]> bbs.cooldavid.org Git - net-next-2.6.git/blame - block/cfq-iosched.c
Linux 2.6.32-rc3
[net-next-2.6.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
1da177e4 12#include <linux/rbtree.h>
22e2c507 13#include <linux/ioprio.h>
7b679138 14#include <linux/blktrace_api.h>
1da177e4
LT
15
16/*
17 * tunables
18 */
fe094d98
JA
19/* max queue in one round of service */
20static const int cfq_quantum = 4;
64100099 21static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
22/* maximum backwards seek, in KiB */
23static const int cfq_back_max = 16 * 1024;
24/* penalty of a backwards seek */
25static const int cfq_back_penalty = 2;
64100099 26static const int cfq_slice_sync = HZ / 10;
3b18152c 27static int cfq_slice_async = HZ / 25;
64100099 28static const int cfq_slice_async_rq = 2;
caaa5f9f 29static int cfq_slice_idle = HZ / 125;
22e2c507 30
d9e7620e 31/*
0871714e 32 * offset from end of service tree
d9e7620e 33 */
0871714e 34#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
35
36/*
37 * below this threshold, we consider thinktime immediate
38 */
39#define CFQ_MIN_TT (2)
40
22e2c507 41#define CFQ_SLICE_SCALE (5)
45333d5a 42#define CFQ_HW_QUEUE_MIN (5)
22e2c507 43
fe094d98
JA
44#define RQ_CIC(rq) \
45 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 46#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 47
e18b890b
CL
48static struct kmem_cache *cfq_pool;
49static struct kmem_cache *cfq_ioc_pool;
1da177e4 50
245b2e70 51static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 52static struct completion *ioc_gone;
9a11b4ed 53static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 54
22e2c507
JA
55#define CFQ_PRIO_LISTS IOPRIO_BE_NR
56#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
57#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
58
206dc69b
JA
59#define sample_valid(samples) ((samples) > 80)
60
cc09e299
JA
61/*
62 * Most of our rbtree usage is for sorting with min extraction, so
63 * if we cache the leftmost node we don't have to walk down the tree
64 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65 * move this into the elevator for the rq sorting as well.
66 */
67struct cfq_rb_root {
68 struct rb_root rb;
69 struct rb_node *left;
70};
71#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
72
6118b70b
JA
73/*
74 * Per process-grouping structure
75 */
76struct cfq_queue {
77 /* reference count */
78 atomic_t ref;
79 /* various state flags, see below */
80 unsigned int flags;
81 /* parent cfq_data */
82 struct cfq_data *cfqd;
83 /* service_tree member */
84 struct rb_node rb_node;
85 /* service_tree key */
86 unsigned long rb_key;
87 /* prio tree member */
88 struct rb_node p_node;
89 /* prio tree root we belong to, if any */
90 struct rb_root *p_root;
91 /* sorted list of pending requests */
92 struct rb_root sort_list;
93 /* if fifo isn't expired, next request to serve */
94 struct request *next_rq;
95 /* requests queued in sort_list */
96 int queued[2];
97 /* currently allocated requests */
98 int allocated[2];
99 /* fifo list of requests in sort_list */
100 struct list_head fifo;
101
102 unsigned long slice_end;
103 long slice_resid;
104 unsigned int slice_dispatch;
105
106 /* pending metadata requests */
107 int meta_pending;
108 /* number of requests that are on the dispatch list or inside driver */
109 int dispatched;
110
111 /* io prio of this group */
112 unsigned short ioprio, org_ioprio;
113 unsigned short ioprio_class, org_ioprio_class;
114
115 pid_t pid;
116};
117
22e2c507
JA
118/*
119 * Per block device queue structure
120 */
1da177e4 121struct cfq_data {
165125e1 122 struct request_queue *queue;
22e2c507
JA
123
124 /*
125 * rr list of queues with requests and the count of them
126 */
cc09e299 127 struct cfq_rb_root service_tree;
a36e71f9
JA
128
129 /*
130 * Each priority tree is sorted by next_request position. These
131 * trees are used when determining if two or more queues are
132 * interleaving requests (see cfq_close_cooperator).
133 */
134 struct rb_root prio_trees[CFQ_PRIO_LISTS];
135
22e2c507
JA
136 unsigned int busy_queues;
137
5ad531db 138 int rq_in_driver[2];
3ed9a296 139 int sync_flight;
45333d5a
AC
140
141 /*
142 * queue-depth detection
143 */
144 int rq_queued;
25776e35 145 int hw_tag;
45333d5a
AC
146 int hw_tag_samples;
147 int rq_in_driver_peak;
1da177e4 148
22e2c507
JA
149 /*
150 * idle window management
151 */
152 struct timer_list idle_slice_timer;
8e296755 153 struct delayed_work unplug_work;
1da177e4 154
22e2c507
JA
155 struct cfq_queue *active_queue;
156 struct cfq_io_context *active_cic;
22e2c507 157
c2dea2d1
VT
158 /*
159 * async queue for each priority case
160 */
161 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
162 struct cfq_queue *async_idle_cfqq;
15c31be4 163
6d048f53 164 sector_t last_position;
1da177e4 165
1da177e4
LT
166 /*
167 * tunables, see top of file
168 */
169 unsigned int cfq_quantum;
22e2c507 170 unsigned int cfq_fifo_expire[2];
1da177e4
LT
171 unsigned int cfq_back_penalty;
172 unsigned int cfq_back_max;
22e2c507
JA
173 unsigned int cfq_slice[2];
174 unsigned int cfq_slice_async_rq;
175 unsigned int cfq_slice_idle;
963b72fc 176 unsigned int cfq_latency;
d9ff4187
AV
177
178 struct list_head cic_list;
1da177e4 179
6118b70b
JA
180 /*
181 * Fallback dummy cfqq for extreme OOM conditions
182 */
183 struct cfq_queue oom_cfqq;
365722bb
VG
184
185 unsigned long last_end_sync_rq;
1da177e4
LT
186};
187
3b18152c 188enum cfqq_state_flags {
b0b8d749
JA
189 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
190 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 191 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 192 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
193 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
194 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
195 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 196 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 197 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
a36e71f9 198 CFQ_CFQQ_FLAG_coop, /* has done a coop jump of the queue */
3b18152c
JA
199};
200
201#define CFQ_CFQQ_FNS(name) \
202static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
203{ \
fe094d98 204 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
205} \
206static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
207{ \
fe094d98 208 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
209} \
210static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
211{ \
fe094d98 212 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
213}
214
215CFQ_CFQQ_FNS(on_rr);
216CFQ_CFQQ_FNS(wait_request);
b029195d 217CFQ_CFQQ_FNS(must_dispatch);
3b18152c 218CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
219CFQ_CFQQ_FNS(fifo_expire);
220CFQ_CFQQ_FNS(idle_window);
221CFQ_CFQQ_FNS(prio_changed);
44f7c160 222CFQ_CFQQ_FNS(slice_new);
91fac317 223CFQ_CFQQ_FNS(sync);
a36e71f9 224CFQ_CFQQ_FNS(coop);
3b18152c
JA
225#undef CFQ_CFQQ_FNS
226
7b679138
JA
227#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
228 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
229#define cfq_log(cfqd, fmt, args...) \
230 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
231
165125e1 232static void cfq_dispatch_insert(struct request_queue *, struct request *);
91fac317 233static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
fd0928df 234 struct io_context *, gfp_t);
4ac845a2 235static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
236 struct io_context *);
237
5ad531db
JA
238static inline int rq_in_driver(struct cfq_data *cfqd)
239{
240 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
241}
242
91fac317
VT
243static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
244 int is_sync)
245{
246 return cic->cfqq[!!is_sync];
247}
248
249static inline void cic_set_cfqq(struct cfq_io_context *cic,
250 struct cfq_queue *cfqq, int is_sync)
251{
252 cic->cfqq[!!is_sync] = cfqq;
253}
254
255/*
256 * We regard a request as SYNC, if it's either a read or has the SYNC bit
257 * set (in which case it could also be direct WRITE).
258 */
259static inline int cfq_bio_sync(struct bio *bio)
260{
1f98a13f 261 if (bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO))
91fac317
VT
262 return 1;
263
264 return 0;
265}
1da177e4 266
99f95e52
AM
267/*
268 * scheduler run of queue, if there are requests pending and no one in the
269 * driver that will restart queueing
270 */
8e296755
JA
271static inline void cfq_schedule_dispatch(struct cfq_data *cfqd,
272 unsigned long delay)
99f95e52 273{
7b679138
JA
274 if (cfqd->busy_queues) {
275 cfq_log(cfqd, "schedule dispatch");
8e296755
JA
276 kblockd_schedule_delayed_work(cfqd->queue, &cfqd->unplug_work,
277 delay);
7b679138 278 }
99f95e52
AM
279}
280
165125e1 281static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
282{
283 struct cfq_data *cfqd = q->elevator->elevator_data;
284
b4878f24 285 return !cfqd->busy_queues;
99f95e52
AM
286}
287
44f7c160
JA
288/*
289 * Scale schedule slice based on io priority. Use the sync time slice only
290 * if a queue is marked sync and has sync io queued. A sync queue with async
291 * io only, should not get full sync slice length.
292 */
d9e7620e
JA
293static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
294 unsigned short prio)
44f7c160 295{
d9e7620e 296 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 297
d9e7620e
JA
298 WARN_ON(prio >= IOPRIO_BE_NR);
299
300 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
301}
44f7c160 302
d9e7620e
JA
303static inline int
304cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
305{
306 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
307}
308
309static inline void
310cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
311{
312 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
7b679138 313 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
314}
315
316/*
317 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
318 * isn't valid until the first request from the dispatch is activated
319 * and the slice time set.
320 */
321static inline int cfq_slice_used(struct cfq_queue *cfqq)
322{
323 if (cfq_cfqq_slice_new(cfqq))
324 return 0;
325 if (time_before(jiffies, cfqq->slice_end))
326 return 0;
327
328 return 1;
329}
330
1da177e4 331/*
5e705374 332 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 333 * We choose the request that is closest to the head right now. Distance
e8a99053 334 * behind the head is penalized and only allowed to a certain extent.
1da177e4 335 */
5e705374
JA
336static struct request *
337cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
1da177e4
LT
338{
339 sector_t last, s1, s2, d1 = 0, d2 = 0;
1da177e4 340 unsigned long back_max;
e8a99053
AM
341#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
342#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
343 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 344
5e705374
JA
345 if (rq1 == NULL || rq1 == rq2)
346 return rq2;
347 if (rq2 == NULL)
348 return rq1;
9c2c38a1 349
5e705374
JA
350 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
351 return rq1;
352 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
353 return rq2;
374f84ac
JA
354 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
355 return rq1;
356 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
357 return rq2;
1da177e4 358
83096ebf
TH
359 s1 = blk_rq_pos(rq1);
360 s2 = blk_rq_pos(rq2);
1da177e4 361
6d048f53 362 last = cfqd->last_position;
1da177e4 363
1da177e4
LT
364 /*
365 * by definition, 1KiB is 2 sectors
366 */
367 back_max = cfqd->cfq_back_max * 2;
368
369 /*
370 * Strict one way elevator _except_ in the case where we allow
371 * short backward seeks which are biased as twice the cost of a
372 * similar forward seek.
