]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/s2io.c
cifs endianness fixes
[net-next-2.6.git] / drivers / net / s2io.c
CommitLineData
1da177e4 1/************************************************************************
776bd20f 2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
0c61ed5f 3 * Copyright(c) 2002-2007 Neterion Inc.
1da177e4
LT
4
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
20346722
K
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
1da177e4
LT
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
20346722 21 * Francois Romieu : For pointing out all code part that were
1da177e4 22 * deprecated and also styling related comments.
20346722 23 * Grant Grundler : For helping me get rid of some Architecture
1da177e4
LT
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
20346722 26 *
1da177e4
LT
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
9dc737a7 29 *
20346722
K
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
9dc737a7
AR
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
da6971d8 34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
6d517a27 35 * values are 1, 2.
1da177e4 36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
20346722 37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
1da177e4 38 * Tx descriptors that can be associated with each corresponding FIFO.
9dc737a7 39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
8abc4d5b 40 * 2(MSI_X). Default value is '2(MSI_X)'
43b7c451 41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
9dc737a7
AR
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
926930b2
SS
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
3a3d5756
SH
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
1da177e4
LT
55 ************************************************************************/
56
1da177e4
LT
57#include <linux/module.h>
58#include <linux/types.h>
59#include <linux/errno.h>
60#include <linux/ioport.h>
61#include <linux/pci.h>
1e7f0bd8 62#include <linux/dma-mapping.h>
1da177e4
LT
63#include <linux/kernel.h>
64#include <linux/netdevice.h>
65#include <linux/etherdevice.h>
66#include <linux/skbuff.h>
67#include <linux/init.h>
68#include <linux/delay.h>
69#include <linux/stddef.h>
70#include <linux/ioctl.h>
71#include <linux/timex.h>
1da177e4 72#include <linux/ethtool.h>
1da177e4 73#include <linux/workqueue.h>
be3a6b02 74#include <linux/if_vlan.h>
7d3d0439
RA
75#include <linux/ip.h>
76#include <linux/tcp.h>
77#include <net/tcp.h>
1da177e4 78
1da177e4
LT
79#include <asm/system.h>
80#include <asm/uaccess.h>
20346722 81#include <asm/io.h>
fe931395 82#include <asm/div64.h>
330ce0de 83#include <asm/irq.h>
1da177e4
LT
84
85/* local include */
86#include "s2io.h"
87#include "s2io-regs.h"
88
0b5923cd 89#define DRV_VERSION "2.0.26.24"
6c1792f4 90
1da177e4 91/* S2io Driver name & version. */
20346722 92static char s2io_driver_name[] = "Neterion";
6c1792f4 93static char s2io_driver_version[] = DRV_VERSION;
1da177e4 94
6d517a27
VP
95static int rxd_size[2] = {32,48};
96static int rxd_count[2] = {127,85};
da6971d8 97
1ee6dd77 98static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
5e25b9dd
K
99{
100 int ret;
101
102 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
103 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
104
105 return ret;
106}
107
20346722 108/*
1da177e4
LT
109 * Cards with following subsystem_id have a link state indication
110 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
111 * macro below identifies these cards given the subsystem_id.
112 */
541ae68f
K
113#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
114 (dev_type == XFRAME_I_DEVICE) ? \
115 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
116 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
1da177e4
LT
117
118#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
119 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
1da177e4 120
92b84437
SS
121static inline int is_s2io_card_up(const struct s2io_nic * sp)
122{
123 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
124}
125
1da177e4
LT
126/* Ethtool related variables and Macros. */
127static char s2io_gstrings[][ETH_GSTRING_LEN] = {
128 "Register test\t(offline)",
129 "Eeprom test\t(offline)",
130 "Link test\t(online)",
131 "RLDRAM test\t(offline)",
132 "BIST Test\t(offline)"
133};
134
fa1f0cb3 135static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
1da177e4
LT
136 {"tmac_frms"},
137 {"tmac_data_octets"},
138 {"tmac_drop_frms"},
139 {"tmac_mcst_frms"},
140 {"tmac_bcst_frms"},
141 {"tmac_pause_ctrl_frms"},
bd1034f0
AR
142 {"tmac_ttl_octets"},
143 {"tmac_ucst_frms"},
144 {"tmac_nucst_frms"},
1da177e4 145 {"tmac_any_err_frms"},
bd1034f0 146 {"tmac_ttl_less_fb_octets"},
1da177e4
LT
147 {"tmac_vld_ip_octets"},
148 {"tmac_vld_ip"},
149 {"tmac_drop_ip"},
150 {"tmac_icmp"},
151 {"tmac_rst_tcp"},
152 {"tmac_tcp"},
153 {"tmac_udp"},
154 {"rmac_vld_frms"},
155 {"rmac_data_octets"},
156 {"rmac_fcs_err_frms"},
157 {"rmac_drop_frms"},
158 {"rmac_vld_mcst_frms"},
159 {"rmac_vld_bcst_frms"},
160 {"rmac_in_rng_len_err_frms"},
bd1034f0 161 {"rmac_out_rng_len_err_frms"},
1da177e4
LT
162 {"rmac_long_frms"},
163 {"rmac_pause_ctrl_frms"},
bd1034f0
AR
164 {"rmac_unsup_ctrl_frms"},
165 {"rmac_ttl_octets"},
166 {"rmac_accepted_ucst_frms"},
167 {"rmac_accepted_nucst_frms"},
1da177e4 168 {"rmac_discarded_frms"},
bd1034f0
AR
169 {"rmac_drop_events"},
170 {"rmac_ttl_less_fb_octets"},
171 {"rmac_ttl_frms"},
1da177e4
LT
172 {"rmac_usized_frms"},
173 {"rmac_osized_frms"},
174 {"rmac_frag_frms"},
175 {"rmac_jabber_frms"},
bd1034f0
AR
176 {"rmac_ttl_64_frms"},
177 {"rmac_ttl_65_127_frms"},
178 {"rmac_ttl_128_255_frms"},
179 {"rmac_ttl_256_511_frms"},
180 {"rmac_ttl_512_1023_frms"},
181 {"rmac_ttl_1024_1518_frms"},
1da177e4
LT
182 {"rmac_ip"},
183 {"rmac_ip_octets"},
184 {"rmac_hdr_err_ip"},
185 {"rmac_drop_ip"},
186 {"rmac_icmp"},
187 {"rmac_tcp"},
188 {"rmac_udp"},
189 {"rmac_err_drp_udp"},
bd1034f0
AR
190 {"rmac_xgmii_err_sym"},
191 {"rmac_frms_q0"},
192 {"rmac_frms_q1"},
193 {"rmac_frms_q2"},
194 {"rmac_frms_q3"},
195 {"rmac_frms_q4"},
196 {"rmac_frms_q5"},
197 {"rmac_frms_q6"},
198 {"rmac_frms_q7"},
199 {"rmac_full_q0"},
200 {"rmac_full_q1"},
201 {"rmac_full_q2"},
202 {"rmac_full_q3"},
203 {"rmac_full_q4"},
204 {"rmac_full_q5"},
205 {"rmac_full_q6"},
206 {"rmac_full_q7"},
1da177e4 207 {"rmac_pause_cnt"},
bd1034f0
AR
208 {"rmac_xgmii_data_err_cnt"},
209 {"rmac_xgmii_ctrl_err_cnt"},
1da177e4
LT
210 {"rmac_accepted_ip"},
211 {"rmac_err_tcp"},
bd1034f0
AR
212 {"rd_req_cnt"},
213 {"new_rd_req_cnt"},
214 {"new_rd_req_rtry_cnt"},
215 {"rd_rtry_cnt"},
216 {"wr_rtry_rd_ack_cnt"},
217 {"wr_req_cnt"},
218 {"new_wr_req_cnt"},
219 {"new_wr_req_rtry_cnt"},
220 {"wr_rtry_cnt"},
221 {"wr_disc_cnt"},
222 {"rd_rtry_wr_ack_cnt"},
223 {"txp_wr_cnt"},
224 {"txd_rd_cnt"},
225 {"txd_wr_cnt"},
226 {"rxd_rd_cnt"},
227 {"rxd_wr_cnt"},
228 {"txf_rd_cnt"},
fa1f0cb3
SS
229 {"rxf_wr_cnt"}
230};
231
232static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
bd1034f0
AR
233 {"rmac_ttl_1519_4095_frms"},
234 {"rmac_ttl_4096_8191_frms"},
235 {"rmac_ttl_8192_max_frms"},
236 {"rmac_ttl_gt_max_frms"},
237 {"rmac_osized_alt_frms"},
238 {"rmac_jabber_alt_frms"},
239 {"rmac_gt_max_alt_frms"},
240 {"rmac_vlan_frms"},
241 {"rmac_len_discard"},
242 {"rmac_fcs_discard"},
243 {"rmac_pf_discard"},
244 {"rmac_da_discard"},
245 {"rmac_red_discard"},
246 {"rmac_rts_discard"},
247 {"rmac_ingm_full_discard"},
fa1f0cb3
SS
248 {"link_fault_cnt"}
249};
250
251static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
7ba013ac
K
252 {"\n DRIVER STATISTICS"},
253 {"single_bit_ecc_errs"},
254 {"double_bit_ecc_errs"},
bd1034f0
AR
255 {"parity_err_cnt"},
256 {"serious_err_cnt"},
257 {"soft_reset_cnt"},
258 {"fifo_full_cnt"},
8116f3cf
SS
259 {"ring_0_full_cnt"},
260 {"ring_1_full_cnt"},
261 {"ring_2_full_cnt"},
262 {"ring_3_full_cnt"},
263 {"ring_4_full_cnt"},
264 {"ring_5_full_cnt"},
265 {"ring_6_full_cnt"},
266 {"ring_7_full_cnt"},
43b7c451
SH
267 {"alarm_transceiver_temp_high"},
268 {"alarm_transceiver_temp_low"},
269 {"alarm_laser_bias_current_high"},
270 {"alarm_laser_bias_current_low"},
271 {"alarm_laser_output_power_high"},
272 {"alarm_laser_output_power_low"},
273 {"warn_transceiver_temp_high"},
274 {"warn_transceiver_temp_low"},
275 {"warn_laser_bias_current_high"},
276 {"warn_laser_bias_current_low"},
277 {"warn_laser_output_power_high"},
278 {"warn_laser_output_power_low"},
279 {"lro_aggregated_pkts"},
280 {"lro_flush_both_count"},
281 {"lro_out_of_sequence_pkts"},
282 {"lro_flush_due_to_max_pkts"},
283 {"lro_avg_aggr_pkts"},
284 {"mem_alloc_fail_cnt"},
285 {"pci_map_fail_cnt"},
286 {"watchdog_timer_cnt"},
287 {"mem_allocated"},
288 {"mem_freed"},
289 {"link_up_cnt"},
290 {"link_down_cnt"},
291 {"link_up_time"},
292 {"link_down_time"},
293 {"tx_tcode_buf_abort_cnt"},
294 {"tx_tcode_desc_abort_cnt"},
295 {"tx_tcode_parity_err_cnt"},
296 {"tx_tcode_link_loss_cnt"},
297 {"tx_tcode_list_proc_err_cnt"},
298 {"rx_tcode_parity_err_cnt"},
299 {"rx_tcode_abort_cnt"},
300 {"rx_tcode_parity_abort_cnt"},
301 {"rx_tcode_rda_fail_cnt"},
302 {"rx_tcode_unkn_prot_cnt"},
303 {"rx_tcode_fcs_err_cnt"},
304 {"rx_tcode_buf_size_err_cnt"},
305 {"rx_tcode_rxd_corrupt_cnt"},
306 {"rx_tcode_unkn_err_cnt"},
8116f3cf
SS
307 {"tda_err_cnt"},
308 {"pfc_err_cnt"},
309 {"pcc_err_cnt"},
310 {"tti_err_cnt"},
311 {"tpa_err_cnt"},
312 {"sm_err_cnt"},
313 {"lso_err_cnt"},
314 {"mac_tmac_err_cnt"},
315 {"mac_rmac_err_cnt"},
316 {"xgxs_txgxs_err_cnt"},
317 {"xgxs_rxgxs_err_cnt"},
318 {"rc_err_cnt"},
319 {"prc_pcix_err_cnt"},
320 {"rpa_err_cnt"},
321 {"rda_err_cnt"},
322 {"rti_err_cnt"},
323 {"mc_err_cnt"}
1da177e4
LT
324};
325
4c3616cd
AMR
326#define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
327#define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
328#define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
fa1f0cb3
SS
329
330#define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
331#define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
332
333#define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
334#define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
1da177e4 335
4c3616cd 336#define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
1da177e4
LT
337#define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
338
25fff88e
K
339#define S2IO_TIMER_CONF(timer, handle, arg, exp) \
340 init_timer(&timer); \
341 timer.function = handle; \
342 timer.data = (unsigned long) arg; \
343 mod_timer(&timer, (jiffies + exp)) \
344
2fd37688
SS
345/* copy mac addr to def_mac_addr array */
346static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
347{
348 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
349 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
350 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
351 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
352 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
353 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
354}
be3a6b02
K
355/* Add the vlan */
356static void s2io_vlan_rx_register(struct net_device *dev,
357 struct vlan_group *grp)
358{
2fda096d 359 int i;
1ee6dd77 360 struct s2io_nic *nic = dev->priv;
2fda096d
SR
361 unsigned long flags[MAX_TX_FIFOS];
362 struct mac_info *mac_control = &nic->mac_control;
363 struct config_param *config = &nic->config;
364
365 for (i = 0; i < config->tx_fifo_num; i++)
366 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
be3a6b02 367
be3a6b02 368 nic->vlgrp = grp;
2fda096d
SR
369 for (i = config->tx_fifo_num - 1; i >= 0; i--)
370 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
371 flags[i]);
be3a6b02
K
372}
373
926930b2 374/* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
7b490343 375static int vlan_strip_flag;
926930b2 376
cdb5bf02
SH
377/* Unregister the vlan */
378static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
379{
380 int i;
381 struct s2io_nic *nic = dev->priv;
382 unsigned long flags[MAX_TX_FIFOS];
383 struct mac_info *mac_control = &nic->mac_control;
384 struct config_param *config = &nic->config;
385
386 for (i = 0; i < config->tx_fifo_num; i++)
387 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
388
389 if (nic->vlgrp)
390 vlan_group_set_device(nic->vlgrp, vid, NULL);
391
392 for (i = config->tx_fifo_num - 1; i >= 0; i--)
393 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
394 flags[i]);
395}
396
20346722 397/*
1da177e4
LT
398 * Constants to be programmed into the Xena's registers, to configure
399 * the XAUI.
400 */
401
1da177e4 402#define END_SIGN 0x0
f71e1309 403static const u64 herc_act_dtx_cfg[] = {
541ae68f 404 /* Set address */
e960fc5c 405 0x8000051536750000ULL, 0x80000515367500E0ULL,
541ae68f 406 /* Write data */
e960fc5c 407 0x8000051536750004ULL, 0x80000515367500E4ULL,
541ae68f
K
408 /* Set address */
409 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
410 /* Write data */
411 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
412 /* Set address */
e960fc5c 413 0x801205150D440000ULL, 0x801205150D4400E0ULL,
414 /* Write data */
415 0x801205150D440004ULL, 0x801205150D4400E4ULL,
416 /* Set address */
541ae68f
K
417 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
418 /* Write data */
419 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
420 /* Done */
421 END_SIGN
422};
423
f71e1309 424static const u64 xena_dtx_cfg[] = {
c92ca04b 425 /* Set address */
1da177e4 426 0x8000051500000000ULL, 0x80000515000000E0ULL,
c92ca04b
AR
427 /* Write data */
428 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
429 /* Set address */
430 0x8001051500000000ULL, 0x80010515000000E0ULL,
431 /* Write data */
432 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
433 /* Set address */
1da177e4 434 0x8002051500000000ULL, 0x80020515000000E0ULL,
c92ca04b
AR
435 /* Write data */
436 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
1da177e4
LT
437 END_SIGN
438};
439
20346722 440/*
1da177e4
LT
441 * Constants for Fixing the MacAddress problem seen mostly on
442 * Alpha machines.
443 */
f71e1309 444static const u64 fix_mac[] = {
1da177e4
LT
445 0x0060000000000000ULL, 0x0060600000000000ULL,
446 0x0040600000000000ULL, 0x0000600000000000ULL,
447 0x0020600000000000ULL, 0x0060600000000000ULL,
448 0x0020600000000000ULL, 0x0060600000000000ULL,
449 0x0020600000000000ULL, 0x0060600000000000ULL,
450 0x0020600000000000ULL, 0x0060600000000000ULL,
451 0x0020600000000000ULL, 0x0060600000000000ULL,
452 0x0020600000000000ULL, 0x0060600000000000ULL,
453 0x0020600000000000ULL, 0x0060600000000000ULL,
454 0x0020600000000000ULL, 0x0060600000000000ULL,
455 0x0020600000000000ULL, 0x0060600000000000ULL,
456 0x0020600000000000ULL, 0x0060600000000000ULL,
457 0x0020600000000000ULL, 0x0000600000000000ULL,
458 0x0040600000000000ULL, 0x0060600000000000ULL,
459 END_SIGN
460};
461
b41477f3
AR
462MODULE_LICENSE("GPL");
463MODULE_VERSION(DRV_VERSION);
464
465
1da177e4 466/* Module Loadable parameters. */
6cfc482b 467S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
b41477f3 468S2IO_PARM_INT(rx_ring_num, 1);
3a3d5756 469S2IO_PARM_INT(multiq, 0);
b41477f3
AR
470S2IO_PARM_INT(rx_ring_mode, 1);
471S2IO_PARM_INT(use_continuous_tx_intrs, 1);
472S2IO_PARM_INT(rmac_pause_time, 0x100);
473S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
474S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
475S2IO_PARM_INT(shared_splits, 0);
476S2IO_PARM_INT(tmac_util_period, 5);
477S2IO_PARM_INT(rmac_util_period, 5);
b41477f3 478S2IO_PARM_INT(l3l4hdr_size, 128);
6cfc482b
SH
479/* 0 is no steering, 1 is Priority steering, 2 is Default steering */
480S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
303bcb4b 481/* Frequency of Rx desc syncs expressed as power of 2 */
b41477f3 482S2IO_PARM_INT(rxsync_frequency, 3);
eccb8628 483/* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
8abc4d5b 484S2IO_PARM_INT(intr_type, 2);
7d3d0439 485/* Large receive offload feature */
43b7c451
SH
486static unsigned int lro_enable;
487module_param_named(lro, lro_enable, uint, 0);
488
7d3d0439
RA
489/* Max pkts to be aggregated by LRO at one time. If not specified,
490 * aggregation happens until we hit max IP pkt size(64K)
491 */
b41477f3 492S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
b41477f3 493S2IO_PARM_INT(indicate_max_pkts, 0);
db874e65
SS
494
495S2IO_PARM_INT(napi, 1);
496S2IO_PARM_INT(ufo, 0);
926930b2 497S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
b41477f3
AR
498
499static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
500 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
501static unsigned int rx_ring_sz[MAX_RX_RINGS] =
502 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
503static unsigned int rts_frm_len[MAX_RX_RINGS] =
504 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
505
506module_param_array(tx_fifo_len, uint, NULL, 0);
507module_param_array(rx_ring_sz, uint, NULL, 0);
508module_param_array(rts_frm_len, uint, NULL, 0);
1da177e4 509
20346722 510/*
1da177e4 511 * S2IO device table.
20346722 512 * This table lists all the devices that this driver supports.
1da177e4
LT
513 */
514static struct pci_device_id s2io_tbl[] __devinitdata = {
515 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
516 PCI_ANY_ID, PCI_ANY_ID},
517 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
518 PCI_ANY_ID, PCI_ANY_ID},
519 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
20346722
K
520 PCI_ANY_ID, PCI_ANY_ID},
521 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
522 PCI_ANY_ID, PCI_ANY_ID},
1da177e4
LT
523 {0,}
524};
525
526MODULE_DEVICE_TABLE(pci, s2io_tbl);
527
d796fdb7
LV
528static struct pci_error_handlers s2io_err_handler = {
529 .error_detected = s2io_io_error_detected,
530 .slot_reset = s2io_io_slot_reset,
531 .resume = s2io_io_resume,
532};
533
1da177e4
LT
534static struct pci_driver s2io_driver = {
535 .name = "S2IO",
536 .id_table = s2io_tbl,
537 .probe = s2io_init_nic,
538 .remove = __devexit_p(s2io_rem_nic),
d796fdb7 539 .err_handler = &s2io_err_handler,
1da177e4
LT
540};
541
542/* A simplifier macro used both by init and free shared_mem Fns(). */
543#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
544
3a3d5756
SH
545/* netqueue manipulation helper functions */
546static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
547{
548 int i;
549#ifdef CONFIG_NETDEVICES_MULTIQUEUE
550 if (sp->config.multiq) {
551 for (i = 0; i < sp->config.tx_fifo_num; i++)
552 netif_stop_subqueue(sp->dev, i);
553 } else
554#endif
555 {
556 for (i = 0; i < sp->config.tx_fifo_num; i++)
557 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
558 netif_stop_queue(sp->dev);
559 }
560}
561
562static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
563{
564#ifdef CONFIG_NETDEVICES_MULTIQUEUE
565 if (sp->config.multiq)
566 netif_stop_subqueue(sp->dev, fifo_no);
567 else
568#endif
569 {
570 sp->mac_control.fifos[fifo_no].queue_state =
571 FIFO_QUEUE_STOP;
572 netif_stop_queue(sp->dev);
573 }
574}
575
576static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
577{
578 int i;
579#ifdef CONFIG_NETDEVICES_MULTIQUEUE
580 if (sp->config.multiq) {
581 for (i = 0; i < sp->config.tx_fifo_num; i++)
582 netif_start_subqueue(sp->dev, i);
583 } else
584#endif
585 {
586 for (i = 0; i < sp->config.tx_fifo_num; i++)
587 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
588 netif_start_queue(sp->dev);
589 }
590}
591
592static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
593{
594#ifdef CONFIG_NETDEVICES_MULTIQUEUE
595 if (sp->config.multiq)
596 netif_start_subqueue(sp->dev, fifo_no);
597 else
598#endif
599 {
600 sp->mac_control.fifos[fifo_no].queue_state =
601 FIFO_QUEUE_START;
602 netif_start_queue(sp->dev);
603 }
604}
605
606static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
607{
608 int i;
609#ifdef CONFIG_NETDEVICES_MULTIQUEUE
610 if (sp->config.multiq) {
611 for (i = 0; i < sp->config.tx_fifo_num; i++)
612 netif_wake_subqueue(sp->dev, i);
613 } else
614#endif
615 {
616 for (i = 0; i < sp->config.tx_fifo_num; i++)
617 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
618 netif_wake_queue(sp->dev);
619 }
620}
621
622static inline void s2io_wake_tx_queue(
623 struct fifo_info *fifo, int cnt, u8 multiq)
624{
625
626#ifdef CONFIG_NETDEVICES_MULTIQUEUE
627 if (multiq) {
628 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
629 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
630 } else
631#endif
632 if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
633 if (netif_queue_stopped(fifo->dev)) {
634 fifo->queue_state = FIFO_QUEUE_START;
635 netif_wake_queue(fifo->dev);
636 }
637 }
638}
639
1da177e4
LT
640/**
641 * init_shared_mem - Allocation and Initialization of Memory
642 * @nic: Device private variable.
20346722
K
643 * Description: The function allocates all the memory areas shared
644 * between the NIC and the driver. This includes Tx descriptors,
1da177e4
LT
645 * Rx descriptors and the statistics block.
646 */
647
648static int init_shared_mem(struct s2io_nic *nic)
649{
650 u32 size;
651 void *tmp_v_addr, *tmp_v_addr_next;
652 dma_addr_t tmp_p_addr, tmp_p_addr_next;
1ee6dd77 653 struct RxD_block *pre_rxd_blk = NULL;
372cc597 654 int i, j, blk_cnt;
1da177e4
LT
655 int lst_size, lst_per_page;
656 struct net_device *dev = nic->dev;
8ae418cf 657 unsigned long tmp;
1ee6dd77 658 struct buffAdd *ba;
1da177e4 659
1ee6dd77 660 struct mac_info *mac_control;
1da177e4 661 struct config_param *config;
491976b2 662 unsigned long long mem_allocated = 0;
1da177e4
LT
663
664 mac_control = &nic->mac_control;
665 config = &nic->config;
666
667
668 /* Allocation and initialization of TXDLs in FIOFs */
669 size = 0;
670 for (i = 0; i < config->tx_fifo_num; i++) {
671 size += config->tx_cfg[i].fifo_len;
672 }
673 if (size > MAX_AVAILABLE_TXDS) {
b41477f3 674 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
0b1f7ebe 675 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
b41477f3 676 return -EINVAL;
1da177e4
LT
677 }
678
2fda096d
SR
679 size = 0;
680 for (i = 0; i < config->tx_fifo_num; i++) {
681 size = config->tx_cfg[i].fifo_len;
682 /*
683 * Legal values are from 2 to 8192
684 */
685 if (size < 2) {
686 DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size);
687 DBG_PRINT(ERR_DBG, "for fifo %d\n", i);
688 DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len"
689 "are 2 to 8192\n");
690 return -EINVAL;
691 }
692 }
693
1ee6dd77 694 lst_size = (sizeof(struct TxD) * config->max_txds);
1da177e4
LT
695 lst_per_page = PAGE_SIZE / lst_size;
696
697 for (i = 0; i < config->tx_fifo_num; i++) {
698 int fifo_len = config->tx_cfg[i].fifo_len;
1ee6dd77 699 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
bd684e43 700 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
20346722
K
701 GFP_KERNEL);
702 if (!mac_control->fifos[i].list_info) {
0c61ed5f 703 DBG_PRINT(INFO_DBG,
1da177e4
LT
704 "Malloc failed for list_info\n");
705 return -ENOMEM;
706 }
491976b2 707 mem_allocated += list_holder_size;
1da177e4
LT
708 }
709 for (i = 0; i < config->tx_fifo_num; i++) {
710 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
711 lst_per_page);
20346722
K
712 mac_control->fifos[i].tx_curr_put_info.offset = 0;
713 mac_control->fifos[i].tx_curr_put_info.fifo_len =
1da177e4 714 config->tx_cfg[i].fifo_len - 1;
20346722
K
715 mac_control->fifos[i].tx_curr_get_info.offset = 0;
716 mac_control->fifos[i].tx_curr_get_info.fifo_len =
1da177e4 717 config->tx_cfg[i].fifo_len - 1;
20346722
K
718 mac_control->fifos[i].fifo_no = i;
719 mac_control->fifos[i].nic = nic;
fed5eccd 720 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
3a3d5756 721 mac_control->fifos[i].dev = dev;
20346722 722
1da177e4
LT
723 for (j = 0; j < page_num; j++) {
724 int k = 0;
725 dma_addr_t tmp_p;
726 void *tmp_v;
727 tmp_v = pci_alloc_consistent(nic->pdev,
728 PAGE_SIZE, &tmp_p);
729 if (!tmp_v) {
0c61ed5f 730 DBG_PRINT(INFO_DBG,
1da177e4 731 "pci_alloc_consistent ");
0c61ed5f 732 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
1da177e4
LT
733 return -ENOMEM;
734 }
776bd20f 735 /* If we got a zero DMA address(can happen on
736 * certain platforms like PPC), reallocate.
737 * Store virtual address of page we don't want,
738 * to be freed later.
739 */
740 if (!tmp_p) {
741 mac_control->zerodma_virt_addr = tmp_v;
6aa20a22 742 DBG_PRINT(INIT_DBG,
776bd20f 743 "%s: Zero DMA address for TxDL. ", dev->name);
6aa20a22 744 DBG_PRINT(INIT_DBG,
6b4d617d 745 "Virtual address %p\n", tmp_v);
776bd20f 746 tmp_v = pci_alloc_consistent(nic->pdev,
747 PAGE_SIZE, &tmp_p);
748 if (!tmp_v) {
0c61ed5f 749 DBG_PRINT(INFO_DBG,
776bd20f 750 "pci_alloc_consistent ");
0c61ed5f 751 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
776bd20f 752 return -ENOMEM;
753 }
491976b2 754 mem_allocated += PAGE_SIZE;
776bd20f 755 }
1da177e4
LT
756 while (k < lst_per_page) {
757 int l = (j * lst_per_page) + k;
758 if (l == config->tx_cfg[i].fifo_len)
20346722
K
759 break;
760 mac_control->fifos[i].list_info[l].list_virt_addr =
1da177e4 761 tmp_v + (k * lst_size);
20346722 762 mac_control->fifos[i].list_info[l].list_phy_addr =
1da177e4
LT
763 tmp_p + (k * lst_size);
764 k++;
765 }
766 }
767 }
1da177e4 768
2fda096d
SR
769 for (i = 0; i < config->tx_fifo_num; i++) {
770 size = config->tx_cfg[i].fifo_len;
771 mac_control->fifos[i].ufo_in_band_v
772 = kcalloc(size, sizeof(u64), GFP_KERNEL);
773 if (!mac_control->fifos[i].ufo_in_band_v)
774 return -ENOMEM;
775 mem_allocated += (size * sizeof(u64));
776 }
fed5eccd 777
1da177e4
LT
778 /* Allocation and initialization of RXDs in Rings */
779 size = 0;
780 for (i = 0; i < config->rx_ring_num; i++) {
da6971d8
AR
781 if (config->rx_cfg[i].num_rxd %
782 (rxd_count[nic->rxd_mode] + 1)) {
1da177e4
LT
783 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
784 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
785 i);
786 DBG_PRINT(ERR_DBG, "RxDs per Block");
787 return FAILURE;
788 }
789 size += config->rx_cfg[i].num_rxd;
20346722 790 mac_control->rings[i].block_count =
da6971d8
AR
791 config->rx_cfg[i].num_rxd /
792 (rxd_count[nic->rxd_mode] + 1 );
793 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
794 mac_control->rings[i].block_count;
1da177e4 795 }
da6971d8 796 if (nic->rxd_mode == RXD_MODE_1)
1ee6dd77 797 size = (size * (sizeof(struct RxD1)));
da6971d8 798 else
1ee6dd77 799 size = (size * (sizeof(struct RxD3)));
1da177e4
LT
800
801 for (i = 0; i < config->rx_ring_num; i++) {
20346722
K
802 mac_control->rings[i].rx_curr_get_info.block_index = 0;
803 mac_control->rings[i].rx_curr_get_info.offset = 0;
804 mac_control->rings[i].rx_curr_get_info.ring_len =
1da177e4 805 config->rx_cfg[i].num_rxd - 1;
20346722
K
806 mac_control->rings[i].rx_curr_put_info.block_index = 0;
807 mac_control->rings[i].rx_curr_put_info.offset = 0;
808 mac_control->rings[i].rx_curr_put_info.ring_len =
1da177e4 809 config->rx_cfg[i].num_rxd - 1;
20346722
K
810 mac_control->rings[i].nic = nic;
811 mac_control->rings[i].ring_no = i;
0425b46a 812 mac_control->rings[i].lro = lro_enable;
20346722 813
da6971d8
AR
814 blk_cnt = config->rx_cfg[i].num_rxd /
815 (rxd_count[nic->rxd_mode] + 1);
1da177e4
LT
816 /* Allocating all the Rx blocks */
817 for (j = 0; j < blk_cnt; j++) {
1ee6dd77 818 struct rx_block_info *rx_blocks;
da6971d8
AR
819 int l;
820
821 rx_blocks = &mac_control->rings[i].rx_blocks[j];
822 size = SIZE_OF_BLOCK; //size is always page size
1da177e4
LT
823 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
824 &tmp_p_addr);
825 if (tmp_v_addr == NULL) {
826 /*
20346722
K
827 * In case of failure, free_shared_mem()
828 * is called, which should free any
829 * memory that was alloced till the
1da177e4
LT
830 * failure happened.
831 */
da6971d8 832 rx_blocks->block_virt_addr = tmp_v_addr;
1da177e4
LT
833 return -ENOMEM;
834 }
491976b2 835 mem_allocated += size;
1da177e4 836 memset(tmp_v_addr, 0, size);
da6971d8
AR
837 rx_blocks->block_virt_addr = tmp_v_addr;
838 rx_blocks->block_dma_addr = tmp_p_addr;
1ee6dd77 839 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
da6971d8
AR
840 rxd_count[nic->rxd_mode],
841 GFP_KERNEL);
372cc597
SS
842 if (!rx_blocks->rxds)
843 return -ENOMEM;
8a4bdbaa 844 mem_allocated +=
491976b2 845 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
da6971d8
AR
846 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
847 rx_blocks->rxds[l].virt_addr =
848 rx_blocks->block_virt_addr +
849 (rxd_size[nic->rxd_mode] * l);
850 rx_blocks->rxds[l].dma_addr =
851 rx_blocks->block_dma_addr +
852 (rxd_size[nic->rxd_mode] * l);
853 }
1da177e4
LT
854 }
855 /* Interlinking all Rx Blocks */
856 for (j = 0; j < blk_cnt; j++) {
20346722
K
857 tmp_v_addr =
858 mac_control->rings[i].rx_blocks[j].block_virt_addr;
1da177e4 859 tmp_v_addr_next =
20346722 860 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4 861 blk_cnt].block_virt_addr;
20346722
K
862 tmp_p_addr =
863 mac_control->rings[i].rx_blocks[j].block_dma_addr;
1da177e4 864 tmp_p_addr_next =
20346722 865 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4
LT
866 blk_cnt].block_dma_addr;
867
1ee6dd77 868 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
1da177e4
LT
869 pre_rxd_blk->reserved_2_pNext_RxD_block =
870 (unsigned long) tmp_v_addr_next;
1da177e4
LT
871 pre_rxd_blk->pNext_RxD_Blk_physical =
872 (u64) tmp_p_addr_next;
873 }
874 }
6d517a27 875 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
876 /*
877 * Allocation of Storages for buffer addresses in 2BUFF mode
878 * and the buffers as well.
879 */
880 for (i = 0; i < config->rx_ring_num; i++) {
881 blk_cnt = config->rx_cfg[i].num_rxd /
882 (rxd_count[nic->rxd_mode]+ 1);
883 mac_control->rings[i].ba =
1ee6dd77 884 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
1da177e4 885 GFP_KERNEL);
da6971d8 886 if (!mac_control->rings[i].ba)
1da177e4 887 return -ENOMEM;
491976b2 888 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
da6971d8
AR
889 for (j = 0; j < blk_cnt; j++) {
890 int k = 0;
891 mac_control->rings[i].ba[j] =
1ee6dd77 892 kmalloc((sizeof(struct buffAdd) *
da6971d8
AR
893 (rxd_count[nic->rxd_mode] + 1)),
894 GFP_KERNEL);
895 if (!mac_control->rings[i].ba[j])
1da177e4 896 return -ENOMEM;
491976b2
SH
897 mem_allocated += (sizeof(struct buffAdd) * \
898 (rxd_count[nic->rxd_mode] + 1));
da6971d8
AR
899 while (k != rxd_count[nic->rxd_mode]) {
900 ba = &mac_control->rings[i].ba[j][k];
901
902 ba->ba_0_org = (void *) kmalloc
903 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
904 if (!ba->ba_0_org)
905 return -ENOMEM;
8a4bdbaa 906 mem_allocated +=
491976b2 907 (BUF0_LEN + ALIGN_SIZE);
da6971d8
AR
908 tmp = (unsigned long)ba->ba_0_org;
909 tmp += ALIGN_SIZE;
910 tmp &= ~((unsigned long) ALIGN_SIZE);
911 ba->ba_0 = (void *) tmp;
912
913 ba->ba_1_org = (void *) kmalloc
914 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
915 if (!ba->ba_1_org)
916 return -ENOMEM;
8a4bdbaa 917 mem_allocated
491976b2 918 += (BUF1_LEN + ALIGN_SIZE);
da6971d8
AR
919 tmp = (unsigned long) ba->ba_1_org;
920 tmp += ALIGN_SIZE;
921 tmp &= ~((unsigned long) ALIGN_SIZE);
922 ba->ba_1 = (void *) tmp;
923 k++;
924 }
1da177e4
LT
925 }
926 }
927 }
1da177e4
LT
928
929 /* Allocation and initialization of Statistics block */
1ee6dd77 930 size = sizeof(struct stat_block);
1da177e4
LT
931 mac_control->stats_mem = pci_alloc_consistent
932 (nic->pdev, size, &mac_control->stats_mem_phy);
933
934 if (!mac_control->stats_mem) {
20346722
K
935 /*
936 * In case of failure, free_shared_mem() is called, which
937 * should free any memory that was alloced till the
1da177e4
LT
938 * failure happened.
939 */
940 return -ENOMEM;
941 }
491976b2 942 mem_allocated += size;
1da177e4
LT
943 mac_control->stats_mem_sz = size;
944
945 tmp_v_addr = mac_control->stats_mem;
1ee6dd77 946 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
1da177e4 947 memset(tmp_v_addr, 0, size);
1da177e4
LT
948 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
949 (unsigned long long) tmp_p_addr);
491976b2 950 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
1da177e4
LT
951 return SUCCESS;
952}
953
20346722
K
954/**
955 * free_shared_mem - Free the allocated Memory
1da177e4
LT
956 * @nic: Device private variable.
957 * Description: This function is to free all memory locations allocated by
958 * the init_shared_mem() function and return it to the kernel.
959 */
960
961static void free_shared_mem(struct s2io_nic *nic)
962{
963 int i, j, blk_cnt, size;
964 void *tmp_v_addr;
965 dma_addr_t tmp_p_addr;
1ee6dd77 966 struct mac_info *mac_control;
1da177e4
LT
967 struct config_param *config;
968 int lst_size, lst_per_page;
8910b49f 969 struct net_device *dev;
491976b2 970 int page_num = 0;
1da177e4
LT
971
972 if (!nic)
973 return;
974
8910b49f
MG
975 dev = nic->dev;
976
1da177e4
LT
977 mac_control = &nic->mac_control;
978 config = &nic->config;
979
1ee6dd77 980 lst_size = (sizeof(struct TxD) * config->max_txds);
1da177e4
LT
981 lst_per_page = PAGE_SIZE / lst_size;
982
983 for (i = 0; i < config->tx_fifo_num; i++) {
491976b2
SH
984 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
985 lst_per_page);
1da177e4
LT
986 for (j = 0; j < page_num; j++) {
987 int mem_blks = (j * lst_per_page);
776bd20f 988 if (!mac_control->fifos[i].list_info)
6aa20a22 989 return;
776bd20f 990 if (!mac_control->fifos[i].list_info[mem_blks].
991 list_virt_addr)
1da177e4
LT
992 break;
993 pci_free_consistent(nic->pdev, PAGE_SIZE,
20346722
K
994 mac_control->fifos[i].
995 list_info[mem_blks].
1da177e4 996 list_virt_addr,
20346722
K
997 mac_control->fifos[i].
998 list_info[mem_blks].
