]> bbs.cooldavid.org Git - net-next-2.6.git/blame - block/cfq-iosched.c
cfq-iosched: Do not idle if slice_idle=0
[net-next-2.6.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
5a0e3ad6 10#include <linux/slab.h>
1cc9be68
AV
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
ad5ebd2f 13#include <linux/jiffies.h>
1da177e4 14#include <linux/rbtree.h>
22e2c507 15#include <linux/ioprio.h>
7b679138 16#include <linux/blktrace_api.h>
e98ef89b 17#include "cfq.h"
1da177e4
LT
18
19/*
20 * tunables
21 */
fe094d98 22/* max queue in one round of service */
abc3c744 23static const int cfq_quantum = 8;
64100099 24static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
25/* maximum backwards seek, in KiB */
26static const int cfq_back_max = 16 * 1024;
27/* penalty of a backwards seek */
28static const int cfq_back_penalty = 2;
64100099 29static const int cfq_slice_sync = HZ / 10;
3b18152c 30static int cfq_slice_async = HZ / 25;
64100099 31static const int cfq_slice_async_rq = 2;
caaa5f9f 32static int cfq_slice_idle = HZ / 125;
5db5d642
CZ
33static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
34static const int cfq_hist_divisor = 4;
22e2c507 35
d9e7620e 36/*
0871714e 37 * offset from end of service tree
d9e7620e 38 */
0871714e 39#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
40
41/*
42 * below this threshold, we consider thinktime immediate
43 */
44#define CFQ_MIN_TT (2)
45
22e2c507 46#define CFQ_SLICE_SCALE (5)
45333d5a 47#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 48#define CFQ_SERVICE_SHIFT 12
22e2c507 49
3dde36dd 50#define CFQQ_SEEK_THR (sector_t)(8 * 100)
e9ce335d 51#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
41647e7a 52#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
3dde36dd 53#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
ae54abed 54
fe094d98
JA
55#define RQ_CIC(rq) \
56 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 57#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
7f1dc8a2 58#define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private3)
1da177e4 59
e18b890b
CL
60static struct kmem_cache *cfq_pool;
61static struct kmem_cache *cfq_ioc_pool;
1da177e4 62
245b2e70 63static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 64static struct completion *ioc_gone;
9a11b4ed 65static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 66
80b15c73
KK
67static DEFINE_SPINLOCK(cic_index_lock);
68static DEFINE_IDA(cic_index_ida);
69
22e2c507
JA
70#define CFQ_PRIO_LISTS IOPRIO_BE_NR
71#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
72#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
73
206dc69b 74#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 75#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 76
cc09e299
JA
77/*
78 * Most of our rbtree usage is for sorting with min extraction, so
79 * if we cache the leftmost node we don't have to walk down the tree
80 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
81 * move this into the elevator for the rq sorting as well.
82 */
83struct cfq_rb_root {
84 struct rb_root rb;
85 struct rb_node *left;
aa6f6a3d 86 unsigned count;
73e9ffdd 87 unsigned total_weight;
1fa8f6d6 88 u64 min_vdisktime;
25bc6b07 89 struct rb_node *active;
cc09e299 90};
73e9ffdd
RK
91#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92 .count = 0, .min_vdisktime = 0, }
cc09e299 93
6118b70b
JA
94/*
95 * Per process-grouping structure
96 */
97struct cfq_queue {
98 /* reference count */
99 atomic_t ref;
100 /* various state flags, see below */
101 unsigned int flags;
102 /* parent cfq_data */
103 struct cfq_data *cfqd;
104 /* service_tree member */
105 struct rb_node rb_node;
106 /* service_tree key */
107 unsigned long rb_key;
108 /* prio tree member */
109 struct rb_node p_node;
110 /* prio tree root we belong to, if any */
111 struct rb_root *p_root;
112 /* sorted list of pending requests */
113 struct rb_root sort_list;
114 /* if fifo isn't expired, next request to serve */
115 struct request *next_rq;
116 /* requests queued in sort_list */
117 int queued[2];
118 /* currently allocated requests */
119 int allocated[2];
120 /* fifo list of requests in sort_list */
121 struct list_head fifo;
122
dae739eb
VG
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start;
f75edf2d 125 unsigned int allocated_slice;
c4081ba5 126 unsigned int slice_dispatch;
dae739eb
VG
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start;
6118b70b
JA
129 unsigned long slice_end;
130 long slice_resid;
6118b70b
JA
131
132 /* pending metadata requests */
133 int meta_pending;
134 /* number of requests that are on the dispatch list or inside driver */
135 int dispatched;
136
137 /* io prio of this group */
138 unsigned short ioprio, org_ioprio;
139 unsigned short ioprio_class, org_ioprio_class;
140
c4081ba5
RK
141 pid_t pid;
142
3dde36dd 143 u32 seek_history;
b2c18e1e
JM
144 sector_t last_request_pos;
145
aa6f6a3d 146 struct cfq_rb_root *service_tree;
df5fe3e8 147 struct cfq_queue *new_cfqq;
cdb16e8f 148 struct cfq_group *cfqg;
ae30c286 149 struct cfq_group *orig_cfqg;
6118b70b
JA
150};
151
c0324a02 152/*
718eee05 153 * First index in the service_trees.
c0324a02
CZ
154 * IDLE is handled separately, so it has negative index
155 */
156enum wl_prio_t {
c0324a02 157 BE_WORKLOAD = 0,
615f0259
VG
158 RT_WORKLOAD = 1,
159 IDLE_WORKLOAD = 2,
c0324a02
CZ
160};
161
718eee05
CZ
162/*
163 * Second index in the service_trees.
164 */
165enum wl_type_t {
166 ASYNC_WORKLOAD = 0,
167 SYNC_NOIDLE_WORKLOAD = 1,
168 SYNC_WORKLOAD = 2
169};
170
cdb16e8f
VG
171/* This is per cgroup per device grouping structure */
172struct cfq_group {
1fa8f6d6
VG
173 /* group service_tree member */
174 struct rb_node rb_node;
175
176 /* group service_tree key */
177 u64 vdisktime;
25bc6b07 178 unsigned int weight;
1fa8f6d6
VG
179 bool on_st;
180
181 /* number of cfqq currently on this group */
182 int nr_cfqq;
183
58ff82f3
VG
184 /* Per group busy queus average. Useful for workload slice calc. */
185 unsigned int busy_queues_avg[2];
cdb16e8f
VG
186 /*
187 * rr lists of queues with requests, onle rr for each priority class.
188 * Counts are embedded in the cfq_rb_root
189 */
190 struct cfq_rb_root service_trees[2][3];
191 struct cfq_rb_root service_tree_idle;
dae739eb
VG
192
193 unsigned long saved_workload_slice;
194 enum wl_type_t saved_workload;
195 enum wl_prio_t saved_serving_prio;
25fb5169
VG
196 struct blkio_group blkg;
197#ifdef CONFIG_CFQ_GROUP_IOSCHED
198 struct hlist_node cfqd_node;
b1c35769 199 atomic_t ref;
25fb5169 200#endif
cdb16e8f 201};
718eee05 202
22e2c507
JA
203/*
204 * Per block device queue structure
205 */
1da177e4 206struct cfq_data {
165125e1 207 struct request_queue *queue;
1fa8f6d6
VG
208 /* Root service tree for cfq_groups */
209 struct cfq_rb_root grp_service_tree;
cdb16e8f 210 struct cfq_group root_group;
22e2c507 211
c0324a02
CZ
212 /*
213 * The priority currently being served
22e2c507 214 */
c0324a02 215 enum wl_prio_t serving_prio;
718eee05
CZ
216 enum wl_type_t serving_type;
217 unsigned long workload_expires;
cdb16e8f 218 struct cfq_group *serving_group;
8e550632 219 bool noidle_tree_requires_idle;
a36e71f9
JA
220
221 /*
222 * Each priority tree is sorted by next_request position. These
223 * trees are used when determining if two or more queues are
224 * interleaving requests (see cfq_close_cooperator).
