]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/s2io.c
i4l: change magic numbers in Eicon DIVA ISDN driver to symbolic names
[net-next-2.6.git] / drivers / net / s2io.c
CommitLineData
1da177e4 1/************************************************************************
776bd20f 2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
0c61ed5f 3 * Copyright(c) 2002-2007 Neterion Inc.
d44570e4 4 *
1da177e4
LT
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
20346722
K
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
1da177e4
LT
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
20346722 21 * Francois Romieu : For pointing out all code part that were
1da177e4 22 * deprecated and also styling related comments.
20346722 23 * Grant Grundler : For helping me get rid of some Architecture
1da177e4
LT
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
20346722 26 *
1da177e4 27 * The module loadable parameters that are supported by the driver and a brief
a2a20aef 28 * explanation of all the variables.
9dc737a7 29 *
20346722
K
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
9dc737a7
AR
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
da6971d8 34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
6d517a27 35 * values are 1, 2.
1da177e4 36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
20346722 37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
1da177e4 38 * Tx descriptors that can be associated with each corresponding FIFO.
9dc737a7 39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
8abc4d5b 40 * 2(MSI_X). Default value is '2(MSI_X)'
43b7c451 41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
9dc737a7
AR
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
926930b2
SS
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
3a3d5756
SH
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
1da177e4
LT
55 ************************************************************************/
56
6cef2b8e
JP
57#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
58
1da177e4
LT
59#include <linux/module.h>
60#include <linux/types.h>
61#include <linux/errno.h>
62#include <linux/ioport.h>
63#include <linux/pci.h>
1e7f0bd8 64#include <linux/dma-mapping.h>
1da177e4
LT
65#include <linux/kernel.h>
66#include <linux/netdevice.h>
67#include <linux/etherdevice.h>
40239396 68#include <linux/mdio.h>
1da177e4
LT
69#include <linux/skbuff.h>
70#include <linux/init.h>
71#include <linux/delay.h>
72#include <linux/stddef.h>
73#include <linux/ioctl.h>
74#include <linux/timex.h>
1da177e4 75#include <linux/ethtool.h>
1da177e4 76#include <linux/workqueue.h>
be3a6b02 77#include <linux/if_vlan.h>
7d3d0439
RA
78#include <linux/ip.h>
79#include <linux/tcp.h>
d44570e4
JP
80#include <linux/uaccess.h>
81#include <linux/io.h>
7d3d0439 82#include <net/tcp.h>
1da177e4 83
1da177e4 84#include <asm/system.h>
fe931395 85#include <asm/div64.h>
330ce0de 86#include <asm/irq.h>
1da177e4
LT
87
88/* local include */
89#include "s2io.h"
90#include "s2io-regs.h"
91
29d0a2b0 92#define DRV_VERSION "2.0.26.25"
6c1792f4 93
1da177e4 94/* S2io Driver name & version. */
20346722 95static char s2io_driver_name[] = "Neterion";
6c1792f4 96static char s2io_driver_version[] = DRV_VERSION;
1da177e4 97
d44570e4
JP
98static int rxd_size[2] = {32, 48};
99static int rxd_count[2] = {127, 85};
da6971d8 100
1ee6dd77 101static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
5e25b9dd
K
102{
103 int ret;
104
105 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
d44570e4 106 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
5e25b9dd
K
107
108 return ret;
109}
110
20346722 111/*
1da177e4
LT
112 * Cards with following subsystem_id have a link state indication
113 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
114 * macro below identifies these cards given the subsystem_id.
115 */
d44570e4
JP
116#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
117 (dev_type == XFRAME_I_DEVICE) ? \
118 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
119 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
1da177e4
LT
120
121#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
122 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
1da177e4 123
d44570e4 124static inline int is_s2io_card_up(const struct s2io_nic *sp)
92b84437
SS
125{
126 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
127}
128
1da177e4 129/* Ethtool related variables and Macros. */
6fce365d 130static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
1da177e4
LT
131 "Register test\t(offline)",
132 "Eeprom test\t(offline)",
133 "Link test\t(online)",
134 "RLDRAM test\t(offline)",
135 "BIST Test\t(offline)"
136};
137
6fce365d 138static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
1da177e4
LT
139 {"tmac_frms"},
140 {"tmac_data_octets"},
141 {"tmac_drop_frms"},
142 {"tmac_mcst_frms"},
143 {"tmac_bcst_frms"},
144 {"tmac_pause_ctrl_frms"},
bd1034f0
AR
145 {"tmac_ttl_octets"},
146 {"tmac_ucst_frms"},
147 {"tmac_nucst_frms"},
1da177e4 148 {"tmac_any_err_frms"},
bd1034f0 149 {"tmac_ttl_less_fb_octets"},
1da177e4
LT
150 {"tmac_vld_ip_octets"},
151 {"tmac_vld_ip"},
152 {"tmac_drop_ip"},
153 {"tmac_icmp"},
154 {"tmac_rst_tcp"},
155 {"tmac_tcp"},
156 {"tmac_udp"},
157 {"rmac_vld_frms"},
158 {"rmac_data_octets"},
159 {"rmac_fcs_err_frms"},
160 {"rmac_drop_frms"},
161 {"rmac_vld_mcst_frms"},
162 {"rmac_vld_bcst_frms"},
163 {"rmac_in_rng_len_err_frms"},
bd1034f0 164 {"rmac_out_rng_len_err_frms"},
1da177e4
LT
165 {"rmac_long_frms"},
166 {"rmac_pause_ctrl_frms"},
bd1034f0
AR
167 {"rmac_unsup_ctrl_frms"},
168 {"rmac_ttl_octets"},
169 {"rmac_accepted_ucst_frms"},
170 {"rmac_accepted_nucst_frms"},
1da177e4 171 {"rmac_discarded_frms"},
bd1034f0
AR
172 {"rmac_drop_events"},
173 {"rmac_ttl_less_fb_octets"},
174 {"rmac_ttl_frms"},
1da177e4
LT
175 {"rmac_usized_frms"},
176 {"rmac_osized_frms"},
177 {"rmac_frag_frms"},
178 {"rmac_jabber_frms"},
bd1034f0
AR
179 {"rmac_ttl_64_frms"},
180 {"rmac_ttl_65_127_frms"},
181 {"rmac_ttl_128_255_frms"},
182 {"rmac_ttl_256_511_frms"},
183 {"rmac_ttl_512_1023_frms"},
184 {"rmac_ttl_1024_1518_frms"},
1da177e4
LT
185 {"rmac_ip"},
186 {"rmac_ip_octets"},
187 {"rmac_hdr_err_ip"},
188 {"rmac_drop_ip"},
189 {"rmac_icmp"},
190 {"rmac_tcp"},
191 {"rmac_udp"},
192 {"rmac_err_drp_udp"},
bd1034f0
AR
193 {"rmac_xgmii_err_sym"},
194 {"rmac_frms_q0"},
195 {"rmac_frms_q1"},
196 {"rmac_frms_q2"},
197 {"rmac_frms_q3"},
198 {"rmac_frms_q4"},
199 {"rmac_frms_q5"},
200 {"rmac_frms_q6"},
201 {"rmac_frms_q7"},
202 {"rmac_full_q0"},
203 {"rmac_full_q1"},
204 {"rmac_full_q2"},
205 {"rmac_full_q3"},
206 {"rmac_full_q4"},
207 {"rmac_full_q5"},
208 {"rmac_full_q6"},
209 {"rmac_full_q7"},
1da177e4 210 {"rmac_pause_cnt"},
bd1034f0
AR
211 {"rmac_xgmii_data_err_cnt"},
212 {"rmac_xgmii_ctrl_err_cnt"},
1da177e4
LT
213 {"rmac_accepted_ip"},
214 {"rmac_err_tcp"},
bd1034f0
AR
215 {"rd_req_cnt"},
216 {"new_rd_req_cnt"},
217 {"new_rd_req_rtry_cnt"},
218 {"rd_rtry_cnt"},
219 {"wr_rtry_rd_ack_cnt"},
220 {"wr_req_cnt"},
221 {"new_wr_req_cnt"},
222 {"new_wr_req_rtry_cnt"},
223 {"wr_rtry_cnt"},
224 {"wr_disc_cnt"},
225 {"rd_rtry_wr_ack_cnt"},
226 {"txp_wr_cnt"},
227 {"txd_rd_cnt"},
228 {"txd_wr_cnt"},
229 {"rxd_rd_cnt"},
230 {"rxd_wr_cnt"},
231 {"txf_rd_cnt"},
fa1f0cb3
SS
232 {"rxf_wr_cnt"}
233};
234
6fce365d 235static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
bd1034f0
AR
236 {"rmac_ttl_1519_4095_frms"},
237 {"rmac_ttl_4096_8191_frms"},
238 {"rmac_ttl_8192_max_frms"},
239 {"rmac_ttl_gt_max_frms"},
240 {"rmac_osized_alt_frms"},
241 {"rmac_jabber_alt_frms"},
242 {"rmac_gt_max_alt_frms"},
243 {"rmac_vlan_frms"},
244 {"rmac_len_discard"},
245 {"rmac_fcs_discard"},
246 {"rmac_pf_discard"},
247 {"rmac_da_discard"},
248 {"rmac_red_discard"},
249 {"rmac_rts_discard"},
250 {"rmac_ingm_full_discard"},
fa1f0cb3
SS
251 {"link_fault_cnt"}
252};
253
6fce365d 254static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
7ba013ac
K
255 {"\n DRIVER STATISTICS"},
256 {"single_bit_ecc_errs"},
257 {"double_bit_ecc_errs"},
bd1034f0
AR
258 {"parity_err_cnt"},
259 {"serious_err_cnt"},
260 {"soft_reset_cnt"},
261 {"fifo_full_cnt"},
8116f3cf
SS
262 {"ring_0_full_cnt"},
263 {"ring_1_full_cnt"},
264 {"ring_2_full_cnt"},
265 {"ring_3_full_cnt"},
266 {"ring_4_full_cnt"},
267 {"ring_5_full_cnt"},
268 {"ring_6_full_cnt"},
269 {"ring_7_full_cnt"},
43b7c451
SH
270 {"alarm_transceiver_temp_high"},
271 {"alarm_transceiver_temp_low"},
272 {"alarm_laser_bias_current_high"},
273 {"alarm_laser_bias_current_low"},
274 {"alarm_laser_output_power_high"},
275 {"alarm_laser_output_power_low"},
276 {"warn_transceiver_temp_high"},
277 {"warn_transceiver_temp_low"},
278 {"warn_laser_bias_current_high"},
279 {"warn_laser_bias_current_low"},
280 {"warn_laser_output_power_high"},
281 {"warn_laser_output_power_low"},
282 {"lro_aggregated_pkts"},
283 {"lro_flush_both_count"},
284 {"lro_out_of_sequence_pkts"},
285 {"lro_flush_due_to_max_pkts"},
286 {"lro_avg_aggr_pkts"},
287 {"mem_alloc_fail_cnt"},
288 {"pci_map_fail_cnt"},
289 {"watchdog_timer_cnt"},
290 {"mem_allocated"},
291 {"mem_freed"},
292 {"link_up_cnt"},
293 {"link_down_cnt"},
294 {"link_up_time"},
295 {"link_down_time"},
296 {"tx_tcode_buf_abort_cnt"},
297 {"tx_tcode_desc_abort_cnt"},
298 {"tx_tcode_parity_err_cnt"},
299 {"tx_tcode_link_loss_cnt"},
300 {"tx_tcode_list_proc_err_cnt"},
301 {"rx_tcode_parity_err_cnt"},
302 {"rx_tcode_abort_cnt"},
303 {"rx_tcode_parity_abort_cnt"},
304 {"rx_tcode_rda_fail_cnt"},
305 {"rx_tcode_unkn_prot_cnt"},
306 {"rx_tcode_fcs_err_cnt"},
307 {"rx_tcode_buf_size_err_cnt"},
308 {"rx_tcode_rxd_corrupt_cnt"},
309 {"rx_tcode_unkn_err_cnt"},
8116f3cf
SS
310 {"tda_err_cnt"},
311 {"pfc_err_cnt"},
312 {"pcc_err_cnt"},
313 {"tti_err_cnt"},
314 {"tpa_err_cnt"},
315 {"sm_err_cnt"},
316 {"lso_err_cnt"},
317 {"mac_tmac_err_cnt"},
318 {"mac_rmac_err_cnt"},
319 {"xgxs_txgxs_err_cnt"},
320 {"xgxs_rxgxs_err_cnt"},
321 {"rc_err_cnt"},
322 {"prc_pcix_err_cnt"},
323 {"rpa_err_cnt"},
324 {"rda_err_cnt"},
325 {"rti_err_cnt"},
326 {"mc_err_cnt"}
1da177e4
LT
327};
328
4c3616cd
AMR
329#define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
330#define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
331#define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
fa1f0cb3 332
d44570e4
JP
333#define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
334#define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
fa1f0cb3 335
d44570e4
JP
336#define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
337#define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
1da177e4 338
4c3616cd 339#define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
d44570e4 340#define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
1da177e4 341
d44570e4
JP
342#define S2IO_TIMER_CONF(timer, handle, arg, exp) \
343 init_timer(&timer); \
344 timer.function = handle; \
345 timer.data = (unsigned long)arg; \
346 mod_timer(&timer, (jiffies + exp)) \
25fff88e 347
2fd37688
SS
348/* copy mac addr to def_mac_addr array */
349static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
350{
351 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
352 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
353 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
354 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
355 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
356 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
357}
04025095 358
be3a6b02
K
359/* Add the vlan */
360static void s2io_vlan_rx_register(struct net_device *dev,
04025095 361 struct vlan_group *grp)
be3a6b02 362{
2fda096d 363 int i;
4cf1653a 364 struct s2io_nic *nic = netdev_priv(dev);
2fda096d 365 unsigned long flags[MAX_TX_FIFOS];
2fda096d 366 struct config_param *config = &nic->config;
ffb5df6c 367 struct mac_info *mac_control = &nic->mac_control;
2fda096d 368
13d866a9
JP
369 for (i = 0; i < config->tx_fifo_num; i++) {
370 struct fifo_info *fifo = &mac_control->fifos[i];
371
372 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
373 }
be3a6b02 374
be3a6b02 375 nic->vlgrp = grp;
13d866a9
JP
376
377 for (i = config->tx_fifo_num - 1; i >= 0; i--) {
378 struct fifo_info *fifo = &mac_control->fifos[i];
379
380 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
381 }
be3a6b02
K
382}
383
cdb5bf02 384/* Unregister the vlan */
04025095 385static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
cdb5bf02
SH
386{
387 int i;
4cf1653a 388 struct s2io_nic *nic = netdev_priv(dev);
cdb5bf02 389 unsigned long flags[MAX_TX_FIFOS];
cdb5bf02 390 struct config_param *config = &nic->config;
ffb5df6c 391 struct mac_info *mac_control = &nic->mac_control;
cdb5bf02 392
13d866a9
JP
393 for (i = 0; i < config->tx_fifo_num; i++) {
394 struct fifo_info *fifo = &mac_control->fifos[i];
395
396 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
397 }
cdb5bf02
SH
398
399 if (nic->vlgrp)
400 vlan_group_set_device(nic->vlgrp, vid, NULL);
401
13d866a9
JP
402 for (i = config->tx_fifo_num - 1; i >= 0; i--) {
403 struct fifo_info *fifo = &mac_control->fifos[i];
404
405 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
406 }
cdb5bf02
SH
407}
408
20346722 409/*
1da177e4
LT
410 * Constants to be programmed into the Xena's registers, to configure
411 * the XAUI.
412 */
413
1da177e4 414#define END_SIGN 0x0
f71e1309 415static const u64 herc_act_dtx_cfg[] = {
541ae68f 416 /* Set address */
e960fc5c 417 0x8000051536750000ULL, 0x80000515367500E0ULL,
541ae68f 418 /* Write data */
e960fc5c 419 0x8000051536750004ULL, 0x80000515367500E4ULL,
541ae68f
K
420 /* Set address */
421 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
422 /* Write data */
423 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
424 /* Set address */
e960fc5c 425 0x801205150D440000ULL, 0x801205150D4400E0ULL,
426 /* Write data */
427 0x801205150D440004ULL, 0x801205150D4400E4ULL,
428 /* Set address */
541ae68f
K
429 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
430 /* Write data */
431 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
432 /* Done */
433 END_SIGN
434};
435
f71e1309 436static const u64 xena_dtx_cfg[] = {
c92ca04b 437 /* Set address */
1da177e4 438 0x8000051500000000ULL, 0x80000515000000E0ULL,
c92ca04b
AR
439 /* Write data */
440 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
441 /* Set address */
442 0x8001051500000000ULL, 0x80010515000000E0ULL,
443 /* Write data */
444 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
445 /* Set address */
1da177e4 446 0x8002051500000000ULL, 0x80020515000000E0ULL,
c92ca04b
AR
447 /* Write data */
448 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
1da177e4
LT
449 END_SIGN
450};
451
20346722 452/*
1da177e4
LT
453 * Constants for Fixing the MacAddress problem seen mostly on
454 * Alpha machines.
455 */
f71e1309 456static const u64 fix_mac[] = {
1da177e4
LT
457 0x0060000000000000ULL, 0x0060600000000000ULL,
458 0x0040600000000000ULL, 0x0000600000000000ULL,
459 0x0020600000000000ULL, 0x0060600000000000ULL,
460 0x0020600000000000ULL, 0x0060600000000000ULL,
461 0x0020600000000000ULL, 0x0060600000000000ULL,
462 0x0020600000000000ULL, 0x0060600000000000ULL,
463 0x0020600000000000ULL, 0x0060600000000000ULL,
464 0x0020600000000000ULL, 0x0060600000000000ULL,
465 0x0020600000000000ULL, 0x0060600000000000ULL,
466 0x0020600000000000ULL, 0x0060600000000000ULL,
467 0x0020600000000000ULL, 0x0060600000000000ULL,
468 0x0020600000000000ULL, 0x0060600000000000ULL,
469 0x0020600000000000ULL, 0x0000600000000000ULL,
470 0x0040600000000000ULL, 0x0060600000000000ULL,
471 END_SIGN
472};
473
b41477f3
AR
474MODULE_LICENSE("GPL");
475MODULE_VERSION(DRV_VERSION);
476
477
1da177e4 478/* Module Loadable parameters. */
6cfc482b 479S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
b41477f3 480S2IO_PARM_INT(rx_ring_num, 1);
3a3d5756 481S2IO_PARM_INT(multiq, 0);
b41477f3
AR
482S2IO_PARM_INT(rx_ring_mode, 1);
483S2IO_PARM_INT(use_continuous_tx_intrs, 1);
484S2IO_PARM_INT(rmac_pause_time, 0x100);
485S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
486S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
487S2IO_PARM_INT(shared_splits, 0);
488S2IO_PARM_INT(tmac_util_period, 5);
489S2IO_PARM_INT(rmac_util_period, 5);
b41477f3 490S2IO_PARM_INT(l3l4hdr_size, 128);
6cfc482b
SH
491/* 0 is no steering, 1 is Priority steering, 2 is Default steering */
492S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
303bcb4b 493/* Frequency of Rx desc syncs expressed as power of 2 */
b41477f3 494S2IO_PARM_INT(rxsync_frequency, 3);
eccb8628 495/* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
8abc4d5b 496S2IO_PARM_INT(intr_type, 2);
7d3d0439 497/* Large receive offload feature */
43b7c451
SH
498static unsigned int lro_enable;
499module_param_named(lro, lro_enable, uint, 0);
500
7d3d0439
RA
501/* Max pkts to be aggregated by LRO at one time. If not specified,
502 * aggregation happens until we hit max IP pkt size(64K)
503 */
b41477f3 504S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
b41477f3 505S2IO_PARM_INT(indicate_max_pkts, 0);
db874e65
SS
506
507S2IO_PARM_INT(napi, 1);
508S2IO_PARM_INT(ufo, 0);
926930b2 509S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
b41477f3
AR
510
511static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
d44570e4 512{DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
b41477f3 513static unsigned int rx_ring_sz[MAX_RX_RINGS] =
d44570e4 514{[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
b41477f3 515static unsigned int rts_frm_len[MAX_RX_RINGS] =
d44570e4 516{[0 ...(MAX_RX_RINGS - 1)] = 0 };
b41477f3
AR
517
518module_param_array(tx_fifo_len, uint, NULL, 0);
519module_param_array(rx_ring_sz, uint, NULL, 0);
520module_param_array(rts_frm_len, uint, NULL, 0);
1da177e4 521
20346722 522/*
1da177e4 523 * S2IO device table.
20346722 524 * This table lists all the devices that this driver supports.
1da177e4 525 */
a3aa1884 526static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = {
1da177e4
LT
527 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
528 PCI_ANY_ID, PCI_ANY_ID},
529 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
530 PCI_ANY_ID, PCI_ANY_ID},
531 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
d44570e4
JP
532 PCI_ANY_ID, PCI_ANY_ID},
533 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
534 PCI_ANY_ID, PCI_ANY_ID},
1da177e4
LT
535 {0,}
536};
537
538MODULE_DEVICE_TABLE(pci, s2io_tbl);
539
d796fdb7
LV
540static struct pci_error_handlers s2io_err_handler = {
541 .error_detected = s2io_io_error_detected,
542 .slot_reset = s2io_io_slot_reset,
543 .resume = s2io_io_resume,
544};
545
1da177e4 546static struct pci_driver s2io_driver = {
d44570e4
JP
547 .name = "S2IO",
548 .id_table = s2io_tbl,
549 .probe = s2io_init_nic,
550 .remove = __devexit_p(s2io_rem_nic),
551 .err_handler = &s2io_err_handler,
1da177e4
LT
552};
553
554/* A simplifier macro used both by init and free shared_mem Fns(). */
555#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
556
3a3d5756
SH
557/* netqueue manipulation helper functions */
558static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
559{
fd2ea0a7
DM
560 if (!sp->config.multiq) {
561 int i;
562
3a3d5756
SH
563 for (i = 0; i < sp->config.tx_fifo_num; i++)
564 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
3a3d5756 565 }
fd2ea0a7 566 netif_tx_stop_all_queues(sp->dev);
3a3d5756
SH
567}
568
569static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
570{
fd2ea0a7 571 if (!sp->config.multiq)
3a3d5756
SH
572 sp->mac_control.fifos[fifo_no].queue_state =
573 FIFO_QUEUE_STOP;
fd2ea0a7
DM
574
575 netif_tx_stop_all_queues(sp->dev);
3a3d5756
SH
576}
577
578static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
579{
fd2ea0a7
DM
580 if (!sp->config.multiq) {
581 int i;
582
3a3d5756
SH
583 for (i = 0; i < sp->config.tx_fifo_num; i++)
584 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
3a3d5756 585 }
fd2ea0a7 586 netif_tx_start_all_queues(sp->dev);
3a3d5756
SH
587}
588
589static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
590{
fd2ea0a7 591 if (!sp->config.multiq)
3a3d5756
SH
592 sp->mac_control.fifos[fifo_no].queue_state =
593 FIFO_QUEUE_START;
fd2ea0a7
DM
594
595 netif_tx_start_all_queues(sp->dev);
3a3d5756
SH
596}
597
598static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
599{
fd2ea0a7
DM
600 if (!sp->config.multiq) {
601 int i;
602
3a3d5756
SH
603 for (i = 0; i < sp->config.tx_fifo_num; i++)
604 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
3a3d5756 605 }
fd2ea0a7 606 netif_tx_wake_all_queues(sp->dev);
3a3d5756
SH
607}
608
609static inline void s2io_wake_tx_queue(
610 struct fifo_info *fifo, int cnt, u8 multiq)
611{
612
3a3d5756
SH
613 if (multiq) {
614 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
615 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
b19fa1fa 616 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
3a3d5756
SH
617 if (netif_queue_stopped(fifo->dev)) {
618 fifo->queue_state = FIFO_QUEUE_START;
619 netif_wake_queue(fifo->dev);
620 }
621 }
622}
623
1da177e4
LT
624/**
625 * init_shared_mem - Allocation and Initialization of Memory
626 * @nic: Device private variable.
20346722
K
627 * Description: The function allocates all the memory areas shared
628 * between the NIC and the driver. This includes Tx descriptors,
1da177e4
LT
629 * Rx descriptors and the statistics block.
630 */
631
632static int init_shared_mem(struct s2io_nic *nic)
633{
634 u32 size;
635 void *tmp_v_addr, *tmp_v_addr_next;
636 dma_addr_t tmp_p_addr, tmp_p_addr_next;
1ee6dd77 637 struct RxD_block *pre_rxd_blk = NULL;
372cc597 638 int i, j, blk_cnt;
1da177e4
LT
639 int lst_size, lst_per_page;
640 struct net_device *dev = nic->dev;
8ae418cf 641 unsigned long tmp;
1ee6dd77 642 struct buffAdd *ba;
ffb5df6c
JP
643 struct config_param *config = &nic->config;
644 struct mac_info *mac_control = &nic->mac_control;
491976b2 645 unsigned long long mem_allocated = 0;
1da177e4 646
13d866a9 647 /* Allocation and initialization of TXDLs in FIFOs */
1da177e4
LT
648 size = 0;
649 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
650 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
651
652 size += tx_cfg->fifo_len;
1da177e4
LT
653 }
654 if (size > MAX_AVAILABLE_TXDS) {
9e39f7c5
JP
655 DBG_PRINT(ERR_DBG,
656 "Too many TxDs requested: %d, max supported: %d\n",
657 size, MAX_AVAILABLE_TXDS);
b41477f3 658 return -EINVAL;
1da177e4
LT
659 }
660
2fda096d
SR
661 size = 0;
662 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
663 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
664
665 size = tx_cfg->fifo_len;
2fda096d
SR
666 /*
667 * Legal values are from 2 to 8192
668 */
669 if (size < 2) {
9e39f7c5
JP
670 DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
671 "Valid lengths are 2 through 8192\n",
672 i, size);
2fda096d
SR
673 return -EINVAL;
674 }
675 }
676
1ee6dd77 677 lst_size = (sizeof(struct TxD) * config->max_txds);
1da177e4
LT
678 lst_per_page = PAGE_SIZE / lst_size;
679
680 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
681 struct fifo_info *fifo = &mac_control->fifos[i];
682 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
683 int fifo_len = tx_cfg->fifo_len;
1ee6dd77 684 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
13d866a9
JP
685
686 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
687 if (!fifo->list_info) {
d44570e4 688 DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
1da177e4
LT
689 return -ENOMEM;
690 }
491976b2 691 mem_allocated += list_holder_size;
1da177e4
LT
692 }
693 for (i = 0; i < config->tx_fifo_num; i++) {
694 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
695 lst_per_page);
13d866a9
JP
696 struct fifo_info *fifo = &mac_control->fifos[i];
697 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
698
699 fifo->tx_curr_put_info.offset = 0;
700 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
701 fifo->tx_curr_get_info.offset = 0;
702 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
703 fifo->fifo_no = i;
704 fifo->nic = nic;
705 fifo->max_txds = MAX_SKB_FRAGS + 2;
706 fifo->dev = dev;
20346722 707
1da177e4
LT
708 for (j = 0; j < page_num; j++) {
709 int k = 0;
710 dma_addr_t tmp_p;
711 void *tmp_v;
712 tmp_v = pci_alloc_consistent(nic->pdev,
713 PAGE_SIZE, &tmp_p);
714 if (!tmp_v) {
9e39f7c5
JP
715 DBG_PRINT(INFO_DBG,
716 "pci_alloc_consistent failed for TxDL\n");
1da177e4
LT
717 return -ENOMEM;
718 }
776bd20f 719 /* If we got a zero DMA address(can happen on
720 * certain platforms like PPC), reallocate.
721 * Store virtual address of page we don't want,
722 * to be freed later.
723 */
724 if (!tmp_p) {
725 mac_control->zerodma_virt_addr = tmp_v;
6aa20a22 726 DBG_PRINT(INIT_DBG,
9e39f7c5
JP
727 "%s: Zero DMA address for TxDL. "
728 "Virtual address %p\n",
729 dev->name, tmp_v);
776bd20f 730 tmp_v = pci_alloc_consistent(nic->pdev,
d44570e4 731 PAGE_SIZE, &tmp_p);
776bd20f 732 if (!tmp_v) {
0c61ed5f 733 DBG_PRINT(INFO_DBG,
9e39f7c5 734 "pci_alloc_consistent failed for TxDL\n");
776bd20f 735 return -ENOMEM;
736 }
491976b2 737 mem_allocated += PAGE_SIZE;
776bd20f 738 }
1da177e4
LT
739 while (k < lst_per_page) {
740 int l = (j * lst_per_page) + k;
13d866a9 741 if (l == tx_cfg->fifo_len)
20346722 742 break;
13d866a9 743 fifo->list_info[l].list_virt_addr =
d44570e4 744 tmp_v + (k * lst_size);
13d866a9 745 fifo->list_info[l].list_phy_addr =
d44570e4 746 tmp_p + (k * lst_size);
1da177e4
LT
747 k++;
748 }
749 }
750 }
1da177e4 751
2fda096d 752 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
753 struct fifo_info *fifo = &mac_control->fifos[i];
754 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
755
756 size = tx_cfg->fifo_len;
757 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
758 if (!fifo->ufo_in_band_v)
2fda096d
SR
759 return -ENOMEM;
760 mem_allocated += (size * sizeof(u64));
761 }
fed5eccd 762
1da177e4
LT
763 /* Allocation and initialization of RXDs in Rings */
764 size = 0;
765 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
766 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
767 struct ring_info *ring = &mac_control->rings[i];
768
769 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
9e39f7c5
JP
770 DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
771 "multiple of RxDs per Block\n",
772 dev->name, i);
1da177e4
LT
773 return FAILURE;
774 }
13d866a9
JP
775 size += rx_cfg->num_rxd;
776 ring->block_count = rx_cfg->num_rxd /
d44570e4 777 (rxd_count[nic->rxd_mode] + 1);
13d866a9 778 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
1da177e4 779 }
da6971d8 780 if (nic->rxd_mode == RXD_MODE_1)
1ee6dd77 781 size = (size * (sizeof(struct RxD1)));
da6971d8 782 else
1ee6dd77 783 size = (size * (sizeof(struct RxD3)));
1da177e4
LT
784
785 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
786 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
787 struct ring_info *ring = &mac_control->rings[i];
788
789 ring->rx_curr_get_info.block_index = 0;
790 ring->rx_curr_get_info.offset = 0;
791 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
792 ring->rx_curr_put_info.block_index = 0;
793 ring->rx_curr_put_info.offset = 0;
794 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
795 ring->nic = nic;
796 ring->ring_no = i;
797 ring->lro = lro_enable;
798
799 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
1da177e4
LT
800 /* Allocating all the Rx blocks */
801 for (j = 0; j < blk_cnt; j++) {
1ee6dd77 802 struct rx_block_info *rx_blocks;
da6971d8
AR
803 int l;
804
13d866a9 805 rx_blocks = &ring->rx_blocks[j];
d44570e4 806 size = SIZE_OF_BLOCK; /* size is always page size */
1da177e4
LT
807 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
808 &tmp_p_addr);
809 if (tmp_v_addr == NULL) {
810 /*
20346722
K
811 * In case of failure, free_shared_mem()
812 * is called, which should free any
813 * memory that was alloced till the
1da177e4
LT
814 * failure happened.
815 */
da6971d8 816 rx_blocks->block_virt_addr = tmp_v_addr;
1da177e4
LT
817 return -ENOMEM;
818 }
491976b2 819 mem_allocated += size;
1da177e4 820 memset(tmp_v_addr, 0, size);
4f870320
JP
821
822 size = sizeof(struct rxd_info) *
823 rxd_count[nic->rxd_mode];
da6971d8
AR
824 rx_blocks->block_virt_addr = tmp_v_addr;
825 rx_blocks->block_dma_addr = tmp_p_addr;
4f870320 826 rx_blocks->rxds = kmalloc(size, GFP_KERNEL);
372cc597
SS
827 if (!rx_blocks->rxds)
828 return -ENOMEM;
4f870320 829 mem_allocated += size;
d44570e4 830 for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
da6971d8
AR
831 rx_blocks->rxds[l].virt_addr =
832 rx_blocks->block_virt_addr +
833 (rxd_size[nic->rxd_mode] * l);
834 rx_blocks->rxds[l].dma_addr =
835 rx_blocks->block_dma_addr +
836 (rxd_size[nic->rxd_mode] * l);
837 }
1da177e4
LT
838 }
839 /* Interlinking all Rx Blocks */
840 for (j = 0; j < blk_cnt; j++) {
13d866a9
JP
841 int next = (j + 1) % blk_cnt;
842 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
843 tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
844 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
845 tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
1da177e4 846
d44570e4 847 pre_rxd_blk = (struct RxD_block *)tmp_v_addr;
1da177e4 848 pre_rxd_blk->reserved_2_pNext_RxD_block =
d44570e4 849 (unsigned long)tmp_v_addr_next;
1da177e4 850 pre_rxd_blk->pNext_RxD_Blk_physical =
d44570e4 851 (u64)tmp_p_addr_next;
1da177e4
LT
852 }
853 }
6d517a27 854 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
855 /*
856 * Allocation of Storages for buffer addresses in 2BUFF mode
857 * and the buffers as well.
858 */
859 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
860 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
861 struct ring_info *ring = &mac_control->rings[i];
862
863 blk_cnt = rx_cfg->num_rxd /
d44570e4 864 (rxd_count[nic->rxd_mode] + 1);
4f870320
JP
865 size = sizeof(struct buffAdd *) * blk_cnt;
866 ring->ba = kmalloc(size, GFP_KERNEL);
13d866a9 867 if (!ring->ba)
1da177e4 868 return -ENOMEM;
4f870320 869 mem_allocated += size;
da6971d8
AR
870 for (j = 0; j < blk_cnt; j++) {
871 int k = 0;
4f870320
JP
872
873 size = sizeof(struct buffAdd) *
874 (rxd_count[nic->rxd_mode] + 1);
875 ring->ba[j] = kmalloc(size, GFP_KERNEL);
13d866a9 876 if (!ring->ba[j])
1da177e4 877 return -ENOMEM;
4f870320 878 mem_allocated += size;
da6971d8 879 while (k != rxd_count[nic->rxd_mode]) {
13d866a9 880 ba = &ring->ba[j][k];
4f870320
JP
881 size = BUF0_LEN + ALIGN_SIZE;
882 ba->ba_0_org = kmalloc(size, GFP_KERNEL);
da6971d8
AR
883 if (!ba->ba_0_org)
884 return -ENOMEM;
4f870320 885 mem_allocated += size;
da6971d8
AR
886 tmp = (unsigned long)ba->ba_0_org;
887 tmp += ALIGN_SIZE;
d44570e4
JP
888 tmp &= ~((unsigned long)ALIGN_SIZE);
889 ba->ba_0 = (void *)tmp;
da6971d8 890
4f870320
JP
891 size = BUF1_LEN + ALIGN_SIZE;
892 ba->ba_1_org = kmalloc(size, GFP_KERNEL);
da6971d8
AR
893 if (!ba->ba_1_org)
894 return -ENOMEM;
4f870320 895 mem_allocated += size;
d44570e4 896 tmp = (unsigned long)ba->ba_1_org;
da6971d8 897 tmp += ALIGN_SIZE;
d44570e4
JP
898 tmp &= ~((unsigned long)ALIGN_SIZE);
899 ba->ba_1 = (void *)tmp;
da6971d8
AR
900 k++;
901 }
1da177e4
LT
902 }
903 }
904 }
1da177e4
LT
905
906 /* Allocation and initialization of Statistics block */
1ee6dd77 907 size = sizeof(struct stat_block);
d44570e4
JP
908 mac_control->stats_mem =
909 pci_alloc_consistent(nic->pdev, size,
910 &mac_control->stats_mem_phy);
1da177e4
LT
911
912 if (!mac_control->stats_mem) {
20346722
K
913 /*
914 * In case of failure, free_shared_mem() is called, which
915 * should free any memory that was alloced till the
1da177e4
LT
916 * failure happened.
917 */
918 return -ENOMEM;
919 }
491976b2 920 mem_allocated += size;
1da177e4
LT
921 mac_control->stats_mem_sz = size;
922
923 tmp_v_addr = mac_control->stats_mem;
d44570e4 924 mac_control->stats_info = (struct stat_block *)tmp_v_addr;
1da177e4 925 memset(tmp_v_addr, 0, size);
3a22813a
BL
926 DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
927 dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
491976b2 928 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
1da177e4
LT
929 return SUCCESS;
930}
931
20346722
K
932/**
933 * free_shared_mem - Free the allocated Memory
1da177e4
LT
934 * @nic: Device private variable.
935 * Description: This function is to free all memory locations allocated by
936 * the init_shared_mem() function and return it to the kernel.
937 */
938
939static void free_shared_mem(struct s2io_nic *nic)
940{
941 int i, j, blk_cnt, size;
942 void *tmp_v_addr;
943 dma_addr_t tmp_p_addr;
1da177e4 944 int lst_size, lst_per_page;
8910b49f 945 struct net_device *dev;
491976b2 946 int page_num = 0;
ffb5df6c
JP
947 struct config_param *config;
948 struct mac_info *mac_control;
949 struct stat_block *stats;
950 struct swStat *swstats;
1da177e4
LT
951
952 if (!nic)
953 return;
954
8910b49f
MG
955 dev = nic->dev;
956
1da177e4 957 config = &nic->config;
ffb5df6c
JP
958 mac_control = &nic->mac_control;
959 stats = mac_control->stats_info;
960 swstats = &stats->sw_stat;
1da177e4 961
d44570e4 962 lst_size = sizeof(struct TxD) * config->max_txds;
1da177e4
LT
963 lst_per_page = PAGE_SIZE / lst_size;
964
965 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
966 struct fifo_info *fifo = &mac_control->fifos[i];
967 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
968
969 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
1da177e4
LT
970 for (j = 0; j < page_num; j++) {
971 int mem_blks = (j * lst_per_page);
13d866a9
JP
972 struct list_info_hold *fli;
973
974 if (!fifo->list_info)
6aa20a22 975 return;
13d866a9
JP
976
977 fli = &fifo->list_info[mem_blks];
978 if (!fli->list_virt_addr)
1da177e4
LT
979 break;
980 pci_free_consistent(nic->pdev, PAGE_SIZE,
13d866a9
JP
981 fli->list_virt_addr,
982 fli->list_phy_addr);
ffb5df6c 983 swstats->mem_freed += PAGE_SIZE;
1da177e4 984 }
776bd20f 985 /* If we got a zero DMA address during allocation,
986 * free the page now
987 */
988 if (mac_control->zerodma_virt_addr) {
989 pci_free_consistent(nic->pdev, PAGE_SIZE,
990 mac_control->zerodma_virt_addr,
991 (dma_addr_t)0);
6aa20a22 992 DBG_PRINT(INIT_DBG,
9e39f7c5
JP
993 "%s: Freeing TxDL with zero DMA address. "
994 "Virtual address %p\n",
995 dev->name, mac_control->zerodma_virt_addr);
ffb5df6c 996 swstats->mem_freed += PAGE_SIZE;
776bd20f 997 }
13d866a9 998 kfree(fifo->list_info);
82c2d023 999 swstats->mem_freed += tx_cfg->fifo_len *
d44570e4 1000 sizeof(struct list_info_hold);
1da177e4
LT
1001 }
1002
1da177e4 1003 size = SIZE_OF_BLOCK;
1da177e4 1004 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
1005 struct ring_info *ring = &mac_control->rings[i];
1006
1007 blk_cnt = ring->block_count;
1da177e4 1008 for (j = 0; j < blk_cnt; j++) {
13d866a9
JP
1009 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
1010 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
1da177e4
LT
1011 if (tmp_v_addr == NULL)
1012 break;
1013 pci_free_consistent(nic->pdev, size,
1014 tmp_v_addr, tmp_p_addr);
ffb5df6c 1015 swstats->mem_freed += size;
13d866a9 1016 kfree(ring->rx_blocks[j].rxds);
ffb5df6c
JP
1017 swstats->mem_freed += sizeof(struct rxd_info) *
1018 rxd_count[nic->rxd_mode];
1da177e4
LT
1019 }
1020 }
1021
6d517a27 1022 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
1023 /* Freeing buffer storage addresses in 2BUFF mode. */
1024 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
1025 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1026 struct ring_info *ring = &mac_control->rings[i];
1027
1028 blk_cnt = rx_cfg->num_rxd /
1029 (rxd_count[nic->rxd_mode] + 1);
da6971d8
AR
1030 for (j = 0; j < blk_cnt; j++) {
1031 int k = 0;
13d866a9 1032 if (!ring->ba[j])
da6971d8
AR
1033 continue;
1034 while (k != rxd_count[nic->rxd_mode]) {
13d866a9 1035 struct buffAdd *ba = &ring->ba[j][k];
da6971d8 1036 kfree(ba->ba_0_org);
ffb5df6c
JP
1037 swstats->mem_freed +=
1038 BUF0_LEN + ALIGN_SIZE;
da6971d8 1039 kfree(ba->ba_1_org);
ffb5df6c
JP
1040 swstats->mem_freed +=
1041 BUF1_LEN + ALIGN_SIZE;
da6971d8
AR
1042 k++;
1043 }
13d866a9 1044 kfree(ring->ba[j]);
ffb5df6c
JP
1045 swstats->mem_freed += sizeof(struct buffAdd) *
1046 (rxd_count[nic->rxd_mode] + 1);
1da177e4 1047 }
13d866a9 1048 kfree(ring->ba);
ffb5df6c
JP
1049 swstats->mem_freed += sizeof(struct buffAdd *) *
1050 blk_cnt;
1da177e4 1051 }
1da177e4 1052 }
1da177e4 1053
2fda096d 1054 for (i = 0; i < nic->config.tx_fifo_num; i++) {
13d866a9
JP
1055 struct fifo_info *fifo = &mac_control->fifos[i];
1056 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1057
1058 if (fifo->ufo_in_band_v) {
ffb5df6c
JP
1059 swstats->mem_freed += tx_cfg->fifo_len *
1060 sizeof(u64);
13d866a9 1061 kfree(fifo->ufo_in_band_v);
2fda096d
SR
1062 }
1063 }
1064
1da177e4 1065 if (mac_control->stats_mem) {
ffb5df6c 1066 swstats->mem_freed += mac_control->stats_mem_sz;
1da177e4
LT
1067 pci_free_consistent(nic->pdev,
1068 mac_control->stats_mem_sz,
1069 mac_control->stats_mem,
1070 mac_control->stats_mem_phy);
491976b2 1071 }
1da177e4
LT
1072}
1073
541ae68f
K
1074/**
1075 * s2io_verify_pci_mode -
1076 */
1077
1ee6dd77 1078static int s2io_verify_pci_mode(struct s2io_nic *nic)
541ae68f 1079{
1ee6dd77 1080 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f
K
1081 register u64 val64 = 0;
1082 int mode;
1083
1084 val64 = readq(&bar0->pci_mode);
1085 mode = (u8)GET_PCI_MODE(val64);
1086
d44570e4 1087 if (val64 & PCI_MODE_UNKNOWN_MODE)
541ae68f
K
1088 return -1; /* Unknown PCI mode */
1089 return mode;
1090}
1091
c92ca04b
AR
1092#define NEC_VENID 0x1033
1093#define NEC_DEVID 0x0125
1094static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1095{
1096 struct pci_dev *tdev = NULL;
26d36b64
AC
1097 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1098 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
7ad62dbc 1099 if (tdev->bus == s2io_pdev->bus->parent) {
26d36b64 1100 pci_dev_put(tdev);
c92ca04b 1101 return 1;
7ad62dbc 1102 }
c92ca04b
AR
1103 }
1104 }
1105 return 0;
1106}
541ae68f 1107
7b32a312 1108static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
541ae68f
K
1109/**
1110 * s2io_print_pci_mode -
1111 */
1ee6dd77 1112static int s2io_print_pci_mode(struct s2io_nic *nic)
541ae68f 1113{
1ee6dd77 1114 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f
K
1115 register u64 val64 = 0;
1116 int mode;
1117 struct config_param *config = &nic->config;
9e39f7c5 1118 const char *pcimode;
541ae68f
K
1119
1120 val64 = readq(&bar0->pci_mode);
1121 mode = (u8)GET_PCI_MODE(val64);
1122
d44570e4 1123 if (val64 & PCI_MODE_UNKNOWN_MODE)
541ae68f
K
1124 return -1; /* Unknown PCI mode */
1125
c92ca04b
AR
1126 config->bus_speed = bus_speed[mode];
1127
1128 if (s2io_on_nec_bridge(nic->pdev)) {
1129 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
d44570e4 1130 nic->dev->name);
c92ca04b
AR
1131 return mode;
1132 }
1133
d44570e4
JP
1134 switch (mode) {
1135 case PCI_MODE_PCI_33:
9e39f7c5 1136 pcimode = "33MHz PCI bus";
d44570e4
JP
1137 break;
1138 case PCI_MODE_PCI_66:
9e39f7c5 1139 pcimode = "66MHz PCI bus";
d44570e4
JP
1140 break;
1141 case PCI_MODE_PCIX_M1_66:
9e39f7c5 1142 pcimode = "66MHz PCIX(M1) bus";
d44570e4
JP
1143 break;
1144 case PCI_MODE_PCIX_M1_100:
9e39f7c5 1145 pcimode = "100MHz PCIX(M1) bus";
d44570e4
JP
1146 break;
1147 case PCI_MODE_PCIX_M1_133:
9e39f7c5 1148 pcimode = "133MHz PCIX(M1) bus";
d44570e4
JP
1149 break;
1150 case PCI_MODE_PCIX_M2_66:
9e39f7c5 1151 pcimode = "133MHz PCIX(M2) bus";
d44570e4
JP
1152 break;
1153 case PCI_MODE_PCIX_M2_100:
9e39f7c5 1154 pcimode = "200MHz PCIX(M2) bus";
d44570e4
JP
1155 break;
1156 case PCI_MODE_PCIX_M2_133:
9e39f7c5 1157 pcimode = "266MHz PCIX(M2) bus";
d44570e4
JP
1158 break;
1159 default:
9e39f7c5
JP
1160 pcimode = "unsupported bus!";
1161 mode = -1;
541ae68f
K
1162 }
1163
9e39f7c5
JP
1164 DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1165 nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1166
541ae68f
K
1167 return mode;
1168}
1169
b7c5678f
RV
1170/**
1171 * init_tti - Initialization transmit traffic interrupt scheme
1172 * @nic: device private variable
1173 * @link: link status (UP/DOWN) used to enable/disable continuous
1174 * transmit interrupts
1175 * Description: The function configures transmit traffic interrupts
1176 * Return Value: SUCCESS on success and
1177 * '-1' on failure
1178 */
1179
0d66afe7 1180static int init_tti(struct s2io_nic *nic, int link)
b7c5678f
RV
1181{
1182 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1183 register u64 val64 = 0;
1184 int i;
ffb5df6c 1185 struct config_param *config = &nic->config;
b7c5678f
RV
1186
1187 for (i = 0; i < config->tx_fifo_num; i++) {
1188 /*
1189 * TTI Initialization. Default Tx timer gets us about
1190 * 250 interrupts per sec. Continuous interrupts are enabled
1191 * by default.