1da177e4 999 list_phy_addr);
8a4bdbaa 1000 nic->mac_control.stats_info->sw_stat.mem_freed
491976b2 1001 += PAGE_SIZE;
1da177e4 1002 }
776bd20f 1003 /* If we got a zero DMA address during allocation,
1004 * free the page now
1005 */
1006 if (mac_control->zerodma_virt_addr) {
1007 pci_free_consistent(nic->pdev, PAGE_SIZE,
1008 mac_control->zerodma_virt_addr,
1009 (dma_addr_t)0);
6aa20a22 1010 DBG_PRINT(INIT_DBG,
6b4d617d
AM
1011 "%s: Freeing TxDL with zero DMA addr. ",
1012 dev->name);
1013 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
1014 mac_control->zerodma_virt_addr);
8a4bdbaa 1015 nic->mac_control.stats_info->sw_stat.mem_freed
491976b2 1016 += PAGE_SIZE;
776bd20f 1017 }
20346722 1018 kfree(mac_control->fifos[i].list_info);
8a4bdbaa 1019 nic->mac_control.stats_info->sw_stat.mem_freed +=
491976b2 1020 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
1da177e4
LT
1021 }
1022
1da177e4 1023 size = SIZE_OF_BLOCK;
1da177e4 1024 for (i = 0; i < config->rx_ring_num; i++) {
20346722 1025 blk_cnt = mac_control->rings[i].block_count;
1da177e4 1026 for (j = 0; j < blk_cnt; j++) {
20346722
K
1027 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
1028 block_virt_addr;
1029 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
1030 block_dma_addr;
1da177e4
LT
1031 if (tmp_v_addr == NULL)
1032 break;
1033 pci_free_consistent(nic->pdev, size,
1034 tmp_v_addr, tmp_p_addr);
491976b2 1035 nic->mac_control.stats_info->sw_stat.mem_freed += size;
da6971d8 1036 kfree(mac_control->rings[i].rx_blocks[j].rxds);
8a4bdbaa 1037 nic->mac_control.stats_info->sw_stat.mem_freed +=
491976b2 1038 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
1da177e4
LT
1039 }
1040 }
1041
6d517a27 1042 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
1043 /* Freeing buffer storage addresses in 2BUFF mode. */
1044 for (i = 0; i < config->rx_ring_num; i++) {
1045 blk_cnt = config->rx_cfg[i].num_rxd /
1046 (rxd_count[nic->rxd_mode] + 1);
1047 for (j = 0; j < blk_cnt; j++) {
1048 int k = 0;
1049 if (!mac_control->rings[i].ba[j])
1050 continue;
1051 while (k != rxd_count[nic->rxd_mode]) {
1ee6dd77 1052 struct buffAdd *ba =
da6971d8
AR
1053 &mac_control->rings[i].ba[j][k];
1054 kfree(ba->ba_0_org);
491976b2
SH
1055 nic->mac_control.stats_info->sw_stat.\
1056 mem_freed += (BUF0_LEN + ALIGN_SIZE);
da6971d8 1057 kfree(ba->ba_1_org);
491976b2
SH
1058 nic->mac_control.stats_info->sw_stat.\
1059 mem_freed += (BUF1_LEN + ALIGN_SIZE);
da6971d8
AR
1060 k++;
1061 }
1062 kfree(mac_control->rings[i].ba[j]);
9caab458
SS
1063 nic->mac_control.stats_info->sw_stat.mem_freed +=
1064 (sizeof(struct buffAdd) *
1065 (rxd_count[nic->rxd_mode] + 1));
1da177e4 1066 }
da6971d8 1067 kfree(mac_control->rings[i].ba);
8a4bdbaa 1068 nic->mac_control.stats_info->sw_stat.mem_freed +=
491976b2 1069 (sizeof(struct buffAdd *) * blk_cnt);
1da177e4 1070 }
1da177e4 1071 }
1da177e4 1072
2fda096d
SR
1073 for (i = 0; i < nic->config.tx_fifo_num; i++) {
1074 if (mac_control->fifos[i].ufo_in_band_v) {
1075 nic->mac_control.stats_info->sw_stat.mem_freed
1076 += (config->tx_cfg[i].fifo_len * sizeof(u64));
1077 kfree(mac_control->fifos[i].ufo_in_band_v);
1078 }
1079 }
1080
1da177e4 1081 if (mac_control->stats_mem) {
2fda096d
SR
1082 nic->mac_control.stats_info->sw_stat.mem_freed +=
1083 mac_control->stats_mem_sz;
1da177e4
LT
1084 pci_free_consistent(nic->pdev,
1085 mac_control->stats_mem_sz,
1086 mac_control->stats_mem,
1087 mac_control->stats_mem_phy);
491976b2 1088 }
1da177e4
LT
1089}
1090
541ae68f
K
1091/**
1092 * s2io_verify_pci_mode -
1093 */
1094
1ee6dd77 1095static int s2io_verify_pci_mode(struct s2io_nic *nic)
541ae68f 1096{
1ee6dd77 1097 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f
K
1098 register u64 val64 = 0;
1099 int mode;
1100
1101 val64 = readq(&bar0->pci_mode);
1102 mode = (u8)GET_PCI_MODE(val64);
1103
1104 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1105 return -1; /* Unknown PCI mode */
1106 return mode;
1107}
1108
c92ca04b
AR
1109#define NEC_VENID 0x1033
1110#define NEC_DEVID 0x0125
1111static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1112{
1113 struct pci_dev *tdev = NULL;
26d36b64
AC
1114 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1115 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
7ad62dbc 1116 if (tdev->bus == s2io_pdev->bus->parent) {
26d36b64 1117 pci_dev_put(tdev);
c92ca04b 1118 return 1;
7ad62dbc 1119 }
c92ca04b
AR
1120 }
1121 }
1122 return 0;
1123}
541ae68f 1124
7b32a312 1125static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
541ae68f
K
1126/**
1127 * s2io_print_pci_mode -
1128 */
1ee6dd77 1129static int s2io_print_pci_mode(struct s2io_nic *nic)
541ae68f 1130{
1ee6dd77 1131 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f
K
1132 register u64 val64 = 0;
1133 int mode;
1134 struct config_param *config = &nic->config;
1135
1136 val64 = readq(&bar0->pci_mode);
1137 mode = (u8)GET_PCI_MODE(val64);
1138
1139 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1140 return -1; /* Unknown PCI mode */
1141
c92ca04b
AR
1142 config->bus_speed = bus_speed[mode];
1143
1144 if (s2io_on_nec_bridge(nic->pdev)) {
1145 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1146 nic->dev->name);
1147 return mode;
1148 }
1149
541ae68f
K
1150 if (val64 & PCI_MODE_32_BITS) {
1151 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1152 } else {
1153 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1154 }
1155
1156 switch(mode) {
1157 case PCI_MODE_PCI_33:
1158 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
541ae68f
K
1159 break;
1160 case PCI_MODE_PCI_66:
1161 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
541ae68f
K
1162 break;
1163 case PCI_MODE_PCIX_M1_66:
1164 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
541ae68f
K
1165 break;
1166 case PCI_MODE_PCIX_M1_100:
1167 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
541ae68f
K
1168 break;
1169 case PCI_MODE_PCIX_M1_133:
1170 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
541ae68f
K
1171 break;
1172 case PCI_MODE_PCIX_M2_66:
1173 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
541ae68f
K
1174 break;
1175 case PCI_MODE_PCIX_M2_100:
1176 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
541ae68f
K
1177 break;
1178 case PCI_MODE_PCIX_M2_133:
1179 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
541ae68f
K
1180 break;
1181 default:
1182 return -1; /* Unsupported bus speed */
1183 }
1184
1185 return mode;
1186}
1187
b7c5678f
RV
1188/**
1189 * init_tti - Initialization transmit traffic interrupt scheme
1190 * @nic: device private variable
1191 * @link: link status (UP/DOWN) used to enable/disable continuous
1192 * transmit interrupts
1193 * Description: The function configures transmit traffic interrupts
1194 * Return Value: SUCCESS on success and
1195 * '-1' on failure
1196 */
1197
0d66afe7 1198static int init_tti(struct s2io_nic *nic, int link)
b7c5678f
RV
1199{
1200 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1201 register u64 val64 = 0;
1202 int i;
1203 struct config_param *config;
1204
1205 config = &nic->config;
1206
1207 for (i = 0; i < config->tx_fifo_num; i++) {
1208 /*
1209 * TTI Initialization. Default Tx timer gets us about
1210 * 250 interrupts per sec. Continuous interrupts are enabled
1211 * by default.
1212 */
1213 if (nic->device_type == XFRAME_II_DEVICE) {
1214 int count = (nic->config.bus_speed * 125)/2;
1215 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1216 } else
1217 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1218
1219 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1220 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1221 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1222 TTI_DATA1_MEM_TX_TIMER_AC_EN;
ac731ab6
SH
1223 if (i == 0)
1224 if (use_continuous_tx_intrs && (link == LINK_UP))
1225 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
b7c5678f
RV
1226 writeq(val64, &bar0->tti_data1_mem);
1227
ac731ab6
SH
1228 if (nic->config.intr_type == MSI_X) {
1229 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1230 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1231 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1232 TTI_DATA2_MEM_TX_UFC_D(0x300);
1233 } else {
1234 if ((nic->config.tx_steering_type ==
1235 TX_DEFAULT_STEERING) &&
1236 (config->tx_fifo_num > 1) &&
1237 (i >= nic->udp_fifo_idx) &&
1238 (i < (nic->udp_fifo_idx +
1239 nic->total_udp_fifos)))
1240 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1241 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1242 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1243 TTI_DATA2_MEM_TX_UFC_D(0x120);
1244 else
1245 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1246 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1247 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1248 TTI_DATA2_MEM_TX_UFC_D(0x80);
1249 }
b7c5678f
RV
1250
1251 writeq(val64, &bar0->tti_data2_mem);
1252
1253 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD |
1254 TTI_CMD_MEM_OFFSET(i);
1255 writeq(val64, &bar0->tti_command_mem);
1256
1257 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1258 TTI_CMD_MEM_STROBE_NEW_CMD, S2IO_BIT_RESET) != SUCCESS)
1259 return FAILURE;
1260 }
1261
1262 return SUCCESS;
1263}
1264
20346722
K
1265/**
1266 * init_nic - Initialization of hardware
b7c5678f 1267 * @nic: device private variable
20346722
K
1268 * Description: The function sequentially configures every block
1269 * of the H/W from their reset values.
1270 * Return Value: SUCCESS on success and
1da177e4
LT
1271 * '-1' on failure (endian settings incorrect).
1272 */
1273
1274static int init_nic(struct s2io_nic *nic)
1275{
1ee6dd77 1276 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
1277 struct net_device *dev = nic->dev;
1278 register u64 val64 = 0;
1279 void __iomem *add;
1280 u32 time;
1281 int i, j;
1ee6dd77 1282 struct mac_info *mac_control;
1da177e4 1283 struct config_param *config;
c92ca04b 1284 int dtx_cnt = 0;
1da177e4 1285 unsigned long long mem_share;
20346722 1286 int mem_size;
1da177e4
LT
1287
1288 mac_control = &nic->mac_control;
1289 config = &nic->config;
1290
5e25b9dd 1291 /* to set the swapper controle on the card */
20346722 1292 if(s2io_set_swapper(nic)) {
1da177e4 1293 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
9f74ffde 1294 return -EIO;
1da177e4
LT
1295 }
1296
541ae68f
K
1297 /*
1298 * Herc requires EOI to be removed from reset before XGXS, so..
1299 */
1300 if (nic->device_type & XFRAME_II_DEVICE) {
1301 val64 = 0xA500000000ULL;
1302 writeq(val64, &bar0->sw_reset);
1303 msleep(500);
1304 val64 = readq(&bar0->sw_reset);
1305 }
1306
1da177e4
LT
1307 /* Remove XGXS from reset state */
1308 val64 = 0;
1309 writeq(val64, &bar0->sw_reset);
1da177e4 1310 msleep(500);
20346722 1311 val64 = readq(&bar0->sw_reset);
1da177e4 1312
7962024e
SH
1313 /* Ensure that it's safe to access registers by checking
1314 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1315 */
1316 if (nic->device_type == XFRAME_II_DEVICE) {
1317 for (i = 0; i < 50; i++) {
1318 val64 = readq(&bar0->adapter_status);
1319 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1320 break;
1321 msleep(10);
1322 }
1323 if (i == 50)
1324 return -ENODEV;
1325 }
1326
1da177e4
LT
1327 /* Enable Receiving broadcasts */
1328 add = &bar0->mac_cfg;
1329 val64 = readq(&bar0->mac_cfg);
1330 val64 |= MAC_RMAC_BCAST_ENABLE;
1331 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1332 writel((u32) val64, add);
1333 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1334 writel((u32) (val64 >> 32), (add + 4));
1335
1336 /* Read registers in all blocks */
1337 val64 = readq(&bar0->mac_int_mask);
1338 val64 = readq(&bar0->mc_int_mask);
1339 val64 = readq(&bar0->xgxs_int_mask);
1340
1341 /* Set MTU */
1342 val64 = dev->mtu;
1343 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1344
541ae68f
K
1345 if (nic->device_type & XFRAME_II_DEVICE) {
1346 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
303bcb4b 1347 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1da177e4 1348 &bar0->dtx_control, UF);
541ae68f
K
1349 if (dtx_cnt & 0x1)
1350 msleep(1); /* Necessary!! */
1da177e4
LT
1351 dtx_cnt++;
1352 }
541ae68f 1353 } else {
c92ca04b
AR
1354 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1355 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1356 &bar0->dtx_control, UF);
1357 val64 = readq(&bar0->dtx_control);
1358 dtx_cnt++;
1da177e4
LT
1359 }
1360 }
1361
1362 /* Tx DMA Initialization */
1363 val64 = 0;
1364 writeq(val64, &bar0->tx_fifo_partition_0);
1365 writeq(val64, &bar0->tx_fifo_partition_1);
1366 writeq(val64, &bar0->tx_fifo_partition_2);
1367 writeq(val64, &bar0->tx_fifo_partition_3);
1368
1369
1370 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1371 val64 |=
b7c5678f 1372 vBIT(config->tx_cfg[i].fifo_len - 1, ((j * 32) + 19),
1da177e4 1373 13) | vBIT(config->tx_cfg[i].fifo_priority,
b7c5678f 1374 ((j * 32) + 5), 3);
1da177e4
LT
1375
1376 if (i == (config->tx_fifo_num - 1)) {
1377 if (i % 2 == 0)
1378 i++;
1379 }
1380
1381 switch (i) {
1382 case 1:
1383 writeq(val64, &bar0->tx_fifo_partition_0);
1384 val64 = 0;
b7c5678f 1385 j = 0;
1da177e4
LT
1386 break;
1387 case 3:
1388 writeq(val64, &bar0->tx_fifo_partition_1);
1389 val64 = 0;
b7c5678f 1390 j = 0;
1da177e4
LT
1391 break;
1392 case 5:
1393 writeq(val64, &bar0->tx_fifo_partition_2);
1394 val64 = 0;
b7c5678f 1395 j = 0;
1da177e4
LT
1396 break;
1397 case 7:
1398 writeq(val64, &bar0->tx_fifo_partition_3);
b7c5678f
RV
1399 val64 = 0;
1400 j = 0;
1401 break;
1402 default:
1403 j++;
1da177e4
LT
1404 break;
1405 }
1406 }
1407
5e25b9dd
K
1408 /*
1409 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1410 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1411 */
541ae68f 1412 if ((nic->device_type == XFRAME_I_DEVICE) &&
44c10138 1413 (nic->pdev->revision < 4))
5e25b9dd
K
1414 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1415
1da177e4
LT
1416 val64 = readq(&bar0->tx_fifo_partition_0);
1417 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1418 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1419
20346722
K
1420 /*
1421 * Initialization of Tx_PA_CONFIG register to ignore packet
1da177e4
LT
1422 * integrity checking.
1423 */
1424 val64 = readq(&bar0->tx_pa_cfg);
1425 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1426 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1427 writeq(val64, &bar0->tx_pa_cfg);
1428
1429 /* Rx DMA intialization. */
1430 val64 = 0;
1431 for (i = 0; i < config->rx_ring_num; i++) {
1432 val64 |=
1433 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1434 3);
1435 }
1436 writeq(val64, &bar0->rx_queue_priority);
1437
20346722
K
1438 /*
1439 * Allocating equal share of memory to all the
1da177e4
LT
1440 * configured Rings.
1441 */
1442 val64 = 0;
541ae68f
K
1443 if (nic->device_type & XFRAME_II_DEVICE)
1444 mem_size = 32;
1445 else
1446 mem_size = 64;
1447
1da177e4
LT
1448 for (i = 0; i < config->rx_ring_num; i++) {
1449 switch (i) {
1450 case 0:
20346722
K
1451 mem_share = (mem_size / config->rx_ring_num +
1452 mem_size % config->rx_ring_num);
1da177e4
LT
1453 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1454 continue;
1455 case 1:
20346722 1456 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1457 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1458 continue;
1459 case 2:
20346722 1460 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1461 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1462 continue;
1463 case 3:
20346722 1464 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1465 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1466 continue;
1467 case 4:
20346722 1468 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1469 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1470 continue;
1471 case 5:
20346722 1472 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1473 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1474 continue;
1475 case 6:
20346722 1476 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1477 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1478 continue;
1479 case 7:
20346722 1480 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1481 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1482 continue;
1483 }
1484 }
1485 writeq(val64, &bar0->rx_queue_cfg);
1486
20346722 1487 /*
5e25b9dd 1488 * Filling Tx round robin registers
b7c5678f 1489 * as per the number of FIFOs for equal scheduling priority
1da177e4 1490 */
5e25b9dd
K
1491 switch (config->tx_fifo_num) {
1492 case 1:
b7c5678f 1493 val64 = 0x0;
5e25b9dd
K
1494 writeq(val64, &bar0->tx_w_round_robin_0);
1495 writeq(val64, &bar0->tx_w_round_robin_1);
1496 writeq(val64, &bar0->tx_w_round_robin_2);
1497 writeq(val64, &bar0->tx_w_round_robin_3);
1498 writeq(val64, &bar0->tx_w_round_robin_4);
1499 break;
1500 case 2:
b7c5678f 1501 val64 = 0x0001000100010001ULL;
5e25b9dd 1502 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1503 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1504 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1505 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1506 val64 = 0x0001000100000000ULL;
5e25b9dd
K
1507 writeq(val64, &bar0->tx_w_round_robin_4);
1508 break;
1509 case 3:
b7c5678f 1510 val64 = 0x0001020001020001ULL;
5e25b9dd 1511 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1512 val64 = 0x0200010200010200ULL;
5e25b9dd 1513 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1514 val64 = 0x0102000102000102ULL;
5e25b9dd 1515 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1516 val64 = 0x0001020001020001ULL;
5e25b9dd 1517 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1518 val64 = 0x0200010200000000ULL;
5e25b9dd
K
1519 writeq(val64, &bar0->tx_w_round_robin_4);
1520 break;
1521 case 4:
b7c5678f 1522 val64 = 0x0001020300010203ULL;
5e25b9dd 1523 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1524 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1525 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1526 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1527 val64 = 0x0001020300000000ULL;
5e25b9dd
K
1528 writeq(val64, &bar0->tx_w_round_robin_4);
1529 break;
1530 case 5:
b7c5678f 1531 val64 = 0x0001020304000102ULL;
5e25b9dd 1532 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1533 val64 = 0x0304000102030400ULL;
5e25b9dd 1534 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1535 val64 = 0x0102030400010203ULL;
5e25b9dd 1536 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1537 val64 = 0x0400010203040001ULL;
5e25b9dd 1538 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1539 val64 = 0x0203040000000000ULL;
5e25b9dd
K
1540 writeq(val64, &bar0->tx_w_round_robin_4);
1541 break;
1542 case 6:
b7c5678f 1543 val64 = 0x0001020304050001ULL;
5e25b9dd 1544 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1545 val64 = 0x0203040500010203ULL;
5e25b9dd 1546 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1547 val64 = 0x0405000102030405ULL;
5e25b9dd 1548 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1549 val64 = 0x0001020304050001ULL;
5e25b9dd 1550 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1551 val64 = 0x0203040500000000ULL;
5e25b9dd
K
1552 writeq(val64, &bar0->tx_w_round_robin_4);
1553 break;
1554 case 7:
b7c5678f 1555 val64 = 0x0001020304050600ULL;
5e25b9dd 1556 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1557 val64 = 0x0102030405060001ULL;
5e25b9dd 1558 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1559 val64 = 0x0203040506000102ULL;
5e25b9dd 1560 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1561 val64 = 0x0304050600010203ULL;
5e25b9dd 1562 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1563 val64 = 0x0405060000000000ULL;
5e25b9dd
K
1564 writeq(val64, &bar0->tx_w_round_robin_4);
1565 break;
1566 case 8:
b7c5678f 1567 val64 = 0x0001020304050607ULL;
5e25b9dd 1568 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1569 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1570 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1571 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1572 val64 = 0x0001020300000000ULL;
5e25b9dd
K
1573 writeq(val64, &bar0->tx_w_round_robin_4);
1574 break;
1575 }
1576
b41477f3 1577 /* Enable all configured Tx FIFO partitions */
5d3213cc
AR
1578 val64 = readq(&bar0->tx_fifo_partition_0);
1579 val64 |= (TX_FIFO_PARTITION_EN);
1580 writeq(val64, &bar0->tx_fifo_partition_0);
1581
5e25b9dd 1582 /* Filling the Rx round robin registers as per the
0425b46a
SH
1583 * number of Rings and steering based on QoS with
1584 * equal priority.
1585 */
5e25b9dd
K
1586 switch (config->rx_ring_num) {
1587 case 1:
0425b46a
SH
1588 val64 = 0x0;
1589 writeq(val64, &bar0->rx_w_round_robin_0);
1590 writeq(val64, &bar0->rx_w_round_robin_1);
1591 writeq(val64, &bar0->rx_w_round_robin_2);
1592 writeq(val64, &bar0->rx_w_round_robin_3);
1593 writeq(val64, &bar0->rx_w_round_robin_4);
1594
5e25b9dd
K
1595 val64 = 0x8080808080808080ULL;
1596 writeq(val64, &bar0->rts_qos_steering);
1597 break;
1598 case 2:
0425b46a 1599 val64 = 0x0001000100010001ULL;
5e25b9dd 1600 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1601 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1602 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1603 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1604 val64 = 0x0001000100000000ULL;
5e25b9dd
K
1605 writeq(val64, &bar0->rx_w_round_robin_4);
1606
1607 val64 = 0x8080808040404040ULL;
1608 writeq(val64, &bar0->rts_qos_steering);
1609 break;
1610 case 3:
0425b46a 1611 val64 = 0x0001020001020001ULL;
5e25b9dd 1612 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1613 val64 = 0x0200010200010200ULL;
5e25b9dd 1614 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1615 val64 = 0x0102000102000102ULL;
5e25b9dd 1616 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1617 val64 = 0x0001020001020001ULL;
5e25b9dd 1618 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1619 val64 = 0x0200010200000000ULL;
5e25b9dd
K
1620 writeq(val64, &bar0->rx_w_round_robin_4);
1621
1622 val64 = 0x8080804040402020ULL;
1623 writeq(val64, &bar0->rts_qos_steering);
1624 break;
1625 case 4:
0425b46a 1626 val64 = 0x0001020300010203ULL;
5e25b9dd 1627 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1628 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1629 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1630 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1631 val64 = 0x0001020300000000ULL;
5e25b9dd
K
1632 writeq(val64, &bar0->rx_w_round_robin_4);
1633
1634 val64 = 0x8080404020201010ULL;
1635 writeq(val64, &bar0->rts_qos_steering);
1636 break;
1637 case 5:
0425b46a 1638 val64 = 0x0001020304000102ULL;
5e25b9dd 1639 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1640 val64 = 0x0304000102030400ULL;
5e25b9dd 1641 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1642 val64 = 0x0102030400010203ULL;
5e25b9dd 1643 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1644 val64 = 0x0400010203040001ULL;
5e25b9dd 1645 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1646 val64 = 0x0203040000000000ULL;
5e25b9dd
K
1647 writeq(val64, &bar0->rx_w_round_robin_4);
1648
1649 val64 = 0x8080404020201008ULL;
1650 writeq(val64, &bar0->rts_qos_steering);
1651 break;
1652 case 6:
0425b46a 1653 val64 = 0x0001020304050001ULL;
5e25b9dd 1654 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1655 val64 = 0x0203040500010203ULL;
5e25b9dd 1656 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1657 val64 = 0x0405000102030405ULL;
5e25b9dd 1658 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1659 val64 = 0x0001020304050001ULL;
5e25b9dd 1660 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1661 val64 = 0x0203040500000000ULL;
5e25b9dd
K
1662 writeq(val64, &bar0->rx_w_round_robin_4);
1663
1664 val64 = 0x8080404020100804ULL;
1665 writeq(val64, &bar0->rts_qos_steering);
1666 break;
1667 case 7:
0425b46a 1668 val64 = 0x0001020304050600ULL;
5e25b9dd 1669 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1670 val64 = 0x0102030405060001ULL;
5e25b9dd 1671 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1672 val64 = 0x0203040506000102ULL;
5e25b9dd 1673 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1674 val64 = 0x0304050600010203ULL;
5e25b9dd 1675 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1676 val64 = 0x0405060000000000ULL;
5e25b9dd
K
1677 writeq(val64, &bar0->rx_w_round_robin_4);
1678
1679 val64 = 0x8080402010080402ULL;
1680 writeq(val64, &bar0->rts_qos_steering);
1681 break;
1682 case 8:
0425b46a 1683 val64 = 0x0001020304050607ULL;
5e25b9dd 1684 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1685 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1686 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1687 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1688 val64 = 0x0001020300000000ULL;
5e25b9dd
K
1689 writeq(val64, &bar0->rx_w_round_robin_4);
1690
1691 val64 = 0x8040201008040201ULL;
1692 writeq(val64, &bar0->rts_qos_steering);
1693 break;
1694 }
1da177e4
LT
1695
1696 /* UDP Fix */
1697 val64 = 0;
20346722 1698 for (i = 0; i < 8; i++)
1da177e4
LT
1699 writeq(val64, &bar0->rts_frm_len_n[i]);
1700
5e25b9dd
K
1701 /* Set the default rts frame length for the rings configured */
1702 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1703 for (i = 0 ; i < config->rx_ring_num ; i++)
1704 writeq(val64, &bar0->rts_frm_len_n[i]);
1705
1706 /* Set the frame length for the configured rings
1707 * desired by the user
1708 */
1709 for (i = 0; i < config->rx_ring_num; i++) {
1710 /* If rts_frm_len[i] == 0 then it is assumed that user not
1711 * specified frame length steering.
1712 * If the user provides the frame length then program
1713 * the rts_frm_len register for those values or else
1714 * leave it as it is.
1715 */
1716 if (rts_frm_len[i] != 0) {
1717 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1718 &bar0->rts_frm_len_n[i]);
1719 }
1720 }
8a4bdbaa 1721
9fc93a41
SS
1722 /* Disable differentiated services steering logic */
1723 for (i = 0; i < 64; i++) {
1724 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1725 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1726 dev->name);
1727 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
9f74ffde 1728 return -ENODEV;
9fc93a41
SS
1729 }
1730 }
1731
20346722 1732 /* Program statistics memory */
1da177e4 1733 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1da177e4 1734
541ae68f
K
1735 if (nic->device_type == XFRAME_II_DEVICE) {
1736 val64 = STAT_BC(0x320);
1737 writeq(val64, &bar0->stat_byte_cnt);
1738 }
1739
20346722 1740 /*
1da177e4
LT
1741 * Initializing the sampling rate for the device to calculate the
1742 * bandwidth utilization.
1743 */
1744 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1745 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1746 writeq(val64, &bar0->mac_link_util);
1747
20346722
K
1748 /*
1749 * Initializing the Transmit and Receive Traffic Interrupt
1da177e4
LT
1750 * Scheme.
1751 */
1da177e4 1752
b7c5678f
RV
1753 /* Initialize TTI */
1754 if (SUCCESS != init_tti(nic, nic->last_link_state))
1755 return -ENODEV;
1da177e4 1756
8a4bdbaa
SS
1757 /* RTI Initialization */
1758 if (nic->device_type == XFRAME_II_DEVICE) {
541ae68f 1759 /*
8a4bdbaa
SS
1760 * Programmed to generate Apprx 500 Intrs per
1761 * second
1762 */
1763 int count = (nic->config.bus_speed * 125)/4;
1764 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1765 } else
1766 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1767 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1768 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1769 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1770
1771 writeq(val64, &bar0->rti_data1_mem);
1772
1773 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1774 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1775 if (nic->config.intr_type == MSI_X)
1776 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1777 RTI_DATA2_MEM_RX_UFC_D(0x40));
1778 else
1779 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1780 RTI_DATA2_MEM_RX_UFC_D(0x80));
1781 writeq(val64, &bar0->rti_data2_mem);
1da177e4 1782
8a4bdbaa
SS
1783 for (i = 0; i < config->rx_ring_num; i++) {
1784 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1785 | RTI_CMD_MEM_OFFSET(i);
1786 writeq(val64, &bar0->rti_command_mem);
1da177e4 1787
8a4bdbaa
SS
1788 /*
1789 * Once the operation completes, the Strobe bit of the
1790 * command register will be reset. We poll for this
1791 * particular condition. We wait for a maximum of 500ms
1792 * for the operation to complete, if it's not complete
1793 * by then we return error.
1794 */
1795 time = 0;
1796 while (TRUE) {
1797 val64 = readq(&bar0->rti_command_mem);
1798 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1799 break;
b6e3f982 1800
8a4bdbaa
SS
1801 if (time > 10) {
1802 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1803 dev->name);
9f74ffde 1804 return -ENODEV;
b6e3f982 1805 }
8a4bdbaa
SS
1806 time++;
1807 msleep(50);
1da177e4 1808 }
1da177e4
LT
1809 }
1810
20346722
K
1811 /*
1812 * Initializing proper values as Pause threshold into all
1da177e4
LT
1813 * the 8 Queues on Rx side.
1814 */
1815 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1816 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1817
1818 /* Disable RMAC PAD STRIPPING */
509a2671 1819 add = &bar0->mac_cfg;
1da177e4
LT
1820 val64 = readq(&bar0->mac_cfg);
1821 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1822 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1823 writel((u32) (val64), add);
1824 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1825 writel((u32) (val64 >> 32), (add + 4));
1826 val64 = readq(&bar0->mac_cfg);
1827
7d3d0439
RA
1828 /* Enable FCS stripping by adapter */
1829 add = &bar0->mac_cfg;
1830 val64 = readq(&bar0->mac_cfg);
1831 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1832 if (nic->device_type == XFRAME_II_DEVICE)
1833 writeq(val64, &bar0->mac_cfg);
1834 else {
1835 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1836 writel((u32) (val64), add);
1837 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1838 writel((u32) (val64 >> 32), (add + 4));
1839 }
1840
20346722
K
1841 /*
1842 * Set the time value to be inserted in the pause frame
1da177e4
LT
1843 * generated by xena.
1844 */
1845 val64 = readq(&bar0->rmac_pause_cfg);
1846 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1847 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1848 writeq(val64, &bar0->rmac_pause_cfg);
1849
20346722 1850 /*
1da177e4
LT
1851 * Set the Threshold Limit for Generating the pause frame
1852 * If the amount of data in any Queue exceeds ratio of
1853 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1854 * pause frame is generated
1855 */
1856 val64 = 0;
1857 for (i = 0; i < 4; i++) {
1858 val64 |=
1859 (((u64) 0xFF00 | nic->mac_control.
1860 mc_pause_threshold_q0q3)
1861 << (i * 2 * 8));
1862 }
1863 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1864
1865 val64 = 0;
1866 for (i = 0; i < 4; i++) {
1867 val64 |=
1868 (((u64) 0xFF00 | nic->mac_control.
1869 mc_pause_threshold_q4q7)
1870 << (i * 2 * 8));
1871 }
1872 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1873
20346722
K
1874 /*
1875 * TxDMA will stop Read request if the number of read split has
1da177e4
LT
1876 * exceeded the limit pointed by shared_splits
1877 */
1878 val64 = readq(&bar0->pic_control);
1879 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1880 writeq(val64, &bar0->pic_control);
1881
863c11a9
AR
1882 if (nic->config.bus_speed == 266) {
1883 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1884 writeq(0x0, &bar0->read_retry_delay);
1885 writeq(0x0, &bar0->write_retry_delay);
1886 }
1887
541ae68f
K
1888 /*
1889 * Programming the Herc to split every write transaction
1890 * that does not start on an ADB to reduce disconnects.
1891 */
1892 if (nic->device_type == XFRAME_II_DEVICE) {
19a60522
SS
1893 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1894 MISC_LINK_STABILITY_PRD(3);
863c11a9
AR
1895 writeq(val64, &bar0->misc_control);
1896 val64 = readq(&bar0->pic_control2);
b7b5a128 1897 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
863c11a9 1898 writeq(val64, &bar0->pic_control2);
541ae68f 1899 }
c92ca04b
AR
1900 if (strstr(nic->product_name, "CX4")) {
1901 val64 = TMAC_AVG_IPG(0x17);
1902 writeq(val64, &bar0->tmac_avg_ipg);
a371a07d
K
1903 }
1904
1da177e4
LT
1905 return SUCCESS;
1906}
a371a07d
K
1907#define LINK_UP_DOWN_INTERRUPT 1
1908#define MAC_RMAC_ERR_TIMER 2
1909
1ee6dd77 1910static int s2io_link_fault_indication(struct s2io_nic *nic)
a371a07d 1911{
eaae7f72 1912 if (nic->config.intr_type != INTA)
cc6e7c44 1913 return MAC_RMAC_ERR_TIMER;
a371a07d
K
1914 if (nic->device_type == XFRAME_II_DEVICE)
1915 return LINK_UP_DOWN_INTERRUPT;
1916 else
1917 return MAC_RMAC_ERR_TIMER;
1918}
8116f3cf 1919
9caab458
SS
1920/**
1921 * do_s2io_write_bits - update alarm bits in alarm register
1922 * @value: alarm bits
1923 * @flag: interrupt status
1924 * @addr: address value
1925 * Description: update alarm bits in alarm register
1926 * Return Value:
1927 * NONE.
1928 */
1929static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1930{
1931 u64 temp64;
1932
1933 temp64 = readq(addr);
1934
1935 if(flag == ENABLE_INTRS)
1936 temp64 &= ~((u64) value);
1937 else
1938 temp64 |= ((u64) value);
1939 writeq(temp64, addr);
1940}
1da177e4 1941
43b7c451 1942static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
9caab458
SS
1943{
1944 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1945 register u64 gen_int_mask = 0;
1946
1947 if (mask & TX_DMA_INTR) {
1948
1949 gen_int_mask |= TXDMA_INT_M;
1950
1951 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1952 TXDMA_PCC_INT | TXDMA_TTI_INT |
1953 TXDMA_LSO_INT | TXDMA_TPA_INT |
1954 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1955
1956 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1957 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1958 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1959 &bar0->pfc_err_mask);
1960
1961 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1962 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1963 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1964
1965 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1966 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1967 PCC_N_SERR | PCC_6_COF_OV_ERR |
1968 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1969 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1970 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1971
1972 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1973 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1974
1975 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1976 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1977 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1978 flag, &bar0->lso_err_mask);
1979
1980 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1981 flag, &bar0->tpa_err_mask);
1982
1983 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1984
1985 }
1986
1987 if (mask & TX_MAC_INTR) {
1988 gen_int_mask |= TXMAC_INT_M;
1989 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1990 &bar0->mac_int_mask);
1991 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1992 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1993 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1994 flag, &bar0->mac_tmac_err_mask);
1995 }
1996
1997 if (mask & TX_XGXS_INTR) {
1998 gen_int_mask |= TXXGXS_INT_M;
1999 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
2000 &bar0->xgxs_int_mask);
2001 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
2002 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
2003 flag, &bar0->xgxs_txgxs_err_mask);
2004 }
2005
2006 if (mask & RX_DMA_INTR) {
2007 gen_int_mask |= RXDMA_INT_M;
2008 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
2009 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
2010 flag, &bar0->rxdma_int_mask);
2011 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
2012 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
2013 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
2014 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
2015 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
2016 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
2017 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
2018 &bar0->prc_pcix_err_mask);
2019 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
2020 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
2021 &bar0->rpa_err_mask);
2022 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
2023 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
2024 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
2025 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
2026 flag, &bar0->rda_err_mask);
2027 do_s2io_write_bits(RTI_SM_ERR_ALARM |
2028 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2029 flag, &bar0->rti_err_mask);
2030 }
2031
2032 if (mask & RX_MAC_INTR) {
2033 gen_int_mask |= RXMAC_INT_M;
2034 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2035 &bar0->mac_int_mask);
2036 do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2037 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2038 RMAC_DOUBLE_ECC_ERR |
2039 RMAC_LINK_STATE_CHANGE_INT,
2040 flag, &bar0->mac_rmac_err_mask);
2041 }
2042
2043 if (mask & RX_XGXS_INTR)
2044 {
2045 gen_int_mask |= RXXGXS_INT_M;
2046 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2047 &bar0->xgxs_int_mask);
2048 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2049 &bar0->xgxs_rxgxs_err_mask);
2050 }
2051
2052 if (mask & MC_INTR) {
2053 gen_int_mask |= MC_INT_M;
2054 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
2055 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2056 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2057 &bar0->mc_err_mask);
2058 }
2059 nic->general_int_mask = gen_int_mask;
2060
2061 /* Remove this line when alarm interrupts are enabled */
2062 nic->general_int_mask = 0;
2063}
20346722
K
2064/**
2065 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1da177e4
LT
2066 * @nic: device private variable,
2067 * @mask: A mask indicating which Intr block must be modified and,
2068 * @flag: A flag indicating whether to enable or disable the Intrs.
2069 * Description: This function will either disable or enable the interrupts
20346722
K
2070 * depending on the flag argument. The mask argument can be used to
2071 * enable/disable any Intr block.
1da177e4
LT
2072 * Return Value: NONE.
2073 */
2074
2075static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2076{
1ee6dd77 2077 struct XENA_dev_config __iomem *bar0 = nic->bar0;
9caab458
SS
2078 register u64 temp64 = 0, intr_mask = 0;
2079
2080 intr_mask = nic->general_int_mask;
1da177e4
LT
2081
2082 /* Top level interrupt classification */
2083 /* PIC Interrupts */
9caab458 2084 if (mask & TX_PIC_INTR) {
1da177e4 2085 /* Enable PIC Intrs in the general intr mask register */
9caab458 2086 intr_mask |= TXPIC_INT_M;
1da177e4 2087 if (flag == ENABLE_INTRS) {
20346722 2088 /*
a371a07d 2089 * If Hercules adapter enable GPIO otherwise
b41477f3 2090 * disable all PCIX, Flash, MDIO, IIC and GPIO
20346722
K
2091 * interrupts for now.
2092 * TODO
1da177e4 2093 */
a371a07d
K
2094 if (s2io_link_fault_indication(nic) ==
2095 LINK_UP_DOWN_INTERRUPT ) {
9caab458
SS
2096 do_s2io_write_bits(PIC_INT_GPIO, flag,
2097 &bar0->pic_int_mask);
2098 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2099 &bar0->gpio_int_mask);
2100 } else
a371a07d 2101 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1da177e4 2102 } else if (flag == DISABLE_INTRS) {
20346722
K
2103 /*
2104 * Disable PIC Intrs in the general
2105 * intr mask register
1da177e4
LT
2106 */
2107 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1da177e4
LT
2108 }
2109 }
2110
1da177e4
LT
2111 /* Tx traffic interrupts */
2112 if (mask & TX_TRAFFIC_INTR) {
9caab458 2113 intr_mask |= TXTRAFFIC_INT_M;
1da177e4 2114 if (flag == ENABLE_INTRS) {
20346722 2115 /*
1da177e4 2116 * Enable all the Tx side interrupts
20346722 2117 * writing 0 Enables all 64 TX interrupt levels
1da177e4
LT
2118 */
2119 writeq(0x0, &bar0->tx_traffic_mask);
2120 } else if (flag == DISABLE_INTRS) {
20346722
K
2121 /*
2122 * Disable Tx Traffic Intrs in the general intr mask
1da177e4
LT
2123 * register.
2124 */
2125 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1da177e4
LT
2126 }
2127 }
2128
2129 /* Rx traffic interrupts */
2130 if (mask & RX_TRAFFIC_INTR) {
9caab458 2131 intr_mask |= RXTRAFFIC_INT_M;
1da177e4 2132 if (flag == ENABLE_INTRS) {
1da177e4
LT
2133 /* writing 0 Enables all 8 RX interrupt levels */
2134 writeq(0x0, &bar0->rx_traffic_mask);
2135 } else if (flag == DISABLE_INTRS) {
20346722
K
2136 /*
2137 * Disable Rx Traffic Intrs in the general intr mask
1da177e4
LT
2138 * register.
