]> bbs.cooldavid.org Git - net-next-2.6.git/blame - block/cfq-iosched.c
blkio: Wait on sync-noidle queue even if rq_noidle = 1
[net-next-2.6.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
ad5ebd2f 12#include <linux/jiffies.h>
1da177e4 13#include <linux/rbtree.h>
22e2c507 14#include <linux/ioprio.h>
7b679138 15#include <linux/blktrace_api.h>
25bc6b07 16#include "blk-cgroup.h"
1da177e4
LT
17
18/*
19 * tunables
20 */
fe094d98
JA
21/* max queue in one round of service */
22static const int cfq_quantum = 4;
64100099 23static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
24/* maximum backwards seek, in KiB */
25static const int cfq_back_max = 16 * 1024;
26/* penalty of a backwards seek */
27static const int cfq_back_penalty = 2;
64100099 28static const int cfq_slice_sync = HZ / 10;
3b18152c 29static int cfq_slice_async = HZ / 25;
64100099 30static const int cfq_slice_async_rq = 2;
caaa5f9f 31static int cfq_slice_idle = HZ / 125;
5db5d642
CZ
32static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33static const int cfq_hist_divisor = 4;
22e2c507 34
d9e7620e 35/*
0871714e 36 * offset from end of service tree
d9e7620e 37 */
0871714e 38#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
39
40/*
41 * below this threshold, we consider thinktime immediate
42 */
43#define CFQ_MIN_TT (2)
44
e6c5bc73
JM
45/*
46 * Allow merged cfqqs to perform this amount of seeky I/O before
47 * deciding to break the queues up again.
48 */
49#define CFQQ_COOP_TOUT (HZ)
50
22e2c507 51#define CFQ_SLICE_SCALE (5)
45333d5a 52#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 53#define CFQ_SERVICE_SHIFT 12
22e2c507 54
fe094d98
JA
55#define RQ_CIC(rq) \
56 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 57#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 58
e18b890b
CL
59static struct kmem_cache *cfq_pool;
60static struct kmem_cache *cfq_ioc_pool;
1da177e4 61
245b2e70 62static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 63static struct completion *ioc_gone;
9a11b4ed 64static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 65
22e2c507
JA
66#define CFQ_PRIO_LISTS IOPRIO_BE_NR
67#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
68#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
69
206dc69b 70#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 71#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 72
cc09e299
JA
73/*
74 * Most of our rbtree usage is for sorting with min extraction, so
75 * if we cache the leftmost node we don't have to walk down the tree
76 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
77 * move this into the elevator for the rq sorting as well.
78 */
79struct cfq_rb_root {
80 struct rb_root rb;
81 struct rb_node *left;
aa6f6a3d 82 unsigned count;
1fa8f6d6 83 u64 min_vdisktime;
25bc6b07 84 struct rb_node *active;
58ff82f3 85 unsigned total_weight;
cc09e299 86};
1fa8f6d6 87#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
cc09e299 88
6118b70b
JA
89/*
90 * Per process-grouping structure
91 */
92struct cfq_queue {
93 /* reference count */
94 atomic_t ref;
95 /* various state flags, see below */
96 unsigned int flags;
97 /* parent cfq_data */
98 struct cfq_data *cfqd;
99 /* service_tree member */
100 struct rb_node rb_node;
101 /* service_tree key */
102 unsigned long rb_key;
103 /* prio tree member */
104 struct rb_node p_node;
105 /* prio tree root we belong to, if any */
106 struct rb_root *p_root;
107 /* sorted list of pending requests */
108 struct rb_root sort_list;
109 /* if fifo isn't expired, next request to serve */
110 struct request *next_rq;
111 /* requests queued in sort_list */
112 int queued[2];
113 /* currently allocated requests */
114 int allocated[2];
115 /* fifo list of requests in sort_list */
116 struct list_head fifo;
117
dae739eb
VG
118 /* time when queue got scheduled in to dispatch first request. */
119 unsigned long dispatch_start;
f75edf2d 120 unsigned int allocated_slice;
dae739eb
VG
121 /* time when first request from queue completed and slice started. */
122 unsigned long slice_start;
6118b70b
JA
123 unsigned long slice_end;
124 long slice_resid;
125 unsigned int slice_dispatch;
126
127 /* pending metadata requests */
128 int meta_pending;
129 /* number of requests that are on the dispatch list or inside driver */
130 int dispatched;
131
132 /* io prio of this group */
133 unsigned short ioprio, org_ioprio;
134 unsigned short ioprio_class, org_ioprio_class;
135
b2c18e1e
JM
136 unsigned int seek_samples;
137 u64 seek_total;
138 sector_t seek_mean;
139 sector_t last_request_pos;
e6c5bc73 140 unsigned long seeky_start;
b2c18e1e 141
6118b70b 142 pid_t pid;
df5fe3e8 143
aa6f6a3d 144 struct cfq_rb_root *service_tree;
df5fe3e8 145 struct cfq_queue *new_cfqq;
cdb16e8f 146 struct cfq_group *cfqg;
ae30c286 147 struct cfq_group *orig_cfqg;
22084190
VG
148 /* Sectors dispatched in current dispatch round */
149 unsigned long nr_sectors;
6118b70b
JA
150};
151
c0324a02 152/*
718eee05 153 * First index in the service_trees.
c0324a02
CZ
154 * IDLE is handled separately, so it has negative index
155 */
156enum wl_prio_t {
c0324a02 157 BE_WORKLOAD = 0,
615f0259
VG
158 RT_WORKLOAD = 1,
159 IDLE_WORKLOAD = 2,
c0324a02
CZ
160};
161
718eee05
CZ
162/*
163 * Second index in the service_trees.
164 */
165enum wl_type_t {
166 ASYNC_WORKLOAD = 0,
167 SYNC_NOIDLE_WORKLOAD = 1,
168 SYNC_WORKLOAD = 2
169};
170
cdb16e8f
VG
171/* This is per cgroup per device grouping structure */
172struct cfq_group {
1fa8f6d6
VG
173 /* group service_tree member */
174 struct rb_node rb_node;
175
176 /* group service_tree key */
177 u64 vdisktime;
25bc6b07 178 unsigned int weight;
1fa8f6d6
VG
179 bool on_st;
180
181 /* number of cfqq currently on this group */
182 int nr_cfqq;
183
58ff82f3
VG
184 /* Per group busy queus average. Useful for workload slice calc. */
185 unsigned int busy_queues_avg[2];
cdb16e8f
VG
186 /*
187 * rr lists of queues with requests, onle rr for each priority class.
188 * Counts are embedded in the cfq_rb_root
189 */
190 struct cfq_rb_root service_trees[2][3];
191 struct cfq_rb_root service_tree_idle;
dae739eb
VG
192
193 unsigned long saved_workload_slice;
194 enum wl_type_t saved_workload;
195 enum wl_prio_t saved_serving_prio;
25fb5169
VG
196 struct blkio_group blkg;
197#ifdef CONFIG_CFQ_GROUP_IOSCHED
198 struct hlist_node cfqd_node;
b1c35769 199 atomic_t ref;
25fb5169 200#endif
cdb16e8f 201};
718eee05 202
22e2c507
JA
203/*
204 * Per block device queue structure
205 */
1da177e4 206struct cfq_data {
165125e1 207 struct request_queue *queue;
1fa8f6d6
VG
208 /* Root service tree for cfq_groups */
209 struct cfq_rb_root grp_service_tree;
cdb16e8f 210 struct cfq_group root_group;
58ff82f3
VG
211 /* Number of active cfq groups on group service tree */
212 int nr_groups;
22e2c507 213
c0324a02
CZ
214 /*
215 * The priority currently being served
22e2c507 216 */
c0324a02 217 enum wl_prio_t serving_prio;
718eee05
CZ
218 enum wl_type_t serving_type;
219 unsigned long workload_expires;
cdb16e8f 220 struct cfq_group *serving_group;
8e550632 221 bool noidle_tree_requires_idle;
a36e71f9
JA
222
223 /*
224 * Each priority tree is sorted by next_request position. These
225 * trees are used when determining if two or more queues are
226 * interleaving requests (see cfq_close_cooperator).
227 */
228 struct rb_root prio_trees[CFQ_PRIO_LISTS];
229
22e2c507
JA
230 unsigned int busy_queues;
231
5ad531db 232 int rq_in_driver[2];
3ed9a296 233 int sync_flight;
45333d5a
AC
234
235 /*
236 * queue-depth detection
237 */
238 int rq_queued;
25776e35 239 int hw_tag;
e459dd08
CZ
240 /*
241 * hw_tag can be
242 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
243 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
244 * 0 => no NCQ
245 */
246 int hw_tag_est_depth;
247 unsigned int hw_tag_samples;
1da177e4 248
22e2c507
JA
249 /*
250 * idle window management
251 */
252 struct timer_list idle_slice_timer;
23e018a1 253 struct work_struct unplug_work;
1da177e4 254
22e2c507
JA
255 struct cfq_queue *active_queue;
256 struct cfq_io_context *active_cic;
22e2c507 257
c2dea2d1
VT
258 /*
259 * async queue for each priority case
260 */
261 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
262 struct cfq_queue *async_idle_cfqq;
15c31be4 263
6d048f53 264 sector_t last_position;
1da177e4 265
1da177e4
LT
266 /*
267 * tunables, see top of file
268 */
269 unsigned int cfq_quantum;
22e2c507 270 unsigned int cfq_fifo_expire[2];
1da177e4
LT
271 unsigned int cfq_back_penalty;
272 unsigned int cfq_back_max;
22e2c507
JA
273 unsigned int cfq_slice[2];
274 unsigned int cfq_slice_async_rq;
275 unsigned int cfq_slice_idle;
963b72fc 276 unsigned int cfq_latency;
ae30c286 277 unsigned int cfq_group_isolation;
d9ff4187
AV
278
279 struct list_head cic_list;
1da177e4 280
6118b70b
JA
281 /*
282 * Fallback dummy cfqq for extreme OOM conditions
283 */
284 struct cfq_queue oom_cfqq;
365722bb
VG
285
286 unsigned long last_end_sync_rq;
25fb5169
VG
287
288 /* List of cfq groups being managed on this device*/
289 struct hlist_head cfqg_list;
1da177e4
LT
290};
291
25fb5169
VG
292static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
293
cdb16e8f
VG
294static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
295 enum wl_prio_t prio,
718eee05 296 enum wl_type_t type,
c0324a02
CZ
297 struct cfq_data *cfqd)
298{
1fa8f6d6
VG
299 if (!cfqg)
300 return NULL;
301
c0324a02 302 if (prio == IDLE_WORKLOAD)
cdb16e8f 303 return &cfqg->service_tree_idle;
c0324a02 304
cdb16e8f 305 return &cfqg->service_trees[prio][type];
c0324a02
CZ
306}
307
3b18152c 308enum cfqq_state_flags {
b0b8d749
JA
309 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
310 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 311 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 312 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
313 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
314 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
315 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 316 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 317 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 318 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
76280aff 319 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
f75edf2d
VG
320 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
321 CFQ_CFQQ_FLAG_wait_busy_done, /* Got new request. Expire the queue */
3b18152c
JA
322};
323
324#define CFQ_CFQQ_FNS(name) \
325static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
326{ \
fe094d98 327 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
328} \
329static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
330{ \
fe094d98 331 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
332} \
333static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
334{ \
fe094d98 335 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
336}
337
338CFQ_CFQQ_FNS(on_rr);
339CFQ_CFQQ_FNS(wait_request);
b029195d 340CFQ_CFQQ_FNS(must_dispatch);
3b18152c 341CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
342CFQ_CFQQ_FNS(fifo_expire);
343CFQ_CFQQ_FNS(idle_window);
344CFQ_CFQQ_FNS(prio_changed);
44f7c160 345CFQ_CFQQ_FNS(slice_new);
91fac317 346CFQ_CFQQ_FNS(sync);
a36e71f9 347CFQ_CFQQ_FNS(coop);
76280aff 348CFQ_CFQQ_FNS(deep);
f75edf2d
VG
349CFQ_CFQQ_FNS(wait_busy);
350CFQ_CFQQ_FNS(wait_busy_done);
3b18152c
JA
351#undef CFQ_CFQQ_FNS
352
2868ef7b
VG
353#ifdef CONFIG_DEBUG_CFQ_IOSCHED
354#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
355 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
356 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
357 blkg_path(&(cfqq)->cfqg->blkg), ##args);
358
359#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
360 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
361 blkg_path(&(cfqg)->blkg), ##args); \
362
363#else
7b679138
JA
364#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
365 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
2868ef7b
VG
366#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
367#endif
7b679138
JA
368#define cfq_log(cfqd, fmt, args...) \
369 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
370
615f0259
VG
371/* Traverses through cfq group service trees */
372#define for_each_cfqg_st(cfqg, i, j, st) \
373 for (i = 0; i <= IDLE_WORKLOAD; i++) \
374 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
375 : &cfqg->service_tree_idle; \
376 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
377 (i == IDLE_WORKLOAD && j == 0); \
378 j++, st = i < IDLE_WORKLOAD ? \
379 &cfqg->service_trees[i][j]: NULL) \
380
381
c0324a02
CZ
382static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
383{
384 if (cfq_class_idle(cfqq))
385 return IDLE_WORKLOAD;
386 if (cfq_class_rt(cfqq))
387 return RT_WORKLOAD;
388 return BE_WORKLOAD;
389}
390
718eee05
CZ
391
392static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
393{
394 if (!cfq_cfqq_sync(cfqq))
395 return ASYNC_WORKLOAD;
396 if (!cfq_cfqq_idle_window(cfqq))
397 return SYNC_NOIDLE_WORKLOAD;
398 return SYNC_WORKLOAD;
399}
400
58ff82f3
VG
401static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
402 struct cfq_data *cfqd,
403 struct cfq_group *cfqg)
c0324a02
CZ
404{
405 if (wl == IDLE_WORKLOAD)
cdb16e8f 406 return cfqg->service_tree_idle.count;
c0324a02 407
cdb16e8f
VG
408 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
409 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
410 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
411}
412
f26bd1f0
VG
413static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
414 struct cfq_group *cfqg)
415{
416 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
417 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
418}
419
165125e1 420static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 421static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 422 struct io_context *, gfp_t);
4ac845a2 423static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
424 struct io_context *);
425
5ad531db
JA
426static inline int rq_in_driver(struct cfq_data *cfqd)
427{
428 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
429}
430
91fac317 431static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 432 bool is_sync)
91fac317 433{
a6151c3a 434 return cic->cfqq[is_sync];
91fac317
VT
435}
436
437static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 438 struct cfq_queue *cfqq, bool is_sync)
91fac317 439{
a6151c3a 440 cic->cfqq[is_sync] = cfqq;
91fac317
VT
441}
442
443/*
444 * We regard a request as SYNC, if it's either a read or has the SYNC bit
445 * set (in which case it could also be direct WRITE).
446 */
a6151c3a 447static inline bool cfq_bio_sync(struct bio *bio)
91fac317 448{
a6151c3a 449 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
91fac317 450}
1da177e4 451
99f95e52
AM
452/*
453 * scheduler run of queue, if there are requests pending and no one in the
454 * driver that will restart queueing
455 */
23e018a1 456static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 457{
7b679138
JA
458 if (cfqd->busy_queues) {
459 cfq_log(cfqd, "schedule dispatch");
23e018a1 460 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 461 }
99f95e52
AM
462}
463
165125e1 464static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
465{
466 struct cfq_data *cfqd = q->elevator->elevator_data;
467
f04a6424 468 return !cfqd->rq_queued;
99f95e52
AM
469}
470
44f7c160
JA
471/*
472 * Scale schedule slice based on io priority. Use the sync time slice only
473 * if a queue is marked sync and has sync io queued. A sync queue with async
474 * io only, should not get full sync slice length.