373 */
374 if (s1 >= last)
375 d1 = s1 - last;
376 else if (s1 + back_max >= last)
377 d1 = (last - s1) * cfqd->cfq_back_penalty;
378 else
e8a99053 379 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
380
381 if (s2 >= last)
382 d2 = s2 - last;
383 else if (s2 + back_max >= last)
384 d2 = (last - s2) * cfqd->cfq_back_penalty;
385 else
e8a99053 386 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
387
388 /* Found required data */
e8a99053
AM
389
390 /*
391 * By doing switch() on the bit mask "wrap" we avoid having to
392 * check two variables for all permutations: --> faster!
393 */
394 switch (wrap) {
5e705374 395 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 396 if (d1 < d2)
5e705374 397 return rq1;
e8a99053 398 else if (d2 < d1)
5e705374 399 return rq2;
e8a99053
AM
400 else {
401 if (s1 >= s2)
5e705374 402 return rq1;
e8a99053 403 else
5e705374 404 return rq2;
e8a99053 405 }
1da177e4 406
e8a99053 407 case CFQ_RQ2_WRAP:
5e705374 408 return rq1;
e8a99053 409 case CFQ_RQ1_WRAP:
5e705374
JA
410 return rq2;
411 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
412 default:
413 /*
414 * Since both rqs are wrapped,
415 * start with the one that's further behind head
416 * (--> only *one* back seek required),
417 * since back seek takes more time than forward.
418 */
419 if (s1 <= s2)
5e705374 420 return rq1;
1da177e4 421 else
5e705374 422 return rq2;
1da177e4
LT
423 }
424}
425
498d3aa2
JA
426/*
427 * The below is leftmost cache rbtree addon
428 */
0871714e 429static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299
JA
430{
431 if (!root->left)
432 root->left = rb_first(&root->rb);
433
0871714e
JA
434 if (root->left)
435 return rb_entry(root->left, struct cfq_queue, rb_node);
436
437 return NULL;
cc09e299
JA
438}
439
a36e71f9
JA
440static void rb_erase_init(struct rb_node *n, struct rb_root *root)
441{
442 rb_erase(n, root);
443 RB_CLEAR_NODE(n);
444}
445
cc09e299
JA
446static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
447{
448 if (root->left == n)
449 root->left = NULL;
a36e71f9 450 rb_erase_init(n, &root->rb);
cc09e299
JA
451}
452
1da177e4
LT
453/*
454 * would be nice to take fifo expire time into account as well
455 */
5e705374
JA
456static struct request *
457cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
458 struct request *last)
1da177e4 459{
21183b07
JA
460 struct rb_node *rbnext = rb_next(&last->rb_node);
461 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 462 struct request *next = NULL, *prev = NULL;
1da177e4 463
21183b07 464 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
465
466 if (rbprev)
5e705374 467 prev = rb_entry_rq(rbprev);
1da177e4 468
21183b07 469 if (rbnext)
5e705374 470 next = rb_entry_rq(rbnext);
21183b07
JA
471 else {
472 rbnext = rb_first(&cfqq->sort_list);
473 if (rbnext && rbnext != &last->rb_node)
5e705374 474 next = rb_entry_rq(rbnext);
21183b07 475 }
1da177e4 476
21183b07 477 return cfq_choose_req(cfqd, next, prev);
1da177e4
LT
478}
479
d9e7620e
JA
480static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
481 struct cfq_queue *cfqq)
1da177e4 482{
d9e7620e
JA
483 /*
484 * just an approximation, should be ok.
485 */
67e6b49e
JA
486 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
487 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
488}
489
498d3aa2
JA
490/*
491 * The cfqd->service_tree holds all pending cfq_queue's that have
492 * requests waiting to be processed. It is sorted in the order that
493 * we will service the queues.
494 */
a36e71f9
JA
495static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
496 int add_front)
d9e7620e 497{
0871714e
JA
498 struct rb_node **p, *parent;
499 struct cfq_queue *__cfqq;
d9e7620e 500 unsigned long rb_key;
498d3aa2 501 int left;
d9e7620e 502
0871714e
JA
503 if (cfq_class_idle(cfqq)) {
504 rb_key = CFQ_IDLE_DELAY;
505 parent = rb_last(&cfqd->service_tree.rb);
506 if (parent && parent != &cfqq->rb_node) {
507 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
508 rb_key += __cfqq->rb_key;
509 } else
510 rb_key += jiffies;
511 } else if (!add_front) {
edd75ffd
JA
512 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
513 rb_key += cfqq->slice_resid;
514 cfqq->slice_resid = 0;
515 } else
516 rb_key = 0;
1da177e4 517
d9e7620e 518 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
99f9628a 519 /*
d9e7620e 520 * same position, nothing more to do
99f9628a 521 */
d9e7620e
JA
522 if (rb_key == cfqq->rb_key)
523 return;
1da177e4 524
cc09e299 525 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
1da177e4 526 }
d9e7620e 527
498d3aa2 528 left = 1;
0871714e
JA
529 parent = NULL;
530 p = &cfqd->service_tree.rb.rb_node;
d9e7620e 531 while (*p) {
67060e37 532 struct rb_node **n;
cc09e299 533
d9e7620e
JA
534 parent = *p;
535 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
536
0c534e0a
JA
537 /*
538 * sort RT queues first, we always want to give
67060e37
JA
539 * preference to them. IDLE queues goes to the back.
540 * after that, sort on the next service time.
0c534e0a
JA
541 */
542 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
67060e37 543 n = &(*p)->rb_left;
0c534e0a 544 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
67060e37
JA
545 n = &(*p)->rb_right;
546 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
547 n = &(*p)->rb_left;
548 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
549 n = &(*p)->rb_right;
0c534e0a 550 else if (rb_key < __cfqq->rb_key)
67060e37
JA
551 n = &(*p)->rb_left;
552 else
553 n = &(*p)->rb_right;
554
555 if (n == &(*p)->rb_right)
cc09e299 556 left = 0;
67060e37
JA
557
558 p = n;
d9e7620e
JA
559 }
560
cc09e299
JA
561 if (left)
562 cfqd->service_tree.left = &cfqq->rb_node;
563
d9e7620e
JA
564 cfqq->rb_key = rb_key;
565 rb_link_node(&cfqq->rb_node, parent, p);
cc09e299 566 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
1da177e4
LT
567}
568
a36e71f9 569static struct cfq_queue *
f2d1f0ae
JA
570cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
571 sector_t sector, struct rb_node **ret_parent,
572 struct rb_node ***rb_link)
a36e71f9 573{
a36e71f9
JA
574 struct rb_node **p, *parent;
575 struct cfq_queue *cfqq = NULL;
576
577 parent = NULL;
578 p = &root->rb_node;
579 while (*p) {
580 struct rb_node **n;
581
582 parent = *p;
583 cfqq = rb_entry(parent, struct cfq_queue, p_node);
584
585 /*
586 * Sort strictly based on sector. Smallest to the left,
587 * largest to the right.
588 */
2e46e8b2 589 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 590 n = &(*p)->rb_right;
2e46e8b2 591 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
592 n = &(*p)->rb_left;
593 else
594 break;
595 p = n;
3ac6c9f8 596 cfqq = NULL;
a36e71f9
JA
597 }
598
599 *ret_parent = parent;
600 if (rb_link)
601 *rb_link = p;
3ac6c9f8 602 return cfqq;
a36e71f9
JA
603}
604
605static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
606{
a36e71f9
JA
607 struct rb_node **p, *parent;
608 struct cfq_queue *__cfqq;
609
f2d1f0ae
JA
610 if (cfqq->p_root) {
611 rb_erase(&cfqq->p_node, cfqq->p_root);
612 cfqq->p_root = NULL;
613 }
a36e71f9
JA
614
615 if (cfq_class_idle(cfqq))
616 return;
617 if (!cfqq->next_rq)
618 return;
619
f2d1f0ae 620 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
621 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
622 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
623 if (!__cfqq) {
624 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
625 rb_insert_color(&cfqq->p_node, cfqq->p_root);
626 } else
627 cfqq->p_root = NULL;
a36e71f9
JA
628}
629
498d3aa2
JA
630/*
631 * Update cfqq's position in the service tree.
632 */
edd75ffd 633static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 634{
6d048f53
JA
635 /*
636 * Resorting requires the cfqq to be on the RR list already.
637 */
a36e71f9 638 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 639 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
640 cfq_prio_tree_add(cfqd, cfqq);
641 }
6d048f53
JA
642}
643
1da177e4
LT
644/*
645 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 646 * the pending list according to last request service
1da177e4 647 */
febffd61 648static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 649{
7b679138 650 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
651 BUG_ON(cfq_cfqq_on_rr(cfqq));
652 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
653 cfqd->busy_queues++;
654
edd75ffd 655 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
656}
657
498d3aa2
JA
658/*
659 * Called when the cfqq no longer has requests pending, remove it from
660 * the service tree.
661 */
febffd61 662static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 663{
7b679138 664 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
665 BUG_ON(!cfq_cfqq_on_rr(cfqq));
666 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 667
cc09e299
JA
668 if (!RB_EMPTY_NODE(&cfqq->rb_node))
669 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
f2d1f0ae
JA
670 if (cfqq->p_root) {
671 rb_erase(&cfqq->p_node, cfqq->p_root);
672 cfqq->p_root = NULL;
673 }
d9e7620e 674
1da177e4
LT
675 BUG_ON(!cfqd->busy_queues);
676 cfqd->busy_queues--;
677}
678
679/*
680 * rb tree support functions
681 */
febffd61 682static void cfq_del_rq_rb(struct request *rq)
1da177e4 683{
5e705374 684 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 685 struct cfq_data *cfqd = cfqq->cfqd;
5e705374 686 const int sync = rq_is_sync(rq);
1da177e4 687
b4878f24
JA
688 BUG_ON(!cfqq->queued[sync]);
689 cfqq->queued[sync]--;
1da177e4 690
5e705374 691 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 692
dd67d051 693 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
b4878f24 694 cfq_del_cfqq_rr(cfqd, cfqq);
1da177e4
LT
695}
696
5e705374 697static void cfq_add_rq_rb(struct request *rq)
1da177e4 698{
5e705374 699 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 700 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 701 struct request *__alias, *prev;
1da177e4 702
5380a101 703 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
704
705 /*
706 * looks a little odd, but the first insert might return an alias.