2139 */
2140 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1da177e4
LT
2141 }
2142 }
9caab458
SS
2143
2144 temp64 = readq(&bar0->general_int_mask);
2145 if (flag == ENABLE_INTRS)
2146 temp64 &= ~((u64) intr_mask);
2147 else
2148 temp64 = DISABLE_ALL_INTRS;
2149 writeq(temp64, &bar0->general_int_mask);
2150
2151 nic->general_int_mask = readq(&bar0->general_int_mask);
1da177e4
LT
2152}
2153
19a60522
SS
2154/**
2155 * verify_pcc_quiescent- Checks for PCC quiescent state
2156 * Return: 1 If PCC is quiescence
2157 * 0 If PCC is not quiescence
2158 */
1ee6dd77 2159static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
20346722 2160{
19a60522 2161 int ret = 0, herc;
1ee6dd77 2162 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522 2163 u64 val64 = readq(&bar0->adapter_status);
8a4bdbaa 2164
19a60522 2165 herc = (sp->device_type == XFRAME_II_DEVICE);
20346722
K
2166
2167 if (flag == FALSE) {
44c10138 2168 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
19a60522 2169 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 2170 ret = 1;
19a60522
SS
2171 } else {
2172 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 2173 ret = 1;
20346722
K
2174 }
2175 } else {
44c10138 2176 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
5e25b9dd 2177 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
19a60522 2178 ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 2179 ret = 1;
5e25b9dd
K
2180 } else {
2181 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
19a60522 2182 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 2183 ret = 1;
20346722
K
2184 }
2185 }
2186
2187 return ret;
2188}
2189/**
2190 * verify_xena_quiescence - Checks whether the H/W is ready
1da177e4 2191 * Description: Returns whether the H/W is ready to go or not. Depending
20346722 2192 * on whether adapter enable bit was written or not the comparison
1da177e4
LT
2193 * differs and the calling function passes the input argument flag to
2194 * indicate this.
20346722 2195 * Return: 1 If xena is quiescence
1da177e4
LT
2196 * 0 If Xena is not quiescence
2197 */
2198
1ee6dd77 2199static int verify_xena_quiescence(struct s2io_nic *sp)
1da177e4 2200{
19a60522 2201 int mode;
1ee6dd77 2202 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522
SS
2203 u64 val64 = readq(&bar0->adapter_status);
2204 mode = s2io_verify_pci_mode(sp);
1da177e4 2205
19a60522
SS
2206 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2207 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2208 return 0;
2209 }
2210 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2211 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2212 return 0;
2213 }
2214 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2215 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2216 return 0;
2217 }
2218 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2219 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2220 return 0;
2221 }
2222 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2223 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2224 return 0;
2225 }
2226 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2227 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2228 return 0;
2229 }
2230 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2231 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2232 return 0;
2233 }
2234 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2235 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2236 return 0;
1da177e4
LT
2237 }
2238
19a60522
SS
2239 /*
2240 * In PCI 33 mode, the P_PLL is not used, and therefore,
2241 * the the P_PLL_LOCK bit in the adapter_status register will
2242 * not be asserted.
2243 */
2244 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2245 sp->device_type == XFRAME_II_DEVICE && mode !=
2246 PCI_MODE_PCI_33) {
2247 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2248 return 0;
2249 }
2250 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2251 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2252 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2253 return 0;
2254 }
2255 return 1;
1da177e4
LT
2256}
2257
2258/**
2259 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2260 * @sp: Pointer to device specifc structure
20346722 2261 * Description :
1da177e4
LT
2262 * New procedure to clear mac address reading problems on Alpha platforms
2263 *
2264 */
2265
1ee6dd77 2266static void fix_mac_address(struct s2io_nic * sp)
1da177e4 2267{
1ee6dd77 2268 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
2269 u64 val64;
2270 int i = 0;
2271
2272 while (fix_mac[i] != END_SIGN) {
2273 writeq(fix_mac[i++], &bar0->gpio_control);
20346722 2274 udelay(10);
1da177e4
LT
2275 val64 = readq(&bar0->gpio_control);
2276 }
2277}
2278
2279/**
20346722 2280 * start_nic - Turns the device on
1da177e4 2281 * @nic : device private variable.
20346722
K
2282 * Description:
2283 * This function actually turns the device on. Before this function is
2284 * called,all Registers are configured from their reset states
2285 * and shared memory is allocated but the NIC is still quiescent. On
1da177e4
LT
2286 * calling this function, the device interrupts are cleared and the NIC is
2287 * literally switched on by writing into the adapter control register.
20346722 2288 * Return Value:
1da177e4
LT
2289 * SUCCESS on success and -1 on failure.
2290 */
2291
2292static int start_nic(struct s2io_nic *nic)
2293{
1ee6dd77 2294 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
2295 struct net_device *dev = nic->dev;
2296 register u64 val64 = 0;
20346722 2297 u16 subid, i;
1ee6dd77 2298 struct mac_info *mac_control;
1da177e4
LT
2299 struct config_param *config;
2300
2301 mac_control = &nic->mac_control;
2302 config = &nic->config;
2303
2304 /* PRC Initialization and configuration */
2305 for (i = 0; i < config->rx_ring_num; i++) {
20346722 2306 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1da177e4
LT
2307 &bar0->prc_rxd0_n[i]);
2308
2309 val64 = readq(&bar0->prc_ctrl_n[i]);
da6971d8
AR
2310 if (nic->rxd_mode == RXD_MODE_1)
2311 val64 |= PRC_CTRL_RC_ENABLED;
2312 else
2313 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
863c11a9
AR
2314 if (nic->device_type == XFRAME_II_DEVICE)
2315 val64 |= PRC_CTRL_GROUP_READS;
2316 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2317 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
1da177e4
LT
2318 writeq(val64, &bar0->prc_ctrl_n[i]);
2319 }
2320
da6971d8
AR
2321 if (nic->rxd_mode == RXD_MODE_3B) {
2322 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2323 val64 = readq(&bar0->rx_pa_cfg);
2324 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2325 writeq(val64, &bar0->rx_pa_cfg);
2326 }
1da177e4 2327
926930b2
SS
2328 if (vlan_tag_strip == 0) {
2329 val64 = readq(&bar0->rx_pa_cfg);
2330 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2331 writeq(val64, &bar0->rx_pa_cfg);
2332 vlan_strip_flag = 0;
2333 }
2334
20346722 2335 /*
1da177e4
LT
2336 * Enabling MC-RLDRAM. After enabling the device, we timeout
2337 * for around 100ms, which is approximately the time required
2338 * for the device to be ready for operation.
2339 */
2340 val64 = readq(&bar0->mc_rldram_mrs);
2341 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2342 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2343 val64 = readq(&bar0->mc_rldram_mrs);
2344
20346722 2345 msleep(100); /* Delay by around 100 ms. */
1da177e4
LT
2346
2347 /* Enabling ECC Protection. */
2348 val64 = readq(&bar0->adapter_control);
2349 val64 &= ~ADAPTER_ECC_EN;
2350 writeq(val64, &bar0->adapter_control);
2351
20346722
K
2352 /*
2353 * Verify if the device is ready to be enabled, if so enable
1da177e4
LT
2354 * it.
2355 */
2356 val64 = readq(&bar0->adapter_status);
19a60522 2357 if (!verify_xena_quiescence(nic)) {
1da177e4
LT
2358 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2359 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2360 (unsigned long long) val64);
2361 return FAILURE;
2362 }
2363
20346722 2364 /*
1da177e4 2365 * With some switches, link might be already up at this point.
20346722
K
2366 * Because of this weird behavior, when we enable laser,
2367 * we may not get link. We need to handle this. We cannot
2368 * figure out which switch is misbehaving. So we are forced to
2369 * make a global change.
1da177e4
LT
2370 */
2371
2372 /* Enabling Laser. */
2373 val64 = readq(&bar0->adapter_control);
2374 val64 |= ADAPTER_EOI_TX_ON;
2375 writeq(val64, &bar0->adapter_control);
2376
c92ca04b
AR
2377 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2378 /*
2379 * Dont see link state interrupts initally on some switches,
2380 * so directly scheduling the link state task here.
2381 */
2382 schedule_work(&nic->set_link_task);
2383 }
1da177e4
LT
2384 /* SXE-002: Initialize link and activity LED */
2385 subid = nic->pdev->subsystem_device;
541ae68f
K
2386 if (((subid & 0xFF) >= 0x07) &&
2387 (nic->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
2388 val64 = readq(&bar0->gpio_control);
2389 val64 |= 0x0000800000000000ULL;
2390 writeq(val64, &bar0->gpio_control);
2391 val64 = 0x0411040400000000ULL;
509a2671 2392 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
2393 }
2394
1da177e4
LT
2395 return SUCCESS;
2396}
fed5eccd
AR
2397/**
2398 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2399 */
1ee6dd77
RB
2400static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2401 TxD *txdlp, int get_off)
fed5eccd 2402{
1ee6dd77 2403 struct s2io_nic *nic = fifo_data->nic;
fed5eccd 2404 struct sk_buff *skb;
1ee6dd77 2405 struct TxD *txds;
fed5eccd
AR
2406 u16 j, frg_cnt;
2407
2408 txds = txdlp;
2fda096d 2409 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
fed5eccd
AR
2410 pci_unmap_single(nic->pdev, (dma_addr_t)
2411 txds->Buffer_Pointer, sizeof(u64),
2412 PCI_DMA_TODEVICE);
2413 txds++;
2414 }
2415
2416 skb = (struct sk_buff *) ((unsigned long)
2417 txds->Host_Control);
2418 if (!skb) {
1ee6dd77 2419 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
fed5eccd
AR
2420 return NULL;
2421 }
2422 pci_unmap_single(nic->pdev, (dma_addr_t)
2423 txds->Buffer_Pointer,
2424 skb->len - skb->data_len,
2425 PCI_DMA_TODEVICE);
2426 frg_cnt = skb_shinfo(skb)->nr_frags;
2427 if (frg_cnt) {
2428 txds++;
2429 for (j = 0; j < frg_cnt; j++, txds++) {
2430 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2431 if (!txds->Buffer_Pointer)
2432 break;
6aa20a22 2433 pci_unmap_page(nic->pdev, (dma_addr_t)
fed5eccd
AR
2434 txds->Buffer_Pointer,
2435 frag->size, PCI_DMA_TODEVICE);
2436 }
2437 }
1ee6dd77 2438 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
fed5eccd
AR
2439 return(skb);
2440}
1da177e4 2441
20346722
K
2442/**
2443 * free_tx_buffers - Free all queued Tx buffers
1da177e4 2444 * @nic : device private variable.
20346722 2445 * Description:
1da177e4 2446 * Free all queued Tx buffers.
20346722 2447 * Return Value: void
1da177e4
LT
2448*/
2449
2450static void free_tx_buffers(struct s2io_nic *nic)
2451{
2452 struct net_device *dev = nic->dev;
2453 struct sk_buff *skb;
1ee6dd77 2454 struct TxD *txdp;
1da177e4 2455 int i, j;
1ee6dd77 2456 struct mac_info *mac_control;
1da177e4 2457 struct config_param *config;
fed5eccd 2458 int cnt = 0;
1da177e4
LT
2459
2460 mac_control = &nic->mac_control;
2461 config = &nic->config;
2462
2463 for (i = 0; i < config->tx_fifo_num; i++) {
2fda096d
SR
2464 unsigned long flags;
2465 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags);
b35b3b49 2466 for (j = 0; j < config->tx_cfg[i].fifo_len; j++) {
491976b2
SH
2467 txdp = (struct TxD *) \
2468 mac_control->fifos[i].list_info[j].list_virt_addr;
fed5eccd
AR
2469 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2470 if (skb) {
8a4bdbaa 2471 nic->mac_control.stats_info->sw_stat.mem_freed
491976b2 2472 += skb->truesize;
fed5eccd
AR
2473 dev_kfree_skb(skb);
2474 cnt++;
1da177e4 2475 }
1da177e4
LT
2476 }
2477 DBG_PRINT(INTR_DBG,
2478 "%s:forcibly freeing %d skbs on FIFO%d\n",
2479 dev->name, cnt, i);
20346722
K
2480 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2481 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2fda096d 2482 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, flags);
1da177e4
LT
2483 }
2484}
2485
20346722
K
2486/**
2487 * stop_nic - To stop the nic
1da177e4 2488 * @nic ; device private variable.
20346722
K
2489 * Description:
2490 * This function does exactly the opposite of what the start_nic()
1da177e4
LT
2491 * function does. This function is called to stop the device.
2492 * Return Value:
2493 * void.
2494 */
2495
2496static void stop_nic(struct s2io_nic *nic)
2497{
1ee6dd77 2498 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4 2499 register u64 val64 = 0;
5d3213cc 2500 u16 interruptible;
1ee6dd77 2501 struct mac_info *mac_control;
1da177e4
LT
2502 struct config_param *config;
2503
2504 mac_control = &nic->mac_control;
2505 config = &nic->config;
2506
2507 /* Disable all interrupts */
9caab458 2508 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
e960fc5c 2509 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
9caab458 2510 interruptible |= TX_PIC_INTR;
1da177e4
LT
2511 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2512
5d3213cc
AR
2513 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2514 val64 = readq(&bar0->adapter_control);
2515 val64 &= ~(ADAPTER_CNTL_EN);
2516 writeq(val64, &bar0->adapter_control);
1da177e4
LT
2517}
2518
20346722
K
2519/**
2520 * fill_rx_buffers - Allocates the Rx side skbs
0425b46a 2521 * @ring_info: per ring structure
20346722 2522 * Description:
1da177e4
LT
2523 * The function allocates Rx side skbs and puts the physical
2524 * address of these buffers into the RxD buffer pointers, so that the NIC
2525 * can DMA the received frame into these locations.
2526 * The NIC supports 3 receive modes, viz
2527 * 1. single buffer,
2528 * 2. three buffer and
2529 * 3. Five buffer modes.
20346722
K
2530 * Each mode defines how many fragments the received frame will be split
2531 * up into by the NIC. The frame is split into L3 header, L4 Header,
1da177e4
LT
2532 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2533 * is split into 3 fragments. As of now only single buffer mode is
2534 * supported.
2535 * Return Value:
2536 * SUCCESS on success or an appropriate -ve value on failure.
2537 */
2538
0425b46a 2539static int fill_rx_buffers(struct ring_info *ring)
1da177e4 2540{
1da177e4 2541 struct sk_buff *skb;
1ee6dd77 2542 struct RxD_t *rxdp;
0425b46a 2543 int off, size, block_no, block_no1;
1da177e4 2544 u32 alloc_tab = 0;
20346722 2545 u32 alloc_cnt;
20346722 2546 u64 tmp;
1ee6dd77 2547 struct buffAdd *ba;
1ee6dd77 2548 struct RxD_t *first_rxdp = NULL;
363dc367 2549 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
0425b46a 2550 int rxd_index = 0;
6d517a27
VP
2551 struct RxD1 *rxdp1;
2552 struct RxD3 *rxdp3;
0425b46a 2553 struct swStat *stats = &ring->nic->mac_control.stats_info->sw_stat;
1da177e4 2554
0425b46a 2555 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
1da177e4 2556
0425b46a 2557 block_no1 = ring->rx_curr_get_info.block_index;
1da177e4 2558 while (alloc_tab < alloc_cnt) {
0425b46a 2559 block_no = ring->rx_curr_put_info.block_index;
1da177e4 2560
0425b46a
SH
2561 off = ring->rx_curr_put_info.offset;
2562
2563 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2564
2565 rxd_index = off + 1;
2566 if (block_no)
2567 rxd_index += (block_no * ring->rxd_count);
da6971d8 2568
0425b46a
SH
2569 if ((block_no == block_no1) &&
2570 (off == ring->rx_curr_get_info.offset) &&
2571 (rxdp->Host_Control)) {
da6971d8 2572 DBG_PRINT(INTR_DBG, "%s: Get and Put",
0425b46a 2573 ring->dev->name);
1da177e4
LT
2574 DBG_PRINT(INTR_DBG, " info equated\n");
2575 goto end;
2576 }
0425b46a
SH
2577 if (off && (off == ring->rxd_count)) {
2578 ring->rx_curr_put_info.block_index++;
2579 if (ring->rx_curr_put_info.block_index ==
2580 ring->block_count)
2581 ring->rx_curr_put_info.block_index = 0;
2582 block_no = ring->rx_curr_put_info.block_index;
2583 off = 0;
2584 ring->rx_curr_put_info.offset = off;
2585 rxdp = ring->rx_blocks[block_no].block_virt_addr;
1da177e4 2586 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
0425b46a
SH
2587 ring->dev->name, rxdp);
2588
1da177e4 2589 }
c9fcbf47 2590
da6971d8 2591 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
0425b46a 2592 ((ring->rxd_mode == RXD_MODE_3B) &&
b7b5a128 2593 (rxdp->Control_2 & s2BIT(0)))) {
0425b46a 2594 ring->rx_curr_put_info.offset = off;
1da177e4
LT
2595 goto end;
2596 }
da6971d8 2597 /* calculate size of skb based on ring mode */
0425b46a 2598 size = ring->mtu + HEADER_ETHERNET_II_802_3_SIZE +
da6971d8 2599 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
0425b46a 2600 if (ring->rxd_mode == RXD_MODE_1)
da6971d8 2601 size += NET_IP_ALIGN;
da6971d8 2602 else
0425b46a 2603 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
1da177e4 2604
da6971d8
AR
2605 /* allocate skb */
2606 skb = dev_alloc_skb(size);
2607 if(!skb) {
0425b46a 2608 DBG_PRINT(INFO_DBG, "%s: Out of ", ring->dev->name);
0c61ed5f 2609 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
303bcb4b
K
2610 if (first_rxdp) {
2611 wmb();
2612 first_rxdp->Control_1 |= RXD_OWN_XENA;
2613 }
0425b46a
SH
2614 stats->mem_alloc_fail_cnt++;
2615
da6971d8
AR
2616 return -ENOMEM ;
2617 }
0425b46a
SH
2618 stats->mem_allocated += skb->truesize;
2619
2620 if (ring->rxd_mode == RXD_MODE_1) {
da6971d8 2621 /* 1 buffer mode - normal operation mode */
6d517a27 2622 rxdp1 = (struct RxD1*)rxdp;
1ee6dd77 2623 memset(rxdp, 0, sizeof(struct RxD1));
da6971d8 2624 skb_reserve(skb, NET_IP_ALIGN);
6d517a27 2625 rxdp1->Buffer0_ptr = pci_map_single
0425b46a 2626 (ring->pdev, skb->data, size - NET_IP_ALIGN,
863c11a9 2627 PCI_DMA_FROMDEVICE);
491abf25
VP
2628 if( (rxdp1->Buffer0_ptr == 0) ||
2629 (rxdp1->Buffer0_ptr ==
2630 DMA_ERROR_CODE))
2631 goto pci_map_failed;
2632
8a4bdbaa 2633 rxdp->Control_2 =
491976b2 2634 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
0425b46a
SH
2635 rxdp->Host_Control = (unsigned long) (skb);
2636 } else if (ring->rxd_mode == RXD_MODE_3B) {
da6971d8 2637 /*
6d517a27
VP
2638 * 2 buffer mode -
2639 * 2 buffer mode provides 128
da6971d8 2640 * byte aligned receive buffers.
da6971d8
AR
2641 */
2642
6d517a27 2643 rxdp3 = (struct RxD3*)rxdp;
491976b2 2644 /* save buffer pointers to avoid frequent dma mapping */
6d517a27
VP
2645 Buffer0_ptr = rxdp3->Buffer0_ptr;
2646 Buffer1_ptr = rxdp3->Buffer1_ptr;
1ee6dd77 2647 memset(rxdp, 0, sizeof(struct RxD3));
363dc367 2648 /* restore the buffer pointers for dma sync*/
6d517a27
VP
2649 rxdp3->Buffer0_ptr = Buffer0_ptr;
2650 rxdp3->Buffer1_ptr = Buffer1_ptr;
363dc367 2651
0425b46a 2652 ba = &ring->ba[block_no][off];
da6971d8
AR
2653 skb_reserve(skb, BUF0_LEN);
2654 tmp = (u64)(unsigned long) skb->data;
2655 tmp += ALIGN_SIZE;
2656 tmp &= ~ALIGN_SIZE;
2657 skb->data = (void *) (unsigned long)tmp;
27a884dc 2658 skb_reset_tail_pointer(skb);
da6971d8 2659
6d517a27
VP
2660 if (!(rxdp3->Buffer0_ptr))
2661 rxdp3->Buffer0_ptr =
0425b46a
SH
2662 pci_map_single(ring->pdev, ba->ba_0,
2663 BUF0_LEN, PCI_DMA_FROMDEVICE);
75c30b13 2664 else
0425b46a 2665 pci_dma_sync_single_for_device(ring->pdev,
6d517a27 2666 (dma_addr_t) rxdp3->Buffer0_ptr,
75c30b13 2667 BUF0_LEN, PCI_DMA_FROMDEVICE);
491abf25
VP
2668 if( (rxdp3->Buffer0_ptr == 0) ||
2669 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
2670 goto pci_map_failed;
2671
da6971d8 2672 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
0425b46a 2673 if (ring->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
2674 /* Two buffer mode */
2675
2676 /*
6aa20a22 2677 * Buffer2 will have L3/L4 header plus
da6971d8
AR
2678 * L4 payload
2679 */
6d517a27 2680 rxdp3->Buffer2_ptr = pci_map_single
0425b46a 2681 (ring->pdev, skb->data, ring->mtu + 4,
da6971d8
AR
2682 PCI_DMA_FROMDEVICE);
2683
491abf25
VP
2684 if( (rxdp3->Buffer2_ptr == 0) ||
2685 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
2686 goto pci_map_failed;
2687
0425b46a
SH
2688 if (!rxdp3->Buffer1_ptr)
2689 rxdp3->Buffer1_ptr =
2690 pci_map_single(ring->pdev,
75c30b13
AR
2691 ba->ba_1, BUF1_LEN,
2692 PCI_DMA_FROMDEVICE);
0425b46a 2693
491abf25
VP
2694 if( (rxdp3->Buffer1_ptr == 0) ||
2695 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
2696 pci_unmap_single
0425b46a
SH
2697 (ring->pdev,
2698 (dma_addr_t)(unsigned long)
2699 skb->data,
2700 ring->mtu + 4,
491abf25
VP
2701 PCI_DMA_FROMDEVICE);
2702 goto pci_map_failed;
75c30b13 2703 }
da6971d8
AR
2704 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2705 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
0425b46a 2706 (ring->mtu + 4);
da6971d8 2707 }
b7b5a128 2708 rxdp->Control_2 |= s2BIT(0);
0425b46a 2709 rxdp->Host_Control = (unsigned long) (skb);
1da177e4 2710 }
303bcb4b
K
2711 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2712 rxdp->Control_1 |= RXD_OWN_XENA;
1da177e4 2713 off++;
0425b46a 2714 if (off == (ring->rxd_count + 1))
da6971d8 2715 off = 0;
0425b46a 2716 ring->rx_curr_put_info.offset = off;
20346722 2717
da6971d8 2718 rxdp->Control_2 |= SET_RXD_MARKER;
303bcb4b
K
2719 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2720 if (first_rxdp) {
2721 wmb();
2722 first_rxdp->Control_1 |= RXD_OWN_XENA;
2723 }
2724 first_rxdp = rxdp;
2725 }
0425b46a 2726 ring->rx_bufs_left += 1;
1da177e4
LT
2727 alloc_tab++;
2728 }
2729
2730 end:
303bcb4b
K
2731 /* Transfer ownership of first descriptor to adapter just before
2732 * exiting. Before that, use memory barrier so that ownership
2733 * and other fields are seen by adapter correctly.
2734 */
2735 if (first_rxdp) {
2736 wmb();
2737 first_rxdp->Control_1 |= RXD_OWN_XENA;
2738 }
2739
1da177e4 2740 return SUCCESS;
491abf25
VP
2741pci_map_failed:
2742 stats->pci_map_fail_cnt++;
2743 stats->mem_freed += skb->truesize;
2744 dev_kfree_skb_irq(skb);
2745 return -ENOMEM;
1da177e4
LT
2746}
2747
da6971d8
AR
2748static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2749{
2750 struct net_device *dev = sp->dev;
2751 int j;
2752 struct sk_buff *skb;
1ee6dd77
RB
2753 struct RxD_t *rxdp;
2754 struct mac_info *mac_control;
2755 struct buffAdd *ba;
6d517a27
VP
2756 struct RxD1 *rxdp1;
2757 struct RxD3 *rxdp3;
da6971d8
AR
2758
2759 mac_control = &sp->mac_control;
2760 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2761 rxdp = mac_control->rings[ring_no].
2762 rx_blocks[blk].rxds[j].virt_addr;
2763 skb = (struct sk_buff *)
2764 ((unsigned long) rxdp->Host_Control);
2765 if (!skb) {
2766 continue;
2767 }
2768 if (sp->rxd_mode == RXD_MODE_1) {
6d517a27 2769 rxdp1 = (struct RxD1*)rxdp;
da6971d8 2770 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2771 rxdp1->Buffer0_ptr,
2772 dev->mtu +
2773 HEADER_ETHERNET_II_802_3_SIZE
2774 + HEADER_802_2_SIZE +
2775 HEADER_SNAP_SIZE,
2776 PCI_DMA_FROMDEVICE);
1ee6dd77 2777 memset(rxdp, 0, sizeof(struct RxD1));
da6971d8 2778 } else if(sp->rxd_mode == RXD_MODE_3B) {
6d517a27 2779 rxdp3 = (struct RxD3*)rxdp;
da6971d8
AR
2780 ba = &mac_control->rings[ring_no].
2781 ba[blk][j];
2782 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2783 rxdp3->Buffer0_ptr,
2784 BUF0_LEN,
da6971d8
AR
2785 PCI_DMA_FROMDEVICE);
2786 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2787 rxdp3->Buffer1_ptr,
2788 BUF1_LEN,
da6971d8
AR
2789 PCI_DMA_FROMDEVICE);
2790 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2791 rxdp3->Buffer2_ptr,
2792 dev->mtu + 4,
da6971d8 2793 PCI_DMA_FROMDEVICE);
1ee6dd77 2794 memset(rxdp, 0, sizeof(struct RxD3));
da6971d8 2795 }
491976b2 2796 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
da6971d8 2797 dev_kfree_skb(skb);
0425b46a 2798 mac_control->rings[ring_no].rx_bufs_left -= 1;
da6971d8
AR
2799 }
2800}
2801
1da177e4 2802/**
20346722 2803 * free_rx_buffers - Frees all Rx buffers
1da177e4 2804 * @sp: device private variable.
20346722 2805 * Description:
1da177e4
LT
2806 * This function will free all Rx buffers allocated by host.
2807 * Return Value:
2808 * NONE.
2809 */
2810
2811static void free_rx_buffers(struct s2io_nic *sp)
2812{
2813 struct net_device *dev = sp->dev;
da6971d8 2814 int i, blk = 0, buf_cnt = 0;
1ee6dd77 2815 struct mac_info *mac_control;
1da177e4 2816 struct config_param *config;
1da177e4
LT
2817
2818 mac_control = &sp->mac_control;
2819 config = &sp->config;
2820
2821 for (i = 0; i < config->rx_ring_num; i++) {
da6971d8
AR
2822 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2823 free_rxd_blk(sp,i,blk);
1da177e4 2824
20346722
K
2825 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2826 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2827 mac_control->rings[i].rx_curr_put_info.offset = 0;
2828 mac_control->rings[i].rx_curr_get_info.offset = 0;
0425b46a 2829 mac_control->rings[i].rx_bufs_left = 0;
1da177e4
LT
2830 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2831 dev->name, buf_cnt, i);
2832 }
2833}
2834
f61e0a35
SH
2835static int s2io_chk_rx_buffers(struct ring_info *ring)
2836{
2837 if (fill_rx_buffers(ring) == -ENOMEM) {
2838 DBG_PRINT(INFO_DBG, "%s:Out of memory", ring->dev->name);
2839 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
2840 }
2841 return 0;
2842}
2843
1da177e4
LT
2844/**
2845 * s2io_poll - Rx interrupt handler for NAPI support
bea3348e 2846 * @napi : pointer to the napi structure.
20346722 2847 * @budget : The number of packets that were budgeted to be processed
1da177e4
LT
2848 * during one pass through the 'Poll" function.
2849 * Description:
2850 * Comes into picture only if NAPI support has been incorporated. It does
2851 * the same thing that rx_intr_handler does, but not in a interrupt context
2852 * also It will process only a given number of packets.
2853 * Return value:
2854 * 0 on success and 1 if there are No Rx packets to be processed.
2855 */
2856
f61e0a35 2857static int s2io_poll_msix(struct napi_struct *napi, int budget)
1da177e4 2858{
f61e0a35
SH
2859 struct ring_info *ring = container_of(napi, struct ring_info, napi);
2860 struct net_device *dev = ring->dev;
1da177e4 2861 struct config_param *config;
f61e0a35
SH
2862 struct mac_info *mac_control;
2863 int pkts_processed = 0;
2864 u8 *addr = NULL, val8 = 0;
2865 struct s2io_nic *nic = dev->priv;
1ee6dd77 2866 struct XENA_dev_config __iomem *bar0 = nic->bar0;
f61e0a35 2867 int budget_org = budget;
1da177e4 2868
1da177e4 2869 config = &nic->config;
f61e0a35 2870 mac_control = &nic->mac_control;
1da177e4 2871
f61e0a35
SH
2872 if (unlikely(!is_s2io_card_up(nic)))
2873 return 0;
1da177e4 2874
f61e0a35
SH
2875 pkts_processed = rx_intr_handler(ring, budget);
2876 s2io_chk_rx_buffers(ring);
1da177e4 2877
f61e0a35
SH
2878 if (pkts_processed < budget_org) {
2879 netif_rx_complete(dev, napi);
2880 /*Re Enable MSI-Rx Vector*/
2881 addr = (u8 *)&bar0->xmsi_mask_reg;
2882 addr += 7 - ring->ring_no;
2883 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2884 writeb(val8, addr);
2885 val8 = readb(addr);
1da177e4 2886 }
f61e0a35
SH
2887 return pkts_processed;
2888}
2889static int s2io_poll_inta(struct napi_struct *napi, int budget)
2890{
2891 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2892 struct ring_info *ring;
2893 struct net_device *dev = nic->dev;
2894 struct config_param *config;
2895 struct mac_info *mac_control;
2896 int pkts_processed = 0;
2897 int ring_pkts_processed, i;
2898 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2899 int budget_org = budget;
1da177e4 2900
f61e0a35
SH
2901 config = &nic->config;
2902 mac_control = &nic->mac_control;
1da177e4 2903
f61e0a35
SH
2904 if (unlikely(!is_s2io_card_up(nic)))
2905 return 0;
1da177e4 2906
1da177e4 2907 for (i = 0; i < config->rx_ring_num; i++) {
f61e0a35
SH
2908 ring = &mac_control->rings[i];
2909 ring_pkts_processed = rx_intr_handler(ring, budget);
2910 s2io_chk_rx_buffers(ring);
2911 pkts_processed += ring_pkts_processed;
2912 budget -= ring_pkts_processed;
2913 if (budget <= 0)
1da177e4 2914 break;
1da177e4 2915 }
f61e0a35
SH
2916 if (pkts_processed < budget_org) {
2917 netif_rx_complete(dev, napi);
2918 /* Re enable the Rx interrupts for the ring */
2919 writeq(0, &bar0->rx_traffic_mask);
2920 readl(&bar0->rx_traffic_mask);
2921 }
2922 return pkts_processed;
1da177e4 2923}
20346722 2924
b41477f3 2925#ifdef CONFIG_NET_POLL_CONTROLLER
612eff0e 2926/**
b41477f3 2927 * s2io_netpoll - netpoll event handler entry point
612eff0e
BH
2928 * @dev : pointer to the device structure.
2929 * Description:
b41477f3
AR
2930 * This function will be called by upper layer to check for events on the
2931 * interface in situations where interrupts are disabled. It is used for
2932 * specific in-kernel networking tasks, such as remote consoles and kernel
2933 * debugging over the network (example netdump in RedHat).
612eff0e 2934 */
612eff0e
BH
2935static void s2io_netpoll(struct net_device *dev)
2936{
1ee6dd77
RB
2937 struct s2io_nic *nic = dev->priv;
2938 struct mac_info *mac_control;
612eff0e 2939 struct config_param *config;
1ee6dd77 2940 struct XENA_dev_config __iomem *bar0 = nic->bar0;
b41477f3 2941 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
612eff0e
BH
2942 int i;
2943
d796fdb7
LV
2944 if (pci_channel_offline(nic->pdev))
2945 return;
2946
612eff0e
BH
2947 disable_irq(dev->irq);
2948
612eff0e
BH
2949 mac_control = &nic->mac_control;
2950 config = &nic->config;
2951
612eff0e 2952 writeq(val64, &bar0->rx_traffic_int);
b41477f3
AR
2953 writeq(val64, &bar0->tx_traffic_int);
2954
6aa20a22 2955 /* we need to free up the transmitted skbufs or else netpoll will
b41477f3
AR
2956 * run out of skbs and will fail and eventually netpoll application such
2957 * as netdump will fail.
2958 */
2959 for (i = 0; i < config->tx_fifo_num; i++)
2960 tx_intr_handler(&mac_control->fifos[i]);
612eff0e 2961
b41477f3 2962 /* check for received packet and indicate up to network */
612eff0e 2963 for (i = 0; i < config->rx_ring_num; i++)
f61e0a35 2964 rx_intr_handler(&mac_control->rings[i], 0);
612eff0e
BH
2965
2966 for (i = 0; i < config->rx_ring_num; i++) {
0425b46a 2967 if (fill_rx_buffers(&mac_control->rings[i]) == -ENOMEM) {
0c61ed5f
RV
2968 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2969 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
612eff0e
BH
2970 break;
2971 }
2972 }
612eff0e
BH
2973 enable_irq(dev->irq);
2974 return;
2975}
2976#endif
2977
20346722 2978/**
1da177e4 2979 * rx_intr_handler - Rx interrupt handler
f61e0a35
SH
2980 * @ring_info: per ring structure.
2981 * @budget: budget for napi processing.
20346722
K
2982 * Description:
2983 * If the interrupt is because of a received frame or if the
1da177e4 2984 * receive ring contains fresh as yet un-processed frames,this function is
20346722
K
2985 * called. It picks out the RxD at which place the last Rx processing had
2986 * stopped and sends the skb to the OSM's Rx handler and then increments
1da177e4
LT
2987 * the offset.
2988 * Return Value:
f61e0a35 2989 * No. of napi packets processed.
1da177e4 2990 */
f61e0a35 2991static int rx_intr_handler(struct ring_info *ring_data, int budget)
1da177e4 2992{
c9fcbf47 2993 int get_block, put_block;
1ee6dd77
RB
2994 struct rx_curr_get_info get_info, put_info;
2995 struct RxD_t *rxdp;
1da177e4 2996 struct sk_buff *skb;
f61e0a35 2997 int pkt_cnt = 0, napi_pkts = 0;
7d3d0439 2998 int i;
6d517a27
VP
2999 struct RxD1* rxdp1;
3000 struct RxD3* rxdp3;
7d3d0439 3001
20346722
K
3002 get_info = ring_data->rx_curr_get_info;
3003 get_block = get_info.block_index;
1ee6dd77 3004 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
20346722 3005 put_block = put_info.block_index;
da6971d8 3006 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
db874e65 3007
da6971d8 3008 while (RXD_IS_UP2DT(rxdp)) {
db874e65
SS
3009 /*
3010 * If your are next to put index then it's
3011 * FIFO full condition
3012 */
da6971d8
AR
3013 if ((get_block == put_block) &&
3014 (get_info.offset + 1) == put_info.offset) {
0425b46a
SH
3015 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
3016 ring_data->dev->name);
da6971d8
AR
3017 break;
3018 }
20346722
K
3019 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
3020 if (skb == NULL) {
3021 DBG_PRINT(ERR_DBG, "%s: The skb is ",
0425b46a 3022 ring_data->dev->name);
20346722 3023 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
f61e0a35 3024 return 0;
1da177e4 3025 }
0425b46a 3026 if (ring_data->rxd_mode == RXD_MODE_1) {
6d517a27 3027 rxdp1 = (struct RxD1*)rxdp;
0425b46a 3028 pci_unmap_single(ring_data->pdev, (dma_addr_t)
6d517a27 3029 rxdp1->Buffer0_ptr,
0425b46a 3030 ring_data->mtu +
6d517a27
VP
3031 HEADER_ETHERNET_II_802_3_SIZE +
3032 HEADER_802_2_SIZE +
3033 HEADER_SNAP_SIZE,
3034 PCI_DMA_FROMDEVICE);
0425b46a 3035 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
6d517a27 3036 rxdp3 = (struct RxD3*)rxdp;
0425b46a 3037 pci_dma_sync_single_for_cpu(ring_data->pdev, (dma_addr_t)
6d517a27
VP
3038 rxdp3->Buffer0_ptr,
3039 BUF0_LEN, PCI_DMA_FROMDEVICE);
0425b46a 3040 pci_unmap_single(ring_data->pdev, (dma_addr_t)
6d517a27 3041 rxdp3->Buffer2_ptr,
0425b46a 3042 ring_data->mtu + 4,
6d517a27 3043 PCI_DMA_FROMDEVICE);
da6971d8 3044 }
863c11a9 3045 prefetch(skb->data);
20346722
K
3046 rx_osm_handler(ring_data, rxdp);
3047 get_info.offset++;
da6971d8
AR
3048 ring_data->rx_curr_get_info.offset = get_info.offset;
3049 rxdp = ring_data->rx_blocks[get_block].
3050 rxds[get_info.offset].virt_addr;
0425b46a 3051 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
20346722 3052 get_info.offset = 0;
da6971d8 3053 ring_data->rx_curr_get_info.offset = get_info.offset;
20346722 3054 get_block++;
da6971d8
AR
3055 if (get_block == ring_data->block_count)
3056 get_block = 0;
3057 ring_data->rx_curr_get_info.block_index = get_block;
20346722
K
3058 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3059 }
1da177e4 3060
f61e0a35
SH
3061 if (ring_data->nic->config.napi) {
3062 budget--;
3063 napi_pkts++;
3064 if (!budget)
0425b46a
SH
3065 break;
3066 }
20346722 3067 pkt_cnt++;
1da177e4
LT
3068 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3069 break;
3070 }
0425b46a 3071 if (ring_data->lro) {
7d3d0439
RA
3072 /* Clear all LRO sessions before exiting */
3073 for (i=0; i<MAX_LRO_SESSIONS; i++) {
0425b46a 3074 struct lro *lro = &ring_data->lro0_n[i];
7d3d0439 3075 if (lro->in_use) {
0425b46a 3076 update_L3L4_header(ring_data->nic, lro);
cdb5bf02 3077 queue_rx_frame(lro->parent, lro->vlan_tag);
7d3d0439
RA
3078 clear_lro_session(lro);
3079 }
3080 }
3081 }
f61e0a35 3082 return(napi_pkts);
1da177e4 3083}
20346722
K
3084
3085/**
1da177e4
LT
3086 * tx_intr_handler - Transmit interrupt handler
3087 * @nic : device private variable
20346722
K
3088 * Description:
3089 * If an interrupt was raised to indicate DMA complete of the
3090 * Tx packet, this function is called. It identifies the last TxD
3091 * whose buffer was freed and frees all skbs whose data have already
1da177e4
LT
3092 * DMA'ed into the NICs internal memory.
