]> bbs.cooldavid.org Git - net-next-2.6.git/blame - block/cfq-iosched.c
cfq: break apart merged cfqqs if they stop cooperating
[net-next-2.6.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
1da177e4 12#include <linux/rbtree.h>
22e2c507 13#include <linux/ioprio.h>
7b679138 14#include <linux/blktrace_api.h>
1da177e4
LT
15
16/*
17 * tunables
18 */
fe094d98
JA
19/* max queue in one round of service */
20static const int cfq_quantum = 4;
64100099 21static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
22/* maximum backwards seek, in KiB */
23static const int cfq_back_max = 16 * 1024;
24/* penalty of a backwards seek */
25static const int cfq_back_penalty = 2;
64100099 26static const int cfq_slice_sync = HZ / 10;
3b18152c 27static int cfq_slice_async = HZ / 25;
64100099 28static const int cfq_slice_async_rq = 2;
caaa5f9f 29static int cfq_slice_idle = HZ / 125;
22e2c507 30
d9e7620e 31/*
0871714e 32 * offset from end of service tree
d9e7620e 33 */
0871714e 34#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
35
36/*
37 * below this threshold, we consider thinktime immediate
38 */
39#define CFQ_MIN_TT (2)
40
e6c5bc73
JM
41/*
42 * Allow merged cfqqs to perform this amount of seeky I/O before
43 * deciding to break the queues up again.
44 */
45#define CFQQ_COOP_TOUT (HZ)
46
22e2c507 47#define CFQ_SLICE_SCALE (5)
45333d5a 48#define CFQ_HW_QUEUE_MIN (5)
22e2c507 49
fe094d98
JA
50#define RQ_CIC(rq) \
51 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 52#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 53
e18b890b
CL
54static struct kmem_cache *cfq_pool;
55static struct kmem_cache *cfq_ioc_pool;
1da177e4 56
245b2e70 57static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 58static struct completion *ioc_gone;
9a11b4ed 59static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 60
22e2c507
JA
61#define CFQ_PRIO_LISTS IOPRIO_BE_NR
62#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
63#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
64
206dc69b
JA
65#define sample_valid(samples) ((samples) > 80)
66
cc09e299
JA
67/*
68 * Most of our rbtree usage is for sorting with min extraction, so
69 * if we cache the leftmost node we don't have to walk down the tree
70 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
71 * move this into the elevator for the rq sorting as well.
72 */
73struct cfq_rb_root {
74 struct rb_root rb;
75 struct rb_node *left;
76};
77#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
78
6118b70b
JA
79/*
80 * Per process-grouping structure
81 */
82struct cfq_queue {
83 /* reference count */
84 atomic_t ref;
85 /* various state flags, see below */
86 unsigned int flags;
87 /* parent cfq_data */
88 struct cfq_data *cfqd;
89 /* service_tree member */
90 struct rb_node rb_node;
91 /* service_tree key */
92 unsigned long rb_key;
93 /* prio tree member */
94 struct rb_node p_node;
95 /* prio tree root we belong to, if any */
96 struct rb_root *p_root;
97 /* sorted list of pending requests */
98 struct rb_root sort_list;
99 /* if fifo isn't expired, next request to serve */
100 struct request *next_rq;
101 /* requests queued in sort_list */
102 int queued[2];
103 /* currently allocated requests */
104 int allocated[2];
105 /* fifo list of requests in sort_list */
106 struct list_head fifo;
107
108 unsigned long slice_end;
109 long slice_resid;
110 unsigned int slice_dispatch;
111
112 /* pending metadata requests */
113 int meta_pending;
114 /* number of requests that are on the dispatch list or inside driver */
115 int dispatched;
116
117 /* io prio of this group */
118 unsigned short ioprio, org_ioprio;
119 unsigned short ioprio_class, org_ioprio_class;
120
b2c18e1e
JM
121 unsigned int seek_samples;
122 u64 seek_total;
123 sector_t seek_mean;
124 sector_t last_request_pos;
e6c5bc73 125 unsigned long seeky_start;
b2c18e1e 126
6118b70b 127 pid_t pid;
df5fe3e8
JM
128
129 struct cfq_queue *new_cfqq;
6118b70b
JA
130};
131
22e2c507
JA
132/*
133 * Per block device queue structure
134 */
1da177e4 135struct cfq_data {
165125e1 136 struct request_queue *queue;
22e2c507
JA
137
138 /*
139 * rr list of queues with requests and the count of them
140 */
cc09e299 141 struct cfq_rb_root service_tree;
a36e71f9
JA
142
143 /*
144 * Each priority tree is sorted by next_request position. These
145 * trees are used when determining if two or more queues are
146 * interleaving requests (see cfq_close_cooperator).
147 */
148 struct rb_root prio_trees[CFQ_PRIO_LISTS];
149
22e2c507
JA
150 unsigned int busy_queues;
151
5ad531db 152 int rq_in_driver[2];
3ed9a296 153 int sync_flight;
45333d5a
AC
154
155 /*
156 * queue-depth detection
157 */
158 int rq_queued;
25776e35 159 int hw_tag;
45333d5a
AC
160 int hw_tag_samples;
161 int rq_in_driver_peak;
1da177e4 162
22e2c507
JA
163 /*
164 * idle window management
165 */
166 struct timer_list idle_slice_timer;
23e018a1 167 struct work_struct unplug_work;
1da177e4 168
22e2c507
JA
169 struct cfq_queue *active_queue;
170 struct cfq_io_context *active_cic;
22e2c507 171
c2dea2d1
VT
172 /*
173 * async queue for each priority case
174 */
175 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
176 struct cfq_queue *async_idle_cfqq;
15c31be4 177
6d048f53 178 sector_t last_position;
1da177e4 179
1da177e4
LT
180 /*
181 * tunables, see top of file
182 */
183 unsigned int cfq_quantum;
22e2c507 184 unsigned int cfq_fifo_expire[2];
1da177e4
LT
185 unsigned int cfq_back_penalty;
186 unsigned int cfq_back_max;
22e2c507
JA
187 unsigned int cfq_slice[2];
188 unsigned int cfq_slice_async_rq;
189 unsigned int cfq_slice_idle;
963b72fc 190 unsigned int cfq_latency;
d9ff4187
AV
191
192 struct list_head cic_list;
1da177e4 193
6118b70b
JA
194 /*
195 * Fallback dummy cfqq for extreme OOM conditions
196 */
197 struct cfq_queue oom_cfqq;
365722bb
VG
198
199 unsigned long last_end_sync_rq;
1da177e4
LT
200};
201
3b18152c 202enum cfqq_state_flags {
b0b8d749
JA
203 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
204 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 205 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 206 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
207 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
208 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
209 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 210 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 211 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 212 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
3b18152c
JA
213};
214
215#define CFQ_CFQQ_FNS(name) \
216static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
217{ \
fe094d98 218 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
219} \
220static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
221{ \
fe094d98 222 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
223} \
224static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
225{ \
fe094d98 226 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
227}
228
229CFQ_CFQQ_FNS(on_rr);
230CFQ_CFQQ_FNS(wait_request);
b029195d 231CFQ_CFQQ_FNS(must_dispatch);
3b18152c 232CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
233CFQ_CFQQ_FNS(fifo_expire);
234CFQ_CFQQ_FNS(idle_window);
235CFQ_CFQQ_FNS(prio_changed);
44f7c160 236CFQ_CFQQ_FNS(slice_new);
91fac317 237CFQ_CFQQ_FNS(sync);
a36e71f9 238CFQ_CFQQ_FNS(coop);
3b18152c
JA
239#undef CFQ_CFQQ_FNS
240
7b679138
JA
241#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
242 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
243#define cfq_log(cfqd, fmt, args...) \
244 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
245
165125e1 246static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 247static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 248 struct io_context *, gfp_t);
4ac845a2 249static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
250 struct io_context *);
251
5ad531db
JA
252static inline int rq_in_driver(struct cfq_data *cfqd)
253{
254 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
255}
256
91fac317 257static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 258 bool is_sync)
91fac317 259{
a6151c3a 260 return cic->cfqq[is_sync];
91fac317
VT
261}
262
263static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 264 struct cfq_queue *cfqq, bool is_sync)
91fac317 265{
a6151c3a 266 cic->cfqq[is_sync] = cfqq;
91fac317
VT
267}
268
269/*
270 * We regard a request as SYNC, if it's either a read or has the SYNC bit
271 * set (in which case it could also be direct WRITE).
272 */
a6151c3a 273static inline bool cfq_bio_sync(struct bio *bio)
91fac317 274{
a6151c3a 275 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
91fac317 276}
1da177e4 277
99f95e52
AM
278/*
279 * scheduler run of queue, if there are requests pending and no one in the
280 * driver that will restart queueing
281 */
23e018a1 282static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 283{
7b679138
JA
284 if (cfqd->busy_queues) {
285 cfq_log(cfqd, "schedule dispatch");
23e018a1 286 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 287 }
99f95e52
AM
288}
289
165125e1 290static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
291{
292 struct cfq_data *cfqd = q->elevator->elevator_data;
293
b4878f24 294 return !cfqd->busy_queues;
99f95e52
AM
295}
296
44f7c160
JA
297/*
298 * Scale schedule slice based on io priority. Use the sync time slice only
299 * if a queue is marked sync and has sync io queued. A sync queue with async
300 * io only, should not get full sync slice length.
301 */
a6151c3a 302static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 303 unsigned short prio)
44f7c160 304{
d9e7620e 305 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 306
d9e7620e
JA
307 WARN_ON(prio >= IOPRIO_BE_NR);
308
309 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
310}
44f7c160 311
d9e7620e
JA
312static inline int
313cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
314{
315 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
316}
317
318static inline void
319cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
320{
321 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
7b679138 322 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
323}
324
325/*
326 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
327 * isn't valid until the first request from the dispatch is activated
328 * and the slice time set.
329 */
a6151c3a 330static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
331{
332 if (cfq_cfqq_slice_new(cfqq))
333 return 0;
334 if (time_before(jiffies, cfqq->slice_end))
335 return 0;
336
337 return 1;
338}
339
1da177e4 340/*
5e705374 341 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 342 * We choose the request that is closest to the head right now. Distance
e8a99053 343 * behind the head is penalized and only allowed to a certain extent.
1da177e4 344 */
5e705374
JA
345static struct request *
346cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
1da177e4
LT
347{
348 sector_t last, s1, s2, d1 = 0, d2 = 0;
1da177e4 349 unsigned long back_max;
e8a99053
AM
350#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
351#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
352 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 353
5e705374
JA
354 if (rq1 == NULL || rq1 == rq2)
355 return rq2;
356 if (rq2 == NULL)
357 return rq1;
9c2c38a1 358
5e705374
JA
359 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
360 return rq1;
361 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
362 return rq2;
374f84ac
JA
363 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
364 return rq1;
365 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
366 return rq2;
1da177e4 367
83096ebf
TH
368 s1 = blk_rq_pos(rq1);
369 s2 = blk_rq_pos(rq2);
1da177e4 370
6d048f53 371 last = cfqd->last_position;
1da177e4 372
1da177e4
LT
373 /*
374 * by definition, 1KiB is 2 sectors
375 */
376 back_max = cfqd->cfq_back_max * 2;
377
378 /*
379 * Strict one way elevator _except_ in the case where we allow
380 * short backward seeks which are biased as twice the cost of a
381 * similar forward seek.