1192 */
1193 if (nic->device_type == XFRAME_II_DEVICE) {
1194 int count = (nic->config.bus_speed * 125)/2;
1195 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1196 } else
1197 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1198
1199 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
d44570e4
JP
1200 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1201 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1202 TTI_DATA1_MEM_TX_TIMER_AC_EN;
ac731ab6
SH
1203 if (i == 0)
1204 if (use_continuous_tx_intrs && (link == LINK_UP))
1205 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
b7c5678f
RV
1206 writeq(val64, &bar0->tti_data1_mem);
1207
ac731ab6
SH
1208 if (nic->config.intr_type == MSI_X) {
1209 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1210 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1211 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1212 TTI_DATA2_MEM_TX_UFC_D(0x300);
1213 } else {
1214 if ((nic->config.tx_steering_type ==
d44570e4
JP
1215 TX_DEFAULT_STEERING) &&
1216 (config->tx_fifo_num > 1) &&
1217 (i >= nic->udp_fifo_idx) &&
1218 (i < (nic->udp_fifo_idx +
1219 nic->total_udp_fifos)))
ac731ab6
SH
1220 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1221 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1222 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1223 TTI_DATA2_MEM_TX_UFC_D(0x120);
1224 else
1225 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1226 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1227 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1228 TTI_DATA2_MEM_TX_UFC_D(0x80);
1229 }
b7c5678f
RV
1230
1231 writeq(val64, &bar0->tti_data2_mem);
1232
d44570e4
JP
1233 val64 = TTI_CMD_MEM_WE |
1234 TTI_CMD_MEM_STROBE_NEW_CMD |
1235 TTI_CMD_MEM_OFFSET(i);
b7c5678f
RV
1236 writeq(val64, &bar0->tti_command_mem);
1237
1238 if (wait_for_cmd_complete(&bar0->tti_command_mem,
d44570e4
JP
1239 TTI_CMD_MEM_STROBE_NEW_CMD,
1240 S2IO_BIT_RESET) != SUCCESS)
b7c5678f
RV
1241 return FAILURE;
1242 }
1243
1244 return SUCCESS;
1245}
1246
20346722
K
1247/**
1248 * init_nic - Initialization of hardware
b7c5678f 1249 * @nic: device private variable
20346722
K
1250 * Description: The function sequentially configures every block
1251 * of the H/W from their reset values.
1252 * Return Value: SUCCESS on success and
1da177e4
LT
1253 * '-1' on failure (endian settings incorrect).
1254 */
1255
1256static int init_nic(struct s2io_nic *nic)
1257{
1ee6dd77 1258 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
1259 struct net_device *dev = nic->dev;
1260 register u64 val64 = 0;
1261 void __iomem *add;
1262 u32 time;
1263 int i, j;
c92ca04b 1264 int dtx_cnt = 0;
1da177e4 1265 unsigned long long mem_share;
20346722 1266 int mem_size;
ffb5df6c
JP
1267 struct config_param *config = &nic->config;
1268 struct mac_info *mac_control = &nic->mac_control;
1da177e4 1269
5e25b9dd 1270 /* to set the swapper controle on the card */
d44570e4
JP
1271 if (s2io_set_swapper(nic)) {
1272 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
9f74ffde 1273 return -EIO;
1da177e4
LT
1274 }
1275
541ae68f
K
1276 /*
1277 * Herc requires EOI to be removed from reset before XGXS, so..
1278 */
1279 if (nic->device_type & XFRAME_II_DEVICE) {
1280 val64 = 0xA500000000ULL;
1281 writeq(val64, &bar0->sw_reset);
1282 msleep(500);
1283 val64 = readq(&bar0->sw_reset);
1284 }
1285
1da177e4
LT
1286 /* Remove XGXS from reset state */
1287 val64 = 0;
1288 writeq(val64, &bar0->sw_reset);
1da177e4 1289 msleep(500);
20346722 1290 val64 = readq(&bar0->sw_reset);
1da177e4 1291
7962024e
SH
1292 /* Ensure that it's safe to access registers by checking
1293 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1294 */
1295 if (nic->device_type == XFRAME_II_DEVICE) {
1296 for (i = 0; i < 50; i++) {
1297 val64 = readq(&bar0->adapter_status);
1298 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1299 break;
1300 msleep(10);
1301 }
1302 if (i == 50)
1303 return -ENODEV;
1304 }
1305
1da177e4
LT
1306 /* Enable Receiving broadcasts */
1307 add = &bar0->mac_cfg;
1308 val64 = readq(&bar0->mac_cfg);
1309 val64 |= MAC_RMAC_BCAST_ENABLE;
1310 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
d44570e4 1311 writel((u32)val64, add);
1da177e4
LT
1312 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1313 writel((u32) (val64 >> 32), (add + 4));
1314
1315 /* Read registers in all blocks */
1316 val64 = readq(&bar0->mac_int_mask);
1317 val64 = readq(&bar0->mc_int_mask);
1318 val64 = readq(&bar0->xgxs_int_mask);
1319
1320 /* Set MTU */
1321 val64 = dev->mtu;
1322 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1323
541ae68f
K
1324 if (nic->device_type & XFRAME_II_DEVICE) {
1325 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
303bcb4b 1326 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1da177e4 1327 &bar0->dtx_control, UF);
541ae68f
K
1328 if (dtx_cnt & 0x1)
1329 msleep(1); /* Necessary!! */
1da177e4
LT
1330 dtx_cnt++;
1331 }
541ae68f 1332 } else {
c92ca04b
AR
1333 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1334 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1335 &bar0->dtx_control, UF);
1336 val64 = readq(&bar0->dtx_control);
1337 dtx_cnt++;
1da177e4
LT
1338 }
1339 }
1340
1341 /* Tx DMA Initialization */
1342 val64 = 0;
1343 writeq(val64, &bar0->tx_fifo_partition_0);
1344 writeq(val64, &bar0->tx_fifo_partition_1);
1345 writeq(val64, &bar0->tx_fifo_partition_2);
1346 writeq(val64, &bar0->tx_fifo_partition_3);
1347
1da177e4 1348 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
1349 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1350
1351 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1352 vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1da177e4
LT
1353
1354 if (i == (config->tx_fifo_num - 1)) {
1355 if (i % 2 == 0)
1356 i++;
1357 }
1358
1359 switch (i) {
1360 case 1:
1361 writeq(val64, &bar0->tx_fifo_partition_0);
1362 val64 = 0;
b7c5678f 1363 j = 0;
1da177e4
LT
1364 break;
1365 case 3:
1366 writeq(val64, &bar0->tx_fifo_partition_1);
1367 val64 = 0;
b7c5678f 1368 j = 0;
1da177e4
LT
1369 break;
1370 case 5:
1371 writeq(val64, &bar0->tx_fifo_partition_2);
1372 val64 = 0;
b7c5678f 1373 j = 0;
1da177e4
LT
1374 break;
1375 case 7:
1376 writeq(val64, &bar0->tx_fifo_partition_3);
b7c5678f
RV
1377 val64 = 0;
1378 j = 0;
1379 break;
1380 default:
1381 j++;
1da177e4
LT
1382 break;
1383 }
1384 }
1385
5e25b9dd
K
1386 /*
1387 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1388 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1389 */
d44570e4 1390 if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
5e25b9dd
K
1391 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1392
1da177e4
LT
1393 val64 = readq(&bar0->tx_fifo_partition_0);
1394 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
d44570e4 1395 &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1da177e4 1396
20346722
K
1397 /*
1398 * Initialization of Tx_PA_CONFIG register to ignore packet
1da177e4
LT
1399 * integrity checking.
1400 */
1401 val64 = readq(&bar0->tx_pa_cfg);
d44570e4
JP
1402 val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1403 TX_PA_CFG_IGNORE_SNAP_OUI |
1404 TX_PA_CFG_IGNORE_LLC_CTRL |
1405 TX_PA_CFG_IGNORE_L2_ERR;
1da177e4
LT
1406 writeq(val64, &bar0->tx_pa_cfg);
1407
1408 /* Rx DMA intialization. */
1409 val64 = 0;
1410 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
1411 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1412
1413 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1da177e4
LT
1414 }
1415 writeq(val64, &bar0->rx_queue_priority);
1416
20346722
K
1417 /*
1418 * Allocating equal share of memory to all the
1da177e4
LT
1419 * configured Rings.
1420 */
1421 val64 = 0;
541ae68f
K
1422 if (nic->device_type & XFRAME_II_DEVICE)
1423 mem_size = 32;
1424 else
1425 mem_size = 64;
1426
1da177e4
LT
1427 for (i = 0; i < config->rx_ring_num; i++) {
1428 switch (i) {
1429 case 0:
20346722
K
1430 mem_share = (mem_size / config->rx_ring_num +
1431 mem_size % config->rx_ring_num);
1da177e4
LT
1432 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1433 continue;
1434 case 1:
20346722 1435 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1436 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1437 continue;
1438 case 2:
20346722 1439 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1440 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1441 continue;
1442 case 3:
20346722 1443 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1444 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1445 continue;
1446 case 4:
20346722 1447 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1448 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1449 continue;
1450 case 5:
20346722 1451 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1452 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1453 continue;
1454 case 6:
20346722 1455 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1456 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1457 continue;
1458 case 7:
20346722 1459 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1460 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1461 continue;
1462 }
1463 }
1464 writeq(val64, &bar0->rx_queue_cfg);
1465
20346722 1466 /*
5e25b9dd 1467 * Filling Tx round robin registers
b7c5678f 1468 * as per the number of FIFOs for equal scheduling priority
1da177e4 1469 */
5e25b9dd
K
1470 switch (config->tx_fifo_num) {
1471 case 1:
b7c5678f 1472 val64 = 0x0;
5e25b9dd
K
1473 writeq(val64, &bar0->tx_w_round_robin_0);
1474 writeq(val64, &bar0->tx_w_round_robin_1);
1475 writeq(val64, &bar0->tx_w_round_robin_2);
1476 writeq(val64, &bar0->tx_w_round_robin_3);
1477 writeq(val64, &bar0->tx_w_round_robin_4);
1478 break;
1479 case 2:
b7c5678f 1480 val64 = 0x0001000100010001ULL;
5e25b9dd 1481 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1482 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1483 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1484 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1485 val64 = 0x0001000100000000ULL;
5e25b9dd
K
1486 writeq(val64, &bar0->tx_w_round_robin_4);
1487 break;
1488 case 3:
b7c5678f 1489 val64 = 0x0001020001020001ULL;
5e25b9dd 1490 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1491 val64 = 0x0200010200010200ULL;
5e25b9dd 1492 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1493 val64 = 0x0102000102000102ULL;
5e25b9dd 1494 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1495 val64 = 0x0001020001020001ULL;
5e25b9dd 1496 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1497 val64 = 0x0200010200000000ULL;
5e25b9dd
K
1498 writeq(val64, &bar0->tx_w_round_robin_4);
1499 break;
1500 case 4:
b7c5678f 1501 val64 = 0x0001020300010203ULL;
5e25b9dd 1502 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1503 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1504 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1505 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1506 val64 = 0x0001020300000000ULL;
5e25b9dd
K
1507 writeq(val64, &bar0->tx_w_round_robin_4);
1508 break;
1509 case 5:
b7c5678f 1510 val64 = 0x0001020304000102ULL;
5e25b9dd 1511 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1512 val64 = 0x0304000102030400ULL;
5e25b9dd 1513 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1514 val64 = 0x0102030400010203ULL;
5e25b9dd 1515 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1516 val64 = 0x0400010203040001ULL;
5e25b9dd 1517 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1518 val64 = 0x0203040000000000ULL;
5e25b9dd
K
1519 writeq(val64, &bar0->tx_w_round_robin_4);
1520 break;
1521 case 6:
b7c5678f 1522 val64 = 0x0001020304050001ULL;
5e25b9dd 1523 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1524 val64 = 0x0203040500010203ULL;
5e25b9dd 1525 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1526 val64 = 0x0405000102030405ULL;
5e25b9dd 1527 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1528 val64 = 0x0001020304050001ULL;
5e25b9dd 1529 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1530 val64 = 0x0203040500000000ULL;
5e25b9dd
K
1531 writeq(val64, &bar0->tx_w_round_robin_4);
1532 break;
1533 case 7:
b7c5678f 1534 val64 = 0x0001020304050600ULL;
5e25b9dd 1535 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1536 val64 = 0x0102030405060001ULL;
5e25b9dd 1537 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1538 val64 = 0x0203040506000102ULL;
5e25b9dd 1539 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1540 val64 = 0x0304050600010203ULL;
5e25b9dd 1541 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1542 val64 = 0x0405060000000000ULL;
5e25b9dd
K
1543 writeq(val64, &bar0->tx_w_round_robin_4);
1544 break;
1545 case 8:
b7c5678f 1546 val64 = 0x0001020304050607ULL;
5e25b9dd 1547 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1548 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1549 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1550 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1551 val64 = 0x0001020300000000ULL;
5e25b9dd
K
1552 writeq(val64, &bar0->tx_w_round_robin_4);
1553 break;
1554 }
1555
b41477f3 1556 /* Enable all configured Tx FIFO partitions */
5d3213cc
AR
1557 val64 = readq(&bar0->tx_fifo_partition_0);
1558 val64 |= (TX_FIFO_PARTITION_EN);
1559 writeq(val64, &bar0->tx_fifo_partition_0);
1560
5e25b9dd 1561 /* Filling the Rx round robin registers as per the
0425b46a
SH
1562 * number of Rings and steering based on QoS with
1563 * equal priority.
1564 */
5e25b9dd
K
1565 switch (config->rx_ring_num) {
1566 case 1:
0425b46a
SH
1567 val64 = 0x0;
1568 writeq(val64, &bar0->rx_w_round_robin_0);
1569 writeq(val64, &bar0->rx_w_round_robin_1);
1570 writeq(val64, &bar0->rx_w_round_robin_2);
1571 writeq(val64, &bar0->rx_w_round_robin_3);
1572 writeq(val64, &bar0->rx_w_round_robin_4);
1573
5e25b9dd
K
1574 val64 = 0x8080808080808080ULL;
1575 writeq(val64, &bar0->rts_qos_steering);
1576 break;
1577 case 2:
0425b46a 1578 val64 = 0x0001000100010001ULL;
5e25b9dd 1579 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1580 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1581 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1582 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1583 val64 = 0x0001000100000000ULL;
5e25b9dd
K
1584 writeq(val64, &bar0->rx_w_round_robin_4);
1585
1586 val64 = 0x8080808040404040ULL;
1587 writeq(val64, &bar0->rts_qos_steering);
1588 break;
1589 case 3:
0425b46a 1590 val64 = 0x0001020001020001ULL;
5e25b9dd 1591 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1592 val64 = 0x0200010200010200ULL;
5e25b9dd 1593 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1594 val64 = 0x0102000102000102ULL;
5e25b9dd 1595 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1596 val64 = 0x0001020001020001ULL;
5e25b9dd 1597 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1598 val64 = 0x0200010200000000ULL;
5e25b9dd
K
1599 writeq(val64, &bar0->rx_w_round_robin_4);
1600
1601 val64 = 0x8080804040402020ULL;
1602 writeq(val64, &bar0->rts_qos_steering);
1603 break;
1604 case 4:
0425b46a 1605 val64 = 0x0001020300010203ULL;
5e25b9dd 1606 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1607 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1608 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1609 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1610 val64 = 0x0001020300000000ULL;
5e25b9dd
K
1611 writeq(val64, &bar0->rx_w_round_robin_4);
1612
1613 val64 = 0x8080404020201010ULL;
1614 writeq(val64, &bar0->rts_qos_steering);
1615 break;
1616 case 5:
0425b46a 1617 val64 = 0x0001020304000102ULL;
5e25b9dd 1618 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1619 val64 = 0x0304000102030400ULL;
5e25b9dd 1620 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1621 val64 = 0x0102030400010203ULL;
5e25b9dd 1622 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1623 val64 = 0x0400010203040001ULL;
5e25b9dd 1624 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1625 val64 = 0x0203040000000000ULL;
5e25b9dd
K
1626 writeq(val64, &bar0->rx_w_round_robin_4);
1627
1628 val64 = 0x8080404020201008ULL;
1629 writeq(val64, &bar0->rts_qos_steering);
1630 break;
1631 case 6:
0425b46a 1632 val64 = 0x0001020304050001ULL;
5e25b9dd 1633 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1634 val64 = 0x0203040500010203ULL;
5e25b9dd 1635 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1636 val64 = 0x0405000102030405ULL;
5e25b9dd 1637 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1638 val64 = 0x0001020304050001ULL;
5e25b9dd 1639 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1640 val64 = 0x0203040500000000ULL;
5e25b9dd
K
1641 writeq(val64, &bar0->rx_w_round_robin_4);
1642
1643 val64 = 0x8080404020100804ULL;
1644 writeq(val64, &bar0->rts_qos_steering);
1645 break;
1646 case 7:
0425b46a 1647 val64 = 0x0001020304050600ULL;
5e25b9dd 1648 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1649 val64 = 0x0102030405060001ULL;
5e25b9dd 1650 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1651 val64 = 0x0203040506000102ULL;
5e25b9dd 1652 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1653 val64 = 0x0304050600010203ULL;
5e25b9dd 1654 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1655 val64 = 0x0405060000000000ULL;
5e25b9dd
K
1656 writeq(val64, &bar0->rx_w_round_robin_4);
1657
1658 val64 = 0x8080402010080402ULL;
1659 writeq(val64, &bar0->rts_qos_steering);
1660 break;
1661 case 8:
0425b46a 1662 val64 = 0x0001020304050607ULL;
5e25b9dd 1663 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1664 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1665 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1666 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1667 val64 = 0x0001020300000000ULL;
5e25b9dd
K
1668 writeq(val64, &bar0->rx_w_round_robin_4);
1669
1670 val64 = 0x8040201008040201ULL;
1671 writeq(val64, &bar0->rts_qos_steering);
1672 break;
1673 }
1da177e4
LT
1674
1675 /* UDP Fix */
1676 val64 = 0;
20346722 1677 for (i = 0; i < 8; i++)
1da177e4
LT
1678 writeq(val64, &bar0->rts_frm_len_n[i]);
1679
5e25b9dd
K
1680 /* Set the default rts frame length for the rings configured */
1681 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1682 for (i = 0 ; i < config->rx_ring_num ; i++)
1683 writeq(val64, &bar0->rts_frm_len_n[i]);
1684
1685 /* Set the frame length for the configured rings
1686 * desired by the user
1687 */
1688 for (i = 0; i < config->rx_ring_num; i++) {
1689 /* If rts_frm_len[i] == 0 then it is assumed that user not
1690 * specified frame length steering.
1691 * If the user provides the frame length then program
1692 * the rts_frm_len register for those values or else
1693 * leave it as it is.
1694 */
1695 if (rts_frm_len[i] != 0) {
1696 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
d44570e4 1697 &bar0->rts_frm_len_n[i]);
5e25b9dd
K
1698 }
1699 }
8a4bdbaa 1700
9fc93a41
SS
1701 /* Disable differentiated services steering logic */
1702 for (i = 0; i < 64; i++) {
1703 if (rts_ds_steer(nic, i, 0) == FAILURE) {
9e39f7c5
JP
1704 DBG_PRINT(ERR_DBG,
1705 "%s: rts_ds_steer failed on codepoint %d\n",
1706 dev->name, i);
9f74ffde 1707 return -ENODEV;
9fc93a41
SS
1708 }
1709 }
1710
20346722 1711 /* Program statistics memory */
1da177e4 1712 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1da177e4 1713
541ae68f
K
1714 if (nic->device_type == XFRAME_II_DEVICE) {
1715 val64 = STAT_BC(0x320);
1716 writeq(val64, &bar0->stat_byte_cnt);
1717 }
1718
20346722 1719 /*
1da177e4
LT
1720 * Initializing the sampling rate for the device to calculate the
1721 * bandwidth utilization.
1722 */
1723 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
d44570e4 1724 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1da177e4
LT
1725 writeq(val64, &bar0->mac_link_util);
1726
20346722
K
1727 /*
1728 * Initializing the Transmit and Receive Traffic Interrupt
1da177e4
LT
1729 * Scheme.
1730 */
1da177e4 1731
b7c5678f
RV
1732 /* Initialize TTI */
1733 if (SUCCESS != init_tti(nic, nic->last_link_state))
1734 return -ENODEV;
1da177e4 1735
8a4bdbaa
SS
1736 /* RTI Initialization */
1737 if (nic->device_type == XFRAME_II_DEVICE) {
541ae68f 1738 /*
8a4bdbaa
SS
1739 * Programmed to generate Apprx 500 Intrs per
1740 * second
1741 */
1742 int count = (nic->config.bus_speed * 125)/4;
1743 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1744 } else
1745 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1746 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
d44570e4
JP
1747 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1748 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1749 RTI_DATA1_MEM_RX_TIMER_AC_EN;
8a4bdbaa
SS
1750
1751 writeq(val64, &bar0->rti_data1_mem);
1752
1753 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1754 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1755 if (nic->config.intr_type == MSI_X)
d44570e4
JP
1756 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1757 RTI_DATA2_MEM_RX_UFC_D(0x40));
8a4bdbaa 1758 else
d44570e4
JP
1759 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1760 RTI_DATA2_MEM_RX_UFC_D(0x80));
8a4bdbaa 1761 writeq(val64, &bar0->rti_data2_mem);
1da177e4 1762
8a4bdbaa 1763 for (i = 0; i < config->rx_ring_num; i++) {
d44570e4
JP
1764 val64 = RTI_CMD_MEM_WE |
1765 RTI_CMD_MEM_STROBE_NEW_CMD |
1766 RTI_CMD_MEM_OFFSET(i);
8a4bdbaa 1767 writeq(val64, &bar0->rti_command_mem);
1da177e4 1768
8a4bdbaa
SS
1769 /*
1770 * Once the operation completes, the Strobe bit of the
1771 * command register will be reset. We poll for this
1772 * particular condition. We wait for a maximum of 500ms
1773 * for the operation to complete, if it's not complete
1774 * by then we return error.
1775 */
1776 time = 0;
f957bcf0 1777 while (true) {
8a4bdbaa
SS
1778 val64 = readq(&bar0->rti_command_mem);
1779 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1780 break;
b6e3f982 1781
8a4bdbaa 1782 if (time > 10) {
9e39f7c5 1783 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
8a4bdbaa 1784 dev->name);
9f74ffde 1785 return -ENODEV;
b6e3f982 1786 }
8a4bdbaa
SS
1787 time++;
1788 msleep(50);
1da177e4 1789 }
1da177e4
LT
1790 }
1791
20346722
K
1792 /*
1793 * Initializing proper values as Pause threshold into all
1da177e4
LT
1794 * the 8 Queues on Rx side.
1795 */
1796 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1797 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1798
1799 /* Disable RMAC PAD STRIPPING */
509a2671 1800 add = &bar0->mac_cfg;
1da177e4
LT
1801 val64 = readq(&bar0->mac_cfg);
1802 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1803 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1804 writel((u32) (val64), add);
1805 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1806 writel((u32) (val64 >> 32), (add + 4));
1807 val64 = readq(&bar0->mac_cfg);
1808
7d3d0439
RA
1809 /* Enable FCS stripping by adapter */
1810 add = &bar0->mac_cfg;
1811 val64 = readq(&bar0->mac_cfg);
1812 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1813 if (nic->device_type == XFRAME_II_DEVICE)
1814 writeq(val64, &bar0->mac_cfg);
1815 else {
1816 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1817 writel((u32) (val64), add);
1818 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1819 writel((u32) (val64 >> 32), (add + 4));
1820 }
1821
20346722
K
1822 /*
1823 * Set the time value to be inserted in the pause frame
1da177e4
LT
1824 * generated by xena.
1825 */
1826 val64 = readq(&bar0->rmac_pause_cfg);
1827 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1828 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1829 writeq(val64, &bar0->rmac_pause_cfg);
1830
20346722 1831 /*
1da177e4
LT
1832 * Set the Threshold Limit for Generating the pause frame
1833 * If the amount of data in any Queue exceeds ratio of
1834 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1835 * pause frame is generated
1836 */
1837 val64 = 0;
1838 for (i = 0; i < 4; i++) {
d44570e4
JP
1839 val64 |= (((u64)0xFF00 |
1840 nic->mac_control.mc_pause_threshold_q0q3)
1841 << (i * 2 * 8));
1da177e4
LT
1842 }
1843 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1844
1845 val64 = 0;
1846 for (i = 0; i < 4; i++) {
d44570e4
JP
1847 val64 |= (((u64)0xFF00 |
1848 nic->mac_control.mc_pause_threshold_q4q7)
1849 << (i * 2 * 8));
1da177e4
LT
1850 }
1851 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1852
20346722
K
1853 /*
1854 * TxDMA will stop Read request if the number of read split has
1da177e4
LT
1855 * exceeded the limit pointed by shared_splits
1856 */
1857 val64 = readq(&bar0->pic_control);
1858 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1859 writeq(val64, &bar0->pic_control);
1860
863c11a9
AR
1861 if (nic->config.bus_speed == 266) {
1862 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1863 writeq(0x0, &bar0->read_retry_delay);
1864 writeq(0x0, &bar0->write_retry_delay);
1865 }
1866
541ae68f
K
1867 /*
1868 * Programming the Herc to split every write transaction
1869 * that does not start on an ADB to reduce disconnects.
1870 */
1871 if (nic->device_type == XFRAME_II_DEVICE) {
19a60522
SS
1872 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1873 MISC_LINK_STABILITY_PRD(3);
863c11a9
AR
1874 writeq(val64, &bar0->misc_control);
1875 val64 = readq(&bar0->pic_control2);
b7b5a128 1876 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
863c11a9 1877 writeq(val64, &bar0->pic_control2);
541ae68f 1878 }
c92ca04b
AR
1879 if (strstr(nic->product_name, "CX4")) {
1880 val64 = TMAC_AVG_IPG(0x17);
1881 writeq(val64, &bar0->tmac_avg_ipg);
a371a07d
K
1882 }
1883
1da177e4
LT
1884 return SUCCESS;
1885}
a371a07d
K
1886#define LINK_UP_DOWN_INTERRUPT 1
1887#define MAC_RMAC_ERR_TIMER 2
1888
1ee6dd77 1889static int s2io_link_fault_indication(struct s2io_nic *nic)
a371a07d
K
1890{
1891 if (nic->device_type == XFRAME_II_DEVICE)
1892 return LINK_UP_DOWN_INTERRUPT;
1893 else
1894 return MAC_RMAC_ERR_TIMER;
1895}
8116f3cf 1896
9caab458
SS
1897/**
1898 * do_s2io_write_bits - update alarm bits in alarm register
1899 * @value: alarm bits
1900 * @flag: interrupt status
1901 * @addr: address value
1902 * Description: update alarm bits in alarm register
1903 * Return Value:
1904 * NONE.
1905 */
1906static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1907{
1908 u64 temp64;
1909
1910 temp64 = readq(addr);
1911
d44570e4
JP
1912 if (flag == ENABLE_INTRS)
1913 temp64 &= ~((u64)value);
9caab458 1914 else
d44570e4 1915 temp64 |= ((u64)value);
9caab458
SS
1916 writeq(temp64, addr);
1917}
1da177e4 1918
43b7c451 1919static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
9caab458
SS
1920{
1921 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1922 register u64 gen_int_mask = 0;
01e16faa 1923 u64 interruptible;
9caab458 1924
01e16faa 1925 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
9caab458 1926 if (mask & TX_DMA_INTR) {
9caab458
SS
1927 gen_int_mask |= TXDMA_INT_M;
1928
1929 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
d44570e4
JP
1930 TXDMA_PCC_INT | TXDMA_TTI_INT |
1931 TXDMA_LSO_INT | TXDMA_TPA_INT |
1932 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
9caab458
SS
1933
1934 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
d44570e4
JP
1935 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1936 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1937 &bar0->pfc_err_mask);
9caab458
SS
1938
1939 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
d44570e4
JP
1940 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1941 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
9caab458
SS
1942
1943 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
d44570e4
JP
1944 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1945 PCC_N_SERR | PCC_6_COF_OV_ERR |
1946 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1947 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1948 PCC_TXB_ECC_SG_ERR,
1949 flag, &bar0->pcc_err_mask);
9caab458
SS
1950
1951 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
d44570e4 1952 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
9caab458
SS
1953
1954 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
d44570e4
JP
1955 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1956 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1957 flag, &bar0->lso_err_mask);
9caab458
SS
1958
1959 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
d44570e4 1960 flag, &bar0->tpa_err_mask);
9caab458
SS
1961
1962 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
9caab458
SS
1963 }
1964
1965 if (mask & TX_MAC_INTR) {
1966 gen_int_mask |= TXMAC_INT_M;
1967 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
d44570e4 1968 &bar0->mac_int_mask);
9caab458 1969 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
d44570e4
JP
1970 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1971 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1972 flag, &bar0->mac_tmac_err_mask);
9caab458
SS
1973 }
1974
1975 if (mask & TX_XGXS_INTR) {
1976 gen_int_mask |= TXXGXS_INT_M;
1977 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
d44570e4 1978 &bar0->xgxs_int_mask);
9caab458 1979 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
d44570e4
JP
1980 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1981 flag, &bar0->xgxs_txgxs_err_mask);
9caab458
SS
1982 }
1983
1984 if (mask & RX_DMA_INTR) {
1985 gen_int_mask |= RXDMA_INT_M;
1986 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
d44570e4
JP
1987 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1988 flag, &bar0->rxdma_int_mask);
9caab458 1989 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
d44570e4
JP
1990 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1991 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1992 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
9caab458 1993 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
d44570e4
JP
1994 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1995 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1996 &bar0->prc_pcix_err_mask);
9caab458 1997 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
d44570e4
JP
1998 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1999 &bar0->rpa_err_mask);
9caab458 2000 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
d44570e4
JP
2001 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
2002 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
2003 RDA_FRM_ECC_SG_ERR |
2004 RDA_MISC_ERR|RDA_PCIX_ERR,
2005 flag, &bar0->rda_err_mask);
9caab458 2006 do_s2io_write_bits(RTI_SM_ERR_ALARM |
d44570e4
JP
2007 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2008 flag, &bar0->rti_err_mask);
9caab458
SS
2009 }
2010
2011 if (mask & RX_MAC_INTR) {
2012 gen_int_mask |= RXMAC_INT_M;
2013 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
d44570e4
JP
2014 &bar0->mac_int_mask);
2015 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2016 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2017 RMAC_DOUBLE_ECC_ERR);
01e16faa
SH
2018 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2019 interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2020 do_s2io_write_bits(interruptible,
d44570e4 2021 flag, &bar0->mac_rmac_err_mask);
9caab458
SS
2022 }
2023
d44570e4 2024 if (mask & RX_XGXS_INTR) {
9caab458
SS
2025 gen_int_mask |= RXXGXS_INT_M;
2026 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
d44570e4 2027 &bar0->xgxs_int_mask);
9caab458 2028 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
d44570e4 2029 &bar0->xgxs_rxgxs_err_mask);
9caab458
SS
2030 }
2031
2032 if (mask & MC_INTR) {
2033 gen_int_mask |= MC_INT_M;
d44570e4
JP
2034 do_s2io_write_bits(MC_INT_MASK_MC_INT,
2035 flag, &bar0->mc_int_mask);
9caab458 2036 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
d44570e4
JP
2037 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2038 &bar0->mc_err_mask);
9caab458
SS
2039 }
2040 nic->general_int_mask = gen_int_mask;
2041
2042 /* Remove this line when alarm interrupts are enabled */
2043 nic->general_int_mask = 0;
2044}
d44570e4 2045
20346722
K
2046/**
2047 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1da177e4
LT
2048 * @nic: device private variable,
2049 * @mask: A mask indicating which Intr block must be modified and,
2050 * @flag: A flag indicating whether to enable or disable the Intrs.
2051 * Description: This function will either disable or enable the interrupts
20346722
K
2052 * depending on the flag argument. The mask argument can be used to
2053 * enable/disable any Intr block.
1da177e4
LT
2054 * Return Value: NONE.
2055 */
2056
2057static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2058{
1ee6dd77 2059 struct XENA_dev_config __iomem *bar0 = nic->bar0;
9caab458
SS
2060 register u64 temp64 = 0, intr_mask = 0;
2061
2062 intr_mask = nic->general_int_mask;
1da177e4
LT
2063
2064 /* Top level interrupt classification */
2065 /* PIC Interrupts */
9caab458 2066 if (mask & TX_PIC_INTR) {
1da177e4 2067 /* Enable PIC Intrs in the general intr mask register */
9caab458 2068 intr_mask |= TXPIC_INT_M;
1da177e4 2069 if (flag == ENABLE_INTRS) {
20346722 2070 /*
a371a07d 2071 * If Hercules adapter enable GPIO otherwise
b41477f3 2072 * disable all PCIX, Flash, MDIO, IIC and GPIO
20346722
K
2073 * interrupts for now.
2074 * TODO
1da177e4 2075 */
a371a07d 2076 if (s2io_link_fault_indication(nic) ==
d44570e4 2077 LINK_UP_DOWN_INTERRUPT) {
9caab458 2078 do_s2io_write_bits(PIC_INT_GPIO, flag,
d44570e4 2079 &bar0->pic_int_mask);
9caab458 2080 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
d44570e4 2081 &bar0->gpio_int_mask);
9caab458 2082 } else
a371a07d 2083 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1da177e4 2084 } else if (flag == DISABLE_INTRS) {
20346722
K
2085 /*
2086 * Disable PIC Intrs in the general
2087 * intr mask register
1da177e4
LT
2088 */
2089 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1da177e4
LT
2090 }
2091 }
2092
1da177e4
LT
2093 /* Tx traffic interrupts */
2094 if (mask & TX_TRAFFIC_INTR) {
9caab458 2095 intr_mask |= TXTRAFFIC_INT_M;
1da177e4 2096 if (flag == ENABLE_INTRS) {
20346722 2097 /*
1da177e4 2098 * Enable all the Tx side interrupts
20346722 2099 * writing 0 Enables all 64 TX interrupt levels
1da177e4
LT
2100 */
2101 writeq(0x0, &bar0->tx_traffic_mask);
2102 } else if (flag == DISABLE_INTRS) {
20346722
K
2103 /*
2104 * Disable Tx Traffic Intrs in the general intr mask
1da177e4
LT
2105 * register.
2106 */
2107 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1da177e4
LT
2108 }
2109 }
2110
2111 /* Rx traffic interrupts */
2112 if (mask & RX_TRAFFIC_INTR) {
9caab458 2113 intr_mask |= RXTRAFFIC_INT_M;
1da177e4 2114 if (flag == ENABLE_INTRS) {
1da177e4
LT
2115 /* writing 0 Enables all 8 RX interrupt levels */
2116 writeq(0x0, &bar0->rx_traffic_mask);
2117 } else if (flag == DISABLE_INTRS) {
20346722
K
2118 /*
2119 * Disable Rx Traffic Intrs in the general intr mask
1da177e4
LT
2120 * register.
2121 */
2122 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1da177e4
LT
2123 }
2124 }
9caab458
SS
2125
2126 temp64 = readq(&bar0->general_int_mask);
2127 if (flag == ENABLE_INTRS)
d44570e4 2128 temp64 &= ~((u64)intr_mask);
9caab458
SS
2129 else
2130 temp64 = DISABLE_ALL_INTRS;
2131 writeq(temp64, &bar0->general_int_mask);
2132
2133 nic->general_int_mask = readq(&bar0->general_int_mask);
1da177e4
LT
2134}
2135
19a60522
SS
2136/**
2137 * verify_pcc_quiescent- Checks for PCC quiescent state
2138 * Return: 1 If PCC is quiescence
2139 * 0 If PCC is not quiescence
2140 */
1ee6dd77 2141static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
20346722 2142{
19a60522 2143 int ret = 0, herc;
1ee6dd77 2144 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522 2145 u64 val64 = readq(&bar0->adapter_status);
8a4bdbaa 2146
19a60522 2147 herc = (sp->device_type == XFRAME_II_DEVICE);
20346722 2148
f957bcf0 2149 if (flag == false) {
44c10138 2150 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
19a60522 2151 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 2152 ret = 1;
19a60522
SS
2153 } else {
2154 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 2155 ret = 1;
20346722
K
2156 }
2157 } else {
44c10138 2158 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
5e25b9dd 2159 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
19a60522 2160 ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 2161 ret = 1;
5e25b9dd
K
2162 } else {
2163 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
19a60522 2164 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 2165 ret = 1;
20346722
K
2166 }
2167 }
2168
2169 return ret;
2170}
2171/**
2172 * verify_xena_quiescence - Checks whether the H/W is ready
1da177e4 2173 * Description: Returns whether the H/W is ready to go or not. Depending
20346722 2174 * on whether adapter enable bit was written or not the comparison
1da177e4
LT
2175 * differs and the calling function passes the input argument flag to
2176 * indicate this.
20346722 2177 * Return: 1 If xena is quiescence
1da177e4
LT
2178 * 0 If Xena is not quiescence
2179 */
2180
1ee6dd77 2181static int verify_xena_quiescence(struct s2io_nic *sp)
1da177e4 2182{
19a60522 2183 int mode;
1ee6dd77 2184 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522
SS
2185 u64 val64 = readq(&bar0->adapter_status);
2186 mode = s2io_verify_pci_mode(sp);
1da177e4 2187
19a60522 2188 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
9e39f7c5 2189 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
19a60522
SS
2190 return 0;
2191 }
2192 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
9e39f7c5 2193 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
19a60522
SS
2194 return 0;
2195 }
2196 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
9e39f7c5 2197 DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
19a60522
SS
2198 return 0;
2199 }
2200 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
9e39f7c5 2201 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
19a60522
SS
2202 return 0;
2203 }
2204 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
9e39f7c5 2205 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
19a60522
SS
2206 return 0;
2207 }
2208 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
9e39f7c5 2209 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
19a60522
SS
2210 return 0;
2211 }
2212 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
9e39f7c5 2213 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
19a60522
SS
2214 return 0;
2215 }
2216 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
9e39f7c5 2217 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
19a60522 2218 return 0;
1da177e4
LT
2219 }
2220
19a60522
SS
2221 /*
2222 * In PCI 33 mode, the P_PLL is not used, and therefore,
2223 * the the P_PLL_LOCK bit in the adapter_status register will
2224 * not be asserted.
