fill_rx_buffers - Allocates the Rx side skbs
0425b46a 2492 * @ring_info: per ring structure
3f78d885
SH
2493 * @from_card_up: If this is true, we will map the buffer to get
2494 * the dma address for buf0 and buf1 to give it to the card.
2495 * Else we will sync the already mapped buffer to give it to the card.
20346722 2496 * Description:
1da177e4
LT
2497 * The function allocates Rx side skbs and puts the physical
2498 * address of these buffers into the RxD buffer pointers, so that the NIC
2499 * can DMA the received frame into these locations.
2500 * The NIC supports 3 receive modes, viz
2501 * 1. single buffer,
2502 * 2. three buffer and
2503 * 3. Five buffer modes.
20346722
K
2504 * Each mode defines how many fragments the received frame will be split
2505 * up into by the NIC. The frame is split into L3 header, L4 Header,
1da177e4
LT
2506 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2507 * is split into 3 fragments. As of now only single buffer mode is
2508 * supported.
2509 * Return Value:
2510 * SUCCESS on success or an appropriate -ve value on failure.
2511 */
8d8bb39b
FT
2512static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2513 int from_card_up)
1da177e4 2514{
1da177e4 2515 struct sk_buff *skb;
1ee6dd77 2516 struct RxD_t *rxdp;
0425b46a 2517 int off, size, block_no, block_no1;
1da177e4 2518 u32 alloc_tab = 0;
20346722 2519 u32 alloc_cnt;
20346722 2520 u64 tmp;
1ee6dd77 2521 struct buffAdd *ba;
1ee6dd77 2522 struct RxD_t *first_rxdp = NULL;
363dc367 2523 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
0425b46a 2524 int rxd_index = 0;
6d517a27
VP
2525 struct RxD1 *rxdp1;
2526 struct RxD3 *rxdp3;
0425b46a 2527 struct swStat *stats = &ring->nic->mac_control.stats_info->sw_stat;
1da177e4 2528
0425b46a 2529 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
1da177e4 2530
0425b46a 2531 block_no1 = ring->rx_curr_get_info.block_index;
1da177e4 2532 while (alloc_tab < alloc_cnt) {
0425b46a 2533 block_no = ring->rx_curr_put_info.block_index;
1da177e4 2534
0425b46a
SH
2535 off = ring->rx_curr_put_info.offset;
2536
2537 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2538
2539 rxd_index = off + 1;
2540 if (block_no)
2541 rxd_index += (block_no * ring->rxd_count);
da6971d8 2542
7d2e3cb7 2543 if ((block_no == block_no1) &&
0425b46a
SH
2544 (off == ring->rx_curr_get_info.offset) &&
2545 (rxdp->Host_Control)) {
da6971d8 2546 DBG_PRINT(INTR_DBG, "%s: Get and Put",
0425b46a 2547 ring->dev->name);
1da177e4
LT
2548 DBG_PRINT(INTR_DBG, " info equated\n");
2549 goto end;
2550 }
0425b46a
SH
2551 if (off && (off == ring->rxd_count)) {
2552 ring->rx_curr_put_info.block_index++;
2553 if (ring->rx_curr_put_info.block_index ==
2554 ring->block_count)
2555 ring->rx_curr_put_info.block_index = 0;
2556 block_no = ring->rx_curr_put_info.block_index;
2557 off = 0;
2558 ring->rx_curr_put_info.offset = off;
2559 rxdp = ring->rx_blocks[block_no].block_virt_addr;
1da177e4 2560 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
0425b46a
SH
2561 ring->dev->name, rxdp);
2562
1da177e4 2563 }
c9fcbf47 2564
da6971d8 2565 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
0425b46a 2566 ((ring->rxd_mode == RXD_MODE_3B) &&
b7b5a128 2567 (rxdp->Control_2 & s2BIT(0)))) {
0425b46a 2568 ring->rx_curr_put_info.offset = off;
1da177e4
LT
2569 goto end;
2570 }
da6971d8 2571 /* calculate size of skb based on ring mode */
0425b46a 2572 size = ring->mtu + HEADER_ETHERNET_II_802_3_SIZE +
da6971d8 2573 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
0425b46a 2574 if (ring->rxd_mode == RXD_MODE_1)
da6971d8 2575 size += NET_IP_ALIGN;
da6971d8 2576 else
0425b46a 2577 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
1da177e4 2578
da6971d8
AR
2579 /* allocate skb */
2580 skb = dev_alloc_skb(size);
2581 if(!skb) {
0425b46a 2582 DBG_PRINT(INFO_DBG, "%s: Out of ", ring->dev->name);
0c61ed5f 2583 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
303bcb4b
K
2584 if (first_rxdp) {
2585 wmb();
2586 first_rxdp->Control_1 |= RXD_OWN_XENA;
2587 }
0425b46a 2588 stats->mem_alloc_fail_cnt++;
7d2e3cb7 2589
da6971d8
AR
2590 return -ENOMEM ;
2591 }
0425b46a
SH
2592 stats->mem_allocated += skb->truesize;
2593
2594 if (ring->rxd_mode == RXD_MODE_1) {
da6971d8 2595 /* 1 buffer mode - normal operation mode */
6d517a27 2596 rxdp1 = (struct RxD1*)rxdp;
1ee6dd77 2597 memset(rxdp, 0, sizeof(struct RxD1));
da6971d8 2598 skb_reserve(skb, NET_IP_ALIGN);
6d517a27 2599 rxdp1->Buffer0_ptr = pci_map_single
0425b46a 2600 (ring->pdev, skb->data, size - NET_IP_ALIGN,
863c11a9 2601 PCI_DMA_FROMDEVICE);
8d8bb39b
FT
2602 if (pci_dma_mapping_error(nic->pdev,
2603 rxdp1->Buffer0_ptr))
491abf25
VP
2604 goto pci_map_failed;
2605
8a4bdbaa 2606 rxdp->Control_2 =
491976b2 2607 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
0425b46a
SH
2608 rxdp->Host_Control = (unsigned long) (skb);
2609 } else if (ring->rxd_mode == RXD_MODE_3B) {
da6971d8 2610 /*
6d517a27
VP
2611 * 2 buffer mode -
2612 * 2 buffer mode provides 128
da6971d8 2613 * byte aligned receive buffers.
da6971d8
AR
2614 */
2615
6d517a27 2616 rxdp3 = (struct RxD3*)rxdp;
491976b2 2617 /* save buffer pointers to avoid frequent dma mapping */
6d517a27
VP
2618 Buffer0_ptr = rxdp3->Buffer0_ptr;
2619 Buffer1_ptr = rxdp3->Buffer1_ptr;
1ee6dd77 2620 memset(rxdp, 0, sizeof(struct RxD3));
363dc367 2621 /* restore the buffer pointers for dma sync*/
6d517a27
VP
2622 rxdp3->Buffer0_ptr = Buffer0_ptr;
2623 rxdp3->Buffer1_ptr = Buffer1_ptr;
363dc367 2624
0425b46a 2625 ba = &ring->ba[block_no][off];
da6971d8
AR
2626 skb_reserve(skb, BUF0_LEN);
2627 tmp = (u64)(unsigned long) skb->data;
2628 tmp += ALIGN_SIZE;
2629 tmp &= ~ALIGN_SIZE;
2630 skb->data = (void *) (unsigned long)tmp;
27a884dc 2631 skb_reset_tail_pointer(skb);
da6971d8 2632
3f78d885 2633 if (from_card_up) {
6d517a27 2634 rxdp3->Buffer0_ptr =
0425b46a
SH
2635 pci_map_single(ring->pdev, ba->ba_0,
2636 BUF0_LEN, PCI_DMA_FROMDEVICE);
8d8bb39b
FT
2637 if (pci_dma_mapping_error(nic->pdev,
2638 rxdp3->Buffer0_ptr))
3f78d885
SH
2639 goto pci_map_failed;
2640 } else
0425b46a 2641 pci_dma_sync_single_for_device(ring->pdev,
6d517a27 2642 (dma_addr_t) rxdp3->Buffer0_ptr,
75c30b13 2643 BUF0_LEN, PCI_DMA_FROMDEVICE);
491abf25 2644
da6971d8 2645 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
0425b46a 2646 if (ring->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
2647 /* Two buffer mode */
2648
2649 /*
6aa20a22 2650 * Buffer2 will have L3/L4 header plus
da6971d8
AR
2651 * L4 payload
2652 */
6d517a27 2653 rxdp3->Buffer2_ptr = pci_map_single
0425b46a 2654 (ring->pdev, skb->data, ring->mtu + 4,
da6971d8
AR
2655 PCI_DMA_FROMDEVICE);
2656
8d8bb39b
FT
2657 if (pci_dma_mapping_error(nic->pdev,
2658 rxdp3->Buffer2_ptr))
491abf25
VP
2659 goto pci_map_failed;
2660
3f78d885 2661 if (from_card_up) {
0425b46a
SH
2662 rxdp3->Buffer1_ptr =
2663 pci_map_single(ring->pdev,
75c30b13
AR
2664 ba->ba_1, BUF1_LEN,
2665 PCI_DMA_FROMDEVICE);
0425b46a 2666
8d8bb39b
FT
2667 if (pci_dma_mapping_error(nic->pdev,
2668 rxdp3->Buffer1_ptr)) {
3f78d885
SH
2669 pci_unmap_single
2670 (ring->pdev,
2671 (dma_addr_t)(unsigned long)
2672 skb->data,
2673 ring->mtu + 4,
2674 PCI_DMA_FROMDEVICE);
2675 goto pci_map_failed;
2676 }
75c30b13 2677 }
da6971d8
AR
2678 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2679 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
0425b46a 2680 (ring->mtu + 4);
da6971d8 2681 }
b7b5a128 2682 rxdp->Control_2 |= s2BIT(0);
0425b46a 2683 rxdp->Host_Control = (unsigned long) (skb);
1da177e4 2684 }
303bcb4b
K
2685 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2686 rxdp->Control_1 |= RXD_OWN_XENA;
1da177e4 2687 off++;
0425b46a 2688 if (off == (ring->rxd_count + 1))
da6971d8 2689 off = 0;
0425b46a 2690 ring->rx_curr_put_info.offset = off;
20346722 2691
da6971d8 2692 rxdp->Control_2 |= SET_RXD_MARKER;
303bcb4b
K
2693 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2694 if (first_rxdp) {
2695 wmb();
2696 first_rxdp->Control_1 |= RXD_OWN_XENA;
2697 }
2698 first_rxdp = rxdp;
2699 }
0425b46a 2700 ring->rx_bufs_left += 1;
1da177e4
LT
2701 alloc_tab++;
2702 }
2703
2704 end:
303bcb4b
K
2705 /* Transfer ownership of first descriptor to adapter just before
2706 * exiting. Before that, use memory barrier so that ownership
2707 * and other fields are seen by adapter correctly.
2708 */
2709 if (first_rxdp) {
2710 wmb();
2711 first_rxdp->Control_1 |= RXD_OWN_XENA;
2712 }
2713
1da177e4 2714 return SUCCESS;
491abf25
VP
2715pci_map_failed:
2716 stats->pci_map_fail_cnt++;
2717 stats->mem_freed += skb->truesize;
2718 dev_kfree_skb_irq(skb);
2719 return -ENOMEM;
1da177e4
LT
2720}
2721
da6971d8
AR
2722static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2723{
2724 struct net_device *dev = sp->dev;
2725 int j;
2726 struct sk_buff *skb;
1ee6dd77
RB
2727 struct RxD_t *rxdp;
2728 struct mac_info *mac_control;
2729 struct buffAdd *ba;
6d517a27
VP
2730 struct RxD1 *rxdp1;
2731 struct RxD3 *rxdp3;
da6971d8
AR
2732
2733 mac_control = &sp->mac_control;
2734 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2735 rxdp = mac_control->rings[ring_no].
2736 rx_blocks[blk].rxds[j].virt_addr;
2737 skb = (struct sk_buff *)
2738 ((unsigned long) rxdp->Host_Control);
2739 if (!skb) {
2740 continue;
2741 }
2742 if (sp->rxd_mode == RXD_MODE_1) {
6d517a27 2743 rxdp1 = (struct RxD1*)rxdp;
da6971d8 2744 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2745 rxdp1->Buffer0_ptr,
2746 dev->mtu +
2747 HEADER_ETHERNET_II_802_3_SIZE
2748 + HEADER_802_2_SIZE +
2749 HEADER_SNAP_SIZE,
2750 PCI_DMA_FROMDEVICE);
1ee6dd77 2751 memset(rxdp, 0, sizeof(struct RxD1));
da6971d8 2752 } else if(sp->rxd_mode == RXD_MODE_3B) {
6d517a27 2753 rxdp3 = (struct RxD3*)rxdp;
da6971d8
AR
2754 ba = &mac_control->rings[ring_no].
2755 ba[blk][j];
2756 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2757 rxdp3->Buffer0_ptr,
2758 BUF0_LEN,
da6971d8
AR
2759 PCI_DMA_FROMDEVICE);
2760 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2761 rxdp3->Buffer1_ptr,
2762 BUF1_LEN,
da6971d8
AR
2763 PCI_DMA_FROMDEVICE);
2764 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2765 rxdp3->Buffer2_ptr,
2766 dev->mtu + 4,
da6971d8 2767 PCI_DMA_FROMDEVICE);
1ee6dd77 2768 memset(rxdp, 0, sizeof(struct RxD3));
da6971d8 2769 }
491976b2 2770 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
da6971d8 2771 dev_kfree_skb(skb);
0425b46a 2772 mac_control->rings[ring_no].rx_bufs_left -= 1;
da6971d8
AR
2773 }
2774}
2775
1da177e4 2776/**
20346722 2777 * free_rx_buffers - Frees all Rx buffers
1da177e4 2778 * @sp: device private variable.
20346722 2779 * Description:
1da177e4
LT
2780 * This function will free all Rx buffers allocated by host.
2781 * Return Value:
2782 * NONE.
2783 */
2784
2785static void free_rx_buffers(struct s2io_nic *sp)
2786{
2787 struct net_device *dev = sp->dev;
da6971d8 2788 int i, blk = 0, buf_cnt = 0;
1ee6dd77 2789 struct mac_info *mac_control;
1da177e4 2790 struct config_param *config;
1da177e4
LT
2791
2792 mac_control = &sp->mac_control;
2793 config = &sp->config;
2794
2795 for (i = 0; i < config->rx_ring_num; i++) {
da6971d8
AR
2796 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2797 free_rxd_blk(sp,i,blk);
1da177e4 2798
20346722
K
2799 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2800 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2801 mac_control->rings[i].rx_curr_put_info.offset = 0;
2802 mac_control->rings[i].rx_curr_get_info.offset = 0;
0425b46a 2803 mac_control->rings[i].rx_bufs_left = 0;
1da177e4
LT
2804 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2805 dev->name, buf_cnt, i);
2806 }
2807}
2808
8d8bb39b 2809static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
f61e0a35 2810{
8d8bb39b 2811 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
f61e0a35
SH
2812 DBG_PRINT(INFO_DBG, "%s:Out of memory", ring->dev->name);
2813 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
2814 }
2815 return 0;
2816}
2817
1da177e4
LT
2818/**
2819 * s2io_poll - Rx interrupt handler for NAPI support
bea3348e 2820 * @napi : pointer to the napi structure.
20346722 2821 * @budget : The number of packets that were budgeted to be processed
1da177e4
LT
2822 * during one pass through the 'Poll" function.
2823 * Description:
2824 * Comes into picture only if NAPI support has been incorporated. It does
2825 * the same thing that rx_intr_handler does, but not in a interrupt context
2826 * also It will process only a given number of packets.
2827 * Return value:
2828 * 0 on success and 1 if there are No Rx packets to be processed.
2829 */
2830
f61e0a35 2831static int s2io_poll_msix(struct napi_struct *napi, int budget)
1da177e4 2832{
f61e0a35
SH
2833 struct ring_info *ring = container_of(napi, struct ring_info, napi);
2834 struct net_device *dev = ring->dev;
1da177e4 2835 struct config_param *config;
f61e0a35
SH
2836 struct mac_info *mac_control;
2837 int pkts_processed = 0;
1a79d1c3
AV
2838 u8 __iomem *addr = NULL;
2839 u8 val8 = 0;
f61e0a35 2840 struct s2io_nic *nic = dev->priv;
1ee6dd77 2841 struct XENA_dev_config __iomem *bar0 = nic->bar0;
f61e0a35 2842 int budget_org = budget;
1da177e4 2843
1da177e4 2844 config = &nic->config;
f61e0a35 2845 mac_control = &nic->mac_control;
1da177e4 2846
f61e0a35
SH
2847 if (unlikely(!is_s2io_card_up(nic)))
2848 return 0;
1da177e4 2849
f61e0a35 2850 pkts_processed = rx_intr_handler(ring, budget);
8d8bb39b 2851 s2io_chk_rx_buffers(nic, ring);
1da177e4 2852
f61e0a35
SH
2853 if (pkts_processed < budget_org) {
2854 netif_rx_complete(dev, napi);
2855 /*Re Enable MSI-Rx Vector*/
1a79d1c3 2856 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
f61e0a35
SH
2857 addr += 7 - ring->ring_no;
2858 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2859 writeb(val8, addr);
2860 val8 = readb(addr);
1da177e4 2861 }
f61e0a35
SH
2862 return pkts_processed;
2863}
2864static int s2io_poll_inta(struct napi_struct *napi, int budget)
2865{
2866 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2867 struct ring_info *ring;
2868 struct net_device *dev = nic->dev;
2869 struct config_param *config;
2870 struct mac_info *mac_control;
2871 int pkts_processed = 0;
2872 int ring_pkts_processed, i;
2873 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2874 int budget_org = budget;
1da177e4 2875
f61e0a35
SH
2876 config = &nic->config;
2877 mac_control = &nic->mac_control;
1da177e4 2878
f61e0a35
SH
2879 if (unlikely(!is_s2io_card_up(nic)))
2880 return 0;
1da177e4 2881
1da177e4 2882 for (i = 0; i < config->rx_ring_num; i++) {
f61e0a35
SH
2883 ring = &mac_control->rings[i];
2884 ring_pkts_processed = rx_intr_handler(ring, budget);
8d8bb39b 2885 s2io_chk_rx_buffers(nic, ring);
f61e0a35
SH
2886 pkts_processed += ring_pkts_processed;
2887 budget -= ring_pkts_processed;
2888 if (budget <= 0)
1da177e4 2889 break;
1da177e4 2890 }
f61e0a35
SH
2891 if (pkts_processed < budget_org) {
2892 netif_rx_complete(dev, napi);
2893 /* Re enable the Rx interrupts for the ring */
2894 writeq(0, &bar0->rx_traffic_mask);
2895 readl(&bar0->rx_traffic_mask);
2896 }
2897 return pkts_processed;
1da177e4 2898}
20346722 2899
b41477f3 2900#ifdef CONFIG_NET_POLL_CONTROLLER
612eff0e 2901/**
b41477f3 2902 * s2io_netpoll - netpoll event handler entry point
612eff0e
BH
2903 * @dev : pointer to the device structure.
2904 * Description:
b41477f3
AR
2905 * This function will be called by upper layer to check for events on the
2906 * interface in situations where interrupts are disabled. It is used for
2907 * specific in-kernel networking tasks, such as remote consoles and kernel
2908 * debugging over the network (example netdump in RedHat).
612eff0e 2909 */
612eff0e
BH
2910static void s2io_netpoll(struct net_device *dev)
2911{
1ee6dd77
RB
2912 struct s2io_nic *nic = dev->priv;
2913 struct mac_info *mac_control;
612eff0e 2914 struct config_param *config;
1ee6dd77 2915 struct XENA_dev_config __iomem *bar0 = nic->bar0;
b41477f3 2916 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
612eff0e
BH
2917 int i;
2918
d796fdb7
LV
2919 if (pci_channel_offline(nic->pdev))
2920 return;
2921
612eff0e
BH
2922 disable_irq(dev->irq);
2923
612eff0e
BH
2924 mac_control = &nic->mac_control;
2925 config = &nic->config;
2926
612eff0e 2927 writeq(val64, &bar0->rx_traffic_int);
b41477f3
AR
2928 writeq(val64, &bar0->tx_traffic_int);
2929
6aa20a22 2930 /* we need to free up the transmitted skbufs or else netpoll will
b41477f3
AR
2931 * run out of skbs and will fail and eventually netpoll application such
2932 * as netdump will fail.
2933 */
2934 for (i = 0; i < config->tx_fifo_num; i++)
2935 tx_intr_handler(&mac_control->fifos[i]);
612eff0e 2936
b41477f3 2937 /* check for received packet and indicate up to network */
612eff0e 2938 for (i = 0; i < config->rx_ring_num; i++)
f61e0a35 2939 rx_intr_handler(&mac_control->rings[i], 0);
612eff0e
BH
2940
2941 for (i = 0; i < config->rx_ring_num; i++) {
8d8bb39b
FT
2942 if (fill_rx_buffers(nic, &mac_control->rings[i], 0) ==
2943 -ENOMEM) {
0c61ed5f
RV
2944 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2945 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
612eff0e
BH
2946 break;
2947 }
2948 }
612eff0e
BH
2949 enable_irq(dev->irq);
2950 return;
2951}
2952#endif
2953
20346722 2954/**
1da177e4 2955 * rx_intr_handler - Rx interrupt handler
f61e0a35
SH
2956 * @ring_info: per ring structure.
2957 * @budget: budget for napi processing.
20346722
K
2958 * Description:
2959 * If the interrupt is because of a received frame or if the
1da177e4 2960 * receive ring contains fresh as yet un-processed frames,this function is
20346722
K
2961 * called. It picks out the RxD at which place the last Rx processing had
2962 * stopped and sends the skb to the OSM's Rx handler and then increments
1da177e4
LT
2963 * the offset.
2964 * Return Value:
f61e0a35 2965 * No. of napi packets processed.
1da177e4 2966 */
f61e0a35 2967static int rx_intr_handler(struct ring_info *ring_data, int budget)
1da177e4 2968{
c9fcbf47 2969 int get_block, put_block;
1ee6dd77
RB
2970 struct rx_curr_get_info get_info, put_info;
2971 struct RxD_t *rxdp;
1da177e4 2972 struct sk_buff *skb;
f61e0a35 2973 int pkt_cnt = 0, napi_pkts = 0;
7d3d0439 2974 int i;
6d517a27
VP
2975 struct RxD1* rxdp1;
2976 struct RxD3* rxdp3;
7d3d0439 2977
20346722
K
2978 get_info = ring_data->rx_curr_get_info;
2979 get_block = get_info.block_index;
1ee6dd77 2980 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
20346722 2981 put_block = put_info.block_index;
da6971d8 2982 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
db874e65 2983
da6971d8 2984 while (RXD_IS_UP2DT(rxdp)) {
db874e65
SS
2985 /*
2986 * If your are next to put index then it's
2987 * FIFO full condition
2988 */
da6971d8
AR
2989 if ((get_block == put_block) &&
2990 (get_info.offset + 1) == put_info.offset) {
0425b46a
SH
2991 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2992 ring_data->dev->name);
da6971d8
AR
2993 break;
2994 }
20346722
K
2995 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2996 if (skb == NULL) {
2997 DBG_PRINT(ERR_DBG, "%s: The skb is ",
0425b46a 2998 ring_data->dev->name);
20346722 2999 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
f61e0a35 3000 return 0;
1da177e4 3001 }
0425b46a 3002 if (ring_data->rxd_mode == RXD_MODE_1) {
6d517a27 3003 rxdp1 = (struct RxD1*)rxdp;
0425b46a 3004 pci_unmap_single(ring_data->pdev, (dma_addr_t)
6d517a27 3005 rxdp1->Buffer0_ptr,
0425b46a 3006 ring_data->mtu +
6d517a27
VP
3007 HEADER_ETHERNET_II_802_3_SIZE +
3008 HEADER_802_2_SIZE +
3009 HEADER_SNAP_SIZE,
3010 PCI_DMA_FROMDEVICE);
0425b46a 3011 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
6d517a27 3012 rxdp3 = (struct RxD3*)rxdp;
0425b46a 3013 pci_dma_sync_single_for_cpu(ring_data->pdev, (dma_addr_t)
6d517a27
VP
3014 rxdp3->Buffer0_ptr,
3015 BUF0_LEN, PCI_DMA_FROMDEVICE);
0425b46a 3016 pci_unmap_single(ring_data->pdev, (dma_addr_t)
6d517a27 3017 rxdp3->Buffer2_ptr,
0425b46a 3018 ring_data->mtu + 4,
6d517a27 3019 PCI_DMA_FROMDEVICE);
da6971d8 3020 }
863c11a9 3021 prefetch(skb->data);
20346722
K
3022 rx_osm_handler(ring_data, rxdp);
3023 get_info.offset++;
da6971d8
AR
3024 ring_data->rx_curr_get_info.offset = get_info.offset;
3025 rxdp = ring_data->rx_blocks[get_block].
3026 rxds[get_info.offset].virt_addr;
0425b46a 3027 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
20346722 3028 get_info.offset = 0;
da6971d8 3029 ring_data->rx_curr_get_info.offset = get_info.offset;
20346722 3030 get_block++;
da6971d8
AR
3031 if (get_block == ring_data->block_count)
3032 get_block = 0;
3033 ring_data->rx_curr_get_info.block_index = get_block;
20346722
K
3034 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3035 }
1da177e4 3036
f61e0a35
SH
3037 if (ring_data->nic->config.napi) {
3038 budget--;
3039 napi_pkts++;
3040 if (!budget)
0425b46a
SH
3041 break;
3042 }
20346722 3043 pkt_cnt++;
1da177e4
LT
3044 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3045 break;
3046 }
0425b46a 3047 if (ring_data->lro) {
7d3d0439
RA
3048 /* Clear all LRO sessions before exiting */
3049 for (i=0; i<MAX_LRO_SESSIONS; i++) {
0425b46a 3050 struct lro *lro = &ring_data->lro0_n[i];
7d3d0439 3051 if (lro->in_use) {
0425b46a 3052 update_L3L4_header(ring_data->nic, lro);
cdb5bf02 3053 queue_rx_frame(lro->parent, lro->vlan_tag);
7d3d0439
RA
3054 clear_lro_session(lro);
3055 }
3056 }
3057 }
f61e0a35 3058 return(napi_pkts);
1da177e4 3059}
20346722
K
3060
3061/**
1da177e4
LT
3062 * tx_intr_handler - Transmit interrupt handler
3063 * @nic : device private variable
20346722
K
3064 * Description:
3065 * If an interrupt was raised to indicate DMA complete of the
3066 * Tx packet, this function is called. It identifies the last TxD
3067 * whose buffer was freed and frees all skbs whose data have already
1da177e4
LT
3068 * DMA'ed into the NICs internal memory.
3069 * Return Value:
3070 * NONE
3071 */
3072
1ee6dd77 3073static void tx_intr_handler(struct fifo_info *fifo_data)
1da177e4 3074{
1ee6dd77 3075 struct s2io_nic *nic = fifo_data->nic;
1ee6dd77 3076 struct tx_curr_get_info get_info, put_info;
3a3d5756 3077 struct sk_buff *skb = NULL;
1ee6dd77 3078 struct TxD *txdlp;
3a3d5756 3079 int pkt_cnt = 0;
2fda096d 3080 unsigned long flags = 0;
f9046eb3 3081 u8 err_mask;
1da177e4 3082
2fda096d
SR
3083 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3084 return;
3085
20346722 3086 get_info = fifo_data->tx_curr_get_info;
1ee6dd77
RB
3087 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3088 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
20346722
K
3089 list_virt_addr;
3090 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3091 (get_info.offset != put_info.offset) &&
3092 (txdlp->Host_Control)) {
3093 /* Check for TxD errors */
3094 if (txdlp->Control_1 & TXD_T_CODE) {
3095 unsigned long long err;
3096 err = txdlp->Control_1 & TXD_T_CODE;
bd1034f0
AR
3097 if (err & 0x1) {
3098 nic->mac_control.stats_info->sw_stat.
3099 parity_err_cnt++;
3100 }
491976b2
SH
3101
3102 /* update t_code statistics */
f9046eb3
OH
3103 err_mask = err >> 48;
3104 switch(err_mask) {
491976b2
SH
3105 case 2:
3106 nic->mac_control.stats_info->sw_stat.
3107 tx_buf_abort_cnt++;
3108 break;
3109
3110 case 3:
3111 nic->mac_control.stats_info->sw_stat.
3112 tx_desc_abort_cnt++;
3113 break;
3114
3115 case 7:
3116 nic->mac_control.stats_info->sw_stat.
3117 tx_parity_err_cnt++;
3118 break;
3119
3120 case 10:
3121 nic->mac_control.stats_info->sw_stat.