382 */
383 if (s1 >= last)
384 d1 = s1 - last;
385 else if (s1 + back_max >= last)
386 d1 = (last - s1) * cfqd->cfq_back_penalty;
387 else
e8a99053 388 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
389
390 if (s2 >= last)
391 d2 = s2 - last;
392 else if (s2 + back_max >= last)
393 d2 = (last - s2) * cfqd->cfq_back_penalty;
394 else
e8a99053 395 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
396
397 /* Found required data */
e8a99053
AM
398
399 /*
400 * By doing switch() on the bit mask "wrap" we avoid having to
401 * check two variables for all permutations: --> faster!
402 */
403 switch (wrap) {
5e705374 404 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 405 if (d1 < d2)
5e705374 406 return rq1;
e8a99053 407 else if (d2 < d1)
5e705374 408 return rq2;
e8a99053
AM
409 else {
410 if (s1 >= s2)
5e705374 411 return rq1;
e8a99053 412 else
5e705374 413 return rq2;
e8a99053 414 }
1da177e4 415
e8a99053 416 case CFQ_RQ2_WRAP:
5e705374 417 return rq1;
e8a99053 418 case CFQ_RQ1_WRAP:
5e705374
JA
419 return rq2;
420 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
421 default:
422 /*
423 * Since both rqs are wrapped,
424 * start with the one that's further behind head
425 * (--> only *one* back seek required),
426 * since back seek takes more time than forward.
427 */
428 if (s1 <= s2)
5e705374 429 return rq1;
1da177e4 430 else
5e705374 431 return rq2;
1da177e4
LT
432 }
433}
434
498d3aa2
JA
435/*
436 * The below is leftmost cache rbtree addon
437 */
0871714e 438static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299
JA
439{
440 if (!root->left)
441 root->left = rb_first(&root->rb);
442
0871714e
JA
443 if (root->left)
444 return rb_entry(root->left, struct cfq_queue, rb_node);
445
446 return NULL;
cc09e299
JA
447}
448
a36e71f9
JA
449static void rb_erase_init(struct rb_node *n, struct rb_root *root)
450{
451 rb_erase(n, root);
452 RB_CLEAR_NODE(n);
453}
454
cc09e299
JA
455static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
456{
457 if (root->left == n)
458 root->left = NULL;
a36e71f9 459 rb_erase_init(n, &root->rb);
cc09e299
JA
460}
461
1da177e4
LT
462/*
463 * would be nice to take fifo expire time into account as well
464 */
5e705374
JA
465static struct request *
466cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
467 struct request *last)
1da177e4 468{
21183b07
JA
469 struct rb_node *rbnext = rb_next(&last->rb_node);
470 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 471 struct request *next = NULL, *prev = NULL;
1da177e4 472
21183b07 473 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
474
475 if (rbprev)
5e705374 476 prev = rb_entry_rq(rbprev);
1da177e4 477
21183b07 478 if (rbnext)
5e705374 479 next = rb_entry_rq(rbnext);
21183b07
JA
480 else {
481 rbnext = rb_first(&cfqq->sort_list);
482 if (rbnext && rbnext != &last->rb_node)
5e705374 483 next = rb_entry_rq(rbnext);
21183b07 484 }
1da177e4 485
21183b07 486 return cfq_choose_req(cfqd, next, prev);
1da177e4
LT
487}
488
d9e7620e
JA
489static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
490 struct cfq_queue *cfqq)
1da177e4 491{
d9e7620e
JA
492 /*
493 * just an approximation, should be ok.
494 */
67e6b49e
JA
495 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
496 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
497}
498
498d3aa2
JA
499/*
500 * The cfqd->service_tree holds all pending cfq_queue's that have
501 * requests waiting to be processed. It is sorted in the order that
502 * we will service the queues.
503 */
a36e71f9 504static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 505 bool add_front)
d9e7620e 506{
0871714e
JA
507 struct rb_node **p, *parent;
508 struct cfq_queue *__cfqq;
d9e7620e 509 unsigned long rb_key;
498d3aa2 510 int left;
d9e7620e 511
0871714e
JA
512 if (cfq_class_idle(cfqq)) {
513 rb_key = CFQ_IDLE_DELAY;
514 parent = rb_last(&cfqd->service_tree.rb);
515 if (parent && parent != &cfqq->rb_node) {
516 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
517 rb_key += __cfqq->rb_key;
518 } else
519 rb_key += jiffies;
520 } else if (!add_front) {
b9c8946b
JA
521 /*
522 * Get our rb key offset. Subtract any residual slice
523 * value carried from last service. A negative resid
524 * count indicates slice overrun, and this should position
525 * the next service time further away in the tree.
526 */
edd75ffd 527 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 528 rb_key -= cfqq->slice_resid;
edd75ffd 529 cfqq->slice_resid = 0;
48e025e6
CZ
530 } else {
531 rb_key = -HZ;
532 __cfqq = cfq_rb_first(&cfqd->service_tree);
533 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
534 }
1da177e4 535
d9e7620e 536 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
99f9628a 537 /*
d9e7620e 538 * same position, nothing more to do
99f9628a 539 */
d9e7620e
JA
540 if (rb_key == cfqq->rb_key)
541 return;
1da177e4 542
cc09e299 543 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
1da177e4 544 }
d9e7620e 545
498d3aa2 546 left = 1;
0871714e
JA
547 parent = NULL;
548 p = &cfqd->service_tree.rb.rb_node;
d9e7620e 549 while (*p) {
67060e37 550 struct rb_node **n;
cc09e299 551
d9e7620e
JA
552 parent = *p;
553 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
554
0c534e0a
JA
555 /*
556 * sort RT queues first, we always want to give
67060e37
JA
557 * preference to them. IDLE queues goes to the back.
558 * after that, sort on the next service time.
0c534e0a
JA
559 */
560 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
67060e37 561 n = &(*p)->rb_left;
0c534e0a 562 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
67060e37
JA
563 n = &(*p)->rb_right;
564 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
565 n = &(*p)->rb_left;
566 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
567 n = &(*p)->rb_right;
48e025e6 568 else if (time_before(rb_key, __cfqq->rb_key))
67060e37
JA
569 n = &(*p)->rb_left;
570 else
571 n = &(*p)->rb_right;
572
573 if (n == &(*p)->rb_right)
cc09e299 574 left = 0;
67060e37
JA
575
576 p = n;
d9e7620e
JA
577 }
578
cc09e299
JA
579 if (left)
580 cfqd->service_tree.left = &cfqq->rb_node;
581
d9e7620e
JA
582 cfqq->rb_key = rb_key;
583 rb_link_node(&cfqq->rb_node, parent, p);
cc09e299 584 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
1da177e4
LT
585}
586
a36e71f9 587static struct cfq_queue *
f2d1f0ae
JA
588cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
589 sector_t sector, struct rb_node **ret_parent,
590 struct rb_node ***rb_link)
a36e71f9 591{
a36e71f9
JA
592 struct rb_node **p, *parent;
593 struct cfq_queue *cfqq = NULL;
594
595 parent = NULL;
596 p = &root->rb_node;
597 while (*p) {
598 struct rb_node **n;
599
600 parent = *p;
601 cfqq = rb_entry(parent, struct cfq_queue, p_node);
602
603 /*
604 * Sort strictly based on sector. Smallest to the left,
605 * largest to the right.
606 */
2e46e8b2 607 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 608 n = &(*p)->rb_right;
2e46e8b2 609 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
610 n = &(*p)->rb_left;
611 else
612 break;
613 p = n;
3ac6c9f8 614 cfqq = NULL;
a36e71f9
JA
615 }
616
617 *ret_parent = parent;
618 if (rb_link)
619 *rb_link = p;
3ac6c9f8 620 return cfqq;
a36e71f9
JA
621}
622
623static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
624{
a36e71f9
JA
625 struct rb_node **p, *parent;
626 struct cfq_queue *__cfqq;
627
f2d1f0ae
JA
628 if (cfqq->p_root) {
629 rb_erase(&cfqq->p_node, cfqq->p_root);
630 cfqq->p_root = NULL;
631 }
a36e71f9
JA
632
633 if (cfq_class_idle(cfqq))
634 return;
635 if (!cfqq->next_rq)
636 return;
637
f2d1f0ae 638 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
639 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
640 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
641 if (!__cfqq) {
642 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
643 rb_insert_color(&cfqq->p_node, cfqq->p_root);
644 } else
645 cfqq->p_root = NULL;
a36e71f9
JA
646}
647
498d3aa2
JA
648/*
649 * Update cfqq's position in the service tree.
650 */
edd75ffd 651static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 652{
6d048f53
JA
653 /*
654 * Resorting requires the cfqq to be on the RR list already.
655 */
a36e71f9 656 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 657 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
658 cfq_prio_tree_add(cfqd, cfqq);
659 }
6d048f53
JA
660}
661
1da177e4
LT
662/*
663 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 664 * the pending list according to last request service
1da177e4 665 */
febffd61 666static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 667{
7b679138 668 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
669 BUG_ON(cfq_cfqq_on_rr(cfqq));
670 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
671 cfqd->busy_queues++;
672
edd75ffd 673 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
674}
675
498d3aa2
JA
676/*
677 * Called when the cfqq no longer has requests pending, remove it from
678 * the service tree.
679 */
febffd61 680static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 681{
7b679138 682 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
683 BUG_ON(!cfq_cfqq_on_rr(cfqq));
684 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 685
cc09e299
JA
686 if (!RB_EMPTY_NODE(&cfqq->rb_node))
687 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
f2d1f0ae
JA
688 if (cfqq->p_root) {
689 rb_erase(&cfqq->p_node, cfqq->p_root);
690 cfqq->p_root = NULL;
691 }
d9e7620e 692
1da177e4
LT
693 BUG_ON(!cfqd->busy_queues);
694 cfqd->busy_queues--;
695}
696
697/*
698 * rb tree support functions
699 */
febffd61 700static void cfq_del_rq_rb(struct request *rq)
1da177e4 701{
5e705374 702 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 703 struct cfq_data *cfqd = cfqq->cfqd;
5e705374 704 const int sync = rq_is_sync(rq);
1da177e4 705
b4878f24
JA
706 BUG_ON(!cfqq->queued[sync]);
707 cfqq->queued[sync]--;
1da177e4 708
5e705374 709 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 710
dd67d051 711 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
b4878f24 712 cfq_del_cfqq_rr(cfqd, cfqq);
1da177e4
LT
713}
714
5e705374 715static void cfq_add_rq_rb(struct request *rq)
1da177e4 716{
5e705374 717 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 718 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 719 struct request *__alias, *prev;
1da177e4 720
5380a101 721 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
722
723 /*
724 * looks a little odd, but the first insert might return an alias.