2225 */
2226 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
d44570e4
JP
2227 sp->device_type == XFRAME_II_DEVICE &&
2228 mode != PCI_MODE_PCI_33) {
9e39f7c5 2229 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
19a60522
SS
2230 return 0;
2231 }
2232 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
d44570e4 2233 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
9e39f7c5 2234 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
19a60522
SS
2235 return 0;
2236 }
2237 return 1;
1da177e4
LT
2238}
2239
2240/**
2241 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2242 * @sp: Pointer to device specifc structure
20346722 2243 * Description :
1da177e4
LT
2244 * New procedure to clear mac address reading problems on Alpha platforms
2245 *
2246 */
2247
d44570e4 2248static void fix_mac_address(struct s2io_nic *sp)
1da177e4 2249{
1ee6dd77 2250 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
2251 u64 val64;
2252 int i = 0;
2253
2254 while (fix_mac[i] != END_SIGN) {
2255 writeq(fix_mac[i++], &bar0->gpio_control);
20346722 2256 udelay(10);
1da177e4
LT
2257 val64 = readq(&bar0->gpio_control);
2258 }
2259}
2260
2261/**
20346722 2262 * start_nic - Turns the device on
1da177e4 2263 * @nic : device private variable.
20346722
K
2264 * Description:
2265 * This function actually turns the device on. Before this function is
2266 * called,all Registers are configured from their reset states
2267 * and shared memory is allocated but the NIC is still quiescent. On
1da177e4
LT
2268 * calling this function, the device interrupts are cleared and the NIC is
2269 * literally switched on by writing into the adapter control register.
20346722 2270 * Return Value:
1da177e4
LT
2271 * SUCCESS on success and -1 on failure.
2272 */
2273
2274static int start_nic(struct s2io_nic *nic)
2275{
1ee6dd77 2276 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
2277 struct net_device *dev = nic->dev;
2278 register u64 val64 = 0;
20346722 2279 u16 subid, i;
ffb5df6c
JP
2280 struct config_param *config = &nic->config;
2281 struct mac_info *mac_control = &nic->mac_control;
1da177e4
LT
2282
2283 /* PRC Initialization and configuration */
2284 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
2285 struct ring_info *ring = &mac_control->rings[i];
2286
d44570e4 2287 writeq((u64)ring->rx_blocks[0].block_dma_addr,
1da177e4
LT
2288 &bar0->prc_rxd0_n[i]);
2289
2290 val64 = readq(&bar0->prc_ctrl_n[i]);
da6971d8
AR
2291 if (nic->rxd_mode == RXD_MODE_1)
2292 val64 |= PRC_CTRL_RC_ENABLED;
2293 else
2294 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
863c11a9
AR
2295 if (nic->device_type == XFRAME_II_DEVICE)
2296 val64 |= PRC_CTRL_GROUP_READS;
2297 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2298 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
1da177e4
LT
2299 writeq(val64, &bar0->prc_ctrl_n[i]);
2300 }
2301
da6971d8
AR
2302 if (nic->rxd_mode == RXD_MODE_3B) {
2303 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2304 val64 = readq(&bar0->rx_pa_cfg);
2305 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2306 writeq(val64, &bar0->rx_pa_cfg);
2307 }
1da177e4 2308
926930b2
SS
2309 if (vlan_tag_strip == 0) {
2310 val64 = readq(&bar0->rx_pa_cfg);
2311 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2312 writeq(val64, &bar0->rx_pa_cfg);
cd0fce03 2313 nic->vlan_strip_flag = 0;
926930b2
SS
2314 }
2315
20346722 2316 /*
1da177e4
LT
2317 * Enabling MC-RLDRAM. After enabling the device, we timeout
2318 * for around 100ms, which is approximately the time required
2319 * for the device to be ready for operation.
2320 */
2321 val64 = readq(&bar0->mc_rldram_mrs);
2322 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2323 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2324 val64 = readq(&bar0->mc_rldram_mrs);
2325
20346722 2326 msleep(100); /* Delay by around 100 ms. */
1da177e4
LT
2327
2328 /* Enabling ECC Protection. */
2329 val64 = readq(&bar0->adapter_control);
2330 val64 &= ~ADAPTER_ECC_EN;
2331 writeq(val64, &bar0->adapter_control);
2332
20346722
K
2333 /*
2334 * Verify if the device is ready to be enabled, if so enable
1da177e4
LT
2335 * it.
2336 */
2337 val64 = readq(&bar0->adapter_status);
19a60522 2338 if (!verify_xena_quiescence(nic)) {
9e39f7c5
JP
2339 DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2340 "Adapter status reads: 0x%llx\n",
2341 dev->name, (unsigned long long)val64);
1da177e4
LT
2342 return FAILURE;
2343 }
2344
20346722 2345 /*
1da177e4 2346 * With some switches, link might be already up at this point.
20346722
K
2347 * Because of this weird behavior, when we enable laser,
2348 * we may not get link. We need to handle this. We cannot
2349 * figure out which switch is misbehaving. So we are forced to
2350 * make a global change.
1da177e4
LT
2351 */
2352
2353 /* Enabling Laser. */
2354 val64 = readq(&bar0->adapter_control);
2355 val64 |= ADAPTER_EOI_TX_ON;
2356 writeq(val64, &bar0->adapter_control);
2357
c92ca04b
AR
2358 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2359 /*
2360 * Dont see link state interrupts initally on some switches,
2361 * so directly scheduling the link state task here.
2362 */
2363 schedule_work(&nic->set_link_task);
2364 }
1da177e4
LT
2365 /* SXE-002: Initialize link and activity LED */
2366 subid = nic->pdev->subsystem_device;
541ae68f
K
2367 if (((subid & 0xFF) >= 0x07) &&
2368 (nic->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
2369 val64 = readq(&bar0->gpio_control);
2370 val64 |= 0x0000800000000000ULL;
2371 writeq(val64, &bar0->gpio_control);
2372 val64 = 0x0411040400000000ULL;
509a2671 2373 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
2374 }
2375
1da177e4
LT
2376 return SUCCESS;
2377}
fed5eccd
AR
2378/**
2379 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2380 */
d44570e4
JP
2381static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2382 struct TxD *txdlp, int get_off)
fed5eccd 2383{
1ee6dd77 2384 struct s2io_nic *nic = fifo_data->nic;
fed5eccd 2385 struct sk_buff *skb;
1ee6dd77 2386 struct TxD *txds;
fed5eccd
AR
2387 u16 j, frg_cnt;
2388
2389 txds = txdlp;
2fda096d 2390 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
d44570e4
JP
2391 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2392 sizeof(u64), PCI_DMA_TODEVICE);
fed5eccd
AR
2393 txds++;
2394 }
2395
d44570e4 2396 skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
fed5eccd 2397 if (!skb) {
1ee6dd77 2398 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
fed5eccd
AR
2399 return NULL;
2400 }
d44570e4
JP
2401 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2402 skb->len - skb->data_len, PCI_DMA_TODEVICE);
fed5eccd
AR
2403 frg_cnt = skb_shinfo(skb)->nr_frags;
2404 if (frg_cnt) {
2405 txds++;
2406 for (j = 0; j < frg_cnt; j++, txds++) {
2407 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2408 if (!txds->Buffer_Pointer)
2409 break;
d44570e4
JP
2410 pci_unmap_page(nic->pdev,
2411 (dma_addr_t)txds->Buffer_Pointer,
fed5eccd
AR
2412 frag->size, PCI_DMA_TODEVICE);
2413 }
2414 }
d44570e4
JP
2415 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2416 return skb;
fed5eccd 2417}
1da177e4 2418
20346722
K
2419/**
2420 * free_tx_buffers - Free all queued Tx buffers
1da177e4 2421 * @nic : device private variable.
20346722 2422 * Description:
1da177e4 2423 * Free all queued Tx buffers.
20346722 2424 * Return Value: void
d44570e4 2425 */
1da177e4
LT
2426
2427static void free_tx_buffers(struct s2io_nic *nic)
2428{
2429 struct net_device *dev = nic->dev;
2430 struct sk_buff *skb;
1ee6dd77 2431 struct TxD *txdp;
1da177e4 2432 int i, j;
fed5eccd 2433 int cnt = 0;
ffb5df6c
JP
2434 struct config_param *config = &nic->config;
2435 struct mac_info *mac_control = &nic->mac_control;
2436 struct stat_block *stats = mac_control->stats_info;
2437 struct swStat *swstats = &stats->sw_stat;
1da177e4
LT
2438
2439 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
2440 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2441 struct fifo_info *fifo = &mac_control->fifos[i];
2fda096d 2442 unsigned long flags;
13d866a9
JP
2443
2444 spin_lock_irqsave(&fifo->tx_lock, flags);
2445 for (j = 0; j < tx_cfg->fifo_len; j++) {
2446 txdp = (struct TxD *)fifo->list_info[j].list_virt_addr;
fed5eccd
AR
2447 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2448 if (skb) {
ffb5df6c 2449 swstats->mem_freed += skb->truesize;
fed5eccd
AR
2450 dev_kfree_skb(skb);
2451 cnt++;
1da177e4 2452 }
1da177e4
LT
2453 }
2454 DBG_PRINT(INTR_DBG,
9e39f7c5 2455 "%s: forcibly freeing %d skbs on FIFO%d\n",
1da177e4 2456 dev->name, cnt, i);
13d866a9
JP
2457 fifo->tx_curr_get_info.offset = 0;
2458 fifo->tx_curr_put_info.offset = 0;
2459 spin_unlock_irqrestore(&fifo->tx_lock, flags);
1da177e4
LT
2460 }
2461}
2462
20346722
K
2463/**
2464 * stop_nic - To stop the nic
1da177e4 2465 * @nic ; device private variable.
20346722
K
2466 * Description:
2467 * This function does exactly the opposite of what the start_nic()
1da177e4
LT
2468 * function does. This function is called to stop the device.
2469 * Return Value:
2470 * void.
2471 */
2472
2473static void stop_nic(struct s2io_nic *nic)
2474{
1ee6dd77 2475 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4 2476 register u64 val64 = 0;
5d3213cc 2477 u16 interruptible;
1da177e4
LT
2478
2479 /* Disable all interrupts */
9caab458 2480 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
e960fc5c 2481 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
9caab458 2482 interruptible |= TX_PIC_INTR;
1da177e4
LT
2483 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2484
5d3213cc
AR
2485 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2486 val64 = readq(&bar0->adapter_control);
2487 val64 &= ~(ADAPTER_CNTL_EN);
2488 writeq(val64, &bar0->adapter_control);
1da177e4
LT
2489}
2490
20346722
K
2491/**
2492 * fill_rx_buffers - Allocates the Rx side skbs
0425b46a 2493 * @ring_info: per ring structure
3f78d885
SH
2494 * @from_card_up: If this is true, we will map the buffer to get
2495 * the dma address for buf0 and buf1 to give it to the card.
2496 * Else we will sync the already mapped buffer to give it to the card.
20346722 2497 * Description:
1da177e4
LT
2498 * The function allocates Rx side skbs and puts the physical
2499 * address of these buffers into the RxD buffer pointers, so that the NIC
2500 * can DMA the received frame into these locations.
2501 * The NIC supports 3 receive modes, viz
2502 * 1. single buffer,
2503 * 2. three buffer and
2504 * 3. Five buffer modes.
20346722
K
2505 * Each mode defines how many fragments the received frame will be split
2506 * up into by the NIC. The frame is split into L3 header, L4 Header,
1da177e4
LT
2507 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2508 * is split into 3 fragments. As of now only single buffer mode is
2509 * supported.
2510 * Return Value:
2511 * SUCCESS on success or an appropriate -ve value on failure.
2512 */
8d8bb39b 2513static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
d44570e4 2514 int from_card_up)
1da177e4 2515{
1da177e4 2516 struct sk_buff *skb;
1ee6dd77 2517 struct RxD_t *rxdp;
0425b46a 2518 int off, size, block_no, block_no1;
1da177e4 2519 u32 alloc_tab = 0;
20346722 2520 u32 alloc_cnt;
20346722 2521 u64 tmp;
1ee6dd77 2522 struct buffAdd *ba;
1ee6dd77 2523 struct RxD_t *first_rxdp = NULL;
363dc367 2524 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
0425b46a 2525 int rxd_index = 0;
6d517a27
VP
2526 struct RxD1 *rxdp1;
2527 struct RxD3 *rxdp3;
ffb5df6c 2528 struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
1da177e4 2529
0425b46a 2530 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
1da177e4 2531
0425b46a 2532 block_no1 = ring->rx_curr_get_info.block_index;
1da177e4 2533 while (alloc_tab < alloc_cnt) {
0425b46a 2534 block_no = ring->rx_curr_put_info.block_index;
1da177e4 2535
0425b46a
SH
2536 off = ring->rx_curr_put_info.offset;
2537
2538 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2539
2540 rxd_index = off + 1;
2541 if (block_no)
2542 rxd_index += (block_no * ring->rxd_count);
da6971d8 2543
7d2e3cb7 2544 if ((block_no == block_no1) &&
d44570e4
JP
2545 (off == ring->rx_curr_get_info.offset) &&
2546 (rxdp->Host_Control)) {
9e39f7c5
JP
2547 DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2548 ring->dev->name);
1da177e4
LT
2549 goto end;
2550 }
0425b46a
SH
2551 if (off && (off == ring->rxd_count)) {
2552 ring->rx_curr_put_info.block_index++;
2553 if (ring->rx_curr_put_info.block_index ==
d44570e4 2554 ring->block_count)
0425b46a
SH
2555 ring->rx_curr_put_info.block_index = 0;
2556 block_no = ring->rx_curr_put_info.block_index;
2557 off = 0;
2558 ring->rx_curr_put_info.offset = off;
2559 rxdp = ring->rx_blocks[block_no].block_virt_addr;
1da177e4 2560 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
0425b46a
SH
2561 ring->dev->name, rxdp);
2562
1da177e4 2563 }
c9fcbf47 2564
da6971d8 2565 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
d44570e4
JP
2566 ((ring->rxd_mode == RXD_MODE_3B) &&
2567 (rxdp->Control_2 & s2BIT(0)))) {
0425b46a 2568 ring->rx_curr_put_info.offset = off;
1da177e4
LT
2569 goto end;
2570 }
da6971d8 2571 /* calculate size of skb based on ring mode */
d44570e4
JP
2572 size = ring->mtu +
2573 HEADER_ETHERNET_II_802_3_SIZE +
2574 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
0425b46a 2575 if (ring->rxd_mode == RXD_MODE_1)
da6971d8 2576 size += NET_IP_ALIGN;
da6971d8 2577 else
0425b46a 2578 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
1da177e4 2579
da6971d8
AR
2580 /* allocate skb */
2581 skb = dev_alloc_skb(size);
d44570e4 2582 if (!skb) {
9e39f7c5
JP
2583 DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2584 ring->dev->name);
303bcb4b
K
2585 if (first_rxdp) {
2586 wmb();
2587 first_rxdp->Control_1 |= RXD_OWN_XENA;
2588 }
ffb5df6c 2589 swstats->mem_alloc_fail_cnt++;
7d2e3cb7 2590
da6971d8
AR
2591 return -ENOMEM ;
2592 }
ffb5df6c 2593 swstats->mem_allocated += skb->truesize;
0425b46a
SH
2594
2595 if (ring->rxd_mode == RXD_MODE_1) {
da6971d8 2596 /* 1 buffer mode - normal operation mode */
d44570e4 2597 rxdp1 = (struct RxD1 *)rxdp;
1ee6dd77 2598 memset(rxdp, 0, sizeof(struct RxD1));
da6971d8 2599 skb_reserve(skb, NET_IP_ALIGN);
d44570e4
JP
2600 rxdp1->Buffer0_ptr =
2601 pci_map_single(ring->pdev, skb->data,
2602 size - NET_IP_ALIGN,
2603 PCI_DMA_FROMDEVICE);
8d8bb39b 2604 if (pci_dma_mapping_error(nic->pdev,
d44570e4 2605 rxdp1->Buffer0_ptr))
491abf25
VP
2606 goto pci_map_failed;
2607
8a4bdbaa 2608 rxdp->Control_2 =
491976b2 2609 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
d44570e4 2610 rxdp->Host_Control = (unsigned long)skb;
0425b46a 2611 } else if (ring->rxd_mode == RXD_MODE_3B) {
da6971d8 2612 /*
6d517a27
VP
2613 * 2 buffer mode -
2614 * 2 buffer mode provides 128
da6971d8 2615 * byte aligned receive buffers.
da6971d8
AR
2616 */
2617
d44570e4 2618 rxdp3 = (struct RxD3 *)rxdp;
491976b2 2619 /* save buffer pointers to avoid frequent dma mapping */
6d517a27
VP
2620 Buffer0_ptr = rxdp3->Buffer0_ptr;
2621 Buffer1_ptr = rxdp3->Buffer1_ptr;
1ee6dd77 2622 memset(rxdp, 0, sizeof(struct RxD3));
363dc367 2623 /* restore the buffer pointers for dma sync*/
6d517a27
VP
2624 rxdp3->Buffer0_ptr = Buffer0_ptr;
2625 rxdp3->Buffer1_ptr = Buffer1_ptr;
363dc367 2626
0425b46a 2627 ba = &ring->ba[block_no][off];
da6971d8 2628 skb_reserve(skb, BUF0_LEN);
d44570e4 2629 tmp = (u64)(unsigned long)skb->data;
da6971d8
AR
2630 tmp += ALIGN_SIZE;
2631 tmp &= ~ALIGN_SIZE;
2632 skb->data = (void *) (unsigned long)tmp;
27a884dc 2633 skb_reset_tail_pointer(skb);
da6971d8 2634
3f78d885 2635 if (from_card_up) {
6d517a27 2636 rxdp3->Buffer0_ptr =
d44570e4
JP
2637 pci_map_single(ring->pdev, ba->ba_0,
2638 BUF0_LEN,
2639 PCI_DMA_FROMDEVICE);
2640 if (pci_dma_mapping_error(nic->pdev,
2641 rxdp3->Buffer0_ptr))
3f78d885
SH
2642 goto pci_map_failed;
2643 } else
0425b46a 2644 pci_dma_sync_single_for_device(ring->pdev,
d44570e4
JP
2645 (dma_addr_t)rxdp3->Buffer0_ptr,
2646 BUF0_LEN,
2647 PCI_DMA_FROMDEVICE);
491abf25 2648
da6971d8 2649 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
0425b46a 2650 if (ring->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
2651 /* Two buffer mode */
2652
2653 /*
6aa20a22 2654 * Buffer2 will have L3/L4 header plus
da6971d8
AR
2655 * L4 payload
2656 */
d44570e4
JP
2657 rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2658 skb->data,
2659 ring->mtu + 4,
2660 PCI_DMA_FROMDEVICE);
da6971d8 2661
8d8bb39b 2662 if (pci_dma_mapping_error(nic->pdev,
d44570e4 2663 rxdp3->Buffer2_ptr))
491abf25
VP
2664 goto pci_map_failed;
2665
3f78d885 2666 if (from_card_up) {
0425b46a
SH
2667 rxdp3->Buffer1_ptr =
2668 pci_map_single(ring->pdev,
d44570e4
JP
2669 ba->ba_1,
2670 BUF1_LEN,
2671 PCI_DMA_FROMDEVICE);
0425b46a 2672
8d8bb39b 2673 if (pci_dma_mapping_error(nic->pdev,
d44570e4
JP
2674 rxdp3->Buffer1_ptr)) {
2675 pci_unmap_single(ring->pdev,
2676 (dma_addr_t)(unsigned long)
2677 skb->data,
2678 ring->mtu + 4,
2679 PCI_DMA_FROMDEVICE);
3f78d885
SH
2680 goto pci_map_failed;
2681 }
75c30b13 2682 }
da6971d8
AR
2683 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2684 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
d44570e4 2685 (ring->mtu + 4);
da6971d8 2686 }
b7b5a128 2687 rxdp->Control_2 |= s2BIT(0);
0425b46a 2688 rxdp->Host_Control = (unsigned long) (skb);
1da177e4 2689 }
303bcb4b
K
2690 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2691 rxdp->Control_1 |= RXD_OWN_XENA;
1da177e4 2692 off++;
0425b46a 2693 if (off == (ring->rxd_count + 1))
da6971d8 2694 off = 0;
0425b46a 2695 ring->rx_curr_put_info.offset = off;
20346722 2696
da6971d8 2697 rxdp->Control_2 |= SET_RXD_MARKER;
303bcb4b
K
2698 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2699 if (first_rxdp) {
2700 wmb();
2701 first_rxdp->Control_1 |= RXD_OWN_XENA;
2702 }
2703 first_rxdp = rxdp;
2704 }
0425b46a 2705 ring->rx_bufs_left += 1;
1da177e4
LT
2706 alloc_tab++;
2707 }
2708
d44570e4 2709end:
303bcb4b
K
2710 /* Transfer ownership of first descriptor to adapter just before
2711 * exiting. Before that, use memory barrier so that ownership
2712 * and other fields are seen by adapter correctly.
2713 */
2714 if (first_rxdp) {
2715 wmb();
2716 first_rxdp->Control_1 |= RXD_OWN_XENA;
2717 }
2718
1da177e4 2719 return SUCCESS;
d44570e4 2720
491abf25 2721pci_map_failed:
ffb5df6c
JP
2722 swstats->pci_map_fail_cnt++;
2723 swstats->mem_freed += skb->truesize;
491abf25
VP
2724 dev_kfree_skb_irq(skb);
2725 return -ENOMEM;
1da177e4
LT
2726}
2727
da6971d8
AR
2728static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2729{
2730 struct net_device *dev = sp->dev;
2731 int j;
2732 struct sk_buff *skb;
1ee6dd77 2733 struct RxD_t *rxdp;
1ee6dd77 2734 struct buffAdd *ba;
6d517a27
VP
2735 struct RxD1 *rxdp1;
2736 struct RxD3 *rxdp3;
ffb5df6c
JP
2737 struct mac_info *mac_control = &sp->mac_control;
2738 struct stat_block *stats = mac_control->stats_info;
2739 struct swStat *swstats = &stats->sw_stat;
da6971d8 2740
da6971d8
AR
2741 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2742 rxdp = mac_control->rings[ring_no].
d44570e4
JP
2743 rx_blocks[blk].rxds[j].virt_addr;
2744 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2745 if (!skb)
da6971d8 2746 continue;
da6971d8 2747 if (sp->rxd_mode == RXD_MODE_1) {
d44570e4
JP
2748 rxdp1 = (struct RxD1 *)rxdp;
2749 pci_unmap_single(sp->pdev,
2750 (dma_addr_t)rxdp1->Buffer0_ptr,
2751 dev->mtu +
2752 HEADER_ETHERNET_II_802_3_SIZE +
2753 HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2754 PCI_DMA_FROMDEVICE);
1ee6dd77 2755 memset(rxdp, 0, sizeof(struct RxD1));
d44570e4
JP
2756 } else if (sp->rxd_mode == RXD_MODE_3B) {
2757 rxdp3 = (struct RxD3 *)rxdp;
2758 ba = &mac_control->rings[ring_no].ba[blk][j];
2759 pci_unmap_single(sp->pdev,
2760 (dma_addr_t)rxdp3->Buffer0_ptr,
2761 BUF0_LEN,
2762 PCI_DMA_FROMDEVICE);
2763 pci_unmap_single(sp->pdev,
2764 (dma_addr_t)rxdp3->Buffer1_ptr,
2765 BUF1_LEN,
2766 PCI_DMA_FROMDEVICE);
2767 pci_unmap_single(sp->pdev,
2768 (dma_addr_t)rxdp3->Buffer2_ptr,
2769 dev->mtu + 4,
2770 PCI_DMA_FROMDEVICE);
1ee6dd77 2771 memset(rxdp, 0, sizeof(struct RxD3));
da6971d8 2772 }
ffb5df6c 2773 swstats->mem_freed += skb->truesize;
da6971d8 2774 dev_kfree_skb(skb);
0425b46a 2775 mac_control->rings[ring_no].rx_bufs_left -= 1;
da6971d8
AR
2776 }
2777}
2778
1da177e4 2779/**
20346722 2780 * free_rx_buffers - Frees all Rx buffers
1da177e4 2781 * @sp: device private variable.
20346722 2782 * Description:
1da177e4
LT
2783 * This function will free all Rx buffers allocated by host.
2784 * Return Value:
2785 * NONE.
2786 */
2787
2788static void free_rx_buffers(struct s2io_nic *sp)
2789{
2790 struct net_device *dev = sp->dev;
da6971d8 2791 int i, blk = 0, buf_cnt = 0;
ffb5df6c
JP
2792 struct config_param *config = &sp->config;
2793 struct mac_info *mac_control = &sp->mac_control;
1da177e4
LT
2794
2795 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
2796 struct ring_info *ring = &mac_control->rings[i];
2797
da6971d8 2798 for (blk = 0; blk < rx_ring_sz[i]; blk++)
d44570e4 2799 free_rxd_blk(sp, i, blk);
1da177e4 2800
13d866a9
JP
2801 ring->rx_curr_put_info.block_index = 0;
2802 ring->rx_curr_get_info.block_index = 0;
2803 ring->rx_curr_put_info.offset = 0;
2804 ring->rx_curr_get_info.offset = 0;
2805 ring->rx_bufs_left = 0;
9e39f7c5 2806 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
1da177e4
LT
2807 dev->name, buf_cnt, i);
2808 }
2809}
2810
8d8bb39b 2811static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
f61e0a35 2812{
8d8bb39b 2813 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
9e39f7c5
JP
2814 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2815 ring->dev->name);
f61e0a35
SH
2816 }
2817 return 0;
2818}
2819
1da177e4
LT
2820/**
2821 * s2io_poll - Rx interrupt handler for NAPI support
bea3348e 2822 * @napi : pointer to the napi structure.
20346722 2823 * @budget : The number of packets that were budgeted to be processed
1da177e4
LT
2824 * during one pass through the 'Poll" function.
2825 * Description:
2826 * Comes into picture only if NAPI support has been incorporated. It does
2827 * the same thing that rx_intr_handler does, but not in a interrupt context
2828 * also It will process only a given number of packets.
2829 * Return value:
2830 * 0 on success and 1 if there are No Rx packets to be processed.
2831 */
2832
f61e0a35 2833static int s2io_poll_msix(struct napi_struct *napi, int budget)
1da177e4 2834{
f61e0a35
SH
2835 struct ring_info *ring = container_of(napi, struct ring_info, napi);
2836 struct net_device *dev = ring->dev;
f61e0a35 2837 int pkts_processed = 0;
1a79d1c3
AV
2838 u8 __iomem *addr = NULL;
2839 u8 val8 = 0;
4cf1653a 2840 struct s2io_nic *nic = netdev_priv(dev);
1ee6dd77 2841 struct XENA_dev_config __iomem *bar0 = nic->bar0;
f61e0a35 2842 int budget_org = budget;
1da177e4 2843
f61e0a35
SH
2844 if (unlikely(!is_s2io_card_up(nic)))
2845 return 0;
1da177e4 2846
f61e0a35 2847 pkts_processed = rx_intr_handler(ring, budget);
8d8bb39b 2848 s2io_chk_rx_buffers(nic, ring);
1da177e4 2849
f61e0a35 2850 if (pkts_processed < budget_org) {
288379f0 2851 napi_complete(napi);
f61e0a35 2852 /*Re Enable MSI-Rx Vector*/
1a79d1c3 2853 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
f61e0a35
SH
2854 addr += 7 - ring->ring_no;
2855 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2856 writeb(val8, addr);
2857 val8 = readb(addr);
1da177e4 2858 }
f61e0a35
SH
2859 return pkts_processed;
2860}
d44570e4 2861
f61e0a35
SH
2862static int s2io_poll_inta(struct napi_struct *napi, int budget)
2863{
2864 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
f61e0a35
SH
2865 int pkts_processed = 0;
2866 int ring_pkts_processed, i;
2867 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2868 int budget_org = budget;
ffb5df6c
JP
2869 struct config_param *config = &nic->config;
2870 struct mac_info *mac_control = &nic->mac_control;
1da177e4 2871
f61e0a35
SH
2872 if (unlikely(!is_s2io_card_up(nic)))
2873 return 0;
1da177e4 2874
1da177e4 2875 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9 2876 struct ring_info *ring = &mac_control->rings[i];
f61e0a35 2877 ring_pkts_processed = rx_intr_handler(ring, budget);
8d8bb39b 2878 s2io_chk_rx_buffers(nic, ring);
f61e0a35
SH
2879 pkts_processed += ring_pkts_processed;
2880 budget -= ring_pkts_processed;
2881 if (budget <= 0)
1da177e4 2882 break;
1da177e4 2883 }
f61e0a35 2884 if (pkts_processed < budget_org) {
288379f0 2885 napi_complete(napi);
f61e0a35
SH
2886 /* Re enable the Rx interrupts for the ring */
2887 writeq(0, &bar0->rx_traffic_mask);
2888 readl(&bar0->rx_traffic_mask);
2889 }
2890 return pkts_processed;
1da177e4 2891}
20346722 2892
b41477f3 2893#ifdef CONFIG_NET_POLL_CONTROLLER
612eff0e 2894/**
b41477f3 2895 * s2io_netpoll - netpoll event handler entry point
612eff0e
BH
2896 * @dev : pointer to the device structure.
2897 * Description:
b41477f3
AR
2898 * This function will be called by upper layer to check for events on the
2899 * interface in situations where interrupts are disabled. It is used for
2900 * specific in-kernel networking tasks, such as remote consoles and kernel
2901 * debugging over the network (example netdump in RedHat).
612eff0e 2902 */
612eff0e
BH
2903static void s2io_netpoll(struct net_device *dev)
2904{
4cf1653a 2905 struct s2io_nic *nic = netdev_priv(dev);
1ee6dd77 2906 struct XENA_dev_config __iomem *bar0 = nic->bar0;
b41477f3 2907 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
612eff0e 2908 int i;
ffb5df6c
JP
2909 struct config_param *config = &nic->config;
2910 struct mac_info *mac_control = &nic->mac_control;
612eff0e 2911
d796fdb7
LV
2912 if (pci_channel_offline(nic->pdev))
2913 return;
2914
612eff0e
BH
2915 disable_irq(dev->irq);
2916
612eff0e 2917 writeq(val64, &bar0->rx_traffic_int);
b41477f3
AR
2918 writeq(val64, &bar0->tx_traffic_int);
2919
6aa20a22 2920 /* we need to free up the transmitted skbufs or else netpoll will
b41477f3
AR
2921 * run out of skbs and will fail and eventually netpoll application such
2922 * as netdump will fail.
2923 */
2924 for (i = 0; i < config->tx_fifo_num; i++)
2925 tx_intr_handler(&mac_control->fifos[i]);
612eff0e 2926
b41477f3 2927 /* check for received packet and indicate up to network */
13d866a9
JP
2928 for (i = 0; i < config->rx_ring_num; i++) {
2929 struct ring_info *ring = &mac_control->rings[i];
2930
2931 rx_intr_handler(ring, 0);
2932 }
612eff0e
BH
2933
2934 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
2935 struct ring_info *ring = &mac_control->rings[i];
2936
2937 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
9e39f7c5
JP
2938 DBG_PRINT(INFO_DBG,
2939 "%s: Out of memory in Rx Netpoll!!\n",
2940 dev->name);
612eff0e
BH
2941 break;
2942 }
2943 }
612eff0e
BH
2944 enable_irq(dev->irq);
2945 return;
2946}
2947#endif
2948
20346722 2949/**
1da177e4 2950 * rx_intr_handler - Rx interrupt handler
f61e0a35
SH
2951 * @ring_info: per ring structure.
2952 * @budget: budget for napi processing.
20346722
K
2953 * Description:
2954 * If the interrupt is because of a received frame or if the
1da177e4 2955 * receive ring contains fresh as yet un-processed frames,this function is
20346722
K
2956 * called. It picks out the RxD at which place the last Rx processing had
2957 * stopped and sends the skb to the OSM's Rx handler and then increments
1da177e4
LT
2958 * the offset.
2959 * Return Value:
f61e0a35 2960 * No. of napi packets processed.
1da177e4 2961 */
f61e0a35 2962static int rx_intr_handler(struct ring_info *ring_data, int budget)
1da177e4 2963{
c9fcbf47 2964 int get_block, put_block;
1ee6dd77
RB
2965 struct rx_curr_get_info get_info, put_info;
2966 struct RxD_t *rxdp;
1da177e4 2967 struct sk_buff *skb;
f61e0a35 2968 int pkt_cnt = 0, napi_pkts = 0;
7d3d0439 2969 int i;
d44570e4
JP
2970 struct RxD1 *rxdp1;
2971 struct RxD3 *rxdp3;
7d3d0439 2972
20346722
K
2973 get_info = ring_data->rx_curr_get_info;
2974 get_block = get_info.block_index;
1ee6dd77 2975 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
20346722 2976 put_block = put_info.block_index;
da6971d8 2977 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
db874e65 2978
da6971d8 2979 while (RXD_IS_UP2DT(rxdp)) {
db874e65
SS
2980 /*
2981 * If your are next to put index then it's
2982 * FIFO full condition
2983 */
da6971d8
AR
2984 if ((get_block == put_block) &&
2985 (get_info.offset + 1) == put_info.offset) {
0425b46a 2986 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
d44570e4 2987 ring_data->dev->name);
da6971d8
AR
2988 break;
2989 }
d44570e4 2990 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
20346722 2991 if (skb == NULL) {
9e39f7c5 2992 DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
0425b46a 2993 ring_data->dev->name);
f61e0a35 2994 return 0;
1da177e4 2995 }
0425b46a 2996 if (ring_data->rxd_mode == RXD_MODE_1) {
d44570e4 2997 rxdp1 = (struct RxD1 *)rxdp;
0425b46a 2998 pci_unmap_single(ring_data->pdev, (dma_addr_t)
d44570e4
JP
2999 rxdp1->Buffer0_ptr,
3000 ring_data->mtu +
3001 HEADER_ETHERNET_II_802_3_SIZE +
3002 HEADER_802_2_SIZE +
3003 HEADER_SNAP_SIZE,
3004 PCI_DMA_FROMDEVICE);
0425b46a 3005 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
d44570e4
JP
3006 rxdp3 = (struct RxD3 *)rxdp;
3007 pci_dma_sync_single_for_cpu(ring_data->pdev,
3008 (dma_addr_t)rxdp3->Buffer0_ptr,
3009 BUF0_LEN,
3010 PCI_DMA_FROMDEVICE);
3011 pci_unmap_single(ring_data->pdev,
3012 (dma_addr_t)rxdp3->Buffer2_ptr,
3013 ring_data->mtu + 4,
3014 PCI_DMA_FROMDEVICE);
da6971d8 3015 }
863c11a9 3016 prefetch(skb->data);
20346722
K
3017 rx_osm_handler(ring_data, rxdp);
3018 get_info.offset++;
da6971d8
AR
3019 ring_data->rx_curr_get_info.offset = get_info.offset;
3020 rxdp = ring_data->rx_blocks[get_block].
d44570e4 3021 rxds[get_info.offset].virt_addr;
0425b46a 3022 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
20346722 3023 get_info.offset = 0;
da6971d8 3024 ring_data->rx_curr_get_info.offset = get_info.offset;
20346722 3025 get_block++;
da6971d8
AR
3026 if (get_block == ring_data->block_count)
3027 get_block = 0;
3028 ring_data->rx_curr_get_info.block_index = get_block;
20346722
K
3029 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3030 }
1da177e4 3031
f61e0a35
SH
3032 if (ring_data->nic->config.napi) {
3033 budget--;
3034 napi_pkts++;
3035 if (!budget)
0425b46a
SH
3036 break;
3037 }
20346722 3038 pkt_cnt++;
1da177e4
LT
3039 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3040 break;
3041 }
0425b46a 3042 if (ring_data->lro) {
7d3d0439 3043 /* Clear all LRO sessions before exiting */
d44570e4 3044 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
0425b46a 3045 struct lro *lro = &ring_data->lro0_n[i];
7d3d0439 3046 if (lro->in_use) {
0425b46a 3047 update_L3L4_header(ring_data->nic, lro);
cdb5bf02 3048 queue_rx_frame(lro->parent, lro->vlan_tag);
7d3d0439
RA
3049 clear_lro_session(lro);
3050 }
3051 }
3052 }
d44570e4 3053 return napi_pkts;
1da177e4 3054}
20346722
K
3055
3056/**
1da177e4
LT
3057 * tx_intr_handler - Transmit interrupt handler
3058 * @nic : device private variable
20346722
K
3059 * Description:
3060 * If an interrupt was raised to indicate DMA complete of the
3061 * Tx packet, this function is called. It identifies the last TxD
3062 * whose buffer was freed and frees all skbs whose data have already
1da177e4
LT
3063 * DMA'ed into the NICs internal memory.