225 */
226 struct rb_root prio_trees[CFQ_PRIO_LISTS];
227
22e2c507
JA
228 unsigned int busy_queues;
229
53c583d2
CZ
230 int rq_in_driver;
231 int rq_in_flight[2];
45333d5a
AC
232
233 /*
234 * queue-depth detection
235 */
236 int rq_queued;
25776e35 237 int hw_tag;
e459dd08
CZ
238 /*
239 * hw_tag can be
240 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
241 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
242 * 0 => no NCQ
243 */
244 int hw_tag_est_depth;
245 unsigned int hw_tag_samples;
1da177e4 246
22e2c507
JA
247 /*
248 * idle window management
249 */
250 struct timer_list idle_slice_timer;
23e018a1 251 struct work_struct unplug_work;
1da177e4 252
22e2c507
JA
253 struct cfq_queue *active_queue;
254 struct cfq_io_context *active_cic;
22e2c507 255
c2dea2d1
VT
256 /*
257 * async queue for each priority case
258 */
259 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
260 struct cfq_queue *async_idle_cfqq;
15c31be4 261
6d048f53 262 sector_t last_position;
1da177e4 263
1da177e4
LT
264 /*
265 * tunables, see top of file
266 */
267 unsigned int cfq_quantum;
22e2c507 268 unsigned int cfq_fifo_expire[2];
1da177e4
LT
269 unsigned int cfq_back_penalty;
270 unsigned int cfq_back_max;
22e2c507
JA
271 unsigned int cfq_slice[2];
272 unsigned int cfq_slice_async_rq;
273 unsigned int cfq_slice_idle;
963b72fc 274 unsigned int cfq_latency;
ae30c286 275 unsigned int cfq_group_isolation;
d9ff4187 276
80b15c73 277 unsigned int cic_index;
d9ff4187 278 struct list_head cic_list;
1da177e4 279
6118b70b
JA
280 /*
281 * Fallback dummy cfqq for extreme OOM conditions
282 */
283 struct cfq_queue oom_cfqq;
365722bb 284
573412b2 285 unsigned long last_delayed_sync;
25fb5169
VG
286
287 /* List of cfq groups being managed on this device*/
288 struct hlist_head cfqg_list;
bb729bc9 289 struct rcu_head rcu;
1da177e4
LT
290};
291
25fb5169
VG
292static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
293
cdb16e8f
VG
294static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
295 enum wl_prio_t prio,
65b32a57 296 enum wl_type_t type)
c0324a02 297{
1fa8f6d6
VG
298 if (!cfqg)
299 return NULL;
300
c0324a02 301 if (prio == IDLE_WORKLOAD)
cdb16e8f 302 return &cfqg->service_tree_idle;
c0324a02 303
cdb16e8f 304 return &cfqg->service_trees[prio][type];
c0324a02
CZ
305}
306
3b18152c 307enum cfqq_state_flags {
b0b8d749
JA
308 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
309 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 310 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 311 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
312 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
313 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
314 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 315 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 316 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 317 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
ae54abed 318 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
76280aff 319 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
f75edf2d 320 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
3b18152c
JA
321};
322
323#define CFQ_CFQQ_FNS(name) \
324static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
325{ \
fe094d98 326 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
327} \
328static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
329{ \
fe094d98 330 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
331} \
332static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
333{ \
fe094d98 334 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
335}
336
337CFQ_CFQQ_FNS(on_rr);
338CFQ_CFQQ_FNS(wait_request);
b029195d 339CFQ_CFQQ_FNS(must_dispatch);
3b18152c 340CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
341CFQ_CFQQ_FNS(fifo_expire);
342CFQ_CFQQ_FNS(idle_window);
343CFQ_CFQQ_FNS(prio_changed);
44f7c160 344CFQ_CFQQ_FNS(slice_new);
91fac317 345CFQ_CFQQ_FNS(sync);
a36e71f9 346CFQ_CFQQ_FNS(coop);
ae54abed 347CFQ_CFQQ_FNS(split_coop);
76280aff 348CFQ_CFQQ_FNS(deep);
f75edf2d 349CFQ_CFQQ_FNS(wait_busy);
3b18152c
JA
350#undef CFQ_CFQQ_FNS
351
afc24d49 352#ifdef CONFIG_CFQ_GROUP_IOSCHED
2868ef7b
VG
353#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
354 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
355 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
356 blkg_path(&(cfqq)->cfqg->blkg), ##args);
357
358#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
359 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
360 blkg_path(&(cfqg)->blkg), ##args); \
361
362#else
7b679138
JA
363#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
364 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
2868ef7b
VG
365#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
366#endif
7b679138
JA
367#define cfq_log(cfqd, fmt, args...) \
368 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
369
615f0259
VG
370/* Traverses through cfq group service trees */
371#define for_each_cfqg_st(cfqg, i, j, st) \
372 for (i = 0; i <= IDLE_WORKLOAD; i++) \
373 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
374 : &cfqg->service_tree_idle; \
375 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
376 (i == IDLE_WORKLOAD && j == 0); \
377 j++, st = i < IDLE_WORKLOAD ? \
378 &cfqg->service_trees[i][j]: NULL) \
379
380
c0324a02
CZ
381static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
382{
383 if (cfq_class_idle(cfqq))
384 return IDLE_WORKLOAD;
385 if (cfq_class_rt(cfqq))
386 return RT_WORKLOAD;
387 return BE_WORKLOAD;
388}
389
718eee05
CZ
390
391static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
392{
393 if (!cfq_cfqq_sync(cfqq))
394 return ASYNC_WORKLOAD;
395 if (!cfq_cfqq_idle_window(cfqq))
396 return SYNC_NOIDLE_WORKLOAD;
397 return SYNC_WORKLOAD;
398}
399
58ff82f3
VG
400static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
401 struct cfq_data *cfqd,
402 struct cfq_group *cfqg)
c0324a02
CZ
403{
404 if (wl == IDLE_WORKLOAD)
cdb16e8f 405 return cfqg->service_tree_idle.count;
c0324a02 406
cdb16e8f
VG
407 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
408 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
409 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
410}
411
f26bd1f0
VG
412static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
413 struct cfq_group *cfqg)
414{
415 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
416 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
417}
418
165125e1 419static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 420static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 421 struct io_context *, gfp_t);
4ac845a2 422static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
423 struct io_context *);
424
425static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 426 bool is_sync)
91fac317 427{
a6151c3a 428 return cic->cfqq[is_sync];
91fac317
VT
429}
430
431static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 432 struct cfq_queue *cfqq, bool is_sync)
91fac317 433{
a6151c3a 434 cic->cfqq[is_sync] = cfqq;
91fac317
VT
435}
436
bca4b914 437#define CIC_DEAD_KEY 1ul
80b15c73 438#define CIC_DEAD_INDEX_SHIFT 1
bca4b914
KK
439
440static inline void *cfqd_dead_key(struct cfq_data *cfqd)
441{
80b15c73 442 return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
bca4b914
KK
443}
444
445static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
446{
447 struct cfq_data *cfqd = cic->key;
448
449 if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
450 return NULL;
451
452 return cfqd;
453}
454
91fac317
VT
455/*
456 * We regard a request as SYNC, if it's either a read or has the SYNC bit
457 * set (in which case it could also be direct WRITE).
458 */
a6151c3a 459static inline bool cfq_bio_sync(struct bio *bio)
91fac317 460{
7b6d91da 461 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
91fac317 462}
1da177e4 463
99f95e52
AM
464/*
465 * scheduler run of queue, if there are requests pending and no one in the
466 * driver that will restart queueing
467 */
23e018a1 468static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 469{
7b679138
JA
470 if (cfqd->busy_queues) {
471 cfq_log(cfqd, "schedule dispatch");
23e018a1 472 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 473 }
99f95e52
AM
474}
475
165125e1 476static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
477{
478 struct cfq_data *cfqd = q->elevator->elevator_data;
479
f04a6424 480 return !cfqd->rq_queued;
99f95e52
AM
481}
482
44f7c160
JA
483/*
484 * Scale schedule slice based on io priority. Use the sync time slice only
485 * if a queue is marked sync and has sync io queued. A sync queue with async
486 * io only, should not get full sync slice length.
487 */
a6151c3a 488static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 489 unsigned short prio)
44f7c160 490{
d9e7620e 491 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 492
d9e7620e
JA
493 WARN_ON(prio >= IOPRIO_BE_NR);
494
495 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
496}
44f7c160 497
d9e7620e
JA
498static inline int
499cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
500{
501 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
502}
503
25bc6b07
VG
504static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
505{
506 u64 d = delta << CFQ_SERVICE_SHIFT;
507
508 d = d * BLKIO_WEIGHT_DEFAULT;
509 do_div(d, cfqg->weight);
510 return d;
511}
512
513static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
514{
515 s64 delta = (s64)(vdisktime - min_vdisktime);
516 if (delta > 0)
517 min_vdisktime = vdisktime;
518
519 return min_vdisktime;
520}
521
522static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
523{
524 s64 delta = (s64)(vdisktime - min_vdisktime);
525 if (delta < 0)
526 min_vdisktime = vdisktime;
527
528 return min_vdisktime;
529}
530
531static void update_min_vdisktime(struct cfq_rb_root *st)
532{
533 u64 vdisktime = st->min_vdisktime;
534 struct cfq_group *cfqg;
535
536 if (st->active) {
537 cfqg = rb_entry_cfqg(st->active);
538 vdisktime = cfqg->vdisktime;
539 }
540
541 if (st->left) {
542 cfqg = rb_entry_cfqg(st->left);
543 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
544 }
545
546 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
547}
548
5db5d642
CZ
549/*
550 * get averaged number of queues of RT/BE priority.
551 * average is updated, with a formula that gives more weight to higher numbers,
552 * to quickly follows sudden increases and decrease slowly
553 */
554
58ff82f3
VG
555static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
556 struct cfq_group *cfqg, bool rt)
5869619c 557{
5db5d642
CZ
558 unsigned min_q, max_q;
559 unsigned mult = cfq_hist_divisor - 1;
560 unsigned round = cfq_hist_divisor / 2;
58ff82f3 561 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 562
58ff82f3
VG
563 min_q = min(cfqg->busy_queues_avg[rt], busy);
564 max_q = max(cfqg->busy_queues_avg[rt], busy);
565 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 566 cfq_hist_divisor;
58ff82f3
VG
567 return cfqg->busy_queues_avg[rt];
568}
569
570static inline unsigned
571cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
572{
573 struct cfq_rb_root *st = &cfqd->grp_service_tree;
574
575 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
576}
577
44f7c160
JA
578static inline void
579cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
580{
5db5d642
CZ
581 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
582 if (cfqd->cfq_latency) {
58ff82f3
VG
583 /*
584 * interested queues (we consider only the ones with the same
585 * priority class in the cfq group)
586 */
587 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
588 cfq_class_rt(cfqq));
5db5d642
CZ
589 unsigned sync_slice = cfqd->cfq_slice[1];
590 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
591 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
592
593 if (expect_latency > group_slice) {
5db5d642
CZ
594 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
595 /* scale low_slice according to IO priority
596 * and sync vs async */
597 unsigned low_slice =
598 min(slice, base_low_slice * slice / sync_slice);
599 /* the adapted slice value is scaled to fit all iqs
600 * into the target latency */
58ff82f3 601 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
602 low_slice);
603 }
604 }
dae739eb 605 cfqq->slice_start = jiffies;
5db5d642 606 cfqq->slice_end = jiffies + slice;
f75edf2d 607 cfqq->allocated_slice = slice;
7b679138 608 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
609}
610
611/*
612 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
613 * isn't valid until the first request from the dispatch is activated
614 * and the slice time set.
615 */
a6151c3a 616static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
617{
618 if (cfq_cfqq_slice_new(cfqq))
619 return 0;
620 if (time_before(jiffies, cfqq->slice_end))
621 return 0;
622
623 return 1;
624}
625
1da177e4 626/*
5e705374 627 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 628 * We choose the request that is closest to the head right now. Distance
e8a99053 629 * behind the head is penalized and only allowed to a certain extent.
1da177e4 630 */
5e705374 631static struct request *
cf7c25cf 632cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 633{
cf7c25cf 634 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 635 unsigned long back_max;
e8a99053
AM
636#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
637#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
638 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 639
5e705374
JA
640 if (rq1 == NULL || rq1 == rq2)
641 return rq2;
642 if (rq2 == NULL)
643 return rq1;
9c2c38a1 644
5e705374
JA
645 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
646 return rq1;
647 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
648 return rq2;
7b6d91da 649 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
374f84ac 650 return rq1;
7b6d91da
CH
651 else if ((rq2->cmd_flags & REQ_META) &&
652 !(rq1->cmd_flags & REQ_META))
374f84ac 653 return rq2;
1da177e4 654
83096ebf
TH
655 s1 = blk_rq_pos(rq1);
656 s2 = blk_rq_pos(rq2);
1da177e4 657
1da177e4
LT
658 /*
659 * by definition, 1KiB is 2 sectors
660 */
661 back_max = cfqd->cfq_back_max * 2;
662
663 /*
664 * Strict one way elevator _except_ in the case where we allow
665 * short backward seeks which are biased as twice the cost of a
666 * similar forward seek.