707 * if that happens, put the alias on the dispatch list
708 */
21183b07 709 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 710 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
711
712 if (!cfq_cfqq_on_rr(cfqq))
713 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
714
715 /*
716 * check if this request is a better next-serve candidate
717 */
a36e71f9 718 prev = cfqq->next_rq;
5044eed4 719 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
a36e71f9
JA
720
721 /*
722 * adjust priority tree position, if ->next_rq changes
723 */
724 if (prev != cfqq->next_rq)
725 cfq_prio_tree_add(cfqd, cfqq);
726
5044eed4 727 BUG_ON(!cfqq->next_rq);
1da177e4
LT
728}
729
febffd61 730static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 731{
5380a101
JA
732 elv_rb_del(&cfqq->sort_list, rq);
733 cfqq->queued[rq_is_sync(rq)]--;
5e705374 734 cfq_add_rq_rb(rq);
1da177e4
LT
735}
736
206dc69b
JA
737static struct request *
738cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 739{
206dc69b 740 struct task_struct *tsk = current;
91fac317 741 struct cfq_io_context *cic;
206dc69b 742 struct cfq_queue *cfqq;
1da177e4 743
4ac845a2 744 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
745 if (!cic)
746 return NULL;
747
748 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
749 if (cfqq) {
750 sector_t sector = bio->bi_sector + bio_sectors(bio);
751
21183b07 752 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 753 }
1da177e4 754
1da177e4
LT
755 return NULL;
756}
757
165125e1 758static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 759{
22e2c507 760 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 761
5ad531db 762 cfqd->rq_in_driver[rq_is_sync(rq)]++;
7b679138 763 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
5ad531db 764 rq_in_driver(cfqd));
25776e35 765
5b93629b 766 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
767}
768
165125e1 769static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 770{
b4878f24 771 struct cfq_data *cfqd = q->elevator->elevator_data;
5ad531db 772 const int sync = rq_is_sync(rq);
b4878f24 773
5ad531db
JA
774 WARN_ON(!cfqd->rq_in_driver[sync]);
775 cfqd->rq_in_driver[sync]--;
7b679138 776 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
5ad531db 777 rq_in_driver(cfqd));
1da177e4
LT
778}
779
b4878f24 780static void cfq_remove_request(struct request *rq)
1da177e4 781{
5e705374 782 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 783
5e705374
JA
784 if (cfqq->next_rq == rq)
785 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 786
b4878f24 787 list_del_init(&rq->queuelist);
5e705374 788 cfq_del_rq_rb(rq);
374f84ac 789
45333d5a 790 cfqq->cfqd->rq_queued--;
374f84ac
JA
791 if (rq_is_meta(rq)) {
792 WARN_ON(!cfqq->meta_pending);
793 cfqq->meta_pending--;
794 }
1da177e4
LT
795}
796
165125e1
JA
797static int cfq_merge(struct request_queue *q, struct request **req,
798 struct bio *bio)
1da177e4
LT
799{
800 struct cfq_data *cfqd = q->elevator->elevator_data;
801 struct request *__rq;
1da177e4 802
206dc69b 803 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 804 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
805 *req = __rq;
806 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
807 }
808
809 return ELEVATOR_NO_MERGE;
1da177e4
LT
810}
811
165125e1 812static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 813 int type)
1da177e4 814{
21183b07 815 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 816 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 817
5e705374 818 cfq_reposition_rq_rb(cfqq, req);
1da177e4 819 }
1da177e4
LT
820}
821
822static void
165125e1 823cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
824 struct request *next)
825{
22e2c507
JA
826 /*
827 * reposition in fifo if next is older than rq
828 */
829 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
830 time_before(next->start_time, rq->start_time))
831 list_move(&rq->queuelist, &next->queuelist);
832
b4878f24 833 cfq_remove_request(next);
22e2c507
JA
834}
835
165125e1 836static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
837 struct bio *bio)
838{
839 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 840 struct cfq_io_context *cic;
da775265 841 struct cfq_queue *cfqq;
da775265
JA
842
843 /*
ec8acb69 844 * Disallow merge of a sync bio into an async request.
da775265 845 */
91fac317 846 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
da775265
JA
847 return 0;
848
849 /*
719d3402
JA
850 * Lookup the cfqq that this bio will be queued with. Allow
851 * merge only if rq is queued there.
da775265 852 */
4ac845a2 853 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317
VT
854 if (!cic)
855 return 0;
719d3402 856
91fac317 857 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
719d3402
JA
858 if (cfqq == RQ_CFQQ(rq))
859 return 1;
da775265 860
ec8acb69 861 return 0;
da775265
JA
862}
863
febffd61
JA
864static void __cfq_set_active_queue(struct cfq_data *cfqd,
865 struct cfq_queue *cfqq)
22e2c507
JA
866{
867 if (cfqq) {
7b679138 868 cfq_log_cfqq(cfqd, cfqq, "set_active");
22e2c507 869 cfqq->slice_end = 0;
2f5cb738
JA
870 cfqq->slice_dispatch = 0;
871
2f5cb738 872 cfq_clear_cfqq_wait_request(cfqq);
b029195d 873 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
874 cfq_clear_cfqq_must_alloc_slice(cfqq);
875 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 876 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
877
878 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
879 }
880
881 cfqd->active_queue = cfqq;
882}
883
7b14e3b5
JA
884/*
885 * current cfqq expired its slice (or was too idle), select new one
886 */
887static void
888__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6084cdda 889 int timed_out)
7b14e3b5 890{
7b679138
JA
891 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
892
7b14e3b5
JA
893 if (cfq_cfqq_wait_request(cfqq))
894 del_timer(&cfqd->idle_slice_timer);
895
7b14e3b5
JA
896 cfq_clear_cfqq_wait_request(cfqq);
897
898 /*
6084cdda 899 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 900 */
7b679138 901 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 902 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
903 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
904 }
7b14e3b5 905
edd75ffd 906 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
907
908 if (cfqq == cfqd->active_queue)
909 cfqd->active_queue = NULL;
910
911 if (cfqd->active_cic) {
912 put_io_context(cfqd->active_cic->ioc);
913 cfqd->active_cic = NULL;
914 }
7b14e3b5
JA
915}
916
6084cdda 917static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
7b14e3b5
JA
918{
919 struct cfq_queue *cfqq = cfqd->active_queue;
920
921 if (cfqq)
6084cdda 922 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
923}
924
498d3aa2
JA
925/*
926 * Get next queue for service. Unless we have a queue preemption,
927 * we'll simply select the first cfqq in the service tree.
928 */
6d048f53 929static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 930{
edd75ffd
JA
931 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
932 return NULL;
d9e7620e 933
0871714e 934 return cfq_rb_first(&cfqd->service_tree);
6d048f53
JA
935}
936
498d3aa2
JA
937/*
938 * Get and set a new active queue for service.
939 */
a36e71f9
JA
940static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
941 struct cfq_queue *cfqq)
6d048f53 942{
a36e71f9
JA
943 if (!cfqq) {
944 cfqq = cfq_get_next_queue(cfqd);
945 if (cfqq)
946 cfq_clear_cfqq_coop(cfqq);
947 }
6d048f53 948
22e2c507 949 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 950 return cfqq;
22e2c507
JA
951}
952
d9e7620e
JA
953static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
954 struct request *rq)
955{
83096ebf
TH
956 if (blk_rq_pos(rq) >= cfqd->last_position)
957 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 958 else
83096ebf 959 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
960}
961
04dc6e71
JM
962#define CIC_SEEK_THR 8 * 1024
963#define CIC_SEEKY(cic) ((cic)->seek_mean > CIC_SEEK_THR)
964
6d048f53
JA
965static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
966{
967 struct cfq_io_context *cic = cfqd->active_cic;
04dc6e71 968 sector_t sdist = cic->seek_mean;
6d048f53
JA
969
970 if (!sample_valid(cic->seek_samples))
04dc6e71 971 sdist = CIC_SEEK_THR;
6d048f53 972
04dc6e71 973 return cfq_dist_from_last(cfqd, rq) <= sdist;
6d048f53
JA
974}
975
a36e71f9
JA
976static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
977 struct cfq_queue *cur_cfqq)
978{
f2d1f0ae 979 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
980 struct rb_node *parent, *node;
981 struct cfq_queue *__cfqq;
982 sector_t sector = cfqd->last_position;
983
984 if (RB_EMPTY_ROOT(root))
985 return NULL;
986
987 /*
988 * First, if we find a request starting at the end of the last
989 * request, choose it.
990 */
f2d1f0ae 991 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
992 if (__cfqq)
993 return __cfqq;
994
995 /*
996 * If the exact sector wasn't found, the parent of the NULL leaf
997 * will contain the closest sector.
998 */
999 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1000 if (cfq_rq_close(cfqd, __cfqq->next_rq))
1001 return __cfqq;
1002
2e46e8b2 1003 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1004 node = rb_next(&__cfqq->p_node);
1005 else
1006 node = rb_prev(&__cfqq->p_node);
1007 if (!node)
1008 return NULL;
1009
1010 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1011 if (cfq_rq_close(cfqd, __cfqq->next_rq))
1012 return __cfqq;
1013
1014 return NULL;
1015}
1016
1017/*
1018 * cfqd - obvious
1019 * cur_cfqq - passed in so that we don't decide that the current queue is
1020 * closely cooperating with itself.
1021 *
1022 * So, basically we're assuming that that cur_cfqq has dispatched at least
1023 * one request, and that cfqd->last_position reflects a position on the disk
1024 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1025 * assumption.
1026 */
1027static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1028 struct cfq_queue *cur_cfqq,
1029 int probe)
6d048f53 1030{
a36e71f9
JA
1031 struct cfq_queue *cfqq;
1032
1033 /*
1034 * A valid cfq_io_context is necessary to compare requests against
1035 * the seek_mean of the current cfqq.
1036 */
1037 if (!cfqd->active_cic)
1038 return NULL;
1039
6d048f53 1040 /*
d9e7620e
JA
1041 * We should notice if some of the queues are cooperating, eg
1042 * working closely on the same area of the disk. In that case,
1043 * we can group them together and don't waste time idling.