475 */
a6151c3a 476static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 477 unsigned short prio)
44f7c160 478{
d9e7620e 479 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 480
d9e7620e
JA
481 WARN_ON(prio >= IOPRIO_BE_NR);
482
483 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
484}
44f7c160 485
d9e7620e
JA
486static inline int
487cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
488{
489 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
490}
491
25bc6b07
VG
492static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
493{
494 u64 d = delta << CFQ_SERVICE_SHIFT;
495
496 d = d * BLKIO_WEIGHT_DEFAULT;
497 do_div(d, cfqg->weight);
498 return d;
499}
500
501static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
502{
503 s64 delta = (s64)(vdisktime - min_vdisktime);
504 if (delta > 0)
505 min_vdisktime = vdisktime;
506
507 return min_vdisktime;
508}
509
510static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
511{
512 s64 delta = (s64)(vdisktime - min_vdisktime);
513 if (delta < 0)
514 min_vdisktime = vdisktime;
515
516 return min_vdisktime;
517}
518
519static void update_min_vdisktime(struct cfq_rb_root *st)
520{
521 u64 vdisktime = st->min_vdisktime;
522 struct cfq_group *cfqg;
523
524 if (st->active) {
525 cfqg = rb_entry_cfqg(st->active);
526 vdisktime = cfqg->vdisktime;
527 }
528
529 if (st->left) {
530 cfqg = rb_entry_cfqg(st->left);
531 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
532 }
533
534 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
535}
536
5db5d642
CZ
537/*
538 * get averaged number of queues of RT/BE priority.
539 * average is updated, with a formula that gives more weight to higher numbers,
540 * to quickly follows sudden increases and decrease slowly
541 */
542
58ff82f3
VG
543static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
544 struct cfq_group *cfqg, bool rt)
5869619c 545{
5db5d642
CZ
546 unsigned min_q, max_q;
547 unsigned mult = cfq_hist_divisor - 1;
548 unsigned round = cfq_hist_divisor / 2;
58ff82f3 549 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 550
58ff82f3
VG
551 min_q = min(cfqg->busy_queues_avg[rt], busy);
552 max_q = max(cfqg->busy_queues_avg[rt], busy);
553 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 554 cfq_hist_divisor;
58ff82f3
VG
555 return cfqg->busy_queues_avg[rt];
556}
557
558static inline unsigned
559cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
560{
561 struct cfq_rb_root *st = &cfqd->grp_service_tree;
562
563 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
564}
565
44f7c160
JA
566static inline void
567cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
568{
5db5d642
CZ
569 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
570 if (cfqd->cfq_latency) {
58ff82f3
VG
571 /*
572 * interested queues (we consider only the ones with the same
573 * priority class in the cfq group)
574 */
575 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
576 cfq_class_rt(cfqq));
5db5d642
CZ
577 unsigned sync_slice = cfqd->cfq_slice[1];
578 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
579 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
580
581 if (expect_latency > group_slice) {
5db5d642
CZ
582 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
583 /* scale low_slice according to IO priority
584 * and sync vs async */
585 unsigned low_slice =
586 min(slice, base_low_slice * slice / sync_slice);
587 /* the adapted slice value is scaled to fit all iqs
588 * into the target latency */
58ff82f3 589 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
590 low_slice);
591 }
592 }
dae739eb 593 cfqq->slice_start = jiffies;
5db5d642 594 cfqq->slice_end = jiffies + slice;
f75edf2d 595 cfqq->allocated_slice = slice;
7b679138 596 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
597}
598
599/*
600 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
601 * isn't valid until the first request from the dispatch is activated
602 * and the slice time set.
603 */
a6151c3a 604static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
605{
606 if (cfq_cfqq_slice_new(cfqq))
607 return 0;
608 if (time_before(jiffies, cfqq->slice_end))
609 return 0;
610
611 return 1;
612}
613
1da177e4 614/*
5e705374 615 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 616 * We choose the request that is closest to the head right now. Distance
e8a99053 617 * behind the head is penalized and only allowed to a certain extent.
1da177e4 618 */
5e705374 619static struct request *
cf7c25cf 620cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 621{
cf7c25cf 622 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 623 unsigned long back_max;
e8a99053
AM
624#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
625#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
626 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 627
5e705374
JA
628 if (rq1 == NULL || rq1 == rq2)
629 return rq2;
630 if (rq2 == NULL)
631 return rq1;
9c2c38a1 632
5e705374
JA
633 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
634 return rq1;
635 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
636 return rq2;
374f84ac
JA
637 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
638 return rq1;
639 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
640 return rq2;
1da177e4 641
83096ebf
TH
642 s1 = blk_rq_pos(rq1);
643 s2 = blk_rq_pos(rq2);
1da177e4 644
1da177e4
LT
645 /*
646 * by definition, 1KiB is 2 sectors
647 */
648 back_max = cfqd->cfq_back_max * 2;
649
650 /*
651 * Strict one way elevator _except_ in the case where we allow
652 * short backward seeks which are biased as twice the cost of a
653 * similar forward seek.
654 */
655 if (s1 >= last)
656 d1 = s1 - last;
657 else if (s1 + back_max >= last)
658 d1 = (last - s1) * cfqd->cfq_back_penalty;
659 else
e8a99053 660 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
661
662 if (s2 >= last)
663 d2 = s2 - last;
664 else if (s2 + back_max >= last)
665 d2 = (last - s2) * cfqd->cfq_back_penalty;
666 else
e8a99053 667 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
668
669 /* Found required data */
e8a99053
AM
670
671 /*
672 * By doing switch() on the bit mask "wrap" we avoid having to
673 * check two variables for all permutations: --> faster!
674 */
675 switch (wrap) {
5e705374 676 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 677 if (d1 < d2)
5e705374 678 return rq1;
e8a99053 679 else if (d2 < d1)
5e705374 680 return rq2;
e8a99053
AM
681 else {
682 if (s1 >= s2)
5e705374 683 return rq1;
e8a99053 684 else
5e705374 685 return rq2;
e8a99053 686 }
1da177e4 687
e8a99053 688 case CFQ_RQ2_WRAP:
5e705374 689 return rq1;
e8a99053 690 case CFQ_RQ1_WRAP:
5e705374
JA
691 return rq2;
692 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
693 default:
694 /*
695 * Since both rqs are wrapped,
696 * start with the one that's further behind head
697 * (--> only *one* back seek required),
698 * since back seek takes more time than forward.
699 */
700 if (s1 <= s2)
5e705374 701 return rq1;
1da177e4 702 else
5e705374 703 return rq2;
1da177e4
LT
704 }
705}
706
498d3aa2
JA
707/*
708 * The below is leftmost cache rbtree addon
709 */
0871714e 710static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 711{
615f0259
VG
712 /* Service tree is empty */
713 if (!root->count)
714 return NULL;
715
cc09e299
JA
716 if (!root->left)
717 root->left = rb_first(&root->rb);
718
0871714e
JA
719 if (root->left)
720 return rb_entry(root->left, struct cfq_queue, rb_node);
721
722 return NULL;
cc09e299
JA
723}
724
1fa8f6d6
VG
725static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
726{
727 if (!root->left)
728 root->left = rb_first(&root->rb);
729
730 if (root->left)
731 return rb_entry_cfqg(root->left);
732
733 return NULL;
734}
735
a36e71f9
JA
736static void rb_erase_init(struct rb_node *n, struct rb_root *root)
737{
738 rb_erase(n, root);
739 RB_CLEAR_NODE(n);
740}
741
cc09e299
JA
742static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
743{
744 if (root->left == n)
745 root->left = NULL;
a36e71f9 746 rb_erase_init(n, &root->rb);
aa6f6a3d 747 --root->count;
cc09e299
JA
748}
749
1da177e4
LT
750/*
751 * would be nice to take fifo expire time into account as well
752 */
5e705374
JA
753static struct request *
754cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
755 struct request *last)
1da177e4 756{
21183b07
JA
757 struct rb_node *rbnext = rb_next(&last->rb_node);
758 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 759 struct request *next = NULL, *prev = NULL;
1da177e4 760
21183b07 761 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
762
763 if (rbprev)
5e705374 764 prev = rb_entry_rq(rbprev);
1da177e4 765
21183b07 766 if (rbnext)
5e705374 767 next = rb_entry_rq(rbnext);
21183b07
JA
768 else {
769 rbnext = rb_first(&cfqq->sort_list);
770 if (rbnext && rbnext != &last->rb_node)
5e705374 771 next = rb_entry_rq(rbnext);
21183b07 772 }
1da177e4 773
cf7c25cf 774 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
775}
776
d9e7620e
JA
777static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
778 struct cfq_queue *cfqq)
1da177e4 779{
d9e7620e
JA
780 /*
781 * just an approximation, should be ok.
782 */
cdb16e8f 783 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 784 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
785}
786
1fa8f6d6
VG
787static inline s64
788cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
789{
790 return cfqg->vdisktime - st->min_vdisktime;
791}
792
793static void
794__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
795{
796 struct rb_node **node = &st->rb.rb_node;
797 struct rb_node *parent = NULL;
798 struct cfq_group *__cfqg;
799 s64 key = cfqg_key(st, cfqg);
800 int left = 1;
801
802 while (*node != NULL) {
803 parent = *node;
804 __cfqg = rb_entry_cfqg(parent);
805
806 if (key < cfqg_key(st, __cfqg))
807 node = &parent->rb_left;
808 else {
809 node = &parent->rb_right;
810 left = 0;
811 }
812 }
813
814 if (left)
815 st->left = &cfqg->rb_node;
816
817 rb_link_node(&cfqg->rb_node, parent, node);
818 rb_insert_color(&cfqg->rb_node, &st->rb);
819}
820
821static void
822cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
823{
824 struct cfq_rb_root *st = &cfqd->grp_service_tree;
825 struct cfq_group *__cfqg;
826 struct rb_node *n;
827
828 cfqg->nr_cfqq++;
829 if (cfqg->on_st)
830 return;
831
832 /*
833 * Currently put the group at the end. Later implement something
834 * so that groups get lesser vtime based on their weights, so that
835 * if group does not loose all if it was not continously backlogged.
836 */
837 n = rb_last(&st->rb);
838 if (n) {
839 __cfqg = rb_entry_cfqg(n);
840 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
841 } else
842 cfqg->vdisktime = st->min_vdisktime;
843
844 __cfq_group_service_tree_add(st, cfqg);
845 cfqg->on_st = true;
58ff82f3
VG
846 cfqd->nr_groups++;
847 st->total_weight += cfqg->weight;
1fa8f6d6
VG
848}
849
850static void
851cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
852{
853 struct cfq_rb_root *st = &cfqd->grp_service_tree;
854
25bc6b07
VG
855 if (st->active == &cfqg->rb_node)
856 st->active = NULL;
857
1fa8f6d6
VG
858 BUG_ON(cfqg->nr_cfqq < 1);
859 cfqg->nr_cfqq--;
25bc6b07 860
1fa8f6d6
VG
861 /* If there are other cfq queues under this group, don't delete it */
862 if (cfqg->nr_cfqq)
863 return;
864
2868ef7b 865 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1fa8f6d6 866 cfqg->on_st = false;
58ff82f3
VG
867 cfqd->nr_groups--;
868 st->total_weight -= cfqg->weight;
1fa8f6d6
VG
869 if (!RB_EMPTY_NODE(&cfqg->rb_node))
870 cfq_rb_erase(&cfqg->rb_node, st);
dae739eb 871 cfqg->saved_workload_slice = 0;
22084190 872 blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
dae739eb
VG
873}
874
875static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
876{
f75edf2d 877 unsigned int slice_used;
dae739eb
VG
878
879 /*
880 * Queue got expired before even a single request completed or
881 * got expired immediately after first request completion.
882 */
883 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
884 /*
885 * Also charge the seek time incurred to the group, otherwise
886 * if there are mutiple queues in the group, each can dispatch
887 * a single request on seeky media and cause lots of seek time
888 * and group will never know it.
889 */
890 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
891 1);
892 } else {
893 slice_used = jiffies - cfqq->slice_start;
f75edf2d
VG
894 if (slice_used > cfqq->allocated_slice)
895 slice_used = cfqq->allocated_slice;
dae739eb
VG
896 }
897
22084190
VG
898 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
899 cfqq->nr_sectors);
dae739eb
VG
900 return slice_used;
901}
902
903static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
904 struct cfq_queue *cfqq)
905{
906 struct cfq_rb_root *st = &cfqd->grp_service_tree;
f26bd1f0
VG
907 unsigned int used_sl, charge_sl;
908 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
909 - cfqg->service_tree_idle.count;
910
911 BUG_ON(nr_sync < 0);
912 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
dae739eb 913
f26bd1f0
VG
914 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
915 charge_sl = cfqq->allocated_slice;
dae739eb
VG
916
917 /* Can't update vdisktime while group is on service tree */
918 cfq_rb_erase(&cfqg->rb_node, st);
f26bd1f0 919 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
dae739eb
VG
920 __cfq_group_service_tree_add(st, cfqg);
921
922 /* This group is being expired. Save the context */
923 if (time_after(cfqd->workload_expires, jiffies)) {
924 cfqg->saved_workload_slice = cfqd->workload_expires
925 - jiffies;
926 cfqg->saved_workload = cfqd->serving_type;
927 cfqg->saved_serving_prio = cfqd->serving_prio;
928 } else
929 cfqg->saved_workload_slice = 0;
2868ef7b
VG
930
931 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
932 st->min_vdisktime);
22084190
VG
933 blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
934 cfqq->nr_sectors);
1fa8f6d6
VG
935}
936
25fb5169
VG
937#ifdef CONFIG_CFQ_GROUP_IOSCHED
938static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
939{
940 if (blkg)
941 return container_of(blkg, struct cfq_group, blkg);
942 return NULL;
943}
944
f8d461d6
VG
945void
946cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
947{
948 cfqg_of_blkg(blkg)->weight = weight;
949}
950
25fb5169
VG
951static struct cfq_group *
952cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
953{
954 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
955 struct cfq_group *cfqg = NULL;
956 void *key = cfqd;
957 int i, j;
958 struct cfq_rb_root *st;
22084190
VG
959 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
960 unsigned int major, minor;
25fb5169
VG
961
962 /* Do we need to take this reference */
963 if (!css_tryget(&blkcg->css))
964 return NULL;;
965
966 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
967 if (cfqg || !create)
968 goto done;
969
970 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
971 if (!cfqg)
972 goto done;
973
974 cfqg->weight = blkcg->weight;
975 for_each_cfqg_st(cfqg, i, j, st)
976 *st = CFQ_RB_ROOT;
977 RB_CLEAR_NODE(&cfqg->rb_node);
978
b1c35769
VG
979 /*
980 * Take the initial reference that will be released on destroy
981 * This can be thought of a joint reference by cgroup and
982 * elevator which will be dropped by either elevator exit
983 * or cgroup deletion path depending on who is exiting first.