667 */
668 if (s1 >= last)
669 d1 = s1 - last;
670 else if (s1 + back_max >= last)
671 d1 = (last - s1) * cfqd->cfq_back_penalty;
672 else
e8a99053 673 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
674
675 if (s2 >= last)
676 d2 = s2 - last;
677 else if (s2 + back_max >= last)
678 d2 = (last - s2) * cfqd->cfq_back_penalty;
679 else
e8a99053 680 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
681
682 /* Found required data */
e8a99053
AM
683
684 /*
685 * By doing switch() on the bit mask "wrap" we avoid having to
686 * check two variables for all permutations: --> faster!
687 */
688 switch (wrap) {
5e705374 689 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 690 if (d1 < d2)
5e705374 691 return rq1;
e8a99053 692 else if (d2 < d1)
5e705374 693 return rq2;
e8a99053
AM
694 else {
695 if (s1 >= s2)
5e705374 696 return rq1;
e8a99053 697 else
5e705374 698 return rq2;
e8a99053 699 }
1da177e4 700
e8a99053 701 case CFQ_RQ2_WRAP:
5e705374 702 return rq1;
e8a99053 703 case CFQ_RQ1_WRAP:
5e705374
JA
704 return rq2;
705 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
706 default:
707 /*
708 * Since both rqs are wrapped,
709 * start with the one that's further behind head
710 * (--> only *one* back seek required),
711 * since back seek takes more time than forward.
712 */
713 if (s1 <= s2)
5e705374 714 return rq1;
1da177e4 715 else
5e705374 716 return rq2;
1da177e4
LT
717 }
718}
719
498d3aa2
JA
720/*
721 * The below is leftmost cache rbtree addon
722 */
0871714e 723static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 724{
615f0259
VG
725 /* Service tree is empty */
726 if (!root->count)
727 return NULL;
728
cc09e299
JA
729 if (!root->left)
730 root->left = rb_first(&root->rb);
731
0871714e
JA
732 if (root->left)
733 return rb_entry(root->left, struct cfq_queue, rb_node);
734
735 return NULL;
cc09e299
JA
736}
737
1fa8f6d6
VG
738static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
739{
740 if (!root->left)
741 root->left = rb_first(&root->rb);
742
743 if (root->left)
744 return rb_entry_cfqg(root->left);
745
746 return NULL;
747}
748
a36e71f9
JA
749static void rb_erase_init(struct rb_node *n, struct rb_root *root)
750{
751 rb_erase(n, root);
752 RB_CLEAR_NODE(n);
753}
754
cc09e299
JA
755static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
756{
757 if (root->left == n)
758 root->left = NULL;
a36e71f9 759 rb_erase_init(n, &root->rb);
aa6f6a3d 760 --root->count;
cc09e299
JA
761}
762
1da177e4
LT
763/*
764 * would be nice to take fifo expire time into account as well
765 */
5e705374
JA
766static struct request *
767cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
768 struct request *last)
1da177e4 769{
21183b07
JA
770 struct rb_node *rbnext = rb_next(&last->rb_node);
771 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 772 struct request *next = NULL, *prev = NULL;
1da177e4 773
21183b07 774 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
775
776 if (rbprev)
5e705374 777 prev = rb_entry_rq(rbprev);
1da177e4 778
21183b07 779 if (rbnext)
5e705374 780 next = rb_entry_rq(rbnext);
21183b07
JA
781 else {
782 rbnext = rb_first(&cfqq->sort_list);
783 if (rbnext && rbnext != &last->rb_node)
5e705374 784 next = rb_entry_rq(rbnext);
21183b07 785 }
1da177e4 786
cf7c25cf 787 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
788}
789
d9e7620e
JA
790static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
791 struct cfq_queue *cfqq)
1da177e4 792{
d9e7620e
JA
793 /*
794 * just an approximation, should be ok.
795 */
cdb16e8f 796 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 797 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
798}
799
1fa8f6d6
VG
800static inline s64
801cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
802{
803 return cfqg->vdisktime - st->min_vdisktime;
804}
805
806static void
807__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
808{
809 struct rb_node **node = &st->rb.rb_node;
810 struct rb_node *parent = NULL;
811 struct cfq_group *__cfqg;
812 s64 key = cfqg_key(st, cfqg);
813 int left = 1;
814
815 while (*node != NULL) {
816 parent = *node;
817 __cfqg = rb_entry_cfqg(parent);
818
819 if (key < cfqg_key(st, __cfqg))
820 node = &parent->rb_left;
821 else {
822 node = &parent->rb_right;
823 left = 0;
824 }
825 }
826
827 if (left)
828 st->left = &cfqg->rb_node;
829
830 rb_link_node(&cfqg->rb_node, parent, node);
831 rb_insert_color(&cfqg->rb_node, &st->rb);
832}
833
834static void
835cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
836{
837 struct cfq_rb_root *st = &cfqd->grp_service_tree;
838 struct cfq_group *__cfqg;
839 struct rb_node *n;
840
841 cfqg->nr_cfqq++;
842 if (cfqg->on_st)
843 return;
844
845 /*
846 * Currently put the group at the end. Later implement something
847 * so that groups get lesser vtime based on their weights, so that
848 * if group does not loose all if it was not continously backlogged.
849 */
850 n = rb_last(&st->rb);
851 if (n) {
852 __cfqg = rb_entry_cfqg(n);
853 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
854 } else
855 cfqg->vdisktime = st->min_vdisktime;
856
857 __cfq_group_service_tree_add(st, cfqg);
858 cfqg->on_st = true;
58ff82f3 859 st->total_weight += cfqg->weight;
1fa8f6d6
VG
860}
861
862static void
863cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
864{
865 struct cfq_rb_root *st = &cfqd->grp_service_tree;
866
25bc6b07
VG
867 if (st->active == &cfqg->rb_node)
868 st->active = NULL;
869
1fa8f6d6
VG
870 BUG_ON(cfqg->nr_cfqq < 1);
871 cfqg->nr_cfqq--;
25bc6b07 872
1fa8f6d6
VG
873 /* If there are other cfq queues under this group, don't delete it */
874 if (cfqg->nr_cfqq)
875 return;
876
2868ef7b 877 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1fa8f6d6 878 cfqg->on_st = false;
58ff82f3 879 st->total_weight -= cfqg->weight;
1fa8f6d6
VG
880 if (!RB_EMPTY_NODE(&cfqg->rb_node))
881 cfq_rb_erase(&cfqg->rb_node, st);
dae739eb 882 cfqg->saved_workload_slice = 0;
e98ef89b 883 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
dae739eb
VG
884}
885
886static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
887{
f75edf2d 888 unsigned int slice_used;
dae739eb
VG
889
890 /*
891 * Queue got expired before even a single request completed or
892 * got expired immediately after first request completion.
893 */
894 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
895 /*
896 * Also charge the seek time incurred to the group, otherwise
897 * if there are mutiple queues in the group, each can dispatch
898 * a single request on seeky media and cause lots of seek time
899 * and group will never know it.
900 */
901 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
902 1);
903 } else {
904 slice_used = jiffies - cfqq->slice_start;
f75edf2d
VG
905 if (slice_used > cfqq->allocated_slice)
906 slice_used = cfqq->allocated_slice;
dae739eb
VG
907 }
908
9a0785b0 909 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u", slice_used);
dae739eb
VG
910 return slice_used;
911}
912
913static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
e5ff082e 914 struct cfq_queue *cfqq)
dae739eb
VG
915{
916 struct cfq_rb_root *st = &cfqd->grp_service_tree;
f26bd1f0
VG
917 unsigned int used_sl, charge_sl;
918 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
919 - cfqg->service_tree_idle.count;
920
921 BUG_ON(nr_sync < 0);
922 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
dae739eb 923
f26bd1f0
VG
924 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
925 charge_sl = cfqq->allocated_slice;
dae739eb
VG
926
927 /* Can't update vdisktime while group is on service tree */
928 cfq_rb_erase(&cfqg->rb_node, st);
f26bd1f0 929 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
dae739eb
VG
930 __cfq_group_service_tree_add(st, cfqg);
931
932 /* This group is being expired. Save the context */
933 if (time_after(cfqd->workload_expires, jiffies)) {
934 cfqg->saved_workload_slice = cfqd->workload_expires
935 - jiffies;
936 cfqg->saved_workload = cfqd->serving_type;
937 cfqg->saved_serving_prio = cfqd->serving_prio;
938 } else
939 cfqg->saved_workload_slice = 0;
2868ef7b
VG
940
941 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
942 st->min_vdisktime);
e98ef89b
VG
943 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
944 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1fa8f6d6
VG
945}
946
25fb5169
VG
947#ifdef CONFIG_CFQ_GROUP_IOSCHED
948static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
949{
950 if (blkg)
951 return container_of(blkg, struct cfq_group, blkg);
952 return NULL;
953}
954
f8d461d6
VG
955void
956cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
957{
958 cfqg_of_blkg(blkg)->weight = weight;
959}
960
25fb5169
VG
961static struct cfq_group *
962cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
963{
964 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
965 struct cfq_group *cfqg = NULL;
966 void *key = cfqd;
967 int i, j;
968 struct cfq_rb_root *st;
22084190
VG
969 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
970 unsigned int major, minor;
25fb5169 971
25fb5169 972 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
a74b2ada
RB
973 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
974 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
975 cfqg->blkg.dev = MKDEV(major, minor);
976 goto done;
977 }
25fb5169
VG
978 if (cfqg || !create)
979 goto done;
980
981 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
982 if (!cfqg)
983 goto done;
984
25fb5169
VG
985 for_each_cfqg_st(cfqg, i, j, st)
986 *st = CFQ_RB_ROOT;
987 RB_CLEAR_NODE(&cfqg->rb_node);
988
b1c35769
VG
989 /*
990 * Take the initial reference that will be released on destroy
991 * This can be thought of a joint reference by cgroup and
992 * elevator which will be dropped by either elevator exit
993 * or cgroup deletion path depending on who is exiting first.