3064 * Return Value:
3065 * NONE
3066 */
3067
1ee6dd77 3068static void tx_intr_handler(struct fifo_info *fifo_data)
1da177e4 3069{
1ee6dd77 3070 struct s2io_nic *nic = fifo_data->nic;
1ee6dd77 3071 struct tx_curr_get_info get_info, put_info;
3a3d5756 3072 struct sk_buff *skb = NULL;
1ee6dd77 3073 struct TxD *txdlp;
3a3d5756 3074 int pkt_cnt = 0;
2fda096d 3075 unsigned long flags = 0;
f9046eb3 3076 u8 err_mask;
ffb5df6c
JP
3077 struct stat_block *stats = nic->mac_control.stats_info;
3078 struct swStat *swstats = &stats->sw_stat;
1da177e4 3079
2fda096d 3080 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
d44570e4 3081 return;
2fda096d 3082
20346722 3083 get_info = fifo_data->tx_curr_get_info;
1ee6dd77 3084 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
d44570e4
JP
3085 txdlp = (struct TxD *)
3086 fifo_data->list_info[get_info.offset].list_virt_addr;
20346722
K
3087 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3088 (get_info.offset != put_info.offset) &&
3089 (txdlp->Host_Control)) {
3090 /* Check for TxD errors */
3091 if (txdlp->Control_1 & TXD_T_CODE) {
3092 unsigned long long err;
3093 err = txdlp->Control_1 & TXD_T_CODE;
bd1034f0 3094 if (err & 0x1) {
ffb5df6c 3095 swstats->parity_err_cnt++;
bd1034f0 3096 }
491976b2
SH
3097
3098 /* update t_code statistics */
f9046eb3 3099 err_mask = err >> 48;
d44570e4
JP
3100 switch (err_mask) {
3101 case 2:
ffb5df6c 3102 swstats->tx_buf_abort_cnt++;
491976b2
SH
3103 break;
3104
d44570e4 3105 case 3:
ffb5df6c 3106 swstats->tx_desc_abort_cnt++;
491976b2
SH
3107 break;
3108
d44570e4 3109 case 7:
ffb5df6c 3110 swstats->tx_parity_err_cnt++;
491976b2
SH
3111 break;
3112
d44570e4 3113 case 10:
ffb5df6c 3114 swstats->tx_link_loss_cnt++;
491976b2
SH
3115 break;
3116
d44570e4 3117 case 15:
ffb5df6c 3118 swstats->tx_list_proc_err_cnt++;
491976b2 3119 break;
d44570e4 3120 }
20346722 3121 }
1da177e4 3122
fed5eccd 3123 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
20346722 3124 if (skb == NULL) {
2fda096d 3125 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
9e39f7c5
JP
3126 DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3127 __func__);
20346722
K
3128 return;
3129 }
3a3d5756 3130 pkt_cnt++;
20346722 3131
20346722 3132 /* Updating the statistics block */
dc56e634 3133 nic->dev->stats.tx_bytes += skb->len;
ffb5df6c 3134 swstats->mem_freed += skb->truesize;
20346722
K
3135 dev_kfree_skb_irq(skb);
3136
3137 get_info.offset++;
863c11a9
AR
3138 if (get_info.offset == get_info.fifo_len + 1)
3139 get_info.offset = 0;
d44570e4
JP
3140 txdlp = (struct TxD *)
3141 fifo_data->list_info[get_info.offset].list_virt_addr;
3142 fifo_data->tx_curr_get_info.offset = get_info.offset;
1da177e4
LT
3143 }
3144
3a3d5756 3145 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
2fda096d
SR
3146
3147 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
1da177e4
LT
3148}
3149
bd1034f0
AR
3150/**
3151 * s2io_mdio_write - Function to write in to MDIO registers
3152 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3153 * @addr : address value
3154 * @value : data value
3155 * @dev : pointer to net_device structure
3156 * Description:
3157 * This function is used to write values to the MDIO registers
3158 * NONE
3159 */
d44570e4
JP
3160static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3161 struct net_device *dev)
bd1034f0 3162{
d44570e4 3163 u64 val64;
4cf1653a 3164 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 3165 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0 3166
d44570e4
JP
3167 /* address transaction */
3168 val64 = MDIO_MMD_INDX_ADDR(addr) |
3169 MDIO_MMD_DEV_ADDR(mmd_type) |
3170 MDIO_MMS_PRT_ADDR(0x0);
bd1034f0
AR
3171 writeq(val64, &bar0->mdio_control);
3172 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3173 writeq(val64, &bar0->mdio_control);
3174 udelay(100);
3175
d44570e4
JP
3176 /* Data transaction */
3177 val64 = MDIO_MMD_INDX_ADDR(addr) |
3178 MDIO_MMD_DEV_ADDR(mmd_type) |
3179 MDIO_MMS_PRT_ADDR(0x0) |
3180 MDIO_MDIO_DATA(value) |
3181 MDIO_OP(MDIO_OP_WRITE_TRANS);
bd1034f0
AR
3182 writeq(val64, &bar0->mdio_control);
3183 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3184 writeq(val64, &bar0->mdio_control);
3185 udelay(100);
3186
d44570e4
JP
3187 val64 = MDIO_MMD_INDX_ADDR(addr) |
3188 MDIO_MMD_DEV_ADDR(mmd_type) |
3189 MDIO_MMS_PRT_ADDR(0x0) |
3190 MDIO_OP(MDIO_OP_READ_TRANS);
bd1034f0
AR
3191 writeq(val64, &bar0->mdio_control);
3192 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3193 writeq(val64, &bar0->mdio_control);
3194 udelay(100);
bd1034f0
AR
3195}
3196
3197/**
3198 * s2io_mdio_read - Function to write in to MDIO registers
3199 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3200 * @addr : address value
3201 * @dev : pointer to net_device structure
3202 * Description:
3203 * This function is used to read values to the MDIO registers
3204 * NONE
3205 */
3206static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3207{
3208 u64 val64 = 0x0;
3209 u64 rval64 = 0x0;
4cf1653a 3210 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 3211 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0
AR
3212
3213 /* address transaction */
d44570e4
JP
3214 val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3215 | MDIO_MMD_DEV_ADDR(mmd_type)
3216 | MDIO_MMS_PRT_ADDR(0x0));
bd1034f0
AR
3217 writeq(val64, &bar0->mdio_control);
3218 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3219 writeq(val64, &bar0->mdio_control);
3220 udelay(100);
3221
3222 /* Data transaction */
d44570e4
JP
3223 val64 = MDIO_MMD_INDX_ADDR(addr) |
3224 MDIO_MMD_DEV_ADDR(mmd_type) |
3225 MDIO_MMS_PRT_ADDR(0x0) |
3226 MDIO_OP(MDIO_OP_READ_TRANS);
bd1034f0
AR
3227 writeq(val64, &bar0->mdio_control);
3228 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3229 writeq(val64, &bar0->mdio_control);
3230 udelay(100);
3231
3232 /* Read the value from regs */
3233 rval64 = readq(&bar0->mdio_control);
3234 rval64 = rval64 & 0xFFFF0000;
3235 rval64 = rval64 >> 16;
3236 return rval64;
3237}
d44570e4 3238
bd1034f0
AR
3239/**
3240 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
fbfecd37 3241 * @counter : counter value to be updated
bd1034f0
AR
3242 * @flag : flag to indicate the status
3243 * @type : counter type
3244 * Description:
3245 * This function is to check the status of the xpak counters value
3246 * NONE
3247 */
3248
d44570e4
JP
3249static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3250 u16 flag, u16 type)
bd1034f0
AR
3251{
3252 u64 mask = 0x3;
3253 u64 val64;
3254 int i;
d44570e4 3255 for (i = 0; i < index; i++)
bd1034f0
AR
3256 mask = mask << 0x2;
3257
d44570e4 3258 if (flag > 0) {
bd1034f0
AR
3259 *counter = *counter + 1;
3260 val64 = *regs_stat & mask;
3261 val64 = val64 >> (index * 0x2);
3262 val64 = val64 + 1;
d44570e4
JP
3263 if (val64 == 3) {
3264 switch (type) {
bd1034f0 3265 case 1:
9e39f7c5
JP
3266 DBG_PRINT(ERR_DBG,
3267 "Take Xframe NIC out of service.\n");
3268 DBG_PRINT(ERR_DBG,
3269"Excessive temperatures may result in premature transceiver failure.\n");
d44570e4 3270 break;
bd1034f0 3271 case 2:
9e39f7c5
JP
3272 DBG_PRINT(ERR_DBG,
3273 "Take Xframe NIC out of service.\n");
3274 DBG_PRINT(ERR_DBG,
3275"Excessive bias currents may indicate imminent laser diode failure.\n");
d44570e4 3276 break;
bd1034f0 3277 case 3:
9e39f7c5
JP
3278 DBG_PRINT(ERR_DBG,
3279 "Take Xframe NIC out of service.\n");
3280 DBG_PRINT(ERR_DBG,
3281"Excessive laser output power may saturate far-end receiver.\n");
d44570e4 3282 break;
bd1034f0 3283 default:
d44570e4
JP
3284 DBG_PRINT(ERR_DBG,
3285 "Incorrect XPAK Alarm type\n");
bd1034f0
AR
3286 }
3287 val64 = 0x0;
3288 }
3289 val64 = val64 << (index * 0x2);
3290 *regs_stat = (*regs_stat & (~mask)) | (val64);
3291
3292 } else {
3293 *regs_stat = *regs_stat & (~mask);
3294 }
3295}
3296
3297/**
3298 * s2io_updt_xpak_counter - Function to update the xpak counters
3299 * @dev : pointer to net_device struct
3300 * Description:
3301 * This function is to upate the status of the xpak counters value
3302 * NONE
3303 */
3304static void s2io_updt_xpak_counter(struct net_device *dev)
3305{
3306 u16 flag = 0x0;
3307 u16 type = 0x0;
3308 u16 val16 = 0x0;
3309 u64 val64 = 0x0;
3310 u64 addr = 0x0;
3311
4cf1653a 3312 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c
JP
3313 struct stat_block *stats = sp->mac_control.stats_info;
3314 struct xpakStat *xstats = &stats->xpak_stat;
bd1034f0
AR
3315
3316 /* Check the communication with the MDIO slave */
40239396 3317 addr = MDIO_CTRL1;
bd1034f0 3318 val64 = 0x0;
40239396 3319 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
d44570e4 3320 if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
9e39f7c5
JP
3321 DBG_PRINT(ERR_DBG,
3322 "ERR: MDIO slave access failed - Returned %llx\n",
3323 (unsigned long long)val64);
bd1034f0
AR
3324 return;
3325 }
3326
40239396 3327 /* Check for the expected value of control reg 1 */
d44570e4 3328 if (val64 != MDIO_CTRL1_SPEED10G) {
9e39f7c5
JP
3329 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3330 "Returned: %llx- Expected: 0x%x\n",
40239396 3331 (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
bd1034f0
AR
3332 return;
3333 }
3334
3335 /* Loading the DOM register to MDIO register */
3336 addr = 0xA100;
40239396
BH
3337 s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3338 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
bd1034f0
AR
3339
3340 /* Reading the Alarm flags */
3341 addr = 0xA070;
3342 val64 = 0x0;
40239396 3343 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
bd1034f0
AR
3344
3345 flag = CHECKBIT(val64, 0x7);
3346 type = 1;
ffb5df6c
JP
3347 s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3348 &xstats->xpak_regs_stat,
d44570e4 3349 0x0, flag, type);
bd1034f0 3350
d44570e4 3351 if (CHECKBIT(val64, 0x6))
ffb5df6c 3352 xstats->alarm_transceiver_temp_low++;
bd1034f0
AR
3353
3354 flag = CHECKBIT(val64, 0x3);
3355 type = 2;
ffb5df6c
JP
3356 s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3357 &xstats->xpak_regs_stat,
d44570e4 3358 0x2, flag, type);
bd1034f0 3359
d44570e4 3360 if (CHECKBIT(val64, 0x2))
ffb5df6c 3361 xstats->alarm_laser_bias_current_low++;
bd1034f0
AR
3362
3363 flag = CHECKBIT(val64, 0x1);
3364 type = 3;
ffb5df6c
JP
3365 s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3366 &xstats->xpak_regs_stat,
d44570e4 3367 0x4, flag, type);
bd1034f0 3368
d44570e4 3369 if (CHECKBIT(val64, 0x0))
ffb5df6c 3370 xstats->alarm_laser_output_power_low++;
bd1034f0
AR
3371
3372 /* Reading the Warning flags */
3373 addr = 0xA074;
3374 val64 = 0x0;
40239396 3375 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
bd1034f0 3376
d44570e4 3377 if (CHECKBIT(val64, 0x7))
ffb5df6c 3378 xstats->warn_transceiver_temp_high++;
bd1034f0 3379
d44570e4 3380 if (CHECKBIT(val64, 0x6))
ffb5df6c 3381 xstats->warn_transceiver_temp_low++;
bd1034f0 3382
d44570e4 3383 if (CHECKBIT(val64, 0x3))
ffb5df6c 3384 xstats->warn_laser_bias_current_high++;
bd1034f0 3385
d44570e4 3386 if (CHECKBIT(val64, 0x2))
ffb5df6c 3387 xstats->warn_laser_bias_current_low++;
bd1034f0 3388
d44570e4 3389 if (CHECKBIT(val64, 0x1))
ffb5df6c 3390 xstats->warn_laser_output_power_high++;
bd1034f0 3391
d44570e4 3392 if (CHECKBIT(val64, 0x0))
ffb5df6c 3393 xstats->warn_laser_output_power_low++;
bd1034f0
AR
3394}
3395
20346722 3396/**
1da177e4 3397 * wait_for_cmd_complete - waits for a command to complete.
20346722 3398 * @sp : private member of the device structure, which is a pointer to the
1da177e4 3399 * s2io_nic structure.
20346722
K
3400 * Description: Function that waits for a command to Write into RMAC
3401 * ADDR DATA registers to be completed and returns either success or
3402 * error depending on whether the command was complete or not.
1da177e4
LT
3403 * Return value:
3404 * SUCCESS on success and FAILURE on failure.
3405 */
3406
9fc93a41 3407static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
d44570e4 3408 int bit_state)
1da177e4 3409{
9fc93a41 3410 int ret = FAILURE, cnt = 0, delay = 1;
1da177e4
LT
3411 u64 val64;
3412
9fc93a41
SS
3413 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3414 return FAILURE;
3415
3416 do {
c92ca04b 3417 val64 = readq(addr);
9fc93a41
SS
3418 if (bit_state == S2IO_BIT_RESET) {
3419 if (!(val64 & busy_bit)) {
3420 ret = SUCCESS;
3421 break;
3422 }
3423 } else {
2d146eb1 3424 if (val64 & busy_bit) {
9fc93a41
SS
3425 ret = SUCCESS;
3426 break;
3427 }
1da177e4 3428 }
c92ca04b 3429
d44570e4 3430 if (in_interrupt())
9fc93a41 3431 mdelay(delay);
c92ca04b 3432 else
9fc93a41 3433 msleep(delay);
c92ca04b 3434
9fc93a41
SS
3435 if (++cnt >= 10)
3436 delay = 50;
3437 } while (cnt < 20);
1da177e4
LT
3438 return ret;
3439}
19a60522
SS
3440/*
3441 * check_pci_device_id - Checks if the device id is supported
3442 * @id : device id
3443 * Description: Function to check if the pci device id is supported by driver.
3444 * Return value: Actual device id if supported else PCI_ANY_ID
3445 */
3446static u16 check_pci_device_id(u16 id)
3447{
3448 switch (id) {
3449 case PCI_DEVICE_ID_HERC_WIN:
3450 case PCI_DEVICE_ID_HERC_UNI:
3451 return XFRAME_II_DEVICE;
3452 case PCI_DEVICE_ID_S2IO_UNI:
3453 case PCI_DEVICE_ID_S2IO_WIN:
3454 return XFRAME_I_DEVICE;
3455 default:
3456 return PCI_ANY_ID;
3457 }
3458}
1da177e4 3459
20346722
K
3460/**
3461 * s2io_reset - Resets the card.
1da177e4
LT
3462 * @sp : private member of the device structure.
3463 * Description: Function to Reset the card. This function then also
20346722 3464 * restores the previously saved PCI configuration space registers as
1da177e4
LT
3465 * the card reset also resets the configuration space.
3466 * Return value:
3467 * void.
3468 */
3469
d44570e4 3470static void s2io_reset(struct s2io_nic *sp)
1da177e4 3471{
1ee6dd77 3472 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 3473 u64 val64;
5e25b9dd 3474 u16 subid, pci_cmd;
19a60522
SS
3475 int i;
3476 u16 val16;
491976b2
SH
3477 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3478 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
ffb5df6c
JP
3479 struct stat_block *stats;
3480 struct swStat *swstats;
491976b2 3481
9e39f7c5 3482 DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3a22813a 3483 __func__, pci_name(sp->pdev));
1da177e4 3484
0b1f7ebe 3485 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
e960fc5c 3486 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
0b1f7ebe 3487
1da177e4
LT
3488 val64 = SW_RESET_ALL;
3489 writeq(val64, &bar0->sw_reset);
d44570e4 3490 if (strstr(sp->product_name, "CX4"))
c92ca04b 3491 msleep(750);
19a60522
SS
3492 msleep(250);
3493 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
1da177e4 3494
19a60522
SS
3495 /* Restore the PCI state saved during initialization. */
3496 pci_restore_state(sp->pdev);
b8a623bf 3497 pci_save_state(sp->pdev);
19a60522
SS
3498 pci_read_config_word(sp->pdev, 0x2, &val16);
3499 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3500 break;
3501 msleep(200);
3502 }
1da177e4 3503
d44570e4
JP
3504 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3505 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
19a60522
SS
3506
3507 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3508
3509 s2io_init_pci(sp);
1da177e4 3510
20346722
K
3511 /* Set swapper to enable I/O register access */
3512 s2io_set_swapper(sp);
3513
faa4f796
SH
3514 /* restore mac_addr entries */
3515 do_s2io_restore_unicast_mc(sp);
3516
cc6e7c44
RA
3517 /* Restore the MSIX table entries from local variables */
3518 restore_xmsi_data(sp);
3519
5e25b9dd 3520 /* Clear certain PCI/PCI-X fields after reset */
303bcb4b 3521 if (sp->device_type == XFRAME_II_DEVICE) {
b41477f3 3522 /* Clear "detected parity error" bit */
303bcb4b 3523 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
5e25b9dd 3524
303bcb4b
K
3525 /* Clearing PCIX Ecc status register */
3526 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
5e25b9dd 3527
303bcb4b 3528 /* Clearing PCI_STATUS error reflected here */
b7b5a128 3529 writeq(s2BIT(62), &bar0->txpic_int_reg);
303bcb4b 3530 }
5e25b9dd 3531
20346722 3532 /* Reset device statistics maintained by OS */
d44570e4 3533 memset(&sp->stats, 0, sizeof(struct net_device_stats));
8a4bdbaa 3534
ffb5df6c
JP
3535 stats = sp->mac_control.stats_info;
3536 swstats = &stats->sw_stat;
3537
491976b2 3538 /* save link up/down time/cnt, reset/memory/watchdog cnt */
ffb5df6c
JP
3539 up_cnt = swstats->link_up_cnt;
3540 down_cnt = swstats->link_down_cnt;
3541 up_time = swstats->link_up_time;
3542 down_time = swstats->link_down_time;
3543 reset_cnt = swstats->soft_reset_cnt;
3544 mem_alloc_cnt = swstats->mem_allocated;
3545 mem_free_cnt = swstats->mem_freed;
3546 watchdog_cnt = swstats->watchdog_timer_cnt;
3547
3548 memset(stats, 0, sizeof(struct stat_block));
3549
491976b2 3550 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
ffb5df6c
JP
3551 swstats->link_up_cnt = up_cnt;
3552 swstats->link_down_cnt = down_cnt;
3553 swstats->link_up_time = up_time;
3554 swstats->link_down_time = down_time;
3555 swstats->soft_reset_cnt = reset_cnt;
3556 swstats->mem_allocated = mem_alloc_cnt;
3557 swstats->mem_freed = mem_free_cnt;
3558 swstats->watchdog_timer_cnt = watchdog_cnt;
20346722 3559
1da177e4
LT
3560 /* SXE-002: Configure link and activity LED to turn it off */
3561 subid = sp->pdev->subsystem_device;
541ae68f
K
3562 if (((subid & 0xFF) >= 0x07) &&
3563 (sp->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
3564 val64 = readq(&bar0->gpio_control);
3565 val64 |= 0x0000800000000000ULL;
3566 writeq(val64, &bar0->gpio_control);
3567 val64 = 0x0411040400000000ULL;
509a2671 3568 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
3569 }
3570
541ae68f
K
3571 /*
3572 * Clear spurious ECC interrupts that would have occured on
3573 * XFRAME II cards after reset.
3574 */
3575 if (sp->device_type == XFRAME_II_DEVICE) {
3576 val64 = readq(&bar0->pcc_err_reg);
3577 writeq(val64, &bar0->pcc_err_reg);
3578 }
3579
f957bcf0 3580 sp->device_enabled_once = false;
1da177e4
LT
3581}
3582
3583/**
20346722
K
3584 * s2io_set_swapper - to set the swapper controle on the card
3585 * @sp : private member of the device structure,
1da177e4 3586 * pointer to the s2io_nic structure.
20346722 3587 * Description: Function to set the swapper control on the card
1da177e4
LT
3588 * correctly depending on the 'endianness' of the system.
3589 * Return value:
3590 * SUCCESS on success and FAILURE on failure.
3591 */
3592
d44570e4 3593static int s2io_set_swapper(struct s2io_nic *sp)
1da177e4
LT
3594{
3595 struct net_device *dev = sp->dev;
1ee6dd77 3596 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
3597 u64 val64, valt, valr;
3598
20346722 3599 /*
1da177e4
LT
3600 * Set proper endian settings and verify the same by reading
3601 * the PIF Feed-back register.
3602 */
3603
3604 val64 = readq(&bar0->pif_rd_swapper_fb);
3605 if (val64 != 0x0123456789ABCDEFULL) {
3606 int i = 0;
3607 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3608 0x8100008181000081ULL, /* FE=1, SE=0 */
3609 0x4200004242000042ULL, /* FE=0, SE=1 */
3610 0}; /* FE=0, SE=0 */
3611
d44570e4 3612 while (i < 4) {
1da177e4
LT
3613 writeq(value[i], &bar0->swapper_ctrl);
3614 val64 = readq(&bar0->pif_rd_swapper_fb);
3615 if (val64 == 0x0123456789ABCDEFULL)
3616 break;
3617 i++;
3618 }
3619 if (i == 4) {
9e39f7c5
JP
3620 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3621 "feedback read %llx\n",
3622 dev->name, (unsigned long long)val64);
1da177e4
LT
3623 return FAILURE;
3624 }
3625 valr = value[i];
3626 } else {
3627 valr = readq(&bar0->swapper_ctrl);
3628 }
3629
3630 valt = 0x0123456789ABCDEFULL;
3631 writeq(valt, &bar0->xmsi_address);
3632 val64 = readq(&bar0->xmsi_address);
3633
d44570e4 3634 if (val64 != valt) {
1da177e4
LT
3635 int i = 0;
3636 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3637 0x0081810000818100ULL, /* FE=1, SE=0 */
3638 0x0042420000424200ULL, /* FE=0, SE=1 */
3639 0}; /* FE=0, SE=0 */
3640
d44570e4 3641 while (i < 4) {
1da177e4
LT
3642 writeq((value[i] | valr), &bar0->swapper_ctrl);
3643 writeq(valt, &bar0->xmsi_address);
3644 val64 = readq(&bar0->xmsi_address);
d44570e4 3645 if (val64 == valt)
1da177e4
LT
3646 break;
3647 i++;
3648 }
d44570e4 3649 if (i == 4) {
20346722 3650 unsigned long long x = val64;
9e39f7c5
JP
3651 DBG_PRINT(ERR_DBG,
3652 "Write failed, Xmsi_addr reads:0x%llx\n", x);
1da177e4
LT
3653 return FAILURE;
3654 }
3655 }
3656 val64 = readq(&bar0->swapper_ctrl);
3657 val64 &= 0xFFFF000000000000ULL;
3658
d44570e4 3659#ifdef __BIG_ENDIAN
20346722
K
3660 /*
3661 * The device by default set to a big endian format, so a
1da177e4
LT
3662 * big endian driver need not set anything.
3663 */
3664 val64 |= (SWAPPER_CTRL_TXP_FE |
d44570e4
JP
3665 SWAPPER_CTRL_TXP_SE |
3666 SWAPPER_CTRL_TXD_R_FE |
3667 SWAPPER_CTRL_TXD_W_FE |
3668 SWAPPER_CTRL_TXF_R_FE |
3669 SWAPPER_CTRL_RXD_R_FE |
3670 SWAPPER_CTRL_RXD_W_FE |
3671 SWAPPER_CTRL_RXF_W_FE |
3672 SWAPPER_CTRL_XMSI_FE |
3673 SWAPPER_CTRL_STATS_FE |
3674 SWAPPER_CTRL_STATS_SE);
eaae7f72 3675 if (sp->config.intr_type == INTA)
cc6e7c44 3676 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3677 writeq(val64, &bar0->swapper_ctrl);
3678#else
20346722 3679 /*
1da177e4 3680 * Initially we enable all bits to make it accessible by the
20346722 3681 * driver, then we selectively enable only those bits that
1da177e4
LT
3682 * we want to set.
3683 */
3684 val64 |= (SWAPPER_CTRL_TXP_FE |
d44570e4
JP
3685 SWAPPER_CTRL_TXP_SE |
3686 SWAPPER_CTRL_TXD_R_FE |
3687 SWAPPER_CTRL_TXD_R_SE |
3688 SWAPPER_CTRL_TXD_W_FE |
3689 SWAPPER_CTRL_TXD_W_SE |
3690 SWAPPER_CTRL_TXF_R_FE |
3691 SWAPPER_CTRL_RXD_R_FE |
3692 SWAPPER_CTRL_RXD_R_SE |
3693 SWAPPER_CTRL_RXD_W_FE |
3694 SWAPPER_CTRL_RXD_W_SE |
3695 SWAPPER_CTRL_RXF_W_FE |
3696 SWAPPER_CTRL_XMSI_FE |
3697 SWAPPER_CTRL_STATS_FE |
3698 SWAPPER_CTRL_STATS_SE);
eaae7f72 3699 if (sp->config.intr_type == INTA)
cc6e7c44 3700 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3701 writeq(val64, &bar0->swapper_ctrl);
3702#endif
3703 val64 = readq(&bar0->swapper_ctrl);
3704
20346722
K
3705 /*
3706 * Verifying if endian settings are accurate by reading a
1da177e4
LT
3707 * feedback register.
3708 */
3709 val64 = readq(&bar0->pif_rd_swapper_fb);
3710 if (val64 != 0x0123456789ABCDEFULL) {
3711 /* Endian settings are incorrect, calls for another dekko. */
9e39f7c5
JP
3712 DBG_PRINT(ERR_DBG,
3713 "%s: Endian settings are wrong, feedback read %llx\n",
3714 dev->name, (unsigned long long)val64);
1da177e4
LT
3715 return FAILURE;
3716 }
3717
3718 return SUCCESS;
3719}
3720
1ee6dd77 3721static int wait_for_msix_trans(struct s2io_nic *nic, int i)
cc6e7c44 3722{
1ee6dd77 3723 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3724 u64 val64;
3725 int ret = 0, cnt = 0;
3726
3727 do {
3728 val64 = readq(&bar0->xmsi_access);
b7b5a128 3729 if (!(val64 & s2BIT(15)))
cc6e7c44
RA
3730 break;
3731 mdelay(1);
3732 cnt++;
d44570e4 3733 } while (cnt < 5);
cc6e7c44
RA
3734 if (cnt == 5) {
3735 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3736 ret = 1;
3737 }
3738
3739 return ret;
3740}
3741
1ee6dd77 3742static void restore_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3743{
1ee6dd77 3744 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44 3745 u64 val64;
f61e0a35
SH
3746 int i, msix_index;
3747
f61e0a35
SH
3748 if (nic->device_type == XFRAME_I_DEVICE)
3749 return;
cc6e7c44 3750
d44570e4
JP
3751 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3752 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
cc6e7c44
RA
3753 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3754 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
f61e0a35 3755 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
cc6e7c44 3756 writeq(val64, &bar0->xmsi_access);
f61e0a35 3757 if (wait_for_msix_trans(nic, msix_index)) {
9e39f7c5
JP
3758 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3759 __func__, msix_index);
cc6e7c44
RA
3760 continue;
3761 }
3762 }
3763}
3764
1ee6dd77 3765static void store_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3766{
1ee6dd77 3767 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44 3768 u64 val64, addr, data;
f61e0a35
SH
3769 int i, msix_index;
3770
3771 if (nic->device_type == XFRAME_I_DEVICE)
3772 return;
cc6e7c44
RA
3773
3774 /* Store and display */
d44570e4
JP
3775 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3776 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
f61e0a35 3777 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
cc6e7c44 3778 writeq(val64, &bar0->xmsi_access);
f61e0a35 3779 if (wait_for_msix_trans(nic, msix_index)) {
9e39f7c5
JP
3780 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3781 __func__, msix_index);
cc6e7c44
RA
3782 continue;
3783 }
3784 addr = readq(&bar0->xmsi_address);
3785 data = readq(&bar0->xmsi_data);
3786 if (addr && data) {
3787 nic->msix_info[i].addr = addr;
3788 nic->msix_info[i].data = data;
3789 }
3790 }
3791}
3792
1ee6dd77 3793static int s2io_enable_msi_x(struct s2io_nic *nic)
cc6e7c44 3794{
1ee6dd77 3795 struct XENA_dev_config __iomem *bar0 = nic->bar0;
ac731ab6 3796 u64 rx_mat;
cc6e7c44
RA
3797 u16 msi_control; /* Temp variable */
3798 int ret, i, j, msix_indx = 1;
4f870320 3799 int size;
ffb5df6c
JP
3800 struct stat_block *stats = nic->mac_control.stats_info;
3801 struct swStat *swstats = &stats->sw_stat;
cc6e7c44 3802
4f870320 3803 size = nic->num_entries * sizeof(struct msix_entry);
44364a03 3804 nic->entries = kzalloc(size, GFP_KERNEL);
bd684e43 3805 if (!nic->entries) {
d44570e4
JP
3806 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3807 __func__);
ffb5df6c 3808 swstats->mem_alloc_fail_cnt++;
cc6e7c44
RA
3809 return -ENOMEM;
3810 }
ffb5df6c 3811 swstats->mem_allocated += size;
f61e0a35 3812
4f870320 3813 size = nic->num_entries * sizeof(struct s2io_msix_entry);
44364a03 3814 nic->s2io_entries = kzalloc(size, GFP_KERNEL);
bd684e43 3815 if (!nic->s2io_entries) {
8a4bdbaa 3816 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
d44570e4 3817 __func__);
ffb5df6c 3818 swstats->mem_alloc_fail_cnt++;
cc6e7c44 3819 kfree(nic->entries);
ffb5df6c 3820 swstats->mem_freed
f61e0a35 3821 += (nic->num_entries * sizeof(struct msix_entry));
cc6e7c44
RA
3822 return -ENOMEM;
3823 }
ffb5df6c 3824 swstats->mem_allocated += size;
cc6e7c44 3825
ac731ab6
SH
3826 nic->entries[0].entry = 0;
3827 nic->s2io_entries[0].entry = 0;
3828 nic->s2io_entries[0].in_use = MSIX_FLG;
3829 nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3830 nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3831
f61e0a35
SH
3832 for (i = 1; i < nic->num_entries; i++) {
3833 nic->entries[i].entry = ((i - 1) * 8) + 1;
3834 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
cc6e7c44
RA
3835 nic->s2io_entries[i].arg = NULL;
3836 nic->s2io_entries[i].in_use = 0;
3837 }
3838
8a4bdbaa 3839 rx_mat = readq(&bar0->rx_mat);
f61e0a35 3840 for (j = 0; j < nic->config.rx_ring_num; j++) {
8a4bdbaa 3841 rx_mat |= RX_MAT_SET(j, msix_indx);
f61e0a35
SH
3842 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3843 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3844 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3845 msix_indx += 8;
cc6e7c44 3846 }
8a4bdbaa 3847 writeq(rx_mat, &bar0->rx_mat);
f61e0a35 3848 readq(&bar0->rx_mat);
cc6e7c44 3849
f61e0a35 3850 ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
c92ca04b 3851 /* We fail init if error or we get less vectors than min required */
cc6e7c44 3852 if (ret) {
9e39f7c5 3853 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
cc6e7c44 3854 kfree(nic->entries);
ffb5df6c
JP
3855 swstats->mem_freed += nic->num_entries *
3856 sizeof(struct msix_entry);
cc6e7c44 3857 kfree(nic->s2io_entries);
ffb5df6c
JP
3858 swstats->mem_freed += nic->num_entries *
3859 sizeof(struct s2io_msix_entry);
cc6e7c44
RA
3860 nic->entries = NULL;
3861 nic->s2io_entries = NULL;
3862 return -ENOMEM;
3863 }
3864
3865 /*
3866 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3867 * in the herc NIC. (Temp change, needs to be removed later)
3868 */
3869 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3870 msi_control |= 0x1; /* Enable MSI */
3871 pci_write_config_word(nic->pdev, 0x42, msi_control);
3872
3873 return 0;
3874}
3875
8abc4d5b 3876/* Handle software interrupt used during MSI(X) test */
33390a70 3877static irqreturn_t s2io_test_intr(int irq, void *dev_id)
8abc4d5b
SS
3878{
3879 struct s2io_nic *sp = dev_id;
3880
3881 sp->msi_detected = 1;
3882 wake_up(&sp->msi_wait);
3883
3884 return IRQ_HANDLED;
3885}
3886
3887/* Test interrupt path by forcing a a software IRQ */
33390a70 3888static int s2io_test_msi(struct s2io_nic *sp)
8abc4d5b
SS
3889{
3890 struct pci_dev *pdev = sp->pdev;
3891 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3892 int err;
3893 u64 val64, saved64;
3894
3895 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
d44570e4 3896 sp->name, sp);
8abc4d5b
SS
3897 if (err) {
3898 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
d44570e4 3899 sp->dev->name, pci_name(pdev), pdev->irq);
8abc4d5b
SS
3900 return err;
3901 }
3902
d44570e4 3903 init_waitqueue_head(&sp->msi_wait);
8abc4d5b
SS
3904 sp->msi_detected = 0;
3905
3906 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3907 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3908 val64 |= SCHED_INT_CTRL_TIMER_EN;
3909 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3910 writeq(val64, &bar0->scheduled_int_ctrl);
3911
3912 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3913
3914 if (!sp->msi_detected) {
3915 /* MSI(X) test failed, go back to INTx mode */
2450022a 3916 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
9e39f7c5
JP
3917 "using MSI(X) during test\n",
3918 sp->dev->name, pci_name(pdev));
8abc4d5b
SS
3919
3920 err = -EOPNOTSUPP;
3921 }
3922
3923 free_irq(sp->entries[1].vector, sp);
3924
3925 writeq(saved64, &bar0->scheduled_int_ctrl);
3926
3927 return err;
3928}
18b2b7bd
SH
3929
3930static void remove_msix_isr(struct s2io_nic *sp)
3931{
3932 int i;
3933 u16 msi_control;
3934
f61e0a35 3935 for (i = 0; i < sp->num_entries; i++) {
d44570e4 3936 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
18b2b7bd
SH
3937 int vector = sp->entries[i].vector;
3938 void *arg = sp->s2io_entries[i].arg;
3939 free_irq(vector, arg);
3940 }
3941 }
3942
3943 kfree(sp->entries);
3944 kfree(sp->s2io_entries);
3945 sp->entries = NULL;
3946 sp->s2io_entries = NULL;
3947
3948 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3949 msi_control &= 0xFFFE; /* Disable MSI */
3950 pci_write_config_word(sp->pdev, 0x42, msi_control);
3951
3952 pci_disable_msix(sp->pdev);
3953}
3954
3955static void remove_inta_isr(struct s2io_nic *sp)
3956{
3957 struct net_device *dev = sp->dev;
3958
3959 free_irq(sp->pdev->irq, dev);
3960}
3961
1da177e4
LT
3962/* ********************************************************* *
3963 * Functions defined below concern the OS part of the driver *
3964 * ********************************************************* */
3965
20346722 3966/**
1da177e4
LT
3967 * s2io_open - open entry point of the driver
3968 * @dev : pointer to the device structure.
3969 * Description:
3970 * This function is the open entry point of the driver. It mainly calls a
3971 * function to allocate Rx buffers and inserts them into the buffer
20346722 3972 * descriptors and then enables the Rx part of the NIC.
1da177e4
LT
3973 * Return value:
3974 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3975 * file on failure.
3976 */
3977
ac1f60db 3978static int s2io_open(struct net_device *dev)
1da177e4 3979{
4cf1653a 3980 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c 3981 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
1da177e4
LT
3982 int err = 0;
3983
20346722
K
3984 /*
3985 * Make sure you have link off by default every time
1da177e4
LT
3986 * Nic is initialized
3987 */
3988 netif_carrier_off(dev);
0b1f7ebe 3989 sp->last_link_state = 0;
1da177e4
LT
3990
3991 /* Initialize H/W and enable interrupts */
c92ca04b
AR
3992 err = s2io_card_up(sp);
3993 if (err) {
1da177e4
LT
3994 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3995 dev->name);
e6a8fee2 3996 goto hw_init_failed;
1da177e4
LT
3997 }
3998
2fd37688 3999 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
1da177e4 4000 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
e6a8fee2 4001 s2io_card_down(sp);
20346722 4002 err = -ENODEV;
e6a8fee2 4003 goto hw_init_failed;
1da177e4 4004 }
3a3d5756 4005 s2io_start_all_tx_queue(sp);
1da177e4 4006 return 0;
20346722 4007
20346722 4008hw_init_failed:
eaae7f72 4009 if (sp->config.intr_type == MSI_X) {
491976b2 4010 if (sp->entries) {
cc6e7c44 4011 kfree(sp->entries);
ffb5df6c
JP
4012 swstats->mem_freed += sp->num_entries *
4013 sizeof(struct msix_entry);
491976b2
SH
4014 }
4015 if (sp->s2io_entries) {
cc6e7c44 4016 kfree(sp->s2io_entries);
ffb5df6c
JP
4017 swstats->mem_freed += sp->num_entries *
4018 sizeof(struct s2io_msix_entry);
491976b2 4019 }
cc6e7c44 4020 }
20346722 4021 return err;
1da177e4
LT
4022}
4023
4024/**
4025 * s2io_close -close entry point of the driver
4026 * @dev : device pointer.
4027 * Description:
4028 * This is the stop entry point of the driver. It needs to undo exactly
4029 * whatever was done by the open entry point,thus it's usually referred to
4030 * as the close function.Among other things this function mainly stops the
4031 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4032 * Return value:
4033 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4034 * file on failure.
4035 */
4036
ac1f60db 4037static int s2io_close(struct net_device *dev)
1da177e4 4038{
4cf1653a 4039 struct s2io_nic *sp = netdev_priv(dev);
faa4f796
SH
4040 struct config_param *config = &sp->config;
4041 u64 tmp64;
4042 int offset;
cc6e7c44 4043
9f74ffde 4044 /* Return if the device is already closed *
d44570e4
JP
4045 * Can happen when s2io_card_up failed in change_mtu *
4046 */
9f74ffde
SH
4047 if (!is_s2io_card_up(sp))
4048 return 0;
4049
3a3d5756 4050 s2io_stop_all_tx_queue(sp);
faa4f796
SH
4051 /* delete all populated mac entries */
4052 for (offset = 1; offset < config->max_mc_addr; offset++) {
4053 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4054 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4055 do_s2io_delete_unicast_mc(sp, tmp64);
4056 }
4057
e6a8fee2 4058 s2io_card_down(sp);
cc6e7c44 4059
1da177e4
LT
4060 return 0;
4061}
4062
4063/**
4064 * s2io_xmit - Tx entry point of te driver
4065 * @skb : the socket buffer containing the Tx data.
4066 * @dev : device pointer.
4067 * Description :
4068 * This function is the Tx entry point of the driver. S2IO NIC supports
4069 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4070 * NOTE: when device cant queue the pkt,just the trans_start variable will
4071 * not be upadted.
4072 * Return value:
4073 * 0 on success & 1 on failure.
4074 */
4075
61357325 4076static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
1da177e4 4077{
4cf1653a 4078 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
4079 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4080 register u64 val64;
1ee6dd77
RB
4081 struct TxD *txdp;
4082 struct TxFIFO_element __iomem *tx_fifo;
2fda096d 4083 unsigned long flags = 0;
be3a6b02 4084 u16 vlan_tag = 0;
2fda096d 4085 struct fifo_info *fifo = NULL;
6cfc482b 4086 int do_spin_lock = 1;
75c30b13 4087 int offload_type;
6cfc482b 4088 int enable_per_list_interrupt = 0;
ffb5df6c
JP
4089 struct config_param *config = &sp->config;
4090 struct mac_info *mac_control = &sp->mac_control;
4091 struct stat_block *stats = mac_control->stats_info;
4092 struct swStat *swstats = &stats->sw_stat;
1da177e4 4093
20346722 4094 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
491976b2
SH
4095
4096 if (unlikely(skb->len <= 0)) {
9e39f7c5 4097 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
491976b2 4098 dev_kfree_skb_any(skb);
6ed10654 4099 return NETDEV_TX_OK;
2fda096d 4100 }
491976b2 4101
92b84437 4102 if (!is_s2io_card_up(sp)) {
20346722 4103 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
1da177e4 4104 dev->name);
20346722 4105 dev_kfree_skb(skb);
6ed10654 4106 return NETDEV_TX_OK;
1da177e4
LT
4107 }
4108
4109 queue = 0;
3a3d5756 4110 if (sp->vlgrp && vlan_tx_tag_present(skb))
be3a6b02 4111 vlan_tag = vlan_tx_tag_get(skb);
6cfc482b
SH
4112 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4113 if (skb->protocol == htons(ETH_P_IP)) {
4114 struct iphdr *ip;
4115 struct tcphdr *th;
4116 ip = ip_hdr(skb);
4117
4118 if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4119 th = (struct tcphdr *)(((unsigned char *)ip) +
d44570e4 4120 ip->ihl*4);
6cfc482b
SH
4121
4122 if (ip->protocol == IPPROTO_TCP) {
4123 queue_len = sp->total_tcp_fifos;
4124 queue = (ntohs(th->source) +
d44570e4
JP
4125 ntohs(th->dest)) &
4126 sp->fifo_selector[queue_len - 1];
6cfc482b
SH
4127 if (queue >= queue_len)
4128 queue = queue_len - 1;
4129 } else if (ip->protocol == IPPROTO_UDP) {
4130 queue_len = sp->total_udp_fifos;
4131 queue = (ntohs(th->source) +
d44570e4
JP
4132 ntohs(th->dest)) &
4133 sp->fifo_selector[queue_len - 1];
6cfc482b
SH
4134 if (queue >= queue_len)
4135 queue = queue_len - 1;
4136 queue += sp->udp_fifo_idx;
4137 if (skb->len > 1024)
4138 enable_per_list_interrupt = 1;
4139 do_spin_lock = 0;
4140 }
4141 }
4142 }
4143 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4144 /* get fifo number based on skb->priority value */
4145 queue = config->fifo_mapping
d44570e4 4146 [skb->priority & (MAX_TX_FIFOS - 1)];
6cfc482b 4147 fifo = &mac_control->fifos[queue];
3a3d5756 4148
6cfc482b
SH
4149 if (do_spin_lock)
4150 spin_lock_irqsave(&fifo->tx_lock, flags);
4151 else {
4152 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4153 return NETDEV_TX_LOCKED;
4154 }
be3a6b02 4155
3a3d5756
SH
4156 if (sp->config.multiq) {
4157 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4158 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4159 return NETDEV_TX_BUSY;
4160 }
b19fa1fa 4161 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
3a3d5756
SH
4162 if (netif_queue_stopped(dev)) {
4163 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4164 return NETDEV_TX_BUSY;
4165 }
4166 }
4167
d44570e4
JP
4168 put_off = (u16)fifo->tx_curr_put_info.offset;
4169 get_off = (u16)fifo->tx_curr_get_info.offset;
4170 txdp = (struct TxD *)fifo->list_info[put_off].list_virt_addr;
20346722 4171
2fda096d 4172 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
1da177e4 4173 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9 4174 if (txdp->Host_Control ||
d44570e4 4175 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
776bd20f 4176 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3a3d5756 4177 s2io_stop_tx_queue(sp, fifo->fifo_no);
1da177e4 4178 dev_kfree_skb(skb);
2fda096d 4179 spin_unlock_irqrestore(&fifo->tx_lock, flags);
6ed10654 4180 return NETDEV_TX_OK;
1da177e4 4181 }
0b1f7ebe 4182
75c30b13 4183 offload_type = s2io_offload_type(skb);
75c30b13 4184 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
1da177e4 4185 txdp->Control_1 |= TXD_TCP_LSO_EN;
75c30b13 4186 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
1da177e4 4187 }
84fa7933 4188 if (skb->ip_summed == CHECKSUM_PARTIAL) {
d44570e4
JP
4189 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4190 TXD_TX_CKO_TCP_EN |
4191 TXD_TX_CKO_UDP_EN);
1da177e4 4192 }
fed5eccd
AR
4193 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4194 txdp->Control_1 |= TXD_LIST_OWN_XENA;
2fda096d 4195 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
6cfc482b
SH
4196 if (enable_per_list_interrupt)
4197 if (put_off & (queue_len >> 5))
4198 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
3a3d5756 4199 if (vlan_tag) {
be3a6b02
K
4200 txdp->Control_2 |= TXD_VLAN_ENABLE;
4201 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4202 }
4203
fed5eccd 4204 frg_len = skb->len - skb->data_len;
75c30b13 4205 if (offload_type == SKB_GSO_UDP) {
fed5eccd
AR
4206 int ufo_size;
4207
75c30b13 4208 ufo_size = s2io_udp_mss(skb);
fed5eccd
AR
4209 ufo_size &= ~7;
4210 txdp->Control_1 |= TXD_UFO_EN;
4211 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4212 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4213#ifdef __BIG_ENDIAN
3459feb8 4214 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
2fda096d 4215 fifo->ufo_in_band_v[put_off] =
d44570e4 4216 (__force u64)skb_shinfo(skb)->ip6_frag_id;
fed5eccd 4217#else
2fda096d 4218 fifo->ufo_in_band_v[put_off] =
d44570e4 4219 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
fed5eccd 4220#endif
2fda096d 4221 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
fed5eccd 4222 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
d44570e4
JP
4223 fifo->ufo_in_band_v,
4224 sizeof(u64),
4225 PCI_DMA_TODEVICE);
8d8bb39b 4226 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
491abf25 4227 goto pci_map_failed;
fed5eccd 4228 txdp++;
fed5eccd 4229 }
1da177e4 4230
d44570e4
JP
4231 txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4232 frg_len, PCI_DMA_TODEVICE);
8d8bb39b 4233 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
491abf25
VP
4234 goto pci_map_failed;
4235
d44570e4 4236 txdp->Host_Control = (unsigned long)skb;
fed5eccd 4237 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
75c30b13 4238 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4239 txdp->Control_1 |= TXD_UFO_EN;
4240
4241 frg_cnt = skb_shinfo(skb)->nr_frags;
1da177e4
LT
4242 /* For fragmented SKB. */
4243 for (i = 0; i < frg_cnt; i++) {
4244 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
0b1f7ebe
K
4245 /* A '0' length fragment will be ignored */
4246 if (!frag->size)
4247 continue;
1da177e4 4248 txdp++;
d44570e4
JP
4249 txdp->Buffer_Pointer = (u64)pci_map_page(sp->pdev, frag->page,
4250 frag->page_offset,
4251 frag->size,
4252 PCI_DMA_TODEVICE);
efd51b5c 4253 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
75c30b13 4254 if (offload_type == SKB_GSO_UDP)
fed5eccd 4255 txdp->Control_1 |= TXD_UFO_EN;
1da177e4
LT
4256 }
4257 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4258
75c30b13 4259 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4260 frg_cnt++; /* as Txd0 was used for inband header */
4261
1da177e4 4262 tx_fifo = mac_control->tx_FIFO_start[queue];
2fda096d 4263 val64 = fifo->list_info[put_off].list_phy_addr;
1da177e4
LT
4264 writeq(val64, &tx_fifo->TxDL_Pointer);
4265
4266 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4267 TX_FIFO_LAST_LIST);
75c30b13 4268 if (offload_type)
fed5eccd 4269 val64 |= TX_FIFO_SPECIAL_FUNC;
75c30b13 4270
1da177e4
LT
4271 writeq(val64, &tx_fifo->List_Control);
4272
303bcb4b
K
4273 mmiowb();
4274
1da177e4 4275 put_off++;
2fda096d 4276 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
863c11a9 4277 put_off = 0;
2fda096d 4278 fifo->tx_curr_put_info.offset = put_off;
1da177e4
LT
4279
4280 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9 4281 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
ffb5df6c 4282 swstats->fifo_full_cnt++;
1da177e4
LT
4283 DBG_PRINT(TX_DBG,
4284 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4285 put_off, get_off);
3a3d5756 4286 s2io_stop_tx_queue(sp, fifo->fifo_no);
1da177e4 4287 }
ffb5df6c 4288 swstats->mem_allocated += skb->truesize;
2fda096d 4289 spin_unlock_irqrestore(&fifo->tx_lock, flags);
1da177e4 4290
f6f4bfa3
SH
4291 if (sp->config.intr_type == MSI_X)
4292 tx_intr_handler(fifo);
4293
6ed10654 4294 return NETDEV_TX_OK;
ffb5df6c 4295
491abf25 4296pci_map_failed:
ffb5df6c 4297 swstats->pci_map_fail_cnt++;
3a3d5756 4298 s2io_stop_tx_queue(sp, fifo->fifo_no);
ffb5df6c 4299 swstats->mem_freed += skb->truesize;
491abf25 4300 dev_kfree_skb(skb);
2fda096d 4301 spin_unlock_irqrestore(&fifo->tx_lock, flags);
6ed10654 4302 return NETDEV_TX_OK;
1da177e4
LT
4303}
4304
25fff88e
K
4305static void
4306s2io_alarm_handle(unsigned long data)
4307{
1ee6dd77 4308 struct s2io_nic *sp = (struct s2io_nic *)data;
8116f3cf 4309 struct net_device *dev = sp->dev;
25fff88e 4310
8116f3cf 4311 s2io_handle_errors(dev);
25fff88e
K
4312 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4313}
4314
7d12e780 4315static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
cc6e7c44 4316{
1ee6dd77
RB
4317 struct ring_info *ring = (struct ring_info *)dev_id;
4318 struct s2io_nic *sp = ring->nic;
f61e0a35 4319 struct XENA_dev_config __iomem *bar0 = sp->bar0;
cc6e7c44 4320
f61e0a35 4321 if (unlikely(!is_s2io_card_up(sp)))
92b84437 4322 return IRQ_HANDLED;
92b84437 4323
f61e0a35 4324 if (sp->config.napi) {
1a79d1c3
AV
4325 u8 __iomem *addr = NULL;
4326 u8 val8 = 0;
f61e0a35 4327
1a79d1c3 4328 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
f61e0a35
SH
4329 addr += (7 - ring->ring_no);
4330 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4331 writeb(val8, addr);
4332 val8 = readb(addr);
288379f0 4333 napi_schedule(&ring->napi);
f61e0a35
SH
4334 } else {
4335 rx_intr_handler(ring, 0);
8d8bb39b 4336 s2io_chk_rx_buffers(sp, ring);
f61e0a35 4337 }
7d3d0439 4338
cc6e7c44
RA
4339 return IRQ_HANDLED;
4340}
4341
7d12e780 4342static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
cc6e7c44 4343{
ac731ab6
SH
4344 int i;
4345 struct fifo_info *fifos = (struct fifo_info *)dev_id;
4346 struct s2io_nic *sp = fifos->nic;
4347 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4348 struct config_param *config = &sp->config;
4349 u64 reason;
cc6e7c44 4350
ac731ab6
SH
4351 if (unlikely(!is_s2io_card_up(sp)))
4352 return IRQ_NONE;
4353
4354 reason = readq(&bar0->general_int_status);
4355 if (unlikely(reason == S2IO_MINUS_ONE))
4356 /* Nothing much can be done. Get out */
92b84437 4357 return IRQ_HANDLED;
92b84437 4358
01e16faa
SH
4359 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4360 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
ac731ab6 4361
01e16faa
SH
4362 if (reason & GEN_INTR_TXPIC)
4363 s2io_txpic_intr_handle(sp);
ac731ab6 4364
01e16faa
SH
4365 if (reason & GEN_INTR_TXTRAFFIC)
4366 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
ac731ab6 4367
01e16faa
SH
4368 for (i = 0; i < config->tx_fifo_num; i++)
4369 tx_intr_handler(&fifos[i]);
ac731ab6 4370
01e16faa
SH
4371 writeq(sp->general_int_mask, &bar0->general_int_mask);
4372 readl(&bar0->general_int_status);
4373 return IRQ_HANDLED;
4374 }
4375 /* The interrupt was not raised by us */
4376 return IRQ_NONE;
cc6e7c44 4377}
ac731ab6 4378
1ee6dd77 4379static void s2io_txpic_intr_handle(struct s2io_nic *sp)
a371a07d 4380{
1ee6dd77 4381 struct XENA_dev_config __iomem *bar0 = sp->bar0;
a371a07d
K
4382 u64 val64;
4383
4384 val64 = readq(&bar0->pic_int_status);
4385 if (val64 & PIC_INT_GPIO) {
4386 val64 = readq(&bar0->gpio_int_reg);
4387 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4388 (val64 & GPIO_INT_REG_LINK_UP)) {
c92ca04b
AR
4389 /*
4390 * This is unstable state so clear both up/down
4391 * interrupt and adapter to re-evaluate the link state.