984 */
985 atomic_set(&cfqg->ref, 1);
986
25fb5169 987 /* Add group onto cgroup list */
22084190
VG
988 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
989 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
990 MKDEV(major, minor));
25fb5169
VG
991
992 /* Add group on cfqd list */
993 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
994
995done:
996 css_put(&blkcg->css);
997 return cfqg;
998}
999
1000/*
1001 * Search for the cfq group current task belongs to. If create = 1, then also
1002 * create the cfq group if it does not exist. request_queue lock must be held.
1003 */
1004static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1005{
1006 struct cgroup *cgroup;
1007 struct cfq_group *cfqg = NULL;
1008
1009 rcu_read_lock();
1010 cgroup = task_cgroup(current, blkio_subsys_id);
1011 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1012 if (!cfqg && create)
1013 cfqg = &cfqd->root_group;
1014 rcu_read_unlock();
1015 return cfqg;
1016}
1017
1018static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1019{
1020 /* Currently, all async queues are mapped to root group */
1021 if (!cfq_cfqq_sync(cfqq))
1022 cfqg = &cfqq->cfqd->root_group;
1023
1024 cfqq->cfqg = cfqg;
b1c35769
VG
1025 /* cfqq reference on cfqg */
1026 atomic_inc(&cfqq->cfqg->ref);
1027}
1028
1029static void cfq_put_cfqg(struct cfq_group *cfqg)
1030{
1031 struct cfq_rb_root *st;
1032 int i, j;
1033
1034 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1035 if (!atomic_dec_and_test(&cfqg->ref))
1036 return;
1037 for_each_cfqg_st(cfqg, i, j, st)
1038 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1039 kfree(cfqg);
1040}
1041
1042static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1043{
1044 /* Something wrong if we are trying to remove same group twice */
1045 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1046
1047 hlist_del_init(&cfqg->cfqd_node);
1048
1049 /*
1050 * Put the reference taken at the time of creation so that when all
1051 * queues are gone, group can be destroyed.
1052 */
1053 cfq_put_cfqg(cfqg);
1054}
1055
1056static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1057{
1058 struct hlist_node *pos, *n;
1059 struct cfq_group *cfqg;
1060
1061 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1062 /*
1063 * If cgroup removal path got to blk_group first and removed
1064 * it from cgroup list, then it will take care of destroying
1065 * cfqg also.
1066 */
1067 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1068 cfq_destroy_cfqg(cfqd, cfqg);
1069 }
25fb5169 1070}
b1c35769
VG
1071
1072/*
1073 * Blk cgroup controller notification saying that blkio_group object is being
1074 * delinked as associated cgroup object is going away. That also means that
1075 * no new IO will come in this group. So get rid of this group as soon as
1076 * any pending IO in the group is finished.
1077 *
1078 * This function is called under rcu_read_lock(). key is the rcu protected
1079 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1080 * read lock.
1081 *
1082 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1083 * it should not be NULL as even if elevator was exiting, cgroup deltion
1084 * path got to it first.
1085 */
1086void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1087{
1088 unsigned long flags;
1089 struct cfq_data *cfqd = key;
1090
1091 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1092 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1093 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1094}
1095
25fb5169
VG
1096#else /* GROUP_IOSCHED */
1097static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1098{
1099 return &cfqd->root_group;
1100}
1101static inline void
1102cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1103 cfqq->cfqg = cfqg;
1104}
1105
b1c35769
VG
1106static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1107static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1108
25fb5169
VG
1109#endif /* GROUP_IOSCHED */
1110
498d3aa2 1111/*
c0324a02 1112 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
1113 * requests waiting to be processed. It is sorted in the order that
1114 * we will service the queues.
1115 */
a36e71f9 1116static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1117 bool add_front)
d9e7620e 1118{
0871714e
JA
1119 struct rb_node **p, *parent;
1120 struct cfq_queue *__cfqq;
d9e7620e 1121 unsigned long rb_key;
c0324a02 1122 struct cfq_rb_root *service_tree;
498d3aa2 1123 int left;
dae739eb 1124 int new_cfqq = 1;
ae30c286
VG
1125 int group_changed = 0;
1126
1127#ifdef CONFIG_CFQ_GROUP_IOSCHED
1128 if (!cfqd->cfq_group_isolation
1129 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1130 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1131 /* Move this cfq to root group */
1132 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1133 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1134 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1135 cfqq->orig_cfqg = cfqq->cfqg;
1136 cfqq->cfqg = &cfqd->root_group;
1137 atomic_inc(&cfqd->root_group.ref);
1138 group_changed = 1;
1139 } else if (!cfqd->cfq_group_isolation
1140 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1141 /* cfqq is sequential now needs to go to its original group */
1142 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1143 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1144 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1145 cfq_put_cfqg(cfqq->cfqg);
1146 cfqq->cfqg = cfqq->orig_cfqg;
1147 cfqq->orig_cfqg = NULL;
1148 group_changed = 1;
1149 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1150 }
1151#endif
d9e7620e 1152
cdb16e8f
VG
1153 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1154 cfqq_type(cfqq), cfqd);
0871714e
JA
1155 if (cfq_class_idle(cfqq)) {
1156 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 1157 parent = rb_last(&service_tree->rb);
0871714e
JA
1158 if (parent && parent != &cfqq->rb_node) {
1159 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1160 rb_key += __cfqq->rb_key;
1161 } else
1162 rb_key += jiffies;
1163 } else if (!add_front) {
b9c8946b
JA
1164 /*
1165 * Get our rb key offset. Subtract any residual slice
1166 * value carried from last service. A negative resid
1167 * count indicates slice overrun, and this should position
1168 * the next service time further away in the tree.
1169 */
edd75ffd 1170 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 1171 rb_key -= cfqq->slice_resid;
edd75ffd 1172 cfqq->slice_resid = 0;
48e025e6
CZ
1173 } else {
1174 rb_key = -HZ;
aa6f6a3d 1175 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
1176 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1177 }
1da177e4 1178
d9e7620e 1179 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 1180 new_cfqq = 0;
99f9628a 1181 /*
d9e7620e 1182 * same position, nothing more to do
99f9628a 1183 */
c0324a02
CZ
1184 if (rb_key == cfqq->rb_key &&
1185 cfqq->service_tree == service_tree)
d9e7620e 1186 return;
1da177e4 1187
aa6f6a3d
CZ
1188 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1189 cfqq->service_tree = NULL;
1da177e4 1190 }
d9e7620e 1191
498d3aa2 1192 left = 1;
0871714e 1193 parent = NULL;
aa6f6a3d
CZ
1194 cfqq->service_tree = service_tree;
1195 p = &service_tree->rb.rb_node;
d9e7620e 1196 while (*p) {
67060e37 1197 struct rb_node **n;
cc09e299 1198
d9e7620e
JA
1199 parent = *p;
1200 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1201
0c534e0a 1202 /*
c0324a02 1203 * sort by key, that represents service time.
0c534e0a 1204 */
c0324a02 1205 if (time_before(rb_key, __cfqq->rb_key))
67060e37 1206 n = &(*p)->rb_left;
c0324a02 1207 else {
67060e37 1208 n = &(*p)->rb_right;
cc09e299 1209 left = 0;
c0324a02 1210 }
67060e37
JA
1211
1212 p = n;
d9e7620e
JA
1213 }
1214
cc09e299 1215 if (left)
aa6f6a3d 1216 service_tree->left = &cfqq->rb_node;
cc09e299 1217
d9e7620e
JA
1218 cfqq->rb_key = rb_key;
1219 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
1220 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1221 service_tree->count++;
ae30c286 1222 if ((add_front || !new_cfqq) && !group_changed)
dae739eb 1223 return;
1fa8f6d6 1224 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1da177e4
LT
1225}
1226
a36e71f9 1227static struct cfq_queue *
f2d1f0ae
JA
1228cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1229 sector_t sector, struct rb_node **ret_parent,
1230 struct rb_node ***rb_link)
a36e71f9 1231{
a36e71f9
JA
1232 struct rb_node **p, *parent;
1233 struct cfq_queue *cfqq = NULL;
1234
1235 parent = NULL;
1236 p = &root->rb_node;
1237 while (*p) {
1238 struct rb_node **n;
1239
1240 parent = *p;
1241 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1242
1243 /*
1244 * Sort strictly based on sector. Smallest to the left,
1245 * largest to the right.
1246 */
2e46e8b2 1247 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 1248 n = &(*p)->rb_right;
2e46e8b2 1249 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
1250 n = &(*p)->rb_left;
1251 else
1252 break;
1253 p = n;
3ac6c9f8 1254 cfqq = NULL;
a36e71f9
JA
1255 }
1256
1257 *ret_parent = parent;
1258 if (rb_link)
1259 *rb_link = p;
3ac6c9f8 1260 return cfqq;
a36e71f9
JA
1261}
1262
1263static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1264{
a36e71f9
JA
1265 struct rb_node **p, *parent;
1266 struct cfq_queue *__cfqq;
1267
f2d1f0ae
JA
1268 if (cfqq->p_root) {
1269 rb_erase(&cfqq->p_node, cfqq->p_root);
1270 cfqq->p_root = NULL;
1271 }
a36e71f9
JA
1272
1273 if (cfq_class_idle(cfqq))
1274 return;
1275 if (!cfqq->next_rq)
1276 return;
1277
f2d1f0ae 1278 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1279 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1280 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1281 if (!__cfqq) {
1282 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1283 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1284 } else
1285 cfqq->p_root = NULL;
a36e71f9
JA
1286}
1287
498d3aa2
JA
1288/*
1289 * Update cfqq's position in the service tree.
1290 */
edd75ffd 1291static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1292{
6d048f53
JA
1293 /*
1294 * Resorting requires the cfqq to be on the RR list already.
1295 */
a36e71f9 1296 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1297 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1298 cfq_prio_tree_add(cfqd, cfqq);
1299 }
6d048f53
JA
1300}
1301
1da177e4
LT
1302/*
1303 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1304 * the pending list according to last request service
1da177e4 1305 */
febffd61 1306static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1307{
7b679138 1308 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1309 BUG_ON(cfq_cfqq_on_rr(cfqq));
1310 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
1311 cfqd->busy_queues++;
1312
edd75ffd 1313 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1314}
1315
498d3aa2
JA
1316/*
1317 * Called when the cfqq no longer has requests pending, remove it from
1318 * the service tree.
1319 */
febffd61 1320static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1321{
7b679138 1322 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1323 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1324 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1325
aa6f6a3d
CZ
1326 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1327 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1328 cfqq->service_tree = NULL;
1329 }
f2d1f0ae
JA
1330 if (cfqq->p_root) {
1331 rb_erase(&cfqq->p_node, cfqq->p_root);
1332 cfqq->p_root = NULL;
1333 }
d9e7620e 1334
1fa8f6d6 1335 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1da177e4
LT
1336 BUG_ON(!cfqd->busy_queues);
1337 cfqd->busy_queues--;
1338}
1339
1340/*
1341 * rb tree support functions
1342 */
febffd61 1343static void cfq_del_rq_rb(struct request *rq)
1da177e4 1344{
5e705374 1345 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1346 const int sync = rq_is_sync(rq);
1da177e4 1347
b4878f24
JA
1348 BUG_ON(!cfqq->queued[sync]);
1349 cfqq->queued[sync]--;
1da177e4 1350
5e705374 1351 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1352
f04a6424
VG
1353 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1354 /*
1355 * Queue will be deleted from service tree when we actually
1356 * expire it later. Right now just remove it from prio tree
1357 * as it is empty.
1358 */
1359 if (cfqq->p_root) {
1360 rb_erase(&cfqq->p_node, cfqq->p_root);
1361 cfqq->p_root = NULL;
1362 }
1363 }
1da177e4
LT
1364}
1365
5e705374 1366static void cfq_add_rq_rb(struct request *rq)
1da177e4 1367{
5e705374 1368 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1369 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 1370 struct request *__alias, *prev;
1da177e4 1371
5380a101 1372 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
1373
1374 /*
1375 * looks a little odd, but the first insert might return an alias.
1376 * if that happens, put the alias on the dispatch list
1377 */
21183b07 1378 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 1379 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
1380
1381 if (!cfq_cfqq_on_rr(cfqq))
1382 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1383
1384 /*
1385 * check if this request is a better next-serve candidate
1386 */
a36e71f9 1387 prev = cfqq->next_rq;
cf7c25cf 1388 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1389
1390 /*
1391 * adjust priority tree position, if ->next_rq changes
1392 */
1393 if (prev != cfqq->next_rq)
1394 cfq_prio_tree_add(cfqd, cfqq);
1395
5044eed4 1396 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1397}
1398
febffd61 1399static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1400{
5380a101
JA
1401 elv_rb_del(&cfqq->sort_list, rq);
1402 cfqq->queued[rq_is_sync(rq)]--;
5e705374 1403 cfq_add_rq_rb(rq);
1da177e4
LT
1404}
1405
206dc69b
JA
1406static struct request *
1407cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1408{
206dc69b 1409 struct task_struct *tsk = current;
91fac317 1410 struct cfq_io_context *cic;
206dc69b 1411 struct cfq_queue *cfqq;
1da177e4 1412
4ac845a2 1413 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1414 if (!cic)
1415 return NULL;
1416
1417 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1418 if (cfqq) {
1419 sector_t sector = bio->bi_sector + bio_sectors(bio);
1420
21183b07 1421 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1422 }
1da177e4 1423
1da177e4
LT
1424 return NULL;
1425}
1426
165125e1 1427static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1428{
22e2c507 1429 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1430
5ad531db 1431 cfqd->rq_in_driver[rq_is_sync(rq)]++;
7b679138 1432 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
5ad531db 1433 rq_in_driver(cfqd));
25776e35 1434
5b93629b 1435 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1436}
1437
165125e1 1438static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1439{
b4878f24 1440 struct cfq_data *cfqd = q->elevator->elevator_data;
5ad531db 1441 const int sync = rq_is_sync(rq);
b4878f24 1442
5ad531db
JA
1443 WARN_ON(!cfqd->rq_in_driver[sync]);
1444 cfqd->rq_in_driver[sync]--;
7b679138 1445 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
5ad531db 1446 rq_in_driver(cfqd));
1da177e4
LT
1447}
1448
b4878f24 1449static void cfq_remove_request(struct request *rq)
1da177e4 1450{
5e705374 1451 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1452
5e705374
JA
1453 if (cfqq->next_rq == rq)
1454 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1455
b4878f24 1456 list_del_init(&rq->queuelist);
5e705374 1457 cfq_del_rq_rb(rq);
374f84ac 1458
45333d5a 1459 cfqq->cfqd->rq_queued--;
374f84ac
JA
1460 if (rq_is_meta(rq)) {
1461 WARN_ON(!cfqq->meta_pending);
1462 cfqq->meta_pending--;
1463 }
1da177e4
LT
1464}
1465
165125e1
JA
1466static int cfq_merge(struct request_queue *q, struct request **req,
1467 struct bio *bio)
1da177e4
LT
1468{
1469 struct cfq_data *cfqd = q->elevator->elevator_data;
1470 struct request *__rq;
1da177e4 1471
206dc69b 1472 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1473 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1474 *req = __rq;
1475 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1476 }
1477
1478 return ELEVATOR_NO_MERGE;
1da177e4
LT
1479}
1480
165125e1 1481static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1482 int type)
1da177e4 1483{
21183b07 1484 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1485 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1486
5e705374 1487 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1488 }
1da177e4
LT
1489}
1490
1491static void
165125e1 1492cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1493 struct request *next)
1494{
cf7c25cf 1495 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
1496 /*
1497 * reposition in fifo if next is older than rq
1498 */
1499 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1500 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1501 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1502 rq_set_fifo_time(rq, rq_fifo_time(next));
1503 }
22e2c507 1504
cf7c25cf
CZ
1505 if (cfqq->next_rq == next)
1506 cfqq->next_rq = rq;
b4878f24 1507 cfq_remove_request(next);
22e2c507
JA
1508}
1509
165125e1 1510static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1511 struct bio *bio)
1512{
1513 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1514 struct cfq_io_context *cic;
da775265 1515 struct cfq_queue *cfqq;
da775265 1516
8682e1f1
VG
1517 /* Deny merge if bio and rq don't belong to same cfq group */
1518 if ((RQ_CFQQ(rq))->cfqg != cfq_get_cfqg(cfqd, 0))
1519 return false;
da775265 1520 /*
ec8acb69 1521 * Disallow merge of a sync bio into an async request.