3093 * Return Value:
3094 * NONE
3095 */
3096
1ee6dd77 3097static void tx_intr_handler(struct fifo_info *fifo_data)
1da177e4 3098{
1ee6dd77 3099 struct s2io_nic *nic = fifo_data->nic;
1ee6dd77 3100 struct tx_curr_get_info get_info, put_info;
3a3d5756 3101 struct sk_buff *skb = NULL;
1ee6dd77 3102 struct TxD *txdlp;
3a3d5756 3103 int pkt_cnt = 0;
2fda096d 3104 unsigned long flags = 0;
f9046eb3 3105 u8 err_mask;
1da177e4 3106
2fda096d
SR
3107 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3108 return;
3109
20346722 3110 get_info = fifo_data->tx_curr_get_info;
1ee6dd77
RB
3111 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3112 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
20346722
K
3113 list_virt_addr;
3114 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3115 (get_info.offset != put_info.offset) &&
3116 (txdlp->Host_Control)) {
3117 /* Check for TxD errors */
3118 if (txdlp->Control_1 & TXD_T_CODE) {
3119 unsigned long long err;
3120 err = txdlp->Control_1 & TXD_T_CODE;
bd1034f0
AR
3121 if (err & 0x1) {
3122 nic->mac_control.stats_info->sw_stat.
3123 parity_err_cnt++;
3124 }
491976b2
SH
3125
3126 /* update t_code statistics */
f9046eb3
OH
3127 err_mask = err >> 48;
3128 switch(err_mask) {
491976b2
SH
3129 case 2:
3130 nic->mac_control.stats_info->sw_stat.
3131 tx_buf_abort_cnt++;
3132 break;
3133
3134 case 3:
3135 nic->mac_control.stats_info->sw_stat.
3136 tx_desc_abort_cnt++;
3137 break;
3138
3139 case 7:
3140 nic->mac_control.stats_info->sw_stat.
3141 tx_parity_err_cnt++;
3142 break;
3143
3144 case 10:
3145 nic->mac_control.stats_info->sw_stat.
3146 tx_link_loss_cnt++;
3147 break;
3148
3149 case 15:
3150 nic->mac_control.stats_info->sw_stat.
3151 tx_list_proc_err_cnt++;
3152 break;
3153 }
20346722 3154 }
1da177e4 3155
fed5eccd 3156 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
20346722 3157 if (skb == NULL) {
2fda096d 3158 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
20346722
K
3159 DBG_PRINT(ERR_DBG, "%s: Null skb ",
3160 __FUNCTION__);
3161 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
3162 return;
3163 }
3a3d5756 3164 pkt_cnt++;
20346722 3165
20346722 3166 /* Updating the statistics block */
20346722 3167 nic->stats.tx_bytes += skb->len;
491976b2 3168 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
20346722
K
3169 dev_kfree_skb_irq(skb);
3170
3171 get_info.offset++;
863c11a9
AR
3172 if (get_info.offset == get_info.fifo_len + 1)
3173 get_info.offset = 0;
1ee6dd77 3174 txdlp = (struct TxD *) fifo_data->list_info
20346722
K
3175 [get_info.offset].list_virt_addr;
3176 fifo_data->tx_curr_get_info.offset =
3177 get_info.offset;
1da177e4
LT
3178 }
3179
3a3d5756 3180 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
2fda096d
SR
3181
3182 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
1da177e4
LT
3183}
3184
bd1034f0
AR
3185/**
3186 * s2io_mdio_write - Function to write in to MDIO registers
3187 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3188 * @addr : address value
3189 * @value : data value
3190 * @dev : pointer to net_device structure
3191 * Description:
3192 * This function is used to write values to the MDIO registers
3193 * NONE
3194 */
3195static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3196{
3197 u64 val64 = 0x0;
1ee6dd77
RB
3198 struct s2io_nic *sp = dev->priv;
3199 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0
AR
3200
3201 //address transaction
3202 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3203 | MDIO_MMD_DEV_ADDR(mmd_type)
3204 | MDIO_MMS_PRT_ADDR(0x0);
3205 writeq(val64, &bar0->mdio_control);
3206 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3207 writeq(val64, &bar0->mdio_control);
3208 udelay(100);
3209
3210 //Data transaction
3211 val64 = 0x0;
3212 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3213 | MDIO_MMD_DEV_ADDR(mmd_type)
3214 | MDIO_MMS_PRT_ADDR(0x0)
3215 | MDIO_MDIO_DATA(value)
3216 | MDIO_OP(MDIO_OP_WRITE_TRANS);
3217 writeq(val64, &bar0->mdio_control);
3218 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3219 writeq(val64, &bar0->mdio_control);
3220 udelay(100);
3221
3222 val64 = 0x0;
3223 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3224 | MDIO_MMD_DEV_ADDR(mmd_type)
3225 | MDIO_MMS_PRT_ADDR(0x0)
3226 | MDIO_OP(MDIO_OP_READ_TRANS);
3227 writeq(val64, &bar0->mdio_control);
3228 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3229 writeq(val64, &bar0->mdio_control);
3230 udelay(100);
3231
3232}
3233
3234/**
3235 * s2io_mdio_read - Function to write in to MDIO registers
3236 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3237 * @addr : address value
3238 * @dev : pointer to net_device structure
3239 * Description:
3240 * This function is used to read values to the MDIO registers
3241 * NONE
3242 */
3243static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3244{
3245 u64 val64 = 0x0;
3246 u64 rval64 = 0x0;
1ee6dd77
RB
3247 struct s2io_nic *sp = dev->priv;
3248 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0
AR
3249
3250 /* address transaction */
3251 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3252 | MDIO_MMD_DEV_ADDR(mmd_type)
3253 | MDIO_MMS_PRT_ADDR(0x0);
3254 writeq(val64, &bar0->mdio_control);
3255 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3256 writeq(val64, &bar0->mdio_control);
3257 udelay(100);
3258
3259 /* Data transaction */
3260 val64 = 0x0;
3261 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3262 | MDIO_MMD_DEV_ADDR(mmd_type)
3263 | MDIO_MMS_PRT_ADDR(0x0)
3264 | MDIO_OP(MDIO_OP_READ_TRANS);
3265 writeq(val64, &bar0->mdio_control);
3266 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3267 writeq(val64, &bar0->mdio_control);
3268 udelay(100);
3269
3270 /* Read the value from regs */
3271 rval64 = readq(&bar0->mdio_control);
3272 rval64 = rval64 & 0xFFFF0000;
3273 rval64 = rval64 >> 16;
3274 return rval64;
3275}
3276/**
3277 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3278 * @counter : couter value to be updated
3279 * @flag : flag to indicate the status
3280 * @type : counter type
3281 * Description:
3282 * This function is to check the status of the xpak counters value
3283 * NONE
3284 */
3285
3286static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3287{
3288 u64 mask = 0x3;
3289 u64 val64;
3290 int i;
3291 for(i = 0; i <index; i++)
3292 mask = mask << 0x2;
3293
3294 if(flag > 0)
3295 {
3296 *counter = *counter + 1;
3297 val64 = *regs_stat & mask;
3298 val64 = val64 >> (index * 0x2);
3299 val64 = val64 + 1;
3300 if(val64 == 3)
3301 {
3302 switch(type)
3303 {
3304 case 1:
3305 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3306 "service. Excessive temperatures may "
3307 "result in premature transceiver "
3308 "failure \n");
3309 break;
3310 case 2:
3311 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3312 "service Excessive bias currents may "
3313 "indicate imminent laser diode "
3314 "failure \n");
3315 break;
3316 case 3:
3317 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3318 "service Excessive laser output "
3319 "power may saturate far-end "
3320 "receiver\n");
3321 break;
3322 default:
3323 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3324 "type \n");
3325 }
3326 val64 = 0x0;
3327 }
3328 val64 = val64 << (index * 0x2);
3329 *regs_stat = (*regs_stat & (~mask)) | (val64);
3330
3331 } else {
3332 *regs_stat = *regs_stat & (~mask);
3333 }
3334}
3335
3336/**
3337 * s2io_updt_xpak_counter - Function to update the xpak counters
3338 * @dev : pointer to net_device struct
3339 * Description:
3340 * This function is to upate the status of the xpak counters value
3341 * NONE
3342 */
3343static void s2io_updt_xpak_counter(struct net_device *dev)
3344{
3345 u16 flag = 0x0;
3346 u16 type = 0x0;
3347 u16 val16 = 0x0;
3348 u64 val64 = 0x0;
3349 u64 addr = 0x0;
3350
1ee6dd77
RB
3351 struct s2io_nic *sp = dev->priv;
3352 struct stat_block *stat_info = sp->mac_control.stats_info;
bd1034f0
AR
3353
3354 /* Check the communication with the MDIO slave */
3355 addr = 0x0000;
3356 val64 = 0x0;
3357 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3358 if((val64 == 0xFFFF) || (val64 == 0x0000))
3359 {
3360 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3361 "Returned %llx\n", (unsigned long long)val64);
3362 return;
3363 }
3364
3365 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3366 if(val64 != 0x2040)
3367 {
3368 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3369 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3370 (unsigned long long)val64);
3371 return;
3372 }
3373
3374 /* Loading the DOM register to MDIO register */
3375 addr = 0xA100;
3376 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3377 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3378
3379 /* Reading the Alarm flags */
3380 addr = 0xA070;
3381 val64 = 0x0;
3382 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3383
3384 flag = CHECKBIT(val64, 0x7);
3385 type = 1;
3386 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3387 &stat_info->xpak_stat.xpak_regs_stat,
3388 0x0, flag, type);
3389
3390 if(CHECKBIT(val64, 0x6))
3391 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3392
3393 flag = CHECKBIT(val64, 0x3);
3394 type = 2;
3395 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3396 &stat_info->xpak_stat.xpak_regs_stat,
3397 0x2, flag, type);
3398
3399 if(CHECKBIT(val64, 0x2))
3400 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3401
3402 flag = CHECKBIT(val64, 0x1);
3403 type = 3;
3404 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3405 &stat_info->xpak_stat.xpak_regs_stat,
3406 0x4, flag, type);
3407
3408 if(CHECKBIT(val64, 0x0))
3409 stat_info->xpak_stat.alarm_laser_output_power_low++;
3410
3411 /* Reading the Warning flags */
3412 addr = 0xA074;
3413 val64 = 0x0;
3414 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3415
3416 if(CHECKBIT(val64, 0x7))
3417 stat_info->xpak_stat.warn_transceiver_temp_high++;
3418
3419 if(CHECKBIT(val64, 0x6))
3420 stat_info->xpak_stat.warn_transceiver_temp_low++;
3421
3422 if(CHECKBIT(val64, 0x3))
3423 stat_info->xpak_stat.warn_laser_bias_current_high++;
3424
3425 if(CHECKBIT(val64, 0x2))
3426 stat_info->xpak_stat.warn_laser_bias_current_low++;
3427
3428 if(CHECKBIT(val64, 0x1))
3429 stat_info->xpak_stat.warn_laser_output_power_high++;
3430
3431 if(CHECKBIT(val64, 0x0))
3432 stat_info->xpak_stat.warn_laser_output_power_low++;
3433}
3434
20346722 3435/**
1da177e4 3436 * wait_for_cmd_complete - waits for a command to complete.
20346722 3437 * @sp : private member of the device structure, which is a pointer to the
1da177e4 3438 * s2io_nic structure.
20346722
K
3439 * Description: Function that waits for a command to Write into RMAC
3440 * ADDR DATA registers to be completed and returns either success or
3441 * error depending on whether the command was complete or not.
1da177e4
LT
3442 * Return value:
3443 * SUCCESS on success and FAILURE on failure.
3444 */
3445
9fc93a41
SS
3446static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3447 int bit_state)
1da177e4 3448{
9fc93a41 3449 int ret = FAILURE, cnt = 0, delay = 1;
1da177e4
LT
3450 u64 val64;
3451
9fc93a41
SS
3452 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3453 return FAILURE;
3454
3455 do {
c92ca04b 3456 val64 = readq(addr);
9fc93a41
SS
3457 if (bit_state == S2IO_BIT_RESET) {
3458 if (!(val64 & busy_bit)) {
3459 ret = SUCCESS;
3460 break;
3461 }
3462 } else {
3463 if (!(val64 & busy_bit)) {
3464 ret = SUCCESS;
3465 break;
3466 }
1da177e4 3467 }
c92ca04b
AR
3468
3469 if(in_interrupt())
9fc93a41 3470 mdelay(delay);
c92ca04b 3471 else
9fc93a41 3472 msleep(delay);
c92ca04b 3473
9fc93a41
SS
3474 if (++cnt >= 10)
3475 delay = 50;
3476 } while (cnt < 20);
1da177e4
LT
3477 return ret;
3478}
19a60522
SS
3479/*
3480 * check_pci_device_id - Checks if the device id is supported
3481 * @id : device id
3482 * Description: Function to check if the pci device id is supported by driver.
3483 * Return value: Actual device id if supported else PCI_ANY_ID
3484 */
3485static u16 check_pci_device_id(u16 id)
3486{
3487 switch (id) {
3488 case PCI_DEVICE_ID_HERC_WIN:
3489 case PCI_DEVICE_ID_HERC_UNI:
3490 return XFRAME_II_DEVICE;
3491 case PCI_DEVICE_ID_S2IO_UNI:
3492 case PCI_DEVICE_ID_S2IO_WIN:
3493 return XFRAME_I_DEVICE;
3494 default:
3495 return PCI_ANY_ID;
3496 }
3497}
1da177e4 3498
20346722
K
3499/**
3500 * s2io_reset - Resets the card.
1da177e4
LT
3501 * @sp : private member of the device structure.
3502 * Description: Function to Reset the card. This function then also
20346722 3503 * restores the previously saved PCI configuration space registers as
1da177e4
LT
3504 * the card reset also resets the configuration space.
3505 * Return value:
3506 * void.
3507 */
3508
1ee6dd77 3509static void s2io_reset(struct s2io_nic * sp)
1da177e4 3510{
1ee6dd77 3511 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 3512 u64 val64;
5e25b9dd 3513 u16 subid, pci_cmd;
19a60522
SS
3514 int i;
3515 u16 val16;
491976b2
SH
3516 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3517 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3518
19a60522
SS
3519 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3520 __FUNCTION__, sp->dev->name);
1da177e4 3521
0b1f7ebe 3522 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
e960fc5c 3523 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
0b1f7ebe 3524
1da177e4
LT
3525 val64 = SW_RESET_ALL;
3526 writeq(val64, &bar0->sw_reset);
c92ca04b
AR
3527 if (strstr(sp->product_name, "CX4")) {
3528 msleep(750);
3529 }
19a60522
SS
3530 msleep(250);
3531 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
1da177e4 3532
19a60522
SS
3533 /* Restore the PCI state saved during initialization. */
3534 pci_restore_state(sp->pdev);
3535 pci_read_config_word(sp->pdev, 0x2, &val16);
3536 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3537 break;
3538 msleep(200);
3539 }
1da177e4 3540
19a60522
SS
3541 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3542 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3543 }
3544
3545 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3546
3547 s2io_init_pci(sp);
1da177e4 3548
20346722
K
3549 /* Set swapper to enable I/O register access */
3550 s2io_set_swapper(sp);
3551
faa4f796
SH
3552 /* restore mac_addr entries */
3553 do_s2io_restore_unicast_mc(sp);
3554
cc6e7c44
RA
3555 /* Restore the MSIX table entries from local variables */
3556 restore_xmsi_data(sp);
3557
5e25b9dd 3558 /* Clear certain PCI/PCI-X fields after reset */
303bcb4b 3559 if (sp->device_type == XFRAME_II_DEVICE) {
b41477f3 3560 /* Clear "detected parity error" bit */
303bcb4b 3561 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
5e25b9dd 3562
303bcb4b
K
3563 /* Clearing PCIX Ecc status register */
3564 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
5e25b9dd 3565
303bcb4b 3566 /* Clearing PCI_STATUS error reflected here */
b7b5a128 3567 writeq(s2BIT(62), &bar0->txpic_int_reg);
303bcb4b 3568 }
5e25b9dd 3569
20346722
K
3570 /* Reset device statistics maintained by OS */
3571 memset(&sp->stats, 0, sizeof (struct net_device_stats));
8a4bdbaa 3572
491976b2
SH
3573 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3574 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3575 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3576 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
363dc367 3577 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
491976b2
SH
3578 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3579 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3580 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3581 /* save link up/down time/cnt, reset/memory/watchdog cnt */
363dc367 3582 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
491976b2
SH
3583 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3584 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3585 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3586 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3587 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
363dc367 3588 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
491976b2
SH
3589 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3590 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3591 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
20346722 3592
1da177e4
LT
3593 /* SXE-002: Configure link and activity LED to turn it off */
3594 subid = sp->pdev->subsystem_device;
541ae68f
K
3595 if (((subid & 0xFF) >= 0x07) &&
3596 (sp->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
3597 val64 = readq(&bar0->gpio_control);
3598 val64 |= 0x0000800000000000ULL;
3599 writeq(val64, &bar0->gpio_control);
3600 val64 = 0x0411040400000000ULL;
509a2671 3601 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
3602 }
3603
541ae68f
K
3604 /*
3605 * Clear spurious ECC interrupts that would have occured on
3606 * XFRAME II cards after reset.
3607 */
3608 if (sp->device_type == XFRAME_II_DEVICE) {
3609 val64 = readq(&bar0->pcc_err_reg);
3610 writeq(val64, &bar0->pcc_err_reg);
3611 }
3612
1da177e4
LT
3613 sp->device_enabled_once = FALSE;
3614}
3615
3616/**
20346722
K
3617 * s2io_set_swapper - to set the swapper controle on the card
3618 * @sp : private member of the device structure,
1da177e4 3619 * pointer to the s2io_nic structure.
20346722 3620 * Description: Function to set the swapper control on the card
1da177e4
LT
3621 * correctly depending on the 'endianness' of the system.
3622 * Return value:
3623 * SUCCESS on success and FAILURE on failure.
3624 */
3625
1ee6dd77 3626static int s2io_set_swapper(struct s2io_nic * sp)
1da177e4
LT
3627{
3628 struct net_device *dev = sp->dev;
1ee6dd77 3629 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
3630 u64 val64, valt, valr;
3631
20346722 3632 /*
1da177e4
LT
3633 * Set proper endian settings and verify the same by reading
3634 * the PIF Feed-back register.
3635 */
3636
3637 val64 = readq(&bar0->pif_rd_swapper_fb);
3638 if (val64 != 0x0123456789ABCDEFULL) {
3639 int i = 0;
3640 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3641 0x8100008181000081ULL, /* FE=1, SE=0 */
3642 0x4200004242000042ULL, /* FE=0, SE=1 */
3643 0}; /* FE=0, SE=0 */
3644
3645 while(i<4) {
3646 writeq(value[i], &bar0->swapper_ctrl);
3647 val64 = readq(&bar0->pif_rd_swapper_fb);
3648 if (val64 == 0x0123456789ABCDEFULL)
3649 break;
3650 i++;
3651 }
3652 if (i == 4) {
3653 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3654 dev->name);
3655 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3656 (unsigned long long) val64);
3657 return FAILURE;
3658 }
3659 valr = value[i];
3660 } else {
3661 valr = readq(&bar0->swapper_ctrl);
3662 }
3663
3664 valt = 0x0123456789ABCDEFULL;
3665 writeq(valt, &bar0->xmsi_address);
3666 val64 = readq(&bar0->xmsi_address);
3667
3668 if(val64 != valt) {
3669 int i = 0;
3670 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3671 0x0081810000818100ULL, /* FE=1, SE=0 */
3672 0x0042420000424200ULL, /* FE=0, SE=1 */
3673 0}; /* FE=0, SE=0 */
3674
3675 while(i<4) {
3676 writeq((value[i] | valr), &bar0->swapper_ctrl);
3677 writeq(valt, &bar0->xmsi_address);
3678 val64 = readq(&bar0->xmsi_address);
3679 if(val64 == valt)
3680 break;
3681 i++;
3682 }
3683 if(i == 4) {
20346722 3684 unsigned long long x = val64;
1da177e4 3685 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
20346722 3686 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
1da177e4
LT
3687 return FAILURE;
3688 }
3689 }
3690 val64 = readq(&bar0->swapper_ctrl);
3691 val64 &= 0xFFFF000000000000ULL;
3692
3693#ifdef __BIG_ENDIAN
20346722
K
3694 /*
3695 * The device by default set to a big endian format, so a
1da177e4
LT
3696 * big endian driver need not set anything.
3697 */
3698 val64 |= (SWAPPER_CTRL_TXP_FE |
3699 SWAPPER_CTRL_TXP_SE |
3700 SWAPPER_CTRL_TXD_R_FE |
3701 SWAPPER_CTRL_TXD_W_FE |
3702 SWAPPER_CTRL_TXF_R_FE |
3703 SWAPPER_CTRL_RXD_R_FE |
3704 SWAPPER_CTRL_RXD_W_FE |
3705 SWAPPER_CTRL_RXF_W_FE |
3706 SWAPPER_CTRL_XMSI_FE |
1da177e4 3707 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
eaae7f72 3708 if (sp->config.intr_type == INTA)
cc6e7c44 3709 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3710 writeq(val64, &bar0->swapper_ctrl);
3711#else
20346722 3712 /*
1da177e4 3713 * Initially we enable all bits to make it accessible by the
20346722 3714 * driver, then we selectively enable only those bits that
1da177e4
LT
3715 * we want to set.
3716 */
3717 val64 |= (SWAPPER_CTRL_TXP_FE |
3718 SWAPPER_CTRL_TXP_SE |
3719 SWAPPER_CTRL_TXD_R_FE |
3720 SWAPPER_CTRL_TXD_R_SE |
3721 SWAPPER_CTRL_TXD_W_FE |
3722 SWAPPER_CTRL_TXD_W_SE |
3723 SWAPPER_CTRL_TXF_R_FE |
3724 SWAPPER_CTRL_RXD_R_FE |
3725 SWAPPER_CTRL_RXD_R_SE |
3726 SWAPPER_CTRL_RXD_W_FE |
3727 SWAPPER_CTRL_RXD_W_SE |
3728 SWAPPER_CTRL_RXF_W_FE |
3729 SWAPPER_CTRL_XMSI_FE |
1da177e4 3730 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
eaae7f72 3731 if (sp->config.intr_type == INTA)
cc6e7c44 3732 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3733 writeq(val64, &bar0->swapper_ctrl);
3734#endif
3735 val64 = readq(&bar0->swapper_ctrl);
3736
20346722
K
3737 /*
3738 * Verifying if endian settings are accurate by reading a
1da177e4
LT
3739 * feedback register.
3740 */
3741 val64 = readq(&bar0->pif_rd_swapper_fb);
3742 if (val64 != 0x0123456789ABCDEFULL) {
3743 /* Endian settings are incorrect, calls for another dekko. */
3744 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3745 dev->name);
3746 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3747 (unsigned long long) val64);
3748 return FAILURE;
3749 }
3750
3751 return SUCCESS;
3752}
3753
1ee6dd77 3754static int wait_for_msix_trans(struct s2io_nic *nic, int i)
cc6e7c44 3755{
1ee6dd77 3756 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3757 u64 val64;
3758 int ret = 0, cnt = 0;
3759
3760 do {
3761 val64 = readq(&bar0->xmsi_access);
b7b5a128 3762 if (!(val64 & s2BIT(15)))
cc6e7c44
RA
3763 break;
3764 mdelay(1);
3765 cnt++;
3766 } while(cnt < 5);
3767 if (cnt == 5) {
3768 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3769 ret = 1;
3770 }
3771
3772 return ret;
3773}
3774
1ee6dd77 3775static void restore_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3776{
1ee6dd77 3777 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44 3778 u64 val64;
f61e0a35
SH
3779 int i, msix_index;
3780
3781
3782 if (nic->device_type == XFRAME_I_DEVICE)
3783 return;
cc6e7c44 3784
75c30b13 3785 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
f61e0a35 3786 msix_index = (i) ? ((i-1) * 8 + 1): 0;
cc6e7c44
RA
3787 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3788 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
f61e0a35 3789 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
cc6e7c44 3790 writeq(val64, &bar0->xmsi_access);
f61e0a35 3791 if (wait_for_msix_trans(nic, msix_index)) {
cc6e7c44
RA
3792 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3793 continue;
3794 }
3795 }
3796}
3797
1ee6dd77 3798static void store_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3799{
1ee6dd77 3800 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44 3801 u64 val64, addr, data;
f61e0a35
SH
3802 int i, msix_index;
3803
3804 if (nic->device_type == XFRAME_I_DEVICE)
3805 return;
cc6e7c44
RA
3806
3807 /* Store and display */
75c30b13 3808 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
f61e0a35
SH
3809 msix_index = (i) ? ((i-1) * 8 + 1): 0;
3810 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
cc6e7c44 3811 writeq(val64, &bar0->xmsi_access);
f61e0a35 3812 if (wait_for_msix_trans(nic, msix_index)) {
cc6e7c44
RA
3813 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3814 continue;
3815 }
3816 addr = readq(&bar0->xmsi_address);
3817 data = readq(&bar0->xmsi_data);
3818 if (addr && data) {
3819 nic->msix_info[i].addr = addr;
3820 nic->msix_info[i].data = data;
3821 }
3822 }
3823}
3824
1ee6dd77 3825static int s2io_enable_msi_x(struct s2io_nic *nic)
cc6e7c44 3826{
1ee6dd77 3827 struct XENA_dev_config __iomem *bar0 = nic->bar0;
ac731ab6 3828 u64 rx_mat;
cc6e7c44
RA
3829 u16 msi_control; /* Temp variable */
3830 int ret, i, j, msix_indx = 1;
3831
f61e0a35 3832 nic->entries = kmalloc(nic->num_entries * sizeof(struct msix_entry),
cc6e7c44 3833 GFP_KERNEL);
bd684e43 3834 if (!nic->entries) {
491976b2
SH
3835 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3836 __FUNCTION__);
c53d4945 3837 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
cc6e7c44
RA
3838 return -ENOMEM;
3839 }
8a4bdbaa 3840 nic->mac_control.stats_info->sw_stat.mem_allocated
f61e0a35
SH
3841 += (nic->num_entries * sizeof(struct msix_entry));
3842
3843 memset(nic->entries, 0, nic->num_entries * sizeof(struct msix_entry));
cc6e7c44
RA
3844
3845 nic->s2io_entries =
f61e0a35 3846 kmalloc(nic->num_entries * sizeof(struct s2io_msix_entry),
cc6e7c44 3847 GFP_KERNEL);
bd684e43 3848 if (!nic->s2io_entries) {
8a4bdbaa 3849 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
491976b2 3850 __FUNCTION__);
c53d4945 3851 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
cc6e7c44 3852 kfree(nic->entries);
8a4bdbaa 3853 nic->mac_control.stats_info->sw_stat.mem_freed
f61e0a35 3854 += (nic->num_entries * sizeof(struct msix_entry));
cc6e7c44
RA
3855 return -ENOMEM;
3856 }
8a4bdbaa 3857 nic->mac_control.stats_info->sw_stat.mem_allocated
f61e0a35
SH
3858 += (nic->num_entries * sizeof(struct s2io_msix_entry));
3859 memset(nic->s2io_entries, 0,
3860 nic->num_entries * sizeof(struct s2io_msix_entry));
cc6e7c44 3861
ac731ab6
SH
3862 nic->entries[0].entry = 0;
3863 nic->s2io_entries[0].entry = 0;
3864 nic->s2io_entries[0].in_use = MSIX_FLG;
3865 nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3866 nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3867
f61e0a35
SH
3868 for (i = 1; i < nic->num_entries; i++) {
3869 nic->entries[i].entry = ((i - 1) * 8) + 1;
3870 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
cc6e7c44
RA
3871 nic->s2io_entries[i].arg = NULL;
3872 nic->s2io_entries[i].in_use = 0;
3873 }
3874
8a4bdbaa 3875 rx_mat = readq(&bar0->rx_mat);
f61e0a35 3876 for (j = 0; j < nic->config.rx_ring_num; j++) {
8a4bdbaa 3877 rx_mat |= RX_MAT_SET(j, msix_indx);
f61e0a35
SH
3878 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3879 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3880 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3881 msix_indx += 8;
cc6e7c44 3882 }
8a4bdbaa 3883 writeq(rx_mat, &bar0->rx_mat);
f61e0a35 3884 readq(&bar0->rx_mat);
cc6e7c44 3885
f61e0a35 3886 ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
c92ca04b 3887 /* We fail init if error or we get less vectors than min required */
cc6e7c44
RA
3888 if (ret) {
3889 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3890 kfree(nic->entries);
8a4bdbaa 3891 nic->mac_control.stats_info->sw_stat.mem_freed
f61e0a35 3892 += (nic->num_entries * sizeof(struct msix_entry));
cc6e7c44 3893 kfree(nic->s2io_entries);
8a4bdbaa 3894 nic->mac_control.stats_info->sw_stat.mem_freed
f61e0a35 3895 += (nic->num_entries * sizeof(struct s2io_msix_entry));
cc6e7c44
RA
3896 nic->entries = NULL;
3897 nic->s2io_entries = NULL;
3898 return -ENOMEM;
3899 }
3900
3901 /*
3902 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3903 * in the herc NIC. (Temp change, needs to be removed later)
3904 */
3905 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3906 msi_control |= 0x1; /* Enable MSI */
3907 pci_write_config_word(nic->pdev, 0x42, msi_control);
3908
3909 return 0;
3910}
3911
8abc4d5b 3912/* Handle software interrupt used during MSI(X) test */
33390a70 3913static irqreturn_t s2io_test_intr(int irq, void *dev_id)
8abc4d5b
SS
3914{
3915 struct s2io_nic *sp = dev_id;
3916
3917 sp->msi_detected = 1;
3918 wake_up(&sp->msi_wait);
3919
3920 return IRQ_HANDLED;
3921}
3922
3923/* Test interrupt path by forcing a a software IRQ */
33390a70 3924static int s2io_test_msi(struct s2io_nic *sp)
8abc4d5b
SS
3925{
3926 struct pci_dev *pdev = sp->pdev;
3927 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3928 int err;
3929 u64 val64, saved64;
3930
3931 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3932 sp->name, sp);
3933 if (err) {
3934 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3935 sp->dev->name, pci_name(pdev), pdev->irq);
3936 return err;
3937 }
3938
3939 init_waitqueue_head (&sp->msi_wait);
3940 sp->msi_detected = 0;
3941
3942 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3943 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3944 val64 |= SCHED_INT_CTRL_TIMER_EN;
3945 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3946 writeq(val64, &bar0->scheduled_int_ctrl);
3947
3948 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3949
3950 if (!sp->msi_detected) {
3951 /* MSI(X) test failed, go back to INTx mode */
2450022a 3952 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
8abc4d5b
SS
3953 "using MSI(X) during test\n", sp->dev->name,
3954 pci_name(pdev));
3955
3956 err = -EOPNOTSUPP;
3957 }
3958
3959 free_irq(sp->entries[1].vector, sp);
3960
3961 writeq(saved64, &bar0->scheduled_int_ctrl);
3962
3963 return err;
3964}
18b2b7bd
SH
3965
3966static void remove_msix_isr(struct s2io_nic *sp)
3967{
3968 int i;
3969 u16 msi_control;
3970
f61e0a35 3971 for (i = 0; i < sp->num_entries; i++) {
18b2b7bd
SH
3972 if (sp->s2io_entries[i].in_use ==
3973 MSIX_REGISTERED_SUCCESS) {
3974 int vector = sp->entries[i].vector;
3975 void *arg = sp->s2io_entries[i].arg;
3976 free_irq(vector, arg);
3977 }
3978 }
3979
3980 kfree(sp->entries);
3981 kfree(sp->s2io_entries);
3982 sp->entries = NULL;
3983 sp->s2io_entries = NULL;
3984
3985 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3986 msi_control &= 0xFFFE; /* Disable MSI */
3987 pci_write_config_word(sp->pdev, 0x42, msi_control);
3988
3989 pci_disable_msix(sp->pdev);
3990}
3991
3992static void remove_inta_isr(struct s2io_nic *sp)
3993{
3994 struct net_device *dev = sp->dev;
3995
3996 free_irq(sp->pdev->irq, dev);
3997}
3998
1da177e4
LT
3999/* ********************************************************* *
4000 * Functions defined below concern the OS part of the driver *
4001 * ********************************************************* */
4002
20346722 4003/**
1da177e4
LT
4004 * s2io_open - open entry point of the driver
4005 * @dev : pointer to the device structure.
4006 * Description:
4007 * This function is the open entry point of the driver. It mainly calls a
4008 * function to allocate Rx buffers and inserts them into the buffer
20346722 4009 * descriptors and then enables the Rx part of the NIC.
1da177e4
LT
4010 * Return value:
4011 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4012 * file on failure.
4013 */
4014
ac1f60db 4015static int s2io_open(struct net_device *dev)
1da177e4 4016{
1ee6dd77 4017 struct s2io_nic *sp = dev->priv;
1da177e4
LT
4018 int err = 0;
4019
20346722
K
4020 /*
4021 * Make sure you have link off by default every time
1da177e4
LT
4022 * Nic is initialized
4023 */
4024 netif_carrier_off(dev);
0b1f7ebe 4025 sp->last_link_state = 0;
1da177e4
LT
4026
4027 /* Initialize H/W and enable interrupts */
c92ca04b
AR
4028 err = s2io_card_up(sp);
4029 if (err) {
1da177e4
LT
4030 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
4031 dev->name);
e6a8fee2 4032 goto hw_init_failed;
1da177e4
LT
4033 }
4034
2fd37688 4035 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
1da177e4 4036 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
e6a8fee2 4037 s2io_card_down(sp);
20346722 4038 err = -ENODEV;
e6a8fee2 4039 goto hw_init_failed;
1da177e4 4040 }
3a3d5756 4041 s2io_start_all_tx_queue(sp);
1da177e4 4042 return 0;
20346722 4043
20346722 4044hw_init_failed:
eaae7f72 4045 if (sp->config.intr_type == MSI_X) {
491976b2 4046 if (sp->entries) {
cc6e7c44 4047 kfree(sp->entries);
8a4bdbaa 4048 sp->mac_control.stats_info->sw_stat.mem_freed
f61e0a35 4049 += (sp->num_entries * sizeof(struct msix_entry));
491976b2
SH
4050 }
4051 if (sp->s2io_entries) {
cc6e7c44 4052 kfree(sp->s2io_entries);
8a4bdbaa 4053 sp->mac_control.stats_info->sw_stat.mem_freed
f61e0a35 4054 += (sp->num_entries * sizeof(struct s2io_msix_entry));
491976b2 4055 }
cc6e7c44 4056 }
20346722 4057 return err;
1da177e4
LT
4058}
4059
4060/**
4061 * s2io_close -close entry point of the driver
4062 * @dev : device pointer.
4063 * Description:
4064 * This is the stop entry point of the driver. It needs to undo exactly
4065 * whatever was done by the open entry point,thus it's usually referred to
4066 * as the close function.Among other things this function mainly stops the
4067 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4068 * Return value:
4069 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4070 * file on failure.
4071 */
4072
ac1f60db 4073static int s2io_close(struct net_device *dev)
1da177e4 4074{
1ee6dd77 4075 struct s2io_nic *sp = dev->priv;
faa4f796
SH
4076 struct config_param *config = &sp->config;
4077 u64 tmp64;
4078 int offset;
cc6e7c44 4079
9f74ffde
SH
4080 /* Return if the device is already closed *
4081 * Can happen when s2io_card_up failed in change_mtu *
4082 */
4083 if (!is_s2io_card_up(sp))
4084 return 0;
4085
3a3d5756 4086 s2io_stop_all_tx_queue(sp);
faa4f796
SH
4087 /* delete all populated mac entries */
4088 for (offset = 1; offset < config->max_mc_addr; offset++) {
4089 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4090 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4091 do_s2io_delete_unicast_mc(sp, tmp64);
4092 }
4093
e6a8fee2 4094 s2io_card_down(sp);
cc6e7c44 4095
1da177e4
LT
4096 return 0;
4097}
4098
4099/**
4100 * s2io_xmit - Tx entry point of te driver
4101 * @skb : the socket buffer containing the Tx data.
4102 * @dev : device pointer.
4103 * Description :
4104 * This function is the Tx entry point of the driver. S2IO NIC supports
4105 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4106 * NOTE: when device cant queue the pkt,just the trans_start variable will
4107 * not be upadted.
4108 * Return value:
4109 * 0 on success & 1 on failure.