3122 tx_link_loss_cnt++;
3123 break;
3124
3125 case 15:
3126 nic->mac_control.stats_info->sw_stat.
3127 tx_list_proc_err_cnt++;
3128 break;
3129 }
20346722 3130 }
1da177e4 3131
fed5eccd 3132 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
20346722 3133 if (skb == NULL) {
2fda096d 3134 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
20346722 3135 DBG_PRINT(ERR_DBG, "%s: Null skb ",
b39d66a8 3136 __func__);
20346722
K
3137 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
3138 return;
3139 }
3a3d5756 3140 pkt_cnt++;
20346722 3141
20346722 3142 /* Updating the statistics block */
dc56e634 3143 nic->dev->stats.tx_bytes += skb->len;
491976b2 3144 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
20346722
K
3145 dev_kfree_skb_irq(skb);
3146
3147 get_info.offset++;
863c11a9
AR
3148 if (get_info.offset == get_info.fifo_len + 1)
3149 get_info.offset = 0;
1ee6dd77 3150 txdlp = (struct TxD *) fifo_data->list_info
20346722
K
3151 [get_info.offset].list_virt_addr;
3152 fifo_data->tx_curr_get_info.offset =
3153 get_info.offset;
1da177e4
LT
3154 }
3155
3a3d5756 3156 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
2fda096d
SR
3157
3158 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
1da177e4
LT
3159}
3160
bd1034f0
AR
3161/**
3162 * s2io_mdio_write - Function to write in to MDIO registers
3163 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3164 * @addr : address value
3165 * @value : data value
3166 * @dev : pointer to net_device structure
3167 * Description:
3168 * This function is used to write values to the MDIO registers
3169 * NONE
3170 */
3171static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3172{
3173 u64 val64 = 0x0;
1ee6dd77
RB
3174 struct s2io_nic *sp = dev->priv;
3175 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0
AR
3176
3177 //address transaction
3178 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3179 | MDIO_MMD_DEV_ADDR(mmd_type)
3180 | MDIO_MMS_PRT_ADDR(0x0);
3181 writeq(val64, &bar0->mdio_control);
3182 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3183 writeq(val64, &bar0->mdio_control);
3184 udelay(100);
3185
3186 //Data transaction
3187 val64 = 0x0;
3188 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3189 | MDIO_MMD_DEV_ADDR(mmd_type)
3190 | MDIO_MMS_PRT_ADDR(0x0)
3191 | MDIO_MDIO_DATA(value)
3192 | MDIO_OP(MDIO_OP_WRITE_TRANS);
3193 writeq(val64, &bar0->mdio_control);
3194 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3195 writeq(val64, &bar0->mdio_control);
3196 udelay(100);
3197
3198 val64 = 0x0;
3199 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3200 | MDIO_MMD_DEV_ADDR(mmd_type)
3201 | MDIO_MMS_PRT_ADDR(0x0)
3202 | MDIO_OP(MDIO_OP_READ_TRANS);
3203 writeq(val64, &bar0->mdio_control);
3204 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3205 writeq(val64, &bar0->mdio_control);
3206 udelay(100);
3207
3208}
3209
3210/**
3211 * s2io_mdio_read - Function to write in to MDIO registers
3212 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3213 * @addr : address value
3214 * @dev : pointer to net_device structure
3215 * Description:
3216 * This function is used to read values to the MDIO registers
3217 * NONE
3218 */
3219static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3220{
3221 u64 val64 = 0x0;
3222 u64 rval64 = 0x0;
1ee6dd77
RB
3223 struct s2io_nic *sp = dev->priv;
3224 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0
AR
3225
3226 /* address transaction */
3227 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3228 | MDIO_MMD_DEV_ADDR(mmd_type)
3229 | MDIO_MMS_PRT_ADDR(0x0);
3230 writeq(val64, &bar0->mdio_control);
3231 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3232 writeq(val64, &bar0->mdio_control);
3233 udelay(100);
3234
3235 /* Data transaction */
3236 val64 = 0x0;
3237 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3238 | MDIO_MMD_DEV_ADDR(mmd_type)
3239 | MDIO_MMS_PRT_ADDR(0x0)
3240 | MDIO_OP(MDIO_OP_READ_TRANS);
3241 writeq(val64, &bar0->mdio_control);
3242 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3243 writeq(val64, &bar0->mdio_control);
3244 udelay(100);
3245
3246 /* Read the value from regs */
3247 rval64 = readq(&bar0->mdio_control);
3248 rval64 = rval64 & 0xFFFF0000;
3249 rval64 = rval64 >> 16;
3250 return rval64;
3251}
3252/**
3253 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3254 * @counter : couter value to be updated
3255 * @flag : flag to indicate the status
3256 * @type : counter type
3257 * Description:
3258 * This function is to check the status of the xpak counters value
3259 * NONE
3260 */
3261
3262static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3263{
3264 u64 mask = 0x3;
3265 u64 val64;
3266 int i;
3267 for(i = 0; i <index; i++)
3268 mask = mask << 0x2;
3269
3270 if(flag > 0)
3271 {
3272 *counter = *counter + 1;
3273 val64 = *regs_stat & mask;
3274 val64 = val64 >> (index * 0x2);
3275 val64 = val64 + 1;
3276 if(val64 == 3)
3277 {
3278 switch(type)
3279 {
3280 case 1:
3281 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3282 "service. Excessive temperatures may "
3283 "result in premature transceiver "
3284 "failure \n");
3285 break;
3286 case 2:
3287 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3288 "service Excessive bias currents may "
3289 "indicate imminent laser diode "
3290 "failure \n");
3291 break;
3292 case 3:
3293 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3294 "service Excessive laser output "
3295 "power may saturate far-end "
3296 "receiver\n");
3297 break;
3298 default:
3299 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3300 "type \n");
3301 }
3302 val64 = 0x0;
3303 }
3304 val64 = val64 << (index * 0x2);
3305 *regs_stat = (*regs_stat & (~mask)) | (val64);
3306
3307 } else {
3308 *regs_stat = *regs_stat & (~mask);
3309 }
3310}
3311
3312/**
3313 * s2io_updt_xpak_counter - Function to update the xpak counters
3314 * @dev : pointer to net_device struct
3315 * Description:
3316 * This function is to upate the status of the xpak counters value
3317 * NONE
3318 */
3319static void s2io_updt_xpak_counter(struct net_device *dev)
3320{
3321 u16 flag = 0x0;
3322 u16 type = 0x0;
3323 u16 val16 = 0x0;
3324 u64 val64 = 0x0;
3325 u64 addr = 0x0;
3326
1ee6dd77
RB
3327 struct s2io_nic *sp = dev->priv;
3328 struct stat_block *stat_info = sp->mac_control.stats_info;
bd1034f0
AR
3329
3330 /* Check the communication with the MDIO slave */
3331 addr = 0x0000;
3332 val64 = 0x0;
3333 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3334 if((val64 == 0xFFFF) || (val64 == 0x0000))
3335 {
3336 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3337 "Returned %llx\n", (unsigned long long)val64);
3338 return;
3339 }
3340
3341 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3342 if(val64 != 0x2040)
3343 {
3344 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3345 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3346 (unsigned long long)val64);
3347 return;
3348 }
3349
3350 /* Loading the DOM register to MDIO register */
3351 addr = 0xA100;
3352 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3353 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3354
3355 /* Reading the Alarm flags */
3356 addr = 0xA070;
3357 val64 = 0x0;
3358 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3359
3360 flag = CHECKBIT(val64, 0x7);
3361 type = 1;
3362 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3363 &stat_info->xpak_stat.xpak_regs_stat,
3364 0x0, flag, type);
3365
3366 if(CHECKBIT(val64, 0x6))
3367 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3368
3369 flag = CHECKBIT(val64, 0x3);
3370 type = 2;
3371 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3372 &stat_info->xpak_stat.xpak_regs_stat,
3373 0x2, flag, type);
3374
3375 if(CHECKBIT(val64, 0x2))
3376 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3377
3378 flag = CHECKBIT(val64, 0x1);
3379 type = 3;
3380 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3381 &stat_info->xpak_stat.xpak_regs_stat,
3382 0x4, flag, type);
3383
3384 if(CHECKBIT(val64, 0x0))
3385 stat_info->xpak_stat.alarm_laser_output_power_low++;
3386
3387 /* Reading the Warning flags */
3388 addr = 0xA074;
3389 val64 = 0x0;
3390 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3391
3392 if(CHECKBIT(val64, 0x7))
3393 stat_info->xpak_stat.warn_transceiver_temp_high++;
3394
3395 if(CHECKBIT(val64, 0x6))
3396 stat_info->xpak_stat.warn_transceiver_temp_low++;
3397
3398 if(CHECKBIT(val64, 0x3))
3399 stat_info->xpak_stat.warn_laser_bias_current_high++;
3400
3401 if(CHECKBIT(val64, 0x2))
3402 stat_info->xpak_stat.warn_laser_bias_current_low++;
3403
3404 if(CHECKBIT(val64, 0x1))
3405 stat_info->xpak_stat.warn_laser_output_power_high++;
3406
3407 if(CHECKBIT(val64, 0x0))
3408 stat_info->xpak_stat.warn_laser_output_power_low++;
3409}
3410
20346722 3411/**
1da177e4 3412 * wait_for_cmd_complete - waits for a command to complete.
20346722 3413 * @sp : private member of the device structure, which is a pointer to the
1da177e4 3414 * s2io_nic structure.
20346722
K
3415 * Description: Function that waits for a command to Write into RMAC
3416 * ADDR DATA registers to be completed and returns either success or
3417 * error depending on whether the command was complete or not.
1da177e4
LT
3418 * Return value:
3419 * SUCCESS on success and FAILURE on failure.
3420 */
3421
9fc93a41
SS
3422static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3423 int bit_state)
1da177e4 3424{
9fc93a41 3425 int ret = FAILURE, cnt = 0, delay = 1;
1da177e4
LT
3426 u64 val64;
3427
9fc93a41
SS
3428 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3429 return FAILURE;
3430
3431 do {
c92ca04b 3432 val64 = readq(addr);
9fc93a41
SS
3433 if (bit_state == S2IO_BIT_RESET) {
3434 if (!(val64 & busy_bit)) {
3435 ret = SUCCESS;
3436 break;
3437 }
3438 } else {
3439 if (!(val64 & busy_bit)) {
3440 ret = SUCCESS;
3441 break;
3442 }
1da177e4 3443 }
c92ca04b
AR
3444
3445 if(in_interrupt())
9fc93a41 3446 mdelay(delay);
c92ca04b 3447 else
9fc93a41 3448 msleep(delay);
c92ca04b 3449
9fc93a41
SS
3450 if (++cnt >= 10)
3451 delay = 50;
3452 } while (cnt < 20);
1da177e4
LT
3453 return ret;
3454}
19a60522
SS
3455/*
3456 * check_pci_device_id - Checks if the device id is supported
3457 * @id : device id
3458 * Description: Function to check if the pci device id is supported by driver.
3459 * Return value: Actual device id if supported else PCI_ANY_ID
3460 */
3461static u16 check_pci_device_id(u16 id)
3462{
3463 switch (id) {
3464 case PCI_DEVICE_ID_HERC_WIN:
3465 case PCI_DEVICE_ID_HERC_UNI:
3466 return XFRAME_II_DEVICE;
3467 case PCI_DEVICE_ID_S2IO_UNI:
3468 case PCI_DEVICE_ID_S2IO_WIN:
3469 return XFRAME_I_DEVICE;
3470 default:
3471 return PCI_ANY_ID;
3472 }
3473}
1da177e4 3474
20346722
K
3475/**
3476 * s2io_reset - Resets the card.
1da177e4
LT
3477 * @sp : private member of the device structure.
3478 * Description: Function to Reset the card. This function then also
20346722 3479 * restores the previously saved PCI configuration space registers as
1da177e4
LT
3480 * the card reset also resets the configuration space.
3481 * Return value:
3482 * void.
3483 */
3484
1ee6dd77 3485static void s2io_reset(struct s2io_nic * sp)
1da177e4 3486{
1ee6dd77 3487 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 3488 u64 val64;
5e25b9dd 3489 u16 subid, pci_cmd;
19a60522
SS
3490 int i;
3491 u16 val16;
491976b2
SH
3492 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3493 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3494
19a60522 3495 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
b39d66a8 3496 __func__, sp->dev->name);
1da177e4 3497
0b1f7ebe 3498 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
e960fc5c 3499 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
0b1f7ebe 3500
1da177e4
LT
3501 val64 = SW_RESET_ALL;
3502 writeq(val64, &bar0->sw_reset);
c92ca04b
AR
3503 if (strstr(sp->product_name, "CX4")) {
3504 msleep(750);
3505 }
19a60522
SS
3506 msleep(250);
3507 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
1da177e4 3508
19a60522
SS
3509 /* Restore the PCI state saved during initialization. */
3510 pci_restore_state(sp->pdev);
3511 pci_read_config_word(sp->pdev, 0x2, &val16);
3512 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3513 break;
3514 msleep(200);
3515 }
1da177e4 3516
19a60522 3517 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
b39d66a8 3518 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __func__);
19a60522
SS
3519 }
3520
3521 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3522
3523 s2io_init_pci(sp);
1da177e4 3524
20346722
K
3525 /* Set swapper to enable I/O register access */
3526 s2io_set_swapper(sp);
3527
faa4f796
SH
3528 /* restore mac_addr entries */
3529 do_s2io_restore_unicast_mc(sp);
3530
cc6e7c44
RA
3531 /* Restore the MSIX table entries from local variables */
3532 restore_xmsi_data(sp);
3533
5e25b9dd 3534 /* Clear certain PCI/PCI-X fields after reset */
303bcb4b 3535 if (sp->device_type == XFRAME_II_DEVICE) {
b41477f3 3536 /* Clear "detected parity error" bit */
303bcb4b 3537 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
5e25b9dd 3538
303bcb4b
K
3539 /* Clearing PCIX Ecc status register */
3540 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
5e25b9dd 3541
303bcb4b 3542 /* Clearing PCI_STATUS error reflected here */
b7b5a128 3543 writeq(s2BIT(62), &bar0->txpic_int_reg);
303bcb4b 3544 }
5e25b9dd 3545
20346722
K
3546 /* Reset device statistics maintained by OS */
3547 memset(&sp->stats, 0, sizeof (struct net_device_stats));
8a4bdbaa 3548
491976b2
SH
3549 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3550 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3551 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3552 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
363dc367 3553 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
491976b2
SH
3554 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3555 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3556 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3557 /* save link up/down time/cnt, reset/memory/watchdog cnt */
363dc367 3558 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
491976b2
SH
3559 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3560 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3561 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3562 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3563 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
363dc367 3564 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
491976b2
SH
3565 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3566 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3567 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
20346722 3568
1da177e4
LT
3569 /* SXE-002: Configure link and activity LED to turn it off */
3570 subid = sp->pdev->subsystem_device;
541ae68f
K
3571 if (((subid & 0xFF) >= 0x07) &&
3572 (sp->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
3573 val64 = readq(&bar0->gpio_control);
3574 val64 |= 0x0000800000000000ULL;
3575 writeq(val64, &bar0->gpio_control);
3576 val64 = 0x0411040400000000ULL;
509a2671 3577 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
3578 }
3579
541ae68f
K
3580 /*
3581 * Clear spurious ECC interrupts that would have occured on
3582 * XFRAME II cards after reset.
3583 */
3584 if (sp->device_type == XFRAME_II_DEVICE) {
3585 val64 = readq(&bar0->pcc_err_reg);
3586 writeq(val64, &bar0->pcc_err_reg);
3587 }
3588
1da177e4
LT
3589 sp->device_enabled_once = FALSE;
3590}
3591
3592/**
20346722
K
3593 * s2io_set_swapper - to set the swapper controle on the card
3594 * @sp : private member of the device structure,
1da177e4 3595 * pointer to the s2io_nic structure.
20346722 3596 * Description: Function to set the swapper control on the card
1da177e4
LT
3597 * correctly depending on the 'endianness' of the system.
3598 * Return value:
3599 * SUCCESS on success and FAILURE on failure.
3600 */
3601
1ee6dd77 3602static int s2io_set_swapper(struct s2io_nic * sp)
1da177e4
LT
3603{
3604 struct net_device *dev = sp->dev;
1ee6dd77 3605 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
3606 u64 val64, valt, valr;
3607
20346722 3608 /*
1da177e4
LT
3609 * Set proper endian settings and verify the same by reading
3610 * the PIF Feed-back register.
3611 */
3612
3613 val64 = readq(&bar0->pif_rd_swapper_fb);
3614 if (val64 != 0x0123456789ABCDEFULL) {
3615 int i = 0;
3616 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3617 0x8100008181000081ULL, /* FE=1, SE=0 */
3618 0x4200004242000042ULL, /* FE=0, SE=1 */
3619 0}; /* FE=0, SE=0 */
3620
3621 while(i<4) {
3622 writeq(value[i], &bar0->swapper_ctrl);
3623 val64 = readq(&bar0->pif_rd_swapper_fb);
3624 if (val64 == 0x0123456789ABCDEFULL)
3625 break;
3626 i++;
3627 }
3628 if (i == 4) {
3629 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3630 dev->name);
3631 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3632 (unsigned long long) val64);
3633 return FAILURE;
3634 }
3635 valr = value[i];
3636 } else {
3637 valr = readq(&bar0->swapper_ctrl);
3638 }
3639
3640 valt = 0x0123456789ABCDEFULL;
3641 writeq(valt, &bar0->xmsi_address);
3642 val64 = readq(&bar0->xmsi_address);
3643
3644 if(val64 != valt) {
3645 int i = 0;
3646 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3647 0x0081810000818100ULL, /* FE=1, SE=0 */
3648 0x0042420000424200ULL, /* FE=0, SE=1 */
3649 0}; /* FE=0, SE=0 */
3650
3651 while(i<4) {
3652 writeq((value[i] | valr), &bar0->swapper_ctrl);
3653 writeq(valt, &bar0->xmsi_address);
3654 val64 = readq(&bar0->xmsi_address);
3655 if(val64 == valt)
3656 break;
3657 i++;
3658 }
3659 if(i == 4) {
20346722 3660 unsigned long long x = val64;
1da177e4 3661 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
20346722 3662 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
1da177e4
LT
3663 return FAILURE;
3664 }
3665 }
3666 val64 = readq(&bar0->swapper_ctrl);
3667 val64 &= 0xFFFF000000000000ULL;
3668
3669#ifdef __BIG_ENDIAN
20346722
K
3670 /*
3671 * The device by default set to a big endian format, so a
1da177e4
LT
3672 * big endian driver need not set anything.
3673 */
3674 val64 |= (SWAPPER_CTRL_TXP_FE |
3675 SWAPPER_CTRL_TXP_SE |
3676 SWAPPER_CTRL_TXD_R_FE |
3677 SWAPPER_CTRL_TXD_W_FE |
3678 SWAPPER_CTRL_TXF_R_FE |
3679 SWAPPER_CTRL_RXD_R_FE |
3680 SWAPPER_CTRL_RXD_W_FE |
3681 SWAPPER_CTRL_RXF_W_FE |
3682 SWAPPER_CTRL_XMSI_FE |
1da177e4 3683 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
eaae7f72 3684 if (sp->config.intr_type == INTA)
cc6e7c44 3685 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3686 writeq(val64, &bar0->swapper_ctrl);
3687#else
20346722 3688 /*
1da177e4 3689 * Initially we enable all bits to make it accessible by the
20346722 3690 * driver, then we selectively enable only those bits that
1da177e4
LT
3691 * we want to set.
3692 */
3693 val64 |= (SWAPPER_CTRL_TXP_FE |
3694 SWAPPER_CTRL_TXP_SE |
3695 SWAPPER_CTRL_TXD_R_FE |
3696 SWAPPER_CTRL_TXD_R_SE |
3697 SWAPPER_CTRL_TXD_W_FE |
3698 SWAPPER_CTRL_TXD_W_SE |
3699 SWAPPER_CTRL_TXF_R_FE |
3700 SWAPPER_CTRL_RXD_R_FE |
3701 SWAPPER_CTRL_RXD_R_SE |
3702 SWAPPER_CTRL_RXD_W_FE |
3703 SWAPPER_CTRL_RXD_W_SE |
3704 SWAPPER_CTRL_RXF_W_FE |
3705 SWAPPER_CTRL_XMSI_FE |
1da177e4 3706 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
eaae7f72 3707 if (sp->config.intr_type == INTA)
cc6e7c44 3708 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3709 writeq(val64, &bar0->swapper_ctrl);
3710#endif
3711 val64 = readq(&bar0->swapper_ctrl);
3712
20346722
K
3713 /*
3714 * Verifying if endian settings are accurate by reading a
1da177e4
LT
3715 * feedback register.
3716 */
3717 val64 = readq(&bar0->pif_rd_swapper_fb);
3718 if (val64 != 0x0123456789ABCDEFULL) {
3719 /* Endian settings are incorrect, calls for another dekko. */
3720 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3721 dev->name);
3722 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3723 (unsigned long long) val64);
3724 return FAILURE;
3725 }
3726
3727 return SUCCESS;
3728}
3729
1ee6dd77 3730static int wait_for_msix_trans(struct s2io_nic *nic, int i)
cc6e7c44 3731{
1ee6dd77 3732 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3733 u64 val64;
3734 int ret = 0, cnt = 0;
3735
3736 do {
3737 val64 = readq(&bar0->xmsi_access);
b7b5a128 3738 if (!(val64 & s2BIT(15)))
cc6e7c44
RA
3739 break;
3740 mdelay(1);
3741 cnt++;
3742 } while(cnt < 5);
3743 if (cnt == 5) {
3744 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3745 ret = 1;
3746 }
3747
3748 return ret;
3749}
3750
1ee6dd77 3751static void restore_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3752{
1ee6dd77 3753 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44 3754 u64 val64;
f61e0a35
SH
3755 int i, msix_index;
3756
3757
3758 if (nic->device_type == XFRAME_I_DEVICE)
3759 return;
cc6e7c44 3760
75c30b13 3761 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
f61e0a35 3762 msix_index = (i) ? ((i-1) * 8 + 1): 0;
cc6e7c44
RA
3763 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3764 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
f61e0a35 3765 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
cc6e7c44 3766 writeq(val64, &bar0->xmsi_access);
f61e0a35 3767 if (wait_for_msix_trans(nic, msix_index)) {
b39d66a8 3768 DBG_PRINT(ERR_DBG, "failed in %s\n", __func__);
cc6e7c44
RA
3769 continue;
3770 }
3771 }
3772}
3773
1ee6dd77 3774static void store_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3775{
1ee6dd77 3776 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44 3777 u64 val64, addr, data;
f61e0a35
SH
3778 int i, msix_index;
3779
3780 if (nic->device_type == XFRAME_I_DEVICE)
3781 return;
cc6e7c44
RA
3782
3783 /* Store and display */
75c30b13 3784 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
f61e0a35
SH
3785 msix_index = (i) ? ((i-1) * 8 + 1): 0;
3786 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
cc6e7c44 3787 writeq(val64, &bar0->xmsi_access);
f61e0a35 3788 if (wait_for_msix_trans(nic, msix_index)) {
b39d66a8 3789 DBG_PRINT(ERR_DBG, "failed in %s\n", __func__);
cc6e7c44
RA
3790 continue;
3791 }
3792 addr = readq(&bar0->xmsi_address);
3793 data = readq(&bar0->xmsi_data);
3794 if (addr && data) {
3795 nic->msix_info[i].addr = addr;
3796 nic->msix_info[i].data = data;
3797 }
3798 }
3799}
3800
1ee6dd77 3801static int s2io_enable_msi_x(struct s2io_nic *nic)
cc6e7c44 3802{
1ee6dd77 3803 struct XENA_dev_config __iomem *bar0 = nic->bar0;
ac731ab6 3804 u64 rx_mat;
cc6e7c44
RA
3805 u16 msi_control; /* Temp variable */
3806 int ret, i, j, msix_indx = 1;
3807
f61e0a35 3808 nic->entries = kmalloc(nic->num_entries * sizeof(struct msix_entry),
cc6e7c44 3809 GFP_KERNEL);
bd684e43 3810 if (!nic->entries) {
491976b2 3811 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
b39d66a8 3812 __func__);
c53d4945 3813 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
cc6e7c44
RA
3814 return -ENOMEM;
3815 }
8a4bdbaa 3816 nic->mac_control.stats_info->sw_stat.mem_allocated
f61e0a35
SH
3817 += (nic->num_entries * sizeof(struct msix_entry));
3818
3819 memset(nic->entries, 0, nic->num_entries * sizeof(struct msix_entry));
cc6e7c44
RA
3820
3821 nic->s2io_entries =
f61e0a35 3822 kmalloc(nic->num_entries * sizeof(struct s2io_msix_entry),
cc6e7c44 3823 GFP_KERNEL);
bd684e43 3824 if (!nic->s2io_entries) {
8a4bdbaa 3825 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
b39d66a8 3826 __func__);
c53d4945 3827 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
cc6e7c44 3828 kfree(nic->entries);
8a4bdbaa 3829 nic->mac_control.stats_info->sw_stat.mem_freed
f61e0a35 3830 += (nic->num_entries * sizeof(struct msix_entry));
cc6e7c44
RA
3831 return -ENOMEM;
3832 }
8a4bdbaa 3833 nic->mac_control.stats_info->sw_stat.mem_allocated
f61e0a35
SH
3834 += (nic->num_entries * sizeof(struct s2io_msix_entry));
3835 memset(nic->s2io_entries, 0,
3836 nic->num_entries * sizeof(struct s2io_msix_entry));
cc6e7c44 3837
ac731ab6
SH
3838 nic->entries[0].entry = 0;
3839 nic->s2io_entries[0].entry = 0;
3840 nic->s2io_entries[0].in_use = MSIX_FLG;
3841 nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3842 nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3843
f61e0a35
SH
3844 for (i = 1; i < nic->num_entries; i++) {
3845 nic->entries[i].entry = ((i - 1) * 8) + 1;
3846 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
cc6e7c44
RA
3847 nic->s2io_entries[i].arg = NULL;
3848 nic->s2io_entries[i].in_use = 0;
3849 }
3850
8a4bdbaa 3851 rx_mat = readq(&bar0->rx_mat);
f61e0a35 3852 for (j = 0; j < nic->config.rx_ring_num; j++) {
8a4bdbaa 3853 rx_mat |= RX_MAT_SET(j, msix_indx);
f61e0a35
SH
3854 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3855 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3856 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3857 msix_indx += 8;
cc6e7c44 3858 }
8a4bdbaa 3859 writeq(rx_mat, &bar0->rx_mat);
f61e0a35 3860 readq(&bar0->rx_mat);
cc6e7c44 3861
f61e0a35 3862 ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
c92ca04b 3863 /* We fail init if error or we get less vectors than min required */
cc6e7c44
RA
3864 if (ret) {
3865 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3866 kfree(nic->entries);
8a4bdbaa 3867 nic->mac_control.stats_info->sw_stat.mem_freed
f61e0a35 3868 += (nic->num_entries * sizeof(struct msix_entry));
cc6e7c44 3869 kfree(nic->s2io_entries);
8a4bdbaa 3870 nic->mac_control.stats_info->sw_stat.mem_freed
f61e0a35 3871 += (nic->num_entries * sizeof(struct s2io_msix_entry));
cc6e7c44
RA
3872 nic->entries = NULL;
3873 nic->s2io_entries = NULL;
3874 return -ENOMEM;
3875 }
3876
3877 /*
3878 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3879 * in the herc NIC. (Temp change, needs to be removed later)
3880 */
3881 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3882 msi_control |= 0x1; /* Enable MSI */
3883 pci_write_config_word(nic->pdev, 0x42, msi_control);
3884
3885 return 0;
3886}
3887
8abc4d5b 3888/* Handle software interrupt used during MSI(X) test */
33390a70 3889static irqreturn_t s2io_test_intr(int irq, void *dev_id)
8abc4d5b
SS
3890{
3891 struct s2io_nic *sp = dev_id;
3892
3893 sp->msi_detected = 1;
3894 wake_up(&sp->msi_wait);
3895
3896 return IRQ_HANDLED;
3897}
3898
3899/* Test interrupt path by forcing a a software IRQ */
33390a70 3900static int s2io_test_msi(struct s2io_nic *sp)
8abc4d5b
SS
3901{
3902 struct pci_dev *pdev = sp->pdev;
3903 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3904 int err;
3905 u64 val64, saved64;
3906
3907 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3908 sp->name, sp);
3909 if (err) {
3910 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3911 sp->dev->name, pci_name(pdev), pdev->irq);
3912 return err;
3913 }
3914
3915 init_waitqueue_head (&sp->msi_wait);
3916 sp->msi_detected = 0;
3917
3918 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3919 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3920 val64 |= SCHED_INT_CTRL_TIMER_EN;
3921 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3922 writeq(val64, &bar0->scheduled_int_ctrl);
3923
3924 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3925
3926 if (!sp->msi_detected) {
3927 /* MSI(X) test failed, go back to INTx mode */
2450022a 3928 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
8abc4d5b
SS
3929 "using MSI(X) during test\n", sp->dev->name,
3930 pci_name(pdev));
3931
3932 err = -EOPNOTSUPP;
3933 }
3934
3935 free_irq(sp->entries[1].vector, sp);
3936
3937 writeq(saved64, &bar0->scheduled_int_ctrl);
3938
3939 return err;
3940}
18b2b7bd
SH
3941
3942static void remove_msix_isr(struct s2io_nic *sp)
3943{
3944 int i;
3945 u16 msi_control;
3946
f61e0a35 3947 for (i = 0; i < sp->num_entries; i++) {
18b2b7bd
SH
3948 if (sp->s2io_entries[i].in_use ==
3949 MSIX_REGISTERED_SUCCESS) {
3950 int vector = sp->entries[i].vector;
3951 void *arg = sp->s2io_entries[i].arg;
3952 free_irq(vector, arg);
3953 }
3954 }
3955
3956 kfree(sp->entries);
3957 kfree(sp->s2io_entries);
3958 sp->entries = NULL;
3959 sp->s2io_entries = NULL;
3960
3961 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3962 msi_control &= 0xFFFE; /* Disable MSI */
3963 pci_write_config_word(sp->pdev, 0x42, msi_control);
3964
3965 pci_disable_msix(sp->pdev);
3966}
3967
3968static void remove_inta_isr(struct s2io_nic *sp)
3969{
3970 struct net_device *dev = sp->dev;
3971
3972 free_irq(sp->pdev->irq, dev);
3973}
3974
1da177e4
LT
3975/* ********************************************************* *
3976 * Functions defined below concern the OS part of the driver *
3977 * ********************************************************* */
3978
20346722 3979/**
1da177e4
LT
3980 * s2io_open - open entry point of the driver
3981 * @dev : pointer to the device structure.