725 * if that happens, put the alias on the dispatch list
726 */
21183b07 727 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 728 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
729
730 if (!cfq_cfqq_on_rr(cfqq))
731 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
732
733 /*
734 * check if this request is a better next-serve candidate
735 */
a36e71f9 736 prev = cfqq->next_rq;
5044eed4 737 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
a36e71f9
JA
738
739 /*
740 * adjust priority tree position, if ->next_rq changes
741 */
742 if (prev != cfqq->next_rq)
743 cfq_prio_tree_add(cfqd, cfqq);
744
5044eed4 745 BUG_ON(!cfqq->next_rq);
1da177e4
LT
746}
747
febffd61 748static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 749{
5380a101
JA
750 elv_rb_del(&cfqq->sort_list, rq);
751 cfqq->queued[rq_is_sync(rq)]--;
5e705374 752 cfq_add_rq_rb(rq);
1da177e4
LT
753}
754
206dc69b
JA
755static struct request *
756cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 757{
206dc69b 758 struct task_struct *tsk = current;
91fac317 759 struct cfq_io_context *cic;
206dc69b 760 struct cfq_queue *cfqq;
1da177e4 761
4ac845a2 762 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
763 if (!cic)
764 return NULL;
765
766 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
767 if (cfqq) {
768 sector_t sector = bio->bi_sector + bio_sectors(bio);
769
21183b07 770 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 771 }
1da177e4 772
1da177e4
LT
773 return NULL;
774}
775
165125e1 776static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 777{
22e2c507 778 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 779
5ad531db 780 cfqd->rq_in_driver[rq_is_sync(rq)]++;
7b679138 781 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
5ad531db 782 rq_in_driver(cfqd));
25776e35 783
5b93629b 784 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
785}
786
165125e1 787static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 788{
b4878f24 789 struct cfq_data *cfqd = q->elevator->elevator_data;
5ad531db 790 const int sync = rq_is_sync(rq);
b4878f24 791
5ad531db
JA
792 WARN_ON(!cfqd->rq_in_driver[sync]);
793 cfqd->rq_in_driver[sync]--;
7b679138 794 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
5ad531db 795 rq_in_driver(cfqd));
1da177e4
LT
796}
797
b4878f24 798static void cfq_remove_request(struct request *rq)
1da177e4 799{
5e705374 800 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 801
5e705374
JA
802 if (cfqq->next_rq == rq)
803 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 804
b4878f24 805 list_del_init(&rq->queuelist);
5e705374 806 cfq_del_rq_rb(rq);
374f84ac 807
45333d5a 808 cfqq->cfqd->rq_queued--;
374f84ac
JA
809 if (rq_is_meta(rq)) {
810 WARN_ON(!cfqq->meta_pending);
811 cfqq->meta_pending--;
812 }
1da177e4
LT
813}
814
165125e1
JA
815static int cfq_merge(struct request_queue *q, struct request **req,
816 struct bio *bio)
1da177e4
LT
817{
818 struct cfq_data *cfqd = q->elevator->elevator_data;
819 struct request *__rq;
1da177e4 820
206dc69b 821 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 822 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
823 *req = __rq;
824 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
825 }
826
827 return ELEVATOR_NO_MERGE;
1da177e4
LT
828}
829
165125e1 830static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 831 int type)
1da177e4 832{
21183b07 833 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 834 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 835
5e705374 836 cfq_reposition_rq_rb(cfqq, req);
1da177e4 837 }
1da177e4
LT
838}
839
840static void
165125e1 841cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
842 struct request *next)
843{
22e2c507
JA
844 /*
845 * reposition in fifo if next is older than rq
846 */
847 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 848 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 849 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
850 rq_set_fifo_time(rq, rq_fifo_time(next));
851 }
22e2c507 852
b4878f24 853 cfq_remove_request(next);
22e2c507
JA
854}
855
165125e1 856static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
857 struct bio *bio)
858{
859 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 860 struct cfq_io_context *cic;
da775265 861 struct cfq_queue *cfqq;
da775265
JA
862
863 /*
ec8acb69 864 * Disallow merge of a sync bio into an async request.
da775265 865 */
91fac317 866 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 867 return false;
da775265
JA
868
869 /*
719d3402
JA
870 * Lookup the cfqq that this bio will be queued with. Allow
871 * merge only if rq is queued there.
da775265 872 */
4ac845a2 873 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 874 if (!cic)
a6151c3a 875 return false;
719d3402 876
91fac317 877 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 878 return cfqq == RQ_CFQQ(rq);
da775265
JA
879}
880
febffd61
JA
881static void __cfq_set_active_queue(struct cfq_data *cfqd,
882 struct cfq_queue *cfqq)
22e2c507
JA
883{
884 if (cfqq) {
7b679138 885 cfq_log_cfqq(cfqd, cfqq, "set_active");
22e2c507 886 cfqq->slice_end = 0;
2f5cb738
JA
887 cfqq->slice_dispatch = 0;
888
2f5cb738 889 cfq_clear_cfqq_wait_request(cfqq);
b029195d 890 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
891 cfq_clear_cfqq_must_alloc_slice(cfqq);
892 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 893 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
894
895 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
896 }
897
898 cfqd->active_queue = cfqq;
899}
900
7b14e3b5
JA
901/*
902 * current cfqq expired its slice (or was too idle), select new one
903 */
904static void
905__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 906 bool timed_out)
7b14e3b5 907{
7b679138
JA
908 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
909
7b14e3b5
JA
910 if (cfq_cfqq_wait_request(cfqq))
911 del_timer(&cfqd->idle_slice_timer);
912
7b14e3b5
JA
913 cfq_clear_cfqq_wait_request(cfqq);
914
915 /*
6084cdda 916 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 917 */
7b679138 918 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 919 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
920 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
921 }
7b14e3b5 922
edd75ffd 923 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
924
925 if (cfqq == cfqd->active_queue)
926 cfqd->active_queue = NULL;
927
928 if (cfqd->active_cic) {
929 put_io_context(cfqd->active_cic->ioc);
930 cfqd->active_cic = NULL;
931 }
7b14e3b5
JA
932}
933
a6151c3a 934static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
935{
936 struct cfq_queue *cfqq = cfqd->active_queue;
937
938 if (cfqq)
6084cdda 939 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
940}
941
498d3aa2
JA
942/*
943 * Get next queue for service. Unless we have a queue preemption,
944 * we'll simply select the first cfqq in the service tree.
945 */
6d048f53 946static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 947{
edd75ffd
JA
948 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
949 return NULL;
d9e7620e 950
0871714e 951 return cfq_rb_first(&cfqd->service_tree);
6d048f53
JA
952}
953
498d3aa2
JA
954/*
955 * Get and set a new active queue for service.
956 */
a36e71f9
JA
957static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
958 struct cfq_queue *cfqq)
6d048f53 959{
b3b6d040 960 if (!cfqq)
a36e71f9 961 cfqq = cfq_get_next_queue(cfqd);
6d048f53 962
22e2c507 963 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 964 return cfqq;
22e2c507
JA
965}
966
d9e7620e
JA
967static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
968 struct request *rq)
969{
83096ebf
TH
970 if (blk_rq_pos(rq) >= cfqd->last_position)
971 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 972 else
83096ebf 973 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
974}
975
b2c18e1e
JM
976#define CFQQ_SEEK_THR 8 * 1024
977#define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
04dc6e71 978
b2c18e1e
JM
979static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
980 struct request *rq)
6d048f53 981{
b2c18e1e 982 sector_t sdist = cfqq->seek_mean;
6d048f53 983
b2c18e1e
JM
984 if (!sample_valid(cfqq->seek_samples))
985 sdist = CFQQ_SEEK_THR;
6d048f53 986
04dc6e71 987 return cfq_dist_from_last(cfqd, rq) <= sdist;
6d048f53
JA
988}
989
a36e71f9
JA
990static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
991 struct cfq_queue *cur_cfqq)
992{
f2d1f0ae 993 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
994 struct rb_node *parent, *node;
995 struct cfq_queue *__cfqq;
996 sector_t sector = cfqd->last_position;
997
998 if (RB_EMPTY_ROOT(root))
999 return NULL;
1000
1001 /*
1002 * First, if we find a request starting at the end of the last
1003 * request, choose it.
1004 */
f2d1f0ae 1005 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1006 if (__cfqq)
1007 return __cfqq;
1008
1009 /*
1010 * If the exact sector wasn't found, the parent of the NULL leaf
1011 * will contain the closest sector.
1012 */
1013 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
b2c18e1e 1014 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1015 return __cfqq;
1016
2e46e8b2 1017 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1018 node = rb_next(&__cfqq->p_node);
1019 else
1020 node = rb_prev(&__cfqq->p_node);
1021 if (!node)
1022 return NULL;
1023
1024 __cfqq = rb_entry(node, struct cfq_queue, p_node);
b2c18e1e 1025 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1026 return __cfqq;
1027
1028 return NULL;
1029}
1030
1031/*
1032 * cfqd - obvious
1033 * cur_cfqq - passed in so that we don't decide that the current queue is
1034 * closely cooperating with itself.
1035 *
1036 * So, basically we're assuming that that cur_cfqq has dispatched at least
1037 * one request, and that cfqd->last_position reflects a position on the disk
1038 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1039 * assumption.
1040 */
1041static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1042 struct cfq_queue *cur_cfqq)
6d048f53 1043{
a36e71f9
JA
1044 struct cfq_queue *cfqq;
1045
e6c5bc73
JM
1046 if (!cfq_cfqq_sync(cur_cfqq))
1047 return NULL;
1048 if (CFQQ_SEEKY(cur_cfqq))
1049 return NULL;
1050
6d048f53 1051 /*
d9e7620e
JA
1052 * We should notice if some of the queues are cooperating, eg
1053 * working closely on the same area of the disk. In that case,
1054 * we can group them together and don't waste time idling.
6d048f53 1055 */
a36e71f9
JA
1056 cfqq = cfqq_close(cfqd, cur_cfqq);
1057 if (!cfqq)
1058 return NULL;
1059
df5fe3e8
JM
1060 /*
1061 * It only makes sense to merge sync queues.
1062 */
1063 if (!cfq_cfqq_sync(cfqq))
1064 return NULL;
e6c5bc73
JM
1065 if (CFQQ_SEEKY(cfqq))
1066 return NULL;
df5fe3e8 1067
a36e71f9 1068 return cfqq;
6d048f53
JA
1069}
1070
6d048f53 1071static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1072{
1792669c 1073 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1074 struct cfq_io_context *cic;
7b14e3b5
JA
1075 unsigned long sl;
1076
a68bbddb 1077 /*
f7d7b7a7
JA
1078 * SSD device without seek penalty, disable idling. But only do so
1079 * for devices that support queuing, otherwise we still have a problem
1080 * with sync vs async workloads.
a68bbddb 1081 */
f7d7b7a7 1082 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1083 return;
1084
dd67d051 1085 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1086 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1087
1088 /*
1089 * idle is disabled, either manually or by past process history
1090 */
6d048f53
JA
1091 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1092 return;
1093
7b679138
JA
1094 /*
1095 * still requests with the driver, don't idle
1096 */
5ad531db 1097 if (rq_in_driver(cfqd))
7b679138
JA
1098 return;
1099
22e2c507
JA
1100 /*
1101 * task has exited, don't wait
1102 */
206dc69b 1103 cic = cfqd->active_cic;
66dac98e 1104 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1105 return;
1106
355b659c
CZ
1107 /*
1108 * If our average think time is larger than the remaining time
1109 * slice, then don't idle. This avoids overrunning the allotted
1110 * time slice.