da775265 1522 */
91fac317 1523 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1524 return false;
da775265
JA
1525
1526 /*
719d3402
JA
1527 * Lookup the cfqq that this bio will be queued with. Allow
1528 * merge only if rq is queued there.
da775265 1529 */
4ac845a2 1530 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1531 if (!cic)
a6151c3a 1532 return false;
719d3402 1533
91fac317 1534 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1535 return cfqq == RQ_CFQQ(rq);
da775265
JA
1536}
1537
febffd61
JA
1538static void __cfq_set_active_queue(struct cfq_data *cfqd,
1539 struct cfq_queue *cfqq)
22e2c507
JA
1540{
1541 if (cfqq) {
7b679138 1542 cfq_log_cfqq(cfqd, cfqq, "set_active");
dae739eb
VG
1543 cfqq->slice_start = 0;
1544 cfqq->dispatch_start = jiffies;
f75edf2d 1545 cfqq->allocated_slice = 0;
22e2c507 1546 cfqq->slice_end = 0;
2f5cb738 1547 cfqq->slice_dispatch = 0;
22084190 1548 cfqq->nr_sectors = 0;
2f5cb738 1549
2f5cb738 1550 cfq_clear_cfqq_wait_request(cfqq);
b029195d 1551 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
1552 cfq_clear_cfqq_must_alloc_slice(cfqq);
1553 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 1554 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
1555
1556 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
1557 }
1558
1559 cfqd->active_queue = cfqq;
1560}
1561
7b14e3b5
JA
1562/*
1563 * current cfqq expired its slice (or was too idle), select new one
1564 */
1565static void
1566__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1567 bool timed_out)
7b14e3b5 1568{
7b679138
JA
1569 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1570
7b14e3b5
JA
1571 if (cfq_cfqq_wait_request(cfqq))
1572 del_timer(&cfqd->idle_slice_timer);
1573
7b14e3b5 1574 cfq_clear_cfqq_wait_request(cfqq);
f75edf2d
VG
1575 cfq_clear_cfqq_wait_busy(cfqq);
1576 cfq_clear_cfqq_wait_busy_done(cfqq);
7b14e3b5
JA
1577
1578 /*
6084cdda 1579 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1580 */
7b679138 1581 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 1582 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1583 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1584 }
7b14e3b5 1585
dae739eb
VG
1586 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1587
f04a6424
VG
1588 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1589 cfq_del_cfqq_rr(cfqd, cfqq);
1590
edd75ffd 1591 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1592
1593 if (cfqq == cfqd->active_queue)
1594 cfqd->active_queue = NULL;
1595
dae739eb
VG
1596 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1597 cfqd->grp_service_tree.active = NULL;
1598
7b14e3b5
JA
1599 if (cfqd->active_cic) {
1600 put_io_context(cfqd->active_cic->ioc);
1601 cfqd->active_cic = NULL;
1602 }
7b14e3b5
JA
1603}
1604
a6151c3a 1605static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1606{
1607 struct cfq_queue *cfqq = cfqd->active_queue;
1608
1609 if (cfqq)
6084cdda 1610 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1611}
1612
498d3aa2
JA
1613/*
1614 * Get next queue for service. Unless we have a queue preemption,
1615 * we'll simply select the first cfqq in the service tree.
1616 */
6d048f53 1617static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1618{
c0324a02 1619 struct cfq_rb_root *service_tree =
cdb16e8f
VG
1620 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1621 cfqd->serving_type, cfqd);
d9e7620e 1622
f04a6424
VG
1623 if (!cfqd->rq_queued)
1624 return NULL;
1625
1fa8f6d6
VG
1626 /* There is nothing to dispatch */
1627 if (!service_tree)
1628 return NULL;
c0324a02
CZ
1629 if (RB_EMPTY_ROOT(&service_tree->rb))
1630 return NULL;
1631 return cfq_rb_first(service_tree);
6d048f53
JA
1632}
1633
f04a6424
VG
1634static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1635{
25fb5169 1636 struct cfq_group *cfqg;
f04a6424
VG
1637 struct cfq_queue *cfqq;
1638 int i, j;
1639 struct cfq_rb_root *st;
1640
1641 if (!cfqd->rq_queued)
1642 return NULL;
1643
25fb5169
VG
1644 cfqg = cfq_get_next_cfqg(cfqd);
1645 if (!cfqg)
1646 return NULL;
1647
f04a6424
VG
1648 for_each_cfqg_st(cfqg, i, j, st)
1649 if ((cfqq = cfq_rb_first(st)) != NULL)
1650 return cfqq;
1651 return NULL;
1652}
1653
498d3aa2
JA
1654/*
1655 * Get and set a new active queue for service.
1656 */
a36e71f9
JA
1657static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1658 struct cfq_queue *cfqq)
6d048f53 1659{
e00ef799 1660 if (!cfqq)
a36e71f9 1661 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1662
22e2c507 1663 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1664 return cfqq;
22e2c507
JA
1665}
1666
d9e7620e
JA
1667static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1668 struct request *rq)
1669{
83096ebf
TH
1670 if (blk_rq_pos(rq) >= cfqd->last_position)
1671 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1672 else
83096ebf 1673 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1674}
1675
b2c18e1e
JM
1676#define CFQQ_SEEK_THR 8 * 1024
1677#define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
04dc6e71 1678
b2c18e1e
JM
1679static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1680 struct request *rq)
6d048f53 1681{
b2c18e1e 1682 sector_t sdist = cfqq->seek_mean;
6d048f53 1683
b2c18e1e
JM
1684 if (!sample_valid(cfqq->seek_samples))
1685 sdist = CFQQ_SEEK_THR;
6d048f53 1686
04dc6e71 1687 return cfq_dist_from_last(cfqd, rq) <= sdist;
6d048f53
JA
1688}
1689
a36e71f9
JA
1690static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1691 struct cfq_queue *cur_cfqq)
1692{
f2d1f0ae 1693 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1694 struct rb_node *parent, *node;
1695 struct cfq_queue *__cfqq;
1696 sector_t sector = cfqd->last_position;
1697
1698 if (RB_EMPTY_ROOT(root))
1699 return NULL;
1700
1701 /*
1702 * First, if we find a request starting at the end of the last
1703 * request, choose it.
1704 */
f2d1f0ae 1705 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1706 if (__cfqq)
1707 return __cfqq;
1708
1709 /*
1710 * If the exact sector wasn't found, the parent of the NULL leaf
1711 * will contain the closest sector.
1712 */
1713 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
b2c18e1e 1714 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1715 return __cfqq;
1716
2e46e8b2 1717 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1718 node = rb_next(&__cfqq->p_node);
1719 else
1720 node = rb_prev(&__cfqq->p_node);
1721 if (!node)
1722 return NULL;
1723
1724 __cfqq = rb_entry(node, struct cfq_queue, p_node);
b2c18e1e 1725 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1726 return __cfqq;
1727
1728 return NULL;
1729}
1730
1731/*
1732 * cfqd - obvious
1733 * cur_cfqq - passed in so that we don't decide that the current queue is
1734 * closely cooperating with itself.
1735 *
1736 * So, basically we're assuming that that cur_cfqq has dispatched at least
1737 * one request, and that cfqd->last_position reflects a position on the disk
1738 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1739 * assumption.
1740 */
1741static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1742 struct cfq_queue *cur_cfqq)
6d048f53 1743{
a36e71f9
JA
1744 struct cfq_queue *cfqq;
1745
e6c5bc73
JM
1746 if (!cfq_cfqq_sync(cur_cfqq))
1747 return NULL;
1748 if (CFQQ_SEEKY(cur_cfqq))
1749 return NULL;
1750
6d048f53 1751 /*
d9e7620e
JA
1752 * We should notice if some of the queues are cooperating, eg
1753 * working closely on the same area of the disk. In that case,
1754 * we can group them together and don't waste time idling.
6d048f53 1755 */
a36e71f9
JA
1756 cfqq = cfqq_close(cfqd, cur_cfqq);
1757 if (!cfqq)
1758 return NULL;
1759
8682e1f1
VG
1760 /* If new queue belongs to different cfq_group, don't choose it */
1761 if (cur_cfqq->cfqg != cfqq->cfqg)
1762 return NULL;
1763
df5fe3e8
JM
1764 /*
1765 * It only makes sense to merge sync queues.
1766 */
1767 if (!cfq_cfqq_sync(cfqq))
1768 return NULL;
e6c5bc73
JM
1769 if (CFQQ_SEEKY(cfqq))
1770 return NULL;
df5fe3e8 1771
c0324a02
CZ
1772 /*
1773 * Do not merge queues of different priority classes
1774 */
1775 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1776 return NULL;
1777
a36e71f9 1778 return cfqq;
6d048f53
JA
1779}
1780
a6d44e98
CZ
1781/*
1782 * Determine whether we should enforce idle window for this queue.
1783 */
1784
1785static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1786{
1787 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1788 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1789
f04a6424
VG
1790 BUG_ON(!service_tree);
1791 BUG_ON(!service_tree->count);
1792
a6d44e98
CZ
1793 /* We never do for idle class queues. */
1794 if (prio == IDLE_WORKLOAD)
1795 return false;
1796
1797 /* We do for queues that were marked with idle window flag. */
1798 if (cfq_cfqq_idle_window(cfqq))
1799 return true;
1800
1801 /*
1802 * Otherwise, we do only if they are the last ones
1803 * in their service tree.
1804 */
f04a6424 1805 return service_tree->count == 1;
a6d44e98
CZ
1806}
1807
6d048f53 1808static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1809{
1792669c 1810 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1811 struct cfq_io_context *cic;
7b14e3b5
JA
1812 unsigned long sl;
1813
a68bbddb 1814 /*
f7d7b7a7
JA
1815 * SSD device without seek penalty, disable idling. But only do so
1816 * for devices that support queuing, otherwise we still have a problem
1817 * with sync vs async workloads.
a68bbddb 1818 */
f7d7b7a7 1819 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1820 return;
1821
dd67d051 1822 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1823 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1824
1825 /*
1826 * idle is disabled, either manually or by past process history
1827 */
a6d44e98 1828 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
6d048f53
JA
1829 return;
1830
7b679138 1831 /*
8e550632 1832 * still active requests from this queue, don't idle
7b679138 1833 */
8e550632 1834 if (cfqq->dispatched)
7b679138
JA
1835 return;
1836
22e2c507
JA
1837 /*
1838 * task has exited, don't wait
1839 */
206dc69b 1840 cic = cfqd->active_cic;
66dac98e 1841 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1842 return;
1843
355b659c
CZ
1844 /*
1845 * If our average think time is larger than the remaining time
1846 * slice, then don't idle. This avoids overrunning the allotted
1847 * time slice.
1848 */
1849 if (sample_valid(cic->ttime_samples) &&
1850 (cfqq->slice_end - jiffies < cic->ttime_mean))
1851 return;
1852
3b18152c 1853 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1854
6d048f53 1855 sl = cfqd->cfq_slice_idle;
206dc69b 1856
7b14e3b5 1857 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1858 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1859}
1860
498d3aa2
JA
1861/*
1862 * Move request from internal lists to the request queue dispatch list.
1863 */
165125e1 1864static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1865{
3ed9a296 1866 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1867 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1868
7b679138
JA
1869 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1870
06d21886 1871 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1872 cfq_remove_request(rq);
6d048f53 1873 cfqq->dispatched++;
5380a101 1874 elv_dispatch_sort(q, rq);
3ed9a296
JA
1875
1876 if (cfq_cfqq_sync(cfqq))
1877 cfqd->sync_flight++;
22084190 1878 cfqq->nr_sectors += blk_rq_sectors(rq);
1da177e4
LT
1879}
1880
1881/*
1882 * return expired entry, or NULL to just start from scratch in rbtree
1883 */
febffd61 1884static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1885{
30996f40 1886 struct request *rq = NULL;
1da177e4 1887
3b18152c 1888 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1889 return NULL;
cb887411
JA
1890
1891 cfq_mark_cfqq_fifo_expire(cfqq);
1892
89850f7e
JA
1893 if (list_empty(&cfqq->fifo))
1894 return NULL;
1da177e4 1895
89850f7e 1896 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1897 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1898 rq = NULL;
1da177e4 1899
30996f40 1900 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1901 return rq;
1da177e4
LT
1902}
1903
22e2c507
JA
1904static inline int
1905cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1906{
1907 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1908
22e2c507 1909 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1910
22e2c507 1911 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1912}
1913
df5fe3e8
JM
1914/*
1915 * Must be called with the queue_lock held.
1916 */
1917static int cfqq_process_refs(struct cfq_queue *cfqq)
1918{
1919 int process_refs, io_refs;
1920
1921 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1922 process_refs = atomic_read(&cfqq->ref) - io_refs;
1923 BUG_ON(process_refs < 0);
1924 return process_refs;
1925}
1926
1927static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1928{
e6c5bc73 1929 int process_refs, new_process_refs;
df5fe3e8
JM
1930 struct cfq_queue *__cfqq;
1931
1932 /* Avoid a circular list and skip interim queue merges */
1933 while ((__cfqq = new_cfqq->new_cfqq)) {
1934 if (__cfqq == cfqq)
1935 return;
1936 new_cfqq = __cfqq;
1937 }
1938
1939 process_refs = cfqq_process_refs(cfqq);
1940 /*
1941 * If the process for the cfqq has gone away, there is no
1942 * sense in merging the queues.
1943 */
1944 if (process_refs == 0)
1945 return;
1946
e6c5bc73
JM
1947 /*
1948 * Merge in the direction of the lesser amount of work.