3982 * Description:
3983 * This function is the open entry point of the driver. It mainly calls a
3984 * function to allocate Rx buffers and inserts them into the buffer
20346722 3985 * descriptors and then enables the Rx part of the NIC.
1da177e4
LT
3986 * Return value:
3987 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3988 * file on failure.
3989 */
3990
ac1f60db 3991static int s2io_open(struct net_device *dev)
1da177e4 3992{
1ee6dd77 3993 struct s2io_nic *sp = dev->priv;
1da177e4
LT
3994 int err = 0;
3995
20346722
K
3996 /*
3997 * Make sure you have link off by default every time
1da177e4
LT
3998 * Nic is initialized
3999 */
4000 netif_carrier_off(dev);
0b1f7ebe 4001 sp->last_link_state = 0;
1da177e4
LT
4002
4003 /* Initialize H/W and enable interrupts */
c92ca04b
AR
4004 err = s2io_card_up(sp);
4005 if (err) {
1da177e4
LT
4006 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
4007 dev->name);
e6a8fee2 4008 goto hw_init_failed;
1da177e4
LT
4009 }
4010
2fd37688 4011 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
1da177e4 4012 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
e6a8fee2 4013 s2io_card_down(sp);
20346722 4014 err = -ENODEV;
e6a8fee2 4015 goto hw_init_failed;
1da177e4 4016 }
3a3d5756 4017 s2io_start_all_tx_queue(sp);
1da177e4 4018 return 0;
20346722 4019
20346722 4020hw_init_failed:
eaae7f72 4021 if (sp->config.intr_type == MSI_X) {
491976b2 4022 if (sp->entries) {
cc6e7c44 4023 kfree(sp->entries);
8a4bdbaa 4024 sp->mac_control.stats_info->sw_stat.mem_freed
f61e0a35 4025 += (sp->num_entries * sizeof(struct msix_entry));
491976b2
SH
4026 }
4027 if (sp->s2io_entries) {
cc6e7c44 4028 kfree(sp->s2io_entries);
8a4bdbaa 4029 sp->mac_control.stats_info->sw_stat.mem_freed
f61e0a35 4030 += (sp->num_entries * sizeof(struct s2io_msix_entry));
491976b2 4031 }
cc6e7c44 4032 }
20346722 4033 return err;
1da177e4
LT
4034}
4035
4036/**
4037 * s2io_close -close entry point of the driver
4038 * @dev : device pointer.
4039 * Description:
4040 * This is the stop entry point of the driver. It needs to undo exactly
4041 * whatever was done by the open entry point,thus it's usually referred to
4042 * as the close function.Among other things this function mainly stops the
4043 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4044 * Return value:
4045 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4046 * file on failure.
4047 */
4048
ac1f60db 4049static int s2io_close(struct net_device *dev)
1da177e4 4050{
1ee6dd77 4051 struct s2io_nic *sp = dev->priv;
faa4f796
SH
4052 struct config_param *config = &sp->config;
4053 u64 tmp64;
4054 int offset;
cc6e7c44 4055
9f74ffde
SH
4056 /* Return if the device is already closed *
4057 * Can happen when s2io_card_up failed in change_mtu *
4058 */
4059 if (!is_s2io_card_up(sp))
4060 return 0;
4061
3a3d5756 4062 s2io_stop_all_tx_queue(sp);
faa4f796
SH
4063 /* delete all populated mac entries */
4064 for (offset = 1; offset < config->max_mc_addr; offset++) {
4065 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4066 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4067 do_s2io_delete_unicast_mc(sp, tmp64);
4068 }
4069
e6a8fee2 4070 s2io_card_down(sp);
cc6e7c44 4071
1da177e4
LT
4072 return 0;
4073}
4074
4075/**
4076 * s2io_xmit - Tx entry point of te driver
4077 * @skb : the socket buffer containing the Tx data.
4078 * @dev : device pointer.
4079 * Description :
4080 * This function is the Tx entry point of the driver. S2IO NIC supports
4081 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4082 * NOTE: when device cant queue the pkt,just the trans_start variable will
4083 * not be upadted.
4084 * Return value:
4085 * 0 on success & 1 on failure.
4086 */
4087
ac1f60db 4088static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
1da177e4 4089{
1ee6dd77 4090 struct s2io_nic *sp = dev->priv;
1da177e4
LT
4091 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4092 register u64 val64;
1ee6dd77
RB
4093 struct TxD *txdp;
4094 struct TxFIFO_element __iomem *tx_fifo;
2fda096d 4095 unsigned long flags = 0;
be3a6b02 4096 u16 vlan_tag = 0;
2fda096d 4097 struct fifo_info *fifo = NULL;
1ee6dd77 4098 struct mac_info *mac_control;
1da177e4 4099 struct config_param *config;
6cfc482b 4100 int do_spin_lock = 1;
75c30b13 4101 int offload_type;
6cfc482b 4102 int enable_per_list_interrupt = 0;
491abf25 4103 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
1da177e4
LT
4104
4105 mac_control = &sp->mac_control;
4106 config = &sp->config;
4107
20346722 4108 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
491976b2
SH
4109
4110 if (unlikely(skb->len <= 0)) {
4111 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
4112 dev_kfree_skb_any(skb);
4113 return 0;
2fda096d 4114 }
491976b2 4115
92b84437 4116 if (!is_s2io_card_up(sp)) {
20346722 4117 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
1da177e4 4118 dev->name);
20346722
K
4119 dev_kfree_skb(skb);
4120 return 0;
1da177e4
LT
4121 }
4122
4123 queue = 0;
3a3d5756 4124 if (sp->vlgrp && vlan_tx_tag_present(skb))
be3a6b02 4125 vlan_tag = vlan_tx_tag_get(skb);
6cfc482b
SH
4126 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4127 if (skb->protocol == htons(ETH_P_IP)) {
4128 struct iphdr *ip;
4129 struct tcphdr *th;
4130 ip = ip_hdr(skb);
4131
4132 if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4133 th = (struct tcphdr *)(((unsigned char *)ip) +
4134 ip->ihl*4);
4135
4136 if (ip->protocol == IPPROTO_TCP) {
4137 queue_len = sp->total_tcp_fifos;
4138 queue = (ntohs(th->source) +
4139 ntohs(th->dest)) &
4140 sp->fifo_selector[queue_len - 1];
4141 if (queue >= queue_len)
4142 queue = queue_len - 1;
4143 } else if (ip->protocol == IPPROTO_UDP) {
4144 queue_len = sp->total_udp_fifos;
4145 queue = (ntohs(th->source) +
4146 ntohs(th->dest)) &
4147 sp->fifo_selector[queue_len - 1];
4148 if (queue >= queue_len)
4149 queue = queue_len - 1;
4150 queue += sp->udp_fifo_idx;
4151 if (skb->len > 1024)
4152 enable_per_list_interrupt = 1;
4153 do_spin_lock = 0;
4154 }
4155 }
4156 }
4157 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4158 /* get fifo number based on skb->priority value */
4159 queue = config->fifo_mapping
4160 [skb->priority & (MAX_TX_FIFOS - 1)];
4161 fifo = &mac_control->fifos[queue];
3a3d5756 4162
6cfc482b
SH
4163 if (do_spin_lock)
4164 spin_lock_irqsave(&fifo->tx_lock, flags);
4165 else {
4166 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4167 return NETDEV_TX_LOCKED;
4168 }
be3a6b02 4169
3a3d5756
SH
4170 if (sp->config.multiq) {
4171 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4172 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4173 return NETDEV_TX_BUSY;
4174 }
b19fa1fa 4175 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
3a3d5756
SH
4176 if (netif_queue_stopped(dev)) {
4177 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4178 return NETDEV_TX_BUSY;
4179 }
4180 }
4181
2fda096d
SR
4182 put_off = (u16) fifo->tx_curr_put_info.offset;
4183 get_off = (u16) fifo->tx_curr_get_info.offset;
4184 txdp = (struct TxD *) fifo->list_info[put_off].list_virt_addr;
20346722 4185
2fda096d 4186 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
1da177e4 4187 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9
AR
4188 if (txdp->Host_Control ||
4189 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
776bd20f 4190 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3a3d5756 4191 s2io_stop_tx_queue(sp, fifo->fifo_no);
1da177e4 4192 dev_kfree_skb(skb);
2fda096d 4193 spin_unlock_irqrestore(&fifo->tx_lock, flags);
1da177e4
LT
4194 return 0;
4195 }
0b1f7ebe 4196
75c30b13 4197 offload_type = s2io_offload_type(skb);
75c30b13 4198 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
1da177e4 4199 txdp->Control_1 |= TXD_TCP_LSO_EN;
75c30b13 4200 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
1da177e4 4201 }
84fa7933 4202 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1da177e4
LT
4203 txdp->Control_2 |=
4204 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4205 TXD_TX_CKO_UDP_EN);
4206 }
fed5eccd
AR
4207 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4208 txdp->Control_1 |= TXD_LIST_OWN_XENA;
2fda096d 4209 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
6cfc482b
SH
4210 if (enable_per_list_interrupt)
4211 if (put_off & (queue_len >> 5))
4212 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
3a3d5756 4213 if (vlan_tag) {
be3a6b02
K
4214 txdp->Control_2 |= TXD_VLAN_ENABLE;
4215 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4216 }
4217
fed5eccd 4218 frg_len = skb->len - skb->data_len;
75c30b13 4219 if (offload_type == SKB_GSO_UDP) {
fed5eccd
AR
4220 int ufo_size;
4221
75c30b13 4222 ufo_size = s2io_udp_mss(skb);
fed5eccd
AR
4223 ufo_size &= ~7;
4224 txdp->Control_1 |= TXD_UFO_EN;
4225 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4226 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4227#ifdef __BIG_ENDIAN
3459feb8 4228 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
2fda096d 4229 fifo->ufo_in_band_v[put_off] =
3459feb8 4230 (__force u64)skb_shinfo(skb)->ip6_frag_id;
fed5eccd 4231#else
2fda096d 4232 fifo->ufo_in_band_v[put_off] =
3459feb8 4233 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
fed5eccd 4234#endif
2fda096d 4235 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
fed5eccd 4236 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
2fda096d 4237 fifo->ufo_in_band_v,
fed5eccd 4238 sizeof(u64), PCI_DMA_TODEVICE);
8d8bb39b 4239 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
491abf25 4240 goto pci_map_failed;
fed5eccd 4241 txdp++;
fed5eccd 4242 }
1da177e4 4243
fed5eccd
AR
4244 txdp->Buffer_Pointer = pci_map_single
4245 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
8d8bb39b 4246 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
491abf25
VP
4247 goto pci_map_failed;
4248
fed5eccd
AR
4249 txdp->Host_Control = (unsigned long) skb;
4250 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
75c30b13 4251 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4252 txdp->Control_1 |= TXD_UFO_EN;
4253
4254 frg_cnt = skb_shinfo(skb)->nr_frags;
1da177e4
LT
4255 /* For fragmented SKB. */
4256 for (i = 0; i < frg_cnt; i++) {
4257 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
0b1f7ebe
K
4258 /* A '0' length fragment will be ignored */
4259 if (!frag->size)
4260 continue;
1da177e4
LT
4261 txdp++;
4262 txdp->Buffer_Pointer = (u64) pci_map_page
4263 (sp->pdev, frag->page, frag->page_offset,
4264 frag->size, PCI_DMA_TODEVICE);
efd51b5c 4265 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
75c30b13 4266 if (offload_type == SKB_GSO_UDP)
fed5eccd 4267 txdp->Control_1 |= TXD_UFO_EN;
1da177e4
LT
4268 }
4269 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4270
75c30b13 4271 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4272 frg_cnt++; /* as Txd0 was used for inband header */
4273
1da177e4 4274 tx_fifo = mac_control->tx_FIFO_start[queue];
2fda096d 4275 val64 = fifo->list_info[put_off].list_phy_addr;
1da177e4
LT
4276 writeq(val64, &tx_fifo->TxDL_Pointer);
4277
4278 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4279 TX_FIFO_LAST_LIST);
75c30b13 4280 if (offload_type)
fed5eccd 4281 val64 |= TX_FIFO_SPECIAL_FUNC;
75c30b13 4282
1da177e4
LT
4283 writeq(val64, &tx_fifo->List_Control);
4284
303bcb4b
K
4285 mmiowb();
4286
1da177e4 4287 put_off++;
2fda096d 4288 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
863c11a9 4289 put_off = 0;
2fda096d 4290 fifo->tx_curr_put_info.offset = put_off;
1da177e4
LT
4291
4292 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9 4293 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
bd1034f0 4294 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
1da177e4
LT
4295 DBG_PRINT(TX_DBG,
4296 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4297 put_off, get_off);
3a3d5756 4298 s2io_stop_tx_queue(sp, fifo->fifo_no);
1da177e4 4299 }
491976b2 4300 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
1da177e4 4301 dev->trans_start = jiffies;
2fda096d 4302 spin_unlock_irqrestore(&fifo->tx_lock, flags);
1da177e4 4303
f6f4bfa3
SH
4304 if (sp->config.intr_type == MSI_X)
4305 tx_intr_handler(fifo);
4306
491abf25
VP
4307 return 0;
4308pci_map_failed:
4309 stats->pci_map_fail_cnt++;
3a3d5756 4310 s2io_stop_tx_queue(sp, fifo->fifo_no);
491abf25
VP
4311 stats->mem_freed += skb->truesize;
4312 dev_kfree_skb(skb);
2fda096d 4313 spin_unlock_irqrestore(&fifo->tx_lock, flags);
1da177e4
LT
4314 return 0;
4315}
4316
25fff88e
K
4317static void
4318s2io_alarm_handle(unsigned long data)
4319{
1ee6dd77 4320 struct s2io_nic *sp = (struct s2io_nic *)data;
8116f3cf 4321 struct net_device *dev = sp->dev;
25fff88e 4322
8116f3cf 4323 s2io_handle_errors(dev);
25fff88e
K
4324 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4325}
4326
7d12e780 4327static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
cc6e7c44 4328{
1ee6dd77
RB
4329 struct ring_info *ring = (struct ring_info *)dev_id;
4330 struct s2io_nic *sp = ring->nic;
f61e0a35
SH
4331 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4332 struct net_device *dev = sp->dev;
cc6e7c44 4333
f61e0a35 4334 if (unlikely(!is_s2io_card_up(sp)))
92b84437 4335 return IRQ_HANDLED;
92b84437 4336
f61e0a35 4337 if (sp->config.napi) {
1a79d1c3
AV
4338 u8 __iomem *addr = NULL;
4339 u8 val8 = 0;
f61e0a35 4340
1a79d1c3 4341 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
f61e0a35
SH
4342 addr += (7 - ring->ring_no);
4343 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4344 writeb(val8, addr);
4345 val8 = readb(addr);
4346 netif_rx_schedule(dev, &ring->napi);
4347 } else {
4348 rx_intr_handler(ring, 0);
8d8bb39b 4349 s2io_chk_rx_buffers(sp, ring);
f61e0a35 4350 }
7d3d0439 4351
cc6e7c44
RA
4352 return IRQ_HANDLED;
4353}
4354
7d12e780 4355static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
cc6e7c44 4356{
ac731ab6
SH
4357 int i;
4358 struct fifo_info *fifos = (struct fifo_info *)dev_id;
4359 struct s2io_nic *sp = fifos->nic;
4360 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4361 struct config_param *config = &sp->config;
4362 u64 reason;
cc6e7c44 4363
ac731ab6
SH
4364 if (unlikely(!is_s2io_card_up(sp)))
4365 return IRQ_NONE;
4366
4367 reason = readq(&bar0->general_int_status);
4368 if (unlikely(reason == S2IO_MINUS_ONE))
4369 /* Nothing much can be done. Get out */
92b84437 4370 return IRQ_HANDLED;
92b84437 4371
01e16faa
SH
4372 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4373 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
ac731ab6 4374
01e16faa
SH
4375 if (reason & GEN_INTR_TXPIC)
4376 s2io_txpic_intr_handle(sp);
ac731ab6 4377
01e16faa
SH
4378 if (reason & GEN_INTR_TXTRAFFIC)
4379 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
ac731ab6 4380
01e16faa
SH
4381 for (i = 0; i < config->tx_fifo_num; i++)
4382 tx_intr_handler(&fifos[i]);
ac731ab6 4383
01e16faa
SH
4384 writeq(sp->general_int_mask, &bar0->general_int_mask);
4385 readl(&bar0->general_int_status);
4386 return IRQ_HANDLED;
4387 }
4388 /* The interrupt was not raised by us */
4389 return IRQ_NONE;
cc6e7c44 4390}
ac731ab6 4391
1ee6dd77 4392static void s2io_txpic_intr_handle(struct s2io_nic *sp)
a371a07d 4393{
1ee6dd77 4394 struct XENA_dev_config __iomem *bar0 = sp->bar0;
a371a07d
K
4395 u64 val64;
4396
4397 val64 = readq(&bar0->pic_int_status);
4398 if (val64 & PIC_INT_GPIO) {
4399 val64 = readq(&bar0->gpio_int_reg);
4400 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4401 (val64 & GPIO_INT_REG_LINK_UP)) {
c92ca04b
AR
4402 /*
4403 * This is unstable state so clear both up/down
4404 * interrupt and adapter to re-evaluate the link state.
4405 */
a371a07d
K
4406 val64 |= GPIO_INT_REG_LINK_DOWN;
4407 val64 |= GPIO_INT_REG_LINK_UP;
4408 writeq(val64, &bar0->gpio_int_reg);
a371a07d 4409 val64 = readq(&bar0->gpio_int_mask);
c92ca04b
AR
4410 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4411 GPIO_INT_MASK_LINK_DOWN);
a371a07d 4412 writeq(val64, &bar0->gpio_int_mask);
a371a07d 4413 }
c92ca04b
AR
4414 else if (val64 & GPIO_INT_REG_LINK_UP) {
4415 val64 = readq(&bar0->adapter_status);
c92ca04b 4416 /* Enable Adapter */
19a60522
SS
4417 val64 = readq(&bar0->adapter_control);
4418 val64 |= ADAPTER_CNTL_EN;
4419 writeq(val64, &bar0->adapter_control);
4420 val64 |= ADAPTER_LED_ON;
4421 writeq(val64, &bar0->adapter_control);
4422 if (!sp->device_enabled_once)
4423 sp->device_enabled_once = 1;
c92ca04b 4424
19a60522
SS
4425 s2io_link(sp, LINK_UP);
4426 /*
4427 * unmask link down interrupt and mask link-up
4428 * intr
4429 */
4430 val64 = readq(&bar0->gpio_int_mask);
4431 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4432 val64 |= GPIO_INT_MASK_LINK_UP;
4433 writeq(val64, &bar0->gpio_int_mask);
c92ca04b 4434
c92ca04b
AR
4435 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4436 val64 = readq(&bar0->adapter_status);
19a60522
SS
4437 s2io_link(sp, LINK_DOWN);
4438 /* Link is down so unmaks link up interrupt */
4439 val64 = readq(&bar0->gpio_int_mask);
4440 val64 &= ~GPIO_INT_MASK_LINK_UP;
4441 val64 |= GPIO_INT_MASK_LINK_DOWN;
4442 writeq(val64, &bar0->gpio_int_mask);
ac1f90d6
SS
4443
4444 /* turn off LED */
4445 val64 = readq(&bar0->adapter_control);
4446 val64 = val64 &(~ADAPTER_LED_ON);
4447 writeq(val64, &bar0->adapter_control);
a371a07d
K
4448 }
4449 }
c92ca04b 4450 val64 = readq(&bar0->gpio_int_mask);
a371a07d
K
4451}
4452
8116f3cf
SS
4453/**
4454 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4455 * @value: alarm bits
4456 * @addr: address value
4457 * @cnt: counter variable
4458 * Description: Check for alarm and increment the counter
4459 * Return Value:
4460 * 1 - if alarm bit set
4461 * 0 - if alarm bit is not set
4462 */
43b7c451 4463static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
8116f3cf
SS
4464 unsigned long long *cnt)
4465{
4466 u64 val64;
4467 val64 = readq(addr);
4468 if ( val64 & value ) {
4469 writeq(val64, addr);
4470 (*cnt)++;
4471 return 1;
4472 }
4473 return 0;
4474
4475}
4476
4477/**
4478 * s2io_handle_errors - Xframe error indication handler
4479 * @nic: device private variable
4480 * Description: Handle alarms such as loss of link, single or
4481 * double ECC errors, critical and serious errors.
4482 * Return Value:
4483 * NONE
4484 */
4485static void s2io_handle_errors(void * dev_id)
4486{
4487 struct net_device *dev = (struct net_device *) dev_id;
4488 struct s2io_nic *sp = dev->priv;
4489 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4490 u64 temp64 = 0,val64=0;
4491 int i = 0;
4492
4493 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4494 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4495
92b84437 4496 if (!is_s2io_card_up(sp))
8116f3cf
SS
4497 return;
4498
4499 if (pci_channel_offline(sp->pdev))
4500 return;
4501
4502 memset(&sw_stat->ring_full_cnt, 0,
4503 sizeof(sw_stat->ring_full_cnt));
4504
4505 /* Handling the XPAK counters update */
4506 if(stats->xpak_timer_count < 72000) {
4507 /* waiting for an hour */
4508 stats->xpak_timer_count++;
4509 } else {
4510 s2io_updt_xpak_counter(dev);
4511 /* reset the count to zero */
4512 stats->xpak_timer_count = 0;
4513 }
4514
4515 /* Handling link status change error Intr */
4516 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4517 val64 = readq(&bar0->mac_rmac_err_reg);
4518 writeq(val64, &bar0->mac_rmac_err_reg);
4519 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4520 schedule_work(&sp->set_link_task);
4521 }
4522
4523 /* In case of a serious error, the device will be Reset. */
4524 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4525 &sw_stat->serious_err_cnt))
4526 goto reset;
4527
4528 /* Check for data parity error */
4529 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4530 &sw_stat->parity_err_cnt))
4531 goto reset;
4532
4533 /* Check for ring full counter */
4534 if (sp->device_type == XFRAME_II_DEVICE) {
4535 val64 = readq(&bar0->ring_bump_counter1);
4536 for (i=0; i<4; i++) {
4537 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4538 temp64 >>= 64 - ((i+1)*16);
4539 sw_stat->ring_full_cnt[i] += temp64;
4540 }
4541
4542 val64 = readq(&bar0->ring_bump_counter2);
4543 for (i=0; i<4; i++) {
4544 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4545 temp64 >>= 64 - ((i+1)*16);
4546 sw_stat->ring_full_cnt[i+4] += temp64;
4547 }
4548 }
4549
4550 val64 = readq(&bar0->txdma_int_status);
4551 /*check for pfc_err*/
4552 if (val64 & TXDMA_PFC_INT) {
4553 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4554 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4555 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4556 &sw_stat->pfc_err_cnt))
4557 goto reset;
4558 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4559 &sw_stat->pfc_err_cnt);
4560 }
4561
4562 /*check for tda_err*/
4563 if (val64 & TXDMA_TDA_INT) {
4564 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4565 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4566 &sw_stat->tda_err_cnt))
4567 goto reset;
4568 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4569 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4570 }
4571 /*check for pcc_err*/
4572 if (val64 & TXDMA_PCC_INT) {
4573 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4574 | PCC_N_SERR | PCC_6_COF_OV_ERR
4575 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4576 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4577 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4578 &sw_stat->pcc_err_cnt))
4579 goto reset;
4580 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4581 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4582 }
4583
4584 /*check for tti_err*/
4585 if (val64 & TXDMA_TTI_INT) {
4586 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4587 &sw_stat->tti_err_cnt))
4588 goto reset;
4589 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4590 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4591 }
4592
4593 /*check for lso_err*/
4594 if (val64 & TXDMA_LSO_INT) {
4595 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4596 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4597 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4598 goto reset;
4599 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4600 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4601 }
4602
4603 /*check for tpa_err*/
4604 if (val64 & TXDMA_TPA_INT) {
4605 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4606 &sw_stat->tpa_err_cnt))
4607 goto reset;
4608 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4609 &sw_stat->tpa_err_cnt);
4610 }
4611
4612 /*check for sm_err*/
4613 if (val64 & TXDMA_SM_INT) {
4614 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4615 &sw_stat->sm_err_cnt))
4616 goto reset;
4617 }
4618
4619 val64 = readq(&bar0->mac_int_status);
4620 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4621 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4622 &bar0->mac_tmac_err_reg,
4623 &sw_stat->mac_tmac_err_cnt))
4624 goto reset;
4625 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4626 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4627 &bar0->mac_tmac_err_reg,
4628 &sw_stat->mac_tmac_err_cnt);
4629 }
4630
4631 val64 = readq(&bar0->xgxs_int_status);
4632 if (val64 & XGXS_INT_STATUS_TXGXS) {
4633 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4634 &bar0->xgxs_txgxs_err_reg,
4635 &sw_stat->xgxs_txgxs_err_cnt))
4636 goto reset;
4637 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4638 &bar0->xgxs_txgxs_err_reg,
4639 &sw_stat->xgxs_txgxs_err_cnt);
4640 }
4641
4642 val64 = readq(&bar0->rxdma_int_status);
4643 if (val64 & RXDMA_INT_RC_INT_M) {
4644 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4645 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4646 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4647 goto reset;
4648 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4649 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4650 &sw_stat->rc_err_cnt);
4651 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4652 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4653 &sw_stat->prc_pcix_err_cnt))
4654 goto reset;
4655 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4656 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4657 &sw_stat->prc_pcix_err_cnt);
4658 }
4659
4660 if (val64 & RXDMA_INT_RPA_INT_M) {
4661 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4662 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4663 goto reset;
4664 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4665 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4666 }
4667
4668 if (val64 & RXDMA_INT_RDA_INT_M) {
4669 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4670 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4671 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4672 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4673 goto reset;
4674 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4675 | RDA_MISC_ERR | RDA_PCIX_ERR,
4676 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4677 }
4678
4679 if (val64 & RXDMA_INT_RTI_INT_M) {
4680 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4681 &sw_stat->rti_err_cnt))
4682 goto reset;
4683 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4684 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4685 }
4686
4687 val64 = readq(&bar0->mac_int_status);
4688 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4689 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4690 &bar0->mac_rmac_err_reg,
4691 &sw_stat->mac_rmac_err_cnt))
4692 goto reset;
4693 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4694 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4695 &sw_stat->mac_rmac_err_cnt);
4696 }
4697
4698 val64 = readq(&bar0->xgxs_int_status);
4699 if (val64 & XGXS_INT_STATUS_RXGXS) {
4700 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4701 &bar0->xgxs_rxgxs_err_reg,
4702 &sw_stat->xgxs_rxgxs_err_cnt))
4703 goto reset;
4704 }
4705
4706 val64 = readq(&bar0->mc_int_status);
4707 if(val64 & MC_INT_STATUS_MC_INT) {
4708 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4709 &sw_stat->mc_err_cnt))
4710 goto reset;
4711
4712 /* Handling Ecc errors */
4713 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4714 writeq(val64, &bar0->mc_err_reg);
4715 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4716 sw_stat->double_ecc_errs++;
4717 if (sp->device_type != XFRAME_II_DEVICE) {
4718 /*
4719 * Reset XframeI only if critical error
4720 */
4721 if (val64 &
4722 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4723 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4724 goto reset;
4725 }
4726 } else
4727 sw_stat->single_ecc_errs++;
4728 }
4729 }
4730 return;
4731
4732reset:
3a3d5756 4733 s2io_stop_all_tx_queue(sp);
8116f3cf
SS
4734 schedule_work(&sp->rst_timer_task);
4735 sw_stat->soft_reset_cnt++;
4736 return;
4737}
4738
1da177e4
LT
4739/**
4740 * s2io_isr - ISR handler of the device .