1111 */
1112 if (sample_valid(cic->ttime_samples) &&
1113 (cfqq->slice_end - jiffies < cic->ttime_mean))
1114 return;
1115
3b18152c 1116 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1117
206dc69b
JA
1118 /*
1119 * we don't want to idle for seeks, but we do want to allow
1120 * fair distribution of slice time for a process doing back-to-back
1121 * seeks. so allow a little bit of time for him to submit a new rq
1122 */
6d048f53 1123 sl = cfqd->cfq_slice_idle;
b2c18e1e 1124 if (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq))
d9e7620e 1125 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
206dc69b 1126
7b14e3b5 1127 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1128 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1129}
1130
498d3aa2
JA
1131/*
1132 * Move request from internal lists to the request queue dispatch list.
1133 */
165125e1 1134static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1135{
3ed9a296 1136 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1137 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1138
7b679138
JA
1139 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1140
06d21886 1141 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1142 cfq_remove_request(rq);
6d048f53 1143 cfqq->dispatched++;
5380a101 1144 elv_dispatch_sort(q, rq);
3ed9a296
JA
1145
1146 if (cfq_cfqq_sync(cfqq))
1147 cfqd->sync_flight++;
1da177e4
LT
1148}
1149
1150/*
1151 * return expired entry, or NULL to just start from scratch in rbtree
1152 */
febffd61 1153static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1154{
30996f40 1155 struct request *rq = NULL;
1da177e4 1156
3b18152c 1157 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1158 return NULL;
cb887411
JA
1159
1160 cfq_mark_cfqq_fifo_expire(cfqq);
1161
89850f7e
JA
1162 if (list_empty(&cfqq->fifo))
1163 return NULL;
1da177e4 1164
89850f7e 1165 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1166 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1167 rq = NULL;
1da177e4 1168
30996f40 1169 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1170 return rq;
1da177e4
LT
1171}
1172
22e2c507
JA
1173static inline int
1174cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1175{
1176 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1177
22e2c507 1178 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1179
22e2c507 1180 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1181}
1182
df5fe3e8
JM
1183/*
1184 * Must be called with the queue_lock held.
1185 */
1186static int cfqq_process_refs(struct cfq_queue *cfqq)
1187{
1188 int process_refs, io_refs;
1189
1190 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1191 process_refs = atomic_read(&cfqq->ref) - io_refs;
1192 BUG_ON(process_refs < 0);
1193 return process_refs;
1194}
1195
1196static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1197{
e6c5bc73 1198 int process_refs, new_process_refs;
df5fe3e8
JM
1199 struct cfq_queue *__cfqq;
1200
1201 /* Avoid a circular list and skip interim queue merges */
1202 while ((__cfqq = new_cfqq->new_cfqq)) {
1203 if (__cfqq == cfqq)
1204 return;
1205 new_cfqq = __cfqq;
1206 }
1207
1208 process_refs = cfqq_process_refs(cfqq);
1209 /*
1210 * If the process for the cfqq has gone away, there is no
1211 * sense in merging the queues.
1212 */
1213 if (process_refs == 0)
1214 return;
1215
e6c5bc73
JM
1216 /*
1217 * Merge in the direction of the lesser amount of work.
1218 */
1219 new_process_refs = cfqq_process_refs(new_cfqq);
1220 if (new_process_refs >= process_refs) {
1221 cfqq->new_cfqq = new_cfqq;
1222 atomic_add(process_refs, &new_cfqq->ref);
1223 } else {
1224 new_cfqq->new_cfqq = cfqq;
1225 atomic_add(new_process_refs, &cfqq->ref);
1226 }
df5fe3e8
JM
1227}
1228
22e2c507 1229/*
498d3aa2
JA
1230 * Select a queue for service. If we have a current active queue,
1231 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 1232 */
1b5ed5e1 1233static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 1234{
a36e71f9 1235 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 1236
22e2c507
JA
1237 cfqq = cfqd->active_queue;
1238 if (!cfqq)
1239 goto new_queue;
1da177e4 1240
22e2c507 1241 /*
6d048f53 1242 * The active queue has run out of time, expire it and select new.
22e2c507 1243 */
b029195d 1244 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
3b18152c 1245 goto expire;
1da177e4 1246
22e2c507 1247 /*
6d048f53
JA
1248 * The active queue has requests and isn't expired, allow it to
1249 * dispatch.
22e2c507 1250 */
dd67d051 1251 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 1252 goto keep_queue;
6d048f53 1253
a36e71f9
JA
1254 /*
1255 * If another queue has a request waiting within our mean seek
1256 * distance, let it run. The expire code will check for close
1257 * cooperators and put the close queue at the front of the service
df5fe3e8 1258 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 1259 */
b3b6d040 1260 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
1261 if (new_cfqq) {
1262 if (!cfqq->new_cfqq)
1263 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 1264 goto expire;
df5fe3e8 1265 }
a36e71f9 1266
6d048f53
JA
1267 /*
1268 * No requests pending. If the active queue still has requests in
1269 * flight or is idling for a new request, allow either of these
1270 * conditions to happen (or time out) before selecting a new queue.
1271 */
cc197479
JA
1272 if (timer_pending(&cfqd->idle_slice_timer) ||
1273 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
caaa5f9f
JA
1274 cfqq = NULL;
1275 goto keep_queue;
22e2c507
JA
1276 }
1277
3b18152c 1278expire:
6084cdda 1279 cfq_slice_expired(cfqd, 0);
3b18152c 1280new_queue:
a36e71f9 1281 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 1282keep_queue:
3b18152c 1283 return cfqq;
22e2c507
JA
1284}
1285
febffd61 1286static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
1287{
1288 int dispatched = 0;
1289
1290 while (cfqq->next_rq) {
1291 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1292 dispatched++;
1293 }
1294
1295 BUG_ON(!list_empty(&cfqq->fifo));
1296 return dispatched;
1297}
1298
498d3aa2
JA
1299/*
1300 * Drain our current requests. Used for barriers and when switching
1301 * io schedulers on-the-fly.
1302 */
d9e7620e 1303static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 1304{
0871714e 1305 struct cfq_queue *cfqq;
d9e7620e 1306 int dispatched = 0;
1b5ed5e1 1307
0871714e 1308 while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
d9e7620e 1309 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 1310
6084cdda 1311 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
1312
1313 BUG_ON(cfqd->busy_queues);
1314
6923715a 1315 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
1316 return dispatched;
1317}
1318
0b182d61 1319static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 1320{
2f5cb738 1321 unsigned int max_dispatch;
22e2c507 1322
5ad531db
JA
1323 /*
1324 * Drain async requests before we start sync IO
1325 */
1326 if (cfq_cfqq_idle_window(cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
0b182d61 1327 return false;
5ad531db 1328
2f5cb738
JA
1329 /*
1330 * If this is an async queue and we have sync IO in flight, let it wait
1331 */
1332 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
0b182d61 1333 return false;
2f5cb738
JA
1334
1335 max_dispatch = cfqd->cfq_quantum;
1336 if (cfq_class_idle(cfqq))
1337 max_dispatch = 1;
b4878f24 1338
2f5cb738
JA
1339 /*
1340 * Does this cfqq already have too much IO in flight?
1341 */
1342 if (cfqq->dispatched >= max_dispatch) {
1343 /*
1344 * idle queue must always only have a single IO in flight
1345 */
3ed9a296 1346 if (cfq_class_idle(cfqq))
0b182d61 1347 return false;
3ed9a296 1348
2f5cb738
JA
1349 /*
1350 * We have other queues, don't allow more IO from this one
1351 */
1352 if (cfqd->busy_queues > 1)
0b182d61 1353 return false;
9ede209e 1354
365722bb 1355 /*
8e296755 1356 * Sole queue user, allow bigger slice
365722bb 1357 */
8e296755
JA
1358 max_dispatch *= 4;
1359 }
1360
1361 /*
1362 * Async queues must wait a bit before being allowed dispatch.
1363 * We also ramp up the dispatch depth gradually for async IO,
1364 * based on the last sync IO we serviced
1365 */
963b72fc 1366 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
8e296755
JA
1367 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1368 unsigned int depth;
365722bb 1369
61f0c1dc 1370 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
1371 if (!depth && !cfqq->dispatched)
1372 depth = 1;
8e296755
JA
1373 if (depth < max_dispatch)
1374 max_dispatch = depth;
2f5cb738 1375 }
3ed9a296 1376
0b182d61
JA
1377 /*
1378 * If we're below the current max, allow a dispatch
1379 */
1380 return cfqq->dispatched < max_dispatch;
1381}
1382
1383/*
1384 * Dispatch a request from cfqq, moving them to the request queue
1385 * dispatch list.
1386 */
1387static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1388{
1389 struct request *rq;
1390
1391 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1392
1393 if (!cfq_may_dispatch(cfqd, cfqq))
1394 return false;
1395
1396 /*
1397 * follow expired path, else get first next available
1398 */
1399 rq = cfq_check_fifo(cfqq);
1400 if (!rq)
1401 rq = cfqq->next_rq;
1402
1403 /*
1404 * insert request into driver dispatch list
1405 */
1406 cfq_dispatch_insert(cfqd->queue, rq);
1407
1408 if (!cfqd->active_cic) {
1409 struct cfq_io_context *cic = RQ_CIC(rq);
1410
1411 atomic_long_inc(&cic->ioc->refcount);
1412 cfqd->active_cic = cic;
1413 }
1414
1415 return true;
1416}
1417
1418/*
1419 * Find the cfqq that we need to service and move a request from that to the
1420 * dispatch list
1421 */
1422static int cfq_dispatch_requests(struct request_queue *q, int force)
1423{
1424 struct cfq_data *cfqd = q->elevator->elevator_data;
1425 struct cfq_queue *cfqq;
1426
1427 if (!cfqd->busy_queues)
1428 return 0;
1429
1430 if (unlikely(force))
1431 return cfq_forced_dispatch(cfqd);
1432
1433 cfqq = cfq_select_queue(cfqd);
1434 if (!cfqq)
8e296755
JA
1435 return 0;
1436
2f5cb738 1437 /*
0b182d61 1438 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 1439 */
0b182d61
JA
1440 if (!cfq_dispatch_request(cfqd, cfqq))
1441 return 0;
1442
2f5cb738 1443 cfqq->slice_dispatch++;
b029195d 1444 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 1445
2f5cb738
JA
1446 /*
1447 * expire an async queue immediately if it has used up its slice. idle
1448 * queue always expire after 1 dispatch round.
1449 */
1450 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1451 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1452 cfq_class_idle(cfqq))) {
1453 cfqq->slice_end = jiffies + 1;
1454 cfq_slice_expired(cfqd, 0);
1da177e4
LT
1455 }
1456
b217a903 1457 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 1458 return 1;
1da177e4
LT
1459}
1460
1da177e4 1461/*
5e705374
JA
1462 * task holds one reference to the queue, dropped when task exits. each rq
1463 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4
LT
1464 *
1465 * queue lock must be held here.
1466 */
1467static void cfq_put_queue(struct cfq_queue *cfqq)
1468{
22e2c507
JA
1469 struct cfq_data *cfqd = cfqq->cfqd;
1470
1471 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
1472
1473 if (!atomic_dec_and_test(&cfqq->ref))
1474 return;
1475
7b679138 1476 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 1477 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 1478 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3b18152c 1479 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 1480
28f95cbc 1481 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 1482 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 1483 cfq_schedule_dispatch(cfqd);
28f95cbc 1484 }
22e2c507 1485
1da177e4
LT
1486 kmem_cache_free(cfq_pool, cfqq);
1487}
1488
d6de8be7
JA
1489/*
1490 * Must always be called with the rcu_read_lock() held
1491 */
07416d29
JA
1492static void
1493__call_for_each_cic(struct io_context *ioc,
1494 void (*func)(struct io_context *, struct cfq_io_context *))
1495{
1496 struct cfq_io_context *cic;
1497 struct hlist_node *n;
1498
1499 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1500 func(ioc, cic);
1501}
1502
4ac845a2 1503/*
34e6bbf2 1504 * Call func for each cic attached to this ioc.