1949 */
1950 new_process_refs = cfqq_process_refs(new_cfqq);
1951 if (new_process_refs >= process_refs) {
1952 cfqq->new_cfqq = new_cfqq;
1953 atomic_add(process_refs, &new_cfqq->ref);
1954 } else {
1955 new_cfqq->new_cfqq = cfqq;
1956 atomic_add(new_process_refs, &cfqq->ref);
1957 }
df5fe3e8
JM
1958}
1959
cdb16e8f
VG
1960static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1961 struct cfq_group *cfqg, enum wl_prio_t prio,
1962 bool prio_changed)
718eee05
CZ
1963{
1964 struct cfq_queue *queue;
1965 int i;
1966 bool key_valid = false;
1967 unsigned long lowest_key = 0;
1968 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1969
1970 if (prio_changed) {
1971 /*
1972 * When priorities switched, we prefer starting
1973 * from SYNC_NOIDLE (first choice), or just SYNC
1974 * over ASYNC
1975 */
cdb16e8f 1976 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
718eee05
CZ
1977 return cur_best;
1978 cur_best = SYNC_WORKLOAD;
cdb16e8f 1979 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
718eee05
CZ
1980 return cur_best;
1981
1982 return ASYNC_WORKLOAD;
1983 }
1984
1985 for (i = 0; i < 3; ++i) {
1986 /* otherwise, select the one with lowest rb_key */
cdb16e8f 1987 queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
718eee05
CZ
1988 if (queue &&
1989 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1990 lowest_key = queue->rb_key;
1991 cur_best = i;
1992 key_valid = true;
1993 }
1994 }
1995
1996 return cur_best;
1997}
1998
cdb16e8f 1999static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05
CZ
2000{
2001 enum wl_prio_t previous_prio = cfqd->serving_prio;
2002 bool prio_changed;
2003 unsigned slice;
2004 unsigned count;
cdb16e8f 2005 struct cfq_rb_root *st;
58ff82f3 2006 unsigned group_slice;
718eee05 2007
1fa8f6d6
VG
2008 if (!cfqg) {
2009 cfqd->serving_prio = IDLE_WORKLOAD;
2010 cfqd->workload_expires = jiffies + 1;
2011 return;
2012 }
2013
718eee05 2014 /* Choose next priority. RT > BE > IDLE */
58ff82f3 2015 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 2016 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 2017 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
2018 cfqd->serving_prio = BE_WORKLOAD;
2019 else {
2020 cfqd->serving_prio = IDLE_WORKLOAD;
2021 cfqd->workload_expires = jiffies + 1;
2022 return;
2023 }
2024
2025 /*
2026 * For RT and BE, we have to choose also the type
2027 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2028 * expiration time
2029 */
2030 prio_changed = (cfqd->serving_prio != previous_prio);
cdb16e8f
VG
2031 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
2032 cfqd);
2033 count = st->count;
718eee05
CZ
2034
2035 /*
2036 * If priority didn't change, check workload expiration,
2037 * and that we still have other queues ready
2038 */
2039 if (!prio_changed && count &&
2040 !time_after(jiffies, cfqd->workload_expires))
2041 return;
2042
2043 /* otherwise select new workload type */
2044 cfqd->serving_type =
cdb16e8f
VG
2045 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
2046 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
2047 cfqd);
2048 count = st->count;
718eee05
CZ
2049
2050 /*
2051 * the workload slice is computed as a fraction of target latency
2052 * proportional to the number of queues in that workload, over
2053 * all the queues in the same priority class
2054 */
58ff82f3
VG
2055 group_slice = cfq_group_slice(cfqd, cfqg);
2056
2057 slice = group_slice * count /
2058 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2059 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05 2060
f26bd1f0
VG
2061 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2062 unsigned int tmp;
2063
2064 /*
2065 * Async queues are currently system wide. Just taking
2066 * proportion of queues with-in same group will lead to higher
2067 * async ratio system wide as generally root group is going
2068 * to have higher weight. A more accurate thing would be to
2069 * calculate system wide asnc/sync ratio.
2070 */
2071 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2072 tmp = tmp/cfqd->busy_queues;
2073 slice = min_t(unsigned, slice, tmp);
2074
718eee05
CZ
2075 /* async workload slice is scaled down according to
2076 * the sync/async slice ratio. */
2077 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
f26bd1f0 2078 } else
718eee05
CZ
2079 /* sync workload slice is at least 2 * cfq_slice_idle */
2080 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2081
2082 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2083 cfqd->workload_expires = jiffies + slice;
8e550632 2084 cfqd->noidle_tree_requires_idle = false;
718eee05
CZ
2085}
2086
1fa8f6d6
VG
2087static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2088{
2089 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 2090 struct cfq_group *cfqg;
1fa8f6d6
VG
2091
2092 if (RB_EMPTY_ROOT(&st->rb))
2093 return NULL;
25bc6b07
VG
2094 cfqg = cfq_rb_first_group(st);
2095 st->active = &cfqg->rb_node;
2096 update_min_vdisktime(st);
2097 return cfqg;
1fa8f6d6
VG
2098}
2099
cdb16e8f
VG
2100static void cfq_choose_cfqg(struct cfq_data *cfqd)
2101{
1fa8f6d6
VG
2102 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2103
2104 cfqd->serving_group = cfqg;
dae739eb
VG
2105
2106 /* Restore the workload type data */
2107 if (cfqg->saved_workload_slice) {
2108 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2109 cfqd->serving_type = cfqg->saved_workload;
2110 cfqd->serving_prio = cfqg->saved_serving_prio;
2111 }
1fa8f6d6 2112 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
2113}
2114
22e2c507 2115/*
498d3aa2
JA
2116 * Select a queue for service. If we have a current active queue,
2117 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 2118 */
1b5ed5e1 2119static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 2120{
a36e71f9 2121 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 2122
22e2c507
JA
2123 cfqq = cfqd->active_queue;
2124 if (!cfqq)
2125 goto new_queue;
1da177e4 2126
f04a6424
VG
2127 if (!cfqd->rq_queued)
2128 return NULL;
22e2c507 2129 /*
6d048f53 2130 * The active queue has run out of time, expire it and select new.
22e2c507 2131 */
f75edf2d
VG
2132 if ((cfq_slice_used(cfqq) || cfq_cfqq_wait_busy_done(cfqq))
2133 && !cfq_cfqq_must_dispatch(cfqq))
3b18152c 2134 goto expire;
1da177e4 2135
22e2c507 2136 /*
6d048f53
JA
2137 * The active queue has requests and isn't expired, allow it to
2138 * dispatch.
22e2c507 2139 */
dd67d051 2140 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2141 goto keep_queue;
6d048f53 2142
a36e71f9
JA
2143 /*
2144 * If another queue has a request waiting within our mean seek
2145 * distance, let it run. The expire code will check for close
2146 * cooperators and put the close queue at the front of the service
df5fe3e8 2147 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 2148 */
b3b6d040 2149 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
2150 if (new_cfqq) {
2151 if (!cfqq->new_cfqq)
2152 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 2153 goto expire;
df5fe3e8 2154 }
a36e71f9 2155
6d048f53
JA
2156 /*
2157 * No requests pending. If the active queue still has requests in
2158 * flight or is idling for a new request, allow either of these
2159 * conditions to happen (or time out) before selecting a new queue.
2160 */
cc197479 2161 if (timer_pending(&cfqd->idle_slice_timer) ||
a6d44e98 2162 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
caaa5f9f
JA
2163 cfqq = NULL;
2164 goto keep_queue;
22e2c507
JA
2165 }
2166
3b18152c 2167expire:
6084cdda 2168 cfq_slice_expired(cfqd, 0);
3b18152c 2169new_queue:
718eee05
CZ
2170 /*
2171 * Current queue expired. Check if we have to switch to a new
2172 * service tree
2173 */
2174 if (!new_cfqq)
cdb16e8f 2175 cfq_choose_cfqg(cfqd);
718eee05 2176
a36e71f9 2177 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 2178keep_queue:
3b18152c 2179 return cfqq;
22e2c507
JA
2180}
2181
febffd61 2182static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
2183{
2184 int dispatched = 0;
2185
2186 while (cfqq->next_rq) {
2187 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2188 dispatched++;
2189 }
2190
2191 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
2192
2193 /* By default cfqq is not expired if it is empty. Do it explicitly */
2194 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
2195 return dispatched;
2196}
2197
498d3aa2
JA
2198/*
2199 * Drain our current requests. Used for barriers and when switching
2200 * io schedulers on-the-fly.
2201 */
d9e7620e 2202static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 2203{
0871714e 2204 struct cfq_queue *cfqq;
d9e7620e 2205 int dispatched = 0;
cdb16e8f 2206
f04a6424
VG
2207 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2208 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 2209
6084cdda 2210 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
2211 BUG_ON(cfqd->busy_queues);
2212
6923715a 2213 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
2214 return dispatched;
2215}
2216
0b182d61 2217static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 2218{
2f5cb738 2219 unsigned int max_dispatch;
22e2c507 2220
5ad531db
JA
2221 /*
2222 * Drain async requests before we start sync IO
2223 */
a6d44e98 2224 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
0b182d61 2225 return false;
5ad531db 2226
2f5cb738
JA
2227 /*
2228 * If this is an async queue and we have sync IO in flight, let it wait
2229 */
2230 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
0b182d61 2231 return false;
2f5cb738
JA
2232
2233 max_dispatch = cfqd->cfq_quantum;
2234 if (cfq_class_idle(cfqq))
2235 max_dispatch = 1;
b4878f24 2236
2f5cb738
JA
2237 /*
2238 * Does this cfqq already have too much IO in flight?
2239 */
2240 if (cfqq->dispatched >= max_dispatch) {
2241 /*
2242 * idle queue must always only have a single IO in flight
2243 */
3ed9a296 2244 if (cfq_class_idle(cfqq))
0b182d61 2245 return false;
3ed9a296 2246
2f5cb738
JA
2247 /*
2248 * We have other queues, don't allow more IO from this one
2249 */
2250 if (cfqd->busy_queues > 1)
0b182d61 2251 return false;
9ede209e 2252
365722bb 2253 /*
474b18cc 2254 * Sole queue user, no limit
365722bb 2255 */
474b18cc 2256 max_dispatch = -1;
8e296755
JA
2257 }
2258
2259 /*
2260 * Async queues must wait a bit before being allowed dispatch.
2261 * We also ramp up the dispatch depth gradually for async IO,
2262 * based on the last sync IO we serviced
2263 */
963b72fc 2264 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
8e296755
JA
2265 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
2266 unsigned int depth;
365722bb 2267
61f0c1dc 2268 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
2269 if (!depth && !cfqq->dispatched)
2270 depth = 1;
8e296755
JA
2271 if (depth < max_dispatch)
2272 max_dispatch = depth;
2f5cb738 2273 }
3ed9a296 2274
0b182d61
JA
2275 /*
2276 * If we're below the current max, allow a dispatch
2277 */
2278 return cfqq->dispatched < max_dispatch;
2279}
2280
2281/*
2282 * Dispatch a request from cfqq, moving them to the request queue
2283 * dispatch list.
2284 */
2285static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2286{
2287 struct request *rq;
2288
2289 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2290
2291 if (!cfq_may_dispatch(cfqd, cfqq))
2292 return false;
2293
2294 /*
2295 * follow expired path, else get first next available
2296 */
2297 rq = cfq_check_fifo(cfqq);
2298 if (!rq)
2299 rq = cfqq->next_rq;
2300
2301 /*
2302 * insert request into driver dispatch list
2303 */
2304 cfq_dispatch_insert(cfqd->queue, rq);
2305
2306 if (!cfqd->active_cic) {
2307 struct cfq_io_context *cic = RQ_CIC(rq);
2308
2309 atomic_long_inc(&cic->ioc->refcount);
2310 cfqd->active_cic = cic;
2311 }
2312
2313 return true;
2314}
2315
2316/*
2317 * Find the cfqq that we need to service and move a request from that to the
2318 * dispatch list
2319 */
2320static int cfq_dispatch_requests(struct request_queue *q, int force)
2321{
2322 struct cfq_data *cfqd = q->elevator->elevator_data;
2323 struct cfq_queue *cfqq;
2324
2325 if (!cfqd->busy_queues)
2326 return 0;
2327
2328 if (unlikely(force))
2329 return cfq_forced_dispatch(cfqd);
2330
2331 cfqq = cfq_select_queue(cfqd);
2332 if (!cfqq)
8e296755
JA
2333 return 0;
2334
2f5cb738 2335 /*
0b182d61 2336 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2337 */
0b182d61
JA
2338 if (!cfq_dispatch_request(cfqd, cfqq))
2339 return 0;
2340
2f5cb738 2341 cfqq->slice_dispatch++;
b029195d 2342 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2343
2f5cb738
JA
2344 /*
2345 * expire an async queue immediately if it has used up its slice. idle
2346 * queue always expire after 1 dispatch round.
2347 */
2348 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2349 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2350 cfq_class_idle(cfqq))) {
2351 cfqq->slice_end = jiffies + 1;
2352 cfq_slice_expired(cfqd, 0);
1da177e4
LT
2353 }
2354
b217a903 2355 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 2356 return 1;
1da177e4
LT
2357}
2358
1da177e4 2359/*
5e705374
JA
2360 * task holds one reference to the queue, dropped when task exits. each rq
2361 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4 2362 *
b1c35769 2363 * Each cfq queue took a reference on the parent group. Drop it now.
1da177e4
LT
2364 * queue lock must be held here.
2365 */
2366static void cfq_put_queue(struct cfq_queue *cfqq)
2367{
22e2c507 2368 struct cfq_data *cfqd = cfqq->cfqd;
b1c35769 2369 struct cfq_group *cfqg;
22e2c507
JA
2370
2371 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
2372
2373 if (!atomic_dec_and_test(&cfqq->ref))
2374 return;
2375
7b679138 2376 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2377 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2378 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
b1c35769 2379 cfqg = cfqq->cfqg;
1da177e4 2380
28f95cbc 2381 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 2382 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2383 cfq_schedule_dispatch(cfqd);
28f95cbc 2384 }
22e2c507 2385
f04a6424 2386 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 2387 kmem_cache_free(cfq_pool, cfqq);
b1c35769 2388 cfq_put_cfqg(cfqg);
ae30c286
VG
2389 if (cfqq->orig_cfqg)
2390 cfq_put_cfqg(cfqq->orig_cfqg);
1da177e4
LT
2391}
2392
d6de8be7
JA
2393/*
2394 * Must always be called with the rcu_read_lock() held
2395 */
07416d29
JA
2396static void
2397__call_for_each_cic(struct io_context *ioc,
2398 void (*func)(struct io_context *, struct cfq_io_context *))
2399{
2400 struct cfq_io_context *cic;
2401 struct hlist_node *n;
2402
2403 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2404 func(ioc, cic);
2405}
2406
4ac845a2 2407/*
34e6bbf2 2408 * Call func for each cic attached to this ioc.
4ac845a2 2409 */
34e6bbf2 2410static void
4ac845a2
JA
2411call_for_each_cic(struct io_context *ioc,
2412 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 2413{
4ac845a2 2414 rcu_read_lock();
07416d29 2415 __call_for_each_cic(ioc, func);
4ac845a2 2416 rcu_read_unlock();
34e6bbf2
FC
2417}
2418
2419static void cfq_cic_free_rcu(struct rcu_head *head)
2420{
2421 struct cfq_io_context *cic;
2422
2423 cic = container_of(head, struct cfq_io_context, rcu_head);
2424
2425 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 2426 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 2427
9a11b4ed
JA
2428 if (ioc_gone) {
2429 /*
2430 * CFQ scheduler is exiting, grab exit lock and check
2431 * the pending io context count. If it hits zero,
2432 * complete ioc_gone and set it back to NULL
2433 */
2434 spin_lock(&ioc_gone_lock);
245b2e70 2435 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
2436 complete(ioc_gone);
2437 ioc_gone = NULL;
2438 }
2439 spin_unlock(&ioc_gone_lock);
2440 }
34e6bbf2 2441}
4ac845a2 2442
34e6bbf2
FC
2443static void cfq_cic_free(struct cfq_io_context *cic)
2444{
2445 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
2446}
2447
2448static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2449{
2450 unsigned long flags;
2451
2452 BUG_ON(!cic->dead_key);
2453
2454 spin_lock_irqsave(&ioc->lock, flags);
2455 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 2456 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2457 spin_unlock_irqrestore(&ioc->lock, flags);
2458
34e6bbf2 2459 cfq_cic_free(cic);
4ac845a2
JA
2460}
2461
d6de8be7
JA
2462/*
2463 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2464 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2465 * and ->trim() which is called with the task lock held
2466 */
4ac845a2
JA
2467static void cfq_free_io_context(struct io_context *ioc)
2468{
4ac845a2 2469 /*
34e6bbf2
FC
2470 * ioc->refcount is zero here, or we are called from elv_unregister(),
2471 * so no more cic's are allowed to be linked into this ioc. So it
2472 * should be ok to iterate over the known list, we will see all cic's
2473 * since no new ones are added.