4741 * @irq: the irq of the device.
4742 * @dev_id: a void pointer to the dev structure of the NIC.
20346722
K
4743 * Description: This function is the ISR handler of the device. It
4744 * identifies the reason for the interrupt and calls the relevant
4745 * service routines. As a contongency measure, this ISR allocates the
1da177e4
LT
4746 * recv buffers, if their numbers are below the panic value which is
4747 * presently set to 25% of the original number of rcv buffers allocated.
4748 * Return value:
20346722 4749 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
1da177e4
LT
4750 * IRQ_NONE: will be returned if interrupt is not from our device
4751 */
7d12e780 4752static irqreturn_t s2io_isr(int irq, void *dev_id)
1da177e4
LT
4753{
4754 struct net_device *dev = (struct net_device *) dev_id;
1ee6dd77
RB
4755 struct s2io_nic *sp = dev->priv;
4756 struct XENA_dev_config __iomem *bar0 = sp->bar0;
20346722 4757 int i;
19a60522 4758 u64 reason = 0;
1ee6dd77 4759 struct mac_info *mac_control;
1da177e4
LT
4760 struct config_param *config;
4761
d796fdb7
LV
4762 /* Pretend we handled any irq's from a disconnected card */
4763 if (pci_channel_offline(sp->pdev))
4764 return IRQ_NONE;
4765
596c5c97 4766 if (!is_s2io_card_up(sp))
92b84437 4767 return IRQ_NONE;
92b84437 4768
1da177e4
LT
4769 mac_control = &sp->mac_control;
4770 config = &sp->config;
4771
20346722 4772 /*
1da177e4
LT
4773 * Identify the cause for interrupt and call the appropriate
4774 * interrupt handler. Causes for the interrupt could be;
4775 * 1. Rx of packet.
4776 * 2. Tx complete.
4777 * 3. Link down.
1da177e4
LT
4778 */
4779 reason = readq(&bar0->general_int_status);
4780
596c5c97
SS
4781 if (unlikely(reason == S2IO_MINUS_ONE) ) {
4782 /* Nothing much can be done. Get out */
4783 return IRQ_HANDLED;
1da177e4 4784 }
5d3213cc 4785
596c5c97
SS
4786 if (reason & (GEN_INTR_RXTRAFFIC |
4787 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4788 {
4789 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4790
4791 if (config->napi) {
4792 if (reason & GEN_INTR_RXTRAFFIC) {
f61e0a35
SH
4793 netif_rx_schedule(dev, &sp->napi);
4794 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4795 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4796 readl(&bar0->rx_traffic_int);
db874e65 4797 }
596c5c97
SS
4798 } else {
4799 /*
4800 * rx_traffic_int reg is an R1 register, writing all 1's
4801 * will ensure that the actual interrupt causing bit
4802 * get's cleared and hence a read can be avoided.
4803 */
4804 if (reason & GEN_INTR_RXTRAFFIC)
19a60522 4805 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
596c5c97
SS
4806
4807 for (i = 0; i < config->rx_ring_num; i++)
f61e0a35 4808 rx_intr_handler(&mac_control->rings[i], 0);
db874e65 4809 }
596c5c97 4810
db874e65 4811 /*
596c5c97 4812 * tx_traffic_int reg is an R1 register, writing all 1's
db874e65
SS
4813 * will ensure that the actual interrupt causing bit get's
4814 * cleared and hence a read can be avoided.
4815 */
596c5c97
SS
4816 if (reason & GEN_INTR_TXTRAFFIC)
4817 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
19a60522 4818
596c5c97
SS
4819 for (i = 0; i < config->tx_fifo_num; i++)
4820 tx_intr_handler(&mac_control->fifos[i]);
1da177e4 4821
596c5c97
SS
4822 if (reason & GEN_INTR_TXPIC)
4823 s2io_txpic_intr_handle(sp);
fe113638 4824
596c5c97
SS
4825 /*
4826 * Reallocate the buffers from the interrupt handler itself.
4827 */
4828 if (!config->napi) {
4829 for (i = 0; i < config->rx_ring_num; i++)
8d8bb39b 4830 s2io_chk_rx_buffers(sp, &mac_control->rings[i]);
596c5c97
SS
4831 }
4832 writeq(sp->general_int_mask, &bar0->general_int_mask);
4833 readl(&bar0->general_int_status);
20346722 4834
596c5c97 4835 return IRQ_HANDLED;
db874e65 4836
596c5c97
SS
4837 }
4838 else if (!reason) {
4839 /* The interrupt was not raised by us */
4840 return IRQ_NONE;
4841 }
db874e65 4842
1da177e4
LT
4843 return IRQ_HANDLED;
4844}
4845
7ba013ac
K
4846/**
4847 * s2io_updt_stats -
4848 */
1ee6dd77 4849static void s2io_updt_stats(struct s2io_nic *sp)
7ba013ac 4850{
1ee6dd77 4851 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7ba013ac
K
4852 u64 val64;
4853 int cnt = 0;
4854
92b84437 4855 if (is_s2io_card_up(sp)) {
7ba013ac
K
4856 /* Apprx 30us on a 133 MHz bus */
4857 val64 = SET_UPDT_CLICKS(10) |
4858 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4859 writeq(val64, &bar0->stat_cfg);
4860 do {
4861 udelay(100);
4862 val64 = readq(&bar0->stat_cfg);
b7b5a128 4863 if (!(val64 & s2BIT(0)))
7ba013ac
K
4864 break;
4865 cnt++;
4866 if (cnt == 5)
4867 break; /* Updt failed */
4868 } while(1);
8a4bdbaa 4869 }
7ba013ac
K
4870}
4871
1da177e4 4872/**
20346722 4873 * s2io_get_stats - Updates the device statistics structure.
1da177e4
LT
4874 * @dev : pointer to the device structure.
4875 * Description:
20346722 4876 * This function updates the device statistics structure in the s2io_nic
1da177e4
LT
4877 * structure and returns a pointer to the same.
4878 * Return value:
4879 * pointer to the updated net_device_stats structure.
4880 */
4881
ac1f60db 4882static struct net_device_stats *s2io_get_stats(struct net_device *dev)
1da177e4 4883{
1ee6dd77
RB
4884 struct s2io_nic *sp = dev->priv;
4885 struct mac_info *mac_control;
1da177e4 4886 struct config_param *config;
0425b46a 4887 int i;
1da177e4 4888
20346722 4889
1da177e4
LT
4890 mac_control = &sp->mac_control;
4891 config = &sp->config;
4892
7ba013ac
K
4893 /* Configure Stats for immediate updt */
4894 s2io_updt_stats(sp);
4895
dc56e634
BL
4896 /* Using sp->stats as a staging area, because reset (due to mtu
4897 change, for example) will clear some hardware counters */
4898 dev->stats.tx_packets +=
4899 le32_to_cpu(mac_control->stats_info->tmac_frms) -
4900 sp->stats.tx_packets;
7ba013ac
K
4901 sp->stats.tx_packets =
4902 le32_to_cpu(mac_control->stats_info->tmac_frms);
dc56e634
BL
4903 dev->stats.tx_errors +=
4904 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms) -
4905 sp->stats.tx_errors;
20346722
K
4906 sp->stats.tx_errors =
4907 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
dc56e634
BL
4908 dev->stats.rx_errors +=
4909 le64_to_cpu(mac_control->stats_info->rmac_drop_frms) -
4910 sp->stats.rx_errors;
20346722 4911 sp->stats.rx_errors =
ee705dba 4912 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
dc56e634
BL
4913 dev->stats.multicast =
4914 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms) -
4915 sp->stats.multicast;
20346722
K
4916 sp->stats.multicast =
4917 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
dc56e634
BL
4918 dev->stats.rx_length_errors =
4919 le64_to_cpu(mac_control->stats_info->rmac_long_frms) -
4920 sp->stats.rx_length_errors;
1da177e4 4921 sp->stats.rx_length_errors =
ee705dba 4922 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
1da177e4 4923
0425b46a 4924 /* collect per-ring rx_packets and rx_bytes */
dc56e634 4925 dev->stats.rx_packets = dev->stats.rx_bytes = 0;
0425b46a 4926 for (i = 0; i < config->rx_ring_num; i++) {
dc56e634
BL
4927 dev->stats.rx_packets += mac_control->rings[i].rx_packets;
4928 dev->stats.rx_bytes += mac_control->rings[i].rx_bytes;
0425b46a
SH
4929 }
4930
dc56e634 4931 return (&dev->stats);
1da177e4
LT
4932}
4933
4934/**
4935 * s2io_set_multicast - entry point for multicast address enable/disable.
4936 * @dev : pointer to the device structure
4937 * Description:
20346722
K
4938 * This function is a driver entry point which gets called by the kernel
4939 * whenever multicast addresses must be enabled/disabled. This also gets
1da177e4
LT
4940 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4941 * determine, if multicast address must be enabled or if promiscuous mode
4942 * is to be disabled etc.
4943 * Return value:
4944 * void.
4945 */
4946
4947static void s2io_set_multicast(struct net_device *dev)
4948{
4949 int i, j, prev_cnt;
4950 struct dev_mc_list *mclist;
1ee6dd77
RB
4951 struct s2io_nic *sp = dev->priv;
4952 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4953 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4954 0xfeffffffffffULL;
faa4f796 4955 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
1da177e4 4956 void __iomem *add;
faa4f796 4957 struct config_param *config = &sp->config;
1da177e4
LT
4958
4959 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4960 /* Enable all Multicast addresses */
4961 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4962 &bar0->rmac_addr_data0_mem);
4963 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4964 &bar0->rmac_addr_data1_mem);
4965 val64 = RMAC_ADDR_CMD_MEM_WE |
4966 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
faa4f796 4967 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
1da177e4
LT
4968 writeq(val64, &bar0->rmac_addr_cmd_mem);
4969 /* Wait till command completes */
c92ca04b 4970 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4971 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4972 S2IO_BIT_RESET);
1da177e4
LT
4973
4974 sp->m_cast_flg = 1;
faa4f796 4975 sp->all_multi_pos = config->max_mc_addr - 1;
1da177e4
LT
4976 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4977 /* Disable all Multicast addresses */
4978 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4979 &bar0->rmac_addr_data0_mem);
5e25b9dd
K
4980 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4981 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4982 val64 = RMAC_ADDR_CMD_MEM_WE |
4983 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4984 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4985 writeq(val64, &bar0->rmac_addr_cmd_mem);
4986 /* Wait till command completes */
c92ca04b 4987 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4988 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4989 S2IO_BIT_RESET);
1da177e4
LT
4990
4991 sp->m_cast_flg = 0;
4992 sp->all_multi_pos = 0;
4993 }
4994
4995 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4996 /* Put the NIC into promiscuous mode */
4997 add = &bar0->mac_cfg;
4998 val64 = readq(&bar0->mac_cfg);
4999 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5000
5001 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5002 writel((u32) val64, add);
5003 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5004 writel((u32) (val64 >> 32), (add + 4));
5005
926930b2
SS
5006 if (vlan_tag_strip != 1) {
5007 val64 = readq(&bar0->rx_pa_cfg);
5008 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5009 writeq(val64, &bar0->rx_pa_cfg);
cd0fce03 5010 sp->vlan_strip_flag = 0;
926930b2
SS
5011 }
5012
1da177e4
LT
5013 val64 = readq(&bar0->mac_cfg);
5014 sp->promisc_flg = 1;
776bd20f 5015 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
1da177e4
LT
5016 dev->name);
5017 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5018 /* Remove the NIC from promiscuous mode */
5019 add = &bar0->mac_cfg;
5020 val64 = readq(&bar0->mac_cfg);
5021 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5022
5023 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5024 writel((u32) val64, add);
5025 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5026 writel((u32) (val64 >> 32), (add + 4));
5027
926930b2
SS
5028 if (vlan_tag_strip != 0) {
5029 val64 = readq(&bar0->rx_pa_cfg);
5030 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5031 writeq(val64, &bar0->rx_pa_cfg);
cd0fce03 5032 sp->vlan_strip_flag = 1;
926930b2
SS
5033 }
5034
1da177e4
LT
5035 val64 = readq(&bar0->mac_cfg);
5036 sp->promisc_flg = 0;
776bd20f 5037 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
1da177e4
LT
5038 dev->name);
5039 }
5040
5041 /* Update individual M_CAST address list */
5042 if ((!sp->m_cast_flg) && dev->mc_count) {
5043 if (dev->mc_count >
faa4f796 5044 (config->max_mc_addr - config->max_mac_addr)) {
1da177e4
LT
5045 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
5046 dev->name);
5047 DBG_PRINT(ERR_DBG, "can be added, please enable ");
5048 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
5049 return;
5050 }
5051
5052 prev_cnt = sp->mc_addr_count;
5053 sp->mc_addr_count = dev->mc_count;
5054
5055 /* Clear out the previous list of Mc in the H/W. */
5056 for (i = 0; i < prev_cnt; i++) {
5057 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5058 &bar0->rmac_addr_data0_mem);
5059 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 5060 &bar0->rmac_addr_data1_mem);
1da177e4
LT
5061 val64 = RMAC_ADDR_CMD_MEM_WE |
5062 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5063 RMAC_ADDR_CMD_MEM_OFFSET
faa4f796 5064 (config->mc_start_offset + i);
1da177e4
LT
5065 writeq(val64, &bar0->rmac_addr_cmd_mem);
5066
5067 /* Wait for command completes */
c92ca04b 5068 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
5069 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5070 S2IO_BIT_RESET)) {
1da177e4
LT
5071 DBG_PRINT(ERR_DBG, "%s: Adding ",
5072 dev->name);
5073 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5074 return;
5075 }
5076 }
5077
5078 /* Create the new Rx filter list and update the same in H/W. */
5079 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
5080 i++, mclist = mclist->next) {
5081 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
5082 ETH_ALEN);
a7a80d5a 5083 mac_addr = 0;
1da177e4
LT
5084 for (j = 0; j < ETH_ALEN; j++) {
5085 mac_addr |= mclist->dmi_addr[j];
5086 mac_addr <<= 8;
5087 }
5088 mac_addr >>= 8;
5089 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5090 &bar0->rmac_addr_data0_mem);
5091 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 5092 &bar0->rmac_addr_data1_mem);
1da177e4
LT
5093 val64 = RMAC_ADDR_CMD_MEM_WE |
5094 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5095 RMAC_ADDR_CMD_MEM_OFFSET
faa4f796 5096 (i + config->mc_start_offset);
1da177e4
LT
5097 writeq(val64, &bar0->rmac_addr_cmd_mem);
5098
5099 /* Wait for command completes */
c92ca04b 5100 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
5101 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5102 S2IO_BIT_RESET)) {
1da177e4
LT
5103 DBG_PRINT(ERR_DBG, "%s: Adding ",
5104 dev->name);
5105 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5106 return;
5107 }
5108 }
5109 }
5110}
5111
faa4f796
SH
5112/* read from CAM unicast & multicast addresses and store it in
5113 * def_mac_addr structure
5114 */
5115void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5116{
5117 int offset;
5118 u64 mac_addr = 0x0;
5119 struct config_param *config = &sp->config;
5120
5121 /* store unicast & multicast mac addresses */
5122 for (offset = 0; offset < config->max_mc_addr; offset++) {
5123 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5124 /* if read fails disable the entry */
5125 if (mac_addr == FAILURE)
5126 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5127 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5128 }
5129}
5130
5131/* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5132static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5133{
5134 int offset;
5135 struct config_param *config = &sp->config;
5136 /* restore unicast mac address */
5137 for (offset = 0; offset < config->max_mac_addr; offset++)
5138 do_s2io_prog_unicast(sp->dev,
5139 sp->def_mac_addr[offset].mac_addr);
5140
5141 /* restore multicast mac address */
5142 for (offset = config->mc_start_offset;
5143 offset < config->max_mc_addr; offset++)
5144 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5145}
5146
5147/* add a multicast MAC address to CAM */
5148static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5149{
5150 int i;
5151 u64 mac_addr = 0;
5152 struct config_param *config = &sp->config;
5153
5154 for (i = 0; i < ETH_ALEN; i++) {
5155 mac_addr <<= 8;
5156 mac_addr |= addr[i];
5157 }
5158 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5159 return SUCCESS;
5160
5161 /* check if the multicast mac already preset in CAM */
5162 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5163 u64 tmp64;
5164 tmp64 = do_s2io_read_unicast_mc(sp, i);
5165 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5166 break;
5167
5168 if (tmp64 == mac_addr)
5169 return SUCCESS;
5170 }
5171 if (i == config->max_mc_addr) {
5172 DBG_PRINT(ERR_DBG,
5173 "CAM full no space left for multicast MAC\n");
5174 return FAILURE;
5175 }
5176 /* Update the internal structure with this new mac address */
5177 do_s2io_copy_mac_addr(sp, i, mac_addr);
5178
5179 return (do_s2io_add_mac(sp, mac_addr, i));
5180}
5181
5182/* add MAC address to CAM */
5183static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
2fd37688
SS
5184{
5185 u64 val64;
5186 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5187
5188 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5189 &bar0->rmac_addr_data0_mem);
5190
5191 val64 =
5192 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5193 RMAC_ADDR_CMD_MEM_OFFSET(off);
5194 writeq(val64, &bar0->rmac_addr_cmd_mem);
5195
5196 /* Wait till command completes */
5197 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5198 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5199 S2IO_BIT_RESET)) {
faa4f796 5200 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
2fd37688
SS
5201 return FAILURE;
5202 }
5203 return SUCCESS;
5204}
faa4f796
SH
5205/* deletes a specified unicast/multicast mac entry from CAM */
5206static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5207{
5208 int offset;
5209 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5210 struct config_param *config = &sp->config;
5211
5212 for (offset = 1;
5213 offset < config->max_mc_addr; offset++) {
5214 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5215 if (tmp64 == addr) {
5216 /* disable the entry by writing 0xffffffffffffULL */
5217 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5218 return FAILURE;
5219 /* store the new mac list from CAM */
5220 do_s2io_store_unicast_mc(sp);
5221 return SUCCESS;
5222 }
5223 }
5224 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5225 (unsigned long long)addr);
5226 return FAILURE;
5227}
5228
5229/* read mac entries from CAM */
5230static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5231{
5232 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5233 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5234
5235 /* read mac addr */
5236 val64 =
5237 RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5238 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5239 writeq(val64, &bar0->rmac_addr_cmd_mem);
5240
5241 /* Wait till command completes */
5242 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5243 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5244 S2IO_BIT_RESET)) {
5245 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5246 return FAILURE;
5247 }
5248 tmp64 = readq(&bar0->rmac_addr_data0_mem);
5249 return (tmp64 >> 16);
5250}
2fd37688
SS
5251
5252/**
5253 * s2io_set_mac_addr driver entry point
5254 */
faa4f796 5255
2fd37688
SS
5256static int s2io_set_mac_addr(struct net_device *dev, void *p)
5257{
5258 struct sockaddr *addr = p;
5259
5260 if (!is_valid_ether_addr(addr->sa_data))
5261 return -EINVAL;
5262
5263 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5264
5265 /* store the MAC address in CAM */
5266 return (do_s2io_prog_unicast(dev, dev->dev_addr));
5267}
1da177e4 5268/**
2fd37688 5269 * do_s2io_prog_unicast - Programs the Xframe mac address
1da177e4
LT
5270 * @dev : pointer to the device structure.
5271 * @addr: a uchar pointer to the new mac address which is to be set.
20346722 5272 * Description : This procedure will program the Xframe to receive
1da177e4 5273 * frames with new Mac Address
20346722 5274 * Return value: SUCCESS on success and an appropriate (-)ve integer
1da177e4
LT
5275 * as defined in errno.h file on failure.
5276 */
faa4f796 5277
2fd37688 5278static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
1da177e4 5279{
1ee6dd77 5280 struct s2io_nic *sp = dev->priv;
2fd37688 5281 register u64 mac_addr = 0, perm_addr = 0;
1da177e4 5282 int i;
faa4f796
SH
5283 u64 tmp64;
5284 struct config_param *config = &sp->config;
1da177e4 5285
20346722 5286 /*
2fd37688
SS
5287 * Set the new MAC address as the new unicast filter and reflect this
5288 * change on the device address registered with the OS. It will be
5289 * at offset 0.
5290 */
1da177e4
LT
5291 for (i = 0; i < ETH_ALEN; i++) {
5292 mac_addr <<= 8;
5293 mac_addr |= addr[i];
2fd37688
SS
5294 perm_addr <<= 8;
5295 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
d8d70caf
SS
5296 }
5297
2fd37688
SS
5298 /* check if the dev_addr is different than perm_addr */
5299 if (mac_addr == perm_addr)
d8d70caf
SS
5300 return SUCCESS;
5301
faa4f796
SH
5302 /* check if the mac already preset in CAM */
5303 for (i = 1; i < config->max_mac_addr; i++) {
5304 tmp64 = do_s2io_read_unicast_mc(sp, i);
5305 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5306 break;
5307
5308 if (tmp64 == mac_addr) {
5309 DBG_PRINT(INFO_DBG,
5310 "MAC addr:0x%llx already present in CAM\n",
5311 (unsigned long long)mac_addr);
5312 return SUCCESS;
5313 }
5314 }
5315 if (i == config->max_mac_addr) {
5316 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5317 return FAILURE;
5318 }
d8d70caf 5319 /* Update the internal structure with this new mac address */
faa4f796
SH
5320 do_s2io_copy_mac_addr(sp, i, mac_addr);
5321 return (do_s2io_add_mac(sp, mac_addr, i));
1da177e4
LT
5322}
5323
5324/**
20346722 5325 * s2io_ethtool_sset - Sets different link parameters.
1da177e4
LT
5326 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5327 * @info: pointer to the structure with parameters given by ethtool to set
5328 * link information.
5329 * Description:
20346722 5330 * The function sets different link parameters provided by the user onto
1da177e4
LT
5331 * the NIC.
5332 * Return value:
5333 * 0 on success.
5334*/
5335
5336static int s2io_ethtool_sset(struct net_device *dev,
5337 struct ethtool_cmd *info)
5338{
1ee6dd77 5339 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5340 if ((info->autoneg == AUTONEG_ENABLE) ||
5341 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
5342 return -EINVAL;
5343 else {
5344 s2io_close(sp->dev);
5345 s2io_open(sp->dev);
5346 }
5347
5348 return 0;
5349}
5350
5351/**
20346722 5352 * s2io_ethtol_gset - Return link specific information.
1da177e4
LT
5353 * @sp : private member of the device structure, pointer to the
5354 * s2io_nic structure.
5355 * @info : pointer to the structure with parameters given by ethtool
5356 * to return link information.
5357 * Description:
5358 * Returns link specific information like speed, duplex etc.. to ethtool.
5359 * Return value :
5360 * return 0 on success.
5361 */
5362
5363static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5364{
1ee6dd77 5365 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5366 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5367 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5368 info->port = PORT_FIBRE;
1a7eb72b
SS
5369
5370 /* info->transceiver */
5371 info->transceiver = XCVR_EXTERNAL;
1da177e4
LT
5372
5373 if (netif_carrier_ok(sp->dev)) {
5374 info->speed = 10000;
5375 info->duplex = DUPLEX_FULL;
5376 } else {
5377 info->speed = -1;
5378 info->duplex = -1;
5379 }
5380
5381 info->autoneg = AUTONEG_DISABLE;
5382 return 0;
5383}
5384
5385/**
20346722
K
5386 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5387 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5388 * s2io_nic structure.
5389 * @info : pointer to the structure with parameters given by ethtool to
5390 * return driver information.
5391 * Description:
5392 * Returns driver specefic information like name, version etc.. to ethtool.
5393 * Return value:
5394 * void
5395 */
5396
5397static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5398 struct ethtool_drvinfo *info)
5399{
1ee6dd77 5400 struct s2io_nic *sp = dev->priv;
1da177e4 5401
dbc2309d
JL
5402 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5403 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5404 strncpy(info->fw_version, "", sizeof(info->fw_version));
5405 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
1da177e4
LT
5406 info->regdump_len = XENA_REG_SPACE;
5407 info->eedump_len = XENA_EEPROM_SPACE;
1da177e4
LT
5408}
5409
5410/**
5411 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
20346722 5412 * @sp: private member of the device structure, which is a pointer to the
1da177e4 5413 * s2io_nic structure.
20346722 5414 * @regs : pointer to the structure with parameters given by ethtool for
1da177e4
LT
5415 * dumping the registers.
5416 * @reg_space: The input argumnet into which all the registers are dumped.
5417 * Description:
5418 * Dumps the entire register space of xFrame NIC into the user given
5419 * buffer area.
5420 * Return value :
5421 * void .
5422*/
5423
5424static void s2io_ethtool_gregs(struct net_device *dev,
5425 struct ethtool_regs *regs, void *space)
5426{
5427 int i;
5428 u64 reg;
5429 u8 *reg_space = (u8 *) space;
1ee6dd77 5430 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5431
5432 regs->len = XENA_REG_SPACE;
5433 regs->version = sp->pdev->subsystem_device;
5434
5435 for (i = 0; i < regs->len; i += 8) {
5436 reg = readq(sp->bar0 + i);
5437 memcpy((reg_space + i), &reg, 8);
5438 }
5439}
5440
5441/**
5442 * s2io_phy_id - timer function that alternates adapter LED.
20346722 5443 * @data : address of the private member of the device structure, which
1da177e4 5444 * is a pointer to the s2io_nic structure, provided as an u32.
20346722
K
5445 * Description: This is actually the timer function that alternates the
5446 * adapter LED bit of the adapter control bit to set/reset every time on
5447 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
1da177e4
LT
5448 * once every second.
5449*/
5450static void s2io_phy_id(unsigned long data)
5451{
1ee6dd77
RB
5452 struct s2io_nic *sp = (struct s2io_nic *) data;
5453 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5454 u64 val64 = 0;
5455 u16 subid;
5456
5457 subid = sp->pdev->subsystem_device;
541ae68f
K
5458 if ((sp->device_type == XFRAME_II_DEVICE) ||
5459 ((subid & 0xFF) >= 0x07)) {
1da177e4
LT
5460 val64 = readq(&bar0->gpio_control);
5461 val64 ^= GPIO_CTRL_GPIO_0;
5462 writeq(val64, &bar0->gpio_control);
5463 } else {
5464 val64 = readq(&bar0->adapter_control);
5465 val64 ^= ADAPTER_LED_ON;
5466 writeq(val64, &bar0->adapter_control);
5467 }
5468
5469 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5470}
5471
5472/**
5473 * s2io_ethtool_idnic - To physically identify the nic on the system.
5474 * @sp : private member of the device structure, which is a pointer to the
5475 * s2io_nic structure.
20346722 5476 * @id : pointer to the structure with identification parameters given by
1da177e4
LT
5477 * ethtool.
5478 * Description: Used to physically identify the NIC on the system.
20346722 5479 * The Link LED will blink for a time specified by the user for
1da177e4 5480 * identification.
20346722 5481 * NOTE: The Link has to be Up to be able to blink the LED. Hence
1da177e4
LT
5482 * identification is possible only if it's link is up.