6d048f53 1044 */
a36e71f9
JA
1045 cfqq = cfqq_close(cfqd, cur_cfqq);
1046 if (!cfqq)
1047 return NULL;
1048
1049 if (cfq_cfqq_coop(cfqq))
1050 return NULL;
1051
1052 if (!probe)
1053 cfq_mark_cfqq_coop(cfqq);
1054 return cfqq;
6d048f53
JA
1055}
1056
6d048f53 1057static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1058{
1792669c 1059 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1060 struct cfq_io_context *cic;
7b14e3b5
JA
1061 unsigned long sl;
1062
a68bbddb 1063 /*
f7d7b7a7
JA
1064 * SSD device without seek penalty, disable idling. But only do so
1065 * for devices that support queuing, otherwise we still have a problem
1066 * with sync vs async workloads.
a68bbddb 1067 */
f7d7b7a7 1068 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1069 return;
1070
dd67d051 1071 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1072 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1073
1074 /*
1075 * idle is disabled, either manually or by past process history
1076 */
6d048f53
JA
1077 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1078 return;
1079
7b679138
JA
1080 /*
1081 * still requests with the driver, don't idle
1082 */
5ad531db 1083 if (rq_in_driver(cfqd))
7b679138
JA
1084 return;
1085
22e2c507
JA
1086 /*
1087 * task has exited, don't wait
1088 */
206dc69b 1089 cic = cfqd->active_cic;
66dac98e 1090 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1091 return;
1092
3b18152c 1093 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1094
206dc69b
JA
1095 /*
1096 * we don't want to idle for seeks, but we do want to allow
1097 * fair distribution of slice time for a process doing back-to-back
1098 * seeks. so allow a little bit of time for him to submit a new rq
1099 */
6d048f53 1100 sl = cfqd->cfq_slice_idle;
caaa5f9f 1101 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
d9e7620e 1102 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
206dc69b 1103
7b14e3b5 1104 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1105 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1106}
1107
498d3aa2
JA
1108/*
1109 * Move request from internal lists to the request queue dispatch list.
1110 */
165125e1 1111static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1112{
3ed9a296 1113 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1114 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1115
7b679138
JA
1116 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1117
06d21886 1118 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1119 cfq_remove_request(rq);
6d048f53 1120 cfqq->dispatched++;
5380a101 1121 elv_dispatch_sort(q, rq);
3ed9a296
JA
1122
1123 if (cfq_cfqq_sync(cfqq))
1124 cfqd->sync_flight++;
1da177e4
LT
1125}
1126
1127/*
1128 * return expired entry, or NULL to just start from scratch in rbtree
1129 */
febffd61 1130static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4
LT
1131{
1132 struct cfq_data *cfqd = cfqq->cfqd;
22e2c507 1133 struct request *rq;
89850f7e 1134 int fifo;
1da177e4 1135
3b18152c 1136 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1137 return NULL;
cb887411
JA
1138
1139 cfq_mark_cfqq_fifo_expire(cfqq);
1140
89850f7e
JA
1141 if (list_empty(&cfqq->fifo))
1142 return NULL;
1da177e4 1143
6d048f53 1144 fifo = cfq_cfqq_sync(cfqq);
89850f7e 1145 rq = rq_entry_fifo(cfqq->fifo.next);
1da177e4 1146
6d048f53 1147 if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
7b679138 1148 rq = NULL;
1da177e4 1149
7b679138 1150 cfq_log_cfqq(cfqd, cfqq, "fifo=%p", rq);
6d048f53 1151 return rq;
1da177e4
LT
1152}
1153
22e2c507
JA
1154static inline int
1155cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1156{
1157 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1158
22e2c507 1159 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1160
22e2c507 1161 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1162}
1163
22e2c507 1164/*
498d3aa2
JA
1165 * Select a queue for service. If we have a current active queue,
1166 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 1167 */
1b5ed5e1 1168static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 1169{
a36e71f9 1170 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 1171
22e2c507
JA
1172 cfqq = cfqd->active_queue;
1173 if (!cfqq)
1174 goto new_queue;
1da177e4 1175
22e2c507 1176 /*
6d048f53 1177 * The active queue has run out of time, expire it and select new.
22e2c507 1178 */
b029195d 1179 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
3b18152c 1180 goto expire;
1da177e4 1181
22e2c507 1182 /*
6d048f53
JA
1183 * The active queue has requests and isn't expired, allow it to
1184 * dispatch.
22e2c507 1185 */
dd67d051 1186 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 1187 goto keep_queue;
6d048f53 1188
a36e71f9
JA
1189 /*
1190 * If another queue has a request waiting within our mean seek
1191 * distance, let it run. The expire code will check for close
1192 * cooperators and put the close queue at the front of the service
1193 * tree.
1194 */
1195 new_cfqq = cfq_close_cooperator(cfqd, cfqq, 0);
1196 if (new_cfqq)
1197 goto expire;
1198
6d048f53
JA
1199 /*
1200 * No requests pending. If the active queue still has requests in
1201 * flight or is idling for a new request, allow either of these
1202 * conditions to happen (or time out) before selecting a new queue.
1203 */
cc197479
JA
1204 if (timer_pending(&cfqd->idle_slice_timer) ||
1205 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
caaa5f9f
JA
1206 cfqq = NULL;
1207 goto keep_queue;
22e2c507
JA
1208 }
1209
3b18152c 1210expire:
6084cdda 1211 cfq_slice_expired(cfqd, 0);
3b18152c 1212new_queue:
a36e71f9 1213 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 1214keep_queue:
3b18152c 1215 return cfqq;
22e2c507
JA
1216}
1217
febffd61 1218static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
1219{
1220 int dispatched = 0;
1221
1222 while (cfqq->next_rq) {
1223 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1224 dispatched++;
1225 }
1226
1227 BUG_ON(!list_empty(&cfqq->fifo));
1228 return dispatched;
1229}
1230
498d3aa2
JA
1231/*
1232 * Drain our current requests. Used for barriers and when switching
1233 * io schedulers on-the-fly.
1234 */
d9e7620e 1235static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 1236{
0871714e 1237 struct cfq_queue *cfqq;
d9e7620e 1238 int dispatched = 0;
1b5ed5e1 1239
0871714e 1240 while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
d9e7620e 1241 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 1242
6084cdda 1243 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
1244
1245 BUG_ON(cfqd->busy_queues);
1246
6923715a 1247 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
1248 return dispatched;
1249}
1250
2f5cb738
JA
1251/*
1252 * Dispatch a request from cfqq, moving them to the request queue
1253 * dispatch list.
1254 */
1255static void cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1256{
1257 struct request *rq;
1258
1259 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1260
1261 /*
1262 * follow expired path, else get first next available
1263 */
1264 rq = cfq_check_fifo(cfqq);
1265 if (!rq)
1266 rq = cfqq->next_rq;
1267
1268 /*
1269 * insert request into driver dispatch list
1270 */
1271 cfq_dispatch_insert(cfqd->queue, rq);
1272
1273 if (!cfqd->active_cic) {
1274 struct cfq_io_context *cic = RQ_CIC(rq);
1275
d9c7d394 1276 atomic_long_inc(&cic->ioc->refcount);
2f5cb738
JA
1277 cfqd->active_cic = cic;
1278 }
1279}
1280
1281/*
1282 * Find the cfqq that we need to service and move a request from that to the
1283 * dispatch list
1284 */
165125e1 1285static int cfq_dispatch_requests(struct request_queue *q, int force)
22e2c507
JA
1286{
1287 struct cfq_data *cfqd = q->elevator->elevator_data;
6d048f53 1288 struct cfq_queue *cfqq;
2f5cb738 1289 unsigned int max_dispatch;
22e2c507
JA
1290
1291 if (!cfqd->busy_queues)
1292 return 0;
1293
1b5ed5e1
TH
1294 if (unlikely(force))
1295 return cfq_forced_dispatch(cfqd);
1296
2f5cb738
JA
1297 cfqq = cfq_select_queue(cfqd);
1298 if (!cfqq)
1299 return 0;
1300
5ad531db
JA
1301 /*
1302 * Drain async requests before we start sync IO
1303 */
1304 if (cfq_cfqq_idle_window(cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1305 return 0;
1306
2f5cb738
JA
1307 /*
1308 * If this is an async queue and we have sync IO in flight, let it wait
1309 */
1310 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1311 return 0;
1312
1313 max_dispatch = cfqd->cfq_quantum;
1314 if (cfq_class_idle(cfqq))
1315 max_dispatch = 1;
b4878f24 1316
2f5cb738
JA
1317 /*
1318 * Does this cfqq already have too much IO in flight?
1319 */
1320 if (cfqq->dispatched >= max_dispatch) {
1321 /*
1322 * idle queue must always only have a single IO in flight
1323 */
3ed9a296 1324 if (cfq_class_idle(cfqq))
2f5cb738 1325 return 0;
3ed9a296 1326
2f5cb738
JA
1327 /*
1328 * We have other queues, don't allow more IO from this one
1329 */
1330 if (cfqd->busy_queues > 1)
1331 return 0;
9ede209e 1332
365722bb 1333 /*
8e296755 1334 * Sole queue user, allow bigger slice
365722bb 1335 */
8e296755
JA
1336 max_dispatch *= 4;
1337 }
1338
1339 /*
1340 * Async queues must wait a bit before being allowed dispatch.
1341 * We also ramp up the dispatch depth gradually for async IO,
1342 * based on the last sync IO we serviced
1343 */
963b72fc 1344 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
8e296755
JA
1345 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1346 unsigned int depth;
365722bb 1347
61f0c1dc 1348 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
1349 if (!depth && !cfqq->dispatched)
1350 depth = 1;
8e296755
JA
1351 if (depth < max_dispatch)
1352 max_dispatch = depth;
2f5cb738 1353 }
3ed9a296 1354
8e296755
JA
1355 if (cfqq->dispatched >= max_dispatch)
1356 return 0;
1357
2f5cb738
JA
1358 /*
1359 * Dispatch a request from this cfqq
1360 */
1361 cfq_dispatch_request(cfqd, cfqq);
1362 cfqq->slice_dispatch++;
b029195d 1363 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 1364
2f5cb738
JA
1365 /*
1366 * expire an async queue immediately if it has used up its slice. idle
1367 * queue always expire after 1 dispatch round.
1368 */
1369 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1370 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1371 cfq_class_idle(cfqq))) {
1372 cfqq->slice_end = jiffies + 1;
1373 cfq_slice_expired(cfqd, 0);
1da177e4
LT
1374 }
1375
b217a903 1376 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 1377 return 1;
1da177e4
LT
1378}
1379
1da177e4 1380/*
5e705374
JA
1381 * task holds one reference to the queue, dropped when task exits. each rq
1382 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4
LT
1383 *
1384 * queue lock must be held here.