994 */
995 atomic_set(&cfqg->ref, 1);
996
25fb5169 997 /* Add group onto cgroup list */
22084190 998 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
e98ef89b 999 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
22084190 1000 MKDEV(major, minor));
34d0f179 1001 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
25fb5169
VG
1002
1003 /* Add group on cfqd list */
1004 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1005
1006done:
25fb5169
VG
1007 return cfqg;
1008}
1009
1010/*
1011 * Search for the cfq group current task belongs to. If create = 1, then also
1012 * create the cfq group if it does not exist. request_queue lock must be held.
1013 */
1014static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1015{
1016 struct cgroup *cgroup;
1017 struct cfq_group *cfqg = NULL;
1018
1019 rcu_read_lock();
1020 cgroup = task_cgroup(current, blkio_subsys_id);
1021 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1022 if (!cfqg && create)
1023 cfqg = &cfqd->root_group;
1024 rcu_read_unlock();
1025 return cfqg;
1026}
1027
7f1dc8a2
VG
1028static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1029{
1030 atomic_inc(&cfqg->ref);
1031 return cfqg;
1032}
1033
25fb5169
VG
1034static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1035{
1036 /* Currently, all async queues are mapped to root group */
1037 if (!cfq_cfqq_sync(cfqq))
1038 cfqg = &cfqq->cfqd->root_group;
1039
1040 cfqq->cfqg = cfqg;
b1c35769
VG
1041 /* cfqq reference on cfqg */
1042 atomic_inc(&cfqq->cfqg->ref);
1043}
1044
1045static void cfq_put_cfqg(struct cfq_group *cfqg)
1046{
1047 struct cfq_rb_root *st;
1048 int i, j;
1049
1050 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1051 if (!atomic_dec_and_test(&cfqg->ref))
1052 return;
1053 for_each_cfqg_st(cfqg, i, j, st)
1054 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1055 kfree(cfqg);
1056}
1057
1058static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1059{
1060 /* Something wrong if we are trying to remove same group twice */
1061 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1062
1063 hlist_del_init(&cfqg->cfqd_node);
1064
1065 /*
1066 * Put the reference taken at the time of creation so that when all
1067 * queues are gone, group can be destroyed.
1068 */
1069 cfq_put_cfqg(cfqg);
1070}
1071
1072static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1073{
1074 struct hlist_node *pos, *n;
1075 struct cfq_group *cfqg;
1076
1077 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1078 /*
1079 * If cgroup removal path got to blk_group first and removed
1080 * it from cgroup list, then it will take care of destroying
1081 * cfqg also.
1082 */
e98ef89b 1083 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
b1c35769
VG
1084 cfq_destroy_cfqg(cfqd, cfqg);
1085 }
25fb5169 1086}
b1c35769
VG
1087
1088/*
1089 * Blk cgroup controller notification saying that blkio_group object is being
1090 * delinked as associated cgroup object is going away. That also means that
1091 * no new IO will come in this group. So get rid of this group as soon as
1092 * any pending IO in the group is finished.
1093 *
1094 * This function is called under rcu_read_lock(). key is the rcu protected
1095 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1096 * read lock.
1097 *
1098 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1099 * it should not be NULL as even if elevator was exiting, cgroup deltion
1100 * path got to it first.
1101 */
1102void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1103{
1104 unsigned long flags;
1105 struct cfq_data *cfqd = key;
1106
1107 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1108 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1109 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1110}
1111
25fb5169
VG
1112#else /* GROUP_IOSCHED */
1113static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1114{
1115 return &cfqd->root_group;
1116}
7f1dc8a2
VG
1117
1118static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1119{
50eaeb32 1120 return cfqg;
7f1dc8a2
VG
1121}
1122
25fb5169
VG
1123static inline void
1124cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1125 cfqq->cfqg = cfqg;
1126}
1127
b1c35769
VG
1128static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1129static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1130
25fb5169
VG
1131#endif /* GROUP_IOSCHED */
1132
498d3aa2 1133/*
c0324a02 1134 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
1135 * requests waiting to be processed. It is sorted in the order that
1136 * we will service the queues.
1137 */
a36e71f9 1138static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1139 bool add_front)
d9e7620e 1140{
0871714e
JA
1141 struct rb_node **p, *parent;
1142 struct cfq_queue *__cfqq;
d9e7620e 1143 unsigned long rb_key;
c0324a02 1144 struct cfq_rb_root *service_tree;
498d3aa2 1145 int left;
dae739eb 1146 int new_cfqq = 1;
ae30c286
VG
1147 int group_changed = 0;
1148
1149#ifdef CONFIG_CFQ_GROUP_IOSCHED
1150 if (!cfqd->cfq_group_isolation
1151 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1152 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1153 /* Move this cfq to root group */
1154 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1155 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1156 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1157 cfqq->orig_cfqg = cfqq->cfqg;
1158 cfqq->cfqg = &cfqd->root_group;
1159 atomic_inc(&cfqd->root_group.ref);
1160 group_changed = 1;
1161 } else if (!cfqd->cfq_group_isolation
1162 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1163 /* cfqq is sequential now needs to go to its original group */
1164 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1165 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1166 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1167 cfq_put_cfqg(cfqq->cfqg);
1168 cfqq->cfqg = cfqq->orig_cfqg;
1169 cfqq->orig_cfqg = NULL;
1170 group_changed = 1;
1171 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1172 }
1173#endif
d9e7620e 1174
cdb16e8f 1175 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
65b32a57 1176 cfqq_type(cfqq));
0871714e
JA
1177 if (cfq_class_idle(cfqq)) {
1178 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 1179 parent = rb_last(&service_tree->rb);
0871714e
JA
1180 if (parent && parent != &cfqq->rb_node) {
1181 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1182 rb_key += __cfqq->rb_key;
1183 } else
1184 rb_key += jiffies;
1185 } else if (!add_front) {
b9c8946b
JA
1186 /*
1187 * Get our rb key offset. Subtract any residual slice
1188 * value carried from last service. A negative resid
1189 * count indicates slice overrun, and this should position
1190 * the next service time further away in the tree.
1191 */
edd75ffd 1192 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 1193 rb_key -= cfqq->slice_resid;
edd75ffd 1194 cfqq->slice_resid = 0;
48e025e6
CZ
1195 } else {
1196 rb_key = -HZ;
aa6f6a3d 1197 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
1198 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1199 }
1da177e4 1200
d9e7620e 1201 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 1202 new_cfqq = 0;
99f9628a 1203 /*
d9e7620e 1204 * same position, nothing more to do
99f9628a 1205 */
c0324a02
CZ
1206 if (rb_key == cfqq->rb_key &&
1207 cfqq->service_tree == service_tree)
d9e7620e 1208 return;
1da177e4 1209
aa6f6a3d
CZ
1210 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1211 cfqq->service_tree = NULL;
1da177e4 1212 }
d9e7620e 1213
498d3aa2 1214 left = 1;
0871714e 1215 parent = NULL;
aa6f6a3d
CZ
1216 cfqq->service_tree = service_tree;
1217 p = &service_tree->rb.rb_node;
d9e7620e 1218 while (*p) {
67060e37 1219 struct rb_node **n;
cc09e299 1220
d9e7620e
JA
1221 parent = *p;
1222 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1223
0c534e0a 1224 /*
c0324a02 1225 * sort by key, that represents service time.
0c534e0a 1226 */
c0324a02 1227 if (time_before(rb_key, __cfqq->rb_key))
67060e37 1228 n = &(*p)->rb_left;
c0324a02 1229 else {
67060e37 1230 n = &(*p)->rb_right;
cc09e299 1231 left = 0;
c0324a02 1232 }
67060e37
JA
1233
1234 p = n;
d9e7620e
JA
1235 }
1236
cc09e299 1237 if (left)
aa6f6a3d 1238 service_tree->left = &cfqq->rb_node;
cc09e299 1239
d9e7620e
JA
1240 cfqq->rb_key = rb_key;
1241 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
1242 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1243 service_tree->count++;
ae30c286 1244 if ((add_front || !new_cfqq) && !group_changed)
dae739eb 1245 return;
1fa8f6d6 1246 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1da177e4
LT
1247}
1248
a36e71f9 1249static struct cfq_queue *
f2d1f0ae
JA
1250cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1251 sector_t sector, struct rb_node **ret_parent,
1252 struct rb_node ***rb_link)
a36e71f9 1253{
a36e71f9
JA
1254 struct rb_node **p, *parent;
1255 struct cfq_queue *cfqq = NULL;
1256
1257 parent = NULL;
1258 p = &root->rb_node;
1259 while (*p) {
1260 struct rb_node **n;
1261
1262 parent = *p;
1263 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1264
1265 /*
1266 * Sort strictly based on sector. Smallest to the left,
1267 * largest to the right.
1268 */
2e46e8b2 1269 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 1270 n = &(*p)->rb_right;
2e46e8b2 1271 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
1272 n = &(*p)->rb_left;
1273 else
1274 break;
1275 p = n;
3ac6c9f8 1276 cfqq = NULL;
a36e71f9
JA
1277 }
1278
1279 *ret_parent = parent;
1280 if (rb_link)
1281 *rb_link = p;
3ac6c9f8 1282 return cfqq;
a36e71f9
JA
1283}
1284
1285static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1286{
a36e71f9
JA
1287 struct rb_node **p, *parent;
1288 struct cfq_queue *__cfqq;
1289
f2d1f0ae
JA
1290 if (cfqq->p_root) {
1291 rb_erase(&cfqq->p_node, cfqq->p_root);
1292 cfqq->p_root = NULL;
1293 }
a36e71f9
JA
1294
1295 if (cfq_class_idle(cfqq))
1296 return;
1297 if (!cfqq->next_rq)
1298 return;
1299
f2d1f0ae 1300 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1301 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1302 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1303 if (!__cfqq) {
1304 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1305 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1306 } else
1307 cfqq->p_root = NULL;
a36e71f9
JA
1308}
1309
498d3aa2
JA
1310/*
1311 * Update cfqq's position in the service tree.
1312 */
edd75ffd 1313static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1314{
6d048f53
JA
1315 /*
1316 * Resorting requires the cfqq to be on the RR list already.
1317 */
a36e71f9 1318 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1319 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1320 cfq_prio_tree_add(cfqd, cfqq);
1321 }
6d048f53
JA
1322}
1323
1da177e4
LT
1324/*
1325 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1326 * the pending list according to last request service
1da177e4 1327 */
febffd61 1328static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1329{
7b679138 1330 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1331 BUG_ON(cfq_cfqq_on_rr(cfqq));
1332 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
1333 cfqd->busy_queues++;
1334
edd75ffd 1335 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1336}
1337
498d3aa2
JA
1338/*
1339 * Called when the cfqq no longer has requests pending, remove it from
1340 * the service tree.