5483 * Return value:
5484 * int , returns 0 on success
5485 */
5486
5487static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5488{
5489 u64 val64 = 0, last_gpio_ctrl_val;
1ee6dd77
RB
5490 struct s2io_nic *sp = dev->priv;
5491 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5492 u16 subid;
5493
5494 subid = sp->pdev->subsystem_device;
5495 last_gpio_ctrl_val = readq(&bar0->gpio_control);
541ae68f
K
5496 if ((sp->device_type == XFRAME_I_DEVICE) &&
5497 ((subid & 0xFF) < 0x07)) {
1da177e4
LT
5498 val64 = readq(&bar0->adapter_control);
5499 if (!(val64 & ADAPTER_CNTL_EN)) {
5500 printk(KERN_ERR
5501 "Adapter Link down, cannot blink LED\n");
5502 return -EFAULT;
5503 }
5504 }
5505 if (sp->id_timer.function == NULL) {
5506 init_timer(&sp->id_timer);
5507 sp->id_timer.function = s2io_phy_id;
5508 sp->id_timer.data = (unsigned long) sp;
5509 }
5510 mod_timer(&sp->id_timer, jiffies);
5511 if (data)
20346722 5512 msleep_interruptible(data * HZ);
1da177e4 5513 else
20346722 5514 msleep_interruptible(MAX_FLICKER_TIME);
1da177e4
LT
5515 del_timer_sync(&sp->id_timer);
5516
541ae68f 5517 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
1da177e4
LT
5518 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5519 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5520 }
5521
5522 return 0;
5523}
5524
0cec35eb
SH
5525static void s2io_ethtool_gringparam(struct net_device *dev,
5526 struct ethtool_ringparam *ering)
5527{
5528 struct s2io_nic *sp = dev->priv;
5529 int i,tx_desc_count=0,rx_desc_count=0;
5530
5531 if (sp->rxd_mode == RXD_MODE_1)
5532 ering->rx_max_pending = MAX_RX_DESC_1;
5533 else if (sp->rxd_mode == RXD_MODE_3B)
5534 ering->rx_max_pending = MAX_RX_DESC_2;
0cec35eb
SH
5535
5536 ering->tx_max_pending = MAX_TX_DESC;
8a4bdbaa 5537 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
0cec35eb 5538 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
8a4bdbaa 5539
0cec35eb
SH
5540 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5541 ering->tx_pending = tx_desc_count;
5542 rx_desc_count = 0;
8a4bdbaa 5543 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
0cec35eb 5544 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
b6627672 5545
0cec35eb
SH
5546 ering->rx_pending = rx_desc_count;
5547
5548 ering->rx_mini_max_pending = 0;
5549 ering->rx_mini_pending = 0;
5550 if(sp->rxd_mode == RXD_MODE_1)
5551 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5552 else if (sp->rxd_mode == RXD_MODE_3B)
5553 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5554 ering->rx_jumbo_pending = rx_desc_count;
5555}
5556
1da177e4
LT
5557/**
5558 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
20346722
K
5559 * @sp : private member of the device structure, which is a pointer to the
5560 * s2io_nic structure.
1da177e4
LT
5561 * @ep : pointer to the structure with pause parameters given by ethtool.
5562 * Description:
5563 * Returns the Pause frame generation and reception capability of the NIC.
5564 * Return value:
5565 * void
5566 */
5567static void s2io_ethtool_getpause_data(struct net_device *dev,
5568 struct ethtool_pauseparam *ep)
5569{
5570 u64 val64;
1ee6dd77
RB
5571 struct s2io_nic *sp = dev->priv;
5572 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5573
5574 val64 = readq(&bar0->rmac_pause_cfg);
5575 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5576 ep->tx_pause = TRUE;
5577 if (val64 & RMAC_PAUSE_RX_ENABLE)
5578 ep->rx_pause = TRUE;
5579 ep->autoneg = FALSE;
5580}
5581
5582/**
5583 * s2io_ethtool_setpause_data - set/reset pause frame generation.
20346722 5584 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5585 * s2io_nic structure.
5586 * @ep : pointer to the structure with pause parameters given by ethtool.
5587 * Description:
5588 * It can be used to set or reset Pause frame generation or reception
5589 * support of the NIC.
5590 * Return value:
5591 * int, returns 0 on Success
5592 */
5593
5594static int s2io_ethtool_setpause_data(struct net_device *dev,
20346722 5595 struct ethtool_pauseparam *ep)
1da177e4
LT
5596{
5597 u64 val64;
1ee6dd77
RB
5598 struct s2io_nic *sp = dev->priv;
5599 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5600
5601 val64 = readq(&bar0->rmac_pause_cfg);
5602 if (ep->tx_pause)
5603 val64 |= RMAC_PAUSE_GEN_ENABLE;
5604 else
5605 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5606 if (ep->rx_pause)
5607 val64 |= RMAC_PAUSE_RX_ENABLE;
5608 else
5609 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5610 writeq(val64, &bar0->rmac_pause_cfg);
5611 return 0;
5612}
5613
5614/**
5615 * read_eeprom - reads 4 bytes of data from user given offset.
20346722 5616 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5617 * s2io_nic structure.
5618 * @off : offset at which the data must be written
5619 * @data : Its an output parameter where the data read at the given
20346722 5620 * offset is stored.
1da177e4 5621 * Description:
20346722 5622 * Will read 4 bytes of data from the user given offset and return the
1da177e4
LT
5623 * read data.
5624 * NOTE: Will allow to read only part of the EEPROM visible through the
5625 * I2C bus.
5626 * Return value:
5627 * -1 on failure and 0 on success.
5628 */
5629
5630#define S2IO_DEV_ID 5
1ee6dd77 5631static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
1da177e4
LT
5632{
5633 int ret = -1;
5634 u32 exit_cnt = 0;
5635 u64 val64;
1ee6dd77 5636 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5637
ad4ebed0 5638 if (sp->device_type == XFRAME_I_DEVICE) {
5639 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5640 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5641 I2C_CONTROL_CNTL_START;
5642 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
1da177e4 5643
ad4ebed0 5644 while (exit_cnt < 5) {
5645 val64 = readq(&bar0->i2c_control);
5646 if (I2C_CONTROL_CNTL_END(val64)) {
5647 *data = I2C_CONTROL_GET_DATA(val64);
5648 ret = 0;
5649 break;
5650 }
5651 msleep(50);
5652 exit_cnt++;
1da177e4 5653 }
1da177e4
LT
5654 }
5655
ad4ebed0 5656 if (sp->device_type == XFRAME_II_DEVICE) {
5657 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5658 SPI_CONTROL_BYTECNT(0x3) |
ad4ebed0 5659 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5660 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5661 val64 |= SPI_CONTROL_REQ;
5662 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5663 while (exit_cnt < 5) {
5664 val64 = readq(&bar0->spi_control);
5665 if (val64 & SPI_CONTROL_NACK) {
5666 ret = 1;
5667 break;
5668 } else if (val64 & SPI_CONTROL_DONE) {
5669 *data = readq(&bar0->spi_data);
5670 *data &= 0xffffff;
5671 ret = 0;
5672 break;
5673 }
5674 msleep(50);
5675 exit_cnt++;
5676 }
5677 }
1da177e4
LT
5678 return ret;
5679}
5680
5681/**
5682 * write_eeprom - actually writes the relevant part of the data value.
5683 * @sp : private member of the device structure, which is a pointer to the
5684 * s2io_nic structure.
5685 * @off : offset at which the data must be written
5686 * @data : The data that is to be written
20346722 5687 * @cnt : Number of bytes of the data that are actually to be written into
1da177e4
LT
5688 * the Eeprom. (max of 3)
5689 * Description:
5690 * Actually writes the relevant part of the data value into the Eeprom
5691 * through the I2C bus.
5692 * Return value:
5693 * 0 on success, -1 on failure.
5694 */
5695
1ee6dd77 5696static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
1da177e4
LT
5697{
5698 int exit_cnt = 0, ret = -1;
5699 u64 val64;
1ee6dd77 5700 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5701
ad4ebed0 5702 if (sp->device_type == XFRAME_I_DEVICE) {
5703 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5704 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5705 I2C_CONTROL_CNTL_START;
5706 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5707
5708 while (exit_cnt < 5) {
5709 val64 = readq(&bar0->i2c_control);
5710 if (I2C_CONTROL_CNTL_END(val64)) {
5711 if (!(val64 & I2C_CONTROL_NACK))
5712 ret = 0;
5713 break;
5714 }
5715 msleep(50);
5716 exit_cnt++;
5717 }
5718 }
1da177e4 5719
ad4ebed0 5720 if (sp->device_type == XFRAME_II_DEVICE) {
5721 int write_cnt = (cnt == 8) ? 0 : cnt;
5722 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5723
5724 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5725 SPI_CONTROL_BYTECNT(write_cnt) |
ad4ebed0 5726 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5727 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5728 val64 |= SPI_CONTROL_REQ;
5729 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5730 while (exit_cnt < 5) {
5731 val64 = readq(&bar0->spi_control);
5732 if (val64 & SPI_CONTROL_NACK) {
5733 ret = 1;
5734 break;
5735 } else if (val64 & SPI_CONTROL_DONE) {
1da177e4 5736 ret = 0;
ad4ebed0 5737 break;
5738 }
5739 msleep(50);
5740 exit_cnt++;
1da177e4 5741 }
1da177e4 5742 }
1da177e4
LT
5743 return ret;
5744}
1ee6dd77 5745static void s2io_vpd_read(struct s2io_nic *nic)
9dc737a7 5746{
b41477f3
AR
5747 u8 *vpd_data;
5748 u8 data;
9dc737a7
AR
5749 int i=0, cnt, fail = 0;
5750 int vpd_addr = 0x80;
5751
5752 if (nic->device_type == XFRAME_II_DEVICE) {
5753 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5754 vpd_addr = 0x80;
5755 }
5756 else {
5757 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5758 vpd_addr = 0x50;
5759 }
19a60522 5760 strcpy(nic->serial_num, "NOT AVAILABLE");
9dc737a7 5761
b41477f3 5762 vpd_data = kmalloc(256, GFP_KERNEL);
c53d4945
SH
5763 if (!vpd_data) {
5764 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
b41477f3 5765 return;
c53d4945 5766 }
491976b2 5767 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
b41477f3 5768
9dc737a7
AR
5769 for (i = 0; i < 256; i +=4 ) {
5770 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5771 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5772 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5773 for (cnt = 0; cnt <5; cnt++) {
5774 msleep(2);
5775 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5776 if (data == 0x80)
5777 break;
5778 }
5779 if (cnt >= 5) {
5780 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5781 fail = 1;
5782 break;
5783 }
5784 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5785 (u32 *)&vpd_data[i]);
5786 }
19a60522
SS
5787
5788 if(!fail) {
5789 /* read serial number of adapter */
5790 for (cnt = 0; cnt < 256; cnt++) {
5791 if ((vpd_data[cnt] == 'S') &&
5792 (vpd_data[cnt+1] == 'N') &&
5793 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5794 memset(nic->serial_num, 0, VPD_STRING_LEN);
5795 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5796 vpd_data[cnt+2]);
5797 break;
5798 }
5799 }
5800 }
5801
5802 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
9dc737a7
AR
5803 memset(nic->product_name, 0, vpd_data[1]);
5804 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5805 }
b41477f3 5806 kfree(vpd_data);
491976b2 5807 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
9dc737a7
AR
5808}
5809
1da177e4
LT
5810/**
5811 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5812 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
20346722 5813 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5814 * containing all relevant information.
5815 * @data_buf : user defined value to be written into Eeprom.
5816 * Description: Reads the values stored in the Eeprom at given offset
5817 * for a given length. Stores these values int the input argument data
5818 * buffer 'data_buf' and returns these to the caller (ethtool.)
5819 * Return value:
5820 * int 0 on success
5821 */
5822
5823static int s2io_ethtool_geeprom(struct net_device *dev,
20346722 5824 struct ethtool_eeprom *eeprom, u8 * data_buf)
1da177e4 5825{
ad4ebed0 5826 u32 i, valid;
5827 u64 data;
1ee6dd77 5828 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5829
5830 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5831
5832 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5833 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5834
5835 for (i = 0; i < eeprom->len; i += 4) {
5836 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5837 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5838 return -EFAULT;
5839 }
5840 valid = INV(data);
5841 memcpy((data_buf + i), &valid, 4);
5842 }
5843 return 0;
5844}
5845
5846/**
5847 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5848 * @sp : private member of the device structure, which is a pointer to the
5849 * s2io_nic structure.
20346722 5850 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5851 * containing all relevant information.
5852 * @data_buf ; user defined value to be written into Eeprom.
5853 * Description:
5854 * Tries to write the user provided value in the Eeprom, at the offset
5855 * given by the user.
5856 * Return value:
5857 * 0 on success, -EFAULT on failure.
5858 */
5859
5860static int s2io_ethtool_seeprom(struct net_device *dev,
5861 struct ethtool_eeprom *eeprom,
5862 u8 * data_buf)
5863{
5864 int len = eeprom->len, cnt = 0;
ad4ebed0 5865 u64 valid = 0, data;
1ee6dd77 5866 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5867
5868 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5869 DBG_PRINT(ERR_DBG,
5870 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5871 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5872 eeprom->magic);
5873 return -EFAULT;
5874 }
5875
5876 while (len) {
5877 data = (u32) data_buf[cnt] & 0x000000FF;
5878 if (data) {
5879 valid = (u32) (data << 24);
5880 } else
5881 valid = data;
5882
5883 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5884 DBG_PRINT(ERR_DBG,
5885 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5886 DBG_PRINT(ERR_DBG,
5887 "write into the specified offset\n");
5888 return -EFAULT;
5889 }
5890 cnt++;
5891 len--;
5892 }
5893
5894 return 0;
5895}
5896
5897/**
20346722
K
5898 * s2io_register_test - reads and writes into all clock domains.
5899 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5900 * s2io_nic structure.
5901 * @data : variable that returns the result of each of the test conducted b
5902 * by the driver.
5903 * Description:
5904 * Read and write into all clock domains. The NIC has 3 clock domains,
5905 * see that registers in all the three regions are accessible.
5906 * Return value:
5907 * 0 on success.
5908 */
5909
1ee6dd77 5910static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 5911{
1ee6dd77 5912 struct XENA_dev_config __iomem *bar0 = sp->bar0;
ad4ebed0 5913 u64 val64 = 0, exp_val;
1da177e4
LT
5914 int fail = 0;
5915
20346722
K
5916 val64 = readq(&bar0->pif_rd_swapper_fb);
5917 if (val64 != 0x123456789abcdefULL) {
1da177e4
LT
5918 fail = 1;
5919 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5920 }
5921
5922 val64 = readq(&bar0->rmac_pause_cfg);
5923 if (val64 != 0xc000ffff00000000ULL) {
5924 fail = 1;
5925 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5926 }
5927
5928 val64 = readq(&bar0->rx_queue_cfg);
ad4ebed0 5929 if (sp->device_type == XFRAME_II_DEVICE)
5930 exp_val = 0x0404040404040404ULL;
5931 else
5932 exp_val = 0x0808080808080808ULL;
5933 if (val64 != exp_val) {
1da177e4
LT
5934 fail = 1;
5935 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5936 }
5937
5938 val64 = readq(&bar0->xgxs_efifo_cfg);
5939 if (val64 != 0x000000001923141EULL) {
5940 fail = 1;
5941 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5942 }
5943
5944 val64 = 0x5A5A5A5A5A5A5A5AULL;
5945 writeq(val64, &bar0->xmsi_data);
5946 val64 = readq(&bar0->xmsi_data);
5947 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5948 fail = 1;
5949 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5950 }
5951
5952 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5953 writeq(val64, &bar0->xmsi_data);
5954 val64 = readq(&bar0->xmsi_data);
5955 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5956 fail = 1;
5957 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5958 }
5959
5960 *data = fail;
ad4ebed0 5961 return fail;
1da177e4
LT
5962}
5963
5964/**
20346722 5965 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
1da177e4
LT
5966 * @sp : private member of the device structure, which is a pointer to the
5967 * s2io_nic structure.
5968 * @data:variable that returns the result of each of the test conducted by
5969 * the driver.
5970 * Description:
20346722 5971 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
1da177e4
LT
5972 * register.
5973 * Return value:
5974 * 0 on success.
5975 */
5976
1ee6dd77 5977static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
1da177e4
LT
5978{
5979 int fail = 0;
ad4ebed0 5980 u64 ret_data, org_4F0, org_7F0;
5981 u8 saved_4F0 = 0, saved_7F0 = 0;
5982 struct net_device *dev = sp->dev;
1da177e4
LT
5983
5984 /* Test Write Error at offset 0 */
ad4ebed0 5985 /* Note that SPI interface allows write access to all areas
5986 * of EEPROM. Hence doing all negative testing only for Xframe I.
5987 */
5988 if (sp->device_type == XFRAME_I_DEVICE)
5989 if (!write_eeprom(sp, 0, 0, 3))
5990 fail = 1;
5991
5992 /* Save current values at offsets 0x4F0 and 0x7F0 */
5993 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5994 saved_4F0 = 1;
5995 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5996 saved_7F0 = 1;
1da177e4
LT
5997
5998 /* Test Write at offset 4f0 */
ad4ebed0 5999 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
1da177e4
LT
6000 fail = 1;
6001 if (read_eeprom(sp, 0x4F0, &ret_data))
6002 fail = 1;
6003
ad4ebed0 6004 if (ret_data != 0x012345) {
26b7625c
AM
6005 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
6006 "Data written %llx Data read %llx\n",
6007 dev->name, (unsigned long long)0x12345,
6008 (unsigned long long)ret_data);
1da177e4 6009 fail = 1;
ad4ebed0 6010 }
1da177e4
LT
6011
6012 /* Reset the EEPROM data go FFFF */
ad4ebed0 6013 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
1da177e4
LT
6014
6015 /* Test Write Request Error at offset 0x7c */
ad4ebed0 6016 if (sp->device_type == XFRAME_I_DEVICE)
6017 if (!write_eeprom(sp, 0x07C, 0, 3))
6018 fail = 1;
1da177e4 6019
ad4ebed0 6020 /* Test Write Request at offset 0x7f0 */
6021 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
1da177e4 6022 fail = 1;
ad4ebed0 6023 if (read_eeprom(sp, 0x7F0, &ret_data))
1da177e4
LT
6024 fail = 1;
6025
ad4ebed0 6026 if (ret_data != 0x012345) {
26b7625c
AM
6027 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6028 "Data written %llx Data read %llx\n",
6029 dev->name, (unsigned long long)0x12345,
6030 (unsigned long long)ret_data);
1da177e4 6031 fail = 1;
ad4ebed0 6032 }
1da177e4
LT
6033
6034 /* Reset the EEPROM data go FFFF */
ad4ebed0 6035 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
1da177e4 6036
ad4ebed0 6037 if (sp->device_type == XFRAME_I_DEVICE) {
6038 /* Test Write Error at offset 0x80 */
6039 if (!write_eeprom(sp, 0x080, 0, 3))
6040 fail = 1;
1da177e4 6041
ad4ebed0 6042 /* Test Write Error at offset 0xfc */
6043 if (!write_eeprom(sp, 0x0FC, 0, 3))
6044 fail = 1;
1da177e4 6045
ad4ebed0 6046 /* Test Write Error at offset 0x100 */
6047 if (!write_eeprom(sp, 0x100, 0, 3))
6048 fail = 1;
1da177e4 6049
ad4ebed0 6050 /* Test Write Error at offset 4ec */
6051 if (!write_eeprom(sp, 0x4EC, 0, 3))
6052 fail = 1;
6053 }
6054
6055 /* Restore values at offsets 0x4F0 and 0x7F0 */
6056 if (saved_4F0)
6057 write_eeprom(sp, 0x4F0, org_4F0, 3);
6058 if (saved_7F0)
6059 write_eeprom(sp, 0x7F0, org_7F0, 3);
1da177e4
LT
6060
6061 *data = fail;
ad4ebed0 6062 return fail;
1da177e4
LT
6063}
6064
6065/**
6066 * s2io_bist_test - invokes the MemBist test of the card .
20346722 6067 * @sp : private member of the device structure, which is a pointer to the
1da177e4 6068 * s2io_nic structure.
20346722 6069 * @data:variable that returns the result of each of the test conducted by
1da177e4
LT
6070 * the driver.
6071 * Description:
6072 * This invokes the MemBist test of the card. We give around
6073 * 2 secs time for the Test to complete. If it's still not complete
20346722 6074 * within this peiod, we consider that the test failed.
1da177e4
LT
6075 * Return value:
6076 * 0 on success and -1 on failure.
6077 */
6078
1ee6dd77 6079static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
1da177e4
LT
6080{
6081 u8 bist = 0;
6082 int cnt = 0, ret = -1;
6083
6084 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6085 bist |= PCI_BIST_START;
6086 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6087
6088 while (cnt < 20) {
6089 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6090 if (!(bist & PCI_BIST_START)) {
6091 *data = (bist & PCI_BIST_CODE_MASK);
6092 ret = 0;
6093 break;
6094 }
6095 msleep(100);
6096 cnt++;
6097 }
6098
6099 return ret;
6100}
6101
6102/**
20346722
K
6103 * s2io-link_test - verifies the link state of the nic
6104 * @sp ; private member of the device structure, which is a pointer to the
1da177e4
LT
6105 * s2io_nic structure.
6106 * @data: variable that returns the result of each of the test conducted by
6107 * the driver.
6108 * Description:
20346722 6109 * The function verifies the link state of the NIC and updates the input
1da177e4
LT
6110 * argument 'data' appropriately.
6111 * Return value:
6112 * 0 on success.
6113 */
6114
1ee6dd77 6115static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 6116{
1ee6dd77 6117 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
6118 u64 val64;
6119
6120 val64 = readq(&bar0->adapter_status);
c92ca04b 6121 if(!(LINK_IS_UP(val64)))
1da177e4 6122 *data = 1;
c92ca04b
AR
6123 else
6124 *data = 0;
1da177e4 6125
b41477f3 6126 return *data;
1da177e4
LT
6127}
6128
6129/**
20346722
K
6130 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6131 * @sp - private member of the device structure, which is a pointer to the
1da177e4 6132 * s2io_nic structure.
20346722 6133 * @data - variable that returns the result of each of the test
1da177e4
LT
6134 * conducted by the driver.
6135 * Description:
20346722 6136 * This is one of the offline test that tests the read and write
1da177e4
LT
6137 * access to the RldRam chip on the NIC.
6138 * Return value:
6139 * 0 on success.
6140 */
6141
1ee6dd77 6142static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 6143{
1ee6dd77 6144 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 6145 u64 val64;
ad4ebed0 6146 int cnt, iteration = 0, test_fail = 0;
1da177e4
LT
6147
6148 val64 = readq(&bar0->adapter_control);
6149 val64 &= ~ADAPTER_ECC_EN;
6150 writeq(val64, &bar0->adapter_control);
6151
6152 val64 = readq(&bar0->mc_rldram_test_ctrl);
6153 val64 |= MC_RLDRAM_TEST_MODE;
ad4ebed0 6154 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6155
6156 val64 = readq(&bar0->mc_rldram_mrs);
6157 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6158 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6159
6160 val64 |= MC_RLDRAM_MRS_ENABLE;
6161 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6162
6163 while (iteration < 2) {
6164 val64 = 0x55555555aaaa0000ULL;
6165 if (iteration == 1) {
6166 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6167 }
6168 writeq(val64, &bar0->mc_rldram_test_d0);
6169
6170 val64 = 0xaaaa5a5555550000ULL;
6171 if (iteration == 1) {
6172 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6173 }
6174 writeq(val64, &bar0->mc_rldram_test_d1);
6175
6176 val64 = 0x55aaaaaaaa5a0000ULL;
6177 if (iteration == 1) {
6178 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6179 }
6180 writeq(val64, &bar0->mc_rldram_test_d2);
6181
ad4ebed0 6182 val64 = (u64) (0x0000003ffffe0100ULL);
1da177e4
LT
6183 writeq(val64, &bar0->mc_rldram_test_add);
6184
ad4ebed0 6185 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
6186 MC_RLDRAM_TEST_GO;
6187 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6188
6189 for (cnt = 0; cnt < 5; cnt++) {
6190 val64 = readq(&bar0->mc_rldram_test_ctrl);
6191 if (val64 & MC_RLDRAM_TEST_DONE)
6192 break;
6193 msleep(200);
6194 }
6195
6196 if (cnt == 5)
6197 break;
6198
ad4ebed0 6199 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6200 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6201
6202 for (cnt = 0; cnt < 5; cnt++) {
6203 val64 = readq(&bar0->mc_rldram_test_ctrl);
6204 if (val64 & MC_RLDRAM_TEST_DONE)
6205 break;
6206 msleep(500);
6207 }
6208
6209 if (cnt == 5)
6210 break;
6211
6212 val64 = readq(&bar0->mc_rldram_test_ctrl);
ad4ebed0 6213 if (!(val64 & MC_RLDRAM_TEST_PASS))
6214 test_fail = 1;
1da177e4
LT
6215
6216 iteration++;
6217 }
6218
ad4ebed0 6219 *data = test_fail;
1da177e4 6220
ad4ebed0 6221 /* Bring the adapter out of test mode */
6222 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6223
6224 return test_fail;
1da177e4
LT
6225}
6226
6227/**
6228 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6229 * @sp : private member of the device structure, which is a pointer to the
6230 * s2io_nic structure.
6231 * @ethtest : pointer to a ethtool command specific structure that will be
6232 * returned to the user.
20346722 6233 * @data : variable that returns the result of each of the test
1da177e4
LT
6234 * conducted by the driver.
6235 * Description:
6236 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6237 * the health of the card.