1385 */
1386static void cfq_put_queue(struct cfq_queue *cfqq)
1387{
22e2c507
JA
1388 struct cfq_data *cfqd = cfqq->cfqd;
1389
1390 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
1391
1392 if (!atomic_dec_and_test(&cfqq->ref))
1393 return;
1394
7b679138 1395 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 1396 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 1397 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3b18152c 1398 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 1399
28f95cbc 1400 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 1401 __cfq_slice_expired(cfqd, cfqq, 0);
8e296755 1402 cfq_schedule_dispatch(cfqd, 0);
28f95cbc 1403 }
22e2c507 1404
1da177e4
LT
1405 kmem_cache_free(cfq_pool, cfqq);
1406}
1407
d6de8be7
JA
1408/*
1409 * Must always be called with the rcu_read_lock() held
1410 */
07416d29
JA
1411static void
1412__call_for_each_cic(struct io_context *ioc,
1413 void (*func)(struct io_context *, struct cfq_io_context *))
1414{
1415 struct cfq_io_context *cic;
1416 struct hlist_node *n;
1417
1418 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1419 func(ioc, cic);
1420}
1421
4ac845a2 1422/*
34e6bbf2 1423 * Call func for each cic attached to this ioc.
4ac845a2 1424 */
34e6bbf2 1425static void
4ac845a2
JA
1426call_for_each_cic(struct io_context *ioc,
1427 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 1428{
4ac845a2 1429 rcu_read_lock();
07416d29 1430 __call_for_each_cic(ioc, func);
4ac845a2 1431 rcu_read_unlock();
34e6bbf2
FC
1432}
1433
1434static void cfq_cic_free_rcu(struct rcu_head *head)
1435{
1436 struct cfq_io_context *cic;
1437
1438 cic = container_of(head, struct cfq_io_context, rcu_head);
1439
1440 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 1441 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 1442
9a11b4ed
JA
1443 if (ioc_gone) {
1444 /*
1445 * CFQ scheduler is exiting, grab exit lock and check
1446 * the pending io context count. If it hits zero,
1447 * complete ioc_gone and set it back to NULL
1448 */
1449 spin_lock(&ioc_gone_lock);
245b2e70 1450 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
1451 complete(ioc_gone);
1452 ioc_gone = NULL;
1453 }
1454 spin_unlock(&ioc_gone_lock);
1455 }
34e6bbf2 1456}
4ac845a2 1457
34e6bbf2
FC
1458static void cfq_cic_free(struct cfq_io_context *cic)
1459{
1460 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
1461}
1462
1463static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1464{
1465 unsigned long flags;
1466
1467 BUG_ON(!cic->dead_key);
1468
1469 spin_lock_irqsave(&ioc->lock, flags);
1470 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 1471 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
1472 spin_unlock_irqrestore(&ioc->lock, flags);
1473
34e6bbf2 1474 cfq_cic_free(cic);
4ac845a2
JA
1475}
1476
d6de8be7
JA
1477/*
1478 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1479 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1480 * and ->trim() which is called with the task lock held
1481 */
4ac845a2
JA
1482static void cfq_free_io_context(struct io_context *ioc)
1483{
4ac845a2 1484 /*
34e6bbf2
FC
1485 * ioc->refcount is zero here, or we are called from elv_unregister(),
1486 * so no more cic's are allowed to be linked into this ioc. So it
1487 * should be ok to iterate over the known list, we will see all cic's
1488 * since no new ones are added.
4ac845a2 1489 */
07416d29 1490 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
1491}
1492
89850f7e 1493static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1494{
28f95cbc 1495 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 1496 __cfq_slice_expired(cfqd, cfqq, 0);
8e296755 1497 cfq_schedule_dispatch(cfqd, 0);
28f95cbc 1498 }
22e2c507 1499
89850f7e
JA
1500 cfq_put_queue(cfqq);
1501}
22e2c507 1502
89850f7e
JA
1503static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1504 struct cfq_io_context *cic)
1505{
4faa3c81
FC
1506 struct io_context *ioc = cic->ioc;
1507
fc46379d 1508 list_del_init(&cic->queue_list);
4ac845a2
JA
1509
1510 /*
1511 * Make sure key == NULL is seen for dead queues
1512 */
fc46379d 1513 smp_wmb();
4ac845a2 1514 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
1515 cic->key = NULL;
1516
4faa3c81
FC
1517 if (ioc->ioc_data == cic)
1518 rcu_assign_pointer(ioc->ioc_data, NULL);
1519
ff6657c6
JA
1520 if (cic->cfqq[BLK_RW_ASYNC]) {
1521 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1522 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
1523 }
1524
ff6657c6
JA
1525 if (cic->cfqq[BLK_RW_SYNC]) {
1526 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1527 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 1528 }
89850f7e
JA
1529}
1530
4ac845a2
JA
1531static void cfq_exit_single_io_context(struct io_context *ioc,
1532 struct cfq_io_context *cic)
89850f7e
JA
1533{
1534 struct cfq_data *cfqd = cic->key;
1535
89850f7e 1536 if (cfqd) {
165125e1 1537 struct request_queue *q = cfqd->queue;
4ac845a2 1538 unsigned long flags;
89850f7e 1539
4ac845a2 1540 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
1541
1542 /*
1543 * Ensure we get a fresh copy of the ->key to prevent
1544 * race between exiting task and queue
1545 */
1546 smp_read_barrier_depends();
1547 if (cic->key)
1548 __cfq_exit_single_io_context(cfqd, cic);
1549
4ac845a2 1550 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 1551 }
1da177e4
LT
1552}
1553
498d3aa2
JA
1554/*
1555 * The process that ioc belongs to has exited, we need to clean up
1556 * and put the internal structures we have that belongs to that process.
1557 */
e2d74ac0 1558static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 1559{
4ac845a2 1560 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
1561}
1562
22e2c507 1563static struct cfq_io_context *
8267e268 1564cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 1565{
b5deef90 1566 struct cfq_io_context *cic;
1da177e4 1567
94f6030c
CL
1568 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1569 cfqd->queue->node);
1da177e4 1570 if (cic) {
22e2c507 1571 cic->last_end_request = jiffies;
553698f9 1572 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 1573 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
1574 cic->dtor = cfq_free_io_context;
1575 cic->exit = cfq_exit_io_context;
245b2e70 1576 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
1577 }
1578
1579 return cic;
1580}
1581
fd0928df 1582static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
1583{
1584 struct task_struct *tsk = current;
1585 int ioprio_class;
1586
3b18152c 1587 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
1588 return;
1589
fd0928df 1590 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 1591 switch (ioprio_class) {
fe094d98
JA
1592 default:
1593 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1594 case IOPRIO_CLASS_NONE:
1595 /*
6d63c275 1596 * no prio set, inherit CPU scheduling settings
fe094d98
JA
1597 */
1598 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 1599 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
1600 break;
1601 case IOPRIO_CLASS_RT:
1602 cfqq->ioprio = task_ioprio(ioc);
1603 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1604 break;
1605 case IOPRIO_CLASS_BE:
1606 cfqq->ioprio = task_ioprio(ioc);
1607 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1608 break;
1609 case IOPRIO_CLASS_IDLE:
1610 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1611 cfqq->ioprio = 7;
1612 cfq_clear_cfqq_idle_window(cfqq);
1613 break;
22e2c507
JA
1614 }
1615
1616 /*
1617 * keep track of original prio settings in case we have to temporarily
1618 * elevate the priority of this queue
1619 */
1620 cfqq->org_ioprio = cfqq->ioprio;
1621 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 1622 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
1623}
1624
febffd61 1625static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 1626{
478a82b0
AV
1627 struct cfq_data *cfqd = cic->key;
1628 struct cfq_queue *cfqq;
c1b707d2 1629 unsigned long flags;
35e6077c 1630
caaa5f9f
JA
1631 if (unlikely(!cfqd))
1632 return;
1633
c1b707d2 1634 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 1635
ff6657c6 1636 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
1637 if (cfqq) {
1638 struct cfq_queue *new_cfqq;
ff6657c6
JA
1639 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1640 GFP_ATOMIC);
caaa5f9f 1641 if (new_cfqq) {
ff6657c6 1642 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
1643 cfq_put_queue(cfqq);
1644 }
22e2c507 1645 }
caaa5f9f 1646
ff6657c6 1647 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
1648 if (cfqq)
1649 cfq_mark_cfqq_prio_changed(cfqq);
1650
c1b707d2 1651 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
1652}
1653
fc46379d 1654static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 1655{
4ac845a2 1656 call_for_each_cic(ioc, changed_ioprio);
fc46379d 1657 ioc->ioprio_changed = 0;
22e2c507
JA
1658}
1659
d5036d77
JA
1660static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1661 pid_t pid, int is_sync)
1662{
1663 RB_CLEAR_NODE(&cfqq->rb_node);
1664 RB_CLEAR_NODE(&cfqq->p_node);
1665 INIT_LIST_HEAD(&cfqq->fifo);
1666
1667 atomic_set(&cfqq->ref, 0);
1668 cfqq->cfqd = cfqd;
1669
1670 cfq_mark_cfqq_prio_changed(cfqq);
1671
1672 if (is_sync) {
1673 if (!cfq_class_idle(cfqq))
1674 cfq_mark_cfqq_idle_window(cfqq);
1675 cfq_mark_cfqq_sync(cfqq);
1676 }
1677 cfqq->pid = pid;
1678}
1679
22e2c507 1680static struct cfq_queue *
15c31be4 1681cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
fd0928df 1682 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 1683{
22e2c507 1684 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 1685 struct cfq_io_context *cic;
22e2c507
JA
1686
1687retry:
4ac845a2 1688 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
1689 /* cic always exists here */
1690 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 1691
6118b70b
JA
1692 /*
1693 * Always try a new alloc if we fell back to the OOM cfqq
1694 * originally, since it should just be a temporary situation.