4ac845a2 1505 */
34e6bbf2 1506static void
4ac845a2
JA
1507call_for_each_cic(struct io_context *ioc,
1508 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 1509{
4ac845a2 1510 rcu_read_lock();
07416d29 1511 __call_for_each_cic(ioc, func);
4ac845a2 1512 rcu_read_unlock();
34e6bbf2
FC
1513}
1514
1515static void cfq_cic_free_rcu(struct rcu_head *head)
1516{
1517 struct cfq_io_context *cic;
1518
1519 cic = container_of(head, struct cfq_io_context, rcu_head);
1520
1521 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 1522 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 1523
9a11b4ed
JA
1524 if (ioc_gone) {
1525 /*
1526 * CFQ scheduler is exiting, grab exit lock and check
1527 * the pending io context count. If it hits zero,
1528 * complete ioc_gone and set it back to NULL
1529 */
1530 spin_lock(&ioc_gone_lock);
245b2e70 1531 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
1532 complete(ioc_gone);
1533 ioc_gone = NULL;
1534 }
1535 spin_unlock(&ioc_gone_lock);
1536 }
34e6bbf2 1537}
4ac845a2 1538
34e6bbf2
FC
1539static void cfq_cic_free(struct cfq_io_context *cic)
1540{
1541 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
1542}
1543
1544static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1545{
1546 unsigned long flags;
1547
1548 BUG_ON(!cic->dead_key);
1549
1550 spin_lock_irqsave(&ioc->lock, flags);
1551 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 1552 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
1553 spin_unlock_irqrestore(&ioc->lock, flags);
1554
34e6bbf2 1555 cfq_cic_free(cic);
4ac845a2
JA
1556}
1557
d6de8be7
JA
1558/*
1559 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1560 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1561 * and ->trim() which is called with the task lock held
1562 */
4ac845a2
JA
1563static void cfq_free_io_context(struct io_context *ioc)
1564{
4ac845a2 1565 /*
34e6bbf2
FC
1566 * ioc->refcount is zero here, or we are called from elv_unregister(),
1567 * so no more cic's are allowed to be linked into this ioc. So it
1568 * should be ok to iterate over the known list, we will see all cic's
1569 * since no new ones are added.
4ac845a2 1570 */
07416d29 1571 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
1572}
1573
89850f7e 1574static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1575{
df5fe3e8
JM
1576 struct cfq_queue *__cfqq, *next;
1577
28f95cbc 1578 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 1579 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 1580 cfq_schedule_dispatch(cfqd);
28f95cbc 1581 }
22e2c507 1582
df5fe3e8
JM
1583 /*
1584 * If this queue was scheduled to merge with another queue, be
1585 * sure to drop the reference taken on that queue (and others in
1586 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
1587 */
1588 __cfqq = cfqq->new_cfqq;
1589 while (__cfqq) {
1590 if (__cfqq == cfqq) {
1591 WARN(1, "cfqq->new_cfqq loop detected\n");
1592 break;
1593 }
1594 next = __cfqq->new_cfqq;
1595 cfq_put_queue(__cfqq);
1596 __cfqq = next;
1597 }
1598
89850f7e
JA
1599 cfq_put_queue(cfqq);
1600}
22e2c507 1601
89850f7e
JA
1602static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1603 struct cfq_io_context *cic)
1604{
4faa3c81
FC
1605 struct io_context *ioc = cic->ioc;
1606
fc46379d 1607 list_del_init(&cic->queue_list);
4ac845a2
JA
1608
1609 /*
1610 * Make sure key == NULL is seen for dead queues
1611 */
fc46379d 1612 smp_wmb();
4ac845a2 1613 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
1614 cic->key = NULL;
1615
4faa3c81
FC
1616 if (ioc->ioc_data == cic)
1617 rcu_assign_pointer(ioc->ioc_data, NULL);
1618
ff6657c6
JA
1619 if (cic->cfqq[BLK_RW_ASYNC]) {
1620 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1621 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
1622 }
1623
ff6657c6
JA
1624 if (cic->cfqq[BLK_RW_SYNC]) {
1625 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1626 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 1627 }
89850f7e
JA
1628}
1629
4ac845a2
JA
1630static void cfq_exit_single_io_context(struct io_context *ioc,
1631 struct cfq_io_context *cic)
89850f7e
JA
1632{
1633 struct cfq_data *cfqd = cic->key;
1634
89850f7e 1635 if (cfqd) {
165125e1 1636 struct request_queue *q = cfqd->queue;
4ac845a2 1637 unsigned long flags;
89850f7e 1638
4ac845a2 1639 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
1640
1641 /*
1642 * Ensure we get a fresh copy of the ->key to prevent
1643 * race between exiting task and queue
1644 */
1645 smp_read_barrier_depends();
1646 if (cic->key)
1647 __cfq_exit_single_io_context(cfqd, cic);
1648
4ac845a2 1649 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 1650 }
1da177e4
LT
1651}
1652
498d3aa2
JA
1653/*
1654 * The process that ioc belongs to has exited, we need to clean up
1655 * and put the internal structures we have that belongs to that process.
1656 */
e2d74ac0 1657static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 1658{
4ac845a2 1659 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
1660}
1661
22e2c507 1662static struct cfq_io_context *
8267e268 1663cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 1664{
b5deef90 1665 struct cfq_io_context *cic;
1da177e4 1666
94f6030c
CL
1667 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1668 cfqd->queue->node);
1da177e4 1669 if (cic) {
22e2c507 1670 cic->last_end_request = jiffies;
553698f9 1671 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 1672 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
1673 cic->dtor = cfq_free_io_context;
1674 cic->exit = cfq_exit_io_context;
245b2e70 1675 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
1676 }
1677
1678 return cic;
1679}
1680
fd0928df 1681static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
1682{
1683 struct task_struct *tsk = current;
1684 int ioprio_class;
1685
3b18152c 1686 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
1687 return;
1688
fd0928df 1689 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 1690 switch (ioprio_class) {
fe094d98
JA
1691 default:
1692 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1693 case IOPRIO_CLASS_NONE:
1694 /*
6d63c275 1695 * no prio set, inherit CPU scheduling settings
fe094d98
JA
1696 */
1697 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 1698 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
1699 break;
1700 case IOPRIO_CLASS_RT:
1701 cfqq->ioprio = task_ioprio(ioc);
1702 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1703 break;
1704 case IOPRIO_CLASS_BE:
1705 cfqq->ioprio = task_ioprio(ioc);
1706 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1707 break;
1708 case IOPRIO_CLASS_IDLE:
1709 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1710 cfqq->ioprio = 7;
1711 cfq_clear_cfqq_idle_window(cfqq);
1712 break;
22e2c507
JA
1713 }
1714
1715 /*
1716 * keep track of original prio settings in case we have to temporarily
1717 * elevate the priority of this queue
1718 */
1719 cfqq->org_ioprio = cfqq->ioprio;
1720 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 1721 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
1722}
1723
febffd61 1724static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 1725{
478a82b0
AV
1726 struct cfq_data *cfqd = cic->key;
1727 struct cfq_queue *cfqq;
c1b707d2 1728 unsigned long flags;
35e6077c 1729
caaa5f9f
JA
1730 if (unlikely(!cfqd))
1731 return;
1732
c1b707d2 1733 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 1734
ff6657c6 1735 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
1736 if (cfqq) {
1737 struct cfq_queue *new_cfqq;
ff6657c6
JA
1738 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1739 GFP_ATOMIC);
caaa5f9f 1740 if (new_cfqq) {
ff6657c6 1741 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
1742 cfq_put_queue(cfqq);
1743 }
22e2c507 1744 }
caaa5f9f 1745
ff6657c6 1746 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
1747 if (cfqq)
1748 cfq_mark_cfqq_prio_changed(cfqq);
1749
c1b707d2 1750 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
1751}
1752
fc46379d 1753static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 1754{
4ac845a2 1755 call_for_each_cic(ioc, changed_ioprio);
fc46379d 1756 ioc->ioprio_changed = 0;
22e2c507
JA
1757}
1758
d5036d77 1759static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1760 pid_t pid, bool is_sync)
d5036d77
JA
1761{
1762 RB_CLEAR_NODE(&cfqq->rb_node);
1763 RB_CLEAR_NODE(&cfqq->p_node);
1764 INIT_LIST_HEAD(&cfqq->fifo);
1765
1766 atomic_set(&cfqq->ref, 0);
1767 cfqq->cfqd = cfqd;
1768
1769 cfq_mark_cfqq_prio_changed(cfqq);
1770
1771 if (is_sync) {
1772 if (!cfq_class_idle(cfqq))
1773 cfq_mark_cfqq_idle_window(cfqq);
1774 cfq_mark_cfqq_sync(cfqq);
1775 }
1776 cfqq->pid = pid;
1777}
1778
22e2c507 1779static struct cfq_queue *
a6151c3a 1780cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 1781 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 1782{
22e2c507 1783 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 1784 struct cfq_io_context *cic;
22e2c507
JA
1785
1786retry:
4ac845a2 1787 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
1788 /* cic always exists here */
1789 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 1790
6118b70b
JA
1791 /*
1792 * Always try a new alloc if we fell back to the OOM cfqq
1793 * originally, since it should just be a temporary situation.
1794 */
1795 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
1796 cfqq = NULL;
22e2c507
JA
1797 if (new_cfqq) {
1798 cfqq = new_cfqq;
1799 new_cfqq = NULL;
1800 } else if (gfp_mask & __GFP_WAIT) {
1801 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 1802 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 1803 gfp_mask | __GFP_ZERO,
94f6030c 1804 cfqd->queue->node);
22e2c507 1805 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
1806 if (new_cfqq)
1807 goto retry;
22e2c507 1808 } else {
94f6030c
CL
1809 cfqq = kmem_cache_alloc_node(cfq_pool,
1810 gfp_mask | __GFP_ZERO,
1811 cfqd->queue->node);
22e2c507
JA
1812 }
1813
6118b70b
JA
1814 if (cfqq) {
1815 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
1816 cfq_init_prio_data(cfqq, ioc);
1817 cfq_log_cfqq(cfqd, cfqq, "alloced");
1818 } else
1819 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
1820 }
1821
1822 if (new_cfqq)
1823 kmem_cache_free(cfq_pool, new_cfqq);
1824
22e2c507
JA
1825 return cfqq;
1826}
1827
c2dea2d1
VT
1828static struct cfq_queue **
1829cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1830{
fe094d98 1831 switch (ioprio_class) {
c2dea2d1
VT
1832 case IOPRIO_CLASS_RT:
1833 return &cfqd->async_cfqq[0][ioprio];
1834 case IOPRIO_CLASS_BE:
1835 return &cfqd->async_cfqq[1][ioprio];
1836 case IOPRIO_CLASS_IDLE:
1837 return &cfqd->async_idle_cfqq;
1838 default:
1839 BUG();
1840 }
1841}
1842
15c31be4 1843static struct cfq_queue *
a6151c3a 1844cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
1845 gfp_t gfp_mask)
1846{
fd0928df
JA
1847 const int ioprio = task_ioprio(ioc);
1848 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 1849 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
1850 struct cfq_queue *cfqq = NULL;
1851
c2dea2d1
VT
1852 if (!is_sync) {
1853 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1854 cfqq = *async_cfqq;
1855 }
1856
6118b70b 1857 if (!cfqq)
fd0928df 1858 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
1859
1860 /*
1861 * pin the queue now that it's allocated, scheduler exit will prune it
1862 */
c2dea2d1 1863 if (!is_sync && !(*async_cfqq)) {
15c31be4 1864 atomic_inc(&cfqq->ref);
c2dea2d1 1865 *async_cfqq = cfqq;
15c31be4
JA
1866 }
1867
1868 atomic_inc(&cfqq->ref);
1869 return cfqq;
1870}
1871
498d3aa2
JA
1872/*
1873 * We drop cfq io contexts lazily, so we may find a dead one.