6238 * Return value:
6239 * void
6240 */
6241
6242static void s2io_ethtool_test(struct net_device *dev,
6243 struct ethtool_test *ethtest,
6244 uint64_t * data)
6245{
1ee6dd77 6246 struct s2io_nic *sp = dev->priv;
1da177e4
LT
6247 int orig_state = netif_running(sp->dev);
6248
6249 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6250 /* Offline Tests. */
20346722 6251 if (orig_state)
1da177e4 6252 s2io_close(sp->dev);
1da177e4
LT
6253
6254 if (s2io_register_test(sp, &data[0]))
6255 ethtest->flags |= ETH_TEST_FL_FAILED;
6256
6257 s2io_reset(sp);
1da177e4
LT
6258
6259 if (s2io_rldram_test(sp, &data[3]))
6260 ethtest->flags |= ETH_TEST_FL_FAILED;
6261
6262 s2io_reset(sp);
1da177e4
LT
6263
6264 if (s2io_eeprom_test(sp, &data[1]))
6265 ethtest->flags |= ETH_TEST_FL_FAILED;
6266
6267 if (s2io_bist_test(sp, &data[4]))
6268 ethtest->flags |= ETH_TEST_FL_FAILED;
6269
6270 if (orig_state)
6271 s2io_open(sp->dev);
6272
6273 data[2] = 0;
6274 } else {
6275 /* Online Tests. */
6276 if (!orig_state) {
6277 DBG_PRINT(ERR_DBG,
6278 "%s: is not up, cannot run test\n",
6279 dev->name);
6280 data[0] = -1;
6281 data[1] = -1;
6282 data[2] = -1;
6283 data[3] = -1;
6284 data[4] = -1;
6285 }
6286
6287 if (s2io_link_test(sp, &data[2]))
6288 ethtest->flags |= ETH_TEST_FL_FAILED;
6289
6290 data[0] = 0;
6291 data[1] = 0;
6292 data[3] = 0;
6293 data[4] = 0;
6294 }
6295}
6296
6297static void s2io_get_ethtool_stats(struct net_device *dev,
6298 struct ethtool_stats *estats,
6299 u64 * tmp_stats)
6300{
8116f3cf 6301 int i = 0, k;
1ee6dd77
RB
6302 struct s2io_nic *sp = dev->priv;
6303 struct stat_block *stat_info = sp->mac_control.stats_info;
1da177e4 6304
7ba013ac 6305 s2io_updt_stats(sp);
541ae68f
K
6306 tmp_stats[i++] =
6307 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
6308 le32_to_cpu(stat_info->tmac_frms);
6309 tmp_stats[i++] =
6310 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
6311 le32_to_cpu(stat_info->tmac_data_octets);
1da177e4 6312 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
541ae68f
K
6313 tmp_stats[i++] =
6314 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
6315 le32_to_cpu(stat_info->tmac_mcst_frms);
6316 tmp_stats[i++] =
6317 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
6318 le32_to_cpu(stat_info->tmac_bcst_frms);
1da177e4 6319 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
bd1034f0
AR
6320 tmp_stats[i++] =
6321 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
6322 le32_to_cpu(stat_info->tmac_ttl_octets);
6323 tmp_stats[i++] =
6324 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
6325 le32_to_cpu(stat_info->tmac_ucst_frms);
6326 tmp_stats[i++] =
6327 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
6328 le32_to_cpu(stat_info->tmac_nucst_frms);
541ae68f
K
6329 tmp_stats[i++] =
6330 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
6331 le32_to_cpu(stat_info->tmac_any_err_frms);
bd1034f0 6332 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
1da177e4 6333 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
541ae68f
K
6334 tmp_stats[i++] =
6335 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
6336 le32_to_cpu(stat_info->tmac_vld_ip);
6337 tmp_stats[i++] =
6338 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
6339 le32_to_cpu(stat_info->tmac_drop_ip);
6340 tmp_stats[i++] =
6341 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
6342 le32_to_cpu(stat_info->tmac_icmp);
6343 tmp_stats[i++] =
6344 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
6345 le32_to_cpu(stat_info->tmac_rst_tcp);
1da177e4 6346 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
541ae68f
K
6347 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
6348 le32_to_cpu(stat_info->tmac_udp);
6349 tmp_stats[i++] =
6350 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
6351 le32_to_cpu(stat_info->rmac_vld_frms);
6352 tmp_stats[i++] =
6353 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
6354 le32_to_cpu(stat_info->rmac_data_octets);
1da177e4
LT
6355 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
6356 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
541ae68f
K
6357 tmp_stats[i++] =
6358 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
6359 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6360 tmp_stats[i++] =
6361 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6362 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
1da177e4 6363 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
bd1034f0 6364 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
1da177e4
LT
6365 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6366 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
bd1034f0
AR
6367 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6368 tmp_stats[i++] =
6369 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6370 le32_to_cpu(stat_info->rmac_ttl_octets);
6371 tmp_stats[i++] =
6372 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6373 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6374 tmp_stats[i++] =
6375 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6376 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
541ae68f
K
6377 tmp_stats[i++] =
6378 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6379 le32_to_cpu(stat_info->rmac_discarded_frms);
bd1034f0
AR
6380 tmp_stats[i++] =
6381 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6382 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6383 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6384 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
541ae68f
K
6385 tmp_stats[i++] =
6386 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6387 le32_to_cpu(stat_info->rmac_usized_frms);
6388 tmp_stats[i++] =
6389 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6390 le32_to_cpu(stat_info->rmac_osized_frms);
6391 tmp_stats[i++] =
6392 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6393 le32_to_cpu(stat_info->rmac_frag_frms);
6394 tmp_stats[i++] =
6395 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6396 le32_to_cpu(stat_info->rmac_jabber_frms);
bd1034f0
AR
6397 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6398 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6399 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6400 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6401 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6402 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6403 tmp_stats[i++] =
6404 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
541ae68f 6405 le32_to_cpu(stat_info->rmac_ip);
1da177e4
LT
6406 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6407 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
bd1034f0
AR
6408 tmp_stats[i++] =
6409 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
541ae68f 6410 le32_to_cpu(stat_info->rmac_drop_ip);
bd1034f0
AR
6411 tmp_stats[i++] =
6412 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
541ae68f 6413 le32_to_cpu(stat_info->rmac_icmp);
1da177e4 6414 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
bd1034f0
AR
6415 tmp_stats[i++] =
6416 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
541ae68f
K
6417 le32_to_cpu(stat_info->rmac_udp);
6418 tmp_stats[i++] =
6419 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6420 le32_to_cpu(stat_info->rmac_err_drp_udp);
bd1034f0
AR
6421 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6422 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6423 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6424 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6425 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6426 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6427 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6428 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6429 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6430 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6431 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6432 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6433 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6434 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6435 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6436 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6437 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
541ae68f
K
6438 tmp_stats[i++] =
6439 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6440 le32_to_cpu(stat_info->rmac_pause_cnt);
bd1034f0
AR
6441 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6442 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
541ae68f
K
6443 tmp_stats[i++] =
6444 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6445 le32_to_cpu(stat_info->rmac_accepted_ip);
1da177e4 6446 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
bd1034f0
AR
6447 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6448 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6449 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6450 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6451 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6452 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6453 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6454 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6455 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6456 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6457 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6458 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6459 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6460 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6461 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6462 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6463 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6464 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
fa1f0cb3
SS
6465
6466 /* Enhanced statistics exist only for Hercules */
6467 if(sp->device_type == XFRAME_II_DEVICE) {
6468 tmp_stats[i++] =
6469 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6470 tmp_stats[i++] =
6471 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6472 tmp_stats[i++] =
6473 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6474 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6475 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6476 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6477 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6478 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6479 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6480 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6481 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6482 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6483 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6484 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6485 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6486 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6487 }
6488
7ba013ac
K
6489 tmp_stats[i++] = 0;
6490 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6491 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
bd1034f0
AR
6492 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6493 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6494 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6495 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
8116f3cf
SS
6496 for (k = 0; k < MAX_RX_RINGS; k++)
6497 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
bd1034f0
AR
6498 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6499 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6500 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6501 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6502 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6503 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6504 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6505 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6506 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6507 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6508 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6509 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
7d3d0439
RA
6510 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6511 tmp_stats[i++] = stat_info->sw_stat.sending_both;
6512 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6513 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
fe931395 6514 if (stat_info->sw_stat.num_aggregations) {
bd1034f0
AR
6515 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6516 int count = 0;
6aa20a22 6517 /*
bd1034f0
AR
6518 * Since 64-bit divide does not work on all platforms,
6519 * do repeated subtraction.
6520 */
6521 while (tmp >= stat_info->sw_stat.num_aggregations) {
6522 tmp -= stat_info->sw_stat.num_aggregations;
6523 count++;
6524 }
6525 tmp_stats[i++] = count;
fe931395 6526 }
bd1034f0
AR
6527 else
6528 tmp_stats[i++] = 0;
c53d4945 6529 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
491abf25 6530 tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
c53d4945 6531 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
491976b2
SH
6532 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6533 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6534 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6535 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6536 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6537 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6538
6539 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6540 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6541 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6542 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6543 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6544
6545 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6546 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6547 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6548 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6549 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6550 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6551 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6552 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6553 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
8116f3cf
SS
6554 tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6555 tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6556 tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6557 tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6558 tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6559 tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6560 tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6561 tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6562 tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6563 tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6564 tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6565 tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6566 tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6567 tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6568 tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6569 tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6570 tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
1da177e4
LT
6571}
6572
ac1f60db 6573static int s2io_ethtool_get_regs_len(struct net_device *dev)
1da177e4
LT
6574{
6575 return (XENA_REG_SPACE);
6576}
6577
6578
ac1f60db 6579static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
1da177e4 6580{
1ee6dd77 6581 struct s2io_nic *sp = dev->priv;
1da177e4
LT
6582
6583 return (sp->rx_csum);
6584}
ac1f60db
AB
6585
6586static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
1da177e4 6587{
1ee6dd77 6588 struct s2io_nic *sp = dev->priv;
1da177e4
LT
6589
6590 if (data)
6591 sp->rx_csum = 1;
6592 else
6593 sp->rx_csum = 0;
6594
6595 return 0;
6596}
ac1f60db
AB
6597
6598static int s2io_get_eeprom_len(struct net_device *dev)
1da177e4
LT
6599{
6600 return (XENA_EEPROM_SPACE);
6601}
6602
b9f2c044 6603static int s2io_get_sset_count(struct net_device *dev, int sset)
1da177e4 6604{
b9f2c044
JG
6605 struct s2io_nic *sp = dev->priv;
6606
6607 switch (sset) {
6608 case ETH_SS_TEST:
6609 return S2IO_TEST_LEN;
6610 case ETH_SS_STATS:
6611 switch(sp->device_type) {
6612 case XFRAME_I_DEVICE:
6613 return XFRAME_I_STAT_LEN;
6614 case XFRAME_II_DEVICE:
6615 return XFRAME_II_STAT_LEN;
6616 default:
6617 return 0;
6618 }
6619 default:
6620 return -EOPNOTSUPP;
6621 }
1da177e4 6622}
ac1f60db
AB
6623
6624static void s2io_ethtool_get_strings(struct net_device *dev,
6625 u32 stringset, u8 * data)
1da177e4 6626{
fa1f0cb3
SS
6627 int stat_size = 0;
6628 struct s2io_nic *sp = dev->priv;
6629
1da177e4
LT
6630 switch (stringset) {
6631 case ETH_SS_TEST:
6632 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6633 break;
6634 case ETH_SS_STATS:
fa1f0cb3
SS
6635 stat_size = sizeof(ethtool_xena_stats_keys);
6636 memcpy(data, &ethtool_xena_stats_keys,stat_size);
6637 if(sp->device_type == XFRAME_II_DEVICE) {
6638 memcpy(data + stat_size,
6639 &ethtool_enhanced_stats_keys,
6640 sizeof(ethtool_enhanced_stats_keys));
6641 stat_size += sizeof(ethtool_enhanced_stats_keys);
6642 }
6643
6644 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6645 sizeof(ethtool_driver_stats_keys));
1da177e4
LT
6646 }
6647}
1da177e4 6648
ac1f60db 6649static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
1da177e4
LT
6650{
6651 if (data)
6652 dev->features |= NETIF_F_IP_CSUM;
6653 else
6654 dev->features &= ~NETIF_F_IP_CSUM;
6655
6656 return 0;
6657}
6658
75c30b13
AR
6659static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6660{
6661 return (dev->features & NETIF_F_TSO) != 0;
6662}
6663static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6664{
6665 if (data)
6666 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6667 else
6668 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6669
6670 return 0;
6671}
1da177e4 6672
7282d491 6673static const struct ethtool_ops netdev_ethtool_ops = {
1da177e4
LT
6674 .get_settings = s2io_ethtool_gset,
6675 .set_settings = s2io_ethtool_sset,
6676 .get_drvinfo = s2io_ethtool_gdrvinfo,
6677 .get_regs_len = s2io_ethtool_get_regs_len,
6678 .get_regs = s2io_ethtool_gregs,
6679 .get_link = ethtool_op_get_link,
6680 .get_eeprom_len = s2io_get_eeprom_len,
6681 .get_eeprom = s2io_ethtool_geeprom,
6682 .set_eeprom = s2io_ethtool_seeprom,
0cec35eb 6683 .get_ringparam = s2io_ethtool_gringparam,
1da177e4
LT
6684 .get_pauseparam = s2io_ethtool_getpause_data,
6685 .set_pauseparam = s2io_ethtool_setpause_data,
6686 .get_rx_csum = s2io_ethtool_get_rx_csum,
6687 .set_rx_csum = s2io_ethtool_set_rx_csum,
1da177e4 6688 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
1da177e4 6689 .set_sg = ethtool_op_set_sg,
75c30b13
AR
6690 .get_tso = s2io_ethtool_op_get_tso,
6691 .set_tso = s2io_ethtool_op_set_tso,
fed5eccd 6692 .set_ufo = ethtool_op_set_ufo,
1da177e4
LT
6693 .self_test = s2io_ethtool_test,
6694 .get_strings = s2io_ethtool_get_strings,
6695 .phys_id = s2io_ethtool_idnic,
b9f2c044
JG
6696 .get_ethtool_stats = s2io_get_ethtool_stats,
6697 .get_sset_count = s2io_get_sset_count,
1da177e4
LT
6698};
6699
6700/**
20346722 6701 * s2io_ioctl - Entry point for the Ioctl
1da177e4
LT
6702 * @dev : Device pointer.
6703 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6704 * a proprietary structure used to pass information to the driver.
6705 * @cmd : This is used to distinguish between the different commands that
6706 * can be passed to the IOCTL functions.
6707 * Description:
20346722
K
6708 * Currently there are no special functionality supported in IOCTL, hence
6709 * function always return EOPNOTSUPPORTED
1da177e4
LT
6710 */
6711
ac1f60db 6712static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1da177e4
LT
6713{
6714 return -EOPNOTSUPP;
6715}
6716
6717/**
6718 * s2io_change_mtu - entry point to change MTU size for the device.
6719 * @dev : device pointer.
6720 * @new_mtu : the new MTU size for the device.
6721 * Description: A driver entry point to change MTU size for the device.
6722 * Before changing the MTU the device must be stopped.
6723 * Return value:
6724 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6725 * file on failure.
6726 */
6727
ac1f60db 6728static int s2io_change_mtu(struct net_device *dev, int new_mtu)
1da177e4 6729{
1ee6dd77 6730 struct s2io_nic *sp = dev->priv;
9f74ffde 6731 int ret = 0;
1da177e4
LT
6732
6733 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6734 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6735 dev->name);
6736 return -EPERM;
6737 }
6738
1da177e4 6739 dev->mtu = new_mtu;
d8892c6e 6740 if (netif_running(dev)) {
3a3d5756 6741 s2io_stop_all_tx_queue(sp);
e6a8fee2 6742 s2io_card_down(sp);
9f74ffde
SH
6743 ret = s2io_card_up(sp);
6744 if (ret) {
d8892c6e 6745 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
b39d66a8 6746 __func__);
9f74ffde 6747 return ret;
d8892c6e 6748 }
3a3d5756 6749 s2io_wake_all_tx_queue(sp);
d8892c6e 6750 } else { /* Device is down */
1ee6dd77 6751 struct XENA_dev_config __iomem *bar0 = sp->bar0;
d8892c6e
K
6752 u64 val64 = new_mtu;
6753
6754 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6755 }
1da177e4 6756
9f74ffde 6757 return ret;
1da177e4
LT
6758}
6759
1da177e4
LT
6760/**
6761 * s2io_set_link - Set the LInk status
6762 * @data: long pointer to device private structue
6763 * Description: Sets the link status for the adapter
6764 */
6765
c4028958 6766static void s2io_set_link(struct work_struct *work)
1da177e4 6767{
1ee6dd77 6768 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
1da177e4 6769 struct net_device *dev = nic->dev;
1ee6dd77 6770 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
6771 register u64 val64;
6772 u16 subid;
6773
22747d6b
FR
6774 rtnl_lock();
6775
6776 if (!netif_running(dev))
6777 goto out_unlock;
6778
92b84437 6779 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
1da177e4 6780 /* The card is being reset, no point doing anything */
22747d6b 6781 goto out_unlock;
1da177e4
LT
6782 }
6783
6784 subid = nic->pdev->subsystem_device;
a371a07d
K
6785 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6786 /*
6787 * Allow a small delay for the NICs self initiated
6788 * cleanup to complete.
6789 */
6790 msleep(100);
6791 }
1da177e4
LT
6792
6793 val64 = readq(&bar0->adapter_status);
19a60522
SS
6794 if (LINK_IS_UP(val64)) {
6795 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6796 if (verify_xena_quiescence(nic)) {
6797 val64 = readq(&bar0->adapter_control);
6798 val64 |= ADAPTER_CNTL_EN;
1da177e4 6799 writeq(val64, &bar0->adapter_control);
19a60522
SS
6800 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6801 nic->device_type, subid)) {
6802 val64 = readq(&bar0->gpio_control);
6803 val64 |= GPIO_CTRL_GPIO_0;
6804 writeq(val64, &bar0->gpio_control);
6805 val64 = readq(&bar0->gpio_control);
6806 } else {
6807 val64 |= ADAPTER_LED_ON;
6808 writeq(val64, &bar0->adapter_control);
a371a07d 6809 }
1da177e4 6810 nic->device_enabled_once = TRUE;
19a60522
SS
6811 } else {
6812 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6813 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
3a3d5756 6814 s2io_stop_all_tx_queue(nic);
1da177e4 6815 }
19a60522 6816 }
92c48799
SS
6817 val64 = readq(&bar0->adapter_control);
6818 val64 |= ADAPTER_LED_ON;
6819 writeq(val64, &bar0->adapter_control);
6820 s2io_link(nic, LINK_UP);
19a60522
SS
6821 } else {
6822 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6823 subid)) {
6824 val64 = readq(&bar0->gpio_control);
6825 val64 &= ~GPIO_CTRL_GPIO_0;
6826 writeq(val64, &bar0->gpio_control);
6827 val64 = readq(&bar0->gpio_control);
1da177e4 6828 }
92c48799
SS
6829 /* turn off LED */
6830 val64 = readq(&bar0->adapter_control);
6831 val64 = val64 &(~ADAPTER_LED_ON);
6832 writeq(val64, &bar0->adapter_control);
19a60522 6833 s2io_link(nic, LINK_DOWN);
1da177e4 6834 }
92b84437 6835 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
22747d6b
FR
6836
6837out_unlock:
d8d70caf 6838 rtnl_unlock();
1da177e4
LT
6839}
6840
1ee6dd77
RB
6841static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6842 struct buffAdd *ba,
6843 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6844 u64 *temp2, int size)
5d3213cc
AR
6845{
6846 struct net_device *dev = sp->dev;
491abf25 6847 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
5d3213cc
AR
6848
6849 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6d517a27 6850 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
5d3213cc
AR
6851 /* allocate skb */
6852 if (*skb) {
6853 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6854 /*
6855 * As Rx frame are not going to be processed,
6856 * using same mapped address for the Rxd
6857 * buffer pointer
6858 */
6d517a27 6859 rxdp1->Buffer0_ptr = *temp0;
5d3213cc
AR
6860 } else {
6861 *skb = dev_alloc_skb(size);
6862 if (!(*skb)) {
0c61ed5f 6863 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
c53d4945
SH
6864 DBG_PRINT(INFO_DBG, "memory to allocate ");
6865 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6866 sp->mac_control.stats_info->sw_stat. \
6867 mem_alloc_fail_cnt++;
5d3213cc
AR
6868 return -ENOMEM ;
6869 }
8a4bdbaa 6870 sp->mac_control.stats_info->sw_stat.mem_allocated
491976b2 6871 += (*skb)->truesize;
5d3213cc
AR
6872 /* storing the mapped addr in a temp variable
6873 * such it will be used for next rxd whose
6874 * Host Control is NULL
6875 */
6d517a27 6876 rxdp1->Buffer0_ptr = *temp0 =
5d3213cc
AR
6877 pci_map_single( sp->pdev, (*skb)->data,
6878 size - NET_IP_ALIGN,
6879 PCI_DMA_FROMDEVICE);
8d8bb39b 6880 if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
491abf25 6881 goto memalloc_failed;
5d3213cc
AR
6882 rxdp->Host_Control = (unsigned long) (*skb);
6883 }
6884 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6d517a27 6885 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
5d3213cc
AR
6886 /* Two buffer Mode */
6887 if (*skb) {
6d517a27
VP
6888 rxdp3->Buffer2_ptr = *temp2;
6889 rxdp3->Buffer0_ptr = *temp0;
6890 rxdp3->Buffer1_ptr = *temp1;
5d3213cc
AR
6891 } else {
6892 *skb = dev_alloc_skb(size);
2ceaac75 6893 if (!(*skb)) {
c53d4945
SH
6894 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6895 DBG_PRINT(INFO_DBG, "memory to allocate ");
6896 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6897 sp->mac_control.stats_info->sw_stat. \
6898 mem_alloc_fail_cnt++;
2ceaac75
DR
6899 return -ENOMEM;
6900 }
8a4bdbaa 6901 sp->mac_control.stats_info->sw_stat.mem_allocated
491976b2 6902 += (*skb)->truesize;
6d517a27 6903 rxdp3->Buffer2_ptr = *temp2 =
5d3213cc
AR
6904 pci_map_single(sp->pdev, (*skb)->data,
6905 dev->mtu + 4,
6906 PCI_DMA_FROMDEVICE);
8d8bb39b 6907 if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
491abf25 6908 goto memalloc_failed;
6d517a27 6909 rxdp3->Buffer0_ptr = *temp0 =
5d3213cc
AR
6910 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6911 PCI_DMA_FROMDEVICE);
8d8bb39b
FT
6912 if (pci_dma_mapping_error(sp->pdev,
6913 rxdp3->Buffer0_ptr)) {
491abf25 6914 pci_unmap_single (sp->pdev,
3e847423 6915 (dma_addr_t)rxdp3->Buffer2_ptr,
491abf25
VP
6916 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6917 goto memalloc_failed;
6918 }
5d3213cc
AR
6919 rxdp->Host_Control = (unsigned long) (*skb);
6920
6921 /* Buffer-1 will be dummy buffer not used */
6d517a27 6922 rxdp3->Buffer1_ptr = *temp1 =
5d3213cc 6923 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
5d3213cc 6924 PCI_DMA_FROMDEVICE);
8d8bb39b
FT
6925 if (pci_dma_mapping_error(sp->pdev,
6926 rxdp3->Buffer1_ptr)) {
491abf25 6927 pci_unmap_single (sp->pdev,
3e847423
AV
6928 (dma_addr_t)rxdp3->Buffer0_ptr,
6929 BUF0_LEN, PCI_DMA_FROMDEVICE);
6930 pci_unmap_single (sp->pdev,
6931 (dma_addr_t)rxdp3->Buffer2_ptr,
491abf25
VP
6932 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6933 goto memalloc_failed;
6934 }
5d3213cc
AR
6935 }
6936 }
6937 return 0;
491abf25
VP
6938 memalloc_failed:
6939 stats->pci_map_fail_cnt++;
6940 stats->mem_freed += (*skb)->truesize;
6941 dev_kfree_skb(*skb);
6942 return -ENOMEM;
5d3213cc 6943}
491abf25 6944
1ee6dd77
RB
6945static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6946 int size)
5d3213cc
AR
6947{
6948 struct net_device *dev = sp->dev;
6949 if (sp->rxd_mode == RXD_MODE_1) {
6950 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6951 } else if (sp->rxd_mode == RXD_MODE_3B) {
6952 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6953 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6954 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
5d3213cc
AR
6955 }
6956}
6957
1ee6dd77 6958static int rxd_owner_bit_reset(struct s2io_nic *sp)
5d3213cc
AR
6959{
6960 int i, j, k, blk_cnt = 0, size;
1ee6dd77 6961 struct mac_info * mac_control = &sp->mac_control;
5d3213cc
AR
6962 struct config_param *config = &sp->config;
6963 struct net_device *dev = sp->dev;
1ee6dd77 6964 struct RxD_t *rxdp = NULL;
5d3213cc 6965 struct sk_buff *skb = NULL;
1ee6dd77 6966 struct buffAdd *ba = NULL;
5d3213cc
AR
6967 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6968
6969 /* Calculate the size based on ring mode */
6970 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6971 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6972 if (sp->rxd_mode == RXD_MODE_1)
6973 size += NET_IP_ALIGN;
6974 else if (sp->rxd_mode == RXD_MODE_3B)
6975 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
5d3213cc
AR
6976
6977 for (i = 0; i < config->rx_ring_num; i++) {
6978 blk_cnt = config->rx_cfg[i].num_rxd /
6979 (rxd_count[sp->rxd_mode] +1);
6980
6981 for (j = 0; j < blk_cnt; j++) {
6982 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6983 rxdp = mac_control->rings[i].
6984 rx_blocks[j].rxds[k].virt_addr;
6d517a27 6985 if(sp->rxd_mode == RXD_MODE_3B)
5d3213cc 6986 ba = &mac_control->rings[i].ba[j][k];
ac1f90d6 6987 if (set_rxd_buffer_pointer(sp, rxdp, ba,
5d3213cc
AR
6988 &skb,(u64 *)&temp0_64,
6989 (u64 *)&temp1_64,
ac1f90d6 6990 (u64 *)&temp2_64,
20cbe73c 6991 size) == -ENOMEM) {
ac1f90d6
SS
6992 return 0;
6993 }
5d3213cc
AR
6994
6995 set_rxd_buffer_size(sp, rxdp, size);
6996 wmb();
6997 /* flip the Ownership bit to Hardware */
6998 rxdp->Control_1 |= RXD_OWN_XENA;
6999 }
7000 }
7001 }
7002 return 0;
7003
7004}
7005
1ee6dd77 7006static int s2io_add_isr(struct s2io_nic * sp)
1da177e4 7007{
e6a8fee2 7008 int ret = 0;
c92ca04b 7009 struct net_device *dev = sp->dev;
e6a8fee2 7010 int err = 0;
1da177e4 7011
eaae7f72 7012 if (sp->config.intr_type == MSI_X)
e6a8fee2
AR
7013 ret = s2io_enable_msi_x(sp);
7014 if (ret) {
7015 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
eaae7f72 7016 sp->config.intr_type = INTA;
20346722 7017 }
1da177e4 7018
1ee6dd77 7019 /* Store the values of the MSIX table in the struct s2io_nic structure */
e6a8fee2 7020 store_xmsi_data(sp);
c92ca04b 7021
e6a8fee2 7022 /* After proper initialization of H/W, register ISR */
eaae7f72 7023 if (sp->config.intr_type == MSI_X) {
ac731ab6
SH
7024 int i, msix_rx_cnt = 0;
7025
f61e0a35
SH
7026 for (i = 0; i < sp->num_entries; i++) {
7027 if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7028 if (sp->s2io_entries[i].type ==
ac731ab6
SH
7029 MSIX_RING_TYPE) {
7030 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7031 dev->name, i);
7032 err = request_irq(sp->entries[i].vector,
7033 s2io_msix_ring_handle, 0,
7034 sp->desc[i],
7035 sp->s2io_entries[i].arg);
7036 } else if (sp->s2io_entries[i].type ==
7037 MSIX_ALARM_TYPE) {
7038 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
e6a8fee2 7039 dev->name, i);
ac731ab6
SH
7040 err = request_irq(sp->entries[i].vector,
7041 s2io_msix_fifo_handle, 0,
7042 sp->desc[i],
7043 sp->s2io_entries[i].arg);
7044
fb6a825b 7045 }
ac731ab6
SH
7046 /* if either data or addr is zero print it. */
7047 if (!(sp->msix_info[i].addr &&
fb6a825b 7048 sp->msix_info[i].data)) {
ac731ab6
SH
7049 DBG_PRINT(ERR_DBG,
7050 "%s @Addr:0x%llx Data:0x%llx\n",
7051 sp->desc[i],
fb6a825b
SS
7052 (unsigned long long)
7053 sp->msix_info[i].addr,
3459feb8 7054 (unsigned long long)
ac731ab6
SH
7055 ntohl(sp->msix_info[i].data));
7056 } else
fb6a825b 7057 msix_rx_cnt++;
ac731ab6
SH
7058 if (err) {
7059 remove_msix_isr(sp);
7060
7061 DBG_PRINT(ERR_DBG,
7062 "%s:MSI-X-%d registration "
7063 "failed\n", dev->name, i);
7064
7065 DBG_PRINT(ERR_DBG,
7066 "%s: Defaulting to INTA\n",
7067 dev->name);
7068 sp->config.intr_type = INTA;
7069 break;
fb6a825b 7070 }
ac731ab6
SH
7071 sp->s2io_entries[i].in_use =
7072 MSIX_REGISTERED_SUCCESS;
c92ca04b 7073 }
e6a8fee2 7074 }
18b2b7bd 7075 if (!err) {
18b2b7bd 7076 printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
ac731ab6
SH
7077 --msix_rx_cnt);
7078 DBG_PRINT(INFO_DBG, "MSI-X-TX entries enabled"
7079 " through alarm vector\n");
18b2b7bd 7080 }
e6a8fee2 7081 }
eaae7f72 7082 if (sp->config.intr_type == INTA) {
e6a8fee2
AR
7083 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
7084 sp->name, dev);
7085 if (err) {
7086 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7087 dev->name);
7088 return -1;
7089 }
7090 }
7091 return 0;
7092}
1ee6dd77 7093static void s2io_rem_isr(struct s2io_nic * sp)
e6a8fee2 7094{
18b2b7bd
SH
7095 if (sp->config.intr_type == MSI_X)
7096 remove_msix_isr(sp);
7097 else
7098 remove_inta_isr(sp);
e6a8fee2
AR
7099}
7100
d796fdb7 7101static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
e6a8fee2
AR
7102{
7103 int cnt = 0;
1ee6dd77 7104 struct XENA_dev_config __iomem *bar0 = sp->bar0;
e6a8fee2 7105 register u64 val64 = 0;
5f490c96
SH
7106 struct config_param *config;
7107 config = &sp->config;
e6a8fee2 7108
9f74ffde
SH
7109 if (!is_s2io_card_up(sp))
7110 return;
7111
e6a8fee2
AR
7112 del_timer_sync(&sp->alarm_timer);
7113 /* If s2io_set_link task is executing, wait till it completes. */
92b84437 7114 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
e6a8fee2
AR
7115 msleep(50);
7116 }
92b84437 7117 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
e6a8fee2 7118
5f490c96 7119 /* Disable napi */
f61e0a35
SH
7120 if (sp->config.napi) {
7121 int off = 0;
7122 if (config->intr_type == MSI_X) {
7123 for (; off < sp->config.rx_ring_num; off++)
7124 napi_disable(&sp->mac_control.rings[off].napi);
7125 }
7126 else
7127 napi_disable(&sp->napi);
7128 }
5f490c96 7129
e6a8fee2 7130 /* disable Tx and Rx traffic on the NIC */
d796fdb7
LV
7131 if (do_io)
7132 stop_nic(sp);
e6a8fee2
AR
7133
7134 s2io_rem_isr(sp);
1da177e4 7135
01e16faa
SH
7136 /* stop the tx queue, indicate link down */
7137 s2io_link(sp, LINK_DOWN);
7138
1da177e4 7139 /* Check if the device is Quiescent and then Reset the NIC */
d796fdb7 7140 while(do_io) {
5d3213cc
AR
7141 /* As per the HW requirement we need to replenish the
7142 * receive buffer to avoid the ring bump. Since there is
7143 * no intention of processing the Rx frame at this pointwe are
7144 * just settting the ownership bit of rxd in Each Rx
7145 * ring to HW and set the appropriate buffer size
7146 * based on the ring mode
7147 */
7148 rxd_owner_bit_reset(sp);
7149
1da177e4 7150 val64 = readq(&bar0->adapter_status);
19a60522
SS
7151 if (verify_xena_quiescence(sp)) {
7152 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
1da177e4
LT
7153 break;
7154 }
7155
7156 msleep(50);
7157 cnt++;
7158 if (cnt == 10) {
7159 DBG_PRINT(ERR_DBG,
7160 "s2io_close:Device not Quiescent ");
7161 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
7162 (unsigned long long) val64);
7163 break;
7164 }
d796fdb7
LV
7165 }
7166 if (do_io)
7167 s2io_reset(sp);
1da177e4 7168
7ba013ac 7169 /* Free all Tx buffers */
1da177e4 7170 free_tx_buffers(sp);
7ba013ac
K
7171
7172 /* Free all Rx buffers */
1da177e4
LT
7173 free_rx_buffers(sp);
7174
92b84437 7175 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
1da177e4
LT
7176}
7177
d796fdb7
LV
7178static void s2io_card_down(struct s2io_nic * sp)
7179{
7180 do_s2io_card_down(sp, 1);
7181}
7182
1ee6dd77 7183static int s2io_card_up(struct s2io_nic * sp)
1da177e4 7184{
cc6e7c44 7185 int i, ret = 0;
1ee6dd77 7186 struct mac_info *mac_control;
1da177e4
LT
7187 struct config_param *config;
7188 struct net_device *dev = (struct net_device *) sp->dev;
e6a8fee2 7189 u16 interruptible;
1da177e4
LT
7190
7191 /* Initialize the H/W I/O registers */
9f74ffde
SH
7192 ret = init_nic(sp);
7193 if (ret != 0) {
1da177e4
LT
7194 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7195 dev->name);
9f74ffde
SH
7196 if (ret != -EIO)
7197 s2io_reset(sp);
7198 return ret;
1da177e4
LT
7199 }
7200
20346722
K
7201 /*
7202 * Initializing the Rx buffers. For now we are considering only 1
1da177e4
LT
7203 * Rx ring and initializing buffers into 30 Rx blocks
7204 */
7205 mac_control = &sp->mac_control;
7206 config = &sp->config;
7207
7208 for (i = 0; i < config->rx_ring_num; i++) {
0425b46a 7209 mac_control->rings[i].mtu = dev->mtu;
8d8bb39b 7210 ret = fill_rx_buffers(sp, &mac_control->rings[i], 1);
0425b46a 7211 if (ret) {
1da177e4
LT
7212 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7213 dev->name);
7214 s2io_reset(sp);
7215 free_rx_buffers(sp);
7216 return -ENOMEM;
7217 }
7218 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
0425b46a 7219 mac_control->rings[i].rx_bufs_left);
1da177e4 7220 }
5f490c96
SH
7221
7222 /* Initialise napi */
f61e0a35
SH
7223 if (config->napi) {
7224 int i;
7225 if (config->intr_type == MSI_X) {
7226 for (i = 0; i < sp->config.rx_ring_num; i++)
7227 napi_enable(&sp->mac_control.rings[i].napi);
7228 } else {
7229 napi_enable(&sp->napi);
7230 }
7231 }
5f490c96 7232
19a60522
SS
7233 /* Maintain the state prior to the open */
7234 if (sp->promisc_flg)
7235 sp->promisc_flg = 0;
7236 if (sp->m_cast_flg) {
7237 sp->m_cast_flg = 0;
7238 sp->all_multi_pos= 0;
7239 }
1da177e4
LT
7240
7241 /* Setting its receive mode */
7242 s2io_set_multicast(dev);
7243
7d3d0439 7244 if (sp->lro) {
b41477f3 7245 /* Initialize max aggregatable pkts per session based on MTU */
7d3d0439
RA
7246 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7247 /* Check if we can use(if specified) user provided value */
7248 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7249 sp->lro_max_aggr_per_sess = lro_max_pkts;
7250 }
7251
1da177e4
LT
7252 /* Enable Rx Traffic and interrupts on the NIC */
7253 if (start_nic(sp)) {
7254 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
1da177e4 7255 s2io_reset(sp);
e6a8fee2
AR
7256 free_rx_buffers(sp);
7257 return -ENODEV;
7258 }
7259
7260 /* Add interrupt service routine */
7261 if (s2io_add_isr(sp) != 0) {
eaae7f72 7262 if (sp->config.intr_type == MSI_X)
e6a8fee2
AR
7263 s2io_rem_isr(sp);
7264 s2io_reset(sp);
1da177e4
LT
7265 free_rx_buffers(sp);
7266 return -ENODEV;
7267 }
7268
25fff88e
K
7269 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7270
01e16faa
SH
7271 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7272
e6a8fee2 7273 /* Enable select interrupts */
9caab458 7274 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
01e16faa
SH
7275 if (sp->config.intr_type != INTA) {
7276 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7277 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7278 } else {
e6a8fee2 7279 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
9caab458 7280 interruptible |= TX_PIC_INTR;
e6a8fee2
AR
7281 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7282 }
7283
1da177e4
LT
7284 return 0;
7285}
7286
20346722 7287/**
1da177e4
LT
7288 * s2io_restart_nic - Resets the NIC.