4ac845a2 2474 */
07416d29 2475 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
2476}
2477
89850f7e 2478static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 2479{
df5fe3e8
JM
2480 struct cfq_queue *__cfqq, *next;
2481
28f95cbc 2482 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 2483 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2484 cfq_schedule_dispatch(cfqd);
28f95cbc 2485 }
22e2c507 2486
df5fe3e8
JM
2487 /*
2488 * If this queue was scheduled to merge with another queue, be
2489 * sure to drop the reference taken on that queue (and others in
2490 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2491 */
2492 __cfqq = cfqq->new_cfqq;
2493 while (__cfqq) {
2494 if (__cfqq == cfqq) {
2495 WARN(1, "cfqq->new_cfqq loop detected\n");
2496 break;
2497 }
2498 next = __cfqq->new_cfqq;
2499 cfq_put_queue(__cfqq);
2500 __cfqq = next;
2501 }
2502
89850f7e
JA
2503 cfq_put_queue(cfqq);
2504}
22e2c507 2505
89850f7e
JA
2506static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2507 struct cfq_io_context *cic)
2508{
4faa3c81
FC
2509 struct io_context *ioc = cic->ioc;
2510
fc46379d 2511 list_del_init(&cic->queue_list);
4ac845a2
JA
2512
2513 /*
2514 * Make sure key == NULL is seen for dead queues
2515 */
fc46379d 2516 smp_wmb();
4ac845a2 2517 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
2518 cic->key = NULL;
2519
4faa3c81
FC
2520 if (ioc->ioc_data == cic)
2521 rcu_assign_pointer(ioc->ioc_data, NULL);
2522
ff6657c6
JA
2523 if (cic->cfqq[BLK_RW_ASYNC]) {
2524 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2525 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2526 }
2527
ff6657c6
JA
2528 if (cic->cfqq[BLK_RW_SYNC]) {
2529 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2530 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2531 }
89850f7e
JA
2532}
2533
4ac845a2
JA
2534static void cfq_exit_single_io_context(struct io_context *ioc,
2535 struct cfq_io_context *cic)
89850f7e
JA
2536{
2537 struct cfq_data *cfqd = cic->key;
2538
89850f7e 2539 if (cfqd) {
165125e1 2540 struct request_queue *q = cfqd->queue;
4ac845a2 2541 unsigned long flags;
89850f7e 2542
4ac845a2 2543 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
2544
2545 /*
2546 * Ensure we get a fresh copy of the ->key to prevent
2547 * race between exiting task and queue
2548 */
2549 smp_read_barrier_depends();
2550 if (cic->key)
2551 __cfq_exit_single_io_context(cfqd, cic);
2552
4ac845a2 2553 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 2554 }
1da177e4
LT
2555}
2556
498d3aa2
JA
2557/*
2558 * The process that ioc belongs to has exited, we need to clean up
2559 * and put the internal structures we have that belongs to that process.
2560 */
e2d74ac0 2561static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 2562{
4ac845a2 2563 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
2564}
2565
22e2c507 2566static struct cfq_io_context *
8267e268 2567cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2568{
b5deef90 2569 struct cfq_io_context *cic;
1da177e4 2570
94f6030c
CL
2571 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2572 cfqd->queue->node);
1da177e4 2573 if (cic) {
22e2c507 2574 cic->last_end_request = jiffies;
553698f9 2575 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 2576 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
2577 cic->dtor = cfq_free_io_context;
2578 cic->exit = cfq_exit_io_context;
245b2e70 2579 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
2580 }
2581
2582 return cic;
2583}
2584
fd0928df 2585static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2586{
2587 struct task_struct *tsk = current;
2588 int ioprio_class;
2589
3b18152c 2590 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2591 return;
2592
fd0928df 2593 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2594 switch (ioprio_class) {
fe094d98
JA
2595 default:
2596 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2597 case IOPRIO_CLASS_NONE:
2598 /*
6d63c275 2599 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2600 */
2601 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2602 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2603 break;
2604 case IOPRIO_CLASS_RT:
2605 cfqq->ioprio = task_ioprio(ioc);
2606 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2607 break;
2608 case IOPRIO_CLASS_BE:
2609 cfqq->ioprio = task_ioprio(ioc);
2610 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2611 break;
2612 case IOPRIO_CLASS_IDLE:
2613 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2614 cfqq->ioprio = 7;
2615 cfq_clear_cfqq_idle_window(cfqq);
2616 break;
22e2c507
JA
2617 }
2618
2619 /*
2620 * keep track of original prio settings in case we have to temporarily
2621 * elevate the priority of this queue
2622 */
2623 cfqq->org_ioprio = cfqq->ioprio;
2624 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 2625 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2626}
2627
febffd61 2628static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2629{
478a82b0
AV
2630 struct cfq_data *cfqd = cic->key;
2631 struct cfq_queue *cfqq;
c1b707d2 2632 unsigned long flags;
35e6077c 2633
caaa5f9f
JA
2634 if (unlikely(!cfqd))
2635 return;
2636
c1b707d2 2637 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2638
ff6657c6 2639 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2640 if (cfqq) {
2641 struct cfq_queue *new_cfqq;
ff6657c6
JA
2642 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2643 GFP_ATOMIC);
caaa5f9f 2644 if (new_cfqq) {
ff6657c6 2645 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2646 cfq_put_queue(cfqq);
2647 }
22e2c507 2648 }
caaa5f9f 2649
ff6657c6 2650 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2651 if (cfqq)
2652 cfq_mark_cfqq_prio_changed(cfqq);
2653
c1b707d2 2654 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2655}
2656
fc46379d 2657static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2658{
4ac845a2 2659 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2660 ioc->ioprio_changed = 0;
22e2c507
JA
2661}
2662
d5036d77 2663static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2664 pid_t pid, bool is_sync)
d5036d77
JA
2665{
2666 RB_CLEAR_NODE(&cfqq->rb_node);
2667 RB_CLEAR_NODE(&cfqq->p_node);
2668 INIT_LIST_HEAD(&cfqq->fifo);
2669
2670 atomic_set(&cfqq->ref, 0);
2671 cfqq->cfqd = cfqd;
2672
2673 cfq_mark_cfqq_prio_changed(cfqq);
2674
2675 if (is_sync) {
2676 if (!cfq_class_idle(cfqq))
2677 cfq_mark_cfqq_idle_window(cfqq);
2678 cfq_mark_cfqq_sync(cfqq);
2679 }
2680 cfqq->pid = pid;
2681}
2682
24610333
VG
2683#ifdef CONFIG_CFQ_GROUP_IOSCHED
2684static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2685{
2686 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2687 struct cfq_data *cfqd = cic->key;
2688 unsigned long flags;
2689 struct request_queue *q;
2690
2691 if (unlikely(!cfqd))
2692 return;
2693
2694 q = cfqd->queue;
2695
2696 spin_lock_irqsave(q->queue_lock, flags);
2697
2698 if (sync_cfqq) {
2699 /*
2700 * Drop reference to sync queue. A new sync queue will be
2701 * assigned in new group upon arrival of a fresh request.
2702 */
2703 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2704 cic_set_cfqq(cic, NULL, 1);
2705 cfq_put_queue(sync_cfqq);
2706 }
2707
2708 spin_unlock_irqrestore(q->queue_lock, flags);
2709}
2710
2711static void cfq_ioc_set_cgroup(struct io_context *ioc)
2712{
2713 call_for_each_cic(ioc, changed_cgroup);
2714 ioc->cgroup_changed = 0;
2715}
2716#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2717
22e2c507 2718static struct cfq_queue *
a6151c3a 2719cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2720 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2721{
22e2c507 2722 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2723 struct cfq_io_context *cic;
cdb16e8f 2724 struct cfq_group *cfqg;
22e2c507
JA
2725
2726retry:
cdb16e8f 2727 cfqg = cfq_get_cfqg(cfqd, 1);
4ac845a2 2728 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2729 /* cic always exists here */
2730 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2731
6118b70b
JA
2732 /*
2733 * Always try a new alloc if we fell back to the OOM cfqq
2734 * originally, since it should just be a temporary situation.
2735 */
2736 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2737 cfqq = NULL;
22e2c507
JA
2738 if (new_cfqq) {
2739 cfqq = new_cfqq;
2740 new_cfqq = NULL;
2741 } else if (gfp_mask & __GFP_WAIT) {
2742 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2743 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2744 gfp_mask | __GFP_ZERO,
94f6030c 2745 cfqd->queue->node);
22e2c507 2746 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2747 if (new_cfqq)
2748 goto retry;
22e2c507 2749 } else {
94f6030c
CL
2750 cfqq = kmem_cache_alloc_node(cfq_pool,
2751 gfp_mask | __GFP_ZERO,
2752 cfqd->queue->node);
22e2c507
JA
2753 }
2754
6118b70b
JA
2755 if (cfqq) {
2756 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2757 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 2758 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
2759 cfq_log_cfqq(cfqd, cfqq, "alloced");
2760 } else
2761 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2762 }
2763
2764 if (new_cfqq)
2765 kmem_cache_free(cfq_pool, new_cfqq);
2766
22e2c507
JA
2767 return cfqq;
2768}
2769
c2dea2d1
VT
2770static struct cfq_queue **
2771cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2772{
fe094d98 2773 switch (ioprio_class) {
c2dea2d1
VT
2774 case IOPRIO_CLASS_RT:
2775 return &cfqd->async_cfqq[0][ioprio];
2776 case IOPRIO_CLASS_BE:
2777 return &cfqd->async_cfqq[1][ioprio];
2778 case IOPRIO_CLASS_IDLE:
2779 return &cfqd->async_idle_cfqq;
2780 default:
2781 BUG();
2782 }
2783}
2784
15c31be4 2785static struct cfq_queue *
a6151c3a 2786cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2787 gfp_t gfp_mask)
2788{
fd0928df
JA
2789 const int ioprio = task_ioprio(ioc);
2790 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2791 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2792 struct cfq_queue *cfqq = NULL;
2793
c2dea2d1
VT
2794 if (!is_sync) {
2795 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2796 cfqq = *async_cfqq;
2797 }
2798
6118b70b 2799 if (!cfqq)
fd0928df 2800 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2801
2802 /*
2803 * pin the queue now that it's allocated, scheduler exit will prune it
2804 */
c2dea2d1 2805 if (!is_sync && !(*async_cfqq)) {
15c31be4 2806 atomic_inc(&cfqq->ref);
c2dea2d1 2807 *async_cfqq = cfqq;
15c31be4
JA
2808 }
2809
2810 atomic_inc(&cfqq->ref);
2811 return cfqq;
2812}
2813
498d3aa2
JA
2814/*
2815 * We drop cfq io contexts lazily, so we may find a dead one.
2816 */
dbecf3ab 2817static void
4ac845a2
JA
2818cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2819 struct cfq_io_context *cic)
dbecf3ab 2820{
4ac845a2
JA
2821 unsigned long flags;
2822
fc46379d 2823 WARN_ON(!list_empty(&cic->queue_list));
597bc485 2824
4ac845a2
JA
2825 spin_lock_irqsave(&ioc->lock, flags);
2826
4faa3c81 2827 BUG_ON(ioc->ioc_data == cic);
597bc485 2828
4ac845a2 2829 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 2830 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2831 spin_unlock_irqrestore(&ioc->lock, flags);
2832
2833 cfq_cic_free(cic);
dbecf3ab
OH
2834}
2835
e2d74ac0 2836static struct cfq_io_context *
4ac845a2 2837cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 2838{
e2d74ac0 2839 struct cfq_io_context *cic;
d6de8be7 2840 unsigned long flags;
4ac845a2 2841 void *k;
e2d74ac0 2842
91fac317
VT
2843 if (unlikely(!ioc))
2844 return NULL;
2845
d6de8be7
JA
2846 rcu_read_lock();
2847
597bc485
JA
2848 /*
2849 * we maintain a last-hit cache, to avoid browsing over the tree
2850 */
4ac845a2 2851 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
2852 if (cic && cic->key == cfqd) {
2853 rcu_read_unlock();
597bc485 2854 return cic;
d6de8be7 2855 }
597bc485 2856
4ac845a2 2857 do {
4ac845a2
JA
2858 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2859 rcu_read_unlock();
2860 if (!cic)
2861 break;
be3b0753
OH
2862 /* ->key must be copied to avoid race with cfq_exit_queue() */
2863 k = cic->key;
2864 if (unlikely(!k)) {
4ac845a2 2865 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 2866 rcu_read_lock();
4ac845a2 2867 continue;
dbecf3ab 2868 }
e2d74ac0 2869
d6de8be7 2870 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 2871 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 2872 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
2873 break;
2874 } while (1);
e2d74ac0 2875
4ac845a2 2876 return cic;
e2d74ac0
JA
2877}
2878
4ac845a2
JA
2879/*
2880 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2881 * the process specific cfq io context when entered from the block layer.
2882 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2883 */
febffd61
JA
2884static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2885 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 2886{
0261d688 2887 unsigned long flags;
4ac845a2 2888 int ret;
e2d74ac0 2889
4ac845a2
JA
2890 ret = radix_tree_preload(gfp_mask);
2891 if (!ret) {
2892 cic->ioc = ioc;
2893 cic->key = cfqd;
e2d74ac0 2894
4ac845a2
JA
2895 spin_lock_irqsave(&ioc->lock, flags);
2896 ret = radix_tree_insert(&ioc->radix_root,
2897 (unsigned long) cfqd, cic);
ffc4e759
JA
2898 if (!ret)
2899 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 2900 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 2901
4ac845a2
JA
2902 radix_tree_preload_end();
2903
2904 if (!ret) {
2905 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2906 list_add(&cic->queue_list, &cfqd->cic_list);
2907 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2908 }
e2d74ac0
JA
2909 }
2910
4ac845a2
JA
2911 if (ret)
2912 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 2913
4ac845a2 2914 return ret;
e2d74ac0
JA
2915}
2916
1da177e4
LT
2917/*
2918 * Setup general io context and cfq io context. There can be several cfq
2919 * io contexts per general io context, if this process is doing io to more
e2d74ac0 2920 * than one device managed by cfq.