1341 */
febffd61 1342static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1343{
7b679138 1344 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1345 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1346 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1347
aa6f6a3d
CZ
1348 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1349 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1350 cfqq->service_tree = NULL;
1351 }
f2d1f0ae
JA
1352 if (cfqq->p_root) {
1353 rb_erase(&cfqq->p_node, cfqq->p_root);
1354 cfqq->p_root = NULL;
1355 }
d9e7620e 1356
1fa8f6d6 1357 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1da177e4
LT
1358 BUG_ON(!cfqd->busy_queues);
1359 cfqd->busy_queues--;
1360}
1361
1362/*
1363 * rb tree support functions
1364 */
febffd61 1365static void cfq_del_rq_rb(struct request *rq)
1da177e4 1366{
5e705374 1367 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1368 const int sync = rq_is_sync(rq);
1da177e4 1369
b4878f24
JA
1370 BUG_ON(!cfqq->queued[sync]);
1371 cfqq->queued[sync]--;
1da177e4 1372
5e705374 1373 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1374
f04a6424
VG
1375 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1376 /*
1377 * Queue will be deleted from service tree when we actually
1378 * expire it later. Right now just remove it from prio tree
1379 * as it is empty.
1380 */
1381 if (cfqq->p_root) {
1382 rb_erase(&cfqq->p_node, cfqq->p_root);
1383 cfqq->p_root = NULL;
1384 }
1385 }
1da177e4
LT
1386}
1387
5e705374 1388static void cfq_add_rq_rb(struct request *rq)
1da177e4 1389{
5e705374 1390 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1391 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 1392 struct request *__alias, *prev;
1da177e4 1393
5380a101 1394 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
1395
1396 /*
1397 * looks a little odd, but the first insert might return an alias.
1398 * if that happens, put the alias on the dispatch list
1399 */
21183b07 1400 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 1401 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
1402
1403 if (!cfq_cfqq_on_rr(cfqq))
1404 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1405
1406 /*
1407 * check if this request is a better next-serve candidate
1408 */
a36e71f9 1409 prev = cfqq->next_rq;
cf7c25cf 1410 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1411
1412 /*
1413 * adjust priority tree position, if ->next_rq changes
1414 */
1415 if (prev != cfqq->next_rq)
1416 cfq_prio_tree_add(cfqd, cfqq);
1417
5044eed4 1418 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1419}
1420
febffd61 1421static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1422{
5380a101
JA
1423 elv_rb_del(&cfqq->sort_list, rq);
1424 cfqq->queued[rq_is_sync(rq)]--;
e98ef89b
VG
1425 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1426 rq_data_dir(rq), rq_is_sync(rq));
5e705374 1427 cfq_add_rq_rb(rq);
e98ef89b 1428 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
7f1dc8a2
VG
1429 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1430 rq_is_sync(rq));
1da177e4
LT
1431}
1432
206dc69b
JA
1433static struct request *
1434cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1435{
206dc69b 1436 struct task_struct *tsk = current;
91fac317 1437 struct cfq_io_context *cic;
206dc69b 1438 struct cfq_queue *cfqq;
1da177e4 1439
4ac845a2 1440 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1441 if (!cic)
1442 return NULL;
1443
1444 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1445 if (cfqq) {
1446 sector_t sector = bio->bi_sector + bio_sectors(bio);
1447
21183b07 1448 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1449 }
1da177e4 1450
1da177e4
LT
1451 return NULL;
1452}
1453
165125e1 1454static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1455{
22e2c507 1456 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1457
53c583d2 1458 cfqd->rq_in_driver++;
7b679138 1459 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
53c583d2 1460 cfqd->rq_in_driver);
25776e35 1461
5b93629b 1462 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1463}
1464
165125e1 1465static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1466{
b4878f24
JA
1467 struct cfq_data *cfqd = q->elevator->elevator_data;
1468
53c583d2
CZ
1469 WARN_ON(!cfqd->rq_in_driver);
1470 cfqd->rq_in_driver--;
7b679138 1471 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
53c583d2 1472 cfqd->rq_in_driver);
1da177e4
LT
1473}
1474
b4878f24 1475static void cfq_remove_request(struct request *rq)
1da177e4 1476{
5e705374 1477 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1478
5e705374
JA
1479 if (cfqq->next_rq == rq)
1480 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1481
b4878f24 1482 list_del_init(&rq->queuelist);
5e705374 1483 cfq_del_rq_rb(rq);
374f84ac 1484
45333d5a 1485 cfqq->cfqd->rq_queued--;
e98ef89b
VG
1486 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1487 rq_data_dir(rq), rq_is_sync(rq));
7b6d91da 1488 if (rq->cmd_flags & REQ_META) {
374f84ac
JA
1489 WARN_ON(!cfqq->meta_pending);
1490 cfqq->meta_pending--;
1491 }
1da177e4
LT
1492}
1493
165125e1
JA
1494static int cfq_merge(struct request_queue *q, struct request **req,
1495 struct bio *bio)
1da177e4
LT
1496{
1497 struct cfq_data *cfqd = q->elevator->elevator_data;
1498 struct request *__rq;
1da177e4 1499
206dc69b 1500 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1501 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1502 *req = __rq;
1503 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1504 }
1505
1506 return ELEVATOR_NO_MERGE;
1da177e4
LT
1507}
1508
165125e1 1509static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1510 int type)
1da177e4 1511{
21183b07 1512 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1513 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1514
5e705374 1515 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1516 }
1da177e4
LT
1517}
1518
812d4026
DS
1519static void cfq_bio_merged(struct request_queue *q, struct request *req,
1520 struct bio *bio)
1521{
e98ef89b
VG
1522 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1523 bio_data_dir(bio), cfq_bio_sync(bio));
812d4026
DS
1524}
1525
1da177e4 1526static void
165125e1 1527cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1528 struct request *next)
1529{
cf7c25cf 1530 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
1531 /*
1532 * reposition in fifo if next is older than rq
1533 */
1534 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1535 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1536 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1537 rq_set_fifo_time(rq, rq_fifo_time(next));
1538 }
22e2c507 1539
cf7c25cf
CZ
1540 if (cfqq->next_rq == next)
1541 cfqq->next_rq = rq;
b4878f24 1542 cfq_remove_request(next);
e98ef89b
VG
1543 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1544 rq_data_dir(next), rq_is_sync(next));
22e2c507
JA
1545}
1546
165125e1 1547static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1548 struct bio *bio)
1549{
1550 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1551 struct cfq_io_context *cic;
da775265 1552 struct cfq_queue *cfqq;
da775265
JA
1553
1554 /*
ec8acb69 1555 * Disallow merge of a sync bio into an async request.
da775265 1556 */
91fac317 1557 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1558 return false;
da775265
JA
1559
1560 /*
719d3402
JA
1561 * Lookup the cfqq that this bio will be queued with. Allow
1562 * merge only if rq is queued there.
da775265 1563 */
4ac845a2 1564 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1565 if (!cic)
a6151c3a 1566 return false;
719d3402 1567
91fac317 1568 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1569 return cfqq == RQ_CFQQ(rq);
da775265
JA
1570}
1571
812df48d
DS
1572static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1573{
1574 del_timer(&cfqd->idle_slice_timer);
e98ef89b 1575 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
812df48d
DS
1576}
1577
febffd61
JA
1578static void __cfq_set_active_queue(struct cfq_data *cfqd,
1579 struct cfq_queue *cfqq)
22e2c507
JA
1580{
1581 if (cfqq) {
b1ffe737
DS
1582 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1583 cfqd->serving_prio, cfqd->serving_type);
e98ef89b 1584 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
dae739eb
VG
1585 cfqq->slice_start = 0;
1586 cfqq->dispatch_start = jiffies;
f75edf2d 1587 cfqq->allocated_slice = 0;
22e2c507 1588 cfqq->slice_end = 0;
2f5cb738
JA
1589 cfqq->slice_dispatch = 0;
1590
2f5cb738 1591 cfq_clear_cfqq_wait_request(cfqq);
b029195d 1592 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
1593 cfq_clear_cfqq_must_alloc_slice(cfqq);
1594 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 1595 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738 1596
812df48d 1597 cfq_del_timer(cfqd, cfqq);
22e2c507
JA
1598 }
1599
1600 cfqd->active_queue = cfqq;
1601}
1602
7b14e3b5
JA
1603/*
1604 * current cfqq expired its slice (or was too idle), select new one
1605 */
1606static void
1607__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e5ff082e 1608 bool timed_out)
7b14e3b5 1609{
7b679138
JA
1610 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1611
7b14e3b5 1612 if (cfq_cfqq_wait_request(cfqq))
812df48d 1613 cfq_del_timer(cfqd, cfqq);
7b14e3b5 1614
7b14e3b5 1615 cfq_clear_cfqq_wait_request(cfqq);
f75edf2d 1616 cfq_clear_cfqq_wait_busy(cfqq);
7b14e3b5 1617
ae54abed
SL
1618 /*
1619 * If this cfqq is shared between multiple processes, check to
1620 * make sure that those processes are still issuing I/Os within
1621 * the mean seek distance. If not, it may be time to break the
1622 * queues apart again.
1623 */
1624 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1625 cfq_mark_cfqq_split_coop(cfqq);
1626
7b14e3b5 1627 /*
6084cdda 1628 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1629 */
7b679138 1630 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 1631 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1632 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1633 }
7b14e3b5 1634
e5ff082e 1635 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
dae739eb 1636
f04a6424
VG
1637 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1638 cfq_del_cfqq_rr(cfqd, cfqq);
1639
edd75ffd 1640 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1641
1642 if (cfqq == cfqd->active_queue)
1643 cfqd->active_queue = NULL;
1644
dae739eb
VG
1645 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1646 cfqd->grp_service_tree.active = NULL;
1647
7b14e3b5
JA
1648 if (cfqd->active_cic) {
1649 put_io_context(cfqd->active_cic->ioc);
1650 cfqd->active_cic = NULL;
1651 }
7b14e3b5
JA
1652}
1653
e5ff082e 1654static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1655{
1656 struct cfq_queue *cfqq = cfqd->active_queue;
1657
1658 if (cfqq)
e5ff082e 1659 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1660}
1661
498d3aa2
JA
1662/*
1663 * Get next queue for service. Unless we have a queue preemption,
1664 * we'll simply select the first cfqq in the service tree.