7289 * @data : long pointer to the device private structure
7290 * Description:
7291 * This function is scheduled to be run by the s2io_tx_watchdog
20346722 7292 * function after 0.5 secs to reset the NIC. The idea is to reduce
1da177e4
LT
7293 * the run time of the watch dog routine which is run holding a
7294 * spin lock.
7295 */
7296
c4028958 7297static void s2io_restart_nic(struct work_struct *work)
1da177e4 7298{
1ee6dd77 7299 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
c4028958 7300 struct net_device *dev = sp->dev;
1da177e4 7301
22747d6b
FR
7302 rtnl_lock();
7303
7304 if (!netif_running(dev))
7305 goto out_unlock;
7306
e6a8fee2 7307 s2io_card_down(sp);
1da177e4
LT
7308 if (s2io_card_up(sp)) {
7309 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
7310 dev->name);
7311 }
3a3d5756 7312 s2io_wake_all_tx_queue(sp);
1da177e4
LT
7313 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
7314 dev->name);
22747d6b
FR
7315out_unlock:
7316 rtnl_unlock();
1da177e4
LT
7317}
7318
20346722
K
7319/**
7320 * s2io_tx_watchdog - Watchdog for transmit side.
1da177e4
LT
7321 * @dev : Pointer to net device structure
7322 * Description:
7323 * This function is triggered if the Tx Queue is stopped
7324 * for a pre-defined amount of time when the Interface is still up.
7325 * If the Interface is jammed in such a situation, the hardware is
7326 * reset (by s2io_close) and restarted again (by s2io_open) to
7327 * overcome any problem that might have been caused in the hardware.
7328 * Return value:
7329 * void
7330 */
7331
7332static void s2io_tx_watchdog(struct net_device *dev)
7333{
1ee6dd77 7334 struct s2io_nic *sp = dev->priv;
1da177e4
LT
7335
7336 if (netif_carrier_ok(dev)) {
c53d4945 7337 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
1da177e4 7338 schedule_work(&sp->rst_timer_task);
bd1034f0 7339 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
1da177e4
LT
7340 }
7341}
7342
7343/**
7344 * rx_osm_handler - To perform some OS related operations on SKB.
7345 * @sp: private member of the device structure,pointer to s2io_nic structure.
7346 * @skb : the socket buffer pointer.
7347 * @len : length of the packet
7348 * @cksum : FCS checksum of the frame.
7349 * @ring_no : the ring from which this RxD was extracted.
20346722 7350 * Description:
b41477f3 7351 * This function is called by the Rx interrupt serivce routine to perform
1da177e4
LT
7352 * some OS related operations on the SKB before passing it to the upper
7353 * layers. It mainly checks if the checksum is OK, if so adds it to the
7354 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7355 * to the upper layer. If the checksum is wrong, it increments the Rx
7356 * packet error count, frees the SKB and returns error.
7357 * Return value:
7358 * SUCCESS on success and -1 on failure.
7359 */
1ee6dd77 7360static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
1da177e4 7361{
1ee6dd77 7362 struct s2io_nic *sp = ring_data->nic;
0425b46a 7363 struct net_device *dev = (struct net_device *) ring_data->dev;
20346722
K
7364 struct sk_buff *skb = (struct sk_buff *)
7365 ((unsigned long) rxdp->Host_Control);
7366 int ring_no = ring_data->ring_no;
1da177e4 7367 u16 l3_csum, l4_csum;
863c11a9 7368 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
1ee6dd77 7369 struct lro *lro;
f9046eb3 7370 u8 err_mask;
da6971d8 7371
20346722 7372 skb->dev = dev;
c92ca04b 7373
863c11a9 7374 if (err) {
bd1034f0
AR
7375 /* Check for parity error */
7376 if (err & 0x1) {
7377 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7378 }
f9046eb3
OH
7379 err_mask = err >> 48;
7380 switch(err_mask) {
491976b2
SH
7381 case 1:
7382 sp->mac_control.stats_info->sw_stat.
7383 rx_parity_err_cnt++;
7384 break;
7385
7386 case 2:
7387 sp->mac_control.stats_info->sw_stat.
7388 rx_abort_cnt++;
7389 break;
7390
7391 case 3:
7392 sp->mac_control.stats_info->sw_stat.
7393 rx_parity_abort_cnt++;
7394 break;
7395
7396 case 4:
7397 sp->mac_control.stats_info->sw_stat.
7398 rx_rda_fail_cnt++;
7399 break;
7400
7401 case 5:
7402 sp->mac_control.stats_info->sw_stat.
7403 rx_unkn_prot_cnt++;
7404 break;
7405
7406 case 6:
7407 sp->mac_control.stats_info->sw_stat.
7408 rx_fcs_err_cnt++;
7409 break;
bd1034f0 7410
491976b2
SH
7411 case 7:
7412 sp->mac_control.stats_info->sw_stat.
7413 rx_buf_size_err_cnt++;
7414 break;
7415
7416 case 8:
7417 sp->mac_control.stats_info->sw_stat.
7418 rx_rxd_corrupt_cnt++;
7419 break;
7420
7421 case 15:
7422 sp->mac_control.stats_info->sw_stat.
7423 rx_unkn_err_cnt++;
7424 break;
7425 }
863c11a9
AR
7426 /*
7427 * Drop the packet if bad transfer code. Exception being
7428 * 0x5, which could be due to unsupported IPv6 extension header.
7429 * In this case, we let stack handle the packet.
7430 * Note that in this case, since checksum will be incorrect,
7431 * stack will validate the same.
7432 */
f9046eb3
OH
7433 if (err_mask != 0x5) {
7434 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7435 dev->name, err_mask);
dc56e634 7436 dev->stats.rx_crc_errors++;
8a4bdbaa 7437 sp->mac_control.stats_info->sw_stat.mem_freed
491976b2 7438 += skb->truesize;
863c11a9 7439 dev_kfree_skb(skb);
0425b46a 7440 ring_data->rx_bufs_left -= 1;
863c11a9
AR
7441 rxdp->Host_Control = 0;
7442 return 0;
7443 }
20346722 7444 }
1da177e4 7445
20346722 7446 /* Updating statistics */
0425b46a 7447 ring_data->rx_packets++;
20346722 7448 rxdp->Host_Control = 0;
da6971d8
AR
7449 if (sp->rxd_mode == RXD_MODE_1) {
7450 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
20346722 7451
0425b46a 7452 ring_data->rx_bytes += len;
da6971d8
AR
7453 skb_put(skb, len);
7454
6d517a27 7455 } else if (sp->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
7456 int get_block = ring_data->rx_curr_get_info.block_index;
7457 int get_off = ring_data->rx_curr_get_info.offset;
7458 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7459 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7460 unsigned char *buff = skb_push(skb, buf0_len);
7461
1ee6dd77 7462 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
0425b46a 7463 ring_data->rx_bytes += buf0_len + buf2_len;
da6971d8 7464 memcpy(buff, ba->ba_0, buf0_len);
6d517a27 7465 skb_put(skb, buf2_len);
da6971d8 7466 }
20346722 7467
0425b46a
SH
7468 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!ring_data->lro) ||
7469 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
20346722
K
7470 (sp->rx_csum)) {
7471 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
1da177e4
LT
7472 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7473 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
20346722 7474 /*
1da177e4
LT
7475 * NIC verifies if the Checksum of the received
7476 * frame is Ok or not and accordingly returns
7477 * a flag in the RxD.
7478 */
7479 skb->ip_summed = CHECKSUM_UNNECESSARY;
0425b46a 7480 if (ring_data->lro) {
7d3d0439
RA
7481 u32 tcp_len;
7482 u8 *tcp;
7483 int ret = 0;
7484
0425b46a
SH
7485 ret = s2io_club_tcp_session(ring_data,
7486 skb->data, &tcp, &tcp_len, &lro,
7487 rxdp, sp);
7d3d0439
RA
7488 switch (ret) {
7489 case 3: /* Begin anew */
7490 lro->parent = skb;
7491 goto aggregate;
7492 case 1: /* Aggregate */
7493 {
7494 lro_append_pkt(sp, lro,
7495 skb, tcp_len);
7496 goto aggregate;
7497 }
7498 case 4: /* Flush session */
7499 {
7500 lro_append_pkt(sp, lro,
7501 skb, tcp_len);
cdb5bf02
SH
7502 queue_rx_frame(lro->parent,
7503 lro->vlan_tag);
7d3d0439
RA
7504 clear_lro_session(lro);
7505 sp->mac_control.stats_info->
7506 sw_stat.flush_max_pkts++;
7507 goto aggregate;
7508 }
7509 case 2: /* Flush both */
7510 lro->parent->data_len =
7511 lro->frags_len;
7512 sp->mac_control.stats_info->
7513 sw_stat.sending_both++;
cdb5bf02
SH
7514 queue_rx_frame(lro->parent,
7515 lro->vlan_tag);
7d3d0439
RA
7516 clear_lro_session(lro);
7517 goto send_up;
7518 case 0: /* sessions exceeded */
c92ca04b
AR
7519 case -1: /* non-TCP or not
7520 * L2 aggregatable
7521 */
7d3d0439
RA
7522 case 5: /*
7523 * First pkt in session not
7524 * L3/L4 aggregatable
7525 */
7526 break;
7527 default:
7528 DBG_PRINT(ERR_DBG,
7529 "%s: Samadhana!!\n",
b39d66a8 7530 __func__);
7d3d0439
RA
7531 BUG();
7532 }
7533 }
1da177e4 7534 } else {
20346722
K
7535 /*
7536 * Packet with erroneous checksum, let the
1da177e4
LT
7537 * upper layers deal with it.
7538 */
7539 skb->ip_summed = CHECKSUM_NONE;
7540 }
cdb5bf02 7541 } else
1da177e4 7542 skb->ip_summed = CHECKSUM_NONE;
cdb5bf02 7543
491976b2 7544 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7d3d0439 7545send_up:
cdb5bf02 7546 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
1da177e4 7547 dev->last_rx = jiffies;
7d3d0439 7548aggregate:
0425b46a 7549 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
1da177e4
LT
7550 return SUCCESS;
7551}
7552
7553/**
7554 * s2io_link - stops/starts the Tx queue.
7555 * @sp : private member of the device structure, which is a pointer to the
7556 * s2io_nic structure.
7557 * @link : inidicates whether link is UP/DOWN.
7558 * Description:
7559 * This function stops/starts the Tx queue depending on whether the link
20346722
K
7560 * status of the NIC is is down or up. This is called by the Alarm
7561 * interrupt handler whenever a link change interrupt comes up.
1da177e4
LT
7562 * Return value:
7563 * void.
7564 */
7565
1ee6dd77 7566static void s2io_link(struct s2io_nic * sp, int link)
1da177e4
LT
7567{
7568 struct net_device *dev = (struct net_device *) sp->dev;
7569
7570 if (link != sp->last_link_state) {
b7c5678f 7571 init_tti(sp, link);
1da177e4
LT
7572 if (link == LINK_DOWN) {
7573 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
3a3d5756 7574 s2io_stop_all_tx_queue(sp);
1da177e4 7575 netif_carrier_off(dev);
491976b2 7576 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
8a4bdbaa 7577 sp->mac_control.stats_info->sw_stat.link_up_time =
491976b2
SH
7578 jiffies - sp->start_time;
7579 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
1da177e4
LT
7580 } else {
7581 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
491976b2 7582 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
8a4bdbaa 7583 sp->mac_control.stats_info->sw_stat.link_down_time =
491976b2
SH
7584 jiffies - sp->start_time;
7585 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
1da177e4 7586 netif_carrier_on(dev);
3a3d5756 7587 s2io_wake_all_tx_queue(sp);
1da177e4
LT
7588 }
7589 }
7590 sp->last_link_state = link;
491976b2 7591 sp->start_time = jiffies;
1da177e4
LT
7592}
7593
20346722
K
7594/**
7595 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7596 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
7597 * s2io_nic structure.
7598 * Description:
7599 * This function initializes a few of the PCI and PCI-X configuration registers
7600 * with recommended values.
7601 * Return value:
7602 * void
7603 */
7604
1ee6dd77 7605static void s2io_init_pci(struct s2io_nic * sp)
1da177e4 7606{
20346722 7607 u16 pci_cmd = 0, pcix_cmd = 0;
1da177e4
LT
7608
7609 /* Enable Data Parity Error Recovery in PCI-X command register. */
7610 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7611 &(pcix_cmd));
1da177e4 7612 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7613 (pcix_cmd | 1));
1da177e4 7614 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7615 &(pcix_cmd));
1da177e4
LT
7616
7617 /* Set the PErr Response bit in PCI command register. */
7618 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7619 pci_write_config_word(sp->pdev, PCI_COMMAND,
7620 (pci_cmd | PCI_COMMAND_PARITY));
7621 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
1da177e4
LT
7622}
7623
3a3d5756
SH
7624static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7625 u8 *dev_multiq)
9dc737a7 7626{
2fda096d 7627 if ((tx_fifo_num > MAX_TX_FIFOS) ||
6cfc482b 7628 (tx_fifo_num < 1)) {
2fda096d
SR
7629 DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos "
7630 "(%d) not supported\n", tx_fifo_num);
6cfc482b
SH
7631
7632 if (tx_fifo_num < 1)
7633 tx_fifo_num = 1;
7634 else
7635 tx_fifo_num = MAX_TX_FIFOS;
7636
2fda096d
SR
7637 DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num);
7638 DBG_PRINT(ERR_DBG, "tx fifos\n");
9dc737a7 7639 }
2fda096d 7640
6cfc482b 7641 if (multiq)
3a3d5756 7642 *dev_multiq = multiq;
6cfc482b
SH
7643
7644 if (tx_steering_type && (1 == tx_fifo_num)) {
7645 if (tx_steering_type != TX_DEFAULT_STEERING)
7646 DBG_PRINT(ERR_DBG,
7647 "s2io: Tx steering is not supported with "
7648 "one fifo. Disabling Tx steering.\n");
7649 tx_steering_type = NO_STEERING;
7650 }
7651
7652 if ((tx_steering_type < NO_STEERING) ||
7653 (tx_steering_type > TX_DEFAULT_STEERING)) {
7654 DBG_PRINT(ERR_DBG, "s2io: Requested transmit steering not "
7655 "supported\n");
7656 DBG_PRINT(ERR_DBG, "s2io: Disabling transmit steering\n");
7657 tx_steering_type = NO_STEERING;
3a3d5756
SH
7658 }
7659
0425b46a
SH
7660 if (rx_ring_num > MAX_RX_RINGS) {
7661 DBG_PRINT(ERR_DBG, "s2io: Requested number of rx rings not "
9dc737a7 7662 "supported\n");
0425b46a
SH
7663 DBG_PRINT(ERR_DBG, "s2io: Default to %d rx rings\n",
7664 MAX_RX_RINGS);
7665 rx_ring_num = MAX_RX_RINGS;
9dc737a7 7666 }
0425b46a 7667
eccb8628 7668 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
9dc737a7
AR
7669 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7670 "Defaulting to INTA\n");
7671 *dev_intr_type = INTA;
7672 }
596c5c97 7673
9dc737a7
AR
7674 if ((*dev_intr_type == MSI_X) &&
7675 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7676 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6aa20a22 7677 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
9dc737a7
AR
7678 "Defaulting to INTA\n");
7679 *dev_intr_type = INTA;
7680 }
fb6a825b 7681
6d517a27 7682 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
9dc737a7 7683 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6d517a27
VP
7684 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7685 rx_ring_mode = 1;
9dc737a7
AR
7686 }
7687 return SUCCESS;
7688}
7689
9fc93a41
SS
7690/**
7691 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7692 * or Traffic class respectively.
b7c5678f 7693 * @nic: device private variable
9fc93a41
SS
7694 * Description: The function configures the receive steering to
7695 * desired receive ring.
7696 * Return Value: SUCCESS on success and
7697 * '-1' on failure (endian settings incorrect).
7698 */
7699static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7700{
7701 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7702 register u64 val64 = 0;
7703
7704 if (ds_codepoint > 63)
7705 return FAILURE;
7706
7707 val64 = RTS_DS_MEM_DATA(ring);
7708 writeq(val64, &bar0->rts_ds_mem_data);
7709
7710 val64 = RTS_DS_MEM_CTRL_WE |
7711 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7712 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7713
7714 writeq(val64, &bar0->rts_ds_mem_ctrl);
7715
7716 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7717 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7718 S2IO_BIT_RESET);
7719}
7720
1da177e4 7721/**
20346722 7722 * s2io_init_nic - Initialization of the adapter .
1da177e4
LT
7723 * @pdev : structure containing the PCI related information of the device.
7724 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7725 * Description:
7726 * The function initializes an adapter identified by the pci_dec structure.
20346722
K
7727 * All OS related initialization including memory and device structure and
7728 * initlaization of the device private variable is done. Also the swapper
7729 * control register is initialized to enable read and write into the I/O
1da177e4
LT
7730 * registers of the device.
7731 * Return value:
7732 * returns 0 on success and negative on failure.
7733 */
7734
7735static int __devinit
7736s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7737{
1ee6dd77 7738 struct s2io_nic *sp;
1da177e4 7739 struct net_device *dev;
1da177e4
LT
7740 int i, j, ret;
7741 int dma_flag = FALSE;
7742 u32 mac_up, mac_down;
7743 u64 val64 = 0, tmp64 = 0;
1ee6dd77 7744 struct XENA_dev_config __iomem *bar0 = NULL;
1da177e4 7745 u16 subid;
1ee6dd77 7746 struct mac_info *mac_control;
1da177e4 7747 struct config_param *config;
541ae68f 7748 int mode;
cc6e7c44 7749 u8 dev_intr_type = intr_type;
3a3d5756 7750 u8 dev_multiq = 0;
1da177e4 7751
3a3d5756
SH
7752 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7753 if (ret)
9dc737a7 7754 return ret;
1da177e4
LT
7755
7756 if ((ret = pci_enable_device(pdev))) {
7757 DBG_PRINT(ERR_DBG,
7758 "s2io_init_nic: pci_enable_device failed\n");
7759 return ret;
7760 }
7761
1e7f0bd8 7762 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
1da177e4
LT
7763 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7764 dma_flag = TRUE;
1da177e4 7765 if (pci_set_consistent_dma_mask
1e7f0bd8 7766 (pdev, DMA_64BIT_MASK)) {
1da177e4
LT
7767 DBG_PRINT(ERR_DBG,
7768 "Unable to obtain 64bit DMA for \
7769 consistent allocations\n");
7770 pci_disable_device(pdev);
7771 return -ENOMEM;
7772 }
1e7f0bd8 7773 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
1da177e4
LT
7774 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7775 } else {
7776 pci_disable_device(pdev);
7777 return -ENOMEM;
7778 }
eccb8628 7779 if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
b39d66a8 7780 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __func__, ret);
eccb8628
VP
7781 pci_disable_device(pdev);
7782 return -ENODEV;
1da177e4 7783 }
3a3d5756 7784 if (dev_multiq)
6cfc482b 7785 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
3a3d5756 7786 else
b19fa1fa 7787 dev = alloc_etherdev(sizeof(struct s2io_nic));
1da177e4
LT
7788 if (dev == NULL) {
7789 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7790 pci_disable_device(pdev);
7791 pci_release_regions(pdev);
7792 return -ENODEV;
7793 }
7794
7795 pci_set_master(pdev);
7796 pci_set_drvdata(pdev, dev);
1da177e4
LT
7797 SET_NETDEV_DEV(dev, &pdev->dev);
7798
7799 /* Private member variable initialized to s2io NIC structure */
7800 sp = dev->priv;
1ee6dd77 7801 memset(sp, 0, sizeof(struct s2io_nic));
1da177e4
LT
7802 sp->dev = dev;
7803 sp->pdev = pdev;
1da177e4 7804 sp->high_dma_flag = dma_flag;
1da177e4 7805 sp->device_enabled_once = FALSE;
da6971d8
AR
7806 if (rx_ring_mode == 1)
7807 sp->rxd_mode = RXD_MODE_1;
7808 if (rx_ring_mode == 2)
7809 sp->rxd_mode = RXD_MODE_3B;
da6971d8 7810
eaae7f72 7811 sp->config.intr_type = dev_intr_type;
1da177e4 7812
541ae68f
K
7813 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7814 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7815 sp->device_type = XFRAME_II_DEVICE;
7816 else
7817 sp->device_type = XFRAME_I_DEVICE;
7818
43b7c451 7819 sp->lro = lro_enable;
6aa20a22 7820
1da177e4
LT
7821 /* Initialize some PCI/PCI-X fields of the NIC. */
7822 s2io_init_pci(sp);
7823
20346722 7824 /*
1da177e4 7825 * Setting the device configuration parameters.
20346722
K
7826 * Most of these parameters can be specified by the user during
7827 * module insertion as they are module loadable parameters. If
7828 * these parameters are not not specified during load time, they
1da177e4
LT
7829 * are initialized with default values.