4110 */
4111
ac1f60db 4112static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
1da177e4 4113{
1ee6dd77 4114 struct s2io_nic *sp = dev->priv;
1da177e4
LT
4115 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4116 register u64 val64;
1ee6dd77
RB
4117 struct TxD *txdp;
4118 struct TxFIFO_element __iomem *tx_fifo;
2fda096d 4119 unsigned long flags = 0;
be3a6b02 4120 u16 vlan_tag = 0;
2fda096d 4121 struct fifo_info *fifo = NULL;
1ee6dd77 4122 struct mac_info *mac_control;
1da177e4 4123 struct config_param *config;
6cfc482b 4124 int do_spin_lock = 1;
75c30b13 4125 int offload_type;
6cfc482b 4126 int enable_per_list_interrupt = 0;
491abf25 4127 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
1da177e4
LT
4128
4129 mac_control = &sp->mac_control;
4130 config = &sp->config;
4131
20346722 4132 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
491976b2
SH
4133
4134 if (unlikely(skb->len <= 0)) {
4135 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
4136 dev_kfree_skb_any(skb);
4137 return 0;
2fda096d 4138 }
491976b2 4139
92b84437 4140 if (!is_s2io_card_up(sp)) {
20346722 4141 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
1da177e4 4142 dev->name);
20346722
K
4143 dev_kfree_skb(skb);
4144 return 0;
1da177e4
LT
4145 }
4146
4147 queue = 0;
3a3d5756 4148 if (sp->vlgrp && vlan_tx_tag_present(skb))
be3a6b02 4149 vlan_tag = vlan_tx_tag_get(skb);
6cfc482b
SH
4150 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4151 if (skb->protocol == htons(ETH_P_IP)) {
4152 struct iphdr *ip;
4153 struct tcphdr *th;
4154 ip = ip_hdr(skb);
4155
4156 if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4157 th = (struct tcphdr *)(((unsigned char *)ip) +
4158 ip->ihl*4);
4159
4160 if (ip->protocol == IPPROTO_TCP) {
4161 queue_len = sp->total_tcp_fifos;
4162 queue = (ntohs(th->source) +
4163 ntohs(th->dest)) &
4164 sp->fifo_selector[queue_len - 1];
4165 if (queue >= queue_len)
4166 queue = queue_len - 1;
4167 } else if (ip->protocol == IPPROTO_UDP) {
4168 queue_len = sp->total_udp_fifos;
4169 queue = (ntohs(th->source) +
4170 ntohs(th->dest)) &
4171 sp->fifo_selector[queue_len - 1];
4172 if (queue >= queue_len)
4173 queue = queue_len - 1;
4174 queue += sp->udp_fifo_idx;
4175 if (skb->len > 1024)
4176 enable_per_list_interrupt = 1;
4177 do_spin_lock = 0;
4178 }
4179 }
4180 }
4181 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4182 /* get fifo number based on skb->priority value */
4183 queue = config->fifo_mapping
4184 [skb->priority & (MAX_TX_FIFOS - 1)];
4185 fifo = &mac_control->fifos[queue];
3a3d5756 4186
6cfc482b
SH
4187 if (do_spin_lock)
4188 spin_lock_irqsave(&fifo->tx_lock, flags);
4189 else {
4190 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4191 return NETDEV_TX_LOCKED;
4192 }
be3a6b02 4193
3a3d5756
SH
4194#ifdef CONFIG_NETDEVICES_MULTIQUEUE
4195 if (sp->config.multiq) {
4196 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4197 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4198 return NETDEV_TX_BUSY;
4199 }
4200 } else
4201#endif
4202 if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4203 if (netif_queue_stopped(dev)) {
4204 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4205 return NETDEV_TX_BUSY;
4206 }
4207 }
4208
2fda096d
SR
4209 put_off = (u16) fifo->tx_curr_put_info.offset;
4210 get_off = (u16) fifo->tx_curr_get_info.offset;
4211 txdp = (struct TxD *) fifo->list_info[put_off].list_virt_addr;
20346722 4212
2fda096d 4213 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
1da177e4 4214 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9
AR
4215 if (txdp->Host_Control ||
4216 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
776bd20f 4217 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3a3d5756 4218 s2io_stop_tx_queue(sp, fifo->fifo_no);
1da177e4 4219 dev_kfree_skb(skb);
2fda096d 4220 spin_unlock_irqrestore(&fifo->tx_lock, flags);
1da177e4
LT
4221 return 0;
4222 }
0b1f7ebe 4223
75c30b13 4224 offload_type = s2io_offload_type(skb);
75c30b13 4225 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
1da177e4 4226 txdp->Control_1 |= TXD_TCP_LSO_EN;
75c30b13 4227 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
1da177e4 4228 }
84fa7933 4229 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1da177e4
LT
4230 txdp->Control_2 |=
4231 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4232 TXD_TX_CKO_UDP_EN);
4233 }
fed5eccd
AR
4234 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4235 txdp->Control_1 |= TXD_LIST_OWN_XENA;
2fda096d 4236 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
6cfc482b
SH
4237 if (enable_per_list_interrupt)
4238 if (put_off & (queue_len >> 5))
4239 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
3a3d5756 4240 if (vlan_tag) {
be3a6b02
K
4241 txdp->Control_2 |= TXD_VLAN_ENABLE;
4242 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4243 }
4244
fed5eccd 4245 frg_len = skb->len - skb->data_len;
75c30b13 4246 if (offload_type == SKB_GSO_UDP) {
fed5eccd
AR
4247 int ufo_size;
4248
75c30b13 4249 ufo_size = s2io_udp_mss(skb);
fed5eccd
AR
4250 ufo_size &= ~7;
4251 txdp->Control_1 |= TXD_UFO_EN;
4252 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4253 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4254#ifdef __BIG_ENDIAN
3459feb8 4255 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
2fda096d 4256 fifo->ufo_in_band_v[put_off] =
3459feb8 4257 (__force u64)skb_shinfo(skb)->ip6_frag_id;
fed5eccd 4258#else
2fda096d 4259 fifo->ufo_in_band_v[put_off] =
3459feb8 4260 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
fed5eccd 4261#endif
2fda096d 4262 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
fed5eccd 4263 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
2fda096d 4264 fifo->ufo_in_band_v,
fed5eccd 4265 sizeof(u64), PCI_DMA_TODEVICE);
491abf25
VP
4266 if((txdp->Buffer_Pointer == 0) ||
4267 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4268 goto pci_map_failed;
fed5eccd 4269 txdp++;
fed5eccd 4270 }
1da177e4 4271
fed5eccd
AR
4272 txdp->Buffer_Pointer = pci_map_single
4273 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
491abf25
VP
4274 if((txdp->Buffer_Pointer == 0) ||
4275 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4276 goto pci_map_failed;
4277
fed5eccd
AR
4278 txdp->Host_Control = (unsigned long) skb;
4279 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
75c30b13 4280 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4281 txdp->Control_1 |= TXD_UFO_EN;
4282
4283 frg_cnt = skb_shinfo(skb)->nr_frags;
1da177e4
LT
4284 /* For fragmented SKB. */
4285 for (i = 0; i < frg_cnt; i++) {
4286 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
0b1f7ebe
K
4287 /* A '0' length fragment will be ignored */
4288 if (!frag->size)
4289 continue;
1da177e4
LT
4290 txdp++;
4291 txdp->Buffer_Pointer = (u64) pci_map_page
4292 (sp->pdev, frag->page, frag->page_offset,
4293 frag->size, PCI_DMA_TODEVICE);
efd51b5c 4294 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
75c30b13 4295 if (offload_type == SKB_GSO_UDP)
fed5eccd 4296 txdp->Control_1 |= TXD_UFO_EN;
1da177e4
LT
4297 }
4298 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4299
75c30b13 4300 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4301 frg_cnt++; /* as Txd0 was used for inband header */
4302
1da177e4 4303 tx_fifo = mac_control->tx_FIFO_start[queue];
2fda096d 4304 val64 = fifo->list_info[put_off].list_phy_addr;
1da177e4
LT
4305 writeq(val64, &tx_fifo->TxDL_Pointer);
4306
4307 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4308 TX_FIFO_LAST_LIST);
75c30b13 4309 if (offload_type)
fed5eccd 4310 val64 |= TX_FIFO_SPECIAL_FUNC;
75c30b13 4311
1da177e4
LT
4312 writeq(val64, &tx_fifo->List_Control);
4313
303bcb4b
K
4314 mmiowb();
4315
1da177e4 4316 put_off++;
2fda096d 4317 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
863c11a9 4318 put_off = 0;
2fda096d 4319 fifo->tx_curr_put_info.offset = put_off;
1da177e4
LT
4320
4321 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9 4322 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
bd1034f0 4323 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
1da177e4
LT
4324 DBG_PRINT(TX_DBG,
4325 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4326 put_off, get_off);
3a3d5756 4327 s2io_stop_tx_queue(sp, fifo->fifo_no);
1da177e4 4328 }
491976b2 4329 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
1da177e4 4330 dev->trans_start = jiffies;
2fda096d 4331 spin_unlock_irqrestore(&fifo->tx_lock, flags);
1da177e4 4332
f6f4bfa3
SH
4333 if (sp->config.intr_type == MSI_X)
4334 tx_intr_handler(fifo);
4335
491abf25
VP
4336 return 0;
4337pci_map_failed:
4338 stats->pci_map_fail_cnt++;
3a3d5756 4339 s2io_stop_tx_queue(sp, fifo->fifo_no);
491abf25
VP
4340 stats->mem_freed += skb->truesize;
4341 dev_kfree_skb(skb);
2fda096d 4342 spin_unlock_irqrestore(&fifo->tx_lock, flags);
1da177e4
LT
4343 return 0;
4344}
4345
25fff88e
K
4346static void
4347s2io_alarm_handle(unsigned long data)
4348{
1ee6dd77 4349 struct s2io_nic *sp = (struct s2io_nic *)data;
8116f3cf 4350 struct net_device *dev = sp->dev;
25fff88e 4351
8116f3cf 4352 s2io_handle_errors(dev);
25fff88e
K
4353 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4354}
4355
7d12e780 4356static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
cc6e7c44 4357{
1ee6dd77
RB
4358 struct ring_info *ring = (struct ring_info *)dev_id;
4359 struct s2io_nic *sp = ring->nic;
f61e0a35
SH
4360 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4361 struct net_device *dev = sp->dev;
cc6e7c44 4362
f61e0a35 4363 if (unlikely(!is_s2io_card_up(sp)))
92b84437 4364 return IRQ_HANDLED;
92b84437 4365
f61e0a35
SH
4366 if (sp->config.napi) {
4367 u8 *addr = NULL, val8 = 0;
4368
4369 addr = (u8 *)&bar0->xmsi_mask_reg;
4370 addr += (7 - ring->ring_no);
4371 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4372 writeb(val8, addr);
4373 val8 = readb(addr);
4374 netif_rx_schedule(dev, &ring->napi);
4375 } else {
4376 rx_intr_handler(ring, 0);
4377 s2io_chk_rx_buffers(ring);
4378 }
7d3d0439 4379
cc6e7c44
RA
4380 return IRQ_HANDLED;
4381}
4382
7d12e780 4383static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
cc6e7c44 4384{
ac731ab6
SH
4385 int i;
4386 struct fifo_info *fifos = (struct fifo_info *)dev_id;
4387 struct s2io_nic *sp = fifos->nic;
4388 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4389 struct config_param *config = &sp->config;
4390 u64 reason;
cc6e7c44 4391
ac731ab6
SH
4392 if (unlikely(!is_s2io_card_up(sp)))
4393 return IRQ_NONE;
4394
4395 reason = readq(&bar0->general_int_status);
4396 if (unlikely(reason == S2IO_MINUS_ONE))
4397 /* Nothing much can be done. Get out */
92b84437 4398 return IRQ_HANDLED;
92b84437 4399
ac731ab6
SH
4400 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4401
4402 if (reason & GEN_INTR_TXTRAFFIC)
4403 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4404
4405 for (i = 0; i < config->tx_fifo_num; i++)
4406 tx_intr_handler(&fifos[i]);
4407
4408 writeq(sp->general_int_mask, &bar0->general_int_mask);
4409 readl(&bar0->general_int_status);
4410
cc6e7c44
RA
4411 return IRQ_HANDLED;
4412}
ac731ab6 4413
1ee6dd77 4414static void s2io_txpic_intr_handle(struct s2io_nic *sp)
a371a07d 4415{
1ee6dd77 4416 struct XENA_dev_config __iomem *bar0 = sp->bar0;
a371a07d
K
4417 u64 val64;
4418
4419 val64 = readq(&bar0->pic_int_status);
4420 if (val64 & PIC_INT_GPIO) {
4421 val64 = readq(&bar0->gpio_int_reg);
4422 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4423 (val64 & GPIO_INT_REG_LINK_UP)) {
c92ca04b
AR
4424 /*
4425 * This is unstable state so clear both up/down
4426 * interrupt and adapter to re-evaluate the link state.
4427 */
a371a07d
K
4428 val64 |= GPIO_INT_REG_LINK_DOWN;
4429 val64 |= GPIO_INT_REG_LINK_UP;
4430 writeq(val64, &bar0->gpio_int_reg);
a371a07d 4431 val64 = readq(&bar0->gpio_int_mask);
c92ca04b
AR
4432 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4433 GPIO_INT_MASK_LINK_DOWN);
a371a07d 4434 writeq(val64, &bar0->gpio_int_mask);
a371a07d 4435 }
c92ca04b
AR
4436 else if (val64 & GPIO_INT_REG_LINK_UP) {
4437 val64 = readq(&bar0->adapter_status);
c92ca04b 4438 /* Enable Adapter */
19a60522
SS
4439 val64 = readq(&bar0->adapter_control);
4440 val64 |= ADAPTER_CNTL_EN;
4441 writeq(val64, &bar0->adapter_control);
4442 val64 |= ADAPTER_LED_ON;
4443 writeq(val64, &bar0->adapter_control);
4444 if (!sp->device_enabled_once)
4445 sp->device_enabled_once = 1;
c92ca04b 4446
19a60522
SS
4447 s2io_link(sp, LINK_UP);
4448 /*
4449 * unmask link down interrupt and mask link-up
4450 * intr
4451 */
4452 val64 = readq(&bar0->gpio_int_mask);
4453 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4454 val64 |= GPIO_INT_MASK_LINK_UP;
4455 writeq(val64, &bar0->gpio_int_mask);
c92ca04b 4456
c92ca04b
AR
4457 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4458 val64 = readq(&bar0->adapter_status);
19a60522
SS
4459 s2io_link(sp, LINK_DOWN);
4460 /* Link is down so unmaks link up interrupt */
4461 val64 = readq(&bar0->gpio_int_mask);
4462 val64 &= ~GPIO_INT_MASK_LINK_UP;
4463 val64 |= GPIO_INT_MASK_LINK_DOWN;
4464 writeq(val64, &bar0->gpio_int_mask);
ac1f90d6
SS
4465
4466 /* turn off LED */
4467 val64 = readq(&bar0->adapter_control);
4468 val64 = val64 &(~ADAPTER_LED_ON);
4469 writeq(val64, &bar0->adapter_control);
a371a07d
K
4470 }
4471 }
c92ca04b 4472 val64 = readq(&bar0->gpio_int_mask);
a371a07d
K
4473}
4474
8116f3cf
SS
4475/**
4476 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4477 * @value: alarm bits
4478 * @addr: address value
4479 * @cnt: counter variable
4480 * Description: Check for alarm and increment the counter
4481 * Return Value:
4482 * 1 - if alarm bit set
4483 * 0 - if alarm bit is not set
4484 */
43b7c451 4485static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
8116f3cf
SS
4486 unsigned long long *cnt)
4487{
4488 u64 val64;
4489 val64 = readq(addr);
4490 if ( val64 & value ) {
4491 writeq(val64, addr);
4492 (*cnt)++;
4493 return 1;
4494 }
4495 return 0;
4496
4497}
4498
4499/**
4500 * s2io_handle_errors - Xframe error indication handler
4501 * @nic: device private variable
4502 * Description: Handle alarms such as loss of link, single or
4503 * double ECC errors, critical and serious errors.
4504 * Return Value:
4505 * NONE
4506 */
4507static void s2io_handle_errors(void * dev_id)
4508{
4509 struct net_device *dev = (struct net_device *) dev_id;
4510 struct s2io_nic *sp = dev->priv;
4511 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4512 u64 temp64 = 0,val64=0;
4513 int i = 0;
4514
4515 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4516 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4517
92b84437 4518 if (!is_s2io_card_up(sp))
8116f3cf
SS
4519 return;
4520
4521 if (pci_channel_offline(sp->pdev))
4522 return;
4523
4524 memset(&sw_stat->ring_full_cnt, 0,
4525 sizeof(sw_stat->ring_full_cnt));
4526
4527 /* Handling the XPAK counters update */
4528 if(stats->xpak_timer_count < 72000) {
4529 /* waiting for an hour */
4530 stats->xpak_timer_count++;
4531 } else {
4532 s2io_updt_xpak_counter(dev);
4533 /* reset the count to zero */
4534 stats->xpak_timer_count = 0;
4535 }
4536
4537 /* Handling link status change error Intr */
4538 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4539 val64 = readq(&bar0->mac_rmac_err_reg);
4540 writeq(val64, &bar0->mac_rmac_err_reg);
4541 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4542 schedule_work(&sp->set_link_task);
4543 }
4544
4545 /* In case of a serious error, the device will be Reset. */
4546 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4547 &sw_stat->serious_err_cnt))
4548 goto reset;
4549
4550 /* Check for data parity error */
4551 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4552 &sw_stat->parity_err_cnt))
4553 goto reset;
4554
4555 /* Check for ring full counter */
4556 if (sp->device_type == XFRAME_II_DEVICE) {
4557 val64 = readq(&bar0->ring_bump_counter1);
4558 for (i=0; i<4; i++) {
4559 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4560 temp64 >>= 64 - ((i+1)*16);
4561 sw_stat->ring_full_cnt[i] += temp64;
4562 }
4563
4564 val64 = readq(&bar0->ring_bump_counter2);
4565 for (i=0; i<4; i++) {
4566 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4567 temp64 >>= 64 - ((i+1)*16);
4568 sw_stat->ring_full_cnt[i+4] += temp64;
4569 }
4570 }
4571
4572 val64 = readq(&bar0->txdma_int_status);
4573 /*check for pfc_err*/
4574 if (val64 & TXDMA_PFC_INT) {
4575 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4576 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4577 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4578 &sw_stat->pfc_err_cnt))
4579 goto reset;
4580 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4581 &sw_stat->pfc_err_cnt);
4582 }
4583
4584 /*check for tda_err*/
4585 if (val64 & TXDMA_TDA_INT) {
4586 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4587 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4588 &sw_stat->tda_err_cnt))
4589 goto reset;
4590 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4591 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4592 }
4593 /*check for pcc_err*/
4594 if (val64 & TXDMA_PCC_INT) {
4595 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4596 | PCC_N_SERR | PCC_6_COF_OV_ERR
4597 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4598 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4599 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4600 &sw_stat->pcc_err_cnt))
4601 goto reset;
4602 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4603 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4604 }
4605
4606 /*check for tti_err*/
4607 if (val64 & TXDMA_TTI_INT) {
4608 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4609 &sw_stat->tti_err_cnt))
4610 goto reset;
4611 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4612 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4613 }
4614
4615 /*check for lso_err*/
4616 if (val64 & TXDMA_LSO_INT) {
4617 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4618 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4619 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4620 goto reset;
4621 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4622 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4623 }
4624
4625 /*check for tpa_err*/
4626 if (val64 & TXDMA_TPA_INT) {
4627 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4628 &sw_stat->tpa_err_cnt))
4629 goto reset;
4630 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4631 &sw_stat->tpa_err_cnt);
4632 }
4633
4634 /*check for sm_err*/
4635 if (val64 & TXDMA_SM_INT) {
4636 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4637 &sw_stat->sm_err_cnt))
4638 goto reset;
4639 }
4640
4641 val64 = readq(&bar0->mac_int_status);
4642 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4643 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4644 &bar0->mac_tmac_err_reg,
4645 &sw_stat->mac_tmac_err_cnt))
4646 goto reset;
4647 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4648 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4649 &bar0->mac_tmac_err_reg,
4650 &sw_stat->mac_tmac_err_cnt);
4651 }
4652
4653 val64 = readq(&bar0->xgxs_int_status);
4654 if (val64 & XGXS_INT_STATUS_TXGXS) {
4655 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4656 &bar0->xgxs_txgxs_err_reg,
4657 &sw_stat->xgxs_txgxs_err_cnt))
4658 goto reset;
4659 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4660 &bar0->xgxs_txgxs_err_reg,
4661 &sw_stat->xgxs_txgxs_err_cnt);
4662 }
4663
4664 val64 = readq(&bar0->rxdma_int_status);
4665 if (val64 & RXDMA_INT_RC_INT_M) {
4666 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4667 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4668 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4669 goto reset;
4670 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4671 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4672 &sw_stat->rc_err_cnt);
4673 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4674 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4675 &sw_stat->prc_pcix_err_cnt))
4676 goto reset;
4677 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4678 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4679 &sw_stat->prc_pcix_err_cnt);
4680 }
4681
4682 if (val64 & RXDMA_INT_RPA_INT_M) {
4683 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4684 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4685 goto reset;
4686 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4687 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4688 }
4689
4690 if (val64 & RXDMA_INT_RDA_INT_M) {
4691 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4692 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4693 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4694 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4695 goto reset;
4696 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4697 | RDA_MISC_ERR | RDA_PCIX_ERR,
4698 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4699 }
4700
4701 if (val64 & RXDMA_INT_RTI_INT_M) {
4702 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4703 &sw_stat->rti_err_cnt))
4704 goto reset;
4705 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4706 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4707 }
4708
4709 val64 = readq(&bar0->mac_int_status);
4710 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4711 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4712 &bar0->mac_rmac_err_reg,
4713 &sw_stat->mac_rmac_err_cnt))
4714 goto reset;
4715 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4716 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4717 &sw_stat->mac_rmac_err_cnt);
4718 }
4719
4720 val64 = readq(&bar0->xgxs_int_status);
4721 if (val64 & XGXS_INT_STATUS_RXGXS) {
4722 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4723 &bar0->xgxs_rxgxs_err_reg,
4724 &sw_stat->xgxs_rxgxs_err_cnt))
4725 goto reset;
4726 }
4727
4728 val64 = readq(&bar0->mc_int_status);
4729 if(val64 & MC_INT_STATUS_MC_INT) {
4730 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4731 &sw_stat->mc_err_cnt))
4732 goto reset;
4733
4734 /* Handling Ecc errors */
4735 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4736 writeq(val64, &bar0->mc_err_reg);
4737 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4738 sw_stat->double_ecc_errs++;
4739 if (sp->device_type != XFRAME_II_DEVICE) {
4740 /*
4741 * Reset XframeI only if critical error
4742 */
4743 if (val64 &
4744 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4745 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4746 goto reset;
4747 }
4748 } else
4749 sw_stat->single_ecc_errs++;
4750 }
4751 }
4752 return;
4753
4754reset:
3a3d5756 4755 s2io_stop_all_tx_queue(sp);
8116f3cf
SS
4756 schedule_work(&sp->rst_timer_task);
4757 sw_stat->soft_reset_cnt++;
4758 return;
4759}
4760
1da177e4
LT
4761/**
4762 * s2io_isr - ISR handler of the device .
4763 * @irq: the irq of the device.
4764 * @dev_id: a void pointer to the dev structure of the NIC.
20346722
K
4765 * Description: This function is the ISR handler of the device. It
4766 * identifies the reason for the interrupt and calls the relevant
4767 * service routines. As a contongency measure, this ISR allocates the
1da177e4
LT
4768 * recv buffers, if their numbers are below the panic value which is
4769 * presently set to 25% of the original number of rcv buffers allocated.
4770 * Return value:
20346722 4771 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
1da177e4
LT
4772 * IRQ_NONE: will be returned if interrupt is not from our device
4773 */
7d12e780 4774static irqreturn_t s2io_isr(int irq, void *dev_id)
1da177e4
LT
4775{
4776 struct net_device *dev = (struct net_device *) dev_id;
1ee6dd77
RB
4777 struct s2io_nic *sp = dev->priv;
4778 struct XENA_dev_config __iomem *bar0 = sp->bar0;
20346722 4779 int i;
19a60522 4780 u64 reason = 0;
1ee6dd77 4781 struct mac_info *mac_control;
1da177e4
LT
4782 struct config_param *config;
4783
d796fdb7
LV
4784 /* Pretend we handled any irq's from a disconnected card */
4785 if (pci_channel_offline(sp->pdev))
4786 return IRQ_NONE;
4787
596c5c97 4788 if (!is_s2io_card_up(sp))
92b84437 4789 return IRQ_NONE;
92b84437 4790
1da177e4
LT
4791 mac_control = &sp->mac_control;
4792 config = &sp->config;
4793
20346722 4794 /*
1da177e4
LT
4795 * Identify the cause for interrupt and call the appropriate
4796 * interrupt handler. Causes for the interrupt could be;
4797 * 1. Rx of packet.
4798 * 2. Tx complete.
4799 * 3. Link down.
1da177e4
LT
4800 */
4801 reason = readq(&bar0->general_int_status);
4802
596c5c97
SS
4803 if (unlikely(reason == S2IO_MINUS_ONE) ) {
4804 /* Nothing much can be done. Get out */
4805 return IRQ_HANDLED;
1da177e4 4806 }
5d3213cc 4807
596c5c97
SS
4808 if (reason & (GEN_INTR_RXTRAFFIC |
4809 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4810 {
4811 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4812
4813 if (config->napi) {
4814 if (reason & GEN_INTR_RXTRAFFIC) {
f61e0a35
SH
4815 netif_rx_schedule(dev, &sp->napi);
4816 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4817 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4818 readl(&bar0->rx_traffic_int);
db874e65 4819 }
596c5c97
SS
4820 } else {
4821 /*
4822 * rx_traffic_int reg is an R1 register, writing all 1's
4823 * will ensure that the actual interrupt causing bit
4824 * get's cleared and hence a read can be avoided.
4825 */
4826 if (reason & GEN_INTR_RXTRAFFIC)
19a60522 4827 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
596c5c97
SS
4828
4829 for (i = 0; i < config->rx_ring_num; i++)
f61e0a35 4830 rx_intr_handler(&mac_control->rings[i], 0);
db874e65 4831 }
596c5c97 4832
db874e65 4833 /*
596c5c97 4834 * tx_traffic_int reg is an R1 register, writing all 1's
db874e65
SS
4835 * will ensure that the actual interrupt causing bit get's
4836 * cleared and hence a read can be avoided.
4837 */
596c5c97
SS
4838 if (reason & GEN_INTR_TXTRAFFIC)
4839 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
19a60522 4840
596c5c97
SS
4841 for (i = 0; i < config->tx_fifo_num; i++)
4842 tx_intr_handler(&mac_control->fifos[i]);
1da177e4 4843
596c5c97
SS
4844 if (reason & GEN_INTR_TXPIC)
4845 s2io_txpic_intr_handle(sp);
fe113638 4846
596c5c97
SS
4847 /*
4848 * Reallocate the buffers from the interrupt handler itself.
4849 */
4850 if (!config->napi) {
4851 for (i = 0; i < config->rx_ring_num; i++)
0425b46a 4852 s2io_chk_rx_buffers(&mac_control->rings[i]);
596c5c97
SS
4853 }
4854 writeq(sp->general_int_mask, &bar0->general_int_mask);
4855 readl(&bar0->general_int_status);
20346722 4856
596c5c97 4857 return IRQ_HANDLED;
db874e65 4858
596c5c97
SS
4859 }
4860 else if (!reason) {
4861 /* The interrupt was not raised by us */
4862 return IRQ_NONE;
4863 }
db874e65 4864
1da177e4
LT
4865 return IRQ_HANDLED;
4866}
4867
7ba013ac
K
4868/**
4869 * s2io_updt_stats -
4870 */
1ee6dd77 4871static void s2io_updt_stats(struct s2io_nic *sp)
7ba013ac 4872{
1ee6dd77 4873 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7ba013ac
K
4874 u64 val64;
4875 int cnt = 0;
4876
92b84437 4877 if (is_s2io_card_up(sp)) {
7ba013ac
K
4878 /* Apprx 30us on a 133 MHz bus */
4879 val64 = SET_UPDT_CLICKS(10) |
4880 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4881 writeq(val64, &bar0->stat_cfg);
4882 do {
4883 udelay(100);
4884 val64 = readq(&bar0->stat_cfg);
b7b5a128 4885 if (!(val64 & s2BIT(0)))
7ba013ac
K
4886 break;
4887 cnt++;
4888 if (cnt == 5)
4889 break; /* Updt failed */
4890 } while(1);
8a4bdbaa 4891 }
7ba013ac
K
4892}
4893
1da177e4 4894/**
20346722 4895 * s2io_get_stats - Updates the device statistics structure.
1da177e4
LT
4896 * @dev : pointer to the device structure.
4897 * Description:
20346722 4898 * This function updates the device statistics structure in the s2io_nic
1da177e4
LT
4899 * structure and returns a pointer to the same.
4900 * Return value:
4901 * pointer to the updated net_device_stats structure.
4902 */
4903
ac1f60db 4904static struct net_device_stats *s2io_get_stats(struct net_device *dev)
1da177e4 4905{
1ee6dd77
RB
4906 struct s2io_nic *sp = dev->priv;
4907 struct mac_info *mac_control;
1da177e4 4908 struct config_param *config;
0425b46a 4909 int i;
1da177e4 4910
20346722 4911
1da177e4
LT
4912 mac_control = &sp->mac_control;
4913 config = &sp->config;
4914
7ba013ac
K
4915 /* Configure Stats for immediate updt */
4916 s2io_updt_stats(sp);
4917
4918 sp->stats.tx_packets =
4919 le32_to_cpu(mac_control->stats_info->tmac_frms);
20346722
K
4920 sp->stats.tx_errors =
4921 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4922 sp->stats.rx_errors =
ee705dba 4923 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
20346722
K
4924 sp->stats.multicast =
4925 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
1da177e4 4926 sp->stats.rx_length_errors =
ee705dba 4927 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
1da177e4 4928
0425b46a
SH
4929 /* collect per-ring rx_packets and rx_bytes */
4930 sp->stats.rx_packets = sp->stats.rx_bytes = 0;
4931 for (i = 0; i < config->rx_ring_num; i++) {
4932 sp->stats.rx_packets += mac_control->rings[i].rx_packets;
4933 sp->stats.rx_bytes += mac_control->rings[i].rx_bytes;
4934 }
4935
1da177e4
LT
4936 return (&sp->stats);
4937}
4938
4939/**
4940 * s2io_set_multicast - entry point for multicast address enable/disable.
4941 * @dev : pointer to the device structure
4942 * Description:
20346722
K
4943 * This function is a driver entry point which gets called by the kernel
4944 * whenever multicast addresses must be enabled/disabled. This also gets
1da177e4
LT
4945 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4946 * determine, if multicast address must be enabled or if promiscuous mode
4947 * is to be disabled etc.
4948 * Return value:
4949 * void.
4950 */
4951
4952static void s2io_set_multicast(struct net_device *dev)
4953{
4954 int i, j, prev_cnt;
4955 struct dev_mc_list *mclist;
1ee6dd77
RB
4956 struct s2io_nic *sp = dev->priv;
4957 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4958 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4959 0xfeffffffffffULL;
faa4f796 4960 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
1da177e4 4961 void __iomem *add;
faa4f796 4962 struct config_param *config = &sp->config;
1da177e4
LT
4963
4964 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4965 /* Enable all Multicast addresses */
4966 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4967 &bar0->rmac_addr_data0_mem);
4968 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4969 &bar0->rmac_addr_data1_mem);
4970 val64 = RMAC_ADDR_CMD_MEM_WE |
4971 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
faa4f796 4972 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
1da177e4
LT
4973 writeq(val64, &bar0->rmac_addr_cmd_mem);
4974 /* Wait till command completes */
c92ca04b 4975 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4976 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4977 S2IO_BIT_RESET);
1da177e4
LT
4978
4979 sp->m_cast_flg = 1;
faa4f796 4980 sp->all_multi_pos = config->max_mc_addr - 1;
1da177e4
LT
4981 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4982 /* Disable all Multicast addresses */
4983 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4984 &bar0->rmac_addr_data0_mem);
5e25b9dd
K
4985 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4986 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4987 val64 = RMAC_ADDR_CMD_MEM_WE |
4988 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4989 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4990 writeq(val64, &bar0->rmac_addr_cmd_mem);
4991 /* Wait till command completes */
c92ca04b 4992 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4993 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4994 S2IO_BIT_RESET);
1da177e4
LT
4995
4996 sp->m_cast_flg = 0;
4997 sp->all_multi_pos = 0;
4998 }
4999
5000 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
5001 /* Put the NIC into promiscuous mode */
5002 add = &bar0->mac_cfg;
5003 val64 = readq(&bar0->mac_cfg);
5004 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5005
5006 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5007 writel((u32) val64, add);
5008 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5009 writel((u32) (val64 >> 32), (add + 4));
5010
926930b2
SS
5011 if (vlan_tag_strip != 1) {
5012 val64 = readq(&bar0->rx_pa_cfg);
5013 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5014 writeq(val64, &bar0->rx_pa_cfg);
5015 vlan_strip_flag = 0;
5016 }
5017
1da177e4
LT
5018 val64 = readq(&bar0->mac_cfg);
5019 sp->promisc_flg = 1;
776bd20f 5020 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
1da177e4
LT
5021 dev->name);
5022 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5023 /* Remove the NIC from promiscuous mode */
5024 add = &bar0->mac_cfg;
5025 val64 = readq(&bar0->mac_cfg);
5026 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5027
5028 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5029 writel((u32) val64, add);
5030 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5031 writel((u32) (val64 >> 32), (add + 4));
5032
926930b2
SS
5033 if (vlan_tag_strip != 0) {
5034 val64 = readq(&bar0->rx_pa_cfg);
5035 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5036 writeq(val64, &bar0->rx_pa_cfg);
5037 vlan_strip_flag = 1;
5038 }
5039
1da177e4
LT
5040 val64 = readq(&bar0->mac_cfg);
5041 sp->promisc_flg = 0;
776bd20f 5042 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
1da177e4
LT
5043 dev->name);
5044 }
5045
5046 /* Update individual M_CAST address list */
5047 if ((!sp->m_cast_flg) && dev->mc_count) {
5048 if (dev->mc_count >
faa4f796 5049 (config->max_mc_addr - config->max_mac_addr)) {
1da177e4
LT
5050 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
5051 dev->name);
5052 DBG_PRINT(ERR_DBG, "can be added, please enable ");
5053 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
5054 return;
5055 }
5056
5057 prev_cnt = sp->mc_addr_count;
5058 sp->mc_addr_count = dev->mc_count;
5059
5060 /* Clear out the previous list of Mc in the H/W. */
5061 for (i = 0; i < prev_cnt; i++) {
5062 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5063 &bar0->rmac_addr_data0_mem);
5064 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 5065 &bar0->rmac_addr_data1_mem);
1da177e4
LT
5066 val64 = RMAC_ADDR_CMD_MEM_WE |
5067 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5068 RMAC_ADDR_CMD_MEM_OFFSET
faa4f796 5069 (config->mc_start_offset + i);
1da177e4
LT
5070 writeq(val64, &bar0->rmac_addr_cmd_mem);
5071
5072 /* Wait for command completes */
c92ca04b 5073 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
5074 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5075 S2IO_BIT_RESET)) {
1da177e4
LT
5076 DBG_PRINT(ERR_DBG, "%s: Adding ",
5077 dev->name);
5078 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5079 return;
5080 }
5081 }
5082
5083 /* Create the new Rx filter list and update the same in H/W. */
5084 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
5085 i++, mclist = mclist->next) {
5086 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
5087 ETH_ALEN);
a7a80d5a 5088 mac_addr = 0;
1da177e4
LT
5089 for (j = 0; j < ETH_ALEN; j++) {
5090 mac_addr |= mclist->dmi_addr[j];
5091 mac_addr <<= 8;
5092 }
5093 mac_addr >>= 8;
5094 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5095 &bar0->rmac_addr_data0_mem);
5096 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 5097 &bar0->rmac_addr_data1_mem);
1da177e4
LT
5098 val64 = RMAC_ADDR_CMD_MEM_WE |
5099 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5100 RMAC_ADDR_CMD_MEM_OFFSET
faa4f796 5101 (i + config->mc_start_offset);
1da177e4
LT
5102 writeq(val64, &bar0->rmac_addr_cmd_mem);
5103
5104 /* Wait for command completes */
c92ca04b 5105 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
5106 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5107 S2IO_BIT_RESET)) {
1da177e4
LT
5108 DBG_PRINT(ERR_DBG, "%s: Adding ",
5109 dev->name);
5110 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5111 return;
5112 }
5113 }
5114 }
5115}
5116
faa4f796
SH
5117/* read from CAM unicast & multicast addresses and store it in
5118 * def_mac_addr structure
5119 */
5120void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5121{
5122 int offset;
5123 u64 mac_addr = 0x0;
5124 struct config_param *config = &sp->config;
5125
5126 /* store unicast & multicast mac addresses */
5127 for (offset = 0; offset < config->max_mc_addr; offset++) {
5128 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5129 /* if read fails disable the entry */
5130 if (mac_addr == FAILURE)
5131 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5132 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5133 }
5134}
5135
5136/* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5137static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5138{
5139 int offset;
5140 struct config_param *config = &sp->config;
5141 /* restore unicast mac address */
5142 for (offset = 0; offset < config->max_mac_addr; offset++)
5143 do_s2io_prog_unicast(sp->dev,
5144 sp->def_mac_addr[offset].mac_addr);
5145
5146 /* restore multicast mac address */
5147 for (offset = config->mc_start_offset;
5148 offset < config->max_mc_addr; offset++)
5149 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5150}
5151
5152/* add a multicast MAC address to CAM */
5153static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5154{
5155 int i;
5156 u64 mac_addr = 0;
5157 struct config_param *config = &sp->config;
5158
5159 for (i = 0; i < ETH_ALEN; i++) {
5160 mac_addr <<= 8;
5161 mac_addr |= addr[i];
5162 }
5163 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5164 return SUCCESS;
5165
5166 /* check if the multicast mac already preset in CAM */
5167 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5168 u64 tmp64;
5169 tmp64 = do_s2io_read_unicast_mc(sp, i);
5170 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5171 break;
5172
5173 if (tmp64 == mac_addr)
5174 return SUCCESS;
5175 }
5176 if (i == config->max_mc_addr) {
5177 DBG_PRINT(ERR_DBG,
5178 "CAM full no space left for multicast MAC\n");
5179 return FAILURE;
5180 }
5181 /* Update the internal structure with this new mac address */
5182 do_s2io_copy_mac_addr(sp, i, mac_addr);
5183
5184 return (do_s2io_add_mac(sp, mac_addr, i));
5185}
5186
5187/* add MAC address to CAM */
5188static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
2fd37688
SS
5189{
5190 u64 val64;
5191 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5192
5193 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5194 &bar0->rmac_addr_data0_mem);
5195
5196 val64 =
5197 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5198 RMAC_ADDR_CMD_MEM_OFFSET(off);
5199 writeq(val64, &bar0->rmac_addr_cmd_mem);
5200
5201 /* Wait till command completes */
5202 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5203 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5204 S2IO_BIT_RESET)) {
faa4f796 5205 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
2fd37688
SS
5206 return FAILURE;
5207 }
5208 return SUCCESS;
5209}
faa4f796
SH
5210/* deletes a specified unicast/multicast mac entry from CAM */
5211static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5212{
5213 int offset;
5214 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5215 struct config_param *config = &sp->config;
5216
5217 for (offset = 1;
5218 offset < config->max_mc_addr; offset++) {
5219 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5220 if (tmp64 == addr) {
5221 /* disable the entry by writing 0xffffffffffffULL */
5222 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5223 return FAILURE;
5224 /* store the new mac list from CAM */
5225 do_s2io_store_unicast_mc(sp);
5226 return SUCCESS;
5227 }
5228 }
5229 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5230 (unsigned long long)addr);
5231 return FAILURE;
5232}
5233
5234/* read mac entries from CAM */
5235static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5236{
5237 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5238 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5239
5240 /* read mac addr */
5241 val64 =
5242 RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5243 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5244 writeq(val64, &bar0->rmac_addr_cmd_mem);
5245
5246 /* Wait till command completes */
5247 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5248 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5249 S2IO_BIT_RESET)) {
5250 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5251 return FAILURE;
5252 }
5253 tmp64 = readq(&bar0->rmac_addr_data0_mem);
5254 return (tmp64 >> 16);
5255}
2fd37688
SS
5256
5257/**
5258 * s2io_set_mac_addr driver entry point
5259 */
faa4f796 5260
2fd37688
SS
5261static int s2io_set_mac_addr(struct net_device *dev, void *p)
5262{
5263 struct sockaddr *addr = p;
5264
5265 if (!is_valid_ether_addr(addr->sa_data))
5266 return -EINVAL;
5267
5268 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5269
5270 /* store the MAC address in CAM */
5271 return (do_s2io_prog_unicast(dev, dev->dev_addr));
5272}
1da177e4 5273/**
2fd37688 5274 * do_s2io_prog_unicast - Programs the Xframe mac address
1da177e4
LT
5275 * @dev : pointer to the device structure.
5276 * @addr: a uchar pointer to the new mac address which is to be set.
20346722 5277 * Description : This procedure will program the Xframe to receive
1da177e4 5278 * frames with new Mac Address
20346722 5279 * Return value: SUCCESS on success and an appropriate (-)ve integer
1da177e4
LT
5280 * as defined in errno.h file on failure.
5281 */
faa4f796 5282
2fd37688 5283static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
1da177e4 5284{
1ee6dd77 5285 struct s2io_nic *sp = dev->priv;
2fd37688 5286 register u64 mac_addr = 0, perm_addr = 0;
1da177e4 5287 int i;
faa4f796
SH
5288 u64 tmp64;
5289 struct config_param *config = &sp->config;
1da177e4 5290
20346722 5291 /*
2fd37688
SS
5292 * Set the new MAC address as the new unicast filter and reflect this
5293 * change on the device address registered with the OS. It will be
5294 * at offset 0.
5295 */
1da177e4
LT
5296 for (i = 0; i < ETH_ALEN; i++) {
5297 mac_addr <<= 8;
5298 mac_addr |= addr[i];
2fd37688
SS
5299 perm_addr <<= 8;
5300 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
d8d70caf
SS
5301 }
5302
2fd37688
SS
5303 /* check if the dev_addr is different than perm_addr */
5304 if (mac_addr == perm_addr)
d8d70caf
SS
5305 return SUCCESS;
5306
faa4f796
SH
5307 /* check if the mac already preset in CAM */
5308 for (i = 1; i < config->max_mac_addr; i++) {
5309 tmp64 = do_s2io_read_unicast_mc(sp, i);
5310 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5311 break;
5312
5313 if (tmp64 == mac_addr) {
5314 DBG_PRINT(INFO_DBG,
5315 "MAC addr:0x%llx already present in CAM\n",
5316 (unsigned long long)mac_addr);
5317 return SUCCESS;
5318 }
5319 }
5320 if (i == config->max_mac_addr) {
5321 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5322 return FAILURE;
5323 }
d8d70caf 5324 /* Update the internal structure with this new mac address */
faa4f796
SH
5325 do_s2io_copy_mac_addr(sp, i, mac_addr);
5326 return (do_s2io_add_mac(sp, mac_addr, i));
1da177e4
LT
5327}
5328
5329/**
20346722 5330 * s2io_ethtool_sset - Sets different link parameters.
1da177e4
LT
5331 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5332 * @info: pointer to the structure with parameters given by ethtool to set
5333 * link information.
5334 * Description:
20346722 5335 * The function sets different link parameters provided by the user onto
1da177e4
LT
5336 * the NIC.
5337 * Return value:
5338 * 0 on success.