4392 */
d44570e4 4393 val64 |= GPIO_INT_REG_LINK_DOWN;
a371a07d
K
4394 val64 |= GPIO_INT_REG_LINK_UP;
4395 writeq(val64, &bar0->gpio_int_reg);
a371a07d 4396 val64 = readq(&bar0->gpio_int_mask);
c92ca04b
AR
4397 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4398 GPIO_INT_MASK_LINK_DOWN);
a371a07d 4399 writeq(val64, &bar0->gpio_int_mask);
d44570e4 4400 } else if (val64 & GPIO_INT_REG_LINK_UP) {
c92ca04b 4401 val64 = readq(&bar0->adapter_status);
d44570e4 4402 /* Enable Adapter */
19a60522
SS
4403 val64 = readq(&bar0->adapter_control);
4404 val64 |= ADAPTER_CNTL_EN;
4405 writeq(val64, &bar0->adapter_control);
4406 val64 |= ADAPTER_LED_ON;
4407 writeq(val64, &bar0->adapter_control);
4408 if (!sp->device_enabled_once)
4409 sp->device_enabled_once = 1;
c92ca04b 4410
19a60522
SS
4411 s2io_link(sp, LINK_UP);
4412 /*
4413 * unmask link down interrupt and mask link-up
4414 * intr
4415 */
4416 val64 = readq(&bar0->gpio_int_mask);
4417 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4418 val64 |= GPIO_INT_MASK_LINK_UP;
4419 writeq(val64, &bar0->gpio_int_mask);
c92ca04b 4420
d44570e4 4421 } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
c92ca04b 4422 val64 = readq(&bar0->adapter_status);
19a60522
SS
4423 s2io_link(sp, LINK_DOWN);
4424 /* Link is down so unmaks link up interrupt */
4425 val64 = readq(&bar0->gpio_int_mask);
4426 val64 &= ~GPIO_INT_MASK_LINK_UP;
4427 val64 |= GPIO_INT_MASK_LINK_DOWN;
4428 writeq(val64, &bar0->gpio_int_mask);
ac1f90d6
SS
4429
4430 /* turn off LED */
4431 val64 = readq(&bar0->adapter_control);
d44570e4 4432 val64 = val64 & (~ADAPTER_LED_ON);
ac1f90d6 4433 writeq(val64, &bar0->adapter_control);
a371a07d
K
4434 }
4435 }
c92ca04b 4436 val64 = readq(&bar0->gpio_int_mask);
a371a07d
K
4437}
4438
8116f3cf
SS
4439/**
4440 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4441 * @value: alarm bits
4442 * @addr: address value
4443 * @cnt: counter variable
4444 * Description: Check for alarm and increment the counter
4445 * Return Value:
4446 * 1 - if alarm bit set
4447 * 0 - if alarm bit is not set
4448 */
d44570e4
JP
4449static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4450 unsigned long long *cnt)
8116f3cf
SS
4451{
4452 u64 val64;
4453 val64 = readq(addr);
d44570e4 4454 if (val64 & value) {
8116f3cf
SS
4455 writeq(val64, addr);
4456 (*cnt)++;
4457 return 1;
4458 }
4459 return 0;
4460
4461}
4462
4463/**
4464 * s2io_handle_errors - Xframe error indication handler
4465 * @nic: device private variable
4466 * Description: Handle alarms such as loss of link, single or
4467 * double ECC errors, critical and serious errors.
4468 * Return Value:
4469 * NONE
4470 */
d44570e4 4471static void s2io_handle_errors(void *dev_id)
8116f3cf 4472{
d44570e4 4473 struct net_device *dev = (struct net_device *)dev_id;
4cf1653a 4474 struct s2io_nic *sp = netdev_priv(dev);
8116f3cf 4475 struct XENA_dev_config __iomem *bar0 = sp->bar0;
d44570e4 4476 u64 temp64 = 0, val64 = 0;
8116f3cf
SS
4477 int i = 0;
4478
4479 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4480 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4481
92b84437 4482 if (!is_s2io_card_up(sp))
8116f3cf
SS
4483 return;
4484
4485 if (pci_channel_offline(sp->pdev))
4486 return;
4487
4488 memset(&sw_stat->ring_full_cnt, 0,
d44570e4 4489 sizeof(sw_stat->ring_full_cnt));
8116f3cf
SS
4490
4491 /* Handling the XPAK counters update */
d44570e4 4492 if (stats->xpak_timer_count < 72000) {
8116f3cf
SS
4493 /* waiting for an hour */
4494 stats->xpak_timer_count++;
4495 } else {
4496 s2io_updt_xpak_counter(dev);
4497 /* reset the count to zero */
4498 stats->xpak_timer_count = 0;
4499 }
4500
4501 /* Handling link status change error Intr */
4502 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4503 val64 = readq(&bar0->mac_rmac_err_reg);
4504 writeq(val64, &bar0->mac_rmac_err_reg);
4505 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4506 schedule_work(&sp->set_link_task);
4507 }
4508
4509 /* In case of a serious error, the device will be Reset. */
4510 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
d44570e4 4511 &sw_stat->serious_err_cnt))
8116f3cf
SS
4512 goto reset;
4513
4514 /* Check for data parity error */
4515 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
d44570e4 4516 &sw_stat->parity_err_cnt))
8116f3cf
SS
4517 goto reset;
4518
4519 /* Check for ring full counter */
4520 if (sp->device_type == XFRAME_II_DEVICE) {
4521 val64 = readq(&bar0->ring_bump_counter1);
d44570e4
JP
4522 for (i = 0; i < 4; i++) {
4523 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
8116f3cf
SS
4524 temp64 >>= 64 - ((i+1)*16);
4525 sw_stat->ring_full_cnt[i] += temp64;
4526 }
4527
4528 val64 = readq(&bar0->ring_bump_counter2);
d44570e4
JP
4529 for (i = 0; i < 4; i++) {
4530 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
8116f3cf 4531 temp64 >>= 64 - ((i+1)*16);
d44570e4 4532 sw_stat->ring_full_cnt[i+4] += temp64;
8116f3cf
SS
4533 }
4534 }
4535
4536 val64 = readq(&bar0->txdma_int_status);
4537 /*check for pfc_err*/
4538 if (val64 & TXDMA_PFC_INT) {
d44570e4
JP
4539 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4540 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4541 PFC_PCIX_ERR,
4542 &bar0->pfc_err_reg,
4543 &sw_stat->pfc_err_cnt))
8116f3cf 4544 goto reset;
d44570e4
JP
4545 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4546 &bar0->pfc_err_reg,
4547 &sw_stat->pfc_err_cnt);
8116f3cf
SS
4548 }
4549
4550 /*check for tda_err*/
4551 if (val64 & TXDMA_TDA_INT) {
d44570e4
JP
4552 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4553 TDA_SM0_ERR_ALARM |
4554 TDA_SM1_ERR_ALARM,
4555 &bar0->tda_err_reg,
4556 &sw_stat->tda_err_cnt))
8116f3cf
SS
4557 goto reset;
4558 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
d44570e4
JP
4559 &bar0->tda_err_reg,
4560 &sw_stat->tda_err_cnt);
8116f3cf
SS
4561 }
4562 /*check for pcc_err*/
4563 if (val64 & TXDMA_PCC_INT) {
d44570e4
JP
4564 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4565 PCC_N_SERR | PCC_6_COF_OV_ERR |
4566 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4567 PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4568 PCC_TXB_ECC_DB_ERR,
4569 &bar0->pcc_err_reg,
4570 &sw_stat->pcc_err_cnt))
8116f3cf
SS
4571 goto reset;
4572 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
d44570e4
JP
4573 &bar0->pcc_err_reg,
4574 &sw_stat->pcc_err_cnt);
8116f3cf
SS
4575 }
4576
4577 /*check for tti_err*/
4578 if (val64 & TXDMA_TTI_INT) {
d44570e4
JP
4579 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4580 &bar0->tti_err_reg,
4581 &sw_stat->tti_err_cnt))
8116f3cf
SS
4582 goto reset;
4583 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
d44570e4
JP
4584 &bar0->tti_err_reg,
4585 &sw_stat->tti_err_cnt);
8116f3cf
SS
4586 }
4587
4588 /*check for lso_err*/
4589 if (val64 & TXDMA_LSO_INT) {
d44570e4
JP
4590 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4591 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4592 &bar0->lso_err_reg,
4593 &sw_stat->lso_err_cnt))
8116f3cf
SS
4594 goto reset;
4595 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
d44570e4
JP
4596 &bar0->lso_err_reg,
4597 &sw_stat->lso_err_cnt);
8116f3cf
SS
4598 }
4599
4600 /*check for tpa_err*/
4601 if (val64 & TXDMA_TPA_INT) {
d44570e4
JP
4602 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4603 &bar0->tpa_err_reg,
4604 &sw_stat->tpa_err_cnt))
8116f3cf 4605 goto reset;
d44570e4
JP
4606 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4607 &bar0->tpa_err_reg,
4608 &sw_stat->tpa_err_cnt);
8116f3cf
SS
4609 }
4610
4611 /*check for sm_err*/
4612 if (val64 & TXDMA_SM_INT) {
d44570e4
JP
4613 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4614 &bar0->sm_err_reg,
4615 &sw_stat->sm_err_cnt))
8116f3cf
SS
4616 goto reset;
4617 }
4618
4619 val64 = readq(&bar0->mac_int_status);
4620 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4621 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
d44570e4
JP
4622 &bar0->mac_tmac_err_reg,
4623 &sw_stat->mac_tmac_err_cnt))
8116f3cf 4624 goto reset;
d44570e4
JP
4625 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4626 TMAC_DESC_ECC_SG_ERR |
4627 TMAC_DESC_ECC_DB_ERR,
4628 &bar0->mac_tmac_err_reg,
4629 &sw_stat->mac_tmac_err_cnt);
8116f3cf
SS
4630 }
4631
4632 val64 = readq(&bar0->xgxs_int_status);
4633 if (val64 & XGXS_INT_STATUS_TXGXS) {
4634 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
d44570e4
JP
4635 &bar0->xgxs_txgxs_err_reg,
4636 &sw_stat->xgxs_txgxs_err_cnt))
8116f3cf
SS
4637 goto reset;
4638 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
d44570e4
JP
4639 &bar0->xgxs_txgxs_err_reg,
4640 &sw_stat->xgxs_txgxs_err_cnt);
8116f3cf
SS
4641 }
4642
4643 val64 = readq(&bar0->rxdma_int_status);
4644 if (val64 & RXDMA_INT_RC_INT_M) {
d44570e4
JP
4645 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4646 RC_FTC_ECC_DB_ERR |
4647 RC_PRCn_SM_ERR_ALARM |
4648 RC_FTC_SM_ERR_ALARM,
4649 &bar0->rc_err_reg,
4650 &sw_stat->rc_err_cnt))
8116f3cf 4651 goto reset;
d44570e4
JP
4652 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4653 RC_FTC_ECC_SG_ERR |
4654 RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4655 &sw_stat->rc_err_cnt);
4656 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4657 PRC_PCI_AB_WR_Rn |
4658 PRC_PCI_AB_F_WR_Rn,
4659 &bar0->prc_pcix_err_reg,
4660 &sw_stat->prc_pcix_err_cnt))
8116f3cf 4661 goto reset;
d44570e4
JP
4662 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4663 PRC_PCI_DP_WR_Rn |
4664 PRC_PCI_DP_F_WR_Rn,
4665 &bar0->prc_pcix_err_reg,
4666 &sw_stat->prc_pcix_err_cnt);
8116f3cf
SS
4667 }
4668
4669 if (val64 & RXDMA_INT_RPA_INT_M) {
4670 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
d44570e4
JP
4671 &bar0->rpa_err_reg,
4672 &sw_stat->rpa_err_cnt))
8116f3cf
SS
4673 goto reset;
4674 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
d44570e4
JP
4675 &bar0->rpa_err_reg,
4676 &sw_stat->rpa_err_cnt);
8116f3cf
SS
4677 }
4678
4679 if (val64 & RXDMA_INT_RDA_INT_M) {
d44570e4
JP
4680 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4681 RDA_FRM_ECC_DB_N_AERR |
4682 RDA_SM1_ERR_ALARM |
4683 RDA_SM0_ERR_ALARM |
4684 RDA_RXD_ECC_DB_SERR,
4685 &bar0->rda_err_reg,
4686 &sw_stat->rda_err_cnt))
8116f3cf 4687 goto reset;
d44570e4
JP
4688 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4689 RDA_FRM_ECC_SG_ERR |
4690 RDA_MISC_ERR |
4691 RDA_PCIX_ERR,
4692 &bar0->rda_err_reg,
4693 &sw_stat->rda_err_cnt);
8116f3cf
SS
4694 }
4695
4696 if (val64 & RXDMA_INT_RTI_INT_M) {
d44570e4
JP
4697 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4698 &bar0->rti_err_reg,
4699 &sw_stat->rti_err_cnt))
8116f3cf
SS
4700 goto reset;
4701 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
d44570e4
JP
4702 &bar0->rti_err_reg,
4703 &sw_stat->rti_err_cnt);
8116f3cf
SS
4704 }
4705
4706 val64 = readq(&bar0->mac_int_status);
4707 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4708 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
d44570e4
JP
4709 &bar0->mac_rmac_err_reg,
4710 &sw_stat->mac_rmac_err_cnt))
8116f3cf 4711 goto reset;
d44570e4
JP
4712 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4713 RMAC_SINGLE_ECC_ERR |
4714 RMAC_DOUBLE_ECC_ERR,
4715 &bar0->mac_rmac_err_reg,
4716 &sw_stat->mac_rmac_err_cnt);
8116f3cf
SS
4717 }
4718
4719 val64 = readq(&bar0->xgxs_int_status);
4720 if (val64 & XGXS_INT_STATUS_RXGXS) {
4721 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
d44570e4
JP
4722 &bar0->xgxs_rxgxs_err_reg,
4723 &sw_stat->xgxs_rxgxs_err_cnt))
8116f3cf
SS
4724 goto reset;
4725 }
4726
4727 val64 = readq(&bar0->mc_int_status);
d44570e4
JP
4728 if (val64 & MC_INT_STATUS_MC_INT) {
4729 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4730 &bar0->mc_err_reg,
4731 &sw_stat->mc_err_cnt))
8116f3cf
SS
4732 goto reset;
4733
4734 /* Handling Ecc errors */
4735 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4736 writeq(val64, &bar0->mc_err_reg);
4737 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4738 sw_stat->double_ecc_errs++;
4739 if (sp->device_type != XFRAME_II_DEVICE) {
4740 /*
4741 * Reset XframeI only if critical error
4742 */
4743 if (val64 &
d44570e4
JP
4744 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4745 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4746 goto reset;
4747 }
8116f3cf
SS
4748 } else
4749 sw_stat->single_ecc_errs++;
4750 }
4751 }
4752 return;
4753
4754reset:
3a3d5756 4755 s2io_stop_all_tx_queue(sp);
8116f3cf
SS
4756 schedule_work(&sp->rst_timer_task);
4757 sw_stat->soft_reset_cnt++;
4758 return;
4759}
4760
1da177e4
LT
4761/**
4762 * s2io_isr - ISR handler of the device .
4763 * @irq: the irq of the device.
4764 * @dev_id: a void pointer to the dev structure of the NIC.
20346722
K
4765 * Description: This function is the ISR handler of the device. It
4766 * identifies the reason for the interrupt and calls the relevant
4767 * service routines. As a contongency measure, this ISR allocates the
1da177e4
LT
4768 * recv buffers, if their numbers are below the panic value which is
4769 * presently set to 25% of the original number of rcv buffers allocated.
4770 * Return value:
20346722 4771 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
1da177e4
LT
4772 * IRQ_NONE: will be returned if interrupt is not from our device
4773 */
7d12e780 4774static irqreturn_t s2io_isr(int irq, void *dev_id)
1da177e4 4775{
d44570e4 4776 struct net_device *dev = (struct net_device *)dev_id;
4cf1653a 4777 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 4778 struct XENA_dev_config __iomem *bar0 = sp->bar0;
20346722 4779 int i;
19a60522 4780 u64 reason = 0;
1ee6dd77 4781 struct mac_info *mac_control;
1da177e4
LT
4782 struct config_param *config;
4783
d796fdb7
LV
4784 /* Pretend we handled any irq's from a disconnected card */
4785 if (pci_channel_offline(sp->pdev))
4786 return IRQ_NONE;
4787
596c5c97 4788 if (!is_s2io_card_up(sp))
92b84437 4789 return IRQ_NONE;
92b84437 4790
1da177e4 4791 config = &sp->config;
ffb5df6c 4792 mac_control = &sp->mac_control;
1da177e4 4793
20346722 4794 /*
1da177e4
LT
4795 * Identify the cause for interrupt and call the appropriate
4796 * interrupt handler. Causes for the interrupt could be;
4797 * 1. Rx of packet.
4798 * 2. Tx complete.
4799 * 3. Link down.
1da177e4
LT
4800 */
4801 reason = readq(&bar0->general_int_status);
4802
d44570e4
JP
4803 if (unlikely(reason == S2IO_MINUS_ONE))
4804 return IRQ_HANDLED; /* Nothing much can be done. Get out */
5d3213cc 4805
d44570e4
JP
4806 if (reason &
4807 (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
596c5c97
SS
4808 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4809
4810 if (config->napi) {
4811 if (reason & GEN_INTR_RXTRAFFIC) {
288379f0 4812 napi_schedule(&sp->napi);
f61e0a35
SH
4813 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4814 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4815 readl(&bar0->rx_traffic_int);
db874e65 4816 }
596c5c97
SS
4817 } else {
4818 /*
4819 * rx_traffic_int reg is an R1 register, writing all 1's
4820 * will ensure that the actual interrupt causing bit
4821 * get's cleared and hence a read can be avoided.
4822 */
4823 if (reason & GEN_INTR_RXTRAFFIC)
19a60522 4824 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
596c5c97 4825
13d866a9
JP
4826 for (i = 0; i < config->rx_ring_num; i++) {
4827 struct ring_info *ring = &mac_control->rings[i];
4828
4829 rx_intr_handler(ring, 0);
4830 }
db874e65 4831 }
596c5c97 4832
db874e65 4833 /*
596c5c97 4834 * tx_traffic_int reg is an R1 register, writing all 1's
db874e65
SS
4835 * will ensure that the actual interrupt causing bit get's
4836 * cleared and hence a read can be avoided.
4837 */
596c5c97
SS
4838 if (reason & GEN_INTR_TXTRAFFIC)
4839 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
19a60522 4840
596c5c97
SS
4841 for (i = 0; i < config->tx_fifo_num; i++)
4842 tx_intr_handler(&mac_control->fifos[i]);
1da177e4 4843
596c5c97
SS
4844 if (reason & GEN_INTR_TXPIC)
4845 s2io_txpic_intr_handle(sp);
fe113638 4846
596c5c97
SS
4847 /*
4848 * Reallocate the buffers from the interrupt handler itself.
4849 */
4850 if (!config->napi) {
13d866a9
JP
4851 for (i = 0; i < config->rx_ring_num; i++) {
4852 struct ring_info *ring = &mac_control->rings[i];
4853
4854 s2io_chk_rx_buffers(sp, ring);
4855 }
596c5c97
SS
4856 }
4857 writeq(sp->general_int_mask, &bar0->general_int_mask);
4858 readl(&bar0->general_int_status);
20346722 4859
596c5c97 4860 return IRQ_HANDLED;
db874e65 4861
d44570e4 4862 } else if (!reason) {
596c5c97
SS
4863 /* The interrupt was not raised by us */
4864 return IRQ_NONE;
4865 }
db874e65 4866
1da177e4
LT
4867 return IRQ_HANDLED;
4868}
4869
7ba013ac
K
4870/**
4871 * s2io_updt_stats -
4872 */
1ee6dd77 4873static void s2io_updt_stats(struct s2io_nic *sp)
7ba013ac 4874{
1ee6dd77 4875 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7ba013ac
K
4876 u64 val64;
4877 int cnt = 0;
4878
92b84437 4879 if (is_s2io_card_up(sp)) {
7ba013ac
K
4880 /* Apprx 30us on a 133 MHz bus */
4881 val64 = SET_UPDT_CLICKS(10) |
4882 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4883 writeq(val64, &bar0->stat_cfg);
4884 do {
4885 udelay(100);
4886 val64 = readq(&bar0->stat_cfg);
b7b5a128 4887 if (!(val64 & s2BIT(0)))
7ba013ac
K
4888 break;
4889 cnt++;
4890 if (cnt == 5)
4891 break; /* Updt failed */
d44570e4 4892 } while (1);
8a4bdbaa 4893 }
7ba013ac
K
4894}
4895
1da177e4 4896/**
20346722 4897 * s2io_get_stats - Updates the device statistics structure.
1da177e4
LT
4898 * @dev : pointer to the device structure.
4899 * Description:
20346722 4900 * This function updates the device statistics structure in the s2io_nic
1da177e4
LT
4901 * structure and returns a pointer to the same.
4902 * Return value:
4903 * pointer to the updated net_device_stats structure.
4904 */
4905
ac1f60db 4906static struct net_device_stats *s2io_get_stats(struct net_device *dev)
1da177e4 4907{
4cf1653a 4908 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c
JP
4909 struct config_param *config = &sp->config;
4910 struct mac_info *mac_control = &sp->mac_control;
4911 struct stat_block *stats = mac_control->stats_info;
0425b46a 4912 int i;
1da177e4 4913
7ba013ac
K
4914 /* Configure Stats for immediate updt */
4915 s2io_updt_stats(sp);
4916
dc56e634
BL
4917 /* Using sp->stats as a staging area, because reset (due to mtu
4918 change, for example) will clear some hardware counters */
ffb5df6c 4919 dev->stats.tx_packets += le32_to_cpu(stats->tmac_frms) -
dc56e634 4920 sp->stats.tx_packets;
ffb5df6c
JP
4921 sp->stats.tx_packets = le32_to_cpu(stats->tmac_frms);
4922
4923 dev->stats.tx_errors += le32_to_cpu(stats->tmac_any_err_frms) -
dc56e634 4924 sp->stats.tx_errors;
ffb5df6c
JP
4925 sp->stats.tx_errors = le32_to_cpu(stats->tmac_any_err_frms);
4926
4927 dev->stats.rx_errors += le64_to_cpu(stats->rmac_drop_frms) -
dc56e634 4928 sp->stats.rx_errors;
ffb5df6c
JP
4929 sp->stats.rx_errors = le64_to_cpu(stats->rmac_drop_frms);
4930
4931 dev->stats.multicast = le32_to_cpu(stats->rmac_vld_mcst_frms) -
dc56e634 4932 sp->stats.multicast;
ffb5df6c
JP
4933 sp->stats.multicast = le32_to_cpu(stats->rmac_vld_mcst_frms);
4934
4935 dev->stats.rx_length_errors = le64_to_cpu(stats->rmac_long_frms) -
dc56e634 4936 sp->stats.rx_length_errors;
ffb5df6c 4937 sp->stats.rx_length_errors = le64_to_cpu(stats->rmac_long_frms);
1da177e4 4938
0425b46a 4939 /* collect per-ring rx_packets and rx_bytes */
dc56e634 4940 dev->stats.rx_packets = dev->stats.rx_bytes = 0;
0425b46a 4941 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
4942 struct ring_info *ring = &mac_control->rings[i];
4943
4944 dev->stats.rx_packets += ring->rx_packets;
4945 dev->stats.rx_bytes += ring->rx_bytes;
0425b46a
SH
4946 }
4947
d44570e4 4948 return &dev->stats;
1da177e4
LT
4949}
4950
4951/**
4952 * s2io_set_multicast - entry point for multicast address enable/disable.
4953 * @dev : pointer to the device structure
4954 * Description:
20346722
K
4955 * This function is a driver entry point which gets called by the kernel
4956 * whenever multicast addresses must be enabled/disabled. This also gets
1da177e4
LT
4957 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4958 * determine, if multicast address must be enabled or if promiscuous mode
4959 * is to be disabled etc.
4960 * Return value:
4961 * void.
4962 */
4963
4964static void s2io_set_multicast(struct net_device *dev)
4965{
4966 int i, j, prev_cnt;
4967 struct dev_mc_list *mclist;
4cf1653a 4968 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 4969 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 4970 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
d44570e4 4971 0xfeffffffffffULL;
faa4f796 4972 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
1da177e4 4973 void __iomem *add;
faa4f796 4974 struct config_param *config = &sp->config;
1da177e4
LT
4975
4976 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4977 /* Enable all Multicast addresses */
4978 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4979 &bar0->rmac_addr_data0_mem);
4980 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4981 &bar0->rmac_addr_data1_mem);
4982 val64 = RMAC_ADDR_CMD_MEM_WE |
d44570e4
JP
4983 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4984 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
1da177e4
LT
4985 writeq(val64, &bar0->rmac_addr_cmd_mem);
4986 /* Wait till command completes */
c92ca04b 4987 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
4988 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4989 S2IO_BIT_RESET);
1da177e4
LT
4990
4991 sp->m_cast_flg = 1;
faa4f796 4992 sp->all_multi_pos = config->max_mc_addr - 1;
1da177e4
LT
4993 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4994 /* Disable all Multicast addresses */
4995 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4996 &bar0->rmac_addr_data0_mem);
5e25b9dd
K
4997 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4998 &bar0->rmac_addr_data1_mem);
1da177e4 4999 val64 = RMAC_ADDR_CMD_MEM_WE |
d44570e4
JP
5000 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5001 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
1da177e4
LT
5002 writeq(val64, &bar0->rmac_addr_cmd_mem);
5003 /* Wait till command completes */
c92ca04b 5004 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5005 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5006 S2IO_BIT_RESET);
1da177e4
LT
5007
5008 sp->m_cast_flg = 0;
5009 sp->all_multi_pos = 0;
5010 }
5011
5012 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
5013 /* Put the NIC into promiscuous mode */
5014 add = &bar0->mac_cfg;
5015 val64 = readq(&bar0->mac_cfg);
5016 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5017
5018 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
d44570e4 5019 writel((u32)val64, add);
1da177e4
LT
5020 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5021 writel((u32) (val64 >> 32), (add + 4));
5022
926930b2
SS
5023 if (vlan_tag_strip != 1) {
5024 val64 = readq(&bar0->rx_pa_cfg);
5025 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5026 writeq(val64, &bar0->rx_pa_cfg);
cd0fce03 5027 sp->vlan_strip_flag = 0;
926930b2
SS
5028 }
5029
1da177e4
LT
5030 val64 = readq(&bar0->mac_cfg);
5031 sp->promisc_flg = 1;
776bd20f 5032 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
1da177e4
LT
5033 dev->name);
5034 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5035 /* Remove the NIC from promiscuous mode */
5036 add = &bar0->mac_cfg;
5037 val64 = readq(&bar0->mac_cfg);
5038 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5039
5040 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
d44570e4 5041 writel((u32)val64, add);
1da177e4
LT
5042 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5043 writel((u32) (val64 >> 32), (add + 4));
5044
926930b2
SS
5045 if (vlan_tag_strip != 0) {
5046 val64 = readq(&bar0->rx_pa_cfg);
5047 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5048 writeq(val64, &bar0->rx_pa_cfg);
cd0fce03 5049 sp->vlan_strip_flag = 1;
926930b2
SS
5050 }
5051
1da177e4
LT
5052 val64 = readq(&bar0->mac_cfg);
5053 sp->promisc_flg = 0;
9e39f7c5 5054 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
1da177e4
LT
5055 }
5056
5057 /* Update individual M_CAST address list */
4cd24eaf
JP
5058 if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
5059 if (netdev_mc_count(dev) >
faa4f796 5060 (config->max_mc_addr - config->max_mac_addr)) {
9e39f7c5
JP
5061 DBG_PRINT(ERR_DBG,
5062 "%s: No more Rx filters can be added - "
5063 "please enable ALL_MULTI instead\n",
1da177e4 5064 dev->name);
1da177e4
LT
5065 return;
5066 }
5067
5068 prev_cnt = sp->mc_addr_count;
4cd24eaf 5069 sp->mc_addr_count = netdev_mc_count(dev);
1da177e4
LT
5070
5071 /* Clear out the previous list of Mc in the H/W. */
5072 for (i = 0; i < prev_cnt; i++) {
5073 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5074 &bar0->rmac_addr_data0_mem);
5075 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
d44570e4 5076 &bar0->rmac_addr_data1_mem);
1da177e4 5077 val64 = RMAC_ADDR_CMD_MEM_WE |
d44570e4
JP
5078 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5079 RMAC_ADDR_CMD_MEM_OFFSET
5080 (config->mc_start_offset + i);
1da177e4
LT
5081 writeq(val64, &bar0->rmac_addr_cmd_mem);
5082
5083 /* Wait for command completes */
c92ca04b 5084 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5085 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5086 S2IO_BIT_RESET)) {
9e39f7c5
JP
5087 DBG_PRINT(ERR_DBG,
5088 "%s: Adding Multicasts failed\n",
5089 dev->name);
1da177e4
LT
5090 return;
5091 }
5092 }
5093
5094 /* Create the new Rx filter list and update the same in H/W. */
5508590c
JP
5095 i = 0;
5096 netdev_for_each_mc_addr(mclist, dev) {
1da177e4
LT
5097 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
5098 ETH_ALEN);
a7a80d5a 5099 mac_addr = 0;
1da177e4
LT
5100 for (j = 0; j < ETH_ALEN; j++) {
5101 mac_addr |= mclist->dmi_addr[j];
5102 mac_addr <<= 8;
5103 }
5104 mac_addr >>= 8;
5105 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5106 &bar0->rmac_addr_data0_mem);
5107 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
d44570e4 5108 &bar0->rmac_addr_data1_mem);
1da177e4 5109 val64 = RMAC_ADDR_CMD_MEM_WE |
d44570e4
JP
5110 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5111 RMAC_ADDR_CMD_MEM_OFFSET
5112 (i + config->mc_start_offset);
1da177e4
LT
5113 writeq(val64, &bar0->rmac_addr_cmd_mem);
5114
5115 /* Wait for command completes */
c92ca04b 5116 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5117 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5118 S2IO_BIT_RESET)) {
9e39f7c5
JP
5119 DBG_PRINT(ERR_DBG,
5120 "%s: Adding Multicasts failed\n",
5121 dev->name);
1da177e4
LT
5122 return;
5123 }
5508590c 5124 i++;
1da177e4
LT
5125 }
5126 }
5127}
5128
faa4f796
SH
5129/* read from CAM unicast & multicast addresses and store it in
5130 * def_mac_addr structure
5131 */
dac499f9 5132static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
faa4f796
SH
5133{
5134 int offset;
5135 u64 mac_addr = 0x0;
5136 struct config_param *config = &sp->config;
5137
5138 /* store unicast & multicast mac addresses */
5139 for (offset = 0; offset < config->max_mc_addr; offset++) {
5140 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5141 /* if read fails disable the entry */
5142 if (mac_addr == FAILURE)
5143 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5144 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5145 }
5146}
5147
5148/* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5149static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5150{
5151 int offset;
5152 struct config_param *config = &sp->config;
5153 /* restore unicast mac address */
5154 for (offset = 0; offset < config->max_mac_addr; offset++)
5155 do_s2io_prog_unicast(sp->dev,
d44570e4 5156 sp->def_mac_addr[offset].mac_addr);
faa4f796
SH
5157
5158 /* restore multicast mac address */
5159 for (offset = config->mc_start_offset;
d44570e4 5160 offset < config->max_mc_addr; offset++)
faa4f796
SH
5161 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5162}
5163
5164/* add a multicast MAC address to CAM */
5165static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5166{
5167 int i;
5168 u64 mac_addr = 0;
5169 struct config_param *config = &sp->config;
5170
5171 for (i = 0; i < ETH_ALEN; i++) {
5172 mac_addr <<= 8;
5173 mac_addr |= addr[i];
5174 }
5175 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5176 return SUCCESS;
5177
5178 /* check if the multicast mac already preset in CAM */
5179 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5180 u64 tmp64;
5181 tmp64 = do_s2io_read_unicast_mc(sp, i);
5182 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5183 break;
5184
5185 if (tmp64 == mac_addr)
5186 return SUCCESS;
5187 }
5188 if (i == config->max_mc_addr) {
5189 DBG_PRINT(ERR_DBG,
d44570e4 5190 "CAM full no space left for multicast MAC\n");
faa4f796
SH
5191 return FAILURE;
5192 }
5193 /* Update the internal structure with this new mac address */
5194 do_s2io_copy_mac_addr(sp, i, mac_addr);
5195
d44570e4 5196 return do_s2io_add_mac(sp, mac_addr, i);
faa4f796
SH
5197}
5198
5199/* add MAC address to CAM */
5200static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
2fd37688
SS
5201{
5202 u64 val64;
5203 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5204
5205 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
d44570e4 5206 &bar0->rmac_addr_data0_mem);
2fd37688 5207
d44570e4 5208 val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
2fd37688
SS
5209 RMAC_ADDR_CMD_MEM_OFFSET(off);
5210 writeq(val64, &bar0->rmac_addr_cmd_mem);
5211
5212 /* Wait till command completes */
5213 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5214 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5215 S2IO_BIT_RESET)) {
faa4f796 5216 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
2fd37688
SS
5217 return FAILURE;
5218 }
5219 return SUCCESS;
5220}
faa4f796
SH
5221/* deletes a specified unicast/multicast mac entry from CAM */
5222static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5223{
5224 int offset;
5225 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5226 struct config_param *config = &sp->config;
5227
5228 for (offset = 1;
d44570e4 5229 offset < config->max_mc_addr; offset++) {
faa4f796
SH
5230 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5231 if (tmp64 == addr) {
5232 /* disable the entry by writing 0xffffffffffffULL */
5233 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5234 return FAILURE;
5235 /* store the new mac list from CAM */
5236 do_s2io_store_unicast_mc(sp);
5237 return SUCCESS;
5238 }
5239 }
5240 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
d44570e4 5241 (unsigned long long)addr);
faa4f796
SH
5242 return FAILURE;
5243}
5244
5245/* read mac entries from CAM */
5246static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5247{
5248 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5249 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5250
5251 /* read mac addr */
d44570e4 5252 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
faa4f796
SH
5253 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5254 writeq(val64, &bar0->rmac_addr_cmd_mem);
5255
5256 /* Wait till command completes */
5257 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5258 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5259 S2IO_BIT_RESET)) {
faa4f796
SH
5260 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5261 return FAILURE;
5262 }
5263 tmp64 = readq(&bar0->rmac_addr_data0_mem);
d44570e4
JP
5264
5265 return tmp64 >> 16;
faa4f796 5266}
2fd37688
SS
5267
5268/**
5269 * s2io_set_mac_addr driver entry point
5270 */
faa4f796 5271
2fd37688
SS
5272static int s2io_set_mac_addr(struct net_device *dev, void *p)
5273{
5274 struct sockaddr *addr = p;
5275
5276 if (!is_valid_ether_addr(addr->sa_data))
5277 return -EINVAL;
5278
5279 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5280
5281 /* store the MAC address in CAM */
d44570e4 5282 return do_s2io_prog_unicast(dev, dev->dev_addr);
2fd37688 5283}
1da177e4 5284/**
2fd37688 5285 * do_s2io_prog_unicast - Programs the Xframe mac address
1da177e4
LT
5286 * @dev : pointer to the device structure.
5287 * @addr: a uchar pointer to the new mac address which is to be set.
20346722 5288 * Description : This procedure will program the Xframe to receive
1da177e4 5289 * frames with new Mac Address
20346722 5290 * Return value: SUCCESS on success and an appropriate (-)ve integer
1da177e4
LT
5291 * as defined in errno.h file on failure.
5292 */
faa4f796 5293
2fd37688 5294static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
1da177e4 5295{
4cf1653a 5296 struct s2io_nic *sp = netdev_priv(dev);
2fd37688 5297 register u64 mac_addr = 0, perm_addr = 0;
1da177e4 5298 int i;
faa4f796
SH
5299 u64 tmp64;
5300 struct config_param *config = &sp->config;
1da177e4 5301
20346722 5302 /*
d44570e4
JP
5303 * Set the new MAC address as the new unicast filter and reflect this
5304 * change on the device address registered with the OS. It will be
5305 * at offset 0.
5306 */
1da177e4
LT
5307 for (i = 0; i < ETH_ALEN; i++) {
5308 mac_addr <<= 8;
5309 mac_addr |= addr[i];
2fd37688
SS
5310 perm_addr <<= 8;
5311 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
d8d70caf
SS
5312 }
5313
2fd37688
SS
5314 /* check if the dev_addr is different than perm_addr */
5315 if (mac_addr == perm_addr)
d8d70caf
SS
5316 return SUCCESS;
5317
faa4f796
SH
5318 /* check if the mac already preset in CAM */
5319 for (i = 1; i < config->max_mac_addr; i++) {
5320 tmp64 = do_s2io_read_unicast_mc(sp, i);
5321 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5322 break;
5323
5324 if (tmp64 == mac_addr) {
5325 DBG_PRINT(INFO_DBG,
d44570e4
JP
5326 "MAC addr:0x%llx already present in CAM\n",
5327 (unsigned long long)mac_addr);
faa4f796
SH
5328 return SUCCESS;
5329 }
5330 }
5331 if (i == config->max_mac_addr) {
5332 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5333 return FAILURE;
5334 }
d8d70caf 5335 /* Update the internal structure with this new mac address */
faa4f796 5336 do_s2io_copy_mac_addr(sp, i, mac_addr);
d44570e4
JP
5337
5338 return do_s2io_add_mac(sp, mac_addr, i);
1da177e4
LT
5339}
5340
5341/**
20346722 5342 * s2io_ethtool_sset - Sets different link parameters.
1da177e4
LT
5343 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5344 * @info: pointer to the structure with parameters given by ethtool to set
5345 * link information.