7830 */
7831 mac_control = &sp->mac_control;
7832 config = &sp->config;
7833
596c5c97 7834 config->napi = napi;
6cfc482b 7835 config->tx_steering_type = tx_steering_type;
596c5c97 7836
1da177e4 7837 /* Tx side parameters. */
6cfc482b
SH
7838 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7839 config->tx_fifo_num = MAX_TX_FIFOS;
7840 else
7841 config->tx_fifo_num = tx_fifo_num;
7842
7843 /* Initialize the fifos used for tx steering */
7844 if (config->tx_fifo_num < 5) {
7845 if (config->tx_fifo_num == 1)
7846 sp->total_tcp_fifos = 1;
7847 else
7848 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7849 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7850 sp->total_udp_fifos = 1;
7851 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7852 } else {
7853 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7854 FIFO_OTHER_MAX_NUM);
7855 sp->udp_fifo_idx = sp->total_tcp_fifos;
7856 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7857 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7858 }
7859
3a3d5756 7860 config->multiq = dev_multiq;
6cfc482b 7861 for (i = 0; i < config->tx_fifo_num; i++) {
1da177e4
LT
7862 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7863 config->tx_cfg[i].fifo_priority = i;
7864 }
7865
20346722
K
7866 /* mapping the QoS priority to the configured fifos */
7867 for (i = 0; i < MAX_TX_FIFOS; i++)
3a3d5756 7868 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
20346722 7869
6cfc482b
SH
7870 /* map the hashing selector table to the configured fifos */
7871 for (i = 0; i < config->tx_fifo_num; i++)
7872 sp->fifo_selector[i] = fifo_selector[i];
7873
7874
1da177e4
LT
7875 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7876 for (i = 0; i < config->tx_fifo_num; i++) {
7877 config->tx_cfg[i].f_no_snoop =
7878 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7879 if (config->tx_cfg[i].fifo_len < 65) {
7880 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7881 break;
7882 }
7883 }
fed5eccd
AR
7884 /* + 2 because one Txd for skb->data and one Txd for UFO */
7885 config->max_txds = MAX_SKB_FRAGS + 2;
1da177e4
LT
7886
7887 /* Rx side parameters. */
1da177e4 7888 config->rx_ring_num = rx_ring_num;
0425b46a 7889 for (i = 0; i < config->rx_ring_num; i++) {
1da177e4 7890 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
da6971d8 7891 (rxd_count[sp->rxd_mode] + 1);
1da177e4 7892 config->rx_cfg[i].ring_priority = i;
0425b46a
SH
7893 mac_control->rings[i].rx_bufs_left = 0;
7894 mac_control->rings[i].rxd_mode = sp->rxd_mode;
7895 mac_control->rings[i].rxd_count = rxd_count[sp->rxd_mode];
7896 mac_control->rings[i].pdev = sp->pdev;
7897 mac_control->rings[i].dev = sp->dev;
1da177e4
LT
7898 }
7899
7900 for (i = 0; i < rx_ring_num; i++) {
7901 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7902 config->rx_cfg[i].f_no_snoop =
7903 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7904 }
7905
7906 /* Setting Mac Control parameters */
7907 mac_control->rmac_pause_time = rmac_pause_time;
7908 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7909 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7910
7911
1da177e4
LT
7912 /* initialize the shared memory used by the NIC and the host */
7913 if (init_shared_mem(sp)) {
7914 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
b41477f3 7915 dev->name);
1da177e4
LT
7916 ret = -ENOMEM;
7917 goto mem_alloc_failed;
7918 }
7919
7920 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7921 pci_resource_len(pdev, 0));
7922 if (!sp->bar0) {
19a60522 7923 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
1da177e4
LT
7924 dev->name);
7925 ret = -ENOMEM;
7926 goto bar0_remap_failed;
7927 }
7928
7929 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7930 pci_resource_len(pdev, 2));
7931 if (!sp->bar1) {
19a60522 7932 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
1da177e4
LT
7933 dev->name);
7934 ret = -ENOMEM;
7935 goto bar1_remap_failed;
7936 }
7937
7938 dev->irq = pdev->irq;
7939 dev->base_addr = (unsigned long) sp->bar0;
7940
7941 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7942 for (j = 0; j < MAX_TX_FIFOS; j++) {
1ee6dd77 7943 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
1da177e4
LT
7944 (sp->bar1 + (j * 0x00020000));
7945 }
7946
7947 /* Driver entry points */
7948 dev->open = &s2io_open;
7949 dev->stop = &s2io_close;
7950 dev->hard_start_xmit = &s2io_xmit;
7951 dev->get_stats = &s2io_get_stats;
7952 dev->set_multicast_list = &s2io_set_multicast;
7953 dev->do_ioctl = &s2io_ioctl;
2fd37688 7954 dev->set_mac_address = &s2io_set_mac_addr;
1da177e4
LT
7955 dev->change_mtu = &s2io_change_mtu;
7956 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
be3a6b02
K
7957 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7958 dev->vlan_rx_register = s2io_vlan_rx_register;
cdb5bf02 7959 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
20346722 7960
1da177e4
LT
7961 /*
7962 * will use eth_mac_addr() for dev->set_mac_address
7963 * mac address will be set every time dev->open() is called
7964 */
612eff0e
BH
7965#ifdef CONFIG_NET_POLL_CONTROLLER
7966 dev->poll_controller = s2io_netpoll;
7967#endif
7968
1da177e4
LT
7969 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7970 if (sp->high_dma_flag == TRUE)
7971 dev->features |= NETIF_F_HIGHDMA;
1da177e4 7972 dev->features |= NETIF_F_TSO;
f83ef8c0 7973 dev->features |= NETIF_F_TSO6;
db874e65 7974 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
fed5eccd
AR
7975 dev->features |= NETIF_F_UFO;
7976 dev->features |= NETIF_F_HW_CSUM;
7977 }
1da177e4
LT
7978 dev->tx_timeout = &s2io_tx_watchdog;
7979 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
c4028958
DH
7980 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7981 INIT_WORK(&sp->set_link_task, s2io_set_link);
1da177e4 7982
e960fc5c 7983 pci_save_state(sp->pdev);
1da177e4
LT
7984
7985 /* Setting swapper control on the NIC, for proper reset operation */
7986 if (s2io_set_swapper(sp)) {
7987 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7988 dev->name);
7989 ret = -EAGAIN;
7990 goto set_swap_failed;
7991 }
7992
541ae68f
K
7993 /* Verify if the Herc works on the slot its placed into */
7994 if (sp->device_type & XFRAME_II_DEVICE) {
7995 mode = s2io_verify_pci_mode(sp);
7996 if (mode < 0) {
b39d66a8 7997 DBG_PRINT(ERR_DBG, "%s: ", __func__);
541ae68f
K
7998 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7999 ret = -EBADSLT;
8000 goto set_swap_failed;
8001 }
8002 }
8003
f61e0a35
SH
8004 if (sp->config.intr_type == MSI_X) {
8005 sp->num_entries = config->rx_ring_num + 1;
8006 ret = s2io_enable_msi_x(sp);
8007
8008 if (!ret) {
8009 ret = s2io_test_msi(sp);
8010 /* rollback MSI-X, will re-enable during add_isr() */
8011 remove_msix_isr(sp);
8012 }
8013 if (ret) {
8014
8015 DBG_PRINT(ERR_DBG,
8016 "%s: MSI-X requested but failed to enable\n",
8017 dev->name);
8018 sp->config.intr_type = INTA;
8019 }
8020 }
8021
8022 if (config->intr_type == MSI_X) {
8023 for (i = 0; i < config->rx_ring_num ; i++)
8024 netif_napi_add(dev, &mac_control->rings[i].napi,
8025 s2io_poll_msix, 64);
8026 } else {
8027 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8028 }
8029
541ae68f
K
8030 /* Not needed for Herc */
8031 if (sp->device_type & XFRAME_I_DEVICE) {
8032 /*
8033 * Fix for all "FFs" MAC address problems observed on
8034 * Alpha platforms
8035 */
8036 fix_mac_address(sp);
8037 s2io_reset(sp);
8038 }
1da177e4
LT
8039
8040 /*
1da177e4
LT
8041 * MAC address initialization.
8042 * For now only one mac address will be read and used.
8043 */
8044 bar0 = sp->bar0;
8045 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
faa4f796 8046 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
1da177e4 8047 writeq(val64, &bar0->rmac_addr_cmd_mem);
c92ca04b 8048 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41 8049 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
1da177e4
LT
8050 tmp64 = readq(&bar0->rmac_addr_data0_mem);
8051 mac_down = (u32) tmp64;
8052 mac_up = (u32) (tmp64 >> 32);
8053
1da177e4
LT
8054 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8055 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8056 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8057 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8058 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8059 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8060
1da177e4
LT
8061 /* Set the factory defined MAC address initially */
8062 dev->addr_len = ETH_ALEN;
8063 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
2fd37688 8064 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
1da177e4 8065
faa4f796
SH
8066 /* initialize number of multicast & unicast MAC entries variables */
8067 if (sp->device_type == XFRAME_I_DEVICE) {
8068 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8069 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8070 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8071 } else if (sp->device_type == XFRAME_II_DEVICE) {
8072 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8073 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8074 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8075 }
8076
8077 /* store mac addresses from CAM to s2io_nic structure */
8078 do_s2io_store_unicast_mc(sp);
8079
f61e0a35
SH
8080 /* Configure MSIX vector for number of rings configured plus one */
8081 if ((sp->device_type == XFRAME_II_DEVICE) &&
8082 (config->intr_type == MSI_X))
8083 sp->num_entries = config->rx_ring_num + 1;
8084
c77dd43e
SS
8085 /* Store the values of the MSIX table in the s2io_nic structure */
8086 store_xmsi_data(sp);
b41477f3
AR
8087 /* reset Nic and bring it to known state */
8088 s2io_reset(sp);
8089
1da177e4 8090 /*
99993af6 8091 * Initialize link state flags
541ae68f 8092 * and the card state parameter
1da177e4 8093 */
92b84437 8094 sp->state = 0;
1da177e4 8095
1da177e4 8096 /* Initialize spinlocks */
2fda096d
SR
8097 for (i = 0; i < sp->config.tx_fifo_num; i++)
8098 spin_lock_init(&mac_control->fifos[i].tx_lock);
db874e65 8099
20346722
K
8100 /*
8101 * SXE-002: Configure link and activity LED to init state
8102 * on driver load.
1da177e4
LT
8103 */
8104 subid = sp->pdev->subsystem_device;
8105 if ((subid & 0xFF) >= 0x07) {
8106 val64 = readq(&bar0->gpio_control);
8107 val64 |= 0x0000800000000000ULL;
8108 writeq(val64, &bar0->gpio_control);
8109 val64 = 0x0411040400000000ULL;
8110 writeq(val64, (void __iomem *) bar0 + 0x2700);
8111 val64 = readq(&bar0->gpio_control);
8112 }
8113
8114 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8115
8116 if (register_netdev(dev)) {
8117 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8118 ret = -ENODEV;
8119 goto register_failed;
8120 }
9dc737a7 8121 s2io_vpd_read(sp);
0c61ed5f 8122 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
b41477f3 8123 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
44c10138 8124 sp->product_name, pdev->revision);
b41477f3
AR
8125 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8126 s2io_driver_version);
e174961c 8127 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %pM\n", dev->name, dev->dev_addr);
19a60522 8128 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
9dc737a7 8129 if (sp->device_type & XFRAME_II_DEVICE) {
0b1f7ebe 8130 mode = s2io_print_pci_mode(sp);
541ae68f 8131 if (mode < 0) {
9dc737a7 8132 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
541ae68f 8133 ret = -EBADSLT;
9dc737a7 8134 unregister_netdev(dev);
541ae68f
K
8135 goto set_swap_failed;
8136 }
541ae68f 8137 }
9dc737a7
AR
8138 switch(sp->rxd_mode) {
8139 case RXD_MODE_1:
8140 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8141 dev->name);
8142 break;
8143 case RXD_MODE_3B:
8144 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8145 dev->name);
8146 break;
9dc737a7 8147 }
db874e65 8148
f61e0a35
SH
8149 switch (sp->config.napi) {
8150 case 0:
8151 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8152 break;
8153 case 1:
db874e65 8154 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
f61e0a35
SH
8155 break;
8156 }
3a3d5756
SH
8157
8158 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8159 sp->config.tx_fifo_num);
8160
0425b46a
SH
8161 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8162 sp->config.rx_ring_num);
8163
eaae7f72 8164 switch(sp->config.intr_type) {
9dc737a7
AR
8165 case INTA:
8166 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8167 break;
9dc737a7
AR
8168 case MSI_X:
8169 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8170 break;
8171 }
3a3d5756 8172 if (sp->config.multiq) {
a505f4ff
IJ
8173 for (i = 0; i < sp->config.tx_fifo_num; i++)
8174 mac_control->fifos[i].multiq = config->multiq;
3a3d5756
SH
8175 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8176 dev->name);
8177 } else
8178 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8179 dev->name);
8180
6cfc482b
SH
8181 switch (sp->config.tx_steering_type) {
8182 case NO_STEERING:
8183 DBG_PRINT(ERR_DBG, "%s: No steering enabled for"
8184 " transmit\n", dev->name);
8185 break;
8186 case TX_PRIORITY_STEERING:
8187 DBG_PRINT(ERR_DBG, "%s: Priority steering enabled for"
8188 " transmit\n", dev->name);
8189 break;
8190 case TX_DEFAULT_STEERING:
8191 DBG_PRINT(ERR_DBG, "%s: Default steering enabled for"
8192 " transmit\n", dev->name);
8193 }
8194
7d3d0439
RA
8195 if (sp->lro)
8196 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
9dc737a7 8197 dev->name);
db874e65
SS
8198 if (ufo)
8199 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
8200 " enabled\n", dev->name);
7ba013ac 8201 /* Initialize device name */
9dc737a7 8202 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7ba013ac 8203
cd0fce03
BL
8204 if (vlan_tag_strip)
8205 sp->vlan_strip_flag = 1;
8206 else
8207 sp->vlan_strip_flag = 0;
8208
20346722
K
8209 /*
8210 * Make Link state as off at this point, when the Link change
8211 * interrupt comes the state will be automatically changed to
1da177e4
LT
8212 * the right state.
8213 */
8214 netif_carrier_off(dev);
1da177e4
LT
8215
8216 return 0;
8217
8218 register_failed:
8219 set_swap_failed:
8220 iounmap(sp->bar1);
8221 bar1_remap_failed:
8222 iounmap(sp->bar0);
8223 bar0_remap_failed:
8224 mem_alloc_failed:
8225 free_shared_mem(sp);
8226 pci_disable_device(pdev);
eccb8628 8227 pci_release_regions(pdev);
1da177e4
LT
8228 pci_set_drvdata(pdev, NULL);
8229 free_netdev(dev);
8230
8231 return ret;
8232}
8233
8234/**
20346722 8235 * s2io_rem_nic - Free the PCI device
1da177e4 8236 * @pdev: structure containing the PCI related information of the device.
20346722 8237 * Description: This function is called by the Pci subsystem to release a
1da177e4 8238 * PCI device and free up all resource held up by the device. This could
20346722 8239 * be in response to a Hot plug event or when the driver is to be removed
1da177e4
LT
8240 * from memory.
8241 */
8242
8243static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8244{
8245 struct net_device *dev =
8246 (struct net_device *) pci_get_drvdata(pdev);
1ee6dd77 8247 struct s2io_nic *sp;
1da177e4
LT
8248
8249 if (dev == NULL) {
8250 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8251 return;
8252 }
8253
22747d6b
FR
8254 flush_scheduled_work();
8255
1da177e4
LT
8256 sp = dev->priv;
8257 unregister_netdev(dev);
8258
8259 free_shared_mem(sp);
8260 iounmap(sp->bar0);
8261 iounmap(sp->bar1);
eccb8628 8262 pci_release_regions(pdev);
1da177e4 8263 pci_set_drvdata(pdev, NULL);
1da177e4 8264 free_netdev(dev);
19a60522 8265 pci_disable_device(pdev);
1da177e4
LT
8266}
8267
8268/**
8269 * s2io_starter - Entry point for the driver
8270 * Description: This function is the entry point for the driver. It verifies
8271 * the module loadable parameters and initializes PCI configuration space.
8272 */
8273
43b7c451 8274static int __init s2io_starter(void)
1da177e4 8275{
29917620 8276 return pci_register_driver(&s2io_driver);
1da177e4
LT
8277}
8278
8279/**
20346722 8280 * s2io_closer - Cleanup routine for the driver
1da177e4
LT
8281 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8282 */
8283
372cc597 8284static __exit void s2io_closer(void)
1da177e4
LT
8285{
8286 pci_unregister_driver(&s2io_driver);
8287 DBG_PRINT(INIT_DBG, "cleanup done\n");
8288}
8289
8290module_init(s2io_starter);
8291module_exit(s2io_closer);
7d3d0439 8292
6aa20a22 8293static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
cdb5bf02
SH
8294 struct tcphdr **tcp, struct RxD_t *rxdp,
8295 struct s2io_nic *sp)
7d3d0439
RA
8296{
8297 int ip_off;
8298 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8299
8300 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8301 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
b39d66a8 8302 __func__);
7d3d0439
RA
8303 return -1;
8304 }
8305
cdb5bf02
SH
8306 /* Checking for DIX type or DIX type with VLAN */
8307 if ((l2_type == 0)
8308 || (l2_type == 4)) {
8309 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8310 /*
8311 * If vlan stripping is disabled and the frame is VLAN tagged,
8312 * shift the offset by the VLAN header size bytes.
8313 */
cd0fce03 8314 if ((!sp->vlan_strip_flag) &&
cdb5bf02
SH
8315 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8316 ip_off += HEADER_VLAN_SIZE;
8317 } else {
7d3d0439 8318 /* LLC, SNAP etc are considered non-mergeable */
cdb5bf02 8319 return -1;
7d3d0439
RA
8320 }
8321
8322 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8323 ip_len = (u8)((*ip)->ihl);
8324 ip_len <<= 2;
8325 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8326
8327 return 0;
8328}
8329
1ee6dd77 8330static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7d3d0439
RA
8331 struct tcphdr *tcp)
8332{
b39d66a8 8333 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
7d3d0439
RA
8334 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
8335 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
8336 return -1;
8337 return 0;
8338}
8339
8340static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8341{
8342 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
8343}
8344
1ee6dd77 8345static void initiate_new_session(struct lro *lro, u8 *l2h,
cdb5bf02 8346 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len, u16 vlan_tag)
7d3d0439 8347{
b39d66a8 8348 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
7d3d0439
RA
8349 lro->l2h = l2h;
8350 lro->iph = ip;
8351 lro->tcph = tcp;
8352 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
c8855953 8353 lro->tcp_ack = tcp->ack_seq;
7d3d0439
RA
8354 lro->sg_num = 1;
8355 lro->total_len = ntohs(ip->tot_len);
8356 lro->frags_len = 0;
cdb5bf02 8357 lro->vlan_tag = vlan_tag;
6aa20a22 8358 /*
7d3d0439
RA
8359 * check if we saw TCP timestamp. Other consistency checks have
8360 * already been done.
8361 */
8362 if (tcp->doff == 8) {
c8855953
SR
8363 __be32 *ptr;
8364 ptr = (__be32 *)(tcp+1);
7d3d0439 8365 lro->saw_ts = 1;
c8855953 8366 lro->cur_tsval = ntohl(*(ptr+1));
7d3d0439
RA
8367 lro->cur_tsecr = *(ptr+2);
8368 }
8369 lro->in_use = 1;
8370}
8371
1ee6dd77 8372static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7d3d0439
RA
8373{
8374 struct iphdr *ip = lro->iph;
8375 struct tcphdr *tcp = lro->tcph;
bd4f3ae1 8376 __sum16 nchk;
1ee6dd77 8377 struct stat_block *statinfo = sp->mac_control.stats_info;
b39d66a8 8378 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
7d3d0439
RA
8379
8380 /* Update L3 header */
8381 ip->tot_len = htons(lro->total_len);
8382 ip->check = 0;
8383 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8384 ip->check = nchk;
8385
8386 /* Update L4 header */
8387 tcp->ack_seq = lro->tcp_ack;
8388 tcp->window = lro->window;
8389
8390 /* Update tsecr field if this session has timestamps enabled */
8391 if (lro->saw_ts) {
c8855953 8392 __be32 *ptr = (__be32 *)(tcp + 1);
7d3d0439
RA
8393 *(ptr+2) = lro->cur_tsecr;
8394 }
8395
8396 /* Update counters required for calculation of
8397 * average no. of packets aggregated.
8398 */
8399 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
8400 statinfo->sw_stat.num_aggregations++;
8401}
8402
1ee6dd77 8403static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7d3d0439
RA
8404 struct tcphdr *tcp, u32 l4_pyld)
8405{
b39d66a8 8406 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
7d3d0439
RA
8407 lro->total_len += l4_pyld;
8408 lro->frags_len += l4_pyld;
8409 lro->tcp_next_seq += l4_pyld;
8410 lro->sg_num++;
8411
8412 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8413 lro->tcp_ack = tcp->ack_seq;
8414 lro->window = tcp->window;
6aa20a22 8415
7d3d0439 8416 if (lro->saw_ts) {
c8855953 8417 __be32 *ptr;
7d3d0439 8418 /* Update tsecr and tsval from this packet */
c8855953
SR
8419 ptr = (__be32 *)(tcp+1);
8420 lro->cur_tsval = ntohl(*(ptr+1));
7d3d0439
RA
8421 lro->cur_tsecr = *(ptr + 2);
8422 }
8423}
8424
1ee6dd77 8425static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7d3d0439
RA
8426 struct tcphdr *tcp, u32 tcp_pyld_len)
8427{
7d3d0439
RA
8428 u8 *ptr;
8429
b39d66a8 8430 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
79dc1901 8431
7d3d0439
RA
8432 if (!tcp_pyld_len) {
8433 /* Runt frame or a pure ack */
8434 return -1;
8435 }
8436
8437 if (ip->ihl != 5) /* IP has options */
8438 return -1;
8439
75c30b13
AR
8440 /* If we see CE codepoint in IP header, packet is not mergeable */
8441 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8442 return -1;
8443
8444 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7d3d0439 8445 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
75c30b13 8446 tcp->ece || tcp->cwr || !tcp->ack) {
7d3d0439
RA
8447 /*
8448 * Currently recognize only the ack control word and
8449 * any other control field being set would result in
8450 * flushing the LRO session
8451 */
8452 return -1;
8453 }
8454
6aa20a22 8455 /*
7d3d0439
RA
8456 * Allow only one TCP timestamp option. Don't aggregate if
8457 * any other options are detected.
8458 */
8459 if (tcp->doff != 5 && tcp->doff != 8)
8460 return -1;
8461
8462 if (tcp->doff == 8) {
6aa20a22 8463 ptr = (u8 *)(tcp + 1);
7d3d0439
RA
8464 while (*ptr == TCPOPT_NOP)
8465 ptr++;
8466 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8467 return -1;
8468
8469 /* Ensure timestamp value increases monotonically */
8470 if (l_lro)
c8855953 8471 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
7d3d0439
RA
8472 return -1;
8473
8474 /* timestamp echo reply should be non-zero */
c8855953 8475 if (*((__be32 *)(ptr+6)) == 0)
7d3d0439
RA
8476 return -1;
8477 }
8478
8479 return 0;
8480}
8481
8482static int
0425b46a
SH
8483s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer, u8 **tcp,
8484 u32 *tcp_len, struct lro **lro, struct RxD_t *rxdp,
8485 struct s2io_nic *sp)
7d3d0439
RA
8486{
8487 struct iphdr *ip;
8488 struct tcphdr *tcph;
8489 int ret = 0, i;
cdb5bf02 8490 u16 vlan_tag = 0;
7d3d0439
RA
8491
8492 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
cdb5bf02 8493 rxdp, sp))) {
7d3d0439
RA
8494 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8495 ip->saddr, ip->daddr);
cdb5bf02 8496 } else
7d3d0439 8497 return ret;
7d3d0439 8498
cdb5bf02 8499 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
7d3d0439
RA
8500 tcph = (struct tcphdr *)*tcp;
8501 *tcp_len = get_l4_pyld_length(ip, tcph);
8502 for (i=0; i<MAX_LRO_SESSIONS; i++) {
0425b46a 8503 struct lro *l_lro = &ring_data->lro0_n[i];
7d3d0439
RA
8504 if (l_lro->in_use) {
8505 if (check_for_socket_match(l_lro, ip, tcph))
8506 continue;
8507 /* Sock pair matched */
8508 *lro = l_lro;
8509
8510 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8511 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
b39d66a8 8512 "0x%x, actual 0x%x\n", __func__,
7d3d0439
RA
8513 (*lro)->tcp_next_seq,
8514 ntohl(tcph->seq));
8515
8516 sp->mac_control.stats_info->
8517 sw_stat.outof_sequence_pkts++;
8518 ret = 2;
8519 break;
8520 }
8521
8522 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8523 ret = 1; /* Aggregate */
8524 else
8525 ret = 2; /* Flush both */
8526 break;
8527 }
8528 }
8529
8530 if (ret == 0) {
8531 /* Before searching for available LRO objects,
8532 * check if the pkt is L3/L4 aggregatable. If not
8533 * don't create new LRO session. Just send this
8534 * packet up.
8535 */
8536 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8537 return 5;
8538 }
8539
8540 for (i=0; i<MAX_LRO_SESSIONS; i++) {
0425b46a 8541 struct lro *l_lro = &ring_data->lro0_n[i];
7d3d0439
RA
8542 if (!(l_lro->in_use)) {
8543 *lro = l_lro;
8544 ret = 3; /* Begin anew */
8545 break;
8546 }
8547 }
8548 }
8549
8550 if (ret == 0) { /* sessions exceeded */
8551 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
b39d66a8 8552 __func__);
7d3d0439
RA
8553 *lro = NULL;
8554 return ret;
8555 }
8556
8557 switch (ret) {
8558 case 3:
cdb5bf02
SH
8559 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8560 vlan_tag);
7d3d0439
RA
8561 break;
8562 case 2:
8563 update_L3L4_header(sp, *lro);
8564 break;
8565 case 1:
8566 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8567 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8568 update_L3L4_header(sp, *lro);
8569 ret = 4; /* Flush the LRO */
8570 }
8571 break;
8572 default:
8573 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
b39d66a8 8574 __func__);
7d3d0439
RA
8575 break;
8576 }
8577
8578 return ret;
8579}
8580
1ee6dd77 8581static void clear_lro_session(struct lro *lro)
7d3d0439 8582{
1ee6dd77 8583 static u16 lro_struct_size = sizeof(struct lro);
7d3d0439
RA
8584
8585 memset(lro, 0, lro_struct_size);
8586}
8587
cdb5bf02 8588static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
7d3d0439
RA
8589{
8590 struct net_device *dev = skb->dev;
cdb5bf02 8591 struct s2io_nic *sp = dev->priv;
7d3d0439
RA
8592
8593 skb->protocol = eth_type_trans(skb, dev);
cdb5bf02 8594 if (sp->vlgrp && vlan_tag
cd0fce03 8595 && (sp->vlan_strip_flag)) {
cdb5bf02
SH
8596 /* Queueing the vlan frame to the upper layer */
8597 if (sp->config.napi)
8598 vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8599 else
8600 vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8601 } else {
8602 if (sp->config.napi)
8603 netif_receive_skb(skb);
8604 else
8605 netif_rx(skb);
8606 }
7d3d0439
RA
8607}
8608
1ee6dd77
RB
8609static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8610 struct sk_buff *skb,
7d3d0439
RA
8611 u32 tcp_len)
8612{
75c30b13 8613 struct sk_buff *first = lro->parent;
7d3d0439
RA
8614
8615 first->len += tcp_len;
8616 first->data_len = lro->frags_len;
8617 skb_pull(skb, (skb->len - tcp_len));
75c30b13
AR
8618 if (skb_shinfo(first)->frag_list)
8619 lro->last_frag->next = skb;
7d3d0439
RA
8620 else
8621 skb_shinfo(first)->frag_list = skb;
372cc597 8622 first->truesize += skb->truesize;
75c30b13 8623 lro->last_frag = skb;
7d3d0439
RA
8624 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8625 return;
8626}
d796fdb7
LV
8627
8628/**
8629 * s2io_io_error_detected - called when PCI error is detected
8630 * @pdev: Pointer to PCI device
8453d43f 8631 * @state: The current pci connection state
d796fdb7
LV
8632 *
8633 * This function is called after a PCI bus error affecting
8634 * this device has been detected.
8635 */
8636static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8637 pci_channel_state_t state)
8638{
8639 struct net_device *netdev = pci_get_drvdata(pdev);
8640 struct s2io_nic *sp = netdev->priv;
8641
8642 netif_device_detach(netdev);
8643
8644 if (netif_running(netdev)) {
8645 /* Bring down the card, while avoiding PCI I/O */
8646 do_s2io_card_down(sp, 0);
d796fdb7
LV
8647 }
8648 pci_disable_device(pdev);
8649
8650 return PCI_ERS_RESULT_NEED_RESET;
8651}
8652
8653/**
8654 * s2io_io_slot_reset - called after the pci bus has been reset.
8655 * @pdev: Pointer to PCI device
8656 *
8657 * Restart the card from scratch, as if from a cold-boot.
8658 * At this point, the card has exprienced a hard reset,
8659 * followed by fixups by BIOS, and has its config space
8660 * set up identically to what it was at cold boot.
8661 */
8662static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8663{
8664 struct net_device *netdev = pci_get_drvdata(pdev);
8665 struct s2io_nic *sp = netdev->priv;
8666
8667 if (pci_enable_device(pdev)) {
8668 printk(KERN_ERR "s2io: "
8669 "Cannot re-enable PCI device after reset.\n");
8670 return PCI_ERS_RESULT_DISCONNECT;
8671 }
8672
8673 pci_set_master(pdev);
8674 s2io_reset(sp);
8675
8676 return PCI_ERS_RESULT_RECOVERED;
8677}
8678
8679/**
8680 * s2io_io_resume - called when traffic can start flowing again.
8681 * @pdev: Pointer to PCI device
8682 *
8683 * This callback is called when the error recovery driver tells
8684 * us that its OK to resume normal operation.
8685 */
8686static void s2io_io_resume(struct pci_dev *pdev)
8687{
8688 struct net_device *netdev = pci_get_drvdata(pdev);
8689 struct s2io_nic *sp = netdev->priv;
8690
8691 if (netif_running(netdev)) {
8692 if (s2io_card_up(sp)) {
8693 printk(KERN_ERR "s2io: "
8694 "Can't bring device back up after reset.\n");
8695 return;
8696 }
8697
8698 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8699 s2io_card_down(sp);
8700 printk(KERN_ERR "s2io: "
8701 "Can't resetore mac addr after reset.\n");
8702 return;
8703 }
8704 }
8705
8706 netif_device_attach(netdev);
fd2ea0a7 8707 netif_tx_wake_all_queues(netdev);
d796fdb7 8708}