1665 */
6d048f53 1666static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1667{
c0324a02 1668 struct cfq_rb_root *service_tree =
cdb16e8f 1669 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
65b32a57 1670 cfqd->serving_type);
d9e7620e 1671
f04a6424
VG
1672 if (!cfqd->rq_queued)
1673 return NULL;
1674
1fa8f6d6
VG
1675 /* There is nothing to dispatch */
1676 if (!service_tree)
1677 return NULL;
c0324a02
CZ
1678 if (RB_EMPTY_ROOT(&service_tree->rb))
1679 return NULL;
1680 return cfq_rb_first(service_tree);
6d048f53
JA
1681}
1682
f04a6424
VG
1683static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1684{
25fb5169 1685 struct cfq_group *cfqg;
f04a6424
VG
1686 struct cfq_queue *cfqq;
1687 int i, j;
1688 struct cfq_rb_root *st;
1689
1690 if (!cfqd->rq_queued)
1691 return NULL;
1692
25fb5169
VG
1693 cfqg = cfq_get_next_cfqg(cfqd);
1694 if (!cfqg)
1695 return NULL;
1696
f04a6424
VG
1697 for_each_cfqg_st(cfqg, i, j, st)
1698 if ((cfqq = cfq_rb_first(st)) != NULL)
1699 return cfqq;
1700 return NULL;
1701}
1702
498d3aa2
JA
1703/*
1704 * Get and set a new active queue for service.
1705 */
a36e71f9
JA
1706static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1707 struct cfq_queue *cfqq)
6d048f53 1708{
e00ef799 1709 if (!cfqq)
a36e71f9 1710 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1711
22e2c507 1712 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1713 return cfqq;
22e2c507
JA
1714}
1715
d9e7620e
JA
1716static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1717 struct request *rq)
1718{
83096ebf
TH
1719 if (blk_rq_pos(rq) >= cfqd->last_position)
1720 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1721 else
83096ebf 1722 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1723}
1724
b2c18e1e 1725static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e9ce335d 1726 struct request *rq)
6d048f53 1727{
e9ce335d 1728 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
6d048f53
JA
1729}
1730
a36e71f9
JA
1731static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1732 struct cfq_queue *cur_cfqq)
1733{
f2d1f0ae 1734 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1735 struct rb_node *parent, *node;
1736 struct cfq_queue *__cfqq;
1737 sector_t sector = cfqd->last_position;
1738
1739 if (RB_EMPTY_ROOT(root))
1740 return NULL;
1741
1742 /*
1743 * First, if we find a request starting at the end of the last
1744 * request, choose it.
1745 */
f2d1f0ae 1746 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1747 if (__cfqq)
1748 return __cfqq;
1749
1750 /*
1751 * If the exact sector wasn't found, the parent of the NULL leaf
1752 * will contain the closest sector.
1753 */
1754 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
e9ce335d 1755 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1756 return __cfqq;
1757
2e46e8b2 1758 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1759 node = rb_next(&__cfqq->p_node);
1760 else
1761 node = rb_prev(&__cfqq->p_node);
1762 if (!node)
1763 return NULL;
1764
1765 __cfqq = rb_entry(node, struct cfq_queue, p_node);
e9ce335d 1766 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1767 return __cfqq;
1768
1769 return NULL;
1770}
1771
1772/*
1773 * cfqd - obvious
1774 * cur_cfqq - passed in so that we don't decide that the current queue is
1775 * closely cooperating with itself.
1776 *
1777 * So, basically we're assuming that that cur_cfqq has dispatched at least
1778 * one request, and that cfqd->last_position reflects a position on the disk
1779 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1780 * assumption.
1781 */
1782static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1783 struct cfq_queue *cur_cfqq)
6d048f53 1784{
a36e71f9
JA
1785 struct cfq_queue *cfqq;
1786
39c01b21
DS
1787 if (cfq_class_idle(cur_cfqq))
1788 return NULL;
e6c5bc73
JM
1789 if (!cfq_cfqq_sync(cur_cfqq))
1790 return NULL;
1791 if (CFQQ_SEEKY(cur_cfqq))
1792 return NULL;
1793
b9d8f4c7
GJ
1794 /*
1795 * Don't search priority tree if it's the only queue in the group.
1796 */
1797 if (cur_cfqq->cfqg->nr_cfqq == 1)
1798 return NULL;
1799
6d048f53 1800 /*
d9e7620e
JA
1801 * We should notice if some of the queues are cooperating, eg
1802 * working closely on the same area of the disk. In that case,
1803 * we can group them together and don't waste time idling.
6d048f53 1804 */
a36e71f9
JA
1805 cfqq = cfqq_close(cfqd, cur_cfqq);
1806 if (!cfqq)
1807 return NULL;
1808
8682e1f1
VG
1809 /* If new queue belongs to different cfq_group, don't choose it */
1810 if (cur_cfqq->cfqg != cfqq->cfqg)
1811 return NULL;
1812
df5fe3e8
JM
1813 /*
1814 * It only makes sense to merge sync queues.
1815 */
1816 if (!cfq_cfqq_sync(cfqq))
1817 return NULL;
e6c5bc73
JM
1818 if (CFQQ_SEEKY(cfqq))
1819 return NULL;
df5fe3e8 1820
c0324a02
CZ
1821 /*
1822 * Do not merge queues of different priority classes
1823 */
1824 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1825 return NULL;
1826
a36e71f9 1827 return cfqq;
6d048f53
JA
1828}
1829
a6d44e98
CZ
1830/*
1831 * Determine whether we should enforce idle window for this queue.
1832 */
1833
1834static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1835{
1836 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1837 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1838
f04a6424
VG
1839 BUG_ON(!service_tree);
1840 BUG_ON(!service_tree->count);
1841
b6508c16
VG
1842 if (!cfqd->cfq_slice_idle)
1843 return false;
1844
a6d44e98
CZ
1845 /* We never do for idle class queues. */
1846 if (prio == IDLE_WORKLOAD)
1847 return false;
1848
1849 /* We do for queues that were marked with idle window flag. */
3c764b7a
SL
1850 if (cfq_cfqq_idle_window(cfqq) &&
1851 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
a6d44e98
CZ
1852 return true;
1853
1854 /*
1855 * Otherwise, we do only if they are the last ones
1856 * in their service tree.
1857 */
b1ffe737
DS
1858 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1859 return 1;
1860 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1861 service_tree->count);
1862 return 0;
a6d44e98
CZ
1863}
1864
6d048f53 1865static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1866{
1792669c 1867 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1868 struct cfq_io_context *cic;
7b14e3b5
JA
1869 unsigned long sl;
1870
a68bbddb 1871 /*
f7d7b7a7
JA
1872 * SSD device without seek penalty, disable idling. But only do so
1873 * for devices that support queuing, otherwise we still have a problem
1874 * with sync vs async workloads.
a68bbddb 1875 */
f7d7b7a7 1876 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1877 return;
1878
dd67d051 1879 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1880 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1881
1882 /*
1883 * idle is disabled, either manually or by past process history
1884 */
b6508c16 1885 if (!cfq_should_idle(cfqd, cfqq))
6d048f53
JA
1886 return;
1887
7b679138 1888 /*
8e550632 1889 * still active requests from this queue, don't idle
7b679138 1890 */
8e550632 1891 if (cfqq->dispatched)
7b679138
JA
1892 return;
1893
22e2c507
JA
1894 /*
1895 * task has exited, don't wait
1896 */
206dc69b 1897 cic = cfqd->active_cic;
66dac98e 1898 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1899 return;
1900
355b659c
CZ
1901 /*
1902 * If our average think time is larger than the remaining time
1903 * slice, then don't idle. This avoids overrunning the allotted
1904 * time slice.
1905 */
1906 if (sample_valid(cic->ttime_samples) &&
b1ffe737
DS
1907 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1908 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1909 cic->ttime_mean);
355b659c 1910 return;
b1ffe737 1911 }
355b659c 1912
3b18152c 1913 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1914
6d048f53 1915 sl = cfqd->cfq_slice_idle;
206dc69b 1916
7b14e3b5 1917 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
e98ef89b 1918 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
9481ffdc 1919 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1920}
1921
498d3aa2
JA
1922/*
1923 * Move request from internal lists to the request queue dispatch list.
1924 */
165125e1 1925static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1926{
3ed9a296 1927 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1928 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1929
7b679138
JA
1930 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1931
06d21886 1932 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1933 cfq_remove_request(rq);
6d048f53 1934 cfqq->dispatched++;
5380a101 1935 elv_dispatch_sort(q, rq);
3ed9a296 1936
53c583d2 1937 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
e98ef89b 1938 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
84c124da 1939 rq_data_dir(rq), rq_is_sync(rq));
1da177e4
LT
1940}
1941
1942/*
1943 * return expired entry, or NULL to just start from scratch in rbtree
1944 */
febffd61 1945static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1946{
30996f40 1947 struct request *rq = NULL;
1da177e4 1948
3b18152c 1949 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1950 return NULL;
cb887411
JA
1951
1952 cfq_mark_cfqq_fifo_expire(cfqq);
1953
89850f7e
JA
1954 if (list_empty(&cfqq->fifo))
1955 return NULL;
1da177e4 1956
89850f7e 1957 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1958 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1959 rq = NULL;
1da177e4 1960
30996f40 1961 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1962 return rq;
1da177e4
LT
1963}
1964
22e2c507
JA
1965static inline int
1966cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1967{
1968 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1969
22e2c507 1970 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1971
22e2c507 1972 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1973}
1974
df5fe3e8
JM
1975/*
1976 * Must be called with the queue_lock held.
1977 */
1978static int cfqq_process_refs(struct cfq_queue *cfqq)
1979{
1980 int process_refs, io_refs;
1981
1982 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1983 process_refs = atomic_read(&cfqq->ref) - io_refs;
1984 BUG_ON(process_refs < 0);
1985 return process_refs;
1986}
1987
1988static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1989{
e6c5bc73 1990 int process_refs, new_process_refs;
df5fe3e8
JM
1991 struct cfq_queue *__cfqq;
1992
c10b61f0
JM
1993 /*
1994 * If there are no process references on the new_cfqq, then it is
1995 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
1996 * chain may have dropped their last reference (not just their
1997 * last process reference).