1874 */
dbecf3ab 1875static void
4ac845a2
JA
1876cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1877 struct cfq_io_context *cic)
dbecf3ab 1878{
4ac845a2
JA
1879 unsigned long flags;
1880
fc46379d 1881 WARN_ON(!list_empty(&cic->queue_list));
597bc485 1882
4ac845a2
JA
1883 spin_lock_irqsave(&ioc->lock, flags);
1884
4faa3c81 1885 BUG_ON(ioc->ioc_data == cic);
597bc485 1886
4ac845a2 1887 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 1888 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
1889 spin_unlock_irqrestore(&ioc->lock, flags);
1890
1891 cfq_cic_free(cic);
dbecf3ab
OH
1892}
1893
e2d74ac0 1894static struct cfq_io_context *
4ac845a2 1895cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 1896{
e2d74ac0 1897 struct cfq_io_context *cic;
d6de8be7 1898 unsigned long flags;
4ac845a2 1899 void *k;
e2d74ac0 1900
91fac317
VT
1901 if (unlikely(!ioc))
1902 return NULL;
1903
d6de8be7
JA
1904 rcu_read_lock();
1905
597bc485
JA
1906 /*
1907 * we maintain a last-hit cache, to avoid browsing over the tree
1908 */
4ac845a2 1909 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
1910 if (cic && cic->key == cfqd) {
1911 rcu_read_unlock();
597bc485 1912 return cic;
d6de8be7 1913 }
597bc485 1914
4ac845a2 1915 do {
4ac845a2
JA
1916 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1917 rcu_read_unlock();
1918 if (!cic)
1919 break;
be3b0753
OH
1920 /* ->key must be copied to avoid race with cfq_exit_queue() */
1921 k = cic->key;
1922 if (unlikely(!k)) {
4ac845a2 1923 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 1924 rcu_read_lock();
4ac845a2 1925 continue;
dbecf3ab 1926 }
e2d74ac0 1927
d6de8be7 1928 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 1929 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 1930 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
1931 break;
1932 } while (1);
e2d74ac0 1933
4ac845a2 1934 return cic;
e2d74ac0
JA
1935}
1936
4ac845a2
JA
1937/*
1938 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1939 * the process specific cfq io context when entered from the block layer.
1940 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1941 */
febffd61
JA
1942static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1943 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 1944{
0261d688 1945 unsigned long flags;
4ac845a2 1946 int ret;
e2d74ac0 1947
4ac845a2
JA
1948 ret = radix_tree_preload(gfp_mask);
1949 if (!ret) {
1950 cic->ioc = ioc;
1951 cic->key = cfqd;
e2d74ac0 1952
4ac845a2
JA
1953 spin_lock_irqsave(&ioc->lock, flags);
1954 ret = radix_tree_insert(&ioc->radix_root,
1955 (unsigned long) cfqd, cic);
ffc4e759
JA
1956 if (!ret)
1957 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 1958 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 1959
4ac845a2
JA
1960 radix_tree_preload_end();
1961
1962 if (!ret) {
1963 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1964 list_add(&cic->queue_list, &cfqd->cic_list);
1965 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1966 }
e2d74ac0
JA
1967 }
1968
4ac845a2
JA
1969 if (ret)
1970 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 1971
4ac845a2 1972 return ret;
e2d74ac0
JA
1973}
1974
1da177e4
LT
1975/*
1976 * Setup general io context and cfq io context. There can be several cfq
1977 * io contexts per general io context, if this process is doing io to more
e2d74ac0 1978 * than one device managed by cfq.
1da177e4
LT
1979 */
1980static struct cfq_io_context *
e2d74ac0 1981cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 1982{
22e2c507 1983 struct io_context *ioc = NULL;
1da177e4 1984 struct cfq_io_context *cic;
1da177e4 1985
22e2c507 1986 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 1987
b5deef90 1988 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
1989 if (!ioc)
1990 return NULL;
1991
4ac845a2 1992 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
1993 if (cic)
1994 goto out;
1da177e4 1995
e2d74ac0
JA
1996 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1997 if (cic == NULL)
1998 goto err;
1da177e4 1999
4ac845a2
JA
2000 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2001 goto err_free;
2002
1da177e4 2003out:
fc46379d
JA
2004 smp_read_barrier_depends();
2005 if (unlikely(ioc->ioprio_changed))
2006 cfq_ioc_set_ioprio(ioc);
2007
1da177e4 2008 return cic;
4ac845a2
JA
2009err_free:
2010 cfq_cic_free(cic);
1da177e4
LT
2011err:
2012 put_io_context(ioc);
2013 return NULL;
2014}
2015
22e2c507
JA
2016static void
2017cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 2018{
aaf1228d
JA
2019 unsigned long elapsed = jiffies - cic->last_end_request;
2020 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 2021
22e2c507
JA
2022 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2023 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2024 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2025}
1da177e4 2026
206dc69b 2027static void
b2c18e1e 2028cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 2029 struct request *rq)
206dc69b
JA
2030{
2031 sector_t sdist;
2032 u64 total;
2033
b2c18e1e 2034 if (!cfqq->last_request_pos)
4d00aa47 2035 sdist = 0;
b2c18e1e
JM
2036 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2037 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
206dc69b 2038 else
b2c18e1e 2039 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
206dc69b
JA
2040
2041 /*
2042 * Don't allow the seek distance to get too large from the
2043 * odd fragment, pagein, etc
2044 */
b2c18e1e
JM
2045 if (cfqq->seek_samples <= 60) /* second&third seek */
2046 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
206dc69b 2047 else
b2c18e1e 2048 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
206dc69b 2049
b2c18e1e
JM
2050 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2051 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2052 total = cfqq->seek_total + (cfqq->seek_samples/2);
2053 do_div(total, cfqq->seek_samples);
2054 cfqq->seek_mean = (sector_t)total;
e6c5bc73
JM
2055
2056 /*
2057 * If this cfqq is shared between multiple processes, check to
2058 * make sure that those processes are still issuing I/Os within
2059 * the mean seek distance. If not, it may be time to break the
2060 * queues apart again.
2061 */
2062 if (cfq_cfqq_coop(cfqq)) {
2063 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2064 cfqq->seeky_start = jiffies;
2065 else if (!CFQQ_SEEKY(cfqq))
2066 cfqq->seeky_start = 0;
2067 }
206dc69b 2068}
1da177e4 2069
22e2c507
JA
2070/*
2071 * Disable idle window if the process thinks too long or seeks so much that
2072 * it doesn't matter
2073 */
2074static void
2075cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2076 struct cfq_io_context *cic)
2077{
7b679138 2078 int old_idle, enable_idle;
1be92f2f 2079
0871714e
JA
2080 /*
2081 * Don't idle for async or idle io prio class
2082 */
2083 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
2084 return;
2085
c265a7f4 2086 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 2087
66dac98e 2088 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
b2c18e1e 2089 (!cfqd->cfq_latency && cfqd->hw_tag && CFQQ_SEEKY(cfqq)))
22e2c507
JA
2090 enable_idle = 0;
2091 else if (sample_valid(cic->ttime_samples)) {
ec60e4f6 2092 unsigned int slice_idle = cfqd->cfq_slice_idle;
b2c18e1e 2093 if (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq))
ec60e4f6
CZ
2094 slice_idle = msecs_to_jiffies(CFQ_MIN_TT);
2095 if (cic->ttime_mean > slice_idle)
22e2c507
JA
2096 enable_idle = 0;
2097 else
2098 enable_idle = 1;
1da177e4
LT
2099 }
2100
7b679138
JA
2101 if (old_idle != enable_idle) {
2102 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2103 if (enable_idle)
2104 cfq_mark_cfqq_idle_window(cfqq);
2105 else
2106 cfq_clear_cfqq_idle_window(cfqq);
2107 }
22e2c507 2108}
1da177e4 2109
22e2c507
JA
2110/*
2111 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2112 * no or if we aren't sure, a 1 will cause a preempt.
2113 */
a6151c3a 2114static bool
22e2c507 2115cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 2116 struct request *rq)
22e2c507 2117{
6d048f53 2118 struct cfq_queue *cfqq;
22e2c507 2119
6d048f53
JA
2120 cfqq = cfqd->active_queue;
2121 if (!cfqq)
a6151c3a 2122 return false;
22e2c507 2123
6d048f53 2124 if (cfq_slice_used(cfqq))
a6151c3a 2125 return true;
6d048f53
JA
2126
2127 if (cfq_class_idle(new_cfqq))
a6151c3a 2128 return false;
22e2c507
JA
2129
2130 if (cfq_class_idle(cfqq))
a6151c3a 2131 return true;
1e3335de 2132
374f84ac
JA
2133 /*
2134 * if the new request is sync, but the currently running queue is
2135 * not, let the sync request have priority.
2136 */
5e705374 2137 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 2138 return true;
1e3335de 2139
374f84ac
JA
2140 /*
2141 * So both queues are sync. Let the new request get disk time if
2142 * it's a metadata request and the current queue is doing regular IO.
2143 */
2144 if (rq_is_meta(rq) && !cfqq->meta_pending)
a6151c3a 2145 return false;
22e2c507 2146
3a9a3f6c
DS
2147 /*
2148 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2149 */
2150 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 2151 return true;
3a9a3f6c 2152
1e3335de 2153 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 2154 return false;
1e3335de
JA
2155
2156 /*
2157 * if this request is as-good as one we would expect from the
2158 * current cfqq, let it preempt
2159 */
b2c18e1e 2160 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 2161 return true;
1e3335de 2162
a6151c3a 2163 return false;
22e2c507
JA
2164}
2165
2166/*
2167 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2168 * let it have half of its nominal slice.
2169 */
2170static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2171{
7b679138 2172 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 2173 cfq_slice_expired(cfqd, 1);
22e2c507 2174
bf572256
JA
2175 /*
2176 * Put the new queue at the front of the of the current list,
2177 * so we know that it will be selected next.