1da177e4
LT
2921 */
2922static struct cfq_io_context *
e2d74ac0 2923cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2924{
22e2c507 2925 struct io_context *ioc = NULL;
1da177e4 2926 struct cfq_io_context *cic;
1da177e4 2927
22e2c507 2928 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 2929
b5deef90 2930 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
2931 if (!ioc)
2932 return NULL;
2933
4ac845a2 2934 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
2935 if (cic)
2936 goto out;
1da177e4 2937
e2d74ac0
JA
2938 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2939 if (cic == NULL)
2940 goto err;
1da177e4 2941
4ac845a2
JA
2942 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2943 goto err_free;
2944
1da177e4 2945out:
fc46379d
JA
2946 smp_read_barrier_depends();
2947 if (unlikely(ioc->ioprio_changed))
2948 cfq_ioc_set_ioprio(ioc);
2949
24610333
VG
2950#ifdef CONFIG_CFQ_GROUP_IOSCHED
2951 if (unlikely(ioc->cgroup_changed))
2952 cfq_ioc_set_cgroup(ioc);
2953#endif
1da177e4 2954 return cic;
4ac845a2
JA
2955err_free:
2956 cfq_cic_free(cic);
1da177e4
LT
2957err:
2958 put_io_context(ioc);
2959 return NULL;
2960}
2961
22e2c507
JA
2962static void
2963cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 2964{
aaf1228d
JA
2965 unsigned long elapsed = jiffies - cic->last_end_request;
2966 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 2967
22e2c507
JA
2968 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2969 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2970 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2971}
1da177e4 2972
206dc69b 2973static void
b2c18e1e 2974cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 2975 struct request *rq)
206dc69b
JA
2976{
2977 sector_t sdist;
2978 u64 total;
2979
b2c18e1e 2980 if (!cfqq->last_request_pos)
4d00aa47 2981 sdist = 0;
b2c18e1e
JM
2982 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2983 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
206dc69b 2984 else
b2c18e1e 2985 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
206dc69b
JA
2986
2987 /*
2988 * Don't allow the seek distance to get too large from the
2989 * odd fragment, pagein, etc
2990 */
b2c18e1e
JM
2991 if (cfqq->seek_samples <= 60) /* second&third seek */
2992 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
206dc69b 2993 else
b2c18e1e 2994 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
206dc69b 2995
b2c18e1e
JM
2996 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2997 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2998 total = cfqq->seek_total + (cfqq->seek_samples/2);
2999 do_div(total, cfqq->seek_samples);
3000 cfqq->seek_mean = (sector_t)total;
e6c5bc73
JM
3001
3002 /*
3003 * If this cfqq is shared between multiple processes, check to
3004 * make sure that those processes are still issuing I/Os within
3005 * the mean seek distance. If not, it may be time to break the
3006 * queues apart again.
3007 */
3008 if (cfq_cfqq_coop(cfqq)) {
3009 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
3010 cfqq->seeky_start = jiffies;
3011 else if (!CFQQ_SEEKY(cfqq))
3012 cfqq->seeky_start = 0;
3013 }
206dc69b 3014}
1da177e4 3015
22e2c507
JA
3016/*
3017 * Disable idle window if the process thinks too long or seeks so much that
3018 * it doesn't matter
3019 */
3020static void
3021cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3022 struct cfq_io_context *cic)
3023{
7b679138 3024 int old_idle, enable_idle;
1be92f2f 3025
0871714e
JA
3026 /*
3027 * Don't idle for async or idle io prio class
3028 */
3029 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
3030 return;
3031
c265a7f4 3032 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 3033
76280aff
CZ
3034 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3035 cfq_mark_cfqq_deep(cfqq);
3036
66dac98e 3037 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
76280aff
CZ
3038 (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
3039 && CFQQ_SEEKY(cfqq)))
22e2c507
JA
3040 enable_idle = 0;
3041 else if (sample_valid(cic->ttime_samples)) {
718eee05 3042 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
3043 enable_idle = 0;
3044 else
3045 enable_idle = 1;
1da177e4
LT
3046 }
3047
7b679138
JA
3048 if (old_idle != enable_idle) {
3049 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3050 if (enable_idle)
3051 cfq_mark_cfqq_idle_window(cfqq);
3052 else
3053 cfq_clear_cfqq_idle_window(cfqq);
3054 }
22e2c507 3055}
1da177e4 3056
22e2c507
JA
3057/*
3058 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3059 * no or if we aren't sure, a 1 will cause a preempt.
3060 */
a6151c3a 3061static bool
22e2c507 3062cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 3063 struct request *rq)
22e2c507 3064{
6d048f53 3065 struct cfq_queue *cfqq;
22e2c507 3066
6d048f53
JA
3067 cfqq = cfqd->active_queue;
3068 if (!cfqq)
a6151c3a 3069 return false;
22e2c507 3070
6d048f53 3071 if (cfq_class_idle(new_cfqq))
a6151c3a 3072 return false;
22e2c507
JA
3073
3074 if (cfq_class_idle(cfqq))
a6151c3a 3075 return true;
1e3335de 3076
374f84ac
JA
3077 /*
3078 * if the new request is sync, but the currently running queue is
3079 * not, let the sync request have priority.
3080 */
5e705374 3081 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 3082 return true;
1e3335de 3083
8682e1f1
VG
3084 if (new_cfqq->cfqg != cfqq->cfqg)
3085 return false;
3086
3087 if (cfq_slice_used(cfqq))
3088 return true;
3089
3090 /* Allow preemption only if we are idling on sync-noidle tree */
3091 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3092 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3093 new_cfqq->service_tree->count == 2 &&
3094 RB_EMPTY_ROOT(&cfqq->sort_list))
3095 return true;
3096
374f84ac
JA
3097 /*
3098 * So both queues are sync. Let the new request get disk time if
3099 * it's a metadata request and the current queue is doing regular IO.
3100 */
3101 if (rq_is_meta(rq) && !cfqq->meta_pending)
e6ec4fe2 3102 return true;
22e2c507 3103
3a9a3f6c
DS
3104 /*
3105 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3106 */
3107 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 3108 return true;
3a9a3f6c 3109
1e3335de 3110 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 3111 return false;
1e3335de
JA
3112
3113 /*
3114 * if this request is as-good as one we would expect from the
3115 * current cfqq, let it preempt
3116 */
e00ef799 3117 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 3118 return true;
1e3335de 3119
a6151c3a 3120 return false;
22e2c507
JA
3121}
3122
3123/*
3124 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3125 * let it have half of its nominal slice.
3126 */
3127static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3128{
7b679138 3129 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 3130 cfq_slice_expired(cfqd, 1);
22e2c507 3131
bf572256
JA
3132 /*
3133 * Put the new queue at the front of the of the current list,
3134 * so we know that it will be selected next.
3135 */
3136 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
3137
3138 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 3139
44f7c160
JA
3140 cfqq->slice_end = 0;
3141 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
3142}
3143
22e2c507 3144/*
5e705374 3145 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
3146 * something we should do about it
3147 */
3148static void
5e705374
JA
3149cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3150 struct request *rq)
22e2c507 3151{
5e705374 3152 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 3153
45333d5a 3154 cfqd->rq_queued++;
374f84ac
JA
3155 if (rq_is_meta(rq))
3156 cfqq->meta_pending++;
3157
9c2c38a1 3158 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 3159 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
3160 cfq_update_idle_window(cfqd, cfqq, cic);
3161
b2c18e1e 3162 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
3163
3164 if (cfqq == cfqd->active_queue) {
f75edf2d
VG
3165 if (cfq_cfqq_wait_busy(cfqq)) {
3166 cfq_clear_cfqq_wait_busy(cfqq);
3167 cfq_mark_cfqq_wait_busy_done(cfqq);
3168 }
22e2c507 3169 /*
b029195d
JA
3170 * Remember that we saw a request from this process, but
3171 * don't start queuing just yet. Otherwise we risk seeing lots
3172 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
3173 * and merging. If the request is already larger than a single
3174 * page, let it rip immediately. For that case we assume that
2d870722
JA
3175 * merging is already done. Ditto for a busy system that
3176 * has other work pending, don't risk delaying until the
3177 * idle timer unplug to continue working.
22e2c507 3178 */
d6ceb25e 3179 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
3180 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3181 cfqd->busy_queues > 1) {
d6ceb25e 3182 del_timer(&cfqd->idle_slice_timer);
bf791937
VG
3183 __blk_run_queue(cfqd->queue);
3184 } else
3185 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 3186 }
5e705374 3187 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
3188 /*
3189 * not the active queue - expire current slice if it is
3190 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
3191 * has some old slice time left and is of higher priority or
3192 * this new queue is RT and the current one is BE
22e2c507
JA
3193 */
3194 cfq_preempt_queue(cfqd, cfqq);
a7f55792 3195 __blk_run_queue(cfqd->queue);
22e2c507 3196 }
1da177e4
LT
3197}
3198
165125e1 3199static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 3200{
b4878f24 3201 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 3202 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 3203
7b679138 3204 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 3205 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 3206
30996f40 3207 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 3208 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 3209 cfq_add_rq_rb(rq);
22e2c507 3210
5e705374 3211 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
3212}
3213
45333d5a
AC
3214/*
3215 * Update hw_tag based on peak queue depth over 50 samples under
3216 * sufficient load.
3217 */
3218static void cfq_update_hw_tag(struct cfq_data *cfqd)
3219{
1a1238a7
SL
3220 struct cfq_queue *cfqq = cfqd->active_queue;
3221
e459dd08
CZ
3222 if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
3223 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
3224
3225 if (cfqd->hw_tag == 1)
3226 return;
45333d5a
AC
3227
3228 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
5ad531db 3229 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3230 return;
3231
1a1238a7
SL
3232 /*
3233 * If active queue hasn't enough requests and can idle, cfq might not
3234 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3235 * case
3236 */
3237 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3238 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3239 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
3240 return;
3241
45333d5a
AC
3242 if (cfqd->hw_tag_samples++ < 50)
3243 return;
3244
e459dd08 3245 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3246 cfqd->hw_tag = 1;
3247 else
3248 cfqd->hw_tag = 0;
45333d5a
AC
3249}
3250
165125e1 3251static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 3252{
5e705374 3253 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 3254 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 3255 const int sync = rq_is_sync(rq);
b4878f24 3256 unsigned long now;
1da177e4 3257
b4878f24 3258 now = jiffies;
2868ef7b 3259 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
1da177e4 3260
45333d5a
AC
3261 cfq_update_hw_tag(cfqd);
3262
5ad531db 3263 WARN_ON(!cfqd->rq_in_driver[sync]);
6d048f53 3264 WARN_ON(!cfqq->dispatched);
5ad531db 3265 cfqd->rq_in_driver[sync]--;
6d048f53 3266 cfqq->dispatched--;
1da177e4 3267
3ed9a296
JA
3268 if (cfq_cfqq_sync(cfqq))
3269 cfqd->sync_flight--;
3270
365722bb 3271 if (sync) {
5e705374 3272 RQ_CIC(rq)->last_end_request = now;
365722bb
VG
3273 cfqd->last_end_sync_rq = now;
3274 }
caaa5f9f
JA
3275
3276 /*
3277 * If this is the active queue, check if it needs to be expired,
3278 * or if we want to idle in case it has no pending requests.
3279 */
3280 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
3281 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3282
44f7c160
JA
3283 if (cfq_cfqq_slice_new(cfqq)) {
3284 cfq_set_prio_slice(cfqd, cfqq);
3285 cfq_clear_cfqq_slice_new(cfqq);
3286 }
f75edf2d
VG
3287
3288 /*
3289 * If this queue consumed its slice and this is last queue
3290 * in the group, wait for next request before we expire
3291 * the queue
3292 */
3293 if (cfq_slice_used(cfqq) && cfqq->cfqg->nr_cfqq == 1) {
3294 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3295 cfq_mark_cfqq_wait_busy(cfqq);
3296 }
3297
a36e71f9 3298 /*
8e550632
CZ
3299 * Idling is not enabled on:
3300 * - expired queues
3301 * - idle-priority queues
3302 * - async queues
3303 * - queues with still some requests queued
3304 * - when there is a close cooperator
a36e71f9 3305 */
0871714e 3306 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 3307 cfq_slice_expired(cfqd, 1);
8e550632
CZ
3308 else if (sync && cfqq_empty &&
3309 !cfq_close_cooperator(cfqd, cfqq)) {
3310 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3311 /*
3312 * Idling is enabled for SYNC_WORKLOAD.
3313 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3314 * only if we processed at least one !rq_noidle request
3315 */
3316 if (cfqd->serving_type == SYNC_WORKLOAD
c04645e5
VG
3317 || cfqd->noidle_tree_requires_idle
3318 || cfqq->cfqg->nr_cfqq == 1)
8e550632
CZ
3319 cfq_arm_slice_timer(cfqd);
3320 }
caaa5f9f 3321 }
6d048f53 3322
5ad531db 3323 if (!rq_in_driver(cfqd))
23e018a1 3324 cfq_schedule_dispatch(cfqd);
1da177e4
LT
3325}
3326
22e2c507
JA
3327/*
3328 * we temporarily boost lower priority queues if they are holding fs exclusive
3329 * resources. they are boosted to normal prio (CLASS_BE/4)
3330 */
3331static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 3332{
22e2c507
JA
3333 if (has_fs_excl()) {
3334 /*
3335 * boost idle prio on transactions that would lock out other
3336 * users of the filesystem
3337 */
3338 if (cfq_class_idle(cfqq))
3339 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3340 if (cfqq->ioprio > IOPRIO_NORM)
3341 cfqq->ioprio = IOPRIO_NORM;
3342 } else {
3343 /*
dddb7451 3344 * unboost the queue (if needed)
22e2c507 3345 */
dddb7451
CZ
3346 cfqq->ioprio_class = cfqq->org_ioprio_class;
3347 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 3348 }
22e2c507 3349}
1da177e4 3350
89850f7e 3351static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3352{
1b379d8d 3353 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3354 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3355 return ELV_MQUEUE_MUST;
3b18152c 3356 }
1da177e4 3357
22e2c507 3358 return ELV_MQUEUE_MAY;
22e2c507
JA
3359}
3360
165125e1 3361static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3362{
3363 struct cfq_data *cfqd = q->elevator->elevator_data;
3364 struct task_struct *tsk = current;
91fac317 3365 struct cfq_io_context *cic;
22e2c507
JA
3366 struct cfq_queue *cfqq;
3367
3368 /*
3369 * don't force setup of a queue from here, as a call to may_queue
3370 * does not necessarily imply that a request actually will be queued.
3371 * so just lookup a possibly existing queue, or return 'may queue'
3372 * if that fails
3373 */
4ac845a2 3374 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3375 if (!cic)
3376 return ELV_MQUEUE_MAY;
3377
b0b78f81 3378 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3379 if (cfqq) {
fd0928df 3380 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
3381 cfq_prio_boost(cfqq);
3382
89850f7e 3383 return __cfq_may_queue(cfqq);
22e2c507
JA
3384 }
3385
3386 return ELV_MQUEUE_MAY;
1da177e4
LT
3387}
3388
1da177e4
LT
3389/*
3390 * queue lock held here
3391 */
bb37b94c 3392static void cfq_put_request(struct request *rq)
1da177e4 3393{
5e705374 3394 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3395
5e705374 3396 if (cfqq) {
22e2c507 3397 const int rw = rq_data_dir(rq);
1da177e4 3398
22e2c507
JA
3399 BUG_ON(!cfqq->allocated[rw]);
3400 cfqq->allocated[rw]--;
1da177e4 3401
5e705374 3402 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 3403
1da177e4 3404 rq->elevator_private = NULL;
5e705374 3405 rq->elevator_private2 = NULL;
1da177e4 3406
1da177e4
LT
3407 cfq_put_queue(cfqq);
3408 }
3409}
3410
df5fe3e8
JM
3411static struct cfq_queue *
3412cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3413 struct cfq_queue *cfqq)
3414{
3415 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3416 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3417 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3418 cfq_put_queue(cfqq);
3419 return cic_to_cfqq(cic, 1);
3420}
3421
e6c5bc73
JM
3422static int should_split_cfqq(struct cfq_queue *cfqq)
3423{
3424 if (cfqq->seeky_start &&
3425 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
3426 return 1;
3427 return 0;
3428}
3429
3430/*
3431 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3432 * was the last process referring to said cfqq.