5339*/
5340
5341static int s2io_ethtool_sset(struct net_device *dev,
5342 struct ethtool_cmd *info)
5343{
1ee6dd77 5344 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5345 if ((info->autoneg == AUTONEG_ENABLE) ||
5346 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
5347 return -EINVAL;
5348 else {
5349 s2io_close(sp->dev);
5350 s2io_open(sp->dev);
5351 }
5352
5353 return 0;
5354}
5355
5356/**
20346722 5357 * s2io_ethtol_gset - Return link specific information.
1da177e4
LT
5358 * @sp : private member of the device structure, pointer to the
5359 * s2io_nic structure.
5360 * @info : pointer to the structure with parameters given by ethtool
5361 * to return link information.
5362 * Description:
5363 * Returns link specific information like speed, duplex etc.. to ethtool.
5364 * Return value :
5365 * return 0 on success.
5366 */
5367
5368static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5369{
1ee6dd77 5370 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5371 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5372 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5373 info->port = PORT_FIBRE;
1a7eb72b
SS
5374
5375 /* info->transceiver */
5376 info->transceiver = XCVR_EXTERNAL;
1da177e4
LT
5377
5378 if (netif_carrier_ok(sp->dev)) {
5379 info->speed = 10000;
5380 info->duplex = DUPLEX_FULL;
5381 } else {
5382 info->speed = -1;
5383 info->duplex = -1;
5384 }
5385
5386 info->autoneg = AUTONEG_DISABLE;
5387 return 0;
5388}
5389
5390/**
20346722
K
5391 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5392 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5393 * s2io_nic structure.
5394 * @info : pointer to the structure with parameters given by ethtool to
5395 * return driver information.
5396 * Description:
5397 * Returns driver specefic information like name, version etc.. to ethtool.
5398 * Return value:
5399 * void
5400 */
5401
5402static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5403 struct ethtool_drvinfo *info)
5404{
1ee6dd77 5405 struct s2io_nic *sp = dev->priv;
1da177e4 5406
dbc2309d
JL
5407 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5408 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5409 strncpy(info->fw_version, "", sizeof(info->fw_version));
5410 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
1da177e4
LT
5411 info->regdump_len = XENA_REG_SPACE;
5412 info->eedump_len = XENA_EEPROM_SPACE;
1da177e4
LT
5413}
5414
5415/**
5416 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
20346722 5417 * @sp: private member of the device structure, which is a pointer to the
1da177e4 5418 * s2io_nic structure.
20346722 5419 * @regs : pointer to the structure with parameters given by ethtool for
1da177e4
LT
5420 * dumping the registers.
5421 * @reg_space: The input argumnet into which all the registers are dumped.
5422 * Description:
5423 * Dumps the entire register space of xFrame NIC into the user given
5424 * buffer area.
5425 * Return value :
5426 * void .
5427*/
5428
5429static void s2io_ethtool_gregs(struct net_device *dev,
5430 struct ethtool_regs *regs, void *space)
5431{
5432 int i;
5433 u64 reg;
5434 u8 *reg_space = (u8 *) space;
1ee6dd77 5435 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5436
5437 regs->len = XENA_REG_SPACE;
5438 regs->version = sp->pdev->subsystem_device;
5439
5440 for (i = 0; i < regs->len; i += 8) {
5441 reg = readq(sp->bar0 + i);
5442 memcpy((reg_space + i), &reg, 8);
5443 }
5444}
5445
5446/**
5447 * s2io_phy_id - timer function that alternates adapter LED.
20346722 5448 * @data : address of the private member of the device structure, which
1da177e4 5449 * is a pointer to the s2io_nic structure, provided as an u32.
20346722
K
5450 * Description: This is actually the timer function that alternates the
5451 * adapter LED bit of the adapter control bit to set/reset every time on
5452 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
1da177e4
LT
5453 * once every second.
5454*/
5455static void s2io_phy_id(unsigned long data)
5456{
1ee6dd77
RB
5457 struct s2io_nic *sp = (struct s2io_nic *) data;
5458 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5459 u64 val64 = 0;
5460 u16 subid;
5461
5462 subid = sp->pdev->subsystem_device;
541ae68f
K
5463 if ((sp->device_type == XFRAME_II_DEVICE) ||
5464 ((subid & 0xFF) >= 0x07)) {
1da177e4
LT
5465 val64 = readq(&bar0->gpio_control);
5466 val64 ^= GPIO_CTRL_GPIO_0;
5467 writeq(val64, &bar0->gpio_control);
5468 } else {
5469 val64 = readq(&bar0->adapter_control);
5470 val64 ^= ADAPTER_LED_ON;
5471 writeq(val64, &bar0->adapter_control);
5472 }
5473
5474 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5475}
5476
5477/**
5478 * s2io_ethtool_idnic - To physically identify the nic on the system.
5479 * @sp : private member of the device structure, which is a pointer to the
5480 * s2io_nic structure.
20346722 5481 * @id : pointer to the structure with identification parameters given by
1da177e4
LT
5482 * ethtool.
5483 * Description: Used to physically identify the NIC on the system.
20346722 5484 * The Link LED will blink for a time specified by the user for
1da177e4 5485 * identification.
20346722 5486 * NOTE: The Link has to be Up to be able to blink the LED. Hence
1da177e4
LT
5487 * identification is possible only if it's link is up.
5488 * Return value:
5489 * int , returns 0 on success
5490 */
5491
5492static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5493{
5494 u64 val64 = 0, last_gpio_ctrl_val;
1ee6dd77
RB
5495 struct s2io_nic *sp = dev->priv;
5496 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5497 u16 subid;
5498
5499 subid = sp->pdev->subsystem_device;
5500 last_gpio_ctrl_val = readq(&bar0->gpio_control);
541ae68f
K
5501 if ((sp->device_type == XFRAME_I_DEVICE) &&
5502 ((subid & 0xFF) < 0x07)) {
1da177e4
LT
5503 val64 = readq(&bar0->adapter_control);
5504 if (!(val64 & ADAPTER_CNTL_EN)) {
5505 printk(KERN_ERR
5506 "Adapter Link down, cannot blink LED\n");
5507 return -EFAULT;
5508 }
5509 }
5510 if (sp->id_timer.function == NULL) {
5511 init_timer(&sp->id_timer);
5512 sp->id_timer.function = s2io_phy_id;
5513 sp->id_timer.data = (unsigned long) sp;
5514 }
5515 mod_timer(&sp->id_timer, jiffies);
5516 if (data)
20346722 5517 msleep_interruptible(data * HZ);
1da177e4 5518 else
20346722 5519 msleep_interruptible(MAX_FLICKER_TIME);
1da177e4
LT
5520 del_timer_sync(&sp->id_timer);
5521
541ae68f 5522 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
1da177e4
LT
5523 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5524 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5525 }
5526
5527 return 0;
5528}
5529
0cec35eb
SH
5530static void s2io_ethtool_gringparam(struct net_device *dev,
5531 struct ethtool_ringparam *ering)
5532{
5533 struct s2io_nic *sp = dev->priv;
5534 int i,tx_desc_count=0,rx_desc_count=0;
5535
5536 if (sp->rxd_mode == RXD_MODE_1)
5537 ering->rx_max_pending = MAX_RX_DESC_1;
5538 else if (sp->rxd_mode == RXD_MODE_3B)
5539 ering->rx_max_pending = MAX_RX_DESC_2;
0cec35eb
SH
5540
5541 ering->tx_max_pending = MAX_TX_DESC;
8a4bdbaa 5542 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
0cec35eb 5543 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
8a4bdbaa 5544
0cec35eb
SH
5545 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5546 ering->tx_pending = tx_desc_count;
5547 rx_desc_count = 0;
8a4bdbaa 5548 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
0cec35eb 5549 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
b6627672 5550
0cec35eb
SH
5551 ering->rx_pending = rx_desc_count;
5552
5553 ering->rx_mini_max_pending = 0;
5554 ering->rx_mini_pending = 0;
5555 if(sp->rxd_mode == RXD_MODE_1)
5556 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5557 else if (sp->rxd_mode == RXD_MODE_3B)
5558 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5559 ering->rx_jumbo_pending = rx_desc_count;
5560}
5561
1da177e4
LT
5562/**
5563 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
20346722
K
5564 * @sp : private member of the device structure, which is a pointer to the
5565 * s2io_nic structure.
1da177e4
LT
5566 * @ep : pointer to the structure with pause parameters given by ethtool.
5567 * Description:
5568 * Returns the Pause frame generation and reception capability of the NIC.
5569 * Return value:
5570 * void
5571 */
5572static void s2io_ethtool_getpause_data(struct net_device *dev,
5573 struct ethtool_pauseparam *ep)
5574{
5575 u64 val64;
1ee6dd77
RB
5576 struct s2io_nic *sp = dev->priv;
5577 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5578
5579 val64 = readq(&bar0->rmac_pause_cfg);
5580 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5581 ep->tx_pause = TRUE;
5582 if (val64 & RMAC_PAUSE_RX_ENABLE)
5583 ep->rx_pause = TRUE;
5584 ep->autoneg = FALSE;
5585}
5586
5587/**
5588 * s2io_ethtool_setpause_data - set/reset pause frame generation.
20346722 5589 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5590 * s2io_nic structure.
5591 * @ep : pointer to the structure with pause parameters given by ethtool.
5592 * Description:
5593 * It can be used to set or reset Pause frame generation or reception
5594 * support of the NIC.
5595 * Return value:
5596 * int, returns 0 on Success
5597 */
5598
5599static int s2io_ethtool_setpause_data(struct net_device *dev,
20346722 5600 struct ethtool_pauseparam *ep)
1da177e4
LT
5601{
5602 u64 val64;
1ee6dd77
RB
5603 struct s2io_nic *sp = dev->priv;
5604 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5605
5606 val64 = readq(&bar0->rmac_pause_cfg);
5607 if (ep->tx_pause)
5608 val64 |= RMAC_PAUSE_GEN_ENABLE;
5609 else
5610 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5611 if (ep->rx_pause)
5612 val64 |= RMAC_PAUSE_RX_ENABLE;
5613 else
5614 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5615 writeq(val64, &bar0->rmac_pause_cfg);
5616 return 0;
5617}
5618
5619/**
5620 * read_eeprom - reads 4 bytes of data from user given offset.
20346722 5621 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5622 * s2io_nic structure.
5623 * @off : offset at which the data must be written
5624 * @data : Its an output parameter where the data read at the given
20346722 5625 * offset is stored.
1da177e4 5626 * Description:
20346722 5627 * Will read 4 bytes of data from the user given offset and return the
1da177e4
LT
5628 * read data.
5629 * NOTE: Will allow to read only part of the EEPROM visible through the
5630 * I2C bus.
5631 * Return value:
5632 * -1 on failure and 0 on success.
5633 */
5634
5635#define S2IO_DEV_ID 5
1ee6dd77 5636static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
1da177e4
LT
5637{
5638 int ret = -1;
5639 u32 exit_cnt = 0;
5640 u64 val64;
1ee6dd77 5641 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5642
ad4ebed0 5643 if (sp->device_type == XFRAME_I_DEVICE) {
5644 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5645 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5646 I2C_CONTROL_CNTL_START;
5647 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
1da177e4 5648
ad4ebed0 5649 while (exit_cnt < 5) {
5650 val64 = readq(&bar0->i2c_control);
5651 if (I2C_CONTROL_CNTL_END(val64)) {
5652 *data = I2C_CONTROL_GET_DATA(val64);
5653 ret = 0;
5654 break;
5655 }
5656 msleep(50);
5657 exit_cnt++;
1da177e4 5658 }
1da177e4
LT
5659 }
5660
ad4ebed0 5661 if (sp->device_type == XFRAME_II_DEVICE) {
5662 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5663 SPI_CONTROL_BYTECNT(0x3) |
ad4ebed0 5664 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5665 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5666 val64 |= SPI_CONTROL_REQ;
5667 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5668 while (exit_cnt < 5) {
5669 val64 = readq(&bar0->spi_control);
5670 if (val64 & SPI_CONTROL_NACK) {
5671 ret = 1;
5672 break;
5673 } else if (val64 & SPI_CONTROL_DONE) {
5674 *data = readq(&bar0->spi_data);
5675 *data &= 0xffffff;
5676 ret = 0;
5677 break;
5678 }
5679 msleep(50);
5680 exit_cnt++;
5681 }
5682 }
1da177e4
LT
5683 return ret;
5684}
5685
5686/**
5687 * write_eeprom - actually writes the relevant part of the data value.
5688 * @sp : private member of the device structure, which is a pointer to the
5689 * s2io_nic structure.
5690 * @off : offset at which the data must be written
5691 * @data : The data that is to be written
20346722 5692 * @cnt : Number of bytes of the data that are actually to be written into
1da177e4
LT
5693 * the Eeprom. (max of 3)
5694 * Description:
5695 * Actually writes the relevant part of the data value into the Eeprom
5696 * through the I2C bus.
5697 * Return value:
5698 * 0 on success, -1 on failure.
5699 */
5700
1ee6dd77 5701static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
1da177e4
LT
5702{
5703 int exit_cnt = 0, ret = -1;
5704 u64 val64;
1ee6dd77 5705 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5706
ad4ebed0 5707 if (sp->device_type == XFRAME_I_DEVICE) {
5708 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5709 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5710 I2C_CONTROL_CNTL_START;
5711 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5712
5713 while (exit_cnt < 5) {
5714 val64 = readq(&bar0->i2c_control);
5715 if (I2C_CONTROL_CNTL_END(val64)) {
5716 if (!(val64 & I2C_CONTROL_NACK))
5717 ret = 0;
5718 break;
5719 }
5720 msleep(50);
5721 exit_cnt++;
5722 }
5723 }
1da177e4 5724
ad4ebed0 5725 if (sp->device_type == XFRAME_II_DEVICE) {
5726 int write_cnt = (cnt == 8) ? 0 : cnt;
5727 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5728
5729 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5730 SPI_CONTROL_BYTECNT(write_cnt) |
ad4ebed0 5731 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5732 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5733 val64 |= SPI_CONTROL_REQ;
5734 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5735 while (exit_cnt < 5) {
5736 val64 = readq(&bar0->spi_control);
5737 if (val64 & SPI_CONTROL_NACK) {
5738 ret = 1;
5739 break;
5740 } else if (val64 & SPI_CONTROL_DONE) {
1da177e4 5741 ret = 0;
ad4ebed0 5742 break;
5743 }
5744 msleep(50);
5745 exit_cnt++;
1da177e4 5746 }
1da177e4 5747 }
1da177e4
LT
5748 return ret;
5749}
1ee6dd77 5750static void s2io_vpd_read(struct s2io_nic *nic)
9dc737a7 5751{
b41477f3
AR
5752 u8 *vpd_data;
5753 u8 data;
9dc737a7
AR
5754 int i=0, cnt, fail = 0;
5755 int vpd_addr = 0x80;
5756
5757 if (nic->device_type == XFRAME_II_DEVICE) {
5758 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5759 vpd_addr = 0x80;
5760 }
5761 else {
5762 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5763 vpd_addr = 0x50;
5764 }
19a60522 5765 strcpy(nic->serial_num, "NOT AVAILABLE");
9dc737a7 5766
b41477f3 5767 vpd_data = kmalloc(256, GFP_KERNEL);
c53d4945
SH
5768 if (!vpd_data) {
5769 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
b41477f3 5770 return;
c53d4945 5771 }
491976b2 5772 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
b41477f3 5773
9dc737a7
AR
5774 for (i = 0; i < 256; i +=4 ) {
5775 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5776 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5777 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5778 for (cnt = 0; cnt <5; cnt++) {
5779 msleep(2);
5780 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5781 if (data == 0x80)
5782 break;
5783 }
5784 if (cnt >= 5) {
5785 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5786 fail = 1;
5787 break;
5788 }
5789 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5790 (u32 *)&vpd_data[i]);
5791 }
19a60522
SS
5792
5793 if(!fail) {
5794 /* read serial number of adapter */
5795 for (cnt = 0; cnt < 256; cnt++) {
5796 if ((vpd_data[cnt] == 'S') &&
5797 (vpd_data[cnt+1] == 'N') &&
5798 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5799 memset(nic->serial_num, 0, VPD_STRING_LEN);
5800 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5801 vpd_data[cnt+2]);
5802 break;
5803 }
5804 }
5805 }
5806
5807 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
9dc737a7
AR
5808 memset(nic->product_name, 0, vpd_data[1]);
5809 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5810 }
b41477f3 5811 kfree(vpd_data);
491976b2 5812 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
9dc737a7
AR
5813}
5814
1da177e4
LT
5815/**
5816 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5817 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
20346722 5818 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5819 * containing all relevant information.
5820 * @data_buf : user defined value to be written into Eeprom.
5821 * Description: Reads the values stored in the Eeprom at given offset
5822 * for a given length. Stores these values int the input argument data
5823 * buffer 'data_buf' and returns these to the caller (ethtool.)
5824 * Return value:
5825 * int 0 on success
5826 */
5827
5828static int s2io_ethtool_geeprom(struct net_device *dev,
20346722 5829 struct ethtool_eeprom *eeprom, u8 * data_buf)
1da177e4 5830{
ad4ebed0 5831 u32 i, valid;
5832 u64 data;
1ee6dd77 5833 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5834
5835 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5836
5837 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5838 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5839
5840 for (i = 0; i < eeprom->len; i += 4) {
5841 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5842 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5843 return -EFAULT;
5844 }
5845 valid = INV(data);
5846 memcpy((data_buf + i), &valid, 4);
5847 }
5848 return 0;
5849}
5850
5851/**
5852 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5853 * @sp : private member of the device structure, which is a pointer to the
5854 * s2io_nic structure.
20346722 5855 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5856 * containing all relevant information.
5857 * @data_buf ; user defined value to be written into Eeprom.
5858 * Description:
5859 * Tries to write the user provided value in the Eeprom, at the offset
5860 * given by the user.
5861 * Return value:
5862 * 0 on success, -EFAULT on failure.
5863 */
5864
5865static int s2io_ethtool_seeprom(struct net_device *dev,
5866 struct ethtool_eeprom *eeprom,
5867 u8 * data_buf)
5868{
5869 int len = eeprom->len, cnt = 0;
ad4ebed0 5870 u64 valid = 0, data;
1ee6dd77 5871 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5872
5873 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5874 DBG_PRINT(ERR_DBG,
5875 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5876 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5877 eeprom->magic);
5878 return -EFAULT;
5879 }
5880
5881 while (len) {
5882 data = (u32) data_buf[cnt] & 0x000000FF;
5883 if (data) {
5884 valid = (u32) (data << 24);
5885 } else
5886 valid = data;
5887
5888 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5889 DBG_PRINT(ERR_DBG,
5890 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5891 DBG_PRINT(ERR_DBG,
5892 "write into the specified offset\n");
5893 return -EFAULT;
5894 }
5895 cnt++;
5896 len--;
5897 }
5898
5899 return 0;
5900}
5901
5902/**
20346722
K
5903 * s2io_register_test - reads and writes into all clock domains.
5904 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5905 * s2io_nic structure.
5906 * @data : variable that returns the result of each of the test conducted b
5907 * by the driver.
5908 * Description:
5909 * Read and write into all clock domains. The NIC has 3 clock domains,
5910 * see that registers in all the three regions are accessible.
5911 * Return value:
5912 * 0 on success.
5913 */
5914
1ee6dd77 5915static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 5916{
1ee6dd77 5917 struct XENA_dev_config __iomem *bar0 = sp->bar0;
ad4ebed0 5918 u64 val64 = 0, exp_val;
1da177e4
LT
5919 int fail = 0;
5920
20346722
K
5921 val64 = readq(&bar0->pif_rd_swapper_fb);
5922 if (val64 != 0x123456789abcdefULL) {
1da177e4
LT
5923 fail = 1;
5924 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5925 }
5926
5927 val64 = readq(&bar0->rmac_pause_cfg);
5928 if (val64 != 0xc000ffff00000000ULL) {
5929 fail = 1;
5930 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5931 }
5932
5933 val64 = readq(&bar0->rx_queue_cfg);
ad4ebed0 5934 if (sp->device_type == XFRAME_II_DEVICE)
5935 exp_val = 0x0404040404040404ULL;
5936 else
5937 exp_val = 0x0808080808080808ULL;
5938 if (val64 != exp_val) {
1da177e4
LT
5939 fail = 1;
5940 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5941 }
5942
5943 val64 = readq(&bar0->xgxs_efifo_cfg);
5944 if (val64 != 0x000000001923141EULL) {
5945 fail = 1;
5946 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5947 }
5948
5949 val64 = 0x5A5A5A5A5A5A5A5AULL;
5950 writeq(val64, &bar0->xmsi_data);
5951 val64 = readq(&bar0->xmsi_data);
5952 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5953 fail = 1;
5954 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5955 }
5956
5957 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5958 writeq(val64, &bar0->xmsi_data);
5959 val64 = readq(&bar0->xmsi_data);
5960 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5961 fail = 1;
5962 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5963 }
5964
5965 *data = fail;
ad4ebed0 5966 return fail;
1da177e4
LT
5967}
5968
5969/**
20346722 5970 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
1da177e4
LT
5971 * @sp : private member of the device structure, which is a pointer to the
5972 * s2io_nic structure.
5973 * @data:variable that returns the result of each of the test conducted by
5974 * the driver.
5975 * Description:
20346722 5976 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
1da177e4
LT
5977 * register.
5978 * Return value:
5979 * 0 on success.
5980 */
5981
1ee6dd77 5982static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
1da177e4
LT
5983{
5984 int fail = 0;
ad4ebed0 5985 u64 ret_data, org_4F0, org_7F0;
5986 u8 saved_4F0 = 0, saved_7F0 = 0;
5987 struct net_device *dev = sp->dev;
1da177e4
LT
5988
5989 /* Test Write Error at offset 0 */
ad4ebed0 5990 /* Note that SPI interface allows write access to all areas
5991 * of EEPROM. Hence doing all negative testing only for Xframe I.
5992 */
5993 if (sp->device_type == XFRAME_I_DEVICE)
5994 if (!write_eeprom(sp, 0, 0, 3))
5995 fail = 1;
5996
5997 /* Save current values at offsets 0x4F0 and 0x7F0 */
5998 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5999 saved_4F0 = 1;
6000 if (!read_eeprom(sp, 0x7F0, &org_7F0))
6001 saved_7F0 = 1;
1da177e4
LT
6002
6003 /* Test Write at offset 4f0 */
ad4ebed0 6004 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
1da177e4
LT
6005 fail = 1;
6006 if (read_eeprom(sp, 0x4F0, &ret_data))
6007 fail = 1;
6008
ad4ebed0 6009 if (ret_data != 0x012345) {
26b7625c
AM
6010 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
6011 "Data written %llx Data read %llx\n",
6012 dev->name, (unsigned long long)0x12345,
6013 (unsigned long long)ret_data);
1da177e4 6014 fail = 1;
ad4ebed0 6015 }
1da177e4
LT
6016
6017 /* Reset the EEPROM data go FFFF */
ad4ebed0 6018 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
1da177e4
LT
6019
6020 /* Test Write Request Error at offset 0x7c */
ad4ebed0 6021 if (sp->device_type == XFRAME_I_DEVICE)
6022 if (!write_eeprom(sp, 0x07C, 0, 3))
6023 fail = 1;
1da177e4 6024
ad4ebed0 6025 /* Test Write Request at offset 0x7f0 */
6026 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
1da177e4 6027 fail = 1;
ad4ebed0 6028 if (read_eeprom(sp, 0x7F0, &ret_data))
1da177e4
LT
6029 fail = 1;
6030
ad4ebed0 6031 if (ret_data != 0x012345) {
26b7625c
AM
6032 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6033 "Data written %llx Data read %llx\n",
6034 dev->name, (unsigned long long)0x12345,
6035 (unsigned long long)ret_data);
1da177e4 6036 fail = 1;
ad4ebed0 6037 }
1da177e4
LT
6038
6039 /* Reset the EEPROM data go FFFF */
ad4ebed0 6040 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
1da177e4 6041
ad4ebed0 6042 if (sp->device_type == XFRAME_I_DEVICE) {
6043 /* Test Write Error at offset 0x80 */
6044 if (!write_eeprom(sp, 0x080, 0, 3))
6045 fail = 1;
1da177e4 6046
ad4ebed0 6047 /* Test Write Error at offset 0xfc */
6048 if (!write_eeprom(sp, 0x0FC, 0, 3))
6049 fail = 1;
1da177e4 6050
ad4ebed0 6051 /* Test Write Error at offset 0x100 */
6052 if (!write_eeprom(sp, 0x100, 0, 3))
6053 fail = 1;
1da177e4 6054
ad4ebed0 6055 /* Test Write Error at offset 4ec */
6056 if (!write_eeprom(sp, 0x4EC, 0, 3))
6057 fail = 1;
6058 }
6059
6060 /* Restore values at offsets 0x4F0 and 0x7F0 */
6061 if (saved_4F0)
6062 write_eeprom(sp, 0x4F0, org_4F0, 3);
6063 if (saved_7F0)
6064 write_eeprom(sp, 0x7F0, org_7F0, 3);
1da177e4
LT
6065
6066 *data = fail;
ad4ebed0 6067 return fail;
1da177e4
LT
6068}
6069
6070/**
6071 * s2io_bist_test - invokes the MemBist test of the card .
20346722 6072 * @sp : private member of the device structure, which is a pointer to the
1da177e4 6073 * s2io_nic structure.
20346722 6074 * @data:variable that returns the result of each of the test conducted by
1da177e4
LT
6075 * the driver.
6076 * Description:
6077 * This invokes the MemBist test of the card. We give around
6078 * 2 secs time for the Test to complete. If it's still not complete
20346722 6079 * within this peiod, we consider that the test failed.
1da177e4
LT
6080 * Return value:
6081 * 0 on success and -1 on failure.
6082 */
6083
1ee6dd77 6084static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
1da177e4
LT
6085{
6086 u8 bist = 0;
6087 int cnt = 0, ret = -1;
6088
6089 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6090 bist |= PCI_BIST_START;
6091 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6092
6093 while (cnt < 20) {
6094 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6095 if (!(bist & PCI_BIST_START)) {
6096 *data = (bist & PCI_BIST_CODE_MASK);
6097 ret = 0;
6098 break;
6099 }
6100 msleep(100);
6101 cnt++;
6102 }
6103
6104 return ret;
6105}
6106
6107/**
20346722
K
6108 * s2io-link_test - verifies the link state of the nic
6109 * @sp ; private member of the device structure, which is a pointer to the
1da177e4
LT
6110 * s2io_nic structure.
6111 * @data: variable that returns the result of each of the test conducted by
6112 * the driver.
6113 * Description:
20346722 6114 * The function verifies the link state of the NIC and updates the input
1da177e4
LT
6115 * argument 'data' appropriately.
6116 * Return value:
6117 * 0 on success.
6118 */
6119
1ee6dd77 6120static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 6121{
1ee6dd77 6122 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
6123 u64 val64;
6124
6125 val64 = readq(&bar0->adapter_status);
c92ca04b 6126 if(!(LINK_IS_UP(val64)))
1da177e4 6127 *data = 1;
c92ca04b
AR
6128 else
6129 *data = 0;
1da177e4 6130
b41477f3 6131 return *data;
1da177e4
LT
6132}
6133
6134/**
20346722
K
6135 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6136 * @sp - private member of the device structure, which is a pointer to the
1da177e4 6137 * s2io_nic structure.
20346722 6138 * @data - variable that returns the result of each of the test
1da177e4
LT
6139 * conducted by the driver.
6140 * Description:
20346722 6141 * This is one of the offline test that tests the read and write
1da177e4
LT
6142 * access to the RldRam chip on the NIC.
6143 * Return value:
6144 * 0 on success.
6145 */
6146
1ee6dd77 6147static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 6148{
1ee6dd77 6149 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 6150 u64 val64;
ad4ebed0 6151 int cnt, iteration = 0, test_fail = 0;
1da177e4
LT
6152
6153 val64 = readq(&bar0->adapter_control);
6154 val64 &= ~ADAPTER_ECC_EN;
6155 writeq(val64, &bar0->adapter_control);
6156
6157 val64 = readq(&bar0->mc_rldram_test_ctrl);
6158 val64 |= MC_RLDRAM_TEST_MODE;
ad4ebed0 6159 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6160
6161 val64 = readq(&bar0->mc_rldram_mrs);
6162 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6163 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6164
6165 val64 |= MC_RLDRAM_MRS_ENABLE;
6166 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6167
6168 while (iteration < 2) {
6169 val64 = 0x55555555aaaa0000ULL;
6170 if (iteration == 1) {
6171 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6172 }
6173 writeq(val64, &bar0->mc_rldram_test_d0);
6174
6175 val64 = 0xaaaa5a5555550000ULL;
6176 if (iteration == 1) {
6177 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6178 }
6179 writeq(val64, &bar0->mc_rldram_test_d1);
6180
6181 val64 = 0x55aaaaaaaa5a0000ULL;
6182 if (iteration == 1) {
6183 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6184 }
6185 writeq(val64, &bar0->mc_rldram_test_d2);
6186
ad4ebed0 6187 val64 = (u64) (0x0000003ffffe0100ULL);
1da177e4
LT
6188 writeq(val64, &bar0->mc_rldram_test_add);
6189
ad4ebed0 6190 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
6191 MC_RLDRAM_TEST_GO;
6192 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6193
6194 for (cnt = 0; cnt < 5; cnt++) {
6195 val64 = readq(&bar0->mc_rldram_test_ctrl);
6196 if (val64 & MC_RLDRAM_TEST_DONE)
6197 break;
6198 msleep(200);
6199 }
6200
6201 if (cnt == 5)
6202 break;
6203
ad4ebed0 6204 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6205 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6206
6207 for (cnt = 0; cnt < 5; cnt++) {
6208 val64 = readq(&bar0->mc_rldram_test_ctrl);
6209 if (val64 & MC_RLDRAM_TEST_DONE)
6210 break;
6211 msleep(500);
6212 }
6213
6214 if (cnt == 5)
6215 break;
6216
6217 val64 = readq(&bar0->mc_rldram_test_ctrl);
ad4ebed0 6218 if (!(val64 & MC_RLDRAM_TEST_PASS))
6219 test_fail = 1;
1da177e4
LT
6220
6221 iteration++;
6222 }
6223
ad4ebed0 6224 *data = test_fail;
1da177e4 6225
ad4ebed0 6226 /* Bring the adapter out of test mode */
6227 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6228
6229 return test_fail;
1da177e4
LT
6230}
6231
6232/**
6233 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6234 * @sp : private member of the device structure, which is a pointer to the
6235 * s2io_nic structure.
6236 * @ethtest : pointer to a ethtool command specific structure that will be
6237 * returned to the user.
20346722 6238 * @data : variable that returns the result of each of the test
1da177e4
LT
6239 * conducted by the driver.
6240 * Description:
6241 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6242 * the health of the card.
6243 * Return value:
6244 * void
6245 */
6246
6247static void s2io_ethtool_test(struct net_device *dev,
6248 struct ethtool_test *ethtest,
6249 uint64_t * data)
6250{
1ee6dd77 6251 struct s2io_nic *sp = dev->priv;
1da177e4
LT
6252 int orig_state = netif_running(sp->dev);
6253
6254 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6255 /* Offline Tests. */
20346722 6256 if (orig_state)
1da177e4 6257 s2io_close(sp->dev);
1da177e4
LT
6258
6259 if (s2io_register_test(sp, &data[0]))
6260 ethtest->flags |= ETH_TEST_FL_FAILED;
6261
6262 s2io_reset(sp);
1da177e4
LT
6263
6264 if (s2io_rldram_test(sp, &data[3]))
6265 ethtest->flags |= ETH_TEST_FL_FAILED;
6266
6267 s2io_reset(sp);
1da177e4
LT
6268
6269 if (s2io_eeprom_test(sp, &data[1]))
6270 ethtest->flags |= ETH_TEST_FL_FAILED;
6271
6272 if (s2io_bist_test(sp, &data[4]))
6273 ethtest->flags |= ETH_TEST_FL_FAILED;
6274
6275 if (orig_state)
6276 s2io_open(sp->dev);
6277
6278 data[2] = 0;
6279 } else {
6280 /* Online Tests. */
6281 if (!orig_state) {
6282 DBG_PRINT(ERR_DBG,
6283 "%s: is not up, cannot run test\n",
6284 dev->name);
6285 data[0] = -1;
6286 data[1] = -1;
6287 data[2] = -1;
6288 data[3] = -1;
6289 data[4] = -1;
6290 }
6291
6292 if (s2io_link_test(sp, &data[2]))
6293 ethtest->flags |= ETH_TEST_FL_FAILED;
6294
6295 data[0] = 0;
6296 data[1] = 0;
6297 data[3] = 0;
6298 data[4] = 0;
6299 }
6300}
6301
6302static void s2io_get_ethtool_stats(struct net_device *dev,
6303 struct ethtool_stats *estats,
6304 u64 * tmp_stats)
6305{
8116f3cf 6306 int i = 0, k;
1ee6dd77
RB
6307 struct s2io_nic *sp = dev->priv;
6308 struct stat_block *stat_info = sp->mac_control.stats_info;
1da177e4 6309
7ba013ac 6310 s2io_updt_stats(sp);
541ae68f
K
6311 tmp_stats[i++] =
6312 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
6313 le32_to_cpu(stat_info->tmac_frms);
6314 tmp_stats[i++] =
6315 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
6316 le32_to_cpu(stat_info->tmac_data_octets);
1da177e4 6317 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
541ae68f
K
6318 tmp_stats[i++] =
6319 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
6320 le32_to_cpu(stat_info->tmac_mcst_frms);
6321 tmp_stats[i++] =
6322 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
6323 le32_to_cpu(stat_info->tmac_bcst_frms);
1da177e4 6324 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
bd1034f0
AR
6325 tmp_stats[i++] =
6326 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
6327 le32_to_cpu(stat_info->tmac_ttl_octets);
6328 tmp_stats[i++] =
6329 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
6330 le32_to_cpu(stat_info->tmac_ucst_frms);
6331 tmp_stats[i++] =
6332 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
6333 le32_to_cpu(stat_info->tmac_nucst_frms);
541ae68f
K
6334 tmp_stats[i++] =
6335 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
6336 le32_to_cpu(stat_info->tmac_any_err_frms);
bd1034f0 6337 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
1da177e4 6338 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
541ae68f
K
6339 tmp_stats[i++] =
6340 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
6341 le32_to_cpu(stat_info->tmac_vld_ip);
6342 tmp_stats[i++] =
6343 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
6344 le32_to_cpu(stat_info->tmac_drop_ip);
6345 tmp_stats[i++] =
6346 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
6347 le32_to_cpu(stat_info->tmac_icmp);
6348 tmp_stats[i++] =
6349 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
6350 le32_to_cpu(stat_info->tmac_rst_tcp);
1da177e4 6351 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
541ae68f
K
6352 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
6353 le32_to_cpu(stat_info->tmac_udp);
6354 tmp_stats[i++] =
6355 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
6356 le32_to_cpu(stat_info->rmac_vld_frms);
6357 tmp_stats[i++] =
6358 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
6359 le32_to_cpu(stat_info->rmac_data_octets);
1da177e4
LT
6360 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
6361 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
541ae68f
K
6362 tmp_stats[i++] =
6363 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
6364 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6365 tmp_stats[i++] =
6366 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6367 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
1da177e4 6368 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
bd1034f0 6369 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
1da177e4
LT
6370 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6371 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
bd1034f0
AR
6372 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6373 tmp_stats[i++] =
6374 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6375 le32_to_cpu(stat_info->rmac_ttl_octets);
6376 tmp_stats[i++] =
6377 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6378 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6379 tmp_stats[i++] =
6380 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6381 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
541ae68f
K
6382 tmp_stats[i++] =
6383 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6384 le32_to_cpu(stat_info->rmac_discarded_frms);
bd1034f0
AR
6385 tmp_stats[i++] =
6386 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6387 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6388 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6389 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
541ae68f
K
6390 tmp_stats[i++] =
6391 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6392 le32_to_cpu(stat_info->rmac_usized_frms);
6393 tmp_stats[i++] =
6394 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6395 le32_to_cpu(stat_info->rmac_osized_frms);
6396 tmp_stats[i++] =
6397 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6398 le32_to_cpu(stat_info->rmac_frag_frms);
6399 tmp_stats[i++] =
6400 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6401 le32_to_cpu(stat_info->rmac_jabber_frms);
bd1034f0
AR
6402 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6403 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6404 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6405 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6406 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6407 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6408 tmp_stats[i++] =
6409 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
541ae68f 6410 le32_to_cpu(stat_info->rmac_ip);
1da177e4
LT
6411 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6412 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
bd1034f0
AR
6413 tmp_stats[i++] =
6414 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
541ae68f 6415 le32_to_cpu(stat_info->rmac_drop_ip);
bd1034f0
AR
6416 tmp_stats[i++] =
6417 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
541ae68f 6418 le32_to_cpu(stat_info->rmac_icmp);
1da177e4 6419 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
bd1034f0
AR
6420 tmp_stats[i++] =
6421 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
541ae68f
K
6422 le32_to_cpu(stat_info->rmac_udp);
6423 tmp_stats[i++] =
6424 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6425 le32_to_cpu(stat_info->rmac_err_drp_udp);
bd1034f0
AR
6426 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6427 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6428 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6429 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6430 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6431 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6432 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6433 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6434 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6435 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6436 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6437 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6438 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6439 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6440 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6441 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6442 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
541ae68f
K
6443 tmp_stats[i++] =
6444 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6445 le32_to_cpu(stat_info->rmac_pause_cnt);
bd1034f0
AR
6446 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6447 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
541ae68f
K
6448 tmp_stats[i++] =
6449 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6450 le32_to_cpu(stat_info->rmac_accepted_ip);
1da177e4 6451 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
bd1034f0
AR
6452 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6453 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6454 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6455 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6456 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6457 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6458 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6459 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6460 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6461 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6462 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6463 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6464 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6465 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6466 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6467 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6468 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6469 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
fa1f0cb3
SS
6470
6471 /* Enhanced statistics exist only for Hercules */
6472 if(sp->device_type == XFRAME_II_DEVICE) {
6473 tmp_stats[i++] =
6474 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6475 tmp_stats[i++] =
6476 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6477 tmp_stats[i++] =
6478 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6479 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6480 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6481 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6482 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6483 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6484 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6485 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6486 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6487 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6488 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6489 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6490 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6491 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6492 }
6493
7ba013ac
K
6494 tmp_stats[i++] = 0;
6495 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6496 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
bd1034f0
AR
6497 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6498 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6499 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6500 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
8116f3cf
SS
6501 for (k = 0; k < MAX_RX_RINGS; k++)
6502 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
bd1034f0
AR
6503 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6504 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6505 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6506 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6507 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6508 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6509 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6510 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6511 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6512 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6513 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6514 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
7d3d0439
RA
6515 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6516 tmp_stats[i++] = stat_info->sw_stat.sending_both;
6517 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6518 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
fe931395 6519 if (stat_info->sw_stat.num_aggregations) {
bd1034f0
AR
6520 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6521 int count = 0;
6aa20a22 6522 /*
bd1034f0
AR
6523 * Since 64-bit divide does not work on all platforms,
6524 * do repeated subtraction.