2178 */
2179 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
2180
2181 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 2182
44f7c160
JA
2183 cfqq->slice_end = 0;
2184 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
2185}
2186
22e2c507 2187/*
5e705374 2188 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
2189 * something we should do about it
2190 */
2191static void
5e705374
JA
2192cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2193 struct request *rq)
22e2c507 2194{
5e705374 2195 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 2196
45333d5a 2197 cfqd->rq_queued++;
374f84ac
JA
2198 if (rq_is_meta(rq))
2199 cfqq->meta_pending++;
2200
9c2c38a1 2201 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 2202 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
2203 cfq_update_idle_window(cfqd, cfqq, cic);
2204
b2c18e1e 2205 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
2206
2207 if (cfqq == cfqd->active_queue) {
2208 /*
b029195d
JA
2209 * Remember that we saw a request from this process, but
2210 * don't start queuing just yet. Otherwise we risk seeing lots
2211 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
2212 * and merging. If the request is already larger than a single
2213 * page, let it rip immediately. For that case we assume that
2d870722
JA
2214 * merging is already done. Ditto for a busy system that
2215 * has other work pending, don't risk delaying until the
2216 * idle timer unplug to continue working.
22e2c507 2217 */
d6ceb25e 2218 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
2219 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2220 cfqd->busy_queues > 1) {
d6ceb25e 2221 del_timer(&cfqd->idle_slice_timer);
a7f55792 2222 __blk_run_queue(cfqd->queue);
d6ceb25e 2223 }
b029195d 2224 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 2225 }
5e705374 2226 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
2227 /*
2228 * not the active queue - expire current slice if it is
2229 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
2230 * has some old slice time left and is of higher priority or
2231 * this new queue is RT and the current one is BE
22e2c507
JA
2232 */
2233 cfq_preempt_queue(cfqd, cfqq);
a7f55792 2234 __blk_run_queue(cfqd->queue);
22e2c507 2235 }
1da177e4
LT
2236}
2237
165125e1 2238static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 2239{
b4878f24 2240 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 2241 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 2242
7b679138 2243 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 2244 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 2245
5e705374 2246 cfq_add_rq_rb(rq);
1da177e4 2247
30996f40 2248 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507
JA
2249 list_add_tail(&rq->queuelist, &cfqq->fifo);
2250
5e705374 2251 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
2252}
2253
45333d5a
AC
2254/*
2255 * Update hw_tag based on peak queue depth over 50 samples under
2256 * sufficient load.
2257 */
2258static void cfq_update_hw_tag(struct cfq_data *cfqd)
2259{
5ad531db
JA
2260 if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
2261 cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
45333d5a
AC
2262
2263 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
5ad531db 2264 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
2265 return;
2266
2267 if (cfqd->hw_tag_samples++ < 50)
2268 return;
2269
2270 if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2271 cfqd->hw_tag = 1;
2272 else
2273 cfqd->hw_tag = 0;
2274
2275 cfqd->hw_tag_samples = 0;
2276 cfqd->rq_in_driver_peak = 0;
2277}
2278
165125e1 2279static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 2280{
5e705374 2281 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 2282 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 2283 const int sync = rq_is_sync(rq);
b4878f24 2284 unsigned long now;
1da177e4 2285
b4878f24 2286 now = jiffies;
7b679138 2287 cfq_log_cfqq(cfqd, cfqq, "complete");
1da177e4 2288
45333d5a
AC
2289 cfq_update_hw_tag(cfqd);
2290
5ad531db 2291 WARN_ON(!cfqd->rq_in_driver[sync]);
6d048f53 2292 WARN_ON(!cfqq->dispatched);
5ad531db 2293 cfqd->rq_in_driver[sync]--;
6d048f53 2294 cfqq->dispatched--;
1da177e4 2295
3ed9a296
JA
2296 if (cfq_cfqq_sync(cfqq))
2297 cfqd->sync_flight--;
2298
365722bb 2299 if (sync) {
5e705374 2300 RQ_CIC(rq)->last_end_request = now;
365722bb
VG
2301 cfqd->last_end_sync_rq = now;
2302 }
caaa5f9f
JA
2303
2304 /*
2305 * If this is the active queue, check if it needs to be expired,
2306 * or if we want to idle in case it has no pending requests.
2307 */
2308 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
2309 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2310
44f7c160
JA
2311 if (cfq_cfqq_slice_new(cfqq)) {
2312 cfq_set_prio_slice(cfqd, cfqq);
2313 cfq_clear_cfqq_slice_new(cfqq);
2314 }
a36e71f9
JA
2315 /*
2316 * If there are no requests waiting in this queue, and
2317 * there are other queues ready to issue requests, AND
2318 * those other queues are issuing requests within our
2319 * mean seek distance, give them a chance to run instead
2320 * of idling.
2321 */
0871714e 2322 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 2323 cfq_slice_expired(cfqd, 1);
b3b6d040 2324 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq) &&
a36e71f9 2325 sync && !rq_noidle(rq))
6d048f53 2326 cfq_arm_slice_timer(cfqd);
caaa5f9f 2327 }
6d048f53 2328
5ad531db 2329 if (!rq_in_driver(cfqd))
23e018a1 2330 cfq_schedule_dispatch(cfqd);
1da177e4
LT
2331}
2332
22e2c507
JA
2333/*
2334 * we temporarily boost lower priority queues if they are holding fs exclusive
2335 * resources. they are boosted to normal prio (CLASS_BE/4)
2336 */
2337static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 2338{
22e2c507
JA
2339 if (has_fs_excl()) {
2340 /*
2341 * boost idle prio on transactions that would lock out other
2342 * users of the filesystem
2343 */
2344 if (cfq_class_idle(cfqq))
2345 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2346 if (cfqq->ioprio > IOPRIO_NORM)
2347 cfqq->ioprio = IOPRIO_NORM;
2348 } else {
2349 /*
2350 * check if we need to unboost the queue
2351 */
2352 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2353 cfqq->ioprio_class = cfqq->org_ioprio_class;
2354 if (cfqq->ioprio != cfqq->org_ioprio)
2355 cfqq->ioprio = cfqq->org_ioprio;
2356 }
22e2c507 2357}
1da177e4 2358
89850f7e 2359static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 2360{
1b379d8d 2361 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 2362 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 2363 return ELV_MQUEUE_MUST;
3b18152c 2364 }
1da177e4 2365
22e2c507 2366 return ELV_MQUEUE_MAY;
22e2c507
JA
2367}
2368
165125e1 2369static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
2370{
2371 struct cfq_data *cfqd = q->elevator->elevator_data;
2372 struct task_struct *tsk = current;
91fac317 2373 struct cfq_io_context *cic;
22e2c507
JA
2374 struct cfq_queue *cfqq;
2375
2376 /*
2377 * don't force setup of a queue from here, as a call to may_queue
2378 * does not necessarily imply that a request actually will be queued.
2379 * so just lookup a possibly existing queue, or return 'may queue'
2380 * if that fails
2381 */
4ac845a2 2382 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
2383 if (!cic)
2384 return ELV_MQUEUE_MAY;
2385
b0b78f81 2386 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 2387 if (cfqq) {
fd0928df 2388 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
2389 cfq_prio_boost(cfqq);
2390
89850f7e 2391 return __cfq_may_queue(cfqq);
22e2c507
JA
2392 }
2393
2394 return ELV_MQUEUE_MAY;
1da177e4
LT
2395}
2396
1da177e4
LT
2397/*
2398 * queue lock held here
2399 */
bb37b94c 2400static void cfq_put_request(struct request *rq)
1da177e4 2401{
5e705374 2402 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 2403
5e705374 2404 if (cfqq) {
22e2c507 2405 const int rw = rq_data_dir(rq);
1da177e4 2406
22e2c507
JA
2407 BUG_ON(!cfqq->allocated[rw]);
2408 cfqq->allocated[rw]--;
1da177e4 2409
5e705374 2410 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 2411
1da177e4 2412 rq->elevator_private = NULL;
5e705374 2413 rq->elevator_private2 = NULL;
1da177e4 2414
1da177e4
LT
2415 cfq_put_queue(cfqq);
2416 }
2417}
2418
df5fe3e8
JM
2419static struct cfq_queue *
2420cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
2421 struct cfq_queue *cfqq)
2422{
2423 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
2424 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 2425 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
2426 cfq_put_queue(cfqq);
2427 return cic_to_cfqq(cic, 1);
2428}
2429
e6c5bc73
JM
2430static int should_split_cfqq(struct cfq_queue *cfqq)
2431{
2432 if (cfqq->seeky_start &&
2433 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
2434 return 1;
2435 return 0;
2436}
2437
2438/*
2439 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
2440 * was the last process referring to said cfqq.
2441 */
2442static struct cfq_queue *
2443split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
2444{
2445 if (cfqq_process_refs(cfqq) == 1) {
2446 cfqq->seeky_start = 0;
2447 cfqq->pid = current->pid;
2448 cfq_clear_cfqq_coop(cfqq);
2449 return cfqq;
2450 }
2451
2452 cic_set_cfqq(cic, NULL, 1);
2453 cfq_put_queue(cfqq);
2454 return NULL;
2455}
1da177e4 2456/*
22e2c507 2457 * Allocate cfq data structures associated with this request.
1da177e4 2458 */
22e2c507 2459static int
165125e1 2460cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
2461{
2462 struct cfq_data *cfqd = q->elevator->elevator_data;
2463 struct cfq_io_context *cic;
2464 const int rw = rq_data_dir(rq);
a6151c3a 2465 const bool is_sync = rq_is_sync(rq);
22e2c507 2466 struct cfq_queue *cfqq;
1da177e4
LT
2467 unsigned long flags;
2468
2469 might_sleep_if(gfp_mask & __GFP_WAIT);
2470
e2d74ac0 2471 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 2472
1da177e4
LT
2473 spin_lock_irqsave(q->queue_lock, flags);
2474
22e2c507
JA
2475 if (!cic)
2476 goto queue_fail;
2477
e6c5bc73 2478new_queue:
91fac317 2479 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 2480 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 2481 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 2482 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 2483 } else {
e6c5bc73
JM
2484 /*
2485 * If the queue was seeky for too long, break it apart.
2486 */
2487 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
2488 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
2489 cfqq = split_cfqq(cic, cfqq);
2490 if (!cfqq)
2491 goto new_queue;
2492 }
2493
df5fe3e8
JM
2494 /*
2495 * Check to see if this queue is scheduled to merge with
2496 * another, closely cooperating queue. The merging of
2497 * queues happens here as it must be done in process context.
2498 * The reference on new_cfqq was taken in merge_cfqqs.