5346 * Description:
20346722 5347 * The function sets different link parameters provided by the user onto
1da177e4
LT
5348 * the NIC.
5349 * Return value:
5350 * 0 on success.
d44570e4 5351 */
1da177e4
LT
5352
5353static int s2io_ethtool_sset(struct net_device *dev,
5354 struct ethtool_cmd *info)
5355{
4cf1653a 5356 struct s2io_nic *sp = netdev_priv(dev);
1da177e4 5357 if ((info->autoneg == AUTONEG_ENABLE) ||
d44570e4
JP
5358 (info->speed != SPEED_10000) ||
5359 (info->duplex != DUPLEX_FULL))
1da177e4
LT
5360 return -EINVAL;
5361 else {
5362 s2io_close(sp->dev);
5363 s2io_open(sp->dev);
5364 }
5365
5366 return 0;
5367}
5368
5369/**
20346722 5370 * s2io_ethtol_gset - Return link specific information.
1da177e4
LT
5371 * @sp : private member of the device structure, pointer to the
5372 * s2io_nic structure.
5373 * @info : pointer to the structure with parameters given by ethtool
5374 * to return link information.
5375 * Description:
5376 * Returns link specific information like speed, duplex etc.. to ethtool.
5377 * Return value :
5378 * return 0 on success.
5379 */
5380
5381static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5382{
4cf1653a 5383 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5384 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5385 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5386 info->port = PORT_FIBRE;
1a7eb72b
SS
5387
5388 /* info->transceiver */
5389 info->transceiver = XCVR_EXTERNAL;
1da177e4
LT
5390
5391 if (netif_carrier_ok(sp->dev)) {
5392 info->speed = 10000;
5393 info->duplex = DUPLEX_FULL;
5394 } else {
5395 info->speed = -1;
5396 info->duplex = -1;
5397 }
5398
5399 info->autoneg = AUTONEG_DISABLE;
5400 return 0;
5401}
5402
5403/**
20346722
K
5404 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5405 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5406 * s2io_nic structure.
5407 * @info : pointer to the structure with parameters given by ethtool to
5408 * return driver information.
5409 * Description:
5410 * Returns driver specefic information like name, version etc.. to ethtool.
5411 * Return value:
5412 * void
5413 */
5414
5415static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5416 struct ethtool_drvinfo *info)
5417{
4cf1653a 5418 struct s2io_nic *sp = netdev_priv(dev);
1da177e4 5419
dbc2309d
JL
5420 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5421 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5422 strncpy(info->fw_version, "", sizeof(info->fw_version));
5423 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
1da177e4
LT
5424 info->regdump_len = XENA_REG_SPACE;
5425 info->eedump_len = XENA_EEPROM_SPACE;
1da177e4
LT
5426}
5427
5428/**
5429 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
20346722 5430 * @sp: private member of the device structure, which is a pointer to the
1da177e4 5431 * s2io_nic structure.
20346722 5432 * @regs : pointer to the structure with parameters given by ethtool for
1da177e4
LT
5433 * dumping the registers.
5434 * @reg_space: The input argumnet into which all the registers are dumped.
5435 * Description:
5436 * Dumps the entire register space of xFrame NIC into the user given
5437 * buffer area.
5438 * Return value :
5439 * void .
d44570e4 5440 */
1da177e4
LT
5441
5442static void s2io_ethtool_gregs(struct net_device *dev,
5443 struct ethtool_regs *regs, void *space)
5444{
5445 int i;
5446 u64 reg;
d44570e4 5447 u8 *reg_space = (u8 *)space;
4cf1653a 5448 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5449
5450 regs->len = XENA_REG_SPACE;
5451 regs->version = sp->pdev->subsystem_device;
5452
5453 for (i = 0; i < regs->len; i += 8) {
5454 reg = readq(sp->bar0 + i);
5455 memcpy((reg_space + i), &reg, 8);
5456 }
5457}
5458
5459/**
5460 * s2io_phy_id - timer function that alternates adapter LED.
20346722 5461 * @data : address of the private member of the device structure, which
1da177e4 5462 * is a pointer to the s2io_nic structure, provided as an u32.
20346722
K
5463 * Description: This is actually the timer function that alternates the
5464 * adapter LED bit of the adapter control bit to set/reset every time on
5465 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
1da177e4 5466 * once every second.
d44570e4 5467 */
1da177e4
LT
5468static void s2io_phy_id(unsigned long data)
5469{
d44570e4 5470 struct s2io_nic *sp = (struct s2io_nic *)data;
1ee6dd77 5471 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5472 u64 val64 = 0;
5473 u16 subid;
5474
5475 subid = sp->pdev->subsystem_device;
541ae68f 5476 if ((sp->device_type == XFRAME_II_DEVICE) ||
d44570e4 5477 ((subid & 0xFF) >= 0x07)) {
1da177e4
LT
5478 val64 = readq(&bar0->gpio_control);
5479 val64 ^= GPIO_CTRL_GPIO_0;
5480 writeq(val64, &bar0->gpio_control);
5481 } else {
5482 val64 = readq(&bar0->adapter_control);
5483 val64 ^= ADAPTER_LED_ON;
5484 writeq(val64, &bar0->adapter_control);
5485 }
5486
5487 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5488}
5489
5490/**
5491 * s2io_ethtool_idnic - To physically identify the nic on the system.
5492 * @sp : private member of the device structure, which is a pointer to the
5493 * s2io_nic structure.
20346722 5494 * @id : pointer to the structure with identification parameters given by
1da177e4
LT
5495 * ethtool.
5496 * Description: Used to physically identify the NIC on the system.
20346722 5497 * The Link LED will blink for a time specified by the user for
1da177e4 5498 * identification.
20346722 5499 * NOTE: The Link has to be Up to be able to blink the LED. Hence
1da177e4
LT
5500 * identification is possible only if it's link is up.
5501 * Return value:
5502 * int , returns 0 on success
5503 */
5504
5505static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5506{
5507 u64 val64 = 0, last_gpio_ctrl_val;
4cf1653a 5508 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 5509 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5510 u16 subid;
5511
5512 subid = sp->pdev->subsystem_device;
5513 last_gpio_ctrl_val = readq(&bar0->gpio_control);
d44570e4 5514 if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
1da177e4
LT
5515 val64 = readq(&bar0->adapter_control);
5516 if (!(val64 & ADAPTER_CNTL_EN)) {
6cef2b8e 5517 pr_err("Adapter Link down, cannot blink LED\n");
1da177e4
LT
5518 return -EFAULT;
5519 }
5520 }
5521 if (sp->id_timer.function == NULL) {
5522 init_timer(&sp->id_timer);
5523 sp->id_timer.function = s2io_phy_id;
d44570e4 5524 sp->id_timer.data = (unsigned long)sp;
1da177e4
LT
5525 }
5526 mod_timer(&sp->id_timer, jiffies);
5527 if (data)
20346722 5528 msleep_interruptible(data * HZ);
1da177e4 5529 else
20346722 5530 msleep_interruptible(MAX_FLICKER_TIME);
1da177e4
LT
5531 del_timer_sync(&sp->id_timer);
5532
541ae68f 5533 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
1da177e4
LT
5534 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5535 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5536 }
5537
5538 return 0;
5539}
5540
0cec35eb 5541static void s2io_ethtool_gringparam(struct net_device *dev,
d44570e4 5542 struct ethtool_ringparam *ering)
0cec35eb 5543{
4cf1653a 5544 struct s2io_nic *sp = netdev_priv(dev);
d44570e4 5545 int i, tx_desc_count = 0, rx_desc_count = 0;
0cec35eb
SH
5546
5547 if (sp->rxd_mode == RXD_MODE_1)
5548 ering->rx_max_pending = MAX_RX_DESC_1;
5549 else if (sp->rxd_mode == RXD_MODE_3B)
5550 ering->rx_max_pending = MAX_RX_DESC_2;
0cec35eb
SH
5551
5552 ering->tx_max_pending = MAX_TX_DESC;
8a4bdbaa 5553 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
0cec35eb 5554 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
8a4bdbaa 5555
9e39f7c5 5556 DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
0cec35eb
SH
5557 ering->tx_pending = tx_desc_count;
5558 rx_desc_count = 0;
8a4bdbaa 5559 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
0cec35eb 5560 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
b6627672 5561
0cec35eb
SH
5562 ering->rx_pending = rx_desc_count;
5563
5564 ering->rx_mini_max_pending = 0;
5565 ering->rx_mini_pending = 0;
d44570e4 5566 if (sp->rxd_mode == RXD_MODE_1)
0cec35eb
SH
5567 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5568 else if (sp->rxd_mode == RXD_MODE_3B)
5569 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5570 ering->rx_jumbo_pending = rx_desc_count;
5571}
5572
1da177e4
LT
5573/**
5574 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
20346722
K
5575 * @sp : private member of the device structure, which is a pointer to the
5576 * s2io_nic structure.
1da177e4
LT
5577 * @ep : pointer to the structure with pause parameters given by ethtool.
5578 * Description:
5579 * Returns the Pause frame generation and reception capability of the NIC.
5580 * Return value:
5581 * void
5582 */
5583static void s2io_ethtool_getpause_data(struct net_device *dev,
5584 struct ethtool_pauseparam *ep)
5585{
5586 u64 val64;
4cf1653a 5587 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 5588 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5589
5590 val64 = readq(&bar0->rmac_pause_cfg);
5591 if (val64 & RMAC_PAUSE_GEN_ENABLE)
f957bcf0 5592 ep->tx_pause = true;
1da177e4 5593 if (val64 & RMAC_PAUSE_RX_ENABLE)
f957bcf0
TK
5594 ep->rx_pause = true;
5595 ep->autoneg = false;
1da177e4
LT
5596}
5597
5598/**
5599 * s2io_ethtool_setpause_data - set/reset pause frame generation.
20346722 5600 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5601 * s2io_nic structure.
5602 * @ep : pointer to the structure with pause parameters given by ethtool.
5603 * Description:
5604 * It can be used to set or reset Pause frame generation or reception
5605 * support of the NIC.
5606 * Return value:
5607 * int, returns 0 on Success
5608 */
5609
5610static int s2io_ethtool_setpause_data(struct net_device *dev,
d44570e4 5611 struct ethtool_pauseparam *ep)
1da177e4
LT
5612{
5613 u64 val64;
4cf1653a 5614 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 5615 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5616
5617 val64 = readq(&bar0->rmac_pause_cfg);
5618 if (ep->tx_pause)
5619 val64 |= RMAC_PAUSE_GEN_ENABLE;
5620 else
5621 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5622 if (ep->rx_pause)
5623 val64 |= RMAC_PAUSE_RX_ENABLE;
5624 else
5625 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5626 writeq(val64, &bar0->rmac_pause_cfg);
5627 return 0;
5628}
5629
5630/**
5631 * read_eeprom - reads 4 bytes of data from user given offset.
20346722 5632 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5633 * s2io_nic structure.
5634 * @off : offset at which the data must be written
5635 * @data : Its an output parameter where the data read at the given
20346722 5636 * offset is stored.
1da177e4 5637 * Description:
20346722 5638 * Will read 4 bytes of data from the user given offset and return the
1da177e4
LT
5639 * read data.
5640 * NOTE: Will allow to read only part of the EEPROM visible through the
5641 * I2C bus.
5642 * Return value:
5643 * -1 on failure and 0 on success.
5644 */
5645
5646#define S2IO_DEV_ID 5
d44570e4 5647static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
1da177e4
LT
5648{
5649 int ret = -1;
5650 u32 exit_cnt = 0;
5651 u64 val64;
1ee6dd77 5652 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5653
ad4ebed0 5654 if (sp->device_type == XFRAME_I_DEVICE) {
d44570e4
JP
5655 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5656 I2C_CONTROL_ADDR(off) |
5657 I2C_CONTROL_BYTE_CNT(0x3) |
5658 I2C_CONTROL_READ |
5659 I2C_CONTROL_CNTL_START;
ad4ebed0 5660 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
1da177e4 5661
ad4ebed0 5662 while (exit_cnt < 5) {
5663 val64 = readq(&bar0->i2c_control);
5664 if (I2C_CONTROL_CNTL_END(val64)) {
5665 *data = I2C_CONTROL_GET_DATA(val64);
5666 ret = 0;
5667 break;
5668 }
5669 msleep(50);
5670 exit_cnt++;
1da177e4 5671 }
1da177e4
LT
5672 }
5673
ad4ebed0 5674 if (sp->device_type == XFRAME_II_DEVICE) {
5675 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5676 SPI_CONTROL_BYTECNT(0x3) |
ad4ebed0 5677 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5678 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5679 val64 |= SPI_CONTROL_REQ;
5680 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5681 while (exit_cnt < 5) {
5682 val64 = readq(&bar0->spi_control);
5683 if (val64 & SPI_CONTROL_NACK) {
5684 ret = 1;
5685 break;
5686 } else if (val64 & SPI_CONTROL_DONE) {
5687 *data = readq(&bar0->spi_data);
5688 *data &= 0xffffff;
5689 ret = 0;
5690 break;
5691 }
5692 msleep(50);
5693 exit_cnt++;
5694 }
5695 }
1da177e4
LT
5696 return ret;
5697}
5698
5699/**
5700 * write_eeprom - actually writes the relevant part of the data value.
5701 * @sp : private member of the device structure, which is a pointer to the
5702 * s2io_nic structure.
5703 * @off : offset at which the data must be written
5704 * @data : The data that is to be written
20346722 5705 * @cnt : Number of bytes of the data that are actually to be written into
1da177e4
LT
5706 * the Eeprom. (max of 3)
5707 * Description:
5708 * Actually writes the relevant part of the data value into the Eeprom
5709 * through the I2C bus.
5710 * Return value:
5711 * 0 on success, -1 on failure.
5712 */
5713
d44570e4 5714static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
1da177e4
LT
5715{
5716 int exit_cnt = 0, ret = -1;
5717 u64 val64;
1ee6dd77 5718 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5719
ad4ebed0 5720 if (sp->device_type == XFRAME_I_DEVICE) {
d44570e4
JP
5721 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5722 I2C_CONTROL_ADDR(off) |
5723 I2C_CONTROL_BYTE_CNT(cnt) |
5724 I2C_CONTROL_SET_DATA((u32)data) |
5725 I2C_CONTROL_CNTL_START;
ad4ebed0 5726 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5727
5728 while (exit_cnt < 5) {
5729 val64 = readq(&bar0->i2c_control);
5730 if (I2C_CONTROL_CNTL_END(val64)) {
5731 if (!(val64 & I2C_CONTROL_NACK))
5732 ret = 0;
5733 break;
5734 }
5735 msleep(50);
5736 exit_cnt++;
5737 }
5738 }
1da177e4 5739
ad4ebed0 5740 if (sp->device_type == XFRAME_II_DEVICE) {
5741 int write_cnt = (cnt == 8) ? 0 : cnt;
d44570e4 5742 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
ad4ebed0 5743
5744 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5745 SPI_CONTROL_BYTECNT(write_cnt) |
ad4ebed0 5746 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5747 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5748 val64 |= SPI_CONTROL_REQ;
5749 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5750 while (exit_cnt < 5) {
5751 val64 = readq(&bar0->spi_control);
5752 if (val64 & SPI_CONTROL_NACK) {
5753 ret = 1;
5754 break;
5755 } else if (val64 & SPI_CONTROL_DONE) {
1da177e4 5756 ret = 0;
ad4ebed0 5757 break;
5758 }
5759 msleep(50);
5760 exit_cnt++;
1da177e4 5761 }
1da177e4 5762 }
1da177e4
LT
5763 return ret;
5764}
1ee6dd77 5765static void s2io_vpd_read(struct s2io_nic *nic)
9dc737a7 5766{
b41477f3
AR
5767 u8 *vpd_data;
5768 u8 data;
d44570e4 5769 int i = 0, cnt, fail = 0;
9dc737a7 5770 int vpd_addr = 0x80;
ffb5df6c 5771 struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
9dc737a7
AR
5772
5773 if (nic->device_type == XFRAME_II_DEVICE) {
5774 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5775 vpd_addr = 0x80;
d44570e4 5776 } else {
9dc737a7
AR
5777 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5778 vpd_addr = 0x50;
5779 }
19a60522 5780 strcpy(nic->serial_num, "NOT AVAILABLE");
9dc737a7 5781
b41477f3 5782 vpd_data = kmalloc(256, GFP_KERNEL);
c53d4945 5783 if (!vpd_data) {
ffb5df6c 5784 swstats->mem_alloc_fail_cnt++;
b41477f3 5785 return;
c53d4945 5786 }
ffb5df6c 5787 swstats->mem_allocated += 256;
b41477f3 5788
d44570e4 5789 for (i = 0; i < 256; i += 4) {
9dc737a7
AR
5790 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5791 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5792 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
d44570e4 5793 for (cnt = 0; cnt < 5; cnt++) {
9dc737a7
AR
5794 msleep(2);
5795 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5796 if (data == 0x80)
5797 break;
5798 }
5799 if (cnt >= 5) {
5800 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5801 fail = 1;
5802 break;
5803 }
5804 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5805 (u32 *)&vpd_data[i]);
5806 }
19a60522 5807
d44570e4 5808 if (!fail) {
19a60522
SS
5809 /* read serial number of adapter */
5810 for (cnt = 0; cnt < 256; cnt++) {
d44570e4
JP
5811 if ((vpd_data[cnt] == 'S') &&
5812 (vpd_data[cnt+1] == 'N') &&
5813 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
19a60522
SS
5814 memset(nic->serial_num, 0, VPD_STRING_LEN);
5815 memcpy(nic->serial_num, &vpd_data[cnt + 3],
d44570e4 5816 vpd_data[cnt+2]);
19a60522
SS
5817 break;
5818 }
5819 }
5820 }
5821
5822 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
9dc737a7
AR
5823 memset(nic->product_name, 0, vpd_data[1]);
5824 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5825 }
b41477f3 5826 kfree(vpd_data);
ffb5df6c 5827 swstats->mem_freed += 256;
9dc737a7
AR
5828}
5829
1da177e4
LT
5830/**
5831 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5832 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
20346722 5833 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5834 * containing all relevant information.
5835 * @data_buf : user defined value to be written into Eeprom.
5836 * Description: Reads the values stored in the Eeprom at given offset
5837 * for a given length. Stores these values int the input argument data
5838 * buffer 'data_buf' and returns these to the caller (ethtool.)
5839 * Return value:
5840 * int 0 on success
5841 */
5842
5843static int s2io_ethtool_geeprom(struct net_device *dev,
d44570e4 5844 struct ethtool_eeprom *eeprom, u8 * data_buf)
1da177e4 5845{
ad4ebed0 5846 u32 i, valid;
5847 u64 data;
4cf1653a 5848 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5849
5850 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5851
5852 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5853 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5854
5855 for (i = 0; i < eeprom->len; i += 4) {
5856 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5857 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5858 return -EFAULT;
5859 }
5860 valid = INV(data);
5861 memcpy((data_buf + i), &valid, 4);
5862 }
5863 return 0;
5864}
5865
5866/**
5867 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5868 * @sp : private member of the device structure, which is a pointer to the
5869 * s2io_nic structure.
20346722 5870 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5871 * containing all relevant information.
5872 * @data_buf ; user defined value to be written into Eeprom.
5873 * Description:
5874 * Tries to write the user provided value in the Eeprom, at the offset
5875 * given by the user.
5876 * Return value:
5877 * 0 on success, -EFAULT on failure.
5878 */
5879
5880static int s2io_ethtool_seeprom(struct net_device *dev,
5881 struct ethtool_eeprom *eeprom,
d44570e4 5882 u8 *data_buf)
1da177e4
LT
5883{
5884 int len = eeprom->len, cnt = 0;
ad4ebed0 5885 u64 valid = 0, data;
4cf1653a 5886 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5887
5888 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5889 DBG_PRINT(ERR_DBG,
9e39f7c5
JP
5890 "ETHTOOL_WRITE_EEPROM Err: "
5891 "Magic value is wrong, it is 0x%x should be 0x%x\n",
5892 (sp->pdev->vendor | (sp->pdev->device << 16)),
5893 eeprom->magic);
1da177e4
LT
5894 return -EFAULT;
5895 }
5896
5897 while (len) {
d44570e4
JP
5898 data = (u32)data_buf[cnt] & 0x000000FF;
5899 if (data)
5900 valid = (u32)(data << 24);
5901 else
1da177e4
LT
5902 valid = data;
5903
5904 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5905 DBG_PRINT(ERR_DBG,
9e39f7c5
JP
5906 "ETHTOOL_WRITE_EEPROM Err: "
5907 "Cannot write into the specified offset\n");
1da177e4
LT
5908 return -EFAULT;
5909 }
5910 cnt++;
5911 len--;
5912 }
5913
5914 return 0;
5915}
5916
5917/**
20346722
K
5918 * s2io_register_test - reads and writes into all clock domains.
5919 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5920 * s2io_nic structure.
5921 * @data : variable that returns the result of each of the test conducted b
5922 * by the driver.
5923 * Description:
5924 * Read and write into all clock domains. The NIC has 3 clock domains,
5925 * see that registers in all the three regions are accessible.
5926 * Return value:
5927 * 0 on success.
5928 */
5929
d44570e4 5930static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
1da177e4 5931{
1ee6dd77 5932 struct XENA_dev_config __iomem *bar0 = sp->bar0;
ad4ebed0 5933 u64 val64 = 0, exp_val;
1da177e4
LT
5934 int fail = 0;
5935
20346722
K
5936 val64 = readq(&bar0->pif_rd_swapper_fb);
5937 if (val64 != 0x123456789abcdefULL) {
1da177e4 5938 fail = 1;
9e39f7c5 5939 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
1da177e4
LT
5940 }
5941
5942 val64 = readq(&bar0->rmac_pause_cfg);
5943 if (val64 != 0xc000ffff00000000ULL) {
5944 fail = 1;
9e39f7c5 5945 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
1da177e4
LT
5946 }
5947
5948 val64 = readq(&bar0->rx_queue_cfg);
ad4ebed0 5949 if (sp->device_type == XFRAME_II_DEVICE)
5950 exp_val = 0x0404040404040404ULL;
5951 else
5952 exp_val = 0x0808080808080808ULL;
5953 if (val64 != exp_val) {
1da177e4 5954 fail = 1;
9e39f7c5 5955 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
1da177e4
LT
5956 }
5957
5958 val64 = readq(&bar0->xgxs_efifo_cfg);
5959 if (val64 != 0x000000001923141EULL) {
5960 fail = 1;
9e39f7c5 5961 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
1da177e4
LT
5962 }
5963
5964 val64 = 0x5A5A5A5A5A5A5A5AULL;
5965 writeq(val64, &bar0->xmsi_data);
5966 val64 = readq(&bar0->xmsi_data);
5967 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5968 fail = 1;
9e39f7c5 5969 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
1da177e4
LT
5970 }
5971
5972 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5973 writeq(val64, &bar0->xmsi_data);
5974 val64 = readq(&bar0->xmsi_data);
5975 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5976 fail = 1;
9e39f7c5 5977 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
1da177e4
LT
5978 }
5979
5980 *data = fail;
ad4ebed0 5981 return fail;
1da177e4
LT
5982}
5983
5984/**
20346722 5985 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
1da177e4
LT
5986 * @sp : private member of the device structure, which is a pointer to the
5987 * s2io_nic structure.
5988 * @data:variable that returns the result of each of the test conducted by
5989 * the driver.
5990 * Description:
20346722 5991 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
1da177e4
LT
5992 * register.
5993 * Return value:
5994 * 0 on success.
5995 */
5996
d44570e4 5997static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
1da177e4
LT
5998{
5999 int fail = 0;
ad4ebed0 6000 u64 ret_data, org_4F0, org_7F0;
6001 u8 saved_4F0 = 0, saved_7F0 = 0;
6002 struct net_device *dev = sp->dev;
1da177e4
LT
6003
6004 /* Test Write Error at offset 0 */
ad4ebed0 6005 /* Note that SPI interface allows write access to all areas
6006 * of EEPROM. Hence doing all negative testing only for Xframe I.
6007 */
6008 if (sp->device_type == XFRAME_I_DEVICE)
6009 if (!write_eeprom(sp, 0, 0, 3))
6010 fail = 1;
6011
6012 /* Save current values at offsets 0x4F0 and 0x7F0 */
6013 if (!read_eeprom(sp, 0x4F0, &org_4F0))
6014 saved_4F0 = 1;
6015 if (!read_eeprom(sp, 0x7F0, &org_7F0))
6016 saved_7F0 = 1;
1da177e4
LT
6017
6018 /* Test Write at offset 4f0 */
ad4ebed0 6019 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
1da177e4
LT
6020 fail = 1;
6021 if (read_eeprom(sp, 0x4F0, &ret_data))
6022 fail = 1;
6023
ad4ebed0 6024 if (ret_data != 0x012345) {
26b7625c 6025 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
d44570e4
JP
6026 "Data written %llx Data read %llx\n",
6027 dev->name, (unsigned long long)0x12345,
6028 (unsigned long long)ret_data);
1da177e4 6029 fail = 1;
ad4ebed0 6030 }
1da177e4
LT
6031
6032 /* Reset the EEPROM data go FFFF */
ad4ebed0 6033 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
1da177e4
LT
6034
6035 /* Test Write Request Error at offset 0x7c */
ad4ebed0 6036 if (sp->device_type == XFRAME_I_DEVICE)
6037 if (!write_eeprom(sp, 0x07C, 0, 3))
6038 fail = 1;
1da177e4 6039
ad4ebed0 6040 /* Test Write Request at offset 0x7f0 */
6041 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
1da177e4 6042 fail = 1;
ad4ebed0 6043 if (read_eeprom(sp, 0x7F0, &ret_data))
1da177e4
LT
6044 fail = 1;
6045
ad4ebed0 6046 if (ret_data != 0x012345) {
26b7625c 6047 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
d44570e4
JP
6048 "Data written %llx Data read %llx\n",
6049 dev->name, (unsigned long long)0x12345,
6050 (unsigned long long)ret_data);
1da177e4 6051 fail = 1;
ad4ebed0 6052 }
1da177e4
LT
6053
6054 /* Reset the EEPROM data go FFFF */
ad4ebed0 6055 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
1da177e4 6056
ad4ebed0 6057 if (sp->device_type == XFRAME_I_DEVICE) {
6058 /* Test Write Error at offset 0x80 */
6059 if (!write_eeprom(sp, 0x080, 0, 3))
6060 fail = 1;
1da177e4 6061
ad4ebed0 6062 /* Test Write Error at offset 0xfc */
6063 if (!write_eeprom(sp, 0x0FC, 0, 3))
6064 fail = 1;
1da177e4 6065
ad4ebed0 6066 /* Test Write Error at offset 0x100 */
6067 if (!write_eeprom(sp, 0x100, 0, 3))
6068 fail = 1;
1da177e4 6069
ad4ebed0 6070 /* Test Write Error at offset 4ec */
6071 if (!write_eeprom(sp, 0x4EC, 0, 3))
6072 fail = 1;
6073 }
6074
6075 /* Restore values at offsets 0x4F0 and 0x7F0 */
6076 if (saved_4F0)
6077 write_eeprom(sp, 0x4F0, org_4F0, 3);
6078 if (saved_7F0)
6079 write_eeprom(sp, 0x7F0, org_7F0, 3);
1da177e4
LT
6080
6081 *data = fail;
ad4ebed0 6082 return fail;
1da177e4
LT
6083}
6084
6085/**
6086 * s2io_bist_test - invokes the MemBist test of the card .
20346722 6087 * @sp : private member of the device structure, which is a pointer to the
1da177e4 6088 * s2io_nic structure.
20346722 6089 * @data:variable that returns the result of each of the test conducted by
1da177e4
LT
6090 * the driver.
6091 * Description:
6092 * This invokes the MemBist test of the card. We give around
6093 * 2 secs time for the Test to complete. If it's still not complete
20346722 6094 * within this peiod, we consider that the test failed.
1da177e4
LT
6095 * Return value:
6096 * 0 on success and -1 on failure.
6097 */
6098
d44570e4 6099static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
1da177e4
LT
6100{
6101 u8 bist = 0;
6102 int cnt = 0, ret = -1;
6103
6104 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6105 bist |= PCI_BIST_START;
6106 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6107
6108 while (cnt < 20) {
6109 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6110 if (!(bist & PCI_BIST_START)) {
6111 *data = (bist & PCI_BIST_CODE_MASK);
6112 ret = 0;
6113 break;
6114 }
6115 msleep(100);
6116 cnt++;
6117 }
6118
6119 return ret;
6120}
6121
6122/**
20346722
K
6123 * s2io-link_test - verifies the link state of the nic
6124 * @sp ; private member of the device structure, which is a pointer to the
1da177e4
LT
6125 * s2io_nic structure.
6126 * @data: variable that returns the result of each of the test conducted by
6127 * the driver.
6128 * Description:
20346722 6129 * The function verifies the link state of the NIC and updates the input
1da177e4
LT
6130 * argument 'data' appropriately.
6131 * Return value:
6132 * 0 on success.
6133 */
6134
d44570e4 6135static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
1da177e4 6136{
1ee6dd77 6137 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
6138 u64 val64;
6139
6140 val64 = readq(&bar0->adapter_status);
d44570e4 6141 if (!(LINK_IS_UP(val64)))
1da177e4 6142 *data = 1;
c92ca04b
AR
6143 else
6144 *data = 0;
1da177e4 6145
b41477f3 6146 return *data;
1da177e4
LT
6147}
6148
6149/**
20346722
K
6150 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6151 * @sp - private member of the device structure, which is a pointer to the
1da177e4 6152 * s2io_nic structure.
20346722 6153 * @data - variable that returns the result of each of the test
1da177e4
LT
6154 * conducted by the driver.
6155 * Description:
20346722 6156 * This is one of the offline test that tests the read and write
1da177e4
LT
6157 * access to the RldRam chip on the NIC.
6158 * Return value:
6159 * 0 on success.
6160 */
6161
d44570e4 6162static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
1da177e4 6163{
1ee6dd77 6164 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 6165 u64 val64;
ad4ebed0 6166 int cnt, iteration = 0, test_fail = 0;
1da177e4
LT
6167
6168 val64 = readq(&bar0->adapter_control);
6169 val64 &= ~ADAPTER_ECC_EN;
6170 writeq(val64, &bar0->adapter_control);
6171
6172 val64 = readq(&bar0->mc_rldram_test_ctrl);
6173 val64 |= MC_RLDRAM_TEST_MODE;
ad4ebed0 6174 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6175
6176 val64 = readq(&bar0->mc_rldram_mrs);
6177 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6178 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6179
6180 val64 |= MC_RLDRAM_MRS_ENABLE;
6181 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6182
6183 while (iteration < 2) {
6184 val64 = 0x55555555aaaa0000ULL;
d44570e4 6185 if (iteration == 1)
1da177e4 6186 val64 ^= 0xFFFFFFFFFFFF0000ULL;
1da177e4
LT
6187 writeq(val64, &bar0->mc_rldram_test_d0);
6188
6189 val64 = 0xaaaa5a5555550000ULL;
d44570e4 6190 if (iteration == 1)
1da177e4 6191 val64 ^= 0xFFFFFFFFFFFF0000ULL;
1da177e4
LT
6192 writeq(val64, &bar0->mc_rldram_test_d1);
6193
6194 val64 = 0x55aaaaaaaa5a0000ULL;
d44570e4 6195 if (iteration == 1)
1da177e4 6196 val64 ^= 0xFFFFFFFFFFFF0000ULL;
1da177e4
LT
6197 writeq(val64, &bar0->mc_rldram_test_d2);
6198
ad4ebed0 6199 val64 = (u64) (0x0000003ffffe0100ULL);
1da177e4
LT
6200 writeq(val64, &bar0->mc_rldram_test_add);
6201
d44570e4
JP
6202 val64 = MC_RLDRAM_TEST_MODE |
6203 MC_RLDRAM_TEST_WRITE |
6204 MC_RLDRAM_TEST_GO;
ad4ebed0 6205 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6206
6207 for (cnt = 0; cnt < 5; cnt++) {
6208 val64 = readq(&bar0->mc_rldram_test_ctrl);
6209 if (val64 & MC_RLDRAM_TEST_DONE)
6210 break;
6211 msleep(200);
6212 }
6213
6214 if (cnt == 5)
6215 break;
6216
ad4ebed0 6217 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6218 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6219
6220 for (cnt = 0; cnt < 5; cnt++) {
6221 val64 = readq(&bar0->mc_rldram_test_ctrl);
6222 if (val64 & MC_RLDRAM_TEST_DONE)
6223 break;
6224 msleep(500);
6225 }
6226
6227 if (cnt == 5)
6228 break;
6229
6230 val64 = readq(&bar0->mc_rldram_test_ctrl);
ad4ebed0 6231 if (!(val64 & MC_RLDRAM_TEST_PASS))
6232 test_fail = 1;
1da177e4
LT
6233
6234 iteration++;
6235 }
6236
ad4ebed0 6237 *data = test_fail;
1da177e4 6238
ad4ebed0 6239 /* Bring the adapter out of test mode */
6240 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6241
6242 return test_fail;
1da177e4
LT
6243}
6244
6245/**
6246 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6247 * @sp : private member of the device structure, which is a pointer to the
6248 * s2io_nic structure.
6249 * @ethtest : pointer to a ethtool command specific structure that will be
6250 * returned to the user.
20346722 6251 * @data : variable that returns the result of each of the test
1da177e4
LT
6252 * conducted by the driver.
6253 * Description:
6254 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6255 * the health of the card.
6256 * Return value:
6257 * void
6258 */
6259
6260static void s2io_ethtool_test(struct net_device *dev,
6261 struct ethtool_test *ethtest,
d44570e4 6262 uint64_t *data)
1da177e4 6263{
4cf1653a 6264 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
6265 int orig_state = netif_running(sp->dev);
6266
6267 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6268 /* Offline Tests. */
20346722 6269 if (orig_state)
1da177e4 6270 s2io_close(sp->dev);
1da177e4
LT
6271
6272 if (s2io_register_test(sp, &data[0]))
6273 ethtest->flags |= ETH_TEST_FL_FAILED;
6274
6275 s2io_reset(sp);
1da177e4
LT
6276
6277 if (s2io_rldram_test(sp, &data[3]))
6278 ethtest->flags |= ETH_TEST_FL_FAILED;
6279
6280 s2io_reset(sp);
1da177e4
LT
6281
6282 if (s2io_eeprom_test(sp, &data[1]))
6283 ethtest->flags |= ETH_TEST_FL_FAILED;
6284
6285 if (s2io_bist_test(sp, &data[4]))
6286 ethtest->flags |= ETH_TEST_FL_FAILED;
6287
6288 if (orig_state)
6289 s2io_open(sp->dev);
6290
6291 data[2] = 0;
6292 } else {
6293 /* Online Tests. */
6294 if (!orig_state) {
d44570e4 6295 DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
1da177e4
LT
6296 dev->name);
6297 data[0] = -1;
6298 data[1] = -1;
6299 data[2] = -1;
6300 data[3] = -1;
6301 data[4] = -1;
6302 }
6303
6304 if (s2io_link_test(sp, &data[2]))
6305 ethtest->flags |= ETH_TEST_FL_FAILED;
6306
6307 data[0] = 0;
6308 data[1] = 0;
6309 data[3] = 0;
6310 data[4] = 0;
6311 }
6312}
6313
6314static void s2io_get_ethtool_stats(struct net_device *dev,
6315 struct ethtool_stats *estats,
d44570e4 6316 u64 *tmp_stats)
1da177e4 6317{
8116f3cf 6318 int i = 0, k;
4cf1653a 6319 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c
JP
6320 struct stat_block *stats = sp->mac_control.stats_info;
6321 struct swStat *swstats = &stats->sw_stat;
6322 struct xpakStat *xstats = &stats->xpak_stat;
1da177e4 6323
7ba013ac 6324 s2io_updt_stats(sp);
541ae68f 6325 tmp_stats[i++] =
ffb5df6c
JP
6326 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32 |
6327 le32_to_cpu(stats->tmac_frms);
541ae68f 6328 tmp_stats[i++] =
ffb5df6c
JP
6329 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6330 le32_to_cpu(stats->tmac_data_octets);
6331 tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
541ae68f 6332 tmp_stats[i++] =
ffb5df6c
JP
6333 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6334 le32_to_cpu(stats->tmac_mcst_frms);
541ae68f 6335 tmp_stats[i++] =
ffb5df6c
JP
6336 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6337 le32_to_cpu(stats->tmac_bcst_frms);
6338 tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
bd1034f0 6339 tmp_stats[i++] =
ffb5df6c
JP
6340 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6341 le32_to_cpu(stats->tmac_ttl_octets);
bd1034f0 6342 tmp_stats[i++] =
ffb5df6c
JP
6343 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6344 le32_to_cpu(stats->tmac_ucst_frms);
d44570e4 6345 tmp_stats[i++] =
ffb5df6c
JP
6346 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6347 le32_to_cpu(stats->tmac_nucst_frms);
541ae68f 6348 tmp_stats[i++] =
ffb5df6c
JP
6349 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6350 le32_to_cpu(stats->tmac_any_err_frms);
6351 tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6352 tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
541ae68f 6353 tmp_stats[i++] =
ffb5df6c
JP
6354 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6355 le32_to_cpu(stats->tmac_vld_ip);
541ae68f 6356 tmp_stats[i++] =
ffb5df6c
JP
6357 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6358 le32_to_cpu(stats->tmac_drop_ip);
541ae68f 6359 tmp_stats[i++] =
ffb5df6c
JP
6360 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6361 le32_to_cpu(stats->tmac_icmp);
541ae68f 6362 tmp_stats[i++] =
ffb5df6c
JP
6363 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6364 le32_to_cpu(stats->tmac_rst_tcp);
6365 tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6366 tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6367 le32_to_cpu(stats->tmac_udp);
541ae68f 6368 tmp_stats[i++] =
ffb5df6c
JP
6369 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6370 le32_to_cpu(stats->rmac_vld_frms);
541ae68f 6371 tmp_stats[i++] =
ffb5df6c
JP
6372 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6373 le32_to_cpu(stats->rmac_data_octets);
6374 tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6375 tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
541ae68f 6376 tmp_stats[i++] =
ffb5df6c
JP
6377 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6378 le32_to_cpu(stats->rmac_vld_mcst_frms);
541ae68f 6379 tmp_stats[i++] =
ffb5df6c
JP
6380 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6381 le32_to_cpu(stats->rmac_vld_bcst_frms);
6382 tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6383 tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6384 tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6385 tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6386 tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
d44570e4 6387 tmp_stats[i++] =
ffb5df6c
JP
6388 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6389 le32_to_cpu(stats->rmac_ttl_octets);
bd1034f0 6390 tmp_stats[i++] =
ffb5df6c
JP
6391 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6392 | le32_to_cpu(stats->rmac_accepted_ucst_frms);
d44570e4 6393 tmp_stats[i++] =
ffb5df6c
JP
6394 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6395 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
541ae68f 6396 tmp_stats[i++] =
ffb5df6c
JP
6397 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6398 le32_to_cpu(stats->rmac_discarded_frms);
d44570e4 6399 tmp_stats[i++] =
ffb5df6c
JP
6400 (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6401 << 32 | le32_to_cpu(stats->rmac_drop_events);
6402 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6403 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
541ae68f 6404 tmp_stats[i++] =
ffb5df6c
JP
6405 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6406 le32_to_cpu(stats->rmac_usized_frms);
541ae68f 6407 tmp_stats[i++] =
ffb5df6c
JP
6408 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6409 le32_to_cpu(stats->rmac_osized_frms);
541ae68f 6410 tmp_stats[i++] =
ffb5df6c
JP
6411 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6412 le32_to_cpu(stats->rmac_frag_frms);
541ae68f 6413 tmp_stats[i++] =
ffb5df6c
JP
6414 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6415 le32_to_cpu(stats->rmac_jabber_frms);
6416 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6417 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6418 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6419 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6420 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6421 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
bd1034f0 6422 tmp_stats[i++] =
ffb5df6c
JP
6423 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6424 le32_to_cpu(stats->rmac_ip);
6425 tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6426 tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
bd1034f0 6427 tmp_stats[i++] =
ffb5df6c
JP
6428 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6429 le32_to_cpu(stats->rmac_drop_ip);
bd1034f0 6430 tmp_stats[i++] =
ffb5df6c
JP
6431 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6432 le32_to_cpu(stats->rmac_icmp);
6433 tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
bd1034f0 6434 tmp_stats[i++] =
ffb5df6c
JP
6435 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6436 le32_to_cpu(stats->rmac_udp);
541ae68f 6437 tmp_stats[i++] =
ffb5df6c
JP
6438 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6439 le32_to_cpu(stats->rmac_err_drp_udp);
6440 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6441 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6442 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6443 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6444 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6445 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6446 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6447 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6448 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6449 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6450 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6451 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6452 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6453 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6454 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6455 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6456 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
541ae68f 6457 tmp_stats[i++] =
ffb5df6c
JP
6458 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6459 le32_to_cpu(stats->rmac_pause_cnt);
6460 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6461 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
541ae68f 6462 tmp_stats[i++] =
ffb5df6c
JP
6463 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6464 le32_to_cpu(stats->rmac_accepted_ip);
6465 tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6466 tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6467 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6468 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6469 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6470 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6471 tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6472 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6473 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6474 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6475 tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6476 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6477 tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6478 tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6479 tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6480 tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6481 tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6482 tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6483 tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
fa1f0cb3
SS
6484
6485 /* Enhanced statistics exist only for Hercules */
d44570e4 6486 if (sp->device_type == XFRAME_II_DEVICE) {
fa1f0cb3 6487 tmp_stats[i++] =
ffb5df6c 6488 le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
fa1f0cb3 6489 tmp_stats[i++] =
ffb5df6c 6490 le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
fa1f0cb3 6491 tmp_stats[i++] =
ffb5df6c
JP
6492 le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6493 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6494 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6495 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6496 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6497 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6498 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6499 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6500 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6501 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6502 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6503 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6504 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6505 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
fa1f0cb3
SS
6506 }
6507
7ba013ac 6508 tmp_stats[i++] = 0;
ffb5df6c
JP
6509 tmp_stats[i++] = swstats->single_ecc_errs;
6510 tmp_stats[i++] = swstats->double_ecc_errs;
6511 tmp_stats[i++] = swstats->parity_err_cnt;
6512 tmp_stats[i++] = swstats->serious_err_cnt;
6513 tmp_stats[i++] = swstats->soft_reset_cnt;
6514 tmp_stats[i++] = swstats->fifo_full_cnt;
8116f3cf 6515 for (k = 0; k < MAX_RX_RINGS; k++)
ffb5df6c
JP
6516 tmp_stats[i++] = swstats->ring_full_cnt[k];
6517 tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6518 tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6519 tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6520 tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6521 tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6522 tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6523 tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6524 tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6525 tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6526 tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6527 tmp_stats[i++] = xstats->warn_laser_output_power_high;
6528 tmp_stats[i++] = xstats->warn_laser_output_power_low;
6529 tmp_stats[i++] = swstats->clubbed_frms_cnt;
6530 tmp_stats[i++] = swstats->sending_both;
6531 tmp_stats[i++] = swstats->outof_sequence_pkts;
6532 tmp_stats[i++] = swstats->flush_max_pkts;
6533 if (swstats->num_aggregations) {
6534 u64 tmp = swstats->sum_avg_pkts_aggregated;
bd1034f0 6535 int count = 0;
6aa20a22 6536 /*
bd1034f0
AR
6537 * Since 64-bit divide does not work on all platforms,
6538 * do repeated subtraction.