1998 */
1999 if (!cfqq_process_refs(new_cfqq))
2000 return;
2001
df5fe3e8
JM
2002 /* Avoid a circular list and skip interim queue merges */
2003 while ((__cfqq = new_cfqq->new_cfqq)) {
2004 if (__cfqq == cfqq)
2005 return;
2006 new_cfqq = __cfqq;
2007 }
2008
2009 process_refs = cfqq_process_refs(cfqq);
c10b61f0 2010 new_process_refs = cfqq_process_refs(new_cfqq);
df5fe3e8
JM
2011 /*
2012 * If the process for the cfqq has gone away, there is no
2013 * sense in merging the queues.
2014 */
c10b61f0 2015 if (process_refs == 0 || new_process_refs == 0)
df5fe3e8
JM
2016 return;
2017
e6c5bc73
JM
2018 /*
2019 * Merge in the direction of the lesser amount of work.
2020 */
e6c5bc73
JM
2021 if (new_process_refs >= process_refs) {
2022 cfqq->new_cfqq = new_cfqq;
2023 atomic_add(process_refs, &new_cfqq->ref);
2024 } else {
2025 new_cfqq->new_cfqq = cfqq;
2026 atomic_add(new_process_refs, &cfqq->ref);
2027 }
df5fe3e8
JM
2028}
2029
cdb16e8f 2030static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
65b32a57 2031 struct cfq_group *cfqg, enum wl_prio_t prio)
718eee05
CZ
2032{
2033 struct cfq_queue *queue;
2034 int i;
2035 bool key_valid = false;
2036 unsigned long lowest_key = 0;
2037 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2038
65b32a57
VG
2039 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2040 /* select the one with lowest rb_key */
2041 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
718eee05
CZ
2042 if (queue &&
2043 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2044 lowest_key = queue->rb_key;
2045 cur_best = i;
2046 key_valid = true;
2047 }
2048 }
2049
2050 return cur_best;
2051}
2052
cdb16e8f 2053static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05 2054{
718eee05
CZ
2055 unsigned slice;
2056 unsigned count;
cdb16e8f 2057 struct cfq_rb_root *st;
58ff82f3 2058 unsigned group_slice;
718eee05 2059
1fa8f6d6
VG
2060 if (!cfqg) {
2061 cfqd->serving_prio = IDLE_WORKLOAD;
2062 cfqd->workload_expires = jiffies + 1;
2063 return;
2064 }
2065
718eee05 2066 /* Choose next priority. RT > BE > IDLE */
58ff82f3 2067 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 2068 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 2069 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
2070 cfqd->serving_prio = BE_WORKLOAD;
2071 else {
2072 cfqd->serving_prio = IDLE_WORKLOAD;
2073 cfqd->workload_expires = jiffies + 1;
2074 return;
2075 }
2076
2077 /*
2078 * For RT and BE, we have to choose also the type
2079 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2080 * expiration time
2081 */
65b32a57 2082 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2083 count = st->count;
718eee05
CZ
2084
2085 /*
65b32a57 2086 * check workload expiration, and that we still have other queues ready
718eee05 2087 */
65b32a57 2088 if (count && !time_after(jiffies, cfqd->workload_expires))
718eee05
CZ
2089 return;
2090
2091 /* otherwise select new workload type */
2092 cfqd->serving_type =
65b32a57
VG
2093 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2094 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2095 count = st->count;
718eee05
CZ
2096
2097 /*
2098 * the workload slice is computed as a fraction of target latency
2099 * proportional to the number of queues in that workload, over
2100 * all the queues in the same priority class
2101 */
58ff82f3
VG
2102 group_slice = cfq_group_slice(cfqd, cfqg);
2103
2104 slice = group_slice * count /
2105 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2106 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05 2107
f26bd1f0
VG
2108 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2109 unsigned int tmp;
2110
2111 /*
2112 * Async queues are currently system wide. Just taking
2113 * proportion of queues with-in same group will lead to higher
2114 * async ratio system wide as generally root group is going
2115 * to have higher weight. A more accurate thing would be to
2116 * calculate system wide asnc/sync ratio.
2117 */
2118 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2119 tmp = tmp/cfqd->busy_queues;
2120 slice = min_t(unsigned, slice, tmp);
2121
718eee05
CZ
2122 /* async workload slice is scaled down according to
2123 * the sync/async slice ratio. */
2124 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
f26bd1f0 2125 } else
718eee05
CZ
2126 /* sync workload slice is at least 2 * cfq_slice_idle */
2127 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2128
2129 slice = max_t(unsigned, slice, CFQ_MIN_TT);
b1ffe737 2130 cfq_log(cfqd, "workload slice:%d", slice);
718eee05 2131 cfqd->workload_expires = jiffies + slice;
8e550632 2132 cfqd->noidle_tree_requires_idle = false;
718eee05
CZ
2133}
2134
1fa8f6d6
VG
2135static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2136{
2137 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 2138 struct cfq_group *cfqg;
1fa8f6d6
VG
2139
2140 if (RB_EMPTY_ROOT(&st->rb))
2141 return NULL;
25bc6b07
VG
2142 cfqg = cfq_rb_first_group(st);
2143 st->active = &cfqg->rb_node;
2144 update_min_vdisktime(st);
2145 return cfqg;
1fa8f6d6
VG
2146}
2147
cdb16e8f
VG
2148static void cfq_choose_cfqg(struct cfq_data *cfqd)
2149{
1fa8f6d6
VG
2150 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2151
2152 cfqd->serving_group = cfqg;
dae739eb
VG
2153
2154 /* Restore the workload type data */
2155 if (cfqg->saved_workload_slice) {
2156 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2157 cfqd->serving_type = cfqg->saved_workload;
2158 cfqd->serving_prio = cfqg->saved_serving_prio;
66ae2919
GJ
2159 } else
2160 cfqd->workload_expires = jiffies - 1;
2161
1fa8f6d6 2162 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
2163}
2164
22e2c507 2165/*
498d3aa2
JA
2166 * Select a queue for service. If we have a current active queue,
2167 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 2168 */
1b5ed5e1 2169static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 2170{
a36e71f9 2171 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 2172
22e2c507
JA
2173 cfqq = cfqd->active_queue;
2174 if (!cfqq)
2175 goto new_queue;
1da177e4 2176
f04a6424
VG
2177 if (!cfqd->rq_queued)
2178 return NULL;
c244bb50
VG
2179
2180 /*
2181 * We were waiting for group to get backlogged. Expire the queue
2182 */
2183 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2184 goto expire;
2185
22e2c507 2186 /*
6d048f53 2187 * The active queue has run out of time, expire it and select new.
22e2c507 2188 */
7667aa06
VG
2189 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2190 /*
2191 * If slice had not expired at the completion of last request
2192 * we might not have turned on wait_busy flag. Don't expire
2193 * the queue yet. Allow the group to get backlogged.
2194 *
2195 * The very fact that we have used the slice, that means we
2196 * have been idling all along on this queue and it should be
2197 * ok to wait for this request to complete.
2198 */
82bbbf28
VG
2199 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2200 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2201 cfqq = NULL;
7667aa06 2202 goto keep_queue;
82bbbf28 2203 } else
7667aa06
VG
2204 goto expire;
2205 }
1da177e4 2206
22e2c507 2207 /*
6d048f53
JA
2208 * The active queue has requests and isn't expired, allow it to
2209 * dispatch.
22e2c507 2210 */
dd67d051 2211 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2212 goto keep_queue;
6d048f53 2213
a36e71f9
JA
2214 /*
2215 * If another queue has a request waiting within our mean seek
2216 * distance, let it run. The expire code will check for close
2217 * cooperators and put the close queue at the front of the service
df5fe3e8 2218 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 2219 */
b3b6d040 2220 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
2221 if (new_cfqq) {
2222 if (!cfqq->new_cfqq)
2223 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 2224 goto expire;
df5fe3e8 2225 }
a36e71f9 2226
6d048f53
JA
2227 /*
2228 * No requests pending. If the active queue still has requests in
2229 * flight or is idling for a new request, allow either of these
2230 * conditions to happen (or time out) before selecting a new queue.
2231 */
cc197479 2232 if (timer_pending(&cfqd->idle_slice_timer) ||
a6d44e98 2233 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
caaa5f9f
JA
2234 cfqq = NULL;
2235 goto keep_queue;
22e2c507
JA
2236 }
2237
3b18152c 2238expire:
e5ff082e 2239 cfq_slice_expired(cfqd, 0);
3b18152c 2240new_queue:
718eee05
CZ
2241 /*
2242 * Current queue expired. Check if we have to switch to a new
2243 * service tree
2244 */
2245 if (!new_cfqq)
cdb16e8f 2246 cfq_choose_cfqg(cfqd);
718eee05 2247
a36e71f9 2248 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 2249keep_queue:
3b18152c 2250 return cfqq;
22e2c507
JA
2251}
2252
febffd61 2253static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
2254{
2255 int dispatched = 0;
2256
2257 while (cfqq->next_rq) {
2258 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2259 dispatched++;
2260 }
2261
2262 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
2263
2264 /* By default cfqq is not expired if it is empty. Do it explicitly */
e5ff082e 2265 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
2266 return dispatched;
2267}
2268
498d3aa2
JA
2269/*
2270 * Drain our current requests. Used for barriers and when switching
2271 * io schedulers on-the-fly.
2272 */
d9e7620e 2273static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 2274{
0871714e 2275 struct cfq_queue *cfqq;
d9e7620e 2276 int dispatched = 0;
cdb16e8f 2277
3440c49f 2278 /* Expire the timeslice of the current active queue first */
e5ff082e 2279 cfq_slice_expired(cfqd, 0);
3440c49f
DS
2280 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2281 __cfq_set_active_queue(cfqd, cfqq);
f04a6424 2282 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3440c49f 2283 }
1b5ed5e1 2284
1b5ed5e1
TH
2285 BUG_ON(cfqd->busy_queues);
2286
6923715a 2287 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
2288 return dispatched;
2289}
2290
abc3c744
SL
2291static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2292 struct cfq_queue *cfqq)
2293{
2294 /* the queue hasn't finished any request, can't estimate */
2295 if (cfq_cfqq_slice_new(cfqq))
2296 return 1;
2297 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2298 cfqq->slice_end))
2299 return 1;
2300
2301 return 0;
2302}
2303
0b182d61 2304static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 2305{
2f5cb738 2306 unsigned int max_dispatch;
22e2c507 2307
5ad531db
JA
2308 /*
2309 * Drain async requests before we start sync IO
2310 */
53c583d2 2311 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
0b182d61 2312 return false;
5ad531db 2313
2f5cb738
JA
2314 /*
2315 * If this is an async queue and we have sync IO in flight, let it wait
2316 */
53c583d2 2317 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
0b182d61 2318 return false;
2f5cb738 2319
abc3c744 2320 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2f5cb738
JA
2321 if (cfq_class_idle(cfqq))
2322 max_dispatch = 1;
b4878f24 2323
2f5cb738
JA
2324 /*
2325 * Does this cfqq already have too much IO in flight?