2499 */
2500 if (cfqq->new_cfqq)
2501 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 2502 }
1da177e4
LT
2503
2504 cfqq->allocated[rw]++;
22e2c507 2505 atomic_inc(&cfqq->ref);
1da177e4 2506
5e705374 2507 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 2508
5e705374
JA
2509 rq->elevator_private = cic;
2510 rq->elevator_private2 = cfqq;
2511 return 0;
1da177e4 2512
22e2c507
JA
2513queue_fail:
2514 if (cic)
2515 put_io_context(cic->ioc);
89850f7e 2516
23e018a1 2517 cfq_schedule_dispatch(cfqd);
1da177e4 2518 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 2519 cfq_log(cfqd, "set_request fail");
1da177e4
LT
2520 return 1;
2521}
2522
65f27f38 2523static void cfq_kick_queue(struct work_struct *work)
22e2c507 2524{
65f27f38 2525 struct cfq_data *cfqd =
23e018a1 2526 container_of(work, struct cfq_data, unplug_work);
165125e1 2527 struct request_queue *q = cfqd->queue;
22e2c507 2528
40bb54d1 2529 spin_lock_irq(q->queue_lock);
a7f55792 2530 __blk_run_queue(cfqd->queue);
40bb54d1 2531 spin_unlock_irq(q->queue_lock);
22e2c507
JA
2532}
2533
2534/*
2535 * Timer running if the active_queue is currently idling inside its time slice
2536 */
2537static void cfq_idle_slice_timer(unsigned long data)
2538{
2539 struct cfq_data *cfqd = (struct cfq_data *) data;
2540 struct cfq_queue *cfqq;
2541 unsigned long flags;
3c6bd2f8 2542 int timed_out = 1;
22e2c507 2543
7b679138
JA
2544 cfq_log(cfqd, "idle timer fired");
2545
22e2c507
JA
2546 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2547
fe094d98
JA
2548 cfqq = cfqd->active_queue;
2549 if (cfqq) {
3c6bd2f8
JA
2550 timed_out = 0;
2551
b029195d
JA
2552 /*
2553 * We saw a request before the queue expired, let it through
2554 */
2555 if (cfq_cfqq_must_dispatch(cfqq))
2556 goto out_kick;
2557
22e2c507
JA
2558 /*
2559 * expired
2560 */
44f7c160 2561 if (cfq_slice_used(cfqq))
22e2c507
JA
2562 goto expire;
2563
2564 /*
2565 * only expire and reinvoke request handler, if there are
2566 * other queues with pending requests
2567 */
caaa5f9f 2568 if (!cfqd->busy_queues)
22e2c507 2569 goto out_cont;
22e2c507
JA
2570
2571 /*
2572 * not expired and it has a request pending, let it dispatch
2573 */
75e50984 2574 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2575 goto out_kick;
22e2c507
JA
2576 }
2577expire:
6084cdda 2578 cfq_slice_expired(cfqd, timed_out);
22e2c507 2579out_kick:
23e018a1 2580 cfq_schedule_dispatch(cfqd);
22e2c507
JA
2581out_cont:
2582 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2583}
2584
3b18152c
JA
2585static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2586{
2587 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 2588 cancel_work_sync(&cfqd->unplug_work);
3b18152c 2589}
22e2c507 2590
c2dea2d1
VT
2591static void cfq_put_async_queues(struct cfq_data *cfqd)
2592{
2593 int i;
2594
2595 for (i = 0; i < IOPRIO_BE_NR; i++) {
2596 if (cfqd->async_cfqq[0][i])
2597 cfq_put_queue(cfqd->async_cfqq[0][i]);
2598 if (cfqd->async_cfqq[1][i])
2599 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 2600 }
2389d1ef
ON
2601
2602 if (cfqd->async_idle_cfqq)
2603 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
2604}
2605
b374d18a 2606static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 2607{
22e2c507 2608 struct cfq_data *cfqd = e->elevator_data;
165125e1 2609 struct request_queue *q = cfqd->queue;
22e2c507 2610
3b18152c 2611 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 2612
d9ff4187 2613 spin_lock_irq(q->queue_lock);
e2d74ac0 2614
d9ff4187 2615 if (cfqd->active_queue)
6084cdda 2616 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
2617
2618 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
2619 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2620 struct cfq_io_context,
2621 queue_list);
89850f7e
JA
2622
2623 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 2624 }
e2d74ac0 2625
c2dea2d1 2626 cfq_put_async_queues(cfqd);
15c31be4 2627
d9ff4187 2628 spin_unlock_irq(q->queue_lock);
a90d742e
AV
2629
2630 cfq_shutdown_timer_wq(cfqd);
2631
a90d742e 2632 kfree(cfqd);
1da177e4
LT
2633}
2634
165125e1 2635static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
2636{
2637 struct cfq_data *cfqd;
26a2ac00 2638 int i;
1da177e4 2639
94f6030c 2640 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 2641 if (!cfqd)
bc1c1169 2642 return NULL;
1da177e4 2643
cc09e299 2644 cfqd->service_tree = CFQ_RB_ROOT;
26a2ac00
JA
2645
2646 /*
2647 * Not strictly needed (since RB_ROOT just clears the node and we
2648 * zeroed cfqd on alloc), but better be safe in case someone decides
2649 * to add magic to the rb code
2650 */
2651 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2652 cfqd->prio_trees[i] = RB_ROOT;
2653
6118b70b
JA
2654 /*
2655 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2656 * Grab a permanent reference to it, so that the normal code flow
2657 * will not attempt to free it.
2658 */
2659 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2660 atomic_inc(&cfqd->oom_cfqq.ref);
2661
d9ff4187 2662 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 2663
1da177e4 2664 cfqd->queue = q;
1da177e4 2665
22e2c507
JA
2666 init_timer(&cfqd->idle_slice_timer);
2667 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2668 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2669
23e018a1 2670 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 2671
1da177e4 2672 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
2673 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2674 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
2675 cfqd->cfq_back_max = cfq_back_max;
2676 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
2677 cfqd->cfq_slice[0] = cfq_slice_async;
2678 cfqd->cfq_slice[1] = cfq_slice_sync;
2679 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2680 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 2681 cfqd->cfq_latency = 1;
45333d5a 2682 cfqd->hw_tag = 1;
365722bb 2683 cfqd->last_end_sync_rq = jiffies;
bc1c1169 2684 return cfqd;
1da177e4
LT
2685}
2686
2687static void cfq_slab_kill(void)
2688{
d6de8be7
JA
2689 /*
2690 * Caller already ensured that pending RCU callbacks are completed,
2691 * so we should have no busy allocations at this point.
2692 */
1da177e4
LT
2693 if (cfq_pool)
2694 kmem_cache_destroy(cfq_pool);
2695 if (cfq_ioc_pool)
2696 kmem_cache_destroy(cfq_ioc_pool);
2697}
2698
2699static int __init cfq_slab_setup(void)
2700{
0a31bd5f 2701 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
2702 if (!cfq_pool)
2703 goto fail;
2704
34e6bbf2 2705 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
2706 if (!cfq_ioc_pool)
2707 goto fail;
2708
2709 return 0;
2710fail:
2711 cfq_slab_kill();
2712 return -ENOMEM;
2713}
2714
1da177e4
LT
2715/*
2716 * sysfs parts below -->
2717 */
1da177e4
LT
2718static ssize_t
2719cfq_var_show(unsigned int var, char *page)
2720{
2721 return sprintf(page, "%d\n", var);
2722}
2723
2724static ssize_t
2725cfq_var_store(unsigned int *var, const char *page, size_t count)
2726{
2727 char *p = (char *) page;
2728
2729 *var = simple_strtoul(p, &p, 10);
2730 return count;
2731}
2732
1da177e4 2733#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 2734static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 2735{ \
3d1ab40f 2736 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
2737 unsigned int __data = __VAR; \
2738 if (__CONV) \
2739 __data = jiffies_to_msecs(__data); \
2740 return cfq_var_show(__data, (page)); \
2741}
2742SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
2743SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2744SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
2745SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2746SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
2747SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2748SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2749SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2750SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 2751SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
1da177e4
LT
2752#undef SHOW_FUNCTION
2753
2754#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 2755static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 2756{ \
3d1ab40f 2757 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
2758 unsigned int __data; \
2759 int ret = cfq_var_store(&__data, (page), count); \
2760 if (__data < (MIN)) \
2761 __data = (MIN); \
2762 else if (__data > (MAX)) \
2763 __data = (MAX); \
2764 if (__CONV) \
2765 *(__PTR) = msecs_to_jiffies(__data); \
2766 else \
2767 *(__PTR) = __data; \
2768 return ret; \
2769}
2770STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
2771STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2772 UINT_MAX, 1);
2773STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2774 UINT_MAX, 1);
e572ec7e 2775STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
2776STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2777 UINT_MAX, 0);
22e2c507
JA
2778STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2779STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2780STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
2781STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2782 UINT_MAX, 0);
963b72fc 2783STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
1da177e4
LT
2784#undef STORE_FUNCTION
2785
e572ec7e
AV
2786#define CFQ_ATTR(name) \
2787 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2788
2789static struct elv_fs_entry cfq_attrs[] = {
2790 CFQ_ATTR(quantum),
e572ec7e
AV
2791 CFQ_ATTR(fifo_expire_sync),
2792 CFQ_ATTR(fifo_expire_async),
2793 CFQ_ATTR(back_seek_max),
2794 CFQ_ATTR(back_seek_penalty),
2795 CFQ_ATTR(slice_sync),
2796 CFQ_ATTR(slice_async),
2797 CFQ_ATTR(slice_async_rq),
2798 CFQ_ATTR(slice_idle),
963b72fc 2799 CFQ_ATTR(low_latency),
e572ec7e 2800 __ATTR_NULL
1da177e4
LT
2801};
2802
1da177e4
LT
2803static struct elevator_type iosched_cfq = {
2804 .ops = {
2805 .elevator_merge_fn = cfq_merge,
2806 .elevator_merged_fn = cfq_merged_request,
2807 .elevator_merge_req_fn = cfq_merged_requests,
da775265 2808 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 2809 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 2810 .elevator_add_req_fn = cfq_insert_request,
b4878f24 2811 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
2812 .elevator_deactivate_req_fn = cfq_deactivate_request,
2813 .elevator_queue_empty_fn = cfq_queue_empty,
2814 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
2815 .elevator_former_req_fn = elv_rb_former_request,
2816 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
2817 .elevator_set_req_fn = cfq_set_request,
2818 .elevator_put_req_fn = cfq_put_request,
2819 .elevator_may_queue_fn = cfq_may_queue,
2820 .elevator_init_fn = cfq_init_queue,
2821 .elevator_exit_fn = cfq_exit_queue,
fc46379d 2822 .trim = cfq_free_io_context,
1da177e4 2823 },
3d1ab40f 2824 .elevator_attrs = cfq_attrs,
1da177e4
LT
2825 .elevator_name = "cfq",
2826 .elevator_owner = THIS_MODULE,
2827};
2828
2829static int __init cfq_init(void)
2830{
22e2c507
JA
2831 /*
2832 * could be 0 on HZ < 1000 setups
2833 */
2834 if (!cfq_slice_async)
2835 cfq_slice_async = 1;
2836 if (!cfq_slice_idle)
2837 cfq_slice_idle = 1;
2838
1da177e4
LT
2839 if (cfq_slab_setup())
2840 return -ENOMEM;
2841
2fdd82bd 2842 elv_register(&iosched_cfq);
1da177e4 2843
2fdd82bd 2844 return 0;
1da177e4
LT
2845}
2846
2847static void __exit cfq_exit(void)
2848{
6e9a4738 2849 DECLARE_COMPLETION_ONSTACK(all_gone);
1da177e4 2850 elv_unregister(&iosched_cfq);
334e94de 2851 ioc_gone = &all_gone;
fba82272
OH
2852 /* ioc_gone's update must be visible before reading ioc_count */
2853 smp_wmb();
d6de8be7
JA
2854
2855 /*
2856 * this also protects us from entering cfq_slab_kill() with
2857 * pending RCU callbacks
2858 */
245b2e70 2859 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 2860 wait_for_completion(&all_gone);
83521d3e 2861 cfq_slab_kill();
1da177e4
LT
2862}
2863
2864module_init(cfq_init);
2865module_exit(cfq_exit);
2866
2867MODULE_AUTHOR("Jens Axboe");
2868MODULE_LICENSE("GPL");
2869MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");