6539 */
ffb5df6c
JP
6540 while (tmp >= swstats->num_aggregations) {
6541 tmp -= swstats->num_aggregations;
bd1034f0
AR
6542 count++;
6543 }
6544 tmp_stats[i++] = count;
d44570e4 6545 } else
bd1034f0 6546 tmp_stats[i++] = 0;
ffb5df6c
JP
6547 tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6548 tmp_stats[i++] = swstats->pci_map_fail_cnt;
6549 tmp_stats[i++] = swstats->watchdog_timer_cnt;
6550 tmp_stats[i++] = swstats->mem_allocated;
6551 tmp_stats[i++] = swstats->mem_freed;
6552 tmp_stats[i++] = swstats->link_up_cnt;
6553 tmp_stats[i++] = swstats->link_down_cnt;
6554 tmp_stats[i++] = swstats->link_up_time;
6555 tmp_stats[i++] = swstats->link_down_time;
6556
6557 tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6558 tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6559 tmp_stats[i++] = swstats->tx_parity_err_cnt;
6560 tmp_stats[i++] = swstats->tx_link_loss_cnt;
6561 tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6562
6563 tmp_stats[i++] = swstats->rx_parity_err_cnt;
6564 tmp_stats[i++] = swstats->rx_abort_cnt;
6565 tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6566 tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6567 tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6568 tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6569 tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6570 tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6571 tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6572 tmp_stats[i++] = swstats->tda_err_cnt;
6573 tmp_stats[i++] = swstats->pfc_err_cnt;
6574 tmp_stats[i++] = swstats->pcc_err_cnt;
6575 tmp_stats[i++] = swstats->tti_err_cnt;
6576 tmp_stats[i++] = swstats->tpa_err_cnt;
6577 tmp_stats[i++] = swstats->sm_err_cnt;
6578 tmp_stats[i++] = swstats->lso_err_cnt;
6579 tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6580 tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6581 tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6582 tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6583 tmp_stats[i++] = swstats->rc_err_cnt;
6584 tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6585 tmp_stats[i++] = swstats->rpa_err_cnt;
6586 tmp_stats[i++] = swstats->rda_err_cnt;
6587 tmp_stats[i++] = swstats->rti_err_cnt;
6588 tmp_stats[i++] = swstats->mc_err_cnt;
1da177e4
LT
6589}
6590
ac1f60db 6591static int s2io_ethtool_get_regs_len(struct net_device *dev)
1da177e4 6592{
d44570e4 6593 return XENA_REG_SPACE;
1da177e4
LT
6594}
6595
6596
d44570e4 6597static u32 s2io_ethtool_get_rx_csum(struct net_device *dev)
1da177e4 6598{
4cf1653a 6599 struct s2io_nic *sp = netdev_priv(dev);
1da177e4 6600
d44570e4 6601 return sp->rx_csum;
1da177e4 6602}
ac1f60db
AB
6603
6604static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
1da177e4 6605{
4cf1653a 6606 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
6607
6608 if (data)
6609 sp->rx_csum = 1;
6610 else
6611 sp->rx_csum = 0;
6612
6613 return 0;
6614}
ac1f60db
AB
6615
6616static int s2io_get_eeprom_len(struct net_device *dev)
1da177e4 6617{
d44570e4 6618 return XENA_EEPROM_SPACE;
1da177e4
LT
6619}
6620
b9f2c044 6621static int s2io_get_sset_count(struct net_device *dev, int sset)
1da177e4 6622{
4cf1653a 6623 struct s2io_nic *sp = netdev_priv(dev);
b9f2c044
JG
6624
6625 switch (sset) {
6626 case ETH_SS_TEST:
6627 return S2IO_TEST_LEN;
6628 case ETH_SS_STATS:
d44570e4 6629 switch (sp->device_type) {
b9f2c044
JG
6630 case XFRAME_I_DEVICE:
6631 return XFRAME_I_STAT_LEN;
6632 case XFRAME_II_DEVICE:
6633 return XFRAME_II_STAT_LEN;
6634 default:
6635 return 0;
6636 }
6637 default:
6638 return -EOPNOTSUPP;
6639 }
1da177e4 6640}
ac1f60db
AB
6641
6642static void s2io_ethtool_get_strings(struct net_device *dev,
d44570e4 6643 u32 stringset, u8 *data)
1da177e4 6644{
fa1f0cb3 6645 int stat_size = 0;
4cf1653a 6646 struct s2io_nic *sp = netdev_priv(dev);
fa1f0cb3 6647
1da177e4
LT
6648 switch (stringset) {
6649 case ETH_SS_TEST:
6650 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6651 break;
6652 case ETH_SS_STATS:
fa1f0cb3 6653 stat_size = sizeof(ethtool_xena_stats_keys);
d44570e4
JP
6654 memcpy(data, &ethtool_xena_stats_keys, stat_size);
6655 if (sp->device_type == XFRAME_II_DEVICE) {
fa1f0cb3 6656 memcpy(data + stat_size,
d44570e4
JP
6657 &ethtool_enhanced_stats_keys,
6658 sizeof(ethtool_enhanced_stats_keys));
fa1f0cb3
SS
6659 stat_size += sizeof(ethtool_enhanced_stats_keys);
6660 }
6661
6662 memcpy(data + stat_size, &ethtool_driver_stats_keys,
d44570e4 6663 sizeof(ethtool_driver_stats_keys));
1da177e4
LT
6664 }
6665}
1da177e4 6666
ac1f60db 6667static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
1da177e4
LT
6668{
6669 if (data)
6670 dev->features |= NETIF_F_IP_CSUM;
6671 else
6672 dev->features &= ~NETIF_F_IP_CSUM;
6673
6674 return 0;
6675}
6676
75c30b13
AR
6677static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6678{
6679 return (dev->features & NETIF_F_TSO) != 0;
6680}
6681static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6682{
6683 if (data)
6684 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6685 else
6686 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6687
6688 return 0;
6689}
1da177e4 6690
7282d491 6691static const struct ethtool_ops netdev_ethtool_ops = {
1da177e4
LT
6692 .get_settings = s2io_ethtool_gset,
6693 .set_settings = s2io_ethtool_sset,
6694 .get_drvinfo = s2io_ethtool_gdrvinfo,
6695 .get_regs_len = s2io_ethtool_get_regs_len,
6696 .get_regs = s2io_ethtool_gregs,
6697 .get_link = ethtool_op_get_link,
6698 .get_eeprom_len = s2io_get_eeprom_len,
6699 .get_eeprom = s2io_ethtool_geeprom,
6700 .set_eeprom = s2io_ethtool_seeprom,
0cec35eb 6701 .get_ringparam = s2io_ethtool_gringparam,
1da177e4
LT
6702 .get_pauseparam = s2io_ethtool_getpause_data,
6703 .set_pauseparam = s2io_ethtool_setpause_data,
6704 .get_rx_csum = s2io_ethtool_get_rx_csum,
6705 .set_rx_csum = s2io_ethtool_set_rx_csum,
1da177e4 6706 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
1da177e4 6707 .set_sg = ethtool_op_set_sg,
75c30b13
AR
6708 .get_tso = s2io_ethtool_op_get_tso,
6709 .set_tso = s2io_ethtool_op_set_tso,
fed5eccd 6710 .set_ufo = ethtool_op_set_ufo,
1da177e4
LT
6711 .self_test = s2io_ethtool_test,
6712 .get_strings = s2io_ethtool_get_strings,
6713 .phys_id = s2io_ethtool_idnic,
b9f2c044
JG
6714 .get_ethtool_stats = s2io_get_ethtool_stats,
6715 .get_sset_count = s2io_get_sset_count,
1da177e4
LT
6716};
6717
6718/**
20346722 6719 * s2io_ioctl - Entry point for the Ioctl
1da177e4
LT
6720 * @dev : Device pointer.
6721 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6722 * a proprietary structure used to pass information to the driver.
6723 * @cmd : This is used to distinguish between the different commands that
6724 * can be passed to the IOCTL functions.
6725 * Description:
20346722
K
6726 * Currently there are no special functionality supported in IOCTL, hence
6727 * function always return EOPNOTSUPPORTED
1da177e4
LT
6728 */
6729
ac1f60db 6730static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1da177e4
LT
6731{
6732 return -EOPNOTSUPP;
6733}
6734
6735/**
6736 * s2io_change_mtu - entry point to change MTU size for the device.
6737 * @dev : device pointer.
6738 * @new_mtu : the new MTU size for the device.
6739 * Description: A driver entry point to change MTU size for the device.
6740 * Before changing the MTU the device must be stopped.
6741 * Return value:
6742 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6743 * file on failure.
6744 */
6745
ac1f60db 6746static int s2io_change_mtu(struct net_device *dev, int new_mtu)
1da177e4 6747{
4cf1653a 6748 struct s2io_nic *sp = netdev_priv(dev);
9f74ffde 6749 int ret = 0;
1da177e4
LT
6750
6751 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
d44570e4 6752 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
1da177e4
LT
6753 return -EPERM;
6754 }
6755
1da177e4 6756 dev->mtu = new_mtu;
d8892c6e 6757 if (netif_running(dev)) {
3a3d5756 6758 s2io_stop_all_tx_queue(sp);
e6a8fee2 6759 s2io_card_down(sp);
9f74ffde
SH
6760 ret = s2io_card_up(sp);
6761 if (ret) {
d8892c6e 6762 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
b39d66a8 6763 __func__);
9f74ffde 6764 return ret;
d8892c6e 6765 }
3a3d5756 6766 s2io_wake_all_tx_queue(sp);
d8892c6e 6767 } else { /* Device is down */
1ee6dd77 6768 struct XENA_dev_config __iomem *bar0 = sp->bar0;
d8892c6e
K
6769 u64 val64 = new_mtu;
6770
6771 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6772 }
1da177e4 6773
9f74ffde 6774 return ret;
1da177e4
LT
6775}
6776
1da177e4
LT
6777/**
6778 * s2io_set_link - Set the LInk status
6779 * @data: long pointer to device private structue
6780 * Description: Sets the link status for the adapter
6781 */
6782
c4028958 6783static void s2io_set_link(struct work_struct *work)
1da177e4 6784{
d44570e4
JP
6785 struct s2io_nic *nic = container_of(work, struct s2io_nic,
6786 set_link_task);
1da177e4 6787 struct net_device *dev = nic->dev;
1ee6dd77 6788 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
6789 register u64 val64;
6790 u16 subid;
6791
22747d6b
FR
6792 rtnl_lock();
6793
6794 if (!netif_running(dev))
6795 goto out_unlock;
6796
92b84437 6797 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
1da177e4 6798 /* The card is being reset, no point doing anything */
22747d6b 6799 goto out_unlock;
1da177e4
LT
6800 }
6801
6802 subid = nic->pdev->subsystem_device;
a371a07d
K
6803 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6804 /*
6805 * Allow a small delay for the NICs self initiated
6806 * cleanup to complete.
6807 */
6808 msleep(100);
6809 }
1da177e4
LT
6810
6811 val64 = readq(&bar0->adapter_status);
19a60522
SS
6812 if (LINK_IS_UP(val64)) {
6813 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6814 if (verify_xena_quiescence(nic)) {
6815 val64 = readq(&bar0->adapter_control);
6816 val64 |= ADAPTER_CNTL_EN;
1da177e4 6817 writeq(val64, &bar0->adapter_control);
19a60522 6818 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
d44570e4 6819 nic->device_type, subid)) {
19a60522
SS
6820 val64 = readq(&bar0->gpio_control);
6821 val64 |= GPIO_CTRL_GPIO_0;
6822 writeq(val64, &bar0->gpio_control);
6823 val64 = readq(&bar0->gpio_control);
6824 } else {
6825 val64 |= ADAPTER_LED_ON;
6826 writeq(val64, &bar0->adapter_control);
a371a07d 6827 }
f957bcf0 6828 nic->device_enabled_once = true;
19a60522 6829 } else {
9e39f7c5
JP
6830 DBG_PRINT(ERR_DBG,
6831 "%s: Error: device is not Quiescent\n",
6832 dev->name);
3a3d5756 6833 s2io_stop_all_tx_queue(nic);
1da177e4 6834 }
19a60522 6835 }
92c48799
SS
6836 val64 = readq(&bar0->adapter_control);
6837 val64 |= ADAPTER_LED_ON;
6838 writeq(val64, &bar0->adapter_control);
6839 s2io_link(nic, LINK_UP);
19a60522
SS
6840 } else {
6841 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6842 subid)) {
6843 val64 = readq(&bar0->gpio_control);
6844 val64 &= ~GPIO_CTRL_GPIO_0;
6845 writeq(val64, &bar0->gpio_control);
6846 val64 = readq(&bar0->gpio_control);
1da177e4 6847 }
92c48799
SS
6848 /* turn off LED */
6849 val64 = readq(&bar0->adapter_control);
d44570e4 6850 val64 = val64 & (~ADAPTER_LED_ON);
92c48799 6851 writeq(val64, &bar0->adapter_control);
19a60522 6852 s2io_link(nic, LINK_DOWN);
1da177e4 6853 }
92b84437 6854 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
22747d6b
FR
6855
6856out_unlock:
d8d70caf 6857 rtnl_unlock();
1da177e4
LT
6858}
6859
1ee6dd77 6860static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
d44570e4
JP
6861 struct buffAdd *ba,
6862 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6863 u64 *temp2, int size)
5d3213cc
AR
6864{
6865 struct net_device *dev = sp->dev;
491abf25 6866 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
5d3213cc
AR
6867
6868 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6d517a27 6869 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
5d3213cc
AR
6870 /* allocate skb */
6871 if (*skb) {
6872 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6873 /*
6874 * As Rx frame are not going to be processed,
6875 * using same mapped address for the Rxd
6876 * buffer pointer
6877 */
6d517a27 6878 rxdp1->Buffer0_ptr = *temp0;
5d3213cc
AR
6879 } else {
6880 *skb = dev_alloc_skb(size);
6881 if (!(*skb)) {
9e39f7c5
JP
6882 DBG_PRINT(INFO_DBG,
6883 "%s: Out of memory to allocate %s\n",
6884 dev->name, "1 buf mode SKBs");
ffb5df6c 6885 stats->mem_alloc_fail_cnt++;
5d3213cc
AR
6886 return -ENOMEM ;
6887 }
ffb5df6c 6888 stats->mem_allocated += (*skb)->truesize;
5d3213cc
AR
6889 /* storing the mapped addr in a temp variable
6890 * such it will be used for next rxd whose
6891 * Host Control is NULL
6892 */
6d517a27 6893 rxdp1->Buffer0_ptr = *temp0 =
d44570e4
JP
6894 pci_map_single(sp->pdev, (*skb)->data,
6895 size - NET_IP_ALIGN,
6896 PCI_DMA_FROMDEVICE);
8d8bb39b 6897 if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
491abf25 6898 goto memalloc_failed;
5d3213cc
AR
6899 rxdp->Host_Control = (unsigned long) (*skb);
6900 }
6901 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6d517a27 6902 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
5d3213cc
AR
6903 /* Two buffer Mode */
6904 if (*skb) {
6d517a27
VP
6905 rxdp3->Buffer2_ptr = *temp2;
6906 rxdp3->Buffer0_ptr = *temp0;
6907 rxdp3->Buffer1_ptr = *temp1;
5d3213cc
AR
6908 } else {
6909 *skb = dev_alloc_skb(size);
2ceaac75 6910 if (!(*skb)) {
9e39f7c5
JP
6911 DBG_PRINT(INFO_DBG,
6912 "%s: Out of memory to allocate %s\n",
6913 dev->name,
6914 "2 buf mode SKBs");
ffb5df6c 6915 stats->mem_alloc_fail_cnt++;
2ceaac75
DR
6916 return -ENOMEM;
6917 }
ffb5df6c 6918 stats->mem_allocated += (*skb)->truesize;
6d517a27 6919 rxdp3->Buffer2_ptr = *temp2 =
5d3213cc
AR
6920 pci_map_single(sp->pdev, (*skb)->data,
6921 dev->mtu + 4,
6922 PCI_DMA_FROMDEVICE);
8d8bb39b 6923 if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
491abf25 6924 goto memalloc_failed;
6d517a27 6925 rxdp3->Buffer0_ptr = *temp0 =
d44570e4
JP
6926 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6927 PCI_DMA_FROMDEVICE);
8d8bb39b 6928 if (pci_dma_mapping_error(sp->pdev,
d44570e4
JP
6929 rxdp3->Buffer0_ptr)) {
6930 pci_unmap_single(sp->pdev,
6931 (dma_addr_t)rxdp3->Buffer2_ptr,
6932 dev->mtu + 4,
6933 PCI_DMA_FROMDEVICE);
491abf25
VP
6934 goto memalloc_failed;
6935 }
5d3213cc
AR
6936 rxdp->Host_Control = (unsigned long) (*skb);
6937
6938 /* Buffer-1 will be dummy buffer not used */
6d517a27 6939 rxdp3->Buffer1_ptr = *temp1 =
5d3213cc 6940 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
d44570e4 6941 PCI_DMA_FROMDEVICE);
8d8bb39b 6942 if (pci_dma_mapping_error(sp->pdev,
d44570e4
JP
6943 rxdp3->Buffer1_ptr)) {
6944 pci_unmap_single(sp->pdev,
6945 (dma_addr_t)rxdp3->Buffer0_ptr,
6946 BUF0_LEN, PCI_DMA_FROMDEVICE);
6947 pci_unmap_single(sp->pdev,
6948 (dma_addr_t)rxdp3->Buffer2_ptr,
6949 dev->mtu + 4,
6950 PCI_DMA_FROMDEVICE);
491abf25
VP
6951 goto memalloc_failed;
6952 }
5d3213cc
AR
6953 }
6954 }
6955 return 0;
d44570e4
JP
6956
6957memalloc_failed:
6958 stats->pci_map_fail_cnt++;
6959 stats->mem_freed += (*skb)->truesize;
6960 dev_kfree_skb(*skb);
6961 return -ENOMEM;
5d3213cc 6962}
491abf25 6963
1ee6dd77
RB
6964static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6965 int size)
5d3213cc
AR
6966{
6967 struct net_device *dev = sp->dev;
6968 if (sp->rxd_mode == RXD_MODE_1) {
d44570e4 6969 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
5d3213cc
AR
6970 } else if (sp->rxd_mode == RXD_MODE_3B) {
6971 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6972 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
d44570e4 6973 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
5d3213cc
AR
6974 }
6975}
6976
1ee6dd77 6977static int rxd_owner_bit_reset(struct s2io_nic *sp)
5d3213cc
AR
6978{
6979 int i, j, k, blk_cnt = 0, size;
5d3213cc 6980 struct config_param *config = &sp->config;
ffb5df6c 6981 struct mac_info *mac_control = &sp->mac_control;
5d3213cc 6982 struct net_device *dev = sp->dev;
1ee6dd77 6983 struct RxD_t *rxdp = NULL;
5d3213cc 6984 struct sk_buff *skb = NULL;
1ee6dd77 6985 struct buffAdd *ba = NULL;
5d3213cc
AR
6986 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6987
6988 /* Calculate the size based on ring mode */
6989 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6990 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6991 if (sp->rxd_mode == RXD_MODE_1)
6992 size += NET_IP_ALIGN;
6993 else if (sp->rxd_mode == RXD_MODE_3B)
6994 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
5d3213cc
AR
6995
6996 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
6997 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
6998 struct ring_info *ring = &mac_control->rings[i];
6999
d44570e4 7000 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
5d3213cc
AR
7001
7002 for (j = 0; j < blk_cnt; j++) {
7003 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
d44570e4
JP
7004 rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
7005 if (sp->rxd_mode == RXD_MODE_3B)
13d866a9 7006 ba = &ring->ba[j][k];
d44570e4
JP
7007 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
7008 (u64 *)&temp0_64,
7009 (u64 *)&temp1_64,
7010 (u64 *)&temp2_64,
7011 size) == -ENOMEM) {
ac1f90d6
SS
7012 return 0;
7013 }
5d3213cc
AR
7014
7015 set_rxd_buffer_size(sp, rxdp, size);
7016 wmb();
7017 /* flip the Ownership bit to Hardware */
7018 rxdp->Control_1 |= RXD_OWN_XENA;
7019 }
7020 }
7021 }
7022 return 0;
7023
7024}
7025
d44570e4 7026static int s2io_add_isr(struct s2io_nic *sp)
1da177e4 7027{
e6a8fee2 7028 int ret = 0;
c92ca04b 7029 struct net_device *dev = sp->dev;
e6a8fee2 7030 int err = 0;
1da177e4 7031
eaae7f72 7032 if (sp->config.intr_type == MSI_X)
e6a8fee2
AR
7033 ret = s2io_enable_msi_x(sp);
7034 if (ret) {
7035 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
eaae7f72 7036 sp->config.intr_type = INTA;
20346722 7037 }
1da177e4 7038
d44570e4
JP
7039 /*
7040 * Store the values of the MSIX table in
7041 * the struct s2io_nic structure
7042 */
e6a8fee2 7043 store_xmsi_data(sp);
c92ca04b 7044
e6a8fee2 7045 /* After proper initialization of H/W, register ISR */
eaae7f72 7046 if (sp->config.intr_type == MSI_X) {
ac731ab6
SH
7047 int i, msix_rx_cnt = 0;
7048
f61e0a35
SH
7049 for (i = 0; i < sp->num_entries; i++) {
7050 if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7051 if (sp->s2io_entries[i].type ==
d44570e4 7052 MSIX_RING_TYPE) {
ac731ab6
SH
7053 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7054 dev->name, i);
7055 err = request_irq(sp->entries[i].vector,
d44570e4
JP
7056 s2io_msix_ring_handle,
7057 0,
7058 sp->desc[i],
7059 sp->s2io_entries[i].arg);
ac731ab6 7060 } else if (sp->s2io_entries[i].type ==
d44570e4 7061 MSIX_ALARM_TYPE) {
ac731ab6 7062 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
d44570e4 7063 dev->name, i);
ac731ab6 7064 err = request_irq(sp->entries[i].vector,
d44570e4
JP
7065 s2io_msix_fifo_handle,
7066 0,
7067 sp->desc[i],
7068 sp->s2io_entries[i].arg);
ac731ab6 7069
fb6a825b 7070 }
ac731ab6
SH
7071 /* if either data or addr is zero print it. */
7072 if (!(sp->msix_info[i].addr &&
d44570e4 7073 sp->msix_info[i].data)) {
ac731ab6 7074 DBG_PRINT(ERR_DBG,
d44570e4
JP
7075 "%s @Addr:0x%llx Data:0x%llx\n",
7076 sp->desc[i],
7077 (unsigned long long)
7078 sp->msix_info[i].addr,
7079 (unsigned long long)
7080 ntohl(sp->msix_info[i].data));
ac731ab6 7081 } else
fb6a825b 7082 msix_rx_cnt++;
ac731ab6
SH
7083 if (err) {
7084 remove_msix_isr(sp);
7085
7086 DBG_PRINT(ERR_DBG,
d44570e4
JP
7087 "%s:MSI-X-%d registration "
7088 "failed\n", dev->name, i);
ac731ab6
SH
7089
7090 DBG_PRINT(ERR_DBG,
d44570e4
JP
7091 "%s: Defaulting to INTA\n",
7092 dev->name);
ac731ab6
SH
7093 sp->config.intr_type = INTA;
7094 break;
fb6a825b 7095 }
ac731ab6
SH
7096 sp->s2io_entries[i].in_use =
7097 MSIX_REGISTERED_SUCCESS;
c92ca04b 7098 }
e6a8fee2 7099 }
18b2b7bd 7100 if (!err) {
6cef2b8e 7101 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
9e39f7c5
JP
7102 DBG_PRINT(INFO_DBG,
7103 "MSI-X-TX entries enabled through alarm vector\n");
18b2b7bd 7104 }
e6a8fee2 7105 }
eaae7f72 7106 if (sp->config.intr_type == INTA) {
d44570e4
JP
7107 err = request_irq((int)sp->pdev->irq, s2io_isr, IRQF_SHARED,
7108 sp->name, dev);
e6a8fee2
AR
7109 if (err) {
7110 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7111 dev->name);
7112 return -1;
7113 }
7114 }
7115 return 0;
7116}
d44570e4
JP
7117
7118static void s2io_rem_isr(struct s2io_nic *sp)
e6a8fee2 7119{
18b2b7bd
SH
7120 if (sp->config.intr_type == MSI_X)
7121 remove_msix_isr(sp);
7122 else
7123 remove_inta_isr(sp);
e6a8fee2
AR
7124}
7125
d44570e4 7126static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
e6a8fee2
AR
7127{
7128 int cnt = 0;
1ee6dd77 7129 struct XENA_dev_config __iomem *bar0 = sp->bar0;
e6a8fee2 7130 register u64 val64 = 0;
5f490c96
SH
7131 struct config_param *config;
7132 config = &sp->config;
e6a8fee2 7133
9f74ffde
SH
7134 if (!is_s2io_card_up(sp))
7135 return;
7136
e6a8fee2
AR
7137 del_timer_sync(&sp->alarm_timer);
7138 /* If s2io_set_link task is executing, wait till it completes. */
d44570e4 7139 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
e6a8fee2 7140 msleep(50);
92b84437 7141 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
e6a8fee2 7142
5f490c96 7143 /* Disable napi */
f61e0a35
SH
7144 if (sp->config.napi) {
7145 int off = 0;
7146 if (config->intr_type == MSI_X) {
7147 for (; off < sp->config.rx_ring_num; off++)
7148 napi_disable(&sp->mac_control.rings[off].napi);
d44570e4 7149 }
f61e0a35
SH
7150 else
7151 napi_disable(&sp->napi);
7152 }
5f490c96 7153
e6a8fee2 7154 /* disable Tx and Rx traffic on the NIC */
d796fdb7
LV
7155 if (do_io)
7156 stop_nic(sp);
e6a8fee2
AR
7157
7158 s2io_rem_isr(sp);
1da177e4 7159
01e16faa
SH
7160 /* stop the tx queue, indicate link down */
7161 s2io_link(sp, LINK_DOWN);
7162
1da177e4 7163 /* Check if the device is Quiescent and then Reset the NIC */
d44570e4 7164 while (do_io) {
5d3213cc
AR
7165 /* As per the HW requirement we need to replenish the
7166 * receive buffer to avoid the ring bump. Since there is
7167 * no intention of processing the Rx frame at this pointwe are
7168 * just settting the ownership bit of rxd in Each Rx
7169 * ring to HW and set the appropriate buffer size
7170 * based on the ring mode
7171 */
7172 rxd_owner_bit_reset(sp);
7173
1da177e4 7174 val64 = readq(&bar0->adapter_status);
19a60522 7175 if (verify_xena_quiescence(sp)) {
d44570e4
JP
7176 if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7177 break;
1da177e4
LT
7178 }
7179
7180 msleep(50);
7181 cnt++;
7182 if (cnt == 10) {
9e39f7c5
JP
7183 DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7184 "adapter status reads 0x%llx\n",
d44570e4 7185 (unsigned long long)val64);
1da177e4
LT
7186 break;
7187 }
d796fdb7
LV
7188 }
7189 if (do_io)
7190 s2io_reset(sp);
1da177e4 7191
7ba013ac 7192 /* Free all Tx buffers */
1da177e4 7193 free_tx_buffers(sp);
7ba013ac
K
7194
7195 /* Free all Rx buffers */
1da177e4
LT
7196 free_rx_buffers(sp);
7197
92b84437 7198 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
1da177e4
LT
7199}
7200
d44570e4 7201static void s2io_card_down(struct s2io_nic *sp)
d796fdb7
LV
7202{
7203 do_s2io_card_down(sp, 1);
7204}
7205
d44570e4 7206static int s2io_card_up(struct s2io_nic *sp)
1da177e4 7207{
cc6e7c44 7208 int i, ret = 0;
1da177e4 7209 struct config_param *config;
ffb5df6c 7210 struct mac_info *mac_control;
d44570e4 7211 struct net_device *dev = (struct net_device *)sp->dev;
e6a8fee2 7212 u16 interruptible;
1da177e4
LT
7213
7214 /* Initialize the H/W I/O registers */
9f74ffde
SH
7215 ret = init_nic(sp);
7216 if (ret != 0) {
1da177e4
LT
7217 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7218 dev->name);
9f74ffde
SH
7219 if (ret != -EIO)
7220 s2io_reset(sp);
7221 return ret;
1da177e4
LT
7222 }
7223
20346722
K
7224 /*
7225 * Initializing the Rx buffers. For now we are considering only 1
1da177e4
LT
7226 * Rx ring and initializing buffers into 30 Rx blocks
7227 */
1da177e4 7228 config = &sp->config;
ffb5df6c 7229 mac_control = &sp->mac_control;
1da177e4
LT
7230
7231 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
7232 struct ring_info *ring = &mac_control->rings[i];
7233
7234 ring->mtu = dev->mtu;
7235 ret = fill_rx_buffers(sp, ring, 1);
0425b46a 7236 if (ret) {
1da177e4
LT
7237 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7238 dev->name);
7239 s2io_reset(sp);
7240 free_rx_buffers(sp);
7241 return -ENOMEM;
7242 }
7243 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
13d866a9 7244 ring->rx_bufs_left);
1da177e4 7245 }
5f490c96
SH
7246
7247 /* Initialise napi */
f61e0a35 7248 if (config->napi) {
f61e0a35
SH
7249 if (config->intr_type == MSI_X) {
7250 for (i = 0; i < sp->config.rx_ring_num; i++)
7251 napi_enable(&sp->mac_control.rings[i].napi);
7252 } else {
7253 napi_enable(&sp->napi);
7254 }
7255 }
5f490c96 7256
19a60522
SS
7257 /* Maintain the state prior to the open */
7258 if (sp->promisc_flg)
7259 sp->promisc_flg = 0;
7260 if (sp->m_cast_flg) {
7261 sp->m_cast_flg = 0;
d44570e4 7262 sp->all_multi_pos = 0;
19a60522 7263 }
1da177e4
LT
7264
7265 /* Setting its receive mode */
7266 s2io_set_multicast(dev);
7267
7d3d0439 7268 if (sp->lro) {
b41477f3 7269 /* Initialize max aggregatable pkts per session based on MTU */
7d3d0439 7270 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
d44570e4 7271 /* Check if we can use (if specified) user provided value */
7d3d0439
RA
7272 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7273 sp->lro_max_aggr_per_sess = lro_max_pkts;
7274 }
7275
1da177e4
LT
7276 /* Enable Rx Traffic and interrupts on the NIC */
7277 if (start_nic(sp)) {
7278 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
1da177e4 7279 s2io_reset(sp);
e6a8fee2
AR
7280 free_rx_buffers(sp);
7281 return -ENODEV;
7282 }
7283
7284 /* Add interrupt service routine */
7285 if (s2io_add_isr(sp) != 0) {
eaae7f72 7286 if (sp->config.intr_type == MSI_X)
e6a8fee2
AR
7287 s2io_rem_isr(sp);
7288 s2io_reset(sp);
1da177e4
LT
7289 free_rx_buffers(sp);
7290 return -ENODEV;
7291 }
7292
25fff88e
K
7293 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7294
01e16faa
SH
7295 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7296
e6a8fee2 7297 /* Enable select interrupts */
9caab458 7298 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
01e16faa
SH
7299 if (sp->config.intr_type != INTA) {
7300 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7301 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7302 } else {
e6a8fee2 7303 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
9caab458 7304 interruptible |= TX_PIC_INTR;
e6a8fee2
AR
7305 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7306 }
7307
1da177e4
LT
7308 return 0;
7309}
7310
20346722 7311/**
1da177e4
LT
7312 * s2io_restart_nic - Resets the NIC.
7313 * @data : long pointer to the device private structure
7314 * Description:
7315 * This function is scheduled to be run by the s2io_tx_watchdog
20346722 7316 * function after 0.5 secs to reset the NIC. The idea is to reduce
1da177e4
LT
7317 * the run time of the watch dog routine which is run holding a
7318 * spin lock.
7319 */
7320
c4028958 7321static void s2io_restart_nic(struct work_struct *work)
1da177e4 7322{
1ee6dd77 7323 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
c4028958 7324 struct net_device *dev = sp->dev;
1da177e4 7325
22747d6b
FR
7326 rtnl_lock();
7327
7328 if (!netif_running(dev))
7329 goto out_unlock;
7330
e6a8fee2 7331 s2io_card_down(sp);
1da177e4 7332 if (s2io_card_up(sp)) {
d44570e4 7333 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
1da177e4 7334 }
3a3d5756 7335 s2io_wake_all_tx_queue(sp);
d44570e4 7336 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
22747d6b
FR
7337out_unlock:
7338 rtnl_unlock();
1da177e4
LT
7339}
7340
20346722
K
7341/**
7342 * s2io_tx_watchdog - Watchdog for transmit side.
1da177e4
LT
7343 * @dev : Pointer to net device structure
7344 * Description:
7345 * This function is triggered if the Tx Queue is stopped
7346 * for a pre-defined amount of time when the Interface is still up.
7347 * If the Interface is jammed in such a situation, the hardware is
7348 * reset (by s2io_close) and restarted again (by s2io_open) to
7349 * overcome any problem that might have been caused in the hardware.
7350 * Return value:
7351 * void
7352 */
7353
7354static void s2io_tx_watchdog(struct net_device *dev)
7355{
4cf1653a 7356 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c 7357 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
1da177e4
LT
7358
7359 if (netif_carrier_ok(dev)) {
ffb5df6c 7360 swstats->watchdog_timer_cnt++;
1da177e4 7361 schedule_work(&sp->rst_timer_task);
ffb5df6c 7362 swstats->soft_reset_cnt++;
1da177e4
LT
7363 }
7364}
7365
7366/**
7367 * rx_osm_handler - To perform some OS related operations on SKB.
7368 * @sp: private member of the device structure,pointer to s2io_nic structure.
7369 * @skb : the socket buffer pointer.
7370 * @len : length of the packet
7371 * @cksum : FCS checksum of the frame.
7372 * @ring_no : the ring from which this RxD was extracted.
20346722 7373 * Description:
b41477f3 7374 * This function is called by the Rx interrupt serivce routine to perform
1da177e4
LT
7375 * some OS related operations on the SKB before passing it to the upper
7376 * layers. It mainly checks if the checksum is OK, if so adds it to the
7377 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7378 * to the upper layer. If the checksum is wrong, it increments the Rx
7379 * packet error count, frees the SKB and returns error.
7380 * Return value:
7381 * SUCCESS on success and -1 on failure.
7382 */
1ee6dd77 7383static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
1da177e4 7384{
1ee6dd77 7385 struct s2io_nic *sp = ring_data->nic;
d44570e4 7386 struct net_device *dev = (struct net_device *)ring_data->dev;
20346722 7387 struct sk_buff *skb = (struct sk_buff *)
d44570e4 7388 ((unsigned long)rxdp->Host_Control);
20346722 7389 int ring_no = ring_data->ring_no;
1da177e4 7390 u16 l3_csum, l4_csum;
863c11a9 7391 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
2e6a684b 7392 struct lro *uninitialized_var(lro);
f9046eb3 7393 u8 err_mask;
ffb5df6c 7394 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
da6971d8 7395
20346722 7396 skb->dev = dev;
c92ca04b 7397
863c11a9 7398 if (err) {
bd1034f0 7399 /* Check for parity error */
d44570e4 7400 if (err & 0x1)
ffb5df6c 7401 swstats->parity_err_cnt++;
d44570e4 7402
f9046eb3 7403 err_mask = err >> 48;
d44570e4
JP
7404 switch (err_mask) {
7405 case 1:
ffb5df6c 7406 swstats->rx_parity_err_cnt++;
491976b2
SH
7407 break;
7408
d44570e4 7409 case 2:
ffb5df6c 7410 swstats->rx_abort_cnt++;
491976b2
SH
7411 break;
7412
d44570e4 7413 case 3:
ffb5df6c 7414 swstats->rx_parity_abort_cnt++;
491976b2
SH
7415 break;
7416
d44570e4 7417 case 4:
ffb5df6c 7418 swstats->rx_rda_fail_cnt++;
491976b2
SH
7419 break;
7420
d44570e4 7421 case 5:
ffb5df6c 7422 swstats->rx_unkn_prot_cnt++;
491976b2
SH
7423 break;
7424
d44570e4 7425 case 6:
ffb5df6c 7426 swstats->rx_fcs_err_cnt++;
491976b2 7427 break;
bd1034f0 7428
d44570e4 7429 case 7:
ffb5df6c 7430 swstats->rx_buf_size_err_cnt++;
491976b2
SH
7431 break;
7432
d44570e4 7433 case 8:
ffb5df6c 7434 swstats->rx_rxd_corrupt_cnt++;
491976b2
SH
7435 break;
7436
d44570e4 7437 case 15:
ffb5df6c 7438 swstats->rx_unkn_err_cnt++;
491976b2
SH
7439 break;
7440 }
863c11a9 7441 /*
d44570e4
JP
7442 * Drop the packet if bad transfer code. Exception being
7443 * 0x5, which could be due to unsupported IPv6 extension header.
7444 * In this case, we let stack handle the packet.
7445 * Note that in this case, since checksum will be incorrect,
7446 * stack will validate the same.
7447 */
f9046eb3
OH
7448 if (err_mask != 0x5) {
7449 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
d44570e4 7450 dev->name, err_mask);
dc56e634 7451 dev->stats.rx_crc_errors++;
ffb5df6c 7452 swstats->mem_freed
491976b2 7453 += skb->truesize;
863c11a9 7454 dev_kfree_skb(skb);
0425b46a 7455 ring_data->rx_bufs_left -= 1;
863c11a9
AR
7456 rxdp->Host_Control = 0;
7457 return 0;
7458 }
20346722 7459 }
1da177e4 7460
20346722 7461 /* Updating statistics */
0425b46a 7462 ring_data->rx_packets++;
20346722 7463 rxdp->Host_Control = 0;
da6971d8
AR
7464 if (sp->rxd_mode == RXD_MODE_1) {
7465 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
20346722 7466
0425b46a 7467 ring_data->rx_bytes += len;
da6971d8
AR
7468 skb_put(skb, len);
7469
6d517a27 7470 } else if (sp->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
7471 int get_block = ring_data->rx_curr_get_info.block_index;
7472 int get_off = ring_data->rx_curr_get_info.offset;
7473 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7474 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7475 unsigned char *buff = skb_push(skb, buf0_len);
7476
1ee6dd77 7477 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
0425b46a 7478 ring_data->rx_bytes += buf0_len + buf2_len;
da6971d8 7479 memcpy(buff, ba->ba_0, buf0_len);
6d517a27 7480 skb_put(skb, buf2_len);
da6971d8 7481 }
20346722 7482
d44570e4
JP
7483 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7484 ((!ring_data->lro) ||
7485 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
20346722
K
7486 (sp->rx_csum)) {
7487 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
1da177e4
LT
7488 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7489 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
20346722 7490 /*
1da177e4
LT
7491 * NIC verifies if the Checksum of the received
7492 * frame is Ok or not and accordingly returns
7493 * a flag in the RxD.
7494 */
7495 skb->ip_summed = CHECKSUM_UNNECESSARY;
0425b46a 7496 if (ring_data->lro) {
7d3d0439
RA
7497 u32 tcp_len;
7498 u8 *tcp;
7499 int ret = 0;
7500
0425b46a 7501 ret = s2io_club_tcp_session(ring_data,
d44570e4
JP
7502 skb->data, &tcp,
7503 &tcp_len, &lro,
7504 rxdp, sp);
7d3d0439 7505 switch (ret) {
d44570e4
JP
7506 case 3: /* Begin anew */
7507 lro->parent = skb;
7508 goto aggregate;
7509 case 1: /* Aggregate */
7510 lro_append_pkt(sp, lro, skb, tcp_len);
7511 goto aggregate;
7512 case 4: /* Flush session */
7513 lro_append_pkt(sp, lro, skb, tcp_len);
7514 queue_rx_frame(lro->parent,
7515 lro->vlan_tag);
7516 clear_lro_session(lro);
ffb5df6c 7517 swstats->flush_max_pkts++;
d44570e4
JP
7518 goto aggregate;
7519 case 2: /* Flush both */
7520 lro->parent->data_len = lro->frags_len;
ffb5df6c 7521 swstats->sending_both++;
d44570e4
JP
7522 queue_rx_frame(lro->parent,
7523 lro->vlan_tag);
7524 clear_lro_session(lro);
7525 goto send_up;
7526 case 0: /* sessions exceeded */
7527 case -1: /* non-TCP or not L2 aggregatable */
7528 case 5: /*
7529 * First pkt in session not
7530 * L3/L4 aggregatable
7531 */
7532 break;
7533 default:
7534 DBG_PRINT(ERR_DBG,
7535 "%s: Samadhana!!\n",
7536 __func__);
7537 BUG();
7d3d0439
RA
7538 }
7539 }
1da177e4 7540 } else {
20346722
K
7541 /*
7542 * Packet with erroneous checksum, let the
1da177e4
LT
7543 * upper layers deal with it.
7544 */
7545 skb->ip_summed = CHECKSUM_NONE;
7546 }
cdb5bf02 7547 } else
1da177e4 7548 skb->ip_summed = CHECKSUM_NONE;
cdb5bf02 7549
ffb5df6c 7550 swstats->mem_freed += skb->truesize;
7d3d0439 7551send_up:
0c8dfc83 7552 skb_record_rx_queue(skb, ring_no);
cdb5bf02 7553 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7d3d0439 7554aggregate:
0425b46a 7555 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
1da177e4
LT
7556 return SUCCESS;
7557}
7558
7559/**
7560 * s2io_link - stops/starts the Tx queue.
7561 * @sp : private member of the device structure, which is a pointer to the
7562 * s2io_nic structure.
7563 * @link : inidicates whether link is UP/DOWN.
7564 * Description:
7565 * This function stops/starts the Tx queue depending on whether the link
20346722
K
7566 * status of the NIC is is down or up. This is called by the Alarm
7567 * interrupt handler whenever a link change interrupt comes up.
1da177e4
LT
7568 * Return value:
7569 * void.