1695 */
1696 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
1697 cfqq = NULL;
22e2c507
JA
1698 if (new_cfqq) {
1699 cfqq = new_cfqq;
1700 new_cfqq = NULL;
1701 } else if (gfp_mask & __GFP_WAIT) {
1702 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 1703 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 1704 gfp_mask | __GFP_ZERO,
94f6030c 1705 cfqd->queue->node);
22e2c507 1706 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
1707 if (new_cfqq)
1708 goto retry;
22e2c507 1709 } else {
94f6030c
CL
1710 cfqq = kmem_cache_alloc_node(cfq_pool,
1711 gfp_mask | __GFP_ZERO,
1712 cfqd->queue->node);
22e2c507
JA
1713 }
1714
6118b70b
JA
1715 if (cfqq) {
1716 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
1717 cfq_init_prio_data(cfqq, ioc);
1718 cfq_log_cfqq(cfqd, cfqq, "alloced");
1719 } else
1720 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
1721 }
1722
1723 if (new_cfqq)
1724 kmem_cache_free(cfq_pool, new_cfqq);
1725
22e2c507
JA
1726 return cfqq;
1727}
1728
c2dea2d1
VT
1729static struct cfq_queue **
1730cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1731{
fe094d98 1732 switch (ioprio_class) {
c2dea2d1
VT
1733 case IOPRIO_CLASS_RT:
1734 return &cfqd->async_cfqq[0][ioprio];
1735 case IOPRIO_CLASS_BE:
1736 return &cfqd->async_cfqq[1][ioprio];
1737 case IOPRIO_CLASS_IDLE:
1738 return &cfqd->async_idle_cfqq;
1739 default:
1740 BUG();
1741 }
1742}
1743
15c31be4 1744static struct cfq_queue *
fd0928df 1745cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
15c31be4
JA
1746 gfp_t gfp_mask)
1747{
fd0928df
JA
1748 const int ioprio = task_ioprio(ioc);
1749 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 1750 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
1751 struct cfq_queue *cfqq = NULL;
1752
c2dea2d1
VT
1753 if (!is_sync) {
1754 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1755 cfqq = *async_cfqq;
1756 }
1757
6118b70b 1758 if (!cfqq)
fd0928df 1759 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
1760
1761 /*
1762 * pin the queue now that it's allocated, scheduler exit will prune it
1763 */
c2dea2d1 1764 if (!is_sync && !(*async_cfqq)) {
15c31be4 1765 atomic_inc(&cfqq->ref);
c2dea2d1 1766 *async_cfqq = cfqq;
15c31be4
JA
1767 }
1768
1769 atomic_inc(&cfqq->ref);
1770 return cfqq;
1771}
1772
498d3aa2
JA
1773/*
1774 * We drop cfq io contexts lazily, so we may find a dead one.
1775 */
dbecf3ab 1776static void
4ac845a2
JA
1777cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1778 struct cfq_io_context *cic)
dbecf3ab 1779{
4ac845a2
JA
1780 unsigned long flags;
1781
fc46379d 1782 WARN_ON(!list_empty(&cic->queue_list));
597bc485 1783
4ac845a2
JA
1784 spin_lock_irqsave(&ioc->lock, flags);
1785
4faa3c81 1786 BUG_ON(ioc->ioc_data == cic);
597bc485 1787
4ac845a2 1788 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 1789 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
1790 spin_unlock_irqrestore(&ioc->lock, flags);
1791
1792 cfq_cic_free(cic);
dbecf3ab
OH
1793}
1794
e2d74ac0 1795static struct cfq_io_context *
4ac845a2 1796cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 1797{
e2d74ac0 1798 struct cfq_io_context *cic;
d6de8be7 1799 unsigned long flags;
4ac845a2 1800 void *k;
e2d74ac0 1801
91fac317
VT
1802 if (unlikely(!ioc))
1803 return NULL;
1804
d6de8be7
JA
1805 rcu_read_lock();
1806
597bc485
JA
1807 /*
1808 * we maintain a last-hit cache, to avoid browsing over the tree
1809 */
4ac845a2 1810 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
1811 if (cic && cic->key == cfqd) {
1812 rcu_read_unlock();
597bc485 1813 return cic;
d6de8be7 1814 }
597bc485 1815
4ac845a2 1816 do {
4ac845a2
JA
1817 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1818 rcu_read_unlock();
1819 if (!cic)
1820 break;
be3b0753
OH
1821 /* ->key must be copied to avoid race with cfq_exit_queue() */
1822 k = cic->key;
1823 if (unlikely(!k)) {
4ac845a2 1824 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 1825 rcu_read_lock();
4ac845a2 1826 continue;
dbecf3ab 1827 }
e2d74ac0 1828
d6de8be7 1829 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 1830 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 1831 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
1832 break;
1833 } while (1);
e2d74ac0 1834
4ac845a2 1835 return cic;
e2d74ac0
JA
1836}
1837
4ac845a2
JA
1838/*
1839 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1840 * the process specific cfq io context when entered from the block layer.
1841 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1842 */
febffd61
JA
1843static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1844 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 1845{
0261d688 1846 unsigned long flags;
4ac845a2 1847 int ret;
e2d74ac0 1848
4ac845a2
JA
1849 ret = radix_tree_preload(gfp_mask);
1850 if (!ret) {
1851 cic->ioc = ioc;
1852 cic->key = cfqd;
e2d74ac0 1853
4ac845a2
JA
1854 spin_lock_irqsave(&ioc->lock, flags);
1855 ret = radix_tree_insert(&ioc->radix_root,
1856 (unsigned long) cfqd, cic);
ffc4e759
JA
1857 if (!ret)
1858 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 1859 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 1860
4ac845a2
JA
1861 radix_tree_preload_end();
1862
1863 if (!ret) {
1864 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1865 list_add(&cic->queue_list, &cfqd->cic_list);
1866 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1867 }
e2d74ac0
JA
1868 }
1869
4ac845a2
JA
1870 if (ret)
1871 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 1872
4ac845a2 1873 return ret;
e2d74ac0
JA
1874}
1875
1da177e4
LT
1876/*
1877 * Setup general io context and cfq io context. There can be several cfq
1878 * io contexts per general io context, if this process is doing io to more
e2d74ac0 1879 * than one device managed by cfq.
1da177e4
LT
1880 */
1881static struct cfq_io_context *
e2d74ac0 1882cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 1883{
22e2c507 1884 struct io_context *ioc = NULL;
1da177e4 1885 struct cfq_io_context *cic;
1da177e4 1886
22e2c507 1887 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 1888
b5deef90 1889 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
1890 if (!ioc)
1891 return NULL;
1892
4ac845a2 1893 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
1894 if (cic)
1895 goto out;
1da177e4 1896
e2d74ac0
JA
1897 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1898 if (cic == NULL)
1899 goto err;
1da177e4 1900
4ac845a2
JA
1901 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1902 goto err_free;
1903
1da177e4 1904out:
fc46379d
JA
1905 smp_read_barrier_depends();
1906 if (unlikely(ioc->ioprio_changed))
1907 cfq_ioc_set_ioprio(ioc);
1908
1da177e4 1909 return cic;
4ac845a2
JA
1910err_free:
1911 cfq_cic_free(cic);
1da177e4
LT
1912err:
1913 put_io_context(ioc);
1914 return NULL;
1915}
1916
22e2c507
JA
1917static void
1918cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 1919{
aaf1228d
JA
1920 unsigned long elapsed = jiffies - cic->last_end_request;
1921 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 1922
22e2c507
JA
1923 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1924 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1925 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1926}
1da177e4 1927
206dc69b 1928static void
6d048f53
JA
1929cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1930 struct request *rq)
206dc69b
JA
1931{
1932 sector_t sdist;
1933 u64 total;
1934
4d00aa47
JM
1935 if (!cic->last_request_pos)
1936 sdist = 0;
83096ebf
TH
1937 else if (cic->last_request_pos < blk_rq_pos(rq))
1938 sdist = blk_rq_pos(rq) - cic->last_request_pos;
206dc69b 1939 else
83096ebf 1940 sdist = cic->last_request_pos - blk_rq_pos(rq);
206dc69b
JA
1941
1942 /*
1943 * Don't allow the seek distance to get too large from the
1944 * odd fragment, pagein, etc
1945 */
1946 if (cic->seek_samples <= 60) /* second&third seek */
1947 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1948 else
1949 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1950
1951 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1952 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1953 total = cic->seek_total + (cic->seek_samples/2);
1954 do_div(total, cic->seek_samples);
1955 cic->seek_mean = (sector_t)total;
1956}
1da177e4 1957
22e2c507
JA
1958/*
1959 * Disable idle window if the process thinks too long or seeks so much that
1960 * it doesn't matter
1961 */
1962static void
1963cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1964 struct cfq_io_context *cic)
1965{
7b679138 1966 int old_idle, enable_idle;
1be92f2f 1967
0871714e
JA
1968 /*
1969 * Don't idle for async or idle io prio class
1970 */
1971 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
1972 return;
1973
c265a7f4 1974 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 1975
66dac98e 1976 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
963b72fc 1977 (!cfqd->cfq_latency && cfqd->hw_tag && CIC_SEEKY(cic)))
22e2c507
JA
1978 enable_idle = 0;
1979 else if (sample_valid(cic->ttime_samples)) {
1980 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1981 enable_idle = 0;
1982 else
1983 enable_idle = 1;
1da177e4
LT
1984 }
1985
7b679138
JA
1986 if (old_idle != enable_idle) {
1987 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
1988 if (enable_idle)
1989 cfq_mark_cfqq_idle_window(cfqq);
1990 else
1991 cfq_clear_cfqq_idle_window(cfqq);
1992 }
22e2c507 1993}
1da177e4 1994
22e2c507
JA
1995/*
1996 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1997 * no or if we aren't sure, a 1 will cause a preempt.
1998 */
1999static int
2000cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 2001 struct request *rq)
22e2c507 2002{
6d048f53 2003 struct cfq_queue *cfqq;
22e2c507 2004
6d048f53
JA
2005 cfqq = cfqd->active_queue;
2006 if (!cfqq)
22e2c507
JA
2007 return 0;
2008
6d048f53
JA
2009 if (cfq_slice_used(cfqq))
2010 return 1;
2011
2012 if (cfq_class_idle(new_cfqq))
caaa5f9f 2013 return 0;
22e2c507
JA
2014
2015 if (cfq_class_idle(cfqq))
2016 return 1;
1e3335de 2017
374f84ac
JA
2018 /*
2019 * if the new request is sync, but the currently running queue is
2020 * not, let the sync request have priority.
2021 */
5e705374 2022 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
22e2c507 2023 return 1;
1e3335de 2024
374f84ac
JA
2025 /*
2026 * So both queues are sync. Let the new request get disk time if
2027 * it's a metadata request and the current queue is doing regular IO.
2028 */
2029 if (rq_is_meta(rq) && !cfqq->meta_pending)
2030 return 1;
22e2c507 2031
3a9a3f6c
DS
2032 /*
2033 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2034 */
2035 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2036 return 1;
2037
1e3335de
JA
2038 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2039 return 0;
2040
2041 /*
2042 * if this request is as-good as one we would expect from the
2043 * current cfqq, let it preempt
2044 */
6d048f53 2045 if (cfq_rq_close(cfqd, rq))
1e3335de
JA
2046 return 1;
2047
22e2c507
JA
2048 return 0;
2049}
2050
2051/*
2052 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2053 * let it have half of its nominal slice.
2054 */
2055static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2056{
7b679138 2057 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 2058 cfq_slice_expired(cfqd, 1);
22e2c507 2059
bf572256
JA
2060 /*
2061 * Put the new queue at the front of the of the current list,
2062 * so we know that it will be selected next.