6525 */
6526 while (tmp >= stat_info->sw_stat.num_aggregations) {
6527 tmp -= stat_info->sw_stat.num_aggregations;
6528 count++;
6529 }
6530 tmp_stats[i++] = count;
fe931395 6531 }
bd1034f0
AR
6532 else
6533 tmp_stats[i++] = 0;
c53d4945 6534 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
491abf25 6535 tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
c53d4945 6536 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
491976b2
SH
6537 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6538 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6539 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6540 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6541 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6542 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6543
6544 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6545 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6546 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6547 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6548 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6549
6550 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6551 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6552 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6553 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6554 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6555 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6556 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6557 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6558 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
8116f3cf
SS
6559 tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6560 tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6561 tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6562 tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6563 tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6564 tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6565 tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6566 tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6567 tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6568 tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6569 tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6570 tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6571 tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6572 tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6573 tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6574 tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6575 tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
1da177e4
LT
6576}
6577
ac1f60db 6578static int s2io_ethtool_get_regs_len(struct net_device *dev)
1da177e4
LT
6579{
6580 return (XENA_REG_SPACE);
6581}
6582
6583
ac1f60db 6584static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
1da177e4 6585{
1ee6dd77 6586 struct s2io_nic *sp = dev->priv;
1da177e4
LT
6587
6588 return (sp->rx_csum);
6589}
ac1f60db
AB
6590
6591static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
1da177e4 6592{
1ee6dd77 6593 struct s2io_nic *sp = dev->priv;
1da177e4
LT
6594
6595 if (data)
6596 sp->rx_csum = 1;
6597 else
6598 sp->rx_csum = 0;
6599
6600 return 0;
6601}
ac1f60db
AB
6602
6603static int s2io_get_eeprom_len(struct net_device *dev)
1da177e4
LT
6604{
6605 return (XENA_EEPROM_SPACE);
6606}
6607
b9f2c044 6608static int s2io_get_sset_count(struct net_device *dev, int sset)
1da177e4 6609{
b9f2c044
JG
6610 struct s2io_nic *sp = dev->priv;
6611
6612 switch (sset) {
6613 case ETH_SS_TEST:
6614 return S2IO_TEST_LEN;
6615 case ETH_SS_STATS:
6616 switch(sp->device_type) {
6617 case XFRAME_I_DEVICE:
6618 return XFRAME_I_STAT_LEN;
6619 case XFRAME_II_DEVICE:
6620 return XFRAME_II_STAT_LEN;
6621 default:
6622 return 0;
6623 }
6624 default:
6625 return -EOPNOTSUPP;
6626 }
1da177e4 6627}
ac1f60db
AB
6628
6629static void s2io_ethtool_get_strings(struct net_device *dev,
6630 u32 stringset, u8 * data)
1da177e4 6631{
fa1f0cb3
SS
6632 int stat_size = 0;
6633 struct s2io_nic *sp = dev->priv;
6634
1da177e4
LT
6635 switch (stringset) {
6636 case ETH_SS_TEST:
6637 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6638 break;
6639 case ETH_SS_STATS:
fa1f0cb3
SS
6640 stat_size = sizeof(ethtool_xena_stats_keys);
6641 memcpy(data, &ethtool_xena_stats_keys,stat_size);
6642 if(sp->device_type == XFRAME_II_DEVICE) {
6643 memcpy(data + stat_size,
6644 &ethtool_enhanced_stats_keys,
6645 sizeof(ethtool_enhanced_stats_keys));
6646 stat_size += sizeof(ethtool_enhanced_stats_keys);
6647 }
6648
6649 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6650 sizeof(ethtool_driver_stats_keys));
1da177e4
LT
6651 }
6652}
1da177e4 6653
ac1f60db 6654static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
1da177e4
LT
6655{
6656 if (data)
6657 dev->features |= NETIF_F_IP_CSUM;
6658 else
6659 dev->features &= ~NETIF_F_IP_CSUM;
6660
6661 return 0;
6662}
6663
75c30b13
AR
6664static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6665{
6666 return (dev->features & NETIF_F_TSO) != 0;
6667}
6668static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6669{
6670 if (data)
6671 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6672 else
6673 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6674
6675 return 0;
6676}
1da177e4 6677
7282d491 6678static const struct ethtool_ops netdev_ethtool_ops = {
1da177e4
LT
6679 .get_settings = s2io_ethtool_gset,
6680 .set_settings = s2io_ethtool_sset,
6681 .get_drvinfo = s2io_ethtool_gdrvinfo,
6682 .get_regs_len = s2io_ethtool_get_regs_len,
6683 .get_regs = s2io_ethtool_gregs,
6684 .get_link = ethtool_op_get_link,
6685 .get_eeprom_len = s2io_get_eeprom_len,
6686 .get_eeprom = s2io_ethtool_geeprom,
6687 .set_eeprom = s2io_ethtool_seeprom,
0cec35eb 6688 .get_ringparam = s2io_ethtool_gringparam,
1da177e4
LT
6689 .get_pauseparam = s2io_ethtool_getpause_data,
6690 .set_pauseparam = s2io_ethtool_setpause_data,
6691 .get_rx_csum = s2io_ethtool_get_rx_csum,
6692 .set_rx_csum = s2io_ethtool_set_rx_csum,
1da177e4 6693 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
1da177e4 6694 .set_sg = ethtool_op_set_sg,
75c30b13
AR
6695 .get_tso = s2io_ethtool_op_get_tso,
6696 .set_tso = s2io_ethtool_op_set_tso,
fed5eccd 6697 .set_ufo = ethtool_op_set_ufo,
1da177e4
LT
6698 .self_test = s2io_ethtool_test,
6699 .get_strings = s2io_ethtool_get_strings,
6700 .phys_id = s2io_ethtool_idnic,
b9f2c044
JG
6701 .get_ethtool_stats = s2io_get_ethtool_stats,
6702 .get_sset_count = s2io_get_sset_count,
1da177e4
LT
6703};
6704
6705/**
20346722 6706 * s2io_ioctl - Entry point for the Ioctl
1da177e4
LT
6707 * @dev : Device pointer.
6708 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6709 * a proprietary structure used to pass information to the driver.
6710 * @cmd : This is used to distinguish between the different commands that
6711 * can be passed to the IOCTL functions.
6712 * Description:
20346722
K
6713 * Currently there are no special functionality supported in IOCTL, hence
6714 * function always return EOPNOTSUPPORTED
1da177e4
LT
6715 */
6716
ac1f60db 6717static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1da177e4
LT
6718{
6719 return -EOPNOTSUPP;
6720}
6721
6722/**
6723 * s2io_change_mtu - entry point to change MTU size for the device.
6724 * @dev : device pointer.
6725 * @new_mtu : the new MTU size for the device.
6726 * Description: A driver entry point to change MTU size for the device.
6727 * Before changing the MTU the device must be stopped.
6728 * Return value:
6729 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6730 * file on failure.
6731 */
6732
ac1f60db 6733static int s2io_change_mtu(struct net_device *dev, int new_mtu)
1da177e4 6734{
1ee6dd77 6735 struct s2io_nic *sp = dev->priv;
9f74ffde 6736 int ret = 0;
1da177e4
LT
6737
6738 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6739 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6740 dev->name);
6741 return -EPERM;
6742 }
6743
1da177e4 6744 dev->mtu = new_mtu;
d8892c6e 6745 if (netif_running(dev)) {
3a3d5756 6746 s2io_stop_all_tx_queue(sp);
e6a8fee2 6747 s2io_card_down(sp);
9f74ffde
SH
6748 ret = s2io_card_up(sp);
6749 if (ret) {
d8892c6e
K
6750 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6751 __FUNCTION__);
9f74ffde 6752 return ret;
d8892c6e 6753 }
3a3d5756 6754 s2io_wake_all_tx_queue(sp);
d8892c6e 6755 } else { /* Device is down */
1ee6dd77 6756 struct XENA_dev_config __iomem *bar0 = sp->bar0;
d8892c6e
K
6757 u64 val64 = new_mtu;
6758
6759 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6760 }
1da177e4 6761
9f74ffde 6762 return ret;
1da177e4
LT
6763}
6764
1da177e4
LT
6765/**
6766 * s2io_set_link - Set the LInk status
6767 * @data: long pointer to device private structue
6768 * Description: Sets the link status for the adapter
6769 */
6770
c4028958 6771static void s2io_set_link(struct work_struct *work)
1da177e4 6772{
1ee6dd77 6773 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
1da177e4 6774 struct net_device *dev = nic->dev;
1ee6dd77 6775 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
6776 register u64 val64;
6777 u16 subid;
6778
22747d6b
FR
6779 rtnl_lock();
6780
6781 if (!netif_running(dev))
6782 goto out_unlock;
6783
92b84437 6784 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
1da177e4 6785 /* The card is being reset, no point doing anything */
22747d6b 6786 goto out_unlock;
1da177e4
LT
6787 }
6788
6789 subid = nic->pdev->subsystem_device;
a371a07d
K
6790 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6791 /*
6792 * Allow a small delay for the NICs self initiated
6793 * cleanup to complete.
6794 */
6795 msleep(100);
6796 }
1da177e4
LT
6797
6798 val64 = readq(&bar0->adapter_status);
19a60522
SS
6799 if (LINK_IS_UP(val64)) {
6800 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6801 if (verify_xena_quiescence(nic)) {
6802 val64 = readq(&bar0->adapter_control);
6803 val64 |= ADAPTER_CNTL_EN;
1da177e4 6804 writeq(val64, &bar0->adapter_control);
19a60522
SS
6805 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6806 nic->device_type, subid)) {
6807 val64 = readq(&bar0->gpio_control);
6808 val64 |= GPIO_CTRL_GPIO_0;
6809 writeq(val64, &bar0->gpio_control);
6810 val64 = readq(&bar0->gpio_control);
6811 } else {
6812 val64 |= ADAPTER_LED_ON;
6813 writeq(val64, &bar0->adapter_control);
a371a07d 6814 }
1da177e4 6815 nic->device_enabled_once = TRUE;
19a60522
SS
6816 } else {
6817 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6818 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
3a3d5756 6819 s2io_stop_all_tx_queue(nic);
1da177e4 6820 }
19a60522 6821 }
92c48799
SS
6822 val64 = readq(&bar0->adapter_control);
6823 val64 |= ADAPTER_LED_ON;
6824 writeq(val64, &bar0->adapter_control);
6825 s2io_link(nic, LINK_UP);
19a60522
SS
6826 } else {
6827 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6828 subid)) {
6829 val64 = readq(&bar0->gpio_control);
6830 val64 &= ~GPIO_CTRL_GPIO_0;
6831 writeq(val64, &bar0->gpio_control);
6832 val64 = readq(&bar0->gpio_control);
1da177e4 6833 }
92c48799
SS
6834 /* turn off LED */
6835 val64 = readq(&bar0->adapter_control);
6836 val64 = val64 &(~ADAPTER_LED_ON);
6837 writeq(val64, &bar0->adapter_control);
19a60522 6838 s2io_link(nic, LINK_DOWN);
1da177e4 6839 }
92b84437 6840 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
22747d6b
FR
6841
6842out_unlock:
d8d70caf 6843 rtnl_unlock();
1da177e4
LT
6844}
6845
1ee6dd77
RB
6846static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6847 struct buffAdd *ba,
6848 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6849 u64 *temp2, int size)
5d3213cc
AR
6850{
6851 struct net_device *dev = sp->dev;
491abf25 6852 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
5d3213cc
AR
6853
6854 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6d517a27 6855 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
5d3213cc
AR
6856 /* allocate skb */
6857 if (*skb) {
6858 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6859 /*
6860 * As Rx frame are not going to be processed,
6861 * using same mapped address for the Rxd
6862 * buffer pointer
6863 */
6d517a27 6864 rxdp1->Buffer0_ptr = *temp0;
5d3213cc
AR
6865 } else {
6866 *skb = dev_alloc_skb(size);
6867 if (!(*skb)) {
0c61ed5f 6868 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
c53d4945
SH
6869 DBG_PRINT(INFO_DBG, "memory to allocate ");
6870 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6871 sp->mac_control.stats_info->sw_stat. \
6872 mem_alloc_fail_cnt++;
5d3213cc
AR
6873 return -ENOMEM ;
6874 }
8a4bdbaa 6875 sp->mac_control.stats_info->sw_stat.mem_allocated
491976b2 6876 += (*skb)->truesize;
5d3213cc
AR
6877 /* storing the mapped addr in a temp variable
6878 * such it will be used for next rxd whose
6879 * Host Control is NULL
6880 */
6d517a27 6881 rxdp1->Buffer0_ptr = *temp0 =
5d3213cc
AR
6882 pci_map_single( sp->pdev, (*skb)->data,
6883 size - NET_IP_ALIGN,
6884 PCI_DMA_FROMDEVICE);
491abf25
VP
6885 if( (rxdp1->Buffer0_ptr == 0) ||
6886 (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
6887 goto memalloc_failed;
6888 }
5d3213cc
AR
6889 rxdp->Host_Control = (unsigned long) (*skb);
6890 }
6891 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6d517a27 6892 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
5d3213cc
AR
6893 /* Two buffer Mode */
6894 if (*skb) {
6d517a27
VP
6895 rxdp3->Buffer2_ptr = *temp2;
6896 rxdp3->Buffer0_ptr = *temp0;
6897 rxdp3->Buffer1_ptr = *temp1;
5d3213cc
AR
6898 } else {
6899 *skb = dev_alloc_skb(size);
2ceaac75 6900 if (!(*skb)) {
c53d4945
SH
6901 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6902 DBG_PRINT(INFO_DBG, "memory to allocate ");
6903 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6904 sp->mac_control.stats_info->sw_stat. \
6905 mem_alloc_fail_cnt++;
2ceaac75
DR
6906 return -ENOMEM;
6907 }
8a4bdbaa 6908 sp->mac_control.stats_info->sw_stat.mem_allocated
491976b2 6909 += (*skb)->truesize;
6d517a27 6910 rxdp3->Buffer2_ptr = *temp2 =
5d3213cc
AR
6911 pci_map_single(sp->pdev, (*skb)->data,
6912 dev->mtu + 4,
6913 PCI_DMA_FROMDEVICE);
491abf25
VP
6914 if( (rxdp3->Buffer2_ptr == 0) ||
6915 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
6916 goto memalloc_failed;
6917 }
6d517a27 6918 rxdp3->Buffer0_ptr = *temp0 =
5d3213cc
AR
6919 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6920 PCI_DMA_FROMDEVICE);
491abf25
VP
6921 if( (rxdp3->Buffer0_ptr == 0) ||
6922 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
6923 pci_unmap_single (sp->pdev,
3e847423 6924 (dma_addr_t)rxdp3->Buffer2_ptr,
491abf25
VP
6925 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6926 goto memalloc_failed;
6927 }
5d3213cc
AR
6928 rxdp->Host_Control = (unsigned long) (*skb);
6929
6930 /* Buffer-1 will be dummy buffer not used */
6d517a27 6931 rxdp3->Buffer1_ptr = *temp1 =
5d3213cc 6932 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
5d3213cc 6933 PCI_DMA_FROMDEVICE);
491abf25
VP
6934 if( (rxdp3->Buffer1_ptr == 0) ||
6935 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
6936 pci_unmap_single (sp->pdev,
3e847423
AV
6937 (dma_addr_t)rxdp3->Buffer0_ptr,
6938 BUF0_LEN, PCI_DMA_FROMDEVICE);
6939 pci_unmap_single (sp->pdev,
6940 (dma_addr_t)rxdp3->Buffer2_ptr,
491abf25
VP
6941 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6942 goto memalloc_failed;
6943 }
5d3213cc
AR
6944 }
6945 }
6946 return 0;
491abf25
VP
6947 memalloc_failed:
6948 stats->pci_map_fail_cnt++;
6949 stats->mem_freed += (*skb)->truesize;
6950 dev_kfree_skb(*skb);
6951 return -ENOMEM;
5d3213cc 6952}
491abf25 6953
1ee6dd77
RB
6954static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6955 int size)
5d3213cc
AR
6956{
6957 struct net_device *dev = sp->dev;
6958 if (sp->rxd_mode == RXD_MODE_1) {
6959 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6960 } else if (sp->rxd_mode == RXD_MODE_3B) {
6961 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6962 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6963 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
5d3213cc
AR
6964 }
6965}
6966
1ee6dd77 6967static int rxd_owner_bit_reset(struct s2io_nic *sp)
5d3213cc
AR
6968{
6969 int i, j, k, blk_cnt = 0, size;
1ee6dd77 6970 struct mac_info * mac_control = &sp->mac_control;
5d3213cc
AR
6971 struct config_param *config = &sp->config;
6972 struct net_device *dev = sp->dev;
1ee6dd77 6973 struct RxD_t *rxdp = NULL;
5d3213cc 6974 struct sk_buff *skb = NULL;
1ee6dd77 6975 struct buffAdd *ba = NULL;
5d3213cc
AR
6976 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6977
6978 /* Calculate the size based on ring mode */
6979 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6980 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6981 if (sp->rxd_mode == RXD_MODE_1)
6982 size += NET_IP_ALIGN;
6983 else if (sp->rxd_mode == RXD_MODE_3B)
6984 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
5d3213cc
AR
6985
6986 for (i = 0; i < config->rx_ring_num; i++) {
6987 blk_cnt = config->rx_cfg[i].num_rxd /
6988 (rxd_count[sp->rxd_mode] +1);
6989
6990 for (j = 0; j < blk_cnt; j++) {
6991 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6992 rxdp = mac_control->rings[i].
6993 rx_blocks[j].rxds[k].virt_addr;
6d517a27 6994 if(sp->rxd_mode == RXD_MODE_3B)
5d3213cc 6995 ba = &mac_control->rings[i].ba[j][k];
ac1f90d6 6996 if (set_rxd_buffer_pointer(sp, rxdp, ba,
5d3213cc
AR
6997 &skb,(u64 *)&temp0_64,
6998 (u64 *)&temp1_64,
ac1f90d6
SS
6999 (u64 *)&temp2_64,
7000 size) == ENOMEM) {
7001 return 0;
7002 }
5d3213cc
AR
7003
7004 set_rxd_buffer_size(sp, rxdp, size);
7005 wmb();
7006 /* flip the Ownership bit to Hardware */
7007 rxdp->Control_1 |= RXD_OWN_XENA;
7008 }
7009 }
7010 }
7011 return 0;
7012
7013}
7014
1ee6dd77 7015static int s2io_add_isr(struct s2io_nic * sp)
1da177e4 7016{
e6a8fee2 7017 int ret = 0;
c92ca04b 7018 struct net_device *dev = sp->dev;
e6a8fee2 7019 int err = 0;
1da177e4 7020
eaae7f72 7021 if (sp->config.intr_type == MSI_X)
e6a8fee2
AR
7022 ret = s2io_enable_msi_x(sp);
7023 if (ret) {
7024 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
eaae7f72 7025 sp->config.intr_type = INTA;
20346722 7026 }
1da177e4 7027
1ee6dd77 7028 /* Store the values of the MSIX table in the struct s2io_nic structure */
e6a8fee2 7029 store_xmsi_data(sp);
c92ca04b 7030
e6a8fee2 7031 /* After proper initialization of H/W, register ISR */
eaae7f72 7032 if (sp->config.intr_type == MSI_X) {
ac731ab6
SH
7033 int i, msix_rx_cnt = 0;
7034
f61e0a35
SH
7035 for (i = 0; i < sp->num_entries; i++) {
7036 if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7037 if (sp->s2io_entries[i].type ==
ac731ab6
SH
7038 MSIX_RING_TYPE) {
7039 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7040 dev->name, i);
7041 err = request_irq(sp->entries[i].vector,
7042 s2io_msix_ring_handle, 0,
7043 sp->desc[i],
7044 sp->s2io_entries[i].arg);
7045 } else if (sp->s2io_entries[i].type ==
7046 MSIX_ALARM_TYPE) {
7047 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
e6a8fee2 7048 dev->name, i);
ac731ab6
SH
7049 err = request_irq(sp->entries[i].vector,
7050 s2io_msix_fifo_handle, 0,
7051 sp->desc[i],
7052 sp->s2io_entries[i].arg);
7053
fb6a825b 7054 }
ac731ab6
SH
7055 /* if either data or addr is zero print it. */
7056 if (!(sp->msix_info[i].addr &&
fb6a825b 7057 sp->msix_info[i].data)) {
ac731ab6
SH
7058 DBG_PRINT(ERR_DBG,
7059 "%s @Addr:0x%llx Data:0x%llx\n",
7060 sp->desc[i],
fb6a825b
SS
7061 (unsigned long long)
7062 sp->msix_info[i].addr,
3459feb8 7063 (unsigned long long)
ac731ab6
SH
7064 ntohl(sp->msix_info[i].data));
7065 } else
fb6a825b 7066 msix_rx_cnt++;
ac731ab6
SH
7067 if (err) {
7068 remove_msix_isr(sp);
7069
7070 DBG_PRINT(ERR_DBG,
7071 "%s:MSI-X-%d registration "
7072 "failed\n", dev->name, i);
7073
7074 DBG_PRINT(ERR_DBG,
7075 "%s: Defaulting to INTA\n",
7076 dev->name);
7077 sp->config.intr_type = INTA;
7078 break;
fb6a825b 7079 }
ac731ab6
SH
7080 sp->s2io_entries[i].in_use =
7081 MSIX_REGISTERED_SUCCESS;
f61e0a35 7082 }
e6a8fee2 7083 }
18b2b7bd 7084 if (!err) {
18b2b7bd 7085 printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
ac731ab6
SH
7086 --msix_rx_cnt);
7087 DBG_PRINT(INFO_DBG, "MSI-X-TX entries enabled"
7088 " through alarm vector\n");
18b2b7bd 7089 }
e6a8fee2 7090 }
eaae7f72 7091 if (sp->config.intr_type == INTA) {
e6a8fee2
AR
7092 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
7093 sp->name, dev);
7094 if (err) {
7095 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7096 dev->name);
7097 return -1;
7098 }
7099 }
7100 return 0;
7101}
1ee6dd77 7102static void s2io_rem_isr(struct s2io_nic * sp)
e6a8fee2 7103{
18b2b7bd
SH
7104 if (sp->config.intr_type == MSI_X)
7105 remove_msix_isr(sp);
7106 else
7107 remove_inta_isr(sp);
e6a8fee2
AR
7108}
7109
d796fdb7 7110static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
e6a8fee2
AR
7111{
7112 int cnt = 0;
1ee6dd77 7113 struct XENA_dev_config __iomem *bar0 = sp->bar0;
e6a8fee2 7114 register u64 val64 = 0;
5f490c96
SH
7115 struct config_param *config;
7116 config = &sp->config;
e6a8fee2 7117
9f74ffde
SH
7118 if (!is_s2io_card_up(sp))
7119 return;
7120
e6a8fee2
AR
7121 del_timer_sync(&sp->alarm_timer);
7122 /* If s2io_set_link task is executing, wait till it completes. */
92b84437 7123 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
e6a8fee2
AR
7124 msleep(50);
7125 }
92b84437 7126 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
e6a8fee2 7127
5f490c96 7128 /* Disable napi */
f61e0a35
SH
7129 if (sp->config.napi) {
7130 int off = 0;
7131 if (config->intr_type == MSI_X) {
7132 for (; off < sp->config.rx_ring_num; off++)
7133 napi_disable(&sp->mac_control.rings[off].napi);
7134 }
7135 else
7136 napi_disable(&sp->napi);
7137 }
5f490c96 7138
e6a8fee2 7139 /* disable Tx and Rx traffic on the NIC */
d796fdb7
LV
7140 if (do_io)
7141 stop_nic(sp);
e6a8fee2
AR
7142
7143 s2io_rem_isr(sp);
1da177e4 7144
1da177e4 7145 /* Check if the device is Quiescent and then Reset the NIC */
d796fdb7 7146 while(do_io) {
5d3213cc
AR
7147 /* As per the HW requirement we need to replenish the
7148 * receive buffer to avoid the ring bump. Since there is
7149 * no intention of processing the Rx frame at this pointwe are
7150 * just settting the ownership bit of rxd in Each Rx
7151 * ring to HW and set the appropriate buffer size
7152 * based on the ring mode
7153 */
7154 rxd_owner_bit_reset(sp);
7155
1da177e4 7156 val64 = readq(&bar0->adapter_status);
19a60522
SS
7157 if (verify_xena_quiescence(sp)) {
7158 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
1da177e4
LT
7159 break;
7160 }
7161
7162 msleep(50);
7163 cnt++;
7164 if (cnt == 10) {
7165 DBG_PRINT(ERR_DBG,
7166 "s2io_close:Device not Quiescent ");
7167 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
7168 (unsigned long long) val64);
7169 break;
7170 }
d796fdb7
LV
7171 }
7172 if (do_io)
7173 s2io_reset(sp);
1da177e4 7174
7ba013ac 7175 /* Free all Tx buffers */
1da177e4 7176 free_tx_buffers(sp);
7ba013ac
K
7177
7178 /* Free all Rx buffers */
1da177e4
LT
7179 free_rx_buffers(sp);
7180
92b84437 7181 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
1da177e4
LT
7182}
7183
d796fdb7
LV
7184static void s2io_card_down(struct s2io_nic * sp)
7185{
7186 do_s2io_card_down(sp, 1);
7187}
7188
1ee6dd77 7189static int s2io_card_up(struct s2io_nic * sp)
1da177e4 7190{
cc6e7c44 7191 int i, ret = 0;
1ee6dd77 7192 struct mac_info *mac_control;
1da177e4
LT
7193 struct config_param *config;
7194 struct net_device *dev = (struct net_device *) sp->dev;
e6a8fee2 7195 u16 interruptible;
1da177e4
LT
7196
7197 /* Initialize the H/W I/O registers */
9f74ffde
SH
7198 ret = init_nic(sp);
7199 if (ret != 0) {
1da177e4
LT
7200 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7201 dev->name);
9f74ffde
SH
7202 if (ret != -EIO)
7203 s2io_reset(sp);
7204 return ret;
1da177e4
LT
7205 }
7206
20346722
K
7207 /*
7208 * Initializing the Rx buffers. For now we are considering only 1
1da177e4
LT
7209 * Rx ring and initializing buffers into 30 Rx blocks
7210 */
7211 mac_control = &sp->mac_control;
7212 config = &sp->config;
7213
7214 for (i = 0; i < config->rx_ring_num; i++) {
0425b46a
SH
7215 mac_control->rings[i].mtu = dev->mtu;
7216 ret = fill_rx_buffers(&mac_control->rings[i]);
7217 if (ret) {
1da177e4
LT
7218 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7219 dev->name);
7220 s2io_reset(sp);
7221 free_rx_buffers(sp);
7222 return -ENOMEM;
7223 }
7224 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
0425b46a 7225 mac_control->rings[i].rx_bufs_left);
1da177e4 7226 }
5f490c96
SH
7227
7228 /* Initialise napi */
f61e0a35
SH
7229 if (config->napi) {
7230 int i;
7231 if (config->intr_type == MSI_X) {
7232 for (i = 0; i < sp->config.rx_ring_num; i++)
7233 napi_enable(&sp->mac_control.rings[i].napi);
7234 } else {
7235 napi_enable(&sp->napi);
7236 }
7237 }
5f490c96 7238
19a60522
SS
7239 /* Maintain the state prior to the open */
7240 if (sp->promisc_flg)
7241 sp->promisc_flg = 0;
7242 if (sp->m_cast_flg) {
7243 sp->m_cast_flg = 0;
7244 sp->all_multi_pos= 0;
7245 }
1da177e4
LT
7246
7247 /* Setting its receive mode */
7248 s2io_set_multicast(dev);
7249
7d3d0439 7250 if (sp->lro) {
b41477f3 7251 /* Initialize max aggregatable pkts per session based on MTU */
7d3d0439
RA
7252 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7253 /* Check if we can use(if specified) user provided value */
7254 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7255 sp->lro_max_aggr_per_sess = lro_max_pkts;
7256 }
7257
1da177e4
LT
7258 /* Enable Rx Traffic and interrupts on the NIC */
7259 if (start_nic(sp)) {
7260 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
1da177e4 7261 s2io_reset(sp);
e6a8fee2
AR
7262 free_rx_buffers(sp);
7263 return -ENODEV;
7264 }
7265
7266 /* Add interrupt service routine */
7267 if (s2io_add_isr(sp) != 0) {
eaae7f72 7268 if (sp->config.intr_type == MSI_X)
e6a8fee2
AR
7269 s2io_rem_isr(sp);
7270 s2io_reset(sp);
1da177e4
LT
7271 free_rx_buffers(sp);
7272 return -ENODEV;
7273 }
7274
25fff88e
K
7275 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7276
e6a8fee2 7277 /* Enable select interrupts */
9caab458 7278 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
eaae7f72 7279 if (sp->config.intr_type != INTA)
ac731ab6 7280 en_dis_able_nic_intrs(sp, TX_TRAFFIC_INTR, ENABLE_INTRS);
e6a8fee2
AR
7281 else {
7282 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
9caab458 7283 interruptible |= TX_PIC_INTR;
e6a8fee2
AR
7284 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7285 }
7286
92b84437 7287 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
1da177e4
LT
7288 return 0;
7289}
7290
20346722 7291/**
1da177e4
LT
7292 * s2io_restart_nic - Resets the NIC.
7293 * @data : long pointer to the device private structure
7294 * Description:
7295 * This function is scheduled to be run by the s2io_tx_watchdog
20346722 7296 * function after 0.5 secs to reset the NIC. The idea is to reduce
1da177e4
LT
7297 * the run time of the watch dog routine which is run holding a
7298 * spin lock.
7299 */
7300
c4028958 7301static void s2io_restart_nic(struct work_struct *work)
1da177e4 7302{
1ee6dd77 7303 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
c4028958 7304 struct net_device *dev = sp->dev;
1da177e4 7305
22747d6b
FR
7306 rtnl_lock();
7307
7308 if (!netif_running(dev))
7309 goto out_unlock;
7310
e6a8fee2 7311 s2io_card_down(sp);
1da177e4
LT
7312 if (s2io_card_up(sp)) {
7313 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
7314 dev->name);
7315 }
3a3d5756 7316 s2io_wake_all_tx_queue(sp);
1da177e4
LT
7317 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
7318 dev->name);
22747d6b
FR
7319out_unlock:
7320 rtnl_unlock();
1da177e4
LT
7321}
7322
20346722
K
7323/**
7324 * s2io_tx_watchdog - Watchdog for transmit side.
1da177e4
LT
7325 * @dev : Pointer to net device structure
7326 * Description:
7327 * This function is triggered if the Tx Queue is stopped
7328 * for a pre-defined amount of time when the Interface is still up.
7329 * If the Interface is jammed in such a situation, the hardware is
7330 * reset (by s2io_close) and restarted again (by s2io_open) to
7331 * overcome any problem that might have been caused in the hardware.
7332 * Return value:
7333 * void
7334 */
7335
7336static void s2io_tx_watchdog(struct net_device *dev)
7337{
1ee6dd77 7338 struct s2io_nic *sp = dev->priv;
1da177e4
LT
7339
7340 if (netif_carrier_ok(dev)) {
c53d4945 7341 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
1da177e4 7342 schedule_work(&sp->rst_timer_task);
bd1034f0 7343 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
1da177e4
LT
7344 }
7345}
7346
7347/**
7348 * rx_osm_handler - To perform some OS related operations on SKB.
7349 * @sp: private member of the device structure,pointer to s2io_nic structure.
7350 * @skb : the socket buffer pointer.
7351 * @len : length of the packet
7352 * @cksum : FCS checksum of the frame.
7353 * @ring_no : the ring from which this RxD was extracted.
20346722 7354 * Description:
b41477f3 7355 * This function is called by the Rx interrupt serivce routine to perform
1da177e4
LT
7356 * some OS related operations on the SKB before passing it to the upper
7357 * layers. It mainly checks if the checksum is OK, if so adds it to the
7358 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7359 * to the upper layer. If the checksum is wrong, it increments the Rx
7360 * packet error count, frees the SKB and returns error.
7361 * Return value:
7362 * SUCCESS on success and -1 on failure.
7363 */
1ee6dd77 7364static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
1da177e4 7365{
1ee6dd77 7366 struct s2io_nic *sp = ring_data->nic;
0425b46a 7367 struct net_device *dev = (struct net_device *) ring_data->dev;
20346722
K
7368 struct sk_buff *skb = (struct sk_buff *)
7369 ((unsigned long) rxdp->Host_Control);
7370 int ring_no = ring_data->ring_no;
1da177e4 7371 u16 l3_csum, l4_csum;
863c11a9 7372 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
1ee6dd77 7373 struct lro *lro;
f9046eb3 7374 u8 err_mask;
da6971d8 7375
20346722 7376 skb->dev = dev;
c92ca04b 7377
863c11a9 7378 if (err) {
bd1034f0
AR
7379 /* Check for parity error */
7380 if (err & 0x1) {
7381 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7382 }
f9046eb3
OH
7383 err_mask = err >> 48;
7384 switch(err_mask) {
491976b2
SH
7385 case 1:
7386 sp->mac_control.stats_info->sw_stat.
7387 rx_parity_err_cnt++;
7388 break;
7389
7390 case 2:
7391 sp->mac_control.stats_info->sw_stat.
7392 rx_abort_cnt++;
7393 break;
7394
7395 case 3:
7396 sp->mac_control.stats_info->sw_stat.
7397 rx_parity_abort_cnt++;
7398 break;
7399
7400 case 4:
7401 sp->mac_control.stats_info->sw_stat.
7402 rx_rda_fail_cnt++;
7403 break;
7404
7405 case 5:
7406 sp->mac_control.stats_info->sw_stat.
7407 rx_unkn_prot_cnt++;
7408 break;
7409
7410 case 6:
7411 sp->mac_control.stats_info->sw_stat.
7412 rx_fcs_err_cnt++;
7413 break;
bd1034f0 7414
491976b2
SH
7415 case 7:
7416 sp->mac_control.stats_info->sw_stat.
7417 rx_buf_size_err_cnt++;
7418 break;
7419
7420 case 8:
7421 sp->mac_control.stats_info->sw_stat.
7422 rx_rxd_corrupt_cnt++;
7423 break;
7424
7425 case 15:
7426 sp->mac_control.stats_info->sw_stat.
7427 rx_unkn_err_cnt++;
7428 break;
7429 }
863c11a9
AR
7430 /*
7431 * Drop the packet if bad transfer code. Exception being
7432 * 0x5, which could be due to unsupported IPv6 extension header.
7433 * In this case, we let stack handle the packet.
7434 * Note that in this case, since checksum will be incorrect,
7435 * stack will validate the same.
7436 */
f9046eb3
OH
7437 if (err_mask != 0x5) {
7438 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7439 dev->name, err_mask);
863c11a9 7440 sp->stats.rx_crc_errors++;
8a4bdbaa 7441 sp->mac_control.stats_info->sw_stat.mem_freed
491976b2 7442 += skb->truesize;
863c11a9 7443 dev_kfree_skb(skb);
0425b46a 7444 ring_data->rx_bufs_left -= 1;
863c11a9
AR
7445 rxdp->Host_Control = 0;
7446 return 0;
7447 }
20346722 7448 }
1da177e4 7449
20346722 7450 /* Updating statistics */
0425b46a 7451 ring_data->rx_packets++;
20346722 7452 rxdp->Host_Control = 0;
da6971d8
AR
7453 if (sp->rxd_mode == RXD_MODE_1) {
7454 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
20346722 7455
0425b46a 7456 ring_data->rx_bytes += len;
da6971d8
AR
7457 skb_put(skb, len);
7458
6d517a27 7459 } else if (sp->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
7460 int get_block = ring_data->rx_curr_get_info.block_index;
7461 int get_off = ring_data->rx_curr_get_info.offset;
7462 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7463 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7464 unsigned char *buff = skb_push(skb, buf0_len);
7465
1ee6dd77 7466 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
0425b46a 7467 ring_data->rx_bytes += buf0_len + buf2_len;
da6971d8 7468 memcpy(buff, ba->ba_0, buf0_len);
6d517a27 7469 skb_put(skb, buf2_len);
da6971d8 7470 }
20346722 7471
0425b46a
SH
7472 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!ring_data->lro) ||
7473 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
20346722
K
7474 (sp->rx_csum)) {
7475 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
1da177e4
LT
7476 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7477 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
20346722 7478 /*
1da177e4
LT
7479 * NIC verifies if the Checksum of the received
7480 * frame is Ok or not and accordingly returns
7481 * a flag in the RxD.
7482 */
7483 skb->ip_summed = CHECKSUM_UNNECESSARY;
0425b46a 7484 if (ring_data->lro) {
7d3d0439
RA
7485 u32 tcp_len;
7486 u8 *tcp;
7487 int ret = 0;
7488
0425b46a
SH
7489 ret = s2io_club_tcp_session(ring_data,
7490 skb->data, &tcp, &tcp_len, &lro,
7491 rxdp, sp);
7d3d0439
RA
7492 switch (ret) {
7493 case 3: /* Begin anew */
7494 lro->parent = skb;
7495 goto aggregate;
7496 case 1: /* Aggregate */
7497 {
7498 lro_append_pkt(sp, lro,
7499 skb, tcp_len);
7500 goto aggregate;
7501 }
7502 case 4: /* Flush session */
7503 {
7504 lro_append_pkt(sp, lro,
7505 skb, tcp_len);
cdb5bf02
SH
7506 queue_rx_frame(lro->parent,
7507 lro->vlan_tag);
7d3d0439
RA
7508 clear_lro_session(lro);
7509 sp->mac_control.stats_info->
7510 sw_stat.flush_max_pkts++;
7511 goto aggregate;
7512 }
7513 case 2: /* Flush both */
7514 lro->parent->data_len =
7515 lro->frags_len;
7516 sp->mac_control.stats_info->
7517 sw_stat.sending_both++;
cdb5bf02
SH
7518 queue_rx_frame(lro->parent,
7519 lro->vlan_tag);
7d3d0439
RA
7520 clear_lro_session(lro);
7521 goto send_up;
7522 case 0: /* sessions exceeded */
c92ca04b
AR
7523 case -1: /* non-TCP or not
7524 * L2 aggregatable
7525 */
7d3d0439
RA
7526 case 5: /*
7527 * First pkt in session not
7528 * L3/L4 aggregatable
7529 */
7530 break;
7531 default:
7532 DBG_PRINT(ERR_DBG,
7533 "%s: Samadhana!!\n",
7534 __FUNCTION__);
7535 BUG();
7536 }
7537 }
1da177e4 7538 } else {
20346722
K
7539 /*
7540 * Packet with erroneous checksum, let the
1da177e4
LT
7541 * upper layers deal with it.
7542 */
7543 skb->ip_summed = CHECKSUM_NONE;
7544 }
cdb5bf02 7545 } else
1da177e4 7546 skb->ip_summed = CHECKSUM_NONE;
cdb5bf02 7547
491976b2 7548 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7d3d0439 7549send_up:
cdb5bf02 7550 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
1da177e4 7551 dev->last_rx = jiffies;
7d3d0439 7552aggregate:
0425b46a 7553 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
1da177e4
LT
7554 return SUCCESS;
7555}
7556
7557/**
7558 * s2io_link - stops/starts the Tx queue.
7559 * @sp : private member of the device structure, which is a pointer to the
7560 * s2io_nic structure.
7561 * @link : inidicates whether link is UP/DOWN.
7562 * Description:
7563 * This function stops/starts the Tx queue depending on whether the link
20346722
K
7564 * status of the NIC is is down or up. This is called by the Alarm
7565 * interrupt handler whenever a link change interrupt comes up.
1da177e4
LT
7566 * Return value:
7567 * void.
7568 */
7569
1ee6dd77 7570static void s2io_link(struct s2io_nic * sp, int link)
1da177e4
LT
7571{
7572 struct net_device *dev = (struct net_device *) sp->dev;
7573
7574 if (link != sp->last_link_state) {
b7c5678f 7575 init_tti(sp, link);
1da177e4
LT
7576 if (link == LINK_DOWN) {
7577 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
3a3d5756 7578 s2io_stop_all_tx_queue(sp);
1da177e4 7579 netif_carrier_off(dev);
491976b2 7580 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
8a4bdbaa 7581 sp->mac_control.stats_info->sw_stat.link_up_time =
491976b2
SH
7582 jiffies - sp->start_time;
7583 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
1da177e4
LT
7584 } else {
7585 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
491976b2 7586 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
8a4bdbaa 7587 sp->mac_control.stats_info->sw_stat.link_down_time =
491976b2
SH
7588 jiffies - sp->start_time;
7589 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
1da177e4 7590 netif_carrier_on(dev);
3a3d5756 7591 s2io_wake_all_tx_queue(sp);
1da177e4
LT
7592 }
7593 }
7594 sp->last_link_state = link;
491976b2 7595 sp->start_time = jiffies;
1da177e4
LT
7596}
7597
20346722
K
7598/**
7599 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7600 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
7601 * s2io_nic structure.