7570 */
7571
d44570e4 7572static void s2io_link(struct s2io_nic *sp, int link)
1da177e4 7573{
d44570e4 7574 struct net_device *dev = (struct net_device *)sp->dev;
ffb5df6c 7575 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
1da177e4
LT
7576
7577 if (link != sp->last_link_state) {
b7c5678f 7578 init_tti(sp, link);
1da177e4
LT
7579 if (link == LINK_DOWN) {
7580 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
3a3d5756 7581 s2io_stop_all_tx_queue(sp);
1da177e4 7582 netif_carrier_off(dev);
ffb5df6c
JP
7583 if (swstats->link_up_cnt)
7584 swstats->link_up_time =
7585 jiffies - sp->start_time;
7586 swstats->link_down_cnt++;
1da177e4
LT
7587 } else {
7588 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
ffb5df6c
JP
7589 if (swstats->link_down_cnt)
7590 swstats->link_down_time =
d44570e4 7591 jiffies - sp->start_time;
ffb5df6c 7592 swstats->link_up_cnt++;
1da177e4 7593 netif_carrier_on(dev);
3a3d5756 7594 s2io_wake_all_tx_queue(sp);
1da177e4
LT
7595 }
7596 }
7597 sp->last_link_state = link;
491976b2 7598 sp->start_time = jiffies;
1da177e4
LT
7599}
7600
20346722
K
7601/**
7602 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7603 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
7604 * s2io_nic structure.
7605 * Description:
7606 * This function initializes a few of the PCI and PCI-X configuration registers
7607 * with recommended values.
7608 * Return value:
7609 * void
7610 */
7611
d44570e4 7612static void s2io_init_pci(struct s2io_nic *sp)
1da177e4 7613{
20346722 7614 u16 pci_cmd = 0, pcix_cmd = 0;
1da177e4
LT
7615
7616 /* Enable Data Parity Error Recovery in PCI-X command register. */
7617 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7618 &(pcix_cmd));
1da177e4 7619 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7620 (pcix_cmd | 1));
1da177e4 7621 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7622 &(pcix_cmd));
1da177e4
LT
7623
7624 /* Set the PErr Response bit in PCI command register. */
7625 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7626 pci_write_config_word(sp->pdev, PCI_COMMAND,
7627 (pci_cmd | PCI_COMMAND_PARITY));
7628 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
1da177e4
LT
7629}
7630
3a3d5756 7631static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
d44570e4 7632 u8 *dev_multiq)
9dc737a7 7633{
d44570e4 7634 if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
9e39f7c5 7635 DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
d44570e4 7636 "(%d) not supported\n", tx_fifo_num);
6cfc482b
SH
7637
7638 if (tx_fifo_num < 1)
7639 tx_fifo_num = 1;
7640 else
7641 tx_fifo_num = MAX_TX_FIFOS;
7642
9e39f7c5 7643 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
9dc737a7 7644 }
2fda096d 7645
6cfc482b 7646 if (multiq)
3a3d5756 7647 *dev_multiq = multiq;
6cfc482b
SH
7648
7649 if (tx_steering_type && (1 == tx_fifo_num)) {
7650 if (tx_steering_type != TX_DEFAULT_STEERING)
7651 DBG_PRINT(ERR_DBG,
9e39f7c5 7652 "Tx steering is not supported with "
d44570e4 7653 "one fifo. Disabling Tx steering.\n");
6cfc482b
SH
7654 tx_steering_type = NO_STEERING;
7655 }
7656
7657 if ((tx_steering_type < NO_STEERING) ||
d44570e4
JP
7658 (tx_steering_type > TX_DEFAULT_STEERING)) {
7659 DBG_PRINT(ERR_DBG,
9e39f7c5
JP
7660 "Requested transmit steering not supported\n");
7661 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
6cfc482b 7662 tx_steering_type = NO_STEERING;
3a3d5756
SH
7663 }
7664
0425b46a 7665 if (rx_ring_num > MAX_RX_RINGS) {
d44570e4 7666 DBG_PRINT(ERR_DBG,
9e39f7c5
JP
7667 "Requested number of rx rings not supported\n");
7668 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
d44570e4 7669 MAX_RX_RINGS);
0425b46a 7670 rx_ring_num = MAX_RX_RINGS;
9dc737a7 7671 }
0425b46a 7672
eccb8628 7673 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
9e39f7c5 7674 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
9dc737a7
AR
7675 "Defaulting to INTA\n");
7676 *dev_intr_type = INTA;
7677 }
596c5c97 7678
9dc737a7 7679 if ((*dev_intr_type == MSI_X) &&
d44570e4
JP
7680 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7681 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
9e39f7c5 7682 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
d44570e4 7683 "Defaulting to INTA\n");
9dc737a7
AR
7684 *dev_intr_type = INTA;
7685 }
fb6a825b 7686
6d517a27 7687 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
9e39f7c5
JP
7688 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7689 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
6d517a27 7690 rx_ring_mode = 1;
9dc737a7
AR
7691 }
7692 return SUCCESS;
7693}
7694
9fc93a41
SS
7695/**
7696 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7697 * or Traffic class respectively.
b7c5678f 7698 * @nic: device private variable
9fc93a41
SS
7699 * Description: The function configures the receive steering to
7700 * desired receive ring.
7701 * Return Value: SUCCESS on success and
7702 * '-1' on failure (endian settings incorrect).
7703 */
7704static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7705{
7706 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7707 register u64 val64 = 0;
7708
7709 if (ds_codepoint > 63)
7710 return FAILURE;
7711
7712 val64 = RTS_DS_MEM_DATA(ring);
7713 writeq(val64, &bar0->rts_ds_mem_data);
7714
7715 val64 = RTS_DS_MEM_CTRL_WE |
7716 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7717 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7718
7719 writeq(val64, &bar0->rts_ds_mem_ctrl);
7720
7721 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
d44570e4
JP
7722 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7723 S2IO_BIT_RESET);
9fc93a41
SS
7724}
7725
04025095
SH
7726static const struct net_device_ops s2io_netdev_ops = {
7727 .ndo_open = s2io_open,
7728 .ndo_stop = s2io_close,
7729 .ndo_get_stats = s2io_get_stats,
7730 .ndo_start_xmit = s2io_xmit,
7731 .ndo_validate_addr = eth_validate_addr,
7732 .ndo_set_multicast_list = s2io_set_multicast,
7733 .ndo_do_ioctl = s2io_ioctl,
7734 .ndo_set_mac_address = s2io_set_mac_addr,
7735 .ndo_change_mtu = s2io_change_mtu,
7736 .ndo_vlan_rx_register = s2io_vlan_rx_register,
7737 .ndo_vlan_rx_kill_vid = s2io_vlan_rx_kill_vid,
7738 .ndo_tx_timeout = s2io_tx_watchdog,
7739#ifdef CONFIG_NET_POLL_CONTROLLER
7740 .ndo_poll_controller = s2io_netpoll,
7741#endif
7742};
7743
1da177e4 7744/**
20346722 7745 * s2io_init_nic - Initialization of the adapter .
1da177e4
LT
7746 * @pdev : structure containing the PCI related information of the device.
7747 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7748 * Description:
7749 * The function initializes an adapter identified by the pci_dec structure.
20346722
K
7750 * All OS related initialization including memory and device structure and
7751 * initlaization of the device private variable is done. Also the swapper
7752 * control register is initialized to enable read and write into the I/O
1da177e4
LT
7753 * registers of the device.
7754 * Return value:
7755 * returns 0 on success and negative on failure.
7756 */
7757
7758static int __devinit
7759s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7760{
1ee6dd77 7761 struct s2io_nic *sp;
1da177e4 7762 struct net_device *dev;
1da177e4 7763 int i, j, ret;
f957bcf0 7764 int dma_flag = false;
1da177e4
LT
7765 u32 mac_up, mac_down;
7766 u64 val64 = 0, tmp64 = 0;
1ee6dd77 7767 struct XENA_dev_config __iomem *bar0 = NULL;
1da177e4 7768 u16 subid;
1da177e4 7769 struct config_param *config;
ffb5df6c 7770 struct mac_info *mac_control;
541ae68f 7771 int mode;
cc6e7c44 7772 u8 dev_intr_type = intr_type;
3a3d5756 7773 u8 dev_multiq = 0;
1da177e4 7774
3a3d5756
SH
7775 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7776 if (ret)
9dc737a7 7777 return ret;
1da177e4 7778
d44570e4
JP
7779 ret = pci_enable_device(pdev);
7780 if (ret) {
1da177e4 7781 DBG_PRINT(ERR_DBG,
9e39f7c5 7782 "%s: pci_enable_device failed\n", __func__);
1da177e4
LT
7783 return ret;
7784 }
7785
6a35528a 7786 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
9e39f7c5 7787 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
f957bcf0 7788 dma_flag = true;
d44570e4 7789 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1da177e4 7790 DBG_PRINT(ERR_DBG,
d44570e4
JP
7791 "Unable to obtain 64bit DMA "
7792 "for consistent allocations\n");
1da177e4
LT
7793 pci_disable_device(pdev);
7794 return -ENOMEM;
7795 }
284901a9 7796 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
9e39f7c5 7797 DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
1da177e4
LT
7798 } else {
7799 pci_disable_device(pdev);
7800 return -ENOMEM;
7801 }
d44570e4
JP
7802 ret = pci_request_regions(pdev, s2io_driver_name);
7803 if (ret) {
9e39f7c5 7804 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
d44570e4 7805 __func__, ret);
eccb8628
VP
7806 pci_disable_device(pdev);
7807 return -ENODEV;
1da177e4 7808 }
3a3d5756 7809 if (dev_multiq)
6cfc482b 7810 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
3a3d5756 7811 else
b19fa1fa 7812 dev = alloc_etherdev(sizeof(struct s2io_nic));
1da177e4
LT
7813 if (dev == NULL) {
7814 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7815 pci_disable_device(pdev);
7816 pci_release_regions(pdev);
7817 return -ENODEV;
7818 }
7819
7820 pci_set_master(pdev);
7821 pci_set_drvdata(pdev, dev);
1da177e4
LT
7822 SET_NETDEV_DEV(dev, &pdev->dev);
7823
7824 /* Private member variable initialized to s2io NIC structure */
4cf1653a 7825 sp = netdev_priv(dev);
1ee6dd77 7826 memset(sp, 0, sizeof(struct s2io_nic));
1da177e4
LT
7827 sp->dev = dev;
7828 sp->pdev = pdev;
1da177e4 7829 sp->high_dma_flag = dma_flag;
f957bcf0 7830 sp->device_enabled_once = false;
da6971d8
AR
7831 if (rx_ring_mode == 1)
7832 sp->rxd_mode = RXD_MODE_1;
7833 if (rx_ring_mode == 2)
7834 sp->rxd_mode = RXD_MODE_3B;
da6971d8 7835
eaae7f72 7836 sp->config.intr_type = dev_intr_type;
1da177e4 7837
541ae68f 7838 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
d44570e4 7839 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
541ae68f
K
7840 sp->device_type = XFRAME_II_DEVICE;
7841 else
7842 sp->device_type = XFRAME_I_DEVICE;
7843
43b7c451 7844 sp->lro = lro_enable;
6aa20a22 7845
1da177e4
LT
7846 /* Initialize some PCI/PCI-X fields of the NIC. */
7847 s2io_init_pci(sp);
7848
20346722 7849 /*
1da177e4 7850 * Setting the device configuration parameters.
20346722
K
7851 * Most of these parameters can be specified by the user during
7852 * module insertion as they are module loadable parameters. If
7853 * these parameters are not not specified during load time, they
1da177e4
LT
7854 * are initialized with default values.
7855 */
1da177e4 7856 config = &sp->config;
ffb5df6c 7857 mac_control = &sp->mac_control;
1da177e4 7858
596c5c97 7859 config->napi = napi;
6cfc482b 7860 config->tx_steering_type = tx_steering_type;
596c5c97 7861
1da177e4 7862 /* Tx side parameters. */
6cfc482b
SH
7863 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7864 config->tx_fifo_num = MAX_TX_FIFOS;
7865 else
7866 config->tx_fifo_num = tx_fifo_num;
7867
7868 /* Initialize the fifos used for tx steering */
7869 if (config->tx_fifo_num < 5) {
d44570e4
JP
7870 if (config->tx_fifo_num == 1)
7871 sp->total_tcp_fifos = 1;
7872 else
7873 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7874 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7875 sp->total_udp_fifos = 1;
7876 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
6cfc482b
SH
7877 } else {
7878 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
d44570e4 7879 FIFO_OTHER_MAX_NUM);
6cfc482b
SH
7880 sp->udp_fifo_idx = sp->total_tcp_fifos;
7881 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7882 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7883 }
7884
3a3d5756 7885 config->multiq = dev_multiq;
6cfc482b 7886 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
7887 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7888
7889 tx_cfg->fifo_len = tx_fifo_len[i];
7890 tx_cfg->fifo_priority = i;
1da177e4
LT
7891 }
7892
20346722
K
7893 /* mapping the QoS priority to the configured fifos */
7894 for (i = 0; i < MAX_TX_FIFOS; i++)
3a3d5756 7895 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
20346722 7896
6cfc482b
SH
7897 /* map the hashing selector table to the configured fifos */
7898 for (i = 0; i < config->tx_fifo_num; i++)
7899 sp->fifo_selector[i] = fifo_selector[i];
7900
7901
1da177e4
LT
7902 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7903 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
7904 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7905
7906 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7907 if (tx_cfg->fifo_len < 65) {
1da177e4
LT
7908 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7909 break;
7910 }
7911 }
fed5eccd
AR
7912 /* + 2 because one Txd for skb->data and one Txd for UFO */
7913 config->max_txds = MAX_SKB_FRAGS + 2;
1da177e4
LT
7914
7915 /* Rx side parameters. */
1da177e4 7916 config->rx_ring_num = rx_ring_num;
0425b46a 7917 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
7918 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7919 struct ring_info *ring = &mac_control->rings[i];
7920
7921 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7922 rx_cfg->ring_priority = i;
7923 ring->rx_bufs_left = 0;
7924 ring->rxd_mode = sp->rxd_mode;
7925 ring->rxd_count = rxd_count[sp->rxd_mode];
7926 ring->pdev = sp->pdev;
7927 ring->dev = sp->dev;
1da177e4
LT
7928 }
7929
7930 for (i = 0; i < rx_ring_num; i++) {
13d866a9
JP
7931 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7932
7933 rx_cfg->ring_org = RING_ORG_BUFF1;
7934 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
1da177e4
LT
7935 }
7936
7937 /* Setting Mac Control parameters */
7938 mac_control->rmac_pause_time = rmac_pause_time;
7939 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7940 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7941
7942
1da177e4
LT
7943 /* initialize the shared memory used by the NIC and the host */
7944 if (init_shared_mem(sp)) {
d44570e4 7945 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
1da177e4
LT
7946 ret = -ENOMEM;
7947 goto mem_alloc_failed;
7948 }
7949
275f165f 7950 sp->bar0 = pci_ioremap_bar(pdev, 0);
1da177e4 7951 if (!sp->bar0) {
19a60522 7952 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
1da177e4
LT
7953 dev->name);
7954 ret = -ENOMEM;
7955 goto bar0_remap_failed;
7956 }
7957
275f165f 7958 sp->bar1 = pci_ioremap_bar(pdev, 2);
1da177e4 7959 if (!sp->bar1) {
19a60522 7960 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
1da177e4
LT
7961 dev->name);
7962 ret = -ENOMEM;
7963 goto bar1_remap_failed;
7964 }
7965
7966 dev->irq = pdev->irq;
d44570e4 7967 dev->base_addr = (unsigned long)sp->bar0;
1da177e4
LT
7968
7969 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7970 for (j = 0; j < MAX_TX_FIFOS; j++) {
d44570e4
JP
7971 mac_control->tx_FIFO_start[j] =
7972 (struct TxFIFO_element __iomem *)
7973 (sp->bar1 + (j * 0x00020000));
1da177e4
LT
7974 }
7975
7976 /* Driver entry points */
04025095 7977 dev->netdev_ops = &s2io_netdev_ops;
1da177e4 7978 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
be3a6b02 7979 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
612eff0e 7980
1da177e4 7981 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
f957bcf0 7982 if (sp->high_dma_flag == true)
1da177e4 7983 dev->features |= NETIF_F_HIGHDMA;
1da177e4 7984 dev->features |= NETIF_F_TSO;
f83ef8c0 7985 dev->features |= NETIF_F_TSO6;
db874e65 7986 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
fed5eccd
AR
7987 dev->features |= NETIF_F_UFO;
7988 dev->features |= NETIF_F_HW_CSUM;
7989 }
1da177e4 7990 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
c4028958
DH
7991 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7992 INIT_WORK(&sp->set_link_task, s2io_set_link);
1da177e4 7993
e960fc5c 7994 pci_save_state(sp->pdev);
1da177e4
LT
7995
7996 /* Setting swapper control on the NIC, for proper reset operation */
7997 if (s2io_set_swapper(sp)) {
9e39f7c5 7998 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
1da177e4
LT
7999 dev->name);
8000 ret = -EAGAIN;
8001 goto set_swap_failed;
8002 }
8003
541ae68f
K
8004 /* Verify if the Herc works on the slot its placed into */
8005 if (sp->device_type & XFRAME_II_DEVICE) {
8006 mode = s2io_verify_pci_mode(sp);
8007 if (mode < 0) {
9e39f7c5
JP
8008 DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
8009 __func__);
541ae68f
K
8010 ret = -EBADSLT;
8011 goto set_swap_failed;
8012 }
8013 }
8014
f61e0a35
SH
8015 if (sp->config.intr_type == MSI_X) {
8016 sp->num_entries = config->rx_ring_num + 1;
8017 ret = s2io_enable_msi_x(sp);
8018
8019 if (!ret) {
8020 ret = s2io_test_msi(sp);
8021 /* rollback MSI-X, will re-enable during add_isr() */
8022 remove_msix_isr(sp);
8023 }
8024 if (ret) {
8025
8026 DBG_PRINT(ERR_DBG,
9e39f7c5 8027 "MSI-X requested but failed to enable\n");
f61e0a35
SH
8028 sp->config.intr_type = INTA;
8029 }
8030 }
8031
8032 if (config->intr_type == MSI_X) {
13d866a9
JP
8033 for (i = 0; i < config->rx_ring_num ; i++) {
8034 struct ring_info *ring = &mac_control->rings[i];
8035
8036 netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
8037 }
f61e0a35
SH
8038 } else {
8039 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8040 }
8041
541ae68f
K
8042 /* Not needed for Herc */
8043 if (sp->device_type & XFRAME_I_DEVICE) {
8044 /*
8045 * Fix for all "FFs" MAC address problems observed on
8046 * Alpha platforms
8047 */
8048 fix_mac_address(sp);
8049 s2io_reset(sp);
8050 }
1da177e4
LT
8051
8052 /*
1da177e4
LT
8053 * MAC address initialization.
8054 * For now only one mac address will be read and used.
8055 */
8056 bar0 = sp->bar0;
8057 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
d44570e4 8058 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
1da177e4 8059 writeq(val64, &bar0->rmac_addr_cmd_mem);
c92ca04b 8060 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
8061 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8062 S2IO_BIT_RESET);
1da177e4 8063 tmp64 = readq(&bar0->rmac_addr_data0_mem);
d44570e4 8064 mac_down = (u32)tmp64;
1da177e4
LT
8065 mac_up = (u32) (tmp64 >> 32);
8066
1da177e4
LT
8067 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8068 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8069 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8070 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8071 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8072 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8073
1da177e4
LT
8074 /* Set the factory defined MAC address initially */
8075 dev->addr_len = ETH_ALEN;
8076 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
2fd37688 8077 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
1da177e4 8078
faa4f796
SH
8079 /* initialize number of multicast & unicast MAC entries variables */
8080 if (sp->device_type == XFRAME_I_DEVICE) {
8081 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8082 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8083 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8084 } else if (sp->device_type == XFRAME_II_DEVICE) {
8085 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8086 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8087 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8088 }
8089
8090 /* store mac addresses from CAM to s2io_nic structure */
8091 do_s2io_store_unicast_mc(sp);
8092
f61e0a35
SH
8093 /* Configure MSIX vector for number of rings configured plus one */
8094 if ((sp->device_type == XFRAME_II_DEVICE) &&
d44570e4 8095 (config->intr_type == MSI_X))
f61e0a35
SH
8096 sp->num_entries = config->rx_ring_num + 1;
8097
d44570e4 8098 /* Store the values of the MSIX table in the s2io_nic structure */
c77dd43e 8099 store_xmsi_data(sp);
b41477f3
AR
8100 /* reset Nic and bring it to known state */
8101 s2io_reset(sp);
8102
1da177e4 8103 /*
99993af6 8104 * Initialize link state flags
541ae68f 8105 * and the card state parameter
1da177e4 8106 */
92b84437 8107 sp->state = 0;
1da177e4 8108
1da177e4 8109 /* Initialize spinlocks */
13d866a9
JP
8110 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8111 struct fifo_info *fifo = &mac_control->fifos[i];
8112
8113 spin_lock_init(&fifo->tx_lock);
8114 }
db874e65 8115
20346722
K
8116 /*
8117 * SXE-002: Configure link and activity LED to init state
8118 * on driver load.
1da177e4
LT
8119 */
8120 subid = sp->pdev->subsystem_device;
8121 if ((subid & 0xFF) >= 0x07) {
8122 val64 = readq(&bar0->gpio_control);
8123 val64 |= 0x0000800000000000ULL;
8124 writeq(val64, &bar0->gpio_control);
8125 val64 = 0x0411040400000000ULL;
d44570e4 8126 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
8127 val64 = readq(&bar0->gpio_control);
8128 }
8129
8130 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8131
8132 if (register_netdev(dev)) {
8133 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8134 ret = -ENODEV;
8135 goto register_failed;
8136 }
9dc737a7 8137 s2io_vpd_read(sp);
0c61ed5f 8138 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
d44570e4 8139 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
44c10138 8140 sp->product_name, pdev->revision);
b41477f3
AR
8141 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8142 s2io_driver_version);
9e39f7c5
JP
8143 DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8144 DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
9dc737a7 8145 if (sp->device_type & XFRAME_II_DEVICE) {
0b1f7ebe 8146 mode = s2io_print_pci_mode(sp);
541ae68f 8147 if (mode < 0) {
541ae68f 8148 ret = -EBADSLT;
9dc737a7 8149 unregister_netdev(dev);
541ae68f
K
8150 goto set_swap_failed;
8151 }
541ae68f 8152 }
d44570e4
JP
8153 switch (sp->rxd_mode) {
8154 case RXD_MODE_1:
8155 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8156 dev->name);
8157 break;
8158 case RXD_MODE_3B:
8159 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8160 dev->name);
8161 break;
9dc737a7 8162 }
db874e65 8163
f61e0a35
SH
8164 switch (sp->config.napi) {
8165 case 0:
8166 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8167 break;
8168 case 1:
db874e65 8169 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
f61e0a35
SH
8170 break;
8171 }
3a3d5756
SH
8172
8173 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
d44570e4 8174 sp->config.tx_fifo_num);
3a3d5756 8175
0425b46a
SH
8176 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8177 sp->config.rx_ring_num);
8178
d44570e4
JP
8179 switch (sp->config.intr_type) {
8180 case INTA:
8181 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8182 break;
8183 case MSI_X:
8184 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8185 break;
9dc737a7 8186 }
3a3d5756 8187 if (sp->config.multiq) {
13d866a9
JP
8188 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8189 struct fifo_info *fifo = &mac_control->fifos[i];
8190
8191 fifo->multiq = config->multiq;
8192 }
3a3d5756 8193 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
d44570e4 8194 dev->name);
3a3d5756
SH
8195 } else
8196 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
d44570e4 8197 dev->name);
3a3d5756 8198
6cfc482b
SH
8199 switch (sp->config.tx_steering_type) {
8200 case NO_STEERING:
d44570e4
JP
8201 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8202 dev->name);
8203 break;
6cfc482b 8204 case TX_PRIORITY_STEERING:
d44570e4
JP
8205 DBG_PRINT(ERR_DBG,
8206 "%s: Priority steering enabled for transmit\n",
8207 dev->name);
6cfc482b
SH
8208 break;
8209 case TX_DEFAULT_STEERING:
d44570e4
JP
8210 DBG_PRINT(ERR_DBG,
8211 "%s: Default steering enabled for transmit\n",
8212 dev->name);
6cfc482b
SH
8213 }
8214
7d3d0439
RA
8215 if (sp->lro)
8216 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
9dc737a7 8217 dev->name);
db874e65 8218 if (ufo)
d44570e4
JP
8219 DBG_PRINT(ERR_DBG,
8220 "%s: UDP Fragmentation Offload(UFO) enabled\n",
8221 dev->name);
7ba013ac 8222 /* Initialize device name */
9dc737a7 8223 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7ba013ac 8224
cd0fce03
BL
8225 if (vlan_tag_strip)
8226 sp->vlan_strip_flag = 1;
8227 else
8228 sp->vlan_strip_flag = 0;
8229
20346722
K
8230 /*
8231 * Make Link state as off at this point, when the Link change
8232 * interrupt comes the state will be automatically changed to
1da177e4
LT
8233 * the right state.
8234 */
8235 netif_carrier_off(dev);
1da177e4
LT
8236
8237 return 0;
8238
d44570e4
JP
8239register_failed:
8240set_swap_failed:
1da177e4 8241 iounmap(sp->bar1);
d44570e4 8242bar1_remap_failed:
1da177e4 8243 iounmap(sp->bar0);
d44570e4
JP
8244bar0_remap_failed:
8245mem_alloc_failed:
1da177e4
LT
8246 free_shared_mem(sp);
8247 pci_disable_device(pdev);
eccb8628 8248 pci_release_regions(pdev);
1da177e4
LT
8249 pci_set_drvdata(pdev, NULL);
8250 free_netdev(dev);
8251
8252 return ret;
8253}
8254
8255/**
20346722 8256 * s2io_rem_nic - Free the PCI device
1da177e4 8257 * @pdev: structure containing the PCI related information of the device.
20346722 8258 * Description: This function is called by the Pci subsystem to release a
1da177e4 8259 * PCI device and free up all resource held up by the device. This could
20346722 8260 * be in response to a Hot plug event or when the driver is to be removed
1da177e4
LT
8261 * from memory.
8262 */
8263
8264static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8265{
8266 struct net_device *dev =
d44570e4 8267 (struct net_device *)pci_get_drvdata(pdev);
1ee6dd77 8268 struct s2io_nic *sp;
1da177e4
LT
8269
8270 if (dev == NULL) {
8271 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8272 return;
8273 }
8274
22747d6b
FR
8275 flush_scheduled_work();
8276
4cf1653a 8277 sp = netdev_priv(dev);
1da177e4
LT
8278 unregister_netdev(dev);
8279
8280 free_shared_mem(sp);
8281 iounmap(sp->bar0);
8282 iounmap(sp->bar1);
eccb8628 8283 pci_release_regions(pdev);
1da177e4 8284 pci_set_drvdata(pdev, NULL);
1da177e4 8285 free_netdev(dev);
19a60522 8286 pci_disable_device(pdev);
1da177e4
LT
8287}
8288
8289/**
8290 * s2io_starter - Entry point for the driver
8291 * Description: This function is the entry point for the driver. It verifies
8292 * the module loadable parameters and initializes PCI configuration space.
8293 */
8294
43b7c451 8295static int __init s2io_starter(void)
1da177e4 8296{
29917620 8297 return pci_register_driver(&s2io_driver);
1da177e4
LT
8298}
8299
8300/**
20346722 8301 * s2io_closer - Cleanup routine for the driver
1da177e4
LT
8302 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8303 */
8304
372cc597 8305static __exit void s2io_closer(void)
1da177e4
LT
8306{
8307 pci_unregister_driver(&s2io_driver);
8308 DBG_PRINT(INIT_DBG, "cleanup done\n");
8309}
8310
8311module_init(s2io_starter);
8312module_exit(s2io_closer);
7d3d0439 8313
6aa20a22 8314static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
d44570e4
JP
8315 struct tcphdr **tcp, struct RxD_t *rxdp,
8316 struct s2io_nic *sp)
7d3d0439
RA
8317{
8318 int ip_off;
8319 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8320
8321 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
d44570e4
JP
8322 DBG_PRINT(INIT_DBG,
8323 "%s: Non-TCP frames not supported for LRO\n",
b39d66a8 8324 __func__);
7d3d0439
RA
8325 return -1;
8326 }
8327
cdb5bf02 8328 /* Checking for DIX type or DIX type with VLAN */
d44570e4 8329 if ((l2_type == 0) || (l2_type == 4)) {
cdb5bf02
SH
8330 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8331 /*
8332 * If vlan stripping is disabled and the frame is VLAN tagged,
8333 * shift the offset by the VLAN header size bytes.
8334 */
cd0fce03 8335 if ((!sp->vlan_strip_flag) &&
d44570e4 8336 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
cdb5bf02
SH
8337 ip_off += HEADER_VLAN_SIZE;
8338 } else {
7d3d0439 8339 /* LLC, SNAP etc are considered non-mergeable */
cdb5bf02 8340 return -1;
7d3d0439
RA
8341 }
8342
8343 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8344 ip_len = (u8)((*ip)->ihl);
8345 ip_len <<= 2;
8346 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8347
8348 return 0;
8349}
8350
1ee6dd77 8351static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7d3d0439
RA
8352 struct tcphdr *tcp)
8353{
d44570e4
JP
8354 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8355 if ((lro->iph->saddr != ip->saddr) ||
8356 (lro->iph->daddr != ip->daddr) ||
8357 (lro->tcph->source != tcp->source) ||
8358 (lro->tcph->dest != tcp->dest))
7d3d0439
RA
8359 return -1;
8360 return 0;
8361}
8362
8363static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8364{
d44570e4 8365 return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
7d3d0439
RA
8366}
8367
1ee6dd77 8368static void initiate_new_session(struct lro *lro, u8 *l2h,
d44570e4
JP
8369 struct iphdr *ip, struct tcphdr *tcp,
8370 u32 tcp_pyld_len, u16 vlan_tag)
7d3d0439 8371{
d44570e4 8372 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
7d3d0439
RA
8373 lro->l2h = l2h;
8374 lro->iph = ip;
8375 lro->tcph = tcp;
8376 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
c8855953 8377 lro->tcp_ack = tcp->ack_seq;
7d3d0439
RA
8378 lro->sg_num = 1;
8379 lro->total_len = ntohs(ip->tot_len);
8380 lro->frags_len = 0;
cdb5bf02 8381 lro->vlan_tag = vlan_tag;
6aa20a22 8382 /*
d44570e4
JP
8383 * Check if we saw TCP timestamp.
8384 * Other consistency checks have already been done.
8385 */
7d3d0439 8386 if (tcp->doff == 8) {
c8855953
SR
8387 __be32 *ptr;
8388 ptr = (__be32 *)(tcp+1);
7d3d0439 8389 lro->saw_ts = 1;
c8855953 8390 lro->cur_tsval = ntohl(*(ptr+1));
7d3d0439
RA
8391 lro->cur_tsecr = *(ptr+2);
8392 }
8393 lro->in_use = 1;
8394}
8395
1ee6dd77 8396static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7d3d0439
RA
8397{
8398 struct iphdr *ip = lro->iph;
8399 struct tcphdr *tcp = lro->tcph;
bd4f3ae1 8400 __sum16 nchk;
ffb5df6c
JP
8401 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8402
d44570e4 8403 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
7d3d0439
RA
8404
8405 /* Update L3 header */
8406 ip->tot_len = htons(lro->total_len);
8407 ip->check = 0;
8408 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8409 ip->check = nchk;
8410
8411 /* Update L4 header */
8412 tcp->ack_seq = lro->tcp_ack;
8413 tcp->window = lro->window;
8414
8415 /* Update tsecr field if this session has timestamps enabled */
8416 if (lro->saw_ts) {
c8855953 8417 __be32 *ptr = (__be32 *)(tcp + 1);
7d3d0439
RA
8418 *(ptr+2) = lro->cur_tsecr;
8419 }
8420
8421 /* Update counters required for calculation of
8422 * average no. of packets aggregated.
8423 */
ffb5df6c
JP
8424 swstats->sum_avg_pkts_aggregated += lro->sg_num;
8425 swstats->num_aggregations++;
7d3d0439
RA
8426}
8427
1ee6dd77 8428static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
d44570e4 8429 struct tcphdr *tcp, u32 l4_pyld)
7d3d0439 8430{
d44570e4 8431 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
7d3d0439
RA
8432 lro->total_len += l4_pyld;
8433 lro->frags_len += l4_pyld;
8434 lro->tcp_next_seq += l4_pyld;
8435 lro->sg_num++;
8436
8437 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8438 lro->tcp_ack = tcp->ack_seq;
8439 lro->window = tcp->window;
6aa20a22 8440
7d3d0439 8441 if (lro->saw_ts) {
c8855953 8442 __be32 *ptr;
7d3d0439 8443 /* Update tsecr and tsval from this packet */
c8855953
SR
8444 ptr = (__be32 *)(tcp+1);
8445 lro->cur_tsval = ntohl(*(ptr+1));
7d3d0439
RA
8446 lro->cur_tsecr = *(ptr + 2);
8447 }
8448}
8449
1ee6dd77 8450static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7d3d0439
RA
8451 struct tcphdr *tcp, u32 tcp_pyld_len)
8452{
7d3d0439
RA
8453 u8 *ptr;
8454
d44570e4 8455 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
79dc1901 8456
7d3d0439
RA
8457 if (!tcp_pyld_len) {
8458 /* Runt frame or a pure ack */
8459 return -1;
8460 }
8461
8462 if (ip->ihl != 5) /* IP has options */
8463 return -1;
8464
75c30b13
AR
8465 /* If we see CE codepoint in IP header, packet is not mergeable */
8466 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8467 return -1;
8468
8469 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
d44570e4
JP
8470 if (tcp->urg || tcp->psh || tcp->rst ||
8471 tcp->syn || tcp->fin ||
8472 tcp->ece || tcp->cwr || !tcp->ack) {
7d3d0439
RA
8473 /*
8474 * Currently recognize only the ack control word and
8475 * any other control field being set would result in
8476 * flushing the LRO session
8477 */
8478 return -1;
8479 }
8480
6aa20a22 8481 /*
7d3d0439
RA
8482 * Allow only one TCP timestamp option. Don't aggregate if
8483 * any other options are detected.
8484 */
8485 if (tcp->doff != 5 && tcp->doff != 8)
8486 return -1;
8487
8488 if (tcp->doff == 8) {
6aa20a22 8489 ptr = (u8 *)(tcp + 1);
7d3d0439
RA
8490 while (*ptr == TCPOPT_NOP)
8491 ptr++;
8492 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8493 return -1;
8494
8495 /* Ensure timestamp value increases monotonically */
8496 if (l_lro)
c8855953 8497 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
7d3d0439
RA
8498 return -1;
8499
8500 /* timestamp echo reply should be non-zero */
c8855953 8501 if (*((__be32 *)(ptr+6)) == 0)
7d3d0439
RA
8502 return -1;
8503 }
8504
8505 return 0;
8506}
8507
d44570e4
JP
8508static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8509 u8 **tcp, u32 *tcp_len, struct lro **lro,
8510 struct RxD_t *rxdp, struct s2io_nic *sp)
7d3d0439
RA
8511{
8512 struct iphdr *ip;
8513 struct tcphdr *tcph;
8514 int ret = 0, i;
cdb5bf02 8515 u16 vlan_tag = 0;
ffb5df6c 8516 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7d3d0439 8517
d44570e4
JP
8518 ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8519 rxdp, sp);
8520 if (ret)
7d3d0439 8521 return ret;
7d3d0439 8522
d44570e4
JP
8523 DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8524
cdb5bf02 8525 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
7d3d0439
RA
8526 tcph = (struct tcphdr *)*tcp;
8527 *tcp_len = get_l4_pyld_length(ip, tcph);
d44570e4 8528 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
0425b46a 8529 struct lro *l_lro = &ring_data->lro0_n[i];
7d3d0439
RA
8530 if (l_lro->in_use) {
8531 if (check_for_socket_match(l_lro, ip, tcph))
8532 continue;
8533 /* Sock pair matched */
8534 *lro = l_lro;
8535
8536 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
9e39f7c5
JP
8537 DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8538 "expected 0x%x, actual 0x%x\n",
8539 __func__,
7d3d0439
RA
8540 (*lro)->tcp_next_seq,
8541 ntohl(tcph->seq));
8542
ffb5df6c 8543 swstats->outof_sequence_pkts++;
7d3d0439
RA
8544 ret = 2;
8545 break;
8546 }
8547
d44570e4
JP
8548 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8549 *tcp_len))
7d3d0439
RA
8550 ret = 1; /* Aggregate */
8551 else
8552 ret = 2; /* Flush both */
8553 break;
8554 }
8555 }
8556
8557 if (ret == 0) {
8558 /* Before searching for available LRO objects,
8559 * check if the pkt is L3/L4 aggregatable. If not
8560 * don't create new LRO session. Just send this
8561 * packet up.
8562 */
d44570e4 8563 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
7d3d0439 8564 return 5;
7d3d0439 8565
d44570e4 8566 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
0425b46a 8567 struct lro *l_lro = &ring_data->lro0_n[i];
7d3d0439
RA
8568 if (!(l_lro->in_use)) {
8569 *lro = l_lro;
8570 ret = 3; /* Begin anew */
8571 break;
8572 }
8573 }
8574 }
8575
8576 if (ret == 0) { /* sessions exceeded */
9e39f7c5 8577 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
b39d66a8 8578 __func__);
7d3d0439
RA
8579 *lro = NULL;
8580 return ret;
8581 }
8582
8583 switch (ret) {
d44570e4
JP
8584 case 3:
8585 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8586 vlan_tag);
8587 break;
8588 case 2:
8589 update_L3L4_header(sp, *lro);
8590 break;
8591 case 1:
8592 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8593 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7d3d0439 8594 update_L3L4_header(sp, *lro);
d44570e4
JP
8595 ret = 4; /* Flush the LRO */
8596 }
8597 break;
8598 default:
9e39f7c5 8599 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
d44570e4 8600 break;
7d3d0439
RA
8601 }
8602
8603 return ret;
8604}
8605
1ee6dd77 8606static void clear_lro_session(struct lro *lro)
7d3d0439 8607{
1ee6dd77 8608 static u16 lro_struct_size = sizeof(struct lro);
7d3d0439
RA
8609
8610 memset(lro, 0, lro_struct_size);
8611}
8612
cdb5bf02 8613static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
7d3d0439
RA
8614{
8615 struct net_device *dev = skb->dev;
4cf1653a 8616 struct s2io_nic *sp = netdev_priv(dev);
7d3d0439
RA
8617
8618 skb->protocol = eth_type_trans(skb, dev);
d44570e4 8619 if (sp->vlgrp && vlan_tag && (sp->vlan_strip_flag)) {
cdb5bf02
SH
8620 /* Queueing the vlan frame to the upper layer */
8621 if (sp->config.napi)
8622 vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8623 else
8624 vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8625 } else {
8626 if (sp->config.napi)
8627 netif_receive_skb(skb);
8628 else
8629 netif_rx(skb);
8630 }
7d3d0439
RA
8631}
8632
1ee6dd77 8633static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
d44570e4 8634 struct sk_buff *skb, u32 tcp_len)
7d3d0439 8635{
75c30b13 8636 struct sk_buff *first = lro->parent;
ffb5df6c 8637 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7d3d0439
RA
8638
8639 first->len += tcp_len;
8640 first->data_len = lro->frags_len;
8641 skb_pull(skb, (skb->len - tcp_len));
75c30b13
AR
8642 if (skb_shinfo(first)->frag_list)
8643 lro->last_frag->next = skb;
7d3d0439
RA
8644 else
8645 skb_shinfo(first)->frag_list = skb;
372cc597 8646 first->truesize += skb->truesize;
75c30b13 8647 lro->last_frag = skb;
ffb5df6c 8648 swstats->clubbed_frms_cnt++;
7d3d0439
RA
8649 return;
8650}
d796fdb7
LV
8651
8652/**
8653 * s2io_io_error_detected - called when PCI error is detected
8654 * @pdev: Pointer to PCI device
8453d43f 8655 * @state: The current pci connection state
d796fdb7
LV
8656 *
8657 * This function is called after a PCI bus error affecting
8658 * this device has been detected.
8659 */
8660static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
d44570e4 8661 pci_channel_state_t state)
d796fdb7
LV
8662{
8663 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 8664 struct s2io_nic *sp = netdev_priv(netdev);
d796fdb7
LV
8665
8666 netif_device_detach(netdev);
8667
1e3c8bd6
DN
8668 if (state == pci_channel_io_perm_failure)
8669 return PCI_ERS_RESULT_DISCONNECT;
8670
d796fdb7
LV
8671 if (netif_running(netdev)) {
8672 /* Bring down the card, while avoiding PCI I/O */
8673 do_s2io_card_down(sp, 0);
d796fdb7
LV
8674 }
8675 pci_disable_device(pdev);
8676
8677 return PCI_ERS_RESULT_NEED_RESET;
8678}
8679
8680/**
8681 * s2io_io_slot_reset - called after the pci bus has been reset.
8682 * @pdev: Pointer to PCI device
8683 *
8684 * Restart the card from scratch, as if from a cold-boot.
8685 * At this point, the card has exprienced a hard reset,
8686 * followed by fixups by BIOS, and has its config space
8687 * set up identically to what it was at cold boot.
8688 */
8689static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8690{
8691 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 8692 struct s2io_nic *sp = netdev_priv(netdev);
d796fdb7
LV
8693
8694 if (pci_enable_device(pdev)) {
6cef2b8e 8695 pr_err("Cannot re-enable PCI device after reset.\n");
d796fdb7
LV
8696 return PCI_ERS_RESULT_DISCONNECT;
8697 }
8698
8699 pci_set_master(pdev);
8700 s2io_reset(sp);
8701
8702 return PCI_ERS_RESULT_RECOVERED;
8703}
8704
8705/**
8706 * s2io_io_resume - called when traffic can start flowing again.
8707 * @pdev: Pointer to PCI device
8708 *
8709 * This callback is called when the error recovery driver tells
8710 * us that its OK to resume normal operation.
8711 */
8712static void s2io_io_resume(struct pci_dev *pdev)
8713{
8714 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 8715 struct s2io_nic *sp = netdev_priv(netdev);
d796fdb7
LV
8716
8717 if (netif_running(netdev)) {
8718 if (s2io_card_up(sp)) {
6cef2b8e 8719 pr_err("Can't bring device back up after reset.\n");
d796fdb7
LV
8720 return;
8721 }
8722
8723 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8724 s2io_card_down(sp);
6cef2b8e 8725 pr_err("Can't restore mac addr after reset.\n");
d796fdb7
LV
8726 return;
8727 }
8728 }
8729
8730 netif_device_attach(netdev);
fd2ea0a7 8731 netif_tx_wake_all_queues(netdev);
d796fdb7 8732}