2063 */
2064 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
2065
2066 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 2067
44f7c160
JA
2068 cfqq->slice_end = 0;
2069 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
2070}
2071
22e2c507 2072/*
5e705374 2073 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
2074 * something we should do about it
2075 */
2076static void
5e705374
JA
2077cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2078 struct request *rq)
22e2c507 2079{
5e705374 2080 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 2081
45333d5a 2082 cfqd->rq_queued++;
374f84ac
JA
2083 if (rq_is_meta(rq))
2084 cfqq->meta_pending++;
2085
9c2c38a1 2086 cfq_update_io_thinktime(cfqd, cic);
6d048f53 2087 cfq_update_io_seektime(cfqd, cic, rq);
9c2c38a1
JA
2088 cfq_update_idle_window(cfqd, cfqq, cic);
2089
83096ebf 2090 cic->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
2091
2092 if (cfqq == cfqd->active_queue) {
2093 /*
b029195d
JA
2094 * Remember that we saw a request from this process, but
2095 * don't start queuing just yet. Otherwise we risk seeing lots
2096 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
2097 * and merging. If the request is already larger than a single
2098 * page, let it rip immediately. For that case we assume that
2d870722
JA
2099 * merging is already done. Ditto for a busy system that
2100 * has other work pending, don't risk delaying until the
2101 * idle timer unplug to continue working.
22e2c507 2102 */
d6ceb25e 2103 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
2104 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2105 cfqd->busy_queues > 1) {
d6ceb25e 2106 del_timer(&cfqd->idle_slice_timer);
a7f55792 2107 __blk_run_queue(cfqd->queue);
d6ceb25e 2108 }
b029195d 2109 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 2110 }
5e705374 2111 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
2112 /*
2113 * not the active queue - expire current slice if it is
2114 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
2115 * has some old slice time left and is of higher priority or
2116 * this new queue is RT and the current one is BE
22e2c507
JA
2117 */
2118 cfq_preempt_queue(cfqd, cfqq);
a7f55792 2119 __blk_run_queue(cfqd->queue);
22e2c507 2120 }
1da177e4
LT
2121}
2122
165125e1 2123static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 2124{
b4878f24 2125 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 2126 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 2127
7b679138 2128 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 2129 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 2130
5e705374 2131 cfq_add_rq_rb(rq);
1da177e4 2132
22e2c507
JA
2133 list_add_tail(&rq->queuelist, &cfqq->fifo);
2134
5e705374 2135 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
2136}
2137
45333d5a
AC
2138/*
2139 * Update hw_tag based on peak queue depth over 50 samples under
2140 * sufficient load.
2141 */
2142static void cfq_update_hw_tag(struct cfq_data *cfqd)
2143{
5ad531db
JA
2144 if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
2145 cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
45333d5a
AC
2146
2147 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
5ad531db 2148 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
2149 return;
2150
2151 if (cfqd->hw_tag_samples++ < 50)
2152 return;
2153
2154 if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2155 cfqd->hw_tag = 1;
2156 else
2157 cfqd->hw_tag = 0;
2158
2159 cfqd->hw_tag_samples = 0;
2160 cfqd->rq_in_driver_peak = 0;
2161}
2162
165125e1 2163static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 2164{
5e705374 2165 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 2166 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 2167 const int sync = rq_is_sync(rq);
b4878f24 2168 unsigned long now;
1da177e4 2169
b4878f24 2170 now = jiffies;
7b679138 2171 cfq_log_cfqq(cfqd, cfqq, "complete");
1da177e4 2172
45333d5a
AC
2173 cfq_update_hw_tag(cfqd);
2174
5ad531db 2175 WARN_ON(!cfqd->rq_in_driver[sync]);
6d048f53 2176 WARN_ON(!cfqq->dispatched);
5ad531db 2177 cfqd->rq_in_driver[sync]--;
6d048f53 2178 cfqq->dispatched--;
1da177e4 2179
3ed9a296
JA
2180 if (cfq_cfqq_sync(cfqq))
2181 cfqd->sync_flight--;
2182
365722bb 2183 if (sync) {
5e705374 2184 RQ_CIC(rq)->last_end_request = now;
365722bb
VG
2185 cfqd->last_end_sync_rq = now;
2186 }
caaa5f9f
JA
2187
2188 /*
2189 * If this is the active queue, check if it needs to be expired,
2190 * or if we want to idle in case it has no pending requests.
2191 */
2192 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
2193 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2194
44f7c160
JA
2195 if (cfq_cfqq_slice_new(cfqq)) {
2196 cfq_set_prio_slice(cfqd, cfqq);
2197 cfq_clear_cfqq_slice_new(cfqq);
2198 }
a36e71f9
JA
2199 /*
2200 * If there are no requests waiting in this queue, and
2201 * there are other queues ready to issue requests, AND
2202 * those other queues are issuing requests within our
2203 * mean seek distance, give them a chance to run instead
2204 * of idling.
2205 */
0871714e 2206 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 2207 cfq_slice_expired(cfqd, 1);
a36e71f9
JA
2208 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq, 1) &&
2209 sync && !rq_noidle(rq))
6d048f53 2210 cfq_arm_slice_timer(cfqd);
caaa5f9f 2211 }
6d048f53 2212
5ad531db 2213 if (!rq_in_driver(cfqd))
8e296755 2214 cfq_schedule_dispatch(cfqd, 0);
1da177e4
LT
2215}
2216
22e2c507
JA
2217/*
2218 * we temporarily boost lower priority queues if they are holding fs exclusive
2219 * resources. they are boosted to normal prio (CLASS_BE/4)
2220 */
2221static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 2222{
22e2c507
JA
2223 if (has_fs_excl()) {
2224 /*
2225 * boost idle prio on transactions that would lock out other
2226 * users of the filesystem
2227 */
2228 if (cfq_class_idle(cfqq))
2229 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2230 if (cfqq->ioprio > IOPRIO_NORM)
2231 cfqq->ioprio = IOPRIO_NORM;
2232 } else {
2233 /*
2234 * check if we need to unboost the queue
2235 */
2236 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2237 cfqq->ioprio_class = cfqq->org_ioprio_class;
2238 if (cfqq->ioprio != cfqq->org_ioprio)
2239 cfqq->ioprio = cfqq->org_ioprio;
2240 }
22e2c507 2241}
1da177e4 2242
89850f7e 2243static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 2244{
1b379d8d 2245 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 2246 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 2247 return ELV_MQUEUE_MUST;
3b18152c 2248 }
1da177e4 2249
22e2c507 2250 return ELV_MQUEUE_MAY;
22e2c507
JA
2251}
2252
165125e1 2253static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
2254{
2255 struct cfq_data *cfqd = q->elevator->elevator_data;
2256 struct task_struct *tsk = current;
91fac317 2257 struct cfq_io_context *cic;
22e2c507
JA
2258 struct cfq_queue *cfqq;
2259
2260 /*
2261 * don't force setup of a queue from here, as a call to may_queue
2262 * does not necessarily imply that a request actually will be queued.
2263 * so just lookup a possibly existing queue, or return 'may queue'
2264 * if that fails
2265 */
4ac845a2 2266 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
2267 if (!cic)
2268 return ELV_MQUEUE_MAY;
2269
b0b78f81 2270 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 2271 if (cfqq) {
fd0928df 2272 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
2273 cfq_prio_boost(cfqq);
2274
89850f7e 2275 return __cfq_may_queue(cfqq);
22e2c507
JA
2276 }
2277
2278 return ELV_MQUEUE_MAY;
1da177e4
LT
2279}
2280
1da177e4
LT
2281/*
2282 * queue lock held here
2283 */
bb37b94c 2284static void cfq_put_request(struct request *rq)
1da177e4 2285{
5e705374 2286 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 2287
5e705374 2288 if (cfqq) {
22e2c507 2289 const int rw = rq_data_dir(rq);
1da177e4 2290
22e2c507
JA
2291 BUG_ON(!cfqq->allocated[rw]);
2292 cfqq->allocated[rw]--;
1da177e4 2293
5e705374 2294 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 2295
1da177e4 2296 rq->elevator_private = NULL;
5e705374 2297 rq->elevator_private2 = NULL;
1da177e4 2298
1da177e4
LT
2299 cfq_put_queue(cfqq);
2300 }
2301}
2302
2303/*
22e2c507 2304 * Allocate cfq data structures associated with this request.