7602 * Description:
7603 * This function initializes a few of the PCI and PCI-X configuration registers
7604 * with recommended values.
7605 * Return value:
7606 * void
7607 */
7608
1ee6dd77 7609static void s2io_init_pci(struct s2io_nic * sp)
1da177e4 7610{
20346722 7611 u16 pci_cmd = 0, pcix_cmd = 0;
1da177e4
LT
7612
7613 /* Enable Data Parity Error Recovery in PCI-X command register. */
7614 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7615 &(pcix_cmd));
1da177e4 7616 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7617 (pcix_cmd | 1));
1da177e4 7618 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7619 &(pcix_cmd));
1da177e4
LT
7620
7621 /* Set the PErr Response bit in PCI command register. */
7622 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7623 pci_write_config_word(sp->pdev, PCI_COMMAND,
7624 (pci_cmd | PCI_COMMAND_PARITY));
7625 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
1da177e4
LT
7626}
7627
3a3d5756
SH
7628static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7629 u8 *dev_multiq)
9dc737a7 7630{
2fda096d 7631 if ((tx_fifo_num > MAX_TX_FIFOS) ||
6cfc482b 7632 (tx_fifo_num < 1)) {
2fda096d
SR
7633 DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos "
7634 "(%d) not supported\n", tx_fifo_num);
6cfc482b
SH
7635
7636 if (tx_fifo_num < 1)
7637 tx_fifo_num = 1;
7638 else
7639 tx_fifo_num = MAX_TX_FIFOS;
7640
2fda096d
SR
7641 DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num);
7642 DBG_PRINT(ERR_DBG, "tx fifos\n");
9dc737a7 7643 }
2fda096d 7644
3a3d5756
SH
7645#ifndef CONFIG_NETDEVICES_MULTIQUEUE
7646 if (multiq) {
7647 DBG_PRINT(ERR_DBG, "s2io: Multiqueue support not enabled\n");
7648 multiq = 0;
7649 }
7650#endif
6cfc482b 7651 if (multiq)
3a3d5756 7652 *dev_multiq = multiq;
6cfc482b
SH
7653
7654 if (tx_steering_type && (1 == tx_fifo_num)) {
7655 if (tx_steering_type != TX_DEFAULT_STEERING)
7656 DBG_PRINT(ERR_DBG,
7657 "s2io: Tx steering is not supported with "
7658 "one fifo. Disabling Tx steering.\n");
7659 tx_steering_type = NO_STEERING;
7660 }
7661
7662 if ((tx_steering_type < NO_STEERING) ||
7663 (tx_steering_type > TX_DEFAULT_STEERING)) {
7664 DBG_PRINT(ERR_DBG, "s2io: Requested transmit steering not "
7665 "supported\n");
7666 DBG_PRINT(ERR_DBG, "s2io: Disabling transmit steering\n");
7667 tx_steering_type = NO_STEERING;
3a3d5756
SH
7668 }
7669
0425b46a
SH
7670 if (rx_ring_num > MAX_RX_RINGS) {
7671 DBG_PRINT(ERR_DBG, "s2io: Requested number of rx rings not "
9dc737a7 7672 "supported\n");
0425b46a
SH
7673 DBG_PRINT(ERR_DBG, "s2io: Default to %d rx rings\n",
7674 MAX_RX_RINGS);
7675 rx_ring_num = MAX_RX_RINGS;
9dc737a7 7676 }
0425b46a 7677
eccb8628 7678 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
9dc737a7
AR
7679 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7680 "Defaulting to INTA\n");
7681 *dev_intr_type = INTA;
7682 }
596c5c97 7683
9dc737a7
AR
7684 if ((*dev_intr_type == MSI_X) &&
7685 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7686 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6aa20a22 7687 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
9dc737a7
AR
7688 "Defaulting to INTA\n");
7689 *dev_intr_type = INTA;
7690 }
fb6a825b 7691
6d517a27 7692 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
9dc737a7 7693 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6d517a27
VP
7694 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7695 rx_ring_mode = 1;
9dc737a7
AR
7696 }
7697 return SUCCESS;
7698}
7699
9fc93a41
SS
7700/**
7701 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7702 * or Traffic class respectively.
b7c5678f 7703 * @nic: device private variable
9fc93a41
SS
7704 * Description: The function configures the receive steering to
7705 * desired receive ring.
7706 * Return Value: SUCCESS on success and
7707 * '-1' on failure (endian settings incorrect).
7708 */
7709static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7710{
7711 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7712 register u64 val64 = 0;
7713
7714 if (ds_codepoint > 63)
7715 return FAILURE;
7716
7717 val64 = RTS_DS_MEM_DATA(ring);
7718 writeq(val64, &bar0->rts_ds_mem_data);
7719
7720 val64 = RTS_DS_MEM_CTRL_WE |
7721 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7722 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7723
7724 writeq(val64, &bar0->rts_ds_mem_ctrl);
7725
7726 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7727 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7728 S2IO_BIT_RESET);
7729}
7730
1da177e4 7731/**
20346722 7732 * s2io_init_nic - Initialization of the adapter .
1da177e4
LT
7733 * @pdev : structure containing the PCI related information of the device.
7734 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7735 * Description:
7736 * The function initializes an adapter identified by the pci_dec structure.
20346722
K
7737 * All OS related initialization including memory and device structure and
7738 * initlaization of the device private variable is done. Also the swapper
7739 * control register is initialized to enable read and write into the I/O
1da177e4
LT
7740 * registers of the device.
7741 * Return value:
7742 * returns 0 on success and negative on failure.
7743 */
7744
7745static int __devinit
7746s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7747{
1ee6dd77 7748 struct s2io_nic *sp;
1da177e4 7749 struct net_device *dev;
1da177e4
LT
7750 int i, j, ret;
7751 int dma_flag = FALSE;
7752 u32 mac_up, mac_down;
7753 u64 val64 = 0, tmp64 = 0;
1ee6dd77 7754 struct XENA_dev_config __iomem *bar0 = NULL;
1da177e4 7755 u16 subid;
1ee6dd77 7756 struct mac_info *mac_control;
1da177e4 7757 struct config_param *config;
541ae68f 7758 int mode;
cc6e7c44 7759 u8 dev_intr_type = intr_type;
3a3d5756 7760 u8 dev_multiq = 0;
0795af57 7761 DECLARE_MAC_BUF(mac);
1da177e4 7762
3a3d5756
SH
7763 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7764 if (ret)
9dc737a7 7765 return ret;
1da177e4
LT
7766
7767 if ((ret = pci_enable_device(pdev))) {
7768 DBG_PRINT(ERR_DBG,
7769 "s2io_init_nic: pci_enable_device failed\n");
7770 return ret;
7771 }
7772
1e7f0bd8 7773 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
1da177e4
LT
7774 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7775 dma_flag = TRUE;
1da177e4 7776 if (pci_set_consistent_dma_mask
1e7f0bd8 7777 (pdev, DMA_64BIT_MASK)) {
1da177e4
LT
7778 DBG_PRINT(ERR_DBG,
7779 "Unable to obtain 64bit DMA for \
7780 consistent allocations\n");
7781 pci_disable_device(pdev);
7782 return -ENOMEM;
7783 }
1e7f0bd8 7784 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
1da177e4
LT
7785 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7786 } else {
7787 pci_disable_device(pdev);
7788 return -ENOMEM;
7789 }
eccb8628
VP
7790 if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7791 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
7792 pci_disable_device(pdev);
7793 return -ENODEV;
1da177e4 7794 }
3a3d5756
SH
7795#ifdef CONFIG_NETDEVICES_MULTIQUEUE
7796 if (dev_multiq)
6cfc482b 7797 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
3a3d5756
SH
7798 else
7799#endif
1ee6dd77 7800 dev = alloc_etherdev(sizeof(struct s2io_nic));
1da177e4
LT
7801 if (dev == NULL) {
7802 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7803 pci_disable_device(pdev);
7804 pci_release_regions(pdev);
7805 return -ENODEV;
7806 }
7807
7808 pci_set_master(pdev);
7809 pci_set_drvdata(pdev, dev);
1da177e4
LT
7810 SET_NETDEV_DEV(dev, &pdev->dev);
7811
7812 /* Private member variable initialized to s2io NIC structure */
7813 sp = dev->priv;
1ee6dd77 7814 memset(sp, 0, sizeof(struct s2io_nic));
1da177e4
LT
7815 sp->dev = dev;
7816 sp->pdev = pdev;
1da177e4 7817 sp->high_dma_flag = dma_flag;
1da177e4 7818 sp->device_enabled_once = FALSE;
da6971d8
AR
7819 if (rx_ring_mode == 1)
7820 sp->rxd_mode = RXD_MODE_1;
7821 if (rx_ring_mode == 2)
7822 sp->rxd_mode = RXD_MODE_3B;
da6971d8 7823
eaae7f72 7824 sp->config.intr_type = dev_intr_type;
1da177e4 7825
541ae68f
K
7826 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7827 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7828 sp->device_type = XFRAME_II_DEVICE;
7829 else
7830 sp->device_type = XFRAME_I_DEVICE;
7831
43b7c451 7832 sp->lro = lro_enable;
6aa20a22 7833
1da177e4
LT
7834 /* Initialize some PCI/PCI-X fields of the NIC. */
7835 s2io_init_pci(sp);
7836
20346722 7837 /*
1da177e4 7838 * Setting the device configuration parameters.
20346722
K
7839 * Most of these parameters can be specified by the user during
7840 * module insertion as they are module loadable parameters. If
7841 * these parameters are not not specified during load time, they
1da177e4
LT
7842 * are initialized with default values.
7843 */
7844 mac_control = &sp->mac_control;
7845 config = &sp->config;
7846
596c5c97 7847 config->napi = napi;
6cfc482b 7848 config->tx_steering_type = tx_steering_type;
596c5c97 7849
1da177e4 7850 /* Tx side parameters. */
6cfc482b
SH
7851 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7852 config->tx_fifo_num = MAX_TX_FIFOS;
7853 else
7854 config->tx_fifo_num = tx_fifo_num;
7855
7856 /* Initialize the fifos used for tx steering */
7857 if (config->tx_fifo_num < 5) {
7858 if (config->tx_fifo_num == 1)
7859 sp->total_tcp_fifos = 1;
7860 else
7861 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7862 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7863 sp->total_udp_fifos = 1;
7864 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7865 } else {
7866 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7867 FIFO_OTHER_MAX_NUM);
7868 sp->udp_fifo_idx = sp->total_tcp_fifos;
7869 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7870 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7871 }
7872
3a3d5756 7873 config->multiq = dev_multiq;
6cfc482b 7874 for (i = 0; i < config->tx_fifo_num; i++) {
1da177e4
LT
7875 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7876 config->tx_cfg[i].fifo_priority = i;
7877 }
7878
20346722
K
7879 /* mapping the QoS priority to the configured fifos */
7880 for (i = 0; i < MAX_TX_FIFOS; i++)
3a3d5756 7881 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
20346722 7882
6cfc482b
SH
7883 /* map the hashing selector table to the configured fifos */
7884 for (i = 0; i < config->tx_fifo_num; i++)
7885 sp->fifo_selector[i] = fifo_selector[i];
7886
7887
1da177e4
LT
7888 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7889 for (i = 0; i < config->tx_fifo_num; i++) {
7890 config->tx_cfg[i].f_no_snoop =
7891 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7892 if (config->tx_cfg[i].fifo_len < 65) {
7893 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7894 break;
7895 }
7896 }
fed5eccd
AR
7897 /* + 2 because one Txd for skb->data and one Txd for UFO */
7898 config->max_txds = MAX_SKB_FRAGS + 2;
1da177e4
LT
7899
7900 /* Rx side parameters. */
1da177e4 7901 config->rx_ring_num = rx_ring_num;
0425b46a 7902 for (i = 0; i < config->rx_ring_num; i++) {
1da177e4 7903 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
da6971d8 7904 (rxd_count[sp->rxd_mode] + 1);
1da177e4 7905 config->rx_cfg[i].ring_priority = i;
0425b46a
SH
7906 mac_control->rings[i].rx_bufs_left = 0;
7907 mac_control->rings[i].rxd_mode = sp->rxd_mode;
7908 mac_control->rings[i].rxd_count = rxd_count[sp->rxd_mode];
7909 mac_control->rings[i].pdev = sp->pdev;
7910 mac_control->rings[i].dev = sp->dev;
1da177e4
LT
7911 }
7912
7913 for (i = 0; i < rx_ring_num; i++) {
7914 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7915 config->rx_cfg[i].f_no_snoop =
7916 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7917 }
7918
7919 /* Setting Mac Control parameters */
7920 mac_control->rmac_pause_time = rmac_pause_time;
7921 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7922 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7923
7924
1da177e4
LT
7925 /* initialize the shared memory used by the NIC and the host */
7926 if (init_shared_mem(sp)) {
7927 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
b41477f3 7928 dev->name);
1da177e4
LT
7929 ret = -ENOMEM;
7930 goto mem_alloc_failed;
7931 }
7932
7933 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7934 pci_resource_len(pdev, 0));
7935 if (!sp->bar0) {
19a60522 7936 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
1da177e4
LT
7937 dev->name);
7938 ret = -ENOMEM;
7939 goto bar0_remap_failed;
7940 }
7941
7942 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7943 pci_resource_len(pdev, 2));
7944 if (!sp->bar1) {
19a60522 7945 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
1da177e4
LT
7946 dev->name);
7947 ret = -ENOMEM;
7948 goto bar1_remap_failed;
7949 }
7950
7951 dev->irq = pdev->irq;
7952 dev->base_addr = (unsigned long) sp->bar0;
7953
7954 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7955 for (j = 0; j < MAX_TX_FIFOS; j++) {
1ee6dd77 7956 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
1da177e4
LT
7957 (sp->bar1 + (j * 0x00020000));
7958 }
7959
7960 /* Driver entry points */
7961 dev->open = &s2io_open;
7962 dev->stop = &s2io_close;
7963 dev->hard_start_xmit = &s2io_xmit;
7964 dev->get_stats = &s2io_get_stats;
7965 dev->set_multicast_list = &s2io_set_multicast;
7966 dev->do_ioctl = &s2io_ioctl;
2fd37688 7967 dev->set_mac_address = &s2io_set_mac_addr;
1da177e4
LT
7968 dev->change_mtu = &s2io_change_mtu;
7969 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
be3a6b02
K
7970 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7971 dev->vlan_rx_register = s2io_vlan_rx_register;
cdb5bf02 7972 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
20346722 7973
1da177e4
LT
7974 /*
7975 * will use eth_mac_addr() for dev->set_mac_address
7976 * mac address will be set every time dev->open() is called
7977 */
612eff0e
BH
7978#ifdef CONFIG_NET_POLL_CONTROLLER
7979 dev->poll_controller = s2io_netpoll;
7980#endif
7981
1da177e4
LT
7982 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7983 if (sp->high_dma_flag == TRUE)
7984 dev->features |= NETIF_F_HIGHDMA;
1da177e4 7985 dev->features |= NETIF_F_TSO;
f83ef8c0 7986 dev->features |= NETIF_F_TSO6;
db874e65 7987 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
fed5eccd
AR
7988 dev->features |= NETIF_F_UFO;
7989 dev->features |= NETIF_F_HW_CSUM;
7990 }
3a3d5756
SH
7991#ifdef CONFIG_NETDEVICES_MULTIQUEUE
7992 if (config->multiq)
7993 dev->features |= NETIF_F_MULTI_QUEUE;
7994#endif
1da177e4
LT
7995 dev->tx_timeout = &s2io_tx_watchdog;
7996 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
c4028958
DH
7997 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7998 INIT_WORK(&sp->set_link_task, s2io_set_link);
1da177e4 7999
e960fc5c 8000 pci_save_state(sp->pdev);
1da177e4
LT
8001
8002 /* Setting swapper control on the NIC, for proper reset operation */
8003 if (s2io_set_swapper(sp)) {
8004 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
8005 dev->name);
8006 ret = -EAGAIN;
8007 goto set_swap_failed;
8008 }
8009
541ae68f
K
8010 /* Verify if the Herc works on the slot its placed into */
8011 if (sp->device_type & XFRAME_II_DEVICE) {
8012 mode = s2io_verify_pci_mode(sp);
8013 if (mode < 0) {
8014 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
8015 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
8016 ret = -EBADSLT;
8017 goto set_swap_failed;
8018 }
8019 }
8020
f61e0a35
SH
8021 if (sp->config.intr_type == MSI_X) {
8022 sp->num_entries = config->rx_ring_num + 1;
8023 ret = s2io_enable_msi_x(sp);
8024
8025 if (!ret) {
8026 ret = s2io_test_msi(sp);
8027 /* rollback MSI-X, will re-enable during add_isr() */
8028 remove_msix_isr(sp);
8029 }
8030 if (ret) {
8031
8032 DBG_PRINT(ERR_DBG,
8033 "%s: MSI-X requested but failed to enable\n",
8034 dev->name);
8035 sp->config.intr_type = INTA;
8036 }
8037 }
8038
8039 if (config->intr_type == MSI_X) {
8040 for (i = 0; i < config->rx_ring_num ; i++)
8041 netif_napi_add(dev, &mac_control->rings[i].napi,
8042 s2io_poll_msix, 64);
8043 } else {
8044 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8045 }
8046
541ae68f
K
8047 /* Not needed for Herc */
8048 if (sp->device_type & XFRAME_I_DEVICE) {
8049 /*
8050 * Fix for all "FFs" MAC address problems observed on
8051 * Alpha platforms
8052 */
8053 fix_mac_address(sp);
8054 s2io_reset(sp);
8055 }
1da177e4
LT
8056
8057 /*
1da177e4
LT
8058 * MAC address initialization.
8059 * For now only one mac address will be read and used.
8060 */
8061 bar0 = sp->bar0;
8062 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
faa4f796 8063 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
1da177e4 8064 writeq(val64, &bar0->rmac_addr_cmd_mem);
c92ca04b 8065 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41 8066 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
1da177e4
LT
8067 tmp64 = readq(&bar0->rmac_addr_data0_mem);
8068 mac_down = (u32) tmp64;
8069 mac_up = (u32) (tmp64 >> 32);
8070
1da177e4
LT
8071 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8072 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8073 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8074 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8075 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8076 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8077
1da177e4
LT
8078 /* Set the factory defined MAC address initially */
8079 dev->addr_len = ETH_ALEN;
8080 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
2fd37688 8081 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
1da177e4 8082
faa4f796
SH
8083 /* initialize number of multicast & unicast MAC entries variables */
8084 if (sp->device_type == XFRAME_I_DEVICE) {
8085 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8086 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8087 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8088 } else if (sp->device_type == XFRAME_II_DEVICE) {
8089 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8090 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8091 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8092 }
8093
8094 /* store mac addresses from CAM to s2io_nic structure */
8095 do_s2io_store_unicast_mc(sp);
8096
f61e0a35
SH
8097 /* Configure MSIX vector for number of rings configured plus one */
8098 if ((sp->device_type == XFRAME_II_DEVICE) &&
8099 (config->intr_type == MSI_X))
8100 sp->num_entries = config->rx_ring_num + 1;
8101
c77dd43e
SS
8102 /* Store the values of the MSIX table in the s2io_nic structure */
8103 store_xmsi_data(sp);
b41477f3
AR
8104 /* reset Nic and bring it to known state */
8105 s2io_reset(sp);
8106
1da177e4 8107 /*
99993af6 8108 * Initialize link state flags
541ae68f 8109 * and the card state parameter
1da177e4 8110 */
92b84437 8111 sp->state = 0;
1da177e4 8112
1da177e4 8113 /* Initialize spinlocks */
2fda096d
SR
8114 for (i = 0; i < sp->config.tx_fifo_num; i++)
8115 spin_lock_init(&mac_control->fifos[i].tx_lock);
db874e65 8116
20346722
K
8117 /*
8118 * SXE-002: Configure link and activity LED to init state
8119 * on driver load.
1da177e4
LT
8120 */
8121 subid = sp->pdev->subsystem_device;
8122 if ((subid & 0xFF) >= 0x07) {
8123 val64 = readq(&bar0->gpio_control);
8124 val64 |= 0x0000800000000000ULL;
8125 writeq(val64, &bar0->gpio_control);
8126 val64 = 0x0411040400000000ULL;
8127 writeq(val64, (void __iomem *) bar0 + 0x2700);
8128 val64 = readq(&bar0->gpio_control);
8129 }
8130
8131 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8132
8133 if (register_netdev(dev)) {
8134 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8135 ret = -ENODEV;
8136 goto register_failed;
8137 }
9dc737a7 8138 s2io_vpd_read(sp);
0c61ed5f 8139 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
b41477f3 8140 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
44c10138 8141 sp->product_name, pdev->revision);
b41477f3
AR
8142 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8143 s2io_driver_version);
0795af57
JP
8144 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
8145 dev->name, print_mac(mac, dev->dev_addr));
19a60522 8146 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
9dc737a7 8147 if (sp->device_type & XFRAME_II_DEVICE) {
0b1f7ebe 8148 mode = s2io_print_pci_mode(sp);
541ae68f 8149 if (mode < 0) {
9dc737a7 8150 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
541ae68f 8151 ret = -EBADSLT;
9dc737a7 8152 unregister_netdev(dev);
541ae68f
K
8153 goto set_swap_failed;
8154 }
541ae68f 8155 }
9dc737a7
AR
8156 switch(sp->rxd_mode) {
8157 case RXD_MODE_1:
8158 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8159 dev->name);
8160 break;
8161 case RXD_MODE_3B:
8162 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8163 dev->name);
8164 break;
9dc737a7 8165 }
db874e65 8166
f61e0a35
SH
8167 switch (sp->config.napi) {
8168 case 0:
8169 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8170 break;
8171 case 1:
db874e65 8172 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
f61e0a35
SH
8173 break;
8174 }
3a3d5756
SH
8175
8176 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8177 sp->config.tx_fifo_num);
8178
0425b46a
SH
8179 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8180 sp->config.rx_ring_num);
8181
eaae7f72 8182 switch(sp->config.intr_type) {
9dc737a7
AR
8183 case INTA:
8184 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8185 break;
9dc737a7
AR
8186 case MSI_X:
8187 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8188 break;
8189 }
3a3d5756
SH
8190 if (sp->config.multiq) {
8191 for (i = 0; i < sp->config.tx_fifo_num; i++)
8192 mac_control->fifos[i].multiq = config->multiq;
8193 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8194 dev->name);
8195 } else
8196 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8197 dev->name);
8198
6cfc482b
SH
8199 switch (sp->config.tx_steering_type) {
8200 case NO_STEERING:
8201 DBG_PRINT(ERR_DBG, "%s: No steering enabled for"
8202 " transmit\n", dev->name);
8203 break;
8204 case TX_PRIORITY_STEERING:
8205 DBG_PRINT(ERR_DBG, "%s: Priority steering enabled for"
8206 " transmit\n", dev->name);
8207 break;
8208 case TX_DEFAULT_STEERING:
8209 DBG_PRINT(ERR_DBG, "%s: Default steering enabled for"
8210 " transmit\n", dev->name);
8211 }
8212
7d3d0439
RA
8213 if (sp->lro)
8214 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
9dc737a7 8215 dev->name);
db874e65
SS
8216 if (ufo)
8217 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
8218 " enabled\n", dev->name);
7ba013ac 8219 /* Initialize device name */
9dc737a7 8220 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7ba013ac 8221
20346722
K
8222 /*
8223 * Make Link state as off at this point, when the Link change
8224 * interrupt comes the state will be automatically changed to
1da177e4
LT
8225 * the right state.
8226 */
8227 netif_carrier_off(dev);
1da177e4
LT
8228
8229 return 0;
8230
8231 register_failed:
8232 set_swap_failed:
8233 iounmap(sp->bar1);
8234 bar1_remap_failed:
8235 iounmap(sp->bar0);
8236 bar0_remap_failed:
8237 mem_alloc_failed:
8238 free_shared_mem(sp);
8239 pci_disable_device(pdev);
eccb8628 8240 pci_release_regions(pdev);
1da177e4
LT
8241 pci_set_drvdata(pdev, NULL);
8242 free_netdev(dev);
8243
8244 return ret;
8245}
8246
8247/**
20346722 8248 * s2io_rem_nic - Free the PCI device
1da177e4 8249 * @pdev: structure containing the PCI related information of the device.
20346722 8250 * Description: This function is called by the Pci subsystem to release a
1da177e4 8251 * PCI device and free up all resource held up by the device. This could
20346722 8252 * be in response to a Hot plug event or when the driver is to be removed
1da177e4
LT
8253 * from memory.
8254 */
8255
8256static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8257{
8258 struct net_device *dev =
8259 (struct net_device *) pci_get_drvdata(pdev);
1ee6dd77 8260 struct s2io_nic *sp;
1da177e4
LT
8261
8262 if (dev == NULL) {
8263 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8264 return;
8265 }
8266
22747d6b
FR
8267 flush_scheduled_work();
8268
1da177e4
LT
8269 sp = dev->priv;
8270 unregister_netdev(dev);
8271
8272 free_shared_mem(sp);
8273 iounmap(sp->bar0);
8274 iounmap(sp->bar1);
eccb8628 8275 pci_release_regions(pdev);
1da177e4 8276 pci_set_drvdata(pdev, NULL);
1da177e4 8277 free_netdev(dev);
19a60522 8278 pci_disable_device(pdev);
1da177e4
LT
8279}
8280
8281/**
8282 * s2io_starter - Entry point for the driver
8283 * Description: This function is the entry point for the driver. It verifies
8284 * the module loadable parameters and initializes PCI configuration space.
8285 */
8286
43b7c451 8287static int __init s2io_starter(void)
1da177e4 8288{
29917620 8289 return pci_register_driver(&s2io_driver);
1da177e4
LT
8290}
8291
8292/**
20346722 8293 * s2io_closer - Cleanup routine for the driver
1da177e4
LT
8294 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8295 */
8296
372cc597 8297static __exit void s2io_closer(void)
1da177e4
LT
8298{
8299 pci_unregister_driver(&s2io_driver);
8300 DBG_PRINT(INIT_DBG, "cleanup done\n");
8301}
8302
8303module_init(s2io_starter);
8304module_exit(s2io_closer);
7d3d0439 8305
6aa20a22 8306static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
cdb5bf02
SH
8307 struct tcphdr **tcp, struct RxD_t *rxdp,
8308 struct s2io_nic *sp)
7d3d0439
RA
8309{
8310 int ip_off;
8311 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8312
8313 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8314 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
8315 __FUNCTION__);
8316 return -1;
8317 }
8318
cdb5bf02
SH
8319 /* Checking for DIX type or DIX type with VLAN */
8320 if ((l2_type == 0)
8321 || (l2_type == 4)) {
8322 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8323 /*
8324 * If vlan stripping is disabled and the frame is VLAN tagged,
8325 * shift the offset by the VLAN header size bytes.
8326 */
8327 if ((!vlan_strip_flag) &&
8328 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8329 ip_off += HEADER_VLAN_SIZE;
8330 } else {
7d3d0439 8331 /* LLC, SNAP etc are considered non-mergeable */
cdb5bf02 8332 return -1;
7d3d0439
RA
8333 }
8334
8335 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8336 ip_len = (u8)((*ip)->ihl);
8337 ip_len <<= 2;
8338 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8339
8340 return 0;
8341}
8342
1ee6dd77 8343static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7d3d0439
RA
8344 struct tcphdr *tcp)
8345{
8346 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8347 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
8348 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
8349 return -1;
8350 return 0;
8351}
8352
8353static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8354{
8355 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
8356}
8357
1ee6dd77 8358static void initiate_new_session(struct lro *lro, u8 *l2h,
cdb5bf02 8359 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len, u16 vlan_tag)
7d3d0439
RA
8360{
8361 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8362 lro->l2h = l2h;
8363 lro->iph = ip;
8364 lro->tcph = tcp;
8365 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
c8855953 8366 lro->tcp_ack = tcp->ack_seq;
7d3d0439
RA
8367 lro->sg_num = 1;
8368 lro->total_len = ntohs(ip->tot_len);
8369 lro->frags_len = 0;
cdb5bf02 8370 lro->vlan_tag = vlan_tag;
6aa20a22 8371 /*
7d3d0439
RA
8372 * check if we saw TCP timestamp. Other consistency checks have
8373 * already been done.
8374 */
8375 if (tcp->doff == 8) {
c8855953
SR
8376 __be32 *ptr;
8377 ptr = (__be32 *)(tcp+1);
7d3d0439 8378 lro->saw_ts = 1;
c8855953 8379 lro->cur_tsval = ntohl(*(ptr+1));
7d3d0439
RA
8380 lro->cur_tsecr = *(ptr+2);
8381 }
8382 lro->in_use = 1;
8383}
8384
1ee6dd77 8385static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7d3d0439
RA
8386{
8387 struct iphdr *ip = lro->iph;
8388 struct tcphdr *tcp = lro->tcph;
bd4f3ae1 8389 __sum16 nchk;
1ee6dd77 8390 struct stat_block *statinfo = sp->mac_control.stats_info;
7d3d0439
RA
8391 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8392
8393 /* Update L3 header */
8394 ip->tot_len = htons(lro->total_len);
8395 ip->check = 0;
8396 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8397 ip->check = nchk;
8398
8399 /* Update L4 header */
8400 tcp->ack_seq = lro->tcp_ack;
8401 tcp->window = lro->window;
8402
8403 /* Update tsecr field if this session has timestamps enabled */
8404 if (lro->saw_ts) {
c8855953 8405 __be32 *ptr = (__be32 *)(tcp + 1);
7d3d0439
RA
8406 *(ptr+2) = lro->cur_tsecr;
8407 }
8408
8409 /* Update counters required for calculation of
8410 * average no. of packets aggregated.
8411 */
8412 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
8413 statinfo->sw_stat.num_aggregations++;
8414}
8415
1ee6dd77 8416static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7d3d0439
RA
8417 struct tcphdr *tcp, u32 l4_pyld)
8418{
8419 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8420 lro->total_len += l4_pyld;
8421 lro->frags_len += l4_pyld;
8422 lro->tcp_next_seq += l4_pyld;
8423 lro->sg_num++;
8424
8425 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8426 lro->tcp_ack = tcp->ack_seq;
8427 lro->window = tcp->window;
6aa20a22 8428
7d3d0439 8429 if (lro->saw_ts) {
c8855953 8430 __be32 *ptr;
7d3d0439 8431 /* Update tsecr and tsval from this packet */
c8855953
SR
8432 ptr = (__be32 *)(tcp+1);
8433 lro->cur_tsval = ntohl(*(ptr+1));
7d3d0439
RA
8434 lro->cur_tsecr = *(ptr + 2);
8435 }
8436}
8437
1ee6dd77 8438static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7d3d0439
RA
8439 struct tcphdr *tcp, u32 tcp_pyld_len)
8440{
7d3d0439
RA
8441 u8 *ptr;
8442
79dc1901
AM
8443 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8444
7d3d0439
RA
8445 if (!tcp_pyld_len) {
8446 /* Runt frame or a pure ack */
8447 return -1;
8448 }
8449
8450 if (ip->ihl != 5) /* IP has options */
8451 return -1;
8452
75c30b13
AR
8453 /* If we see CE codepoint in IP header, packet is not mergeable */
8454 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8455 return -1;
8456
8457 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7d3d0439 8458 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
75c30b13 8459 tcp->ece || tcp->cwr || !tcp->ack) {
7d3d0439
RA
8460 /*
8461 * Currently recognize only the ack control word and
8462 * any other control field being set would result in
8463 * flushing the LRO session
8464 */
8465 return -1;
8466 }
8467
6aa20a22 8468 /*
7d3d0439
RA
8469 * Allow only one TCP timestamp option. Don't aggregate if
8470 * any other options are detected.
8471 */
8472 if (tcp->doff != 5 && tcp->doff != 8)
8473 return -1;
8474
8475 if (tcp->doff == 8) {
6aa20a22 8476 ptr = (u8 *)(tcp + 1);
7d3d0439
RA
8477 while (*ptr == TCPOPT_NOP)
8478 ptr++;
8479 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8480 return -1;
8481
8482 /* Ensure timestamp value increases monotonically */
8483 if (l_lro)
c8855953 8484 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
7d3d0439
RA
8485 return -1;
8486
8487 /* timestamp echo reply should be non-zero */
c8855953 8488 if (*((__be32 *)(ptr+6)) == 0)
7d3d0439
RA
8489 return -1;
8490 }
8491
8492 return 0;
8493}
8494
8495static int
0425b46a
SH
8496s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer, u8 **tcp,
8497 u32 *tcp_len, struct lro **lro, struct RxD_t *rxdp,
8498 struct s2io_nic *sp)
7d3d0439
RA
8499{
8500 struct iphdr *ip;
8501 struct tcphdr *tcph;
8502 int ret = 0, i;
cdb5bf02 8503 u16 vlan_tag = 0;
7d3d0439
RA
8504
8505 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
cdb5bf02 8506 rxdp, sp))) {
7d3d0439
RA
8507 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8508 ip->saddr, ip->daddr);
cdb5bf02 8509 } else
7d3d0439 8510 return ret;
7d3d0439 8511
cdb5bf02 8512 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
7d3d0439
RA
8513 tcph = (struct tcphdr *)*tcp;
8514 *tcp_len = get_l4_pyld_length(ip, tcph);
8515 for (i=0; i<MAX_LRO_SESSIONS; i++) {
0425b46a 8516 struct lro *l_lro = &ring_data->lro0_n[i];
7d3d0439
RA
8517 if (l_lro->in_use) {
8518 if (check_for_socket_match(l_lro, ip, tcph))
8519 continue;
8520 /* Sock pair matched */
8521 *lro = l_lro;
8522
8523 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8524 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8525 "0x%x, actual 0x%x\n", __FUNCTION__,
8526 (*lro)->tcp_next_seq,
8527 ntohl(tcph->seq));
8528
8529 sp->mac_control.stats_info->
8530 sw_stat.outof_sequence_pkts++;
8531 ret = 2;
8532 break;
8533 }
8534
8535 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8536 ret = 1; /* Aggregate */
8537 else
8538 ret = 2; /* Flush both */
8539 break;
8540 }
8541 }
8542
8543 if (ret == 0) {
8544 /* Before searching for available LRO objects,
8545 * check if the pkt is L3/L4 aggregatable. If not
8546 * don't create new LRO session. Just send this
8547 * packet up.
8548 */
8549 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8550 return 5;
8551 }
8552
8553 for (i=0; i<MAX_LRO_SESSIONS; i++) {
0425b46a 8554 struct lro *l_lro = &ring_data->lro0_n[i];
7d3d0439
RA
8555 if (!(l_lro->in_use)) {
8556 *lro = l_lro;
8557 ret = 3; /* Begin anew */
8558 break;
8559 }
8560 }
8561 }
8562
8563 if (ret == 0) { /* sessions exceeded */
8564 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8565 __FUNCTION__);
8566 *lro = NULL;
8567 return ret;
8568 }
8569
8570 switch (ret) {
8571 case 3:
cdb5bf02
SH
8572 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8573 vlan_tag);
7d3d0439
RA
8574 break;
8575 case 2:
8576 update_L3L4_header(sp, *lro);
8577 break;
8578 case 1:
8579 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8580 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8581 update_L3L4_header(sp, *lro);
8582 ret = 4; /* Flush the LRO */
8583 }
8584 break;
8585 default:
8586 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8587 __FUNCTION__);
8588 break;
8589 }
8590
8591 return ret;
8592}
8593
1ee6dd77 8594static void clear_lro_session(struct lro *lro)
7d3d0439 8595{
1ee6dd77 8596 static u16 lro_struct_size = sizeof(struct lro);
7d3d0439
RA
8597
8598 memset(lro, 0, lro_struct_size);
8599}
8600
cdb5bf02 8601static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
7d3d0439
RA
8602{
8603 struct net_device *dev = skb->dev;
cdb5bf02 8604 struct s2io_nic *sp = dev->priv;
7d3d0439
RA
8605
8606 skb->protocol = eth_type_trans(skb, dev);
cdb5bf02
SH
8607 if (sp->vlgrp && vlan_tag
8608 && (vlan_strip_flag)) {
8609 /* Queueing the vlan frame to the upper layer */
8610 if (sp->config.napi)
8611 vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8612 else
8613 vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8614 } else {
8615 if (sp->config.napi)
8616 netif_receive_skb(skb);
8617 else
8618 netif_rx(skb);
8619 }
7d3d0439
RA
8620}
8621
1ee6dd77
RB
8622static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8623 struct sk_buff *skb,
7d3d0439
RA
8624 u32 tcp_len)
8625{
75c30b13 8626 struct sk_buff *first = lro->parent;
7d3d0439
RA
8627
8628 first->len += tcp_len;
8629 first->data_len = lro->frags_len;
8630 skb_pull(skb, (skb->len - tcp_len));
75c30b13
AR
8631 if (skb_shinfo(first)->frag_list)
8632 lro->last_frag->next = skb;
7d3d0439
RA
8633 else
8634 skb_shinfo(first)->frag_list = skb;
372cc597 8635 first->truesize += skb->truesize;
75c30b13 8636 lro->last_frag = skb;
7d3d0439
RA
8637 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8638 return;
8639}
d796fdb7
LV
8640
8641/**
8642 * s2io_io_error_detected - called when PCI error is detected
8643 * @pdev: Pointer to PCI device
8453d43f 8644 * @state: The current pci connection state
d796fdb7
LV
8645 *
8646 * This function is called after a PCI bus error affecting
8647 * this device has been detected.
8648 */
8649static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8650 pci_channel_state_t state)
8651{
8652 struct net_device *netdev = pci_get_drvdata(pdev);
8653 struct s2io_nic *sp = netdev->priv;
8654
8655 netif_device_detach(netdev);
8656
8657 if (netif_running(netdev)) {
8658 /* Bring down the card, while avoiding PCI I/O */
8659 do_s2io_card_down(sp, 0);
d796fdb7
LV
8660 }
8661 pci_disable_device(pdev);
8662
8663 return PCI_ERS_RESULT_NEED_RESET;
8664}
8665
8666/**
8667 * s2io_io_slot_reset - called after the pci bus has been reset.
8668 * @pdev: Pointer to PCI device
8669 *
8670 * Restart the card from scratch, as if from a cold-boot.
8671 * At this point, the card has exprienced a hard reset,
8672 * followed by fixups by BIOS, and has its config space
8673 * set up identically to what it was at cold boot.
8674 */
8675static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8676{
8677 struct net_device *netdev = pci_get_drvdata(pdev);
8678 struct s2io_nic *sp = netdev->priv;
8679
8680 if (pci_enable_device(pdev)) {
8681 printk(KERN_ERR "s2io: "
8682 "Cannot re-enable PCI device after reset.\n");
8683 return PCI_ERS_RESULT_DISCONNECT;
8684 }
8685
8686 pci_set_master(pdev);
8687 s2io_reset(sp);
8688
8689 return PCI_ERS_RESULT_RECOVERED;
8690}
8691
8692/**
8693 * s2io_io_resume - called when traffic can start flowing again.
8694 * @pdev: Pointer to PCI device
8695 *
8696 * This callback is called when the error recovery driver tells
8697 * us that its OK to resume normal operation.
8698 */
8699static void s2io_io_resume(struct pci_dev *pdev)
8700{
8701 struct net_device *netdev = pci_get_drvdata(pdev);
8702 struct s2io_nic *sp = netdev->priv;
8703
8704 if (netif_running(netdev)) {
8705 if (s2io_card_up(sp)) {
8706 printk(KERN_ERR "s2io: "
8707 "Can't bring device back up after reset.\n");
8708 return;
8709 }
8710
8711 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8712 s2io_card_down(sp);
8713 printk(KERN_ERR "s2io: "
8714 "Can't resetore mac addr after reset.\n");
8715 return;
8716 }
8717 }
8718
8719 netif_device_attach(netdev);
8720 netif_wake_queue(netdev);
8721}