3433 */
3434static struct cfq_queue *
3435split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3436{
3437 if (cfqq_process_refs(cfqq) == 1) {
3438 cfqq->seeky_start = 0;
3439 cfqq->pid = current->pid;
3440 cfq_clear_cfqq_coop(cfqq);
3441 return cfqq;
3442 }
3443
3444 cic_set_cfqq(cic, NULL, 1);
3445 cfq_put_queue(cfqq);
3446 return NULL;
3447}
1da177e4 3448/*
22e2c507 3449 * Allocate cfq data structures associated with this request.
1da177e4 3450 */
22e2c507 3451static int
165125e1 3452cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3453{
3454 struct cfq_data *cfqd = q->elevator->elevator_data;
3455 struct cfq_io_context *cic;
3456 const int rw = rq_data_dir(rq);
a6151c3a 3457 const bool is_sync = rq_is_sync(rq);
22e2c507 3458 struct cfq_queue *cfqq;
1da177e4
LT
3459 unsigned long flags;
3460
3461 might_sleep_if(gfp_mask & __GFP_WAIT);
3462
e2d74ac0 3463 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 3464
1da177e4
LT
3465 spin_lock_irqsave(q->queue_lock, flags);
3466
22e2c507
JA
3467 if (!cic)
3468 goto queue_fail;
3469
e6c5bc73 3470new_queue:
91fac317 3471 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3472 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 3473 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 3474 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3475 } else {
e6c5bc73
JM
3476 /*
3477 * If the queue was seeky for too long, break it apart.
3478 */
3479 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
3480 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3481 cfqq = split_cfqq(cic, cfqq);
3482 if (!cfqq)
3483 goto new_queue;
3484 }
3485
df5fe3e8
JM
3486 /*
3487 * Check to see if this queue is scheduled to merge with
3488 * another, closely cooperating queue. The merging of
3489 * queues happens here as it must be done in process context.
3490 * The reference on new_cfqq was taken in merge_cfqqs.
3491 */
3492 if (cfqq->new_cfqq)
3493 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3494 }
1da177e4
LT
3495
3496 cfqq->allocated[rw]++;
22e2c507 3497 atomic_inc(&cfqq->ref);
1da177e4 3498
5e705374 3499 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 3500
5e705374
JA
3501 rq->elevator_private = cic;
3502 rq->elevator_private2 = cfqq;
3503 return 0;
1da177e4 3504
22e2c507
JA
3505queue_fail:
3506 if (cic)
3507 put_io_context(cic->ioc);
89850f7e 3508
23e018a1 3509 cfq_schedule_dispatch(cfqd);
1da177e4 3510 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 3511 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3512 return 1;
3513}
3514
65f27f38 3515static void cfq_kick_queue(struct work_struct *work)
22e2c507 3516{
65f27f38 3517 struct cfq_data *cfqd =
23e018a1 3518 container_of(work, struct cfq_data, unplug_work);
165125e1 3519 struct request_queue *q = cfqd->queue;
22e2c507 3520
40bb54d1 3521 spin_lock_irq(q->queue_lock);
a7f55792 3522 __blk_run_queue(cfqd->queue);
40bb54d1 3523 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3524}
3525
3526/*
3527 * Timer running if the active_queue is currently idling inside its time slice
3528 */
3529static void cfq_idle_slice_timer(unsigned long data)
3530{
3531 struct cfq_data *cfqd = (struct cfq_data *) data;
3532 struct cfq_queue *cfqq;
3533 unsigned long flags;
3c6bd2f8 3534 int timed_out = 1;
22e2c507 3535
7b679138
JA
3536 cfq_log(cfqd, "idle timer fired");
3537
22e2c507
JA
3538 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3539
fe094d98
JA
3540 cfqq = cfqd->active_queue;
3541 if (cfqq) {
3c6bd2f8
JA
3542 timed_out = 0;
3543
b029195d
JA
3544 /*
3545 * We saw a request before the queue expired, let it through
3546 */
3547 if (cfq_cfqq_must_dispatch(cfqq))
3548 goto out_kick;
3549
22e2c507
JA
3550 /*
3551 * expired
3552 */
44f7c160 3553 if (cfq_slice_used(cfqq))
22e2c507
JA
3554 goto expire;
3555
3556 /*
3557 * only expire and reinvoke request handler, if there are
3558 * other queues with pending requests
3559 */
caaa5f9f 3560 if (!cfqd->busy_queues)
22e2c507 3561 goto out_cont;
22e2c507
JA
3562
3563 /*
3564 * not expired and it has a request pending, let it dispatch
3565 */
75e50984 3566 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3567 goto out_kick;
76280aff
CZ
3568
3569 /*
3570 * Queue depth flag is reset only when the idle didn't succeed
3571 */
3572 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3573 }
3574expire:
6084cdda 3575 cfq_slice_expired(cfqd, timed_out);
22e2c507 3576out_kick:
23e018a1 3577 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3578out_cont:
3579 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3580}
3581
3b18152c
JA
3582static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3583{
3584 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3585 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3586}
22e2c507 3587
c2dea2d1
VT
3588static void cfq_put_async_queues(struct cfq_data *cfqd)
3589{
3590 int i;
3591
3592 for (i = 0; i < IOPRIO_BE_NR; i++) {
3593 if (cfqd->async_cfqq[0][i])
3594 cfq_put_queue(cfqd->async_cfqq[0][i]);
3595 if (cfqd->async_cfqq[1][i])
3596 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3597 }
2389d1ef
ON
3598
3599 if (cfqd->async_idle_cfqq)
3600 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3601}
3602
b374d18a 3603static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3604{
22e2c507 3605 struct cfq_data *cfqd = e->elevator_data;
165125e1 3606 struct request_queue *q = cfqd->queue;
22e2c507 3607
3b18152c 3608 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3609
d9ff4187 3610 spin_lock_irq(q->queue_lock);
e2d74ac0 3611
d9ff4187 3612 if (cfqd->active_queue)
6084cdda 3613 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
3614
3615 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
3616 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3617 struct cfq_io_context,
3618 queue_list);
89850f7e
JA
3619
3620 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 3621 }
e2d74ac0 3622
c2dea2d1 3623 cfq_put_async_queues(cfqd);
b1c35769
VG
3624 cfq_release_cfq_groups(cfqd);
3625 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
15c31be4 3626
d9ff4187 3627 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3628
3629 cfq_shutdown_timer_wq(cfqd);
3630
b1c35769
VG
3631 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3632 synchronize_rcu();
a90d742e 3633 kfree(cfqd);
1da177e4
LT
3634}
3635
165125e1 3636static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3637{
3638 struct cfq_data *cfqd;
718eee05 3639 int i, j;
cdb16e8f 3640 struct cfq_group *cfqg;
615f0259 3641 struct cfq_rb_root *st;
1da177e4 3642
94f6030c 3643 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 3644 if (!cfqd)
bc1c1169 3645 return NULL;
1da177e4 3646
1fa8f6d6
VG
3647 /* Init root service tree */
3648 cfqd->grp_service_tree = CFQ_RB_ROOT;
3649
cdb16e8f
VG
3650 /* Init root group */
3651 cfqg = &cfqd->root_group;
615f0259
VG
3652 for_each_cfqg_st(cfqg, i, j, st)
3653 *st = CFQ_RB_ROOT;
1fa8f6d6 3654 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 3655
25bc6b07
VG
3656 /* Give preference to root group over other groups */
3657 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3658
25fb5169 3659#ifdef CONFIG_CFQ_GROUP_IOSCHED
b1c35769
VG
3660 /*
3661 * Take a reference to root group which we never drop. This is just
3662 * to make sure that cfq_put_cfqg() does not try to kfree root group
3663 */
3664 atomic_set(&cfqg->ref, 1);
22084190
VG
3665 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3666 0);
25fb5169 3667#endif
26a2ac00
JA
3668 /*
3669 * Not strictly needed (since RB_ROOT just clears the node and we
3670 * zeroed cfqd on alloc), but better be safe in case someone decides
3671 * to add magic to the rb code
3672 */
3673 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3674 cfqd->prio_trees[i] = RB_ROOT;
3675
6118b70b
JA
3676 /*
3677 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3678 * Grab a permanent reference to it, so that the normal code flow
3679 * will not attempt to free it.
3680 */
3681 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3682 atomic_inc(&cfqd->oom_cfqq.ref);
cdb16e8f 3683 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 3684
d9ff4187 3685 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 3686
1da177e4 3687 cfqd->queue = q;
1da177e4 3688
22e2c507
JA
3689 init_timer(&cfqd->idle_slice_timer);
3690 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3691 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3692
23e018a1 3693 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 3694
1da177e4 3695 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
3696 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3697 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
3698 cfqd->cfq_back_max = cfq_back_max;
3699 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
3700 cfqd->cfq_slice[0] = cfq_slice_async;
3701 cfqd->cfq_slice[1] = cfq_slice_sync;
3702 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3703 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 3704 cfqd->cfq_latency = 1;
ae30c286 3705 cfqd->cfq_group_isolation = 0;
e459dd08 3706 cfqd->hw_tag = -1;
365722bb 3707 cfqd->last_end_sync_rq = jiffies;
bc1c1169 3708 return cfqd;
1da177e4
LT
3709}
3710
3711static void cfq_slab_kill(void)
3712{
d6de8be7
JA
3713 /*
3714 * Caller already ensured that pending RCU callbacks are completed,
3715 * so we should have no busy allocations at this point.
3716 */
1da177e4
LT
3717 if (cfq_pool)
3718 kmem_cache_destroy(cfq_pool);
3719 if (cfq_ioc_pool)
3720 kmem_cache_destroy(cfq_ioc_pool);
3721}
3722
3723static int __init cfq_slab_setup(void)
3724{
0a31bd5f 3725 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
3726 if (!cfq_pool)
3727 goto fail;
3728
34e6bbf2 3729 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
3730 if (!cfq_ioc_pool)
3731 goto fail;
3732
3733 return 0;
3734fail:
3735 cfq_slab_kill();
3736 return -ENOMEM;
3737}
3738
1da177e4
LT
3739/*
3740 * sysfs parts below -->
3741 */
1da177e4
LT
3742static ssize_t
3743cfq_var_show(unsigned int var, char *page)
3744{
3745 return sprintf(page, "%d\n", var);
3746}
3747
3748static ssize_t
3749cfq_var_store(unsigned int *var, const char *page, size_t count)
3750{
3751 char *p = (char *) page;
3752
3753 *var = simple_strtoul(p, &p, 10);
3754 return count;
3755}
3756
1da177e4 3757#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3758static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3759{ \
3d1ab40f 3760 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3761 unsigned int __data = __VAR; \
3762 if (__CONV) \
3763 __data = jiffies_to_msecs(__data); \
3764 return cfq_var_show(__data, (page)); \
3765}
3766SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
3767SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3768SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
3769SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3770SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
3771SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3772SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3773SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3774SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 3775SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
ae30c286 3776SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
1da177e4
LT
3777#undef SHOW_FUNCTION
3778
3779#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 3780static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 3781{ \
3d1ab40f 3782 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3783 unsigned int __data; \
3784 int ret = cfq_var_store(&__data, (page), count); \
3785 if (__data < (MIN)) \
3786 __data = (MIN); \
3787 else if (__data > (MAX)) \
3788 __data = (MAX); \
3789 if (__CONV) \
3790 *(__PTR) = msecs_to_jiffies(__data); \
3791 else \
3792 *(__PTR) = __data; \
3793 return ret; \
3794}
3795STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
3796STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3797 UINT_MAX, 1);
3798STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3799 UINT_MAX, 1);
e572ec7e 3800STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
3801STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3802 UINT_MAX, 0);
22e2c507
JA
3803STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3804STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3805STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
3806STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3807 UINT_MAX, 0);
963b72fc 3808STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
ae30c286 3809STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
1da177e4
LT
3810#undef STORE_FUNCTION
3811
e572ec7e
AV
3812#define CFQ_ATTR(name) \
3813 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3814
3815static struct elv_fs_entry cfq_attrs[] = {
3816 CFQ_ATTR(quantum),
e572ec7e
AV
3817 CFQ_ATTR(fifo_expire_sync),
3818 CFQ_ATTR(fifo_expire_async),
3819 CFQ_ATTR(back_seek_max),
3820 CFQ_ATTR(back_seek_penalty),
3821 CFQ_ATTR(slice_sync),
3822 CFQ_ATTR(slice_async),
3823 CFQ_ATTR(slice_async_rq),
3824 CFQ_ATTR(slice_idle),
963b72fc 3825 CFQ_ATTR(low_latency),
ae30c286 3826 CFQ_ATTR(group_isolation),
e572ec7e 3827 __ATTR_NULL
1da177e4
LT
3828};
3829
1da177e4
LT
3830static struct elevator_type iosched_cfq = {
3831 .ops = {
3832 .elevator_merge_fn = cfq_merge,
3833 .elevator_merged_fn = cfq_merged_request,
3834 .elevator_merge_req_fn = cfq_merged_requests,
da775265 3835 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 3836 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 3837 .elevator_add_req_fn = cfq_insert_request,
b4878f24 3838 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
3839 .elevator_deactivate_req_fn = cfq_deactivate_request,
3840 .elevator_queue_empty_fn = cfq_queue_empty,
3841 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
3842 .elevator_former_req_fn = elv_rb_former_request,
3843 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
3844 .elevator_set_req_fn = cfq_set_request,
3845 .elevator_put_req_fn = cfq_put_request,
3846 .elevator_may_queue_fn = cfq_may_queue,
3847 .elevator_init_fn = cfq_init_queue,
3848 .elevator_exit_fn = cfq_exit_queue,
fc46379d 3849 .trim = cfq_free_io_context,
1da177e4 3850 },
3d1ab40f 3851 .elevator_attrs = cfq_attrs,
1da177e4
LT
3852 .elevator_name = "cfq",
3853 .elevator_owner = THIS_MODULE,
3854};
3855
3856static int __init cfq_init(void)
3857{
22e2c507
JA
3858 /*
3859 * could be 0 on HZ < 1000 setups
3860 */
3861 if (!cfq_slice_async)
3862 cfq_slice_async = 1;
3863 if (!cfq_slice_idle)
3864 cfq_slice_idle = 1;
3865
1da177e4
LT
3866 if (cfq_slab_setup())
3867 return -ENOMEM;
3868
2fdd82bd 3869 elv_register(&iosched_cfq);
1da177e4 3870
2fdd82bd 3871 return 0;
1da177e4
LT
3872}
3873
3874static void __exit cfq_exit(void)
3875{
6e9a4738 3876 DECLARE_COMPLETION_ONSTACK(all_gone);
1da177e4 3877 elv_unregister(&iosched_cfq);
334e94de 3878 ioc_gone = &all_gone;
fba82272
OH
3879 /* ioc_gone's update must be visible before reading ioc_count */
3880 smp_wmb();
d6de8be7
JA
3881
3882 /*
3883 * this also protects us from entering cfq_slab_kill() with
3884 * pending RCU callbacks
3885 */
245b2e70 3886 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 3887 wait_for_completion(&all_gone);
83521d3e 3888 cfq_slab_kill();
1da177e4
LT
3889}
3890
3891module_init(cfq_init);
3892module_exit(cfq_exit);
3893
3894MODULE_AUTHOR("Jens Axboe");
3895MODULE_LICENSE("GPL");
3896MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");