1da177e4 2305 */
22e2c507 2306static int
165125e1 2307cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
2308{
2309 struct cfq_data *cfqd = q->elevator->elevator_data;
2310 struct cfq_io_context *cic;
2311 const int rw = rq_data_dir(rq);
7749a8d4 2312 const int is_sync = rq_is_sync(rq);
22e2c507 2313 struct cfq_queue *cfqq;
1da177e4
LT
2314 unsigned long flags;
2315
2316 might_sleep_if(gfp_mask & __GFP_WAIT);
2317
e2d74ac0 2318 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 2319
1da177e4
LT
2320 spin_lock_irqsave(q->queue_lock, flags);
2321
22e2c507
JA
2322 if (!cic)
2323 goto queue_fail;
2324
91fac317 2325 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 2326 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 2327 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317
VT
2328 cic_set_cfqq(cic, cfqq, is_sync);
2329 }
1da177e4
LT
2330
2331 cfqq->allocated[rw]++;
22e2c507 2332 atomic_inc(&cfqq->ref);
1da177e4 2333
5e705374 2334 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 2335
5e705374
JA
2336 rq->elevator_private = cic;
2337 rq->elevator_private2 = cfqq;
2338 return 0;
1da177e4 2339
22e2c507
JA
2340queue_fail:
2341 if (cic)
2342 put_io_context(cic->ioc);
89850f7e 2343
8e296755 2344 cfq_schedule_dispatch(cfqd, 0);
1da177e4 2345 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 2346 cfq_log(cfqd, "set_request fail");
1da177e4
LT
2347 return 1;
2348}
2349
65f27f38 2350static void cfq_kick_queue(struct work_struct *work)
22e2c507 2351{
65f27f38 2352 struct cfq_data *cfqd =
8e296755 2353 container_of(work, struct cfq_data, unplug_work.work);
165125e1 2354 struct request_queue *q = cfqd->queue;
22e2c507 2355
40bb54d1 2356 spin_lock_irq(q->queue_lock);
a7f55792 2357 __blk_run_queue(cfqd->queue);
40bb54d1 2358 spin_unlock_irq(q->queue_lock);
22e2c507
JA
2359}
2360
2361/*
2362 * Timer running if the active_queue is currently idling inside its time slice
2363 */
2364static void cfq_idle_slice_timer(unsigned long data)
2365{
2366 struct cfq_data *cfqd = (struct cfq_data *) data;
2367 struct cfq_queue *cfqq;
2368 unsigned long flags;
3c6bd2f8 2369 int timed_out = 1;
22e2c507 2370
7b679138
JA
2371 cfq_log(cfqd, "idle timer fired");
2372
22e2c507
JA
2373 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2374
fe094d98
JA
2375 cfqq = cfqd->active_queue;
2376 if (cfqq) {
3c6bd2f8
JA
2377 timed_out = 0;
2378
b029195d
JA
2379 /*
2380 * We saw a request before the queue expired, let it through
2381 */
2382 if (cfq_cfqq_must_dispatch(cfqq))
2383 goto out_kick;
2384
22e2c507
JA
2385 /*
2386 * expired
2387 */
44f7c160 2388 if (cfq_slice_used(cfqq))
22e2c507
JA
2389 goto expire;
2390
2391 /*
2392 * only expire and reinvoke request handler, if there are
2393 * other queues with pending requests
2394 */
caaa5f9f 2395 if (!cfqd->busy_queues)
22e2c507 2396 goto out_cont;
22e2c507
JA
2397
2398 /*
2399 * not expired and it has a request pending, let it dispatch
2400 */
75e50984 2401 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2402 goto out_kick;
22e2c507
JA
2403 }
2404expire:
6084cdda 2405 cfq_slice_expired(cfqd, timed_out);
22e2c507 2406out_kick:
8e296755 2407 cfq_schedule_dispatch(cfqd, 0);
22e2c507
JA
2408out_cont:
2409 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2410}
2411
3b18152c
JA
2412static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2413{
2414 del_timer_sync(&cfqd->idle_slice_timer);
8e296755 2415 cancel_delayed_work_sync(&cfqd->unplug_work);
3b18152c 2416}
22e2c507 2417
c2dea2d1
VT
2418static void cfq_put_async_queues(struct cfq_data *cfqd)
2419{
2420 int i;
2421
2422 for (i = 0; i < IOPRIO_BE_NR; i++) {
2423 if (cfqd->async_cfqq[0][i])
2424 cfq_put_queue(cfqd->async_cfqq[0][i]);
2425 if (cfqd->async_cfqq[1][i])
2426 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 2427 }
2389d1ef
ON
2428
2429 if (cfqd->async_idle_cfqq)
2430 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
2431}
2432
b374d18a 2433static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 2434{
22e2c507 2435 struct cfq_data *cfqd = e->elevator_data;
165125e1 2436 struct request_queue *q = cfqd->queue;
22e2c507 2437
3b18152c 2438 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 2439
d9ff4187 2440 spin_lock_irq(q->queue_lock);
e2d74ac0 2441
d9ff4187 2442 if (cfqd->active_queue)
6084cdda 2443 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
2444
2445 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
2446 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2447 struct cfq_io_context,
2448 queue_list);
89850f7e
JA
2449
2450 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 2451 }
e2d74ac0 2452
c2dea2d1 2453 cfq_put_async_queues(cfqd);
15c31be4 2454
d9ff4187 2455 spin_unlock_irq(q->queue_lock);
a90d742e
AV
2456
2457 cfq_shutdown_timer_wq(cfqd);
2458
a90d742e 2459 kfree(cfqd);
1da177e4
LT
2460}
2461
165125e1 2462static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
2463{
2464 struct cfq_data *cfqd;
26a2ac00 2465 int i;
1da177e4 2466
94f6030c 2467 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 2468 if (!cfqd)
bc1c1169 2469 return NULL;
1da177e4 2470
cc09e299 2471 cfqd->service_tree = CFQ_RB_ROOT;
26a2ac00
JA
2472
2473 /*
2474 * Not strictly needed (since RB_ROOT just clears the node and we
2475 * zeroed cfqd on alloc), but better be safe in case someone decides
2476 * to add magic to the rb code
2477 */
2478 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2479 cfqd->prio_trees[i] = RB_ROOT;
2480
6118b70b
JA
2481 /*
2482 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2483 * Grab a permanent reference to it, so that the normal code flow
2484 * will not attempt to free it.
2485 */
2486 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2487 atomic_inc(&cfqd->oom_cfqq.ref);
2488
d9ff4187 2489 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 2490
1da177e4 2491 cfqd->queue = q;
1da177e4 2492
22e2c507
JA
2493 init_timer(&cfqd->idle_slice_timer);
2494 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2495 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2496
8e296755 2497 INIT_DELAYED_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 2498
1da177e4 2499 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
2500 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2501 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
2502 cfqd->cfq_back_max = cfq_back_max;
2503 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
2504 cfqd->cfq_slice[0] = cfq_slice_async;
2505 cfqd->cfq_slice[1] = cfq_slice_sync;
2506 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2507 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 2508 cfqd->cfq_latency = 1;
45333d5a 2509 cfqd->hw_tag = 1;
365722bb 2510 cfqd->last_end_sync_rq = jiffies;
bc1c1169 2511 return cfqd;
1da177e4
LT
2512}
2513
2514static void cfq_slab_kill(void)
2515{
d6de8be7
JA
2516 /*
2517 * Caller already ensured that pending RCU callbacks are completed,
2518 * so we should have no busy allocations at this point.
2519 */
1da177e4
LT
2520 if (cfq_pool)
2521 kmem_cache_destroy(cfq_pool);
2522 if (cfq_ioc_pool)
2523 kmem_cache_destroy(cfq_ioc_pool);
2524}
2525
2526static int __init cfq_slab_setup(void)
2527{
0a31bd5f 2528 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
2529 if (!cfq_pool)
2530 goto fail;
2531
34e6bbf2 2532 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
2533 if (!cfq_ioc_pool)
2534 goto fail;
2535
2536 return 0;
2537fail:
2538 cfq_slab_kill();
2539 return -ENOMEM;
2540}
2541
1da177e4
LT
2542/*
2543 * sysfs parts below -->
2544 */
1da177e4
LT
2545static ssize_t
2546cfq_var_show(unsigned int var, char *page)
2547{
2548 return sprintf(page, "%d\n", var);
2549}
2550
2551static ssize_t
2552cfq_var_store(unsigned int *var, const char *page, size_t count)
2553{
2554 char *p = (char *) page;
2555
2556 *var = simple_strtoul(p, &p, 10);
2557 return count;
2558}
2559
1da177e4 2560#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 2561static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 2562{ \
3d1ab40f 2563 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
2564 unsigned int __data = __VAR; \
2565 if (__CONV) \
2566 __data = jiffies_to_msecs(__data); \
2567 return cfq_var_show(__data, (page)); \
2568}
2569SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
2570SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2571SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
2572SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2573SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
2574SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2575SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2576SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2577SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 2578SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
1da177e4
LT
2579#undef SHOW_FUNCTION
2580
2581#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 2582static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 2583{ \
3d1ab40f 2584 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
2585 unsigned int __data; \
2586 int ret = cfq_var_store(&__data, (page), count); \
2587 if (__data < (MIN)) \
2588 __data = (MIN); \
2589 else if (__data > (MAX)) \
2590 __data = (MAX); \
2591 if (__CONV) \
2592 *(__PTR) = msecs_to_jiffies(__data); \
2593 else \
2594 *(__PTR) = __data; \
2595 return ret; \
2596}
2597STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
2598STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2599 UINT_MAX, 1);
2600STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2601 UINT_MAX, 1);
e572ec7e 2602STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
2603STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2604 UINT_MAX, 0);
22e2c507
JA
2605STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2606STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2607STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
2608STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2609 UINT_MAX, 0);
963b72fc 2610STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
1da177e4
LT
2611#undef STORE_FUNCTION
2612
e572ec7e
AV
2613#define CFQ_ATTR(name) \
2614 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2615
2616static struct elv_fs_entry cfq_attrs[] = {
2617 CFQ_ATTR(quantum),
e572ec7e
AV
2618 CFQ_ATTR(fifo_expire_sync),
2619 CFQ_ATTR(fifo_expire_async),
2620 CFQ_ATTR(back_seek_max),
2621 CFQ_ATTR(back_seek_penalty),
2622 CFQ_ATTR(slice_sync),
2623 CFQ_ATTR(slice_async),
2624 CFQ_ATTR(slice_async_rq),
2625 CFQ_ATTR(slice_idle),
963b72fc 2626 CFQ_ATTR(low_latency),
e572ec7e 2627 __ATTR_NULL
1da177e4
LT
2628};
2629
1da177e4
LT
2630static struct elevator_type iosched_cfq = {
2631 .ops = {
2632 .elevator_merge_fn = cfq_merge,
2633 .elevator_merged_fn = cfq_merged_request,
2634 .elevator_merge_req_fn = cfq_merged_requests,
da775265 2635 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 2636 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 2637 .elevator_add_req_fn = cfq_insert_request,
b4878f24 2638 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
2639 .elevator_deactivate_req_fn = cfq_deactivate_request,
2640 .elevator_queue_empty_fn = cfq_queue_empty,
2641 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
2642 .elevator_former_req_fn = elv_rb_former_request,
2643 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
2644 .elevator_set_req_fn = cfq_set_request,
2645 .elevator_put_req_fn = cfq_put_request,
2646 .elevator_may_queue_fn = cfq_may_queue,
2647 .elevator_init_fn = cfq_init_queue,
2648 .elevator_exit_fn = cfq_exit_queue,
fc46379d 2649 .trim = cfq_free_io_context,
1da177e4 2650 },
3d1ab40f 2651 .elevator_attrs = cfq_attrs,
1da177e4
LT
2652 .elevator_name = "cfq",
2653 .elevator_owner = THIS_MODULE,
2654};
2655
2656static int __init cfq_init(void)
2657{
22e2c507
JA
2658 /*
2659 * could be 0 on HZ < 1000 setups
2660 */
2661 if (!cfq_slice_async)
2662 cfq_slice_async = 1;
2663 if (!cfq_slice_idle)
2664 cfq_slice_idle = 1;
2665
1da177e4
LT
2666 if (cfq_slab_setup())
2667 return -ENOMEM;
2668
2fdd82bd 2669 elv_register(&iosched_cfq);
1da177e4 2670
2fdd82bd 2671 return 0;
1da177e4
LT
2672}
2673
2674static void __exit cfq_exit(void)
2675{
6e9a4738 2676 DECLARE_COMPLETION_ONSTACK(all_gone);
1da177e4 2677 elv_unregister(&iosched_cfq);
334e94de 2678 ioc_gone = &all_gone;
fba82272
OH
2679 /* ioc_gone's update must be visible before reading ioc_count */
2680 smp_wmb();
d6de8be7
JA
2681
2682 /*
2683 * this also protects us from entering cfq_slab_kill() with
2684 * pending RCU callbacks
2685 */
245b2e70 2686 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 2687 wait_for_completion(&all_gone);
83521d3e 2688 cfq_slab_kill();
1da177e4
LT
2689}
2690
2691module_init(cfq_init);
2692module_exit(cfq_exit);
2693
2694MODULE_AUTHOR("Jens Axboe");
2695MODULE_LICENSE("GPL");
2696MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");