2326 */
2327 if (cfqq->dispatched >= max_dispatch) {
2328 /*
2329 * idle queue must always only have a single IO in flight
2330 */
3ed9a296 2331 if (cfq_class_idle(cfqq))
0b182d61 2332 return false;
3ed9a296 2333
2f5cb738
JA
2334 /*
2335 * We have other queues, don't allow more IO from this one
2336 */
abc3c744 2337 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
0b182d61 2338 return false;
9ede209e 2339
365722bb 2340 /*
474b18cc 2341 * Sole queue user, no limit
365722bb 2342 */
abc3c744
SL
2343 if (cfqd->busy_queues == 1)
2344 max_dispatch = -1;
2345 else
2346 /*
2347 * Normally we start throttling cfqq when cfq_quantum/2
2348 * requests have been dispatched. But we can drive
2349 * deeper queue depths at the beginning of slice
2350 * subjected to upper limit of cfq_quantum.
2351 * */
2352 max_dispatch = cfqd->cfq_quantum;
8e296755
JA
2353 }
2354
2355 /*
2356 * Async queues must wait a bit before being allowed dispatch.
2357 * We also ramp up the dispatch depth gradually for async IO,
2358 * based on the last sync IO we serviced
2359 */
963b72fc 2360 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
573412b2 2361 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
8e296755 2362 unsigned int depth;
365722bb 2363
61f0c1dc 2364 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
2365 if (!depth && !cfqq->dispatched)
2366 depth = 1;
8e296755
JA
2367 if (depth < max_dispatch)
2368 max_dispatch = depth;
2f5cb738 2369 }
3ed9a296 2370
0b182d61
JA
2371 /*
2372 * If we're below the current max, allow a dispatch
2373 */
2374 return cfqq->dispatched < max_dispatch;
2375}
2376
2377/*
2378 * Dispatch a request from cfqq, moving them to the request queue
2379 * dispatch list.
2380 */
2381static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2382{
2383 struct request *rq;
2384
2385 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2386
2387 if (!cfq_may_dispatch(cfqd, cfqq))
2388 return false;
2389
2390 /*
2391 * follow expired path, else get first next available
2392 */
2393 rq = cfq_check_fifo(cfqq);
2394 if (!rq)
2395 rq = cfqq->next_rq;
2396
2397 /*
2398 * insert request into driver dispatch list
2399 */
2400 cfq_dispatch_insert(cfqd->queue, rq);
2401
2402 if (!cfqd->active_cic) {
2403 struct cfq_io_context *cic = RQ_CIC(rq);
2404
2405 atomic_long_inc(&cic->ioc->refcount);
2406 cfqd->active_cic = cic;
2407 }
2408
2409 return true;
2410}
2411
2412/*
2413 * Find the cfqq that we need to service and move a request from that to the
2414 * dispatch list
2415 */
2416static int cfq_dispatch_requests(struct request_queue *q, int force)
2417{
2418 struct cfq_data *cfqd = q->elevator->elevator_data;
2419 struct cfq_queue *cfqq;
2420
2421 if (!cfqd->busy_queues)
2422 return 0;
2423
2424 if (unlikely(force))
2425 return cfq_forced_dispatch(cfqd);
2426
2427 cfqq = cfq_select_queue(cfqd);
2428 if (!cfqq)
8e296755
JA
2429 return 0;
2430
2f5cb738 2431 /*
0b182d61 2432 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2433 */
0b182d61
JA
2434 if (!cfq_dispatch_request(cfqd, cfqq))
2435 return 0;
2436
2f5cb738 2437 cfqq->slice_dispatch++;
b029195d 2438 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2439
2f5cb738
JA
2440 /*
2441 * expire an async queue immediately if it has used up its slice. idle
2442 * queue always expire after 1 dispatch round.
2443 */
2444 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2445 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2446 cfq_class_idle(cfqq))) {
2447 cfqq->slice_end = jiffies + 1;
e5ff082e 2448 cfq_slice_expired(cfqd, 0);
1da177e4
LT
2449 }
2450
b217a903 2451 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 2452 return 1;
1da177e4
LT
2453}
2454
1da177e4 2455/*
5e705374
JA
2456 * task holds one reference to the queue, dropped when task exits. each rq
2457 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4 2458 *
b1c35769 2459 * Each cfq queue took a reference on the parent group. Drop it now.
1da177e4
LT
2460 * queue lock must be held here.
2461 */
2462static void cfq_put_queue(struct cfq_queue *cfqq)
2463{
22e2c507 2464 struct cfq_data *cfqd = cfqq->cfqd;
878eaddd 2465 struct cfq_group *cfqg, *orig_cfqg;
22e2c507
JA
2466
2467 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
2468
2469 if (!atomic_dec_and_test(&cfqq->ref))
2470 return;
2471
7b679138 2472 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2473 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2474 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
b1c35769 2475 cfqg = cfqq->cfqg;
878eaddd 2476 orig_cfqg = cfqq->orig_cfqg;
1da177e4 2477
28f95cbc 2478 if (unlikely(cfqd->active_queue == cfqq)) {
e5ff082e 2479 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2480 cfq_schedule_dispatch(cfqd);
28f95cbc 2481 }
22e2c507 2482
f04a6424 2483 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 2484 kmem_cache_free(cfq_pool, cfqq);
b1c35769 2485 cfq_put_cfqg(cfqg);
878eaddd
VG
2486 if (orig_cfqg)
2487 cfq_put_cfqg(orig_cfqg);
1da177e4
LT
2488}
2489
d6de8be7
JA
2490/*
2491 * Must always be called with the rcu_read_lock() held
2492 */
07416d29
JA
2493static void
2494__call_for_each_cic(struct io_context *ioc,
2495 void (*func)(struct io_context *, struct cfq_io_context *))
2496{
2497 struct cfq_io_context *cic;
2498 struct hlist_node *n;
2499
2500 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2501 func(ioc, cic);
2502}
2503
4ac845a2 2504/*
34e6bbf2 2505 * Call func for each cic attached to this ioc.
4ac845a2 2506 */
34e6bbf2 2507static void
4ac845a2
JA
2508call_for_each_cic(struct io_context *ioc,
2509 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 2510{
4ac845a2 2511 rcu_read_lock();
07416d29 2512 __call_for_each_cic(ioc, func);
4ac845a2 2513 rcu_read_unlock();
34e6bbf2
FC
2514}
2515
2516static void cfq_cic_free_rcu(struct rcu_head *head)
2517{
2518 struct cfq_io_context *cic;
2519
2520 cic = container_of(head, struct cfq_io_context, rcu_head);
2521
2522 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 2523 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 2524
9a11b4ed
JA
2525 if (ioc_gone) {
2526 /*
2527 * CFQ scheduler is exiting, grab exit lock and check
2528 * the pending io context count. If it hits zero,
2529 * complete ioc_gone and set it back to NULL
2530 */
2531 spin_lock(&ioc_gone_lock);
245b2e70 2532 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
2533 complete(ioc_gone);
2534 ioc_gone = NULL;
2535 }
2536 spin_unlock(&ioc_gone_lock);
2537 }
34e6bbf2 2538}
4ac845a2 2539
34e6bbf2
FC
2540static void cfq_cic_free(struct cfq_io_context *cic)
2541{
2542 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
2543}
2544
2545static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2546{
2547 unsigned long flags;
bca4b914 2548 unsigned long dead_key = (unsigned long) cic->key;
4ac845a2 2549
bca4b914 2550 BUG_ON(!(dead_key & CIC_DEAD_KEY));
4ac845a2
JA
2551
2552 spin_lock_irqsave(&ioc->lock, flags);
80b15c73 2553 radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
ffc4e759 2554 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2555 spin_unlock_irqrestore(&ioc->lock, flags);
2556
34e6bbf2 2557 cfq_cic_free(cic);
4ac845a2
JA
2558}
2559
d6de8be7
JA
2560/*
2561 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2562 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2563 * and ->trim() which is called with the task lock held
2564 */
4ac845a2
JA
2565static void cfq_free_io_context(struct io_context *ioc)
2566{
4ac845a2 2567 /*
34e6bbf2
FC
2568 * ioc->refcount is zero here, or we are called from elv_unregister(),
2569 * so no more cic's are allowed to be linked into this ioc. So it
2570 * should be ok to iterate over the known list, we will see all cic's
2571 * since no new ones are added.
4ac845a2 2572 */
07416d29 2573 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
2574}
2575
d02a2c07 2576static void cfq_put_cooperator(struct cfq_queue *cfqq)
1da177e4 2577{
df5fe3e8
JM
2578 struct cfq_queue *__cfqq, *next;
2579
df5fe3e8
JM
2580 /*
2581 * If this queue was scheduled to merge with another queue, be
2582 * sure to drop the reference taken on that queue (and others in
2583 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2584 */
2585 __cfqq = cfqq->new_cfqq;
2586 while (__cfqq) {
2587 if (__cfqq == cfqq) {
2588 WARN(1, "cfqq->new_cfqq loop detected\n");
2589 break;
2590 }
2591 next = __cfqq->new_cfqq;
2592 cfq_put_queue(__cfqq);
2593 __cfqq = next;
2594 }
d02a2c07
SL
2595}
2596
2597static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2598{
2599 if (unlikely(cfqq == cfqd->active_queue)) {
2600 __cfq_slice_expired(cfqd, cfqq, 0);
2601 cfq_schedule_dispatch(cfqd);
2602 }
2603
2604 cfq_put_cooperator(cfqq);
df5fe3e8 2605
89850f7e
JA
2606 cfq_put_queue(cfqq);
2607}
22e2c507 2608
89850f7e
JA
2609static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2610 struct cfq_io_context *cic)
2611{
4faa3c81
FC
2612 struct io_context *ioc = cic->ioc;
2613
fc46379d 2614 list_del_init(&cic->queue_list);
4ac845a2
JA
2615
2616 /*
bca4b914 2617 * Make sure dead mark is seen for dead queues
4ac845a2 2618 */
fc46379d 2619 smp_wmb();
bca4b914 2620 cic->key = cfqd_dead_key(cfqd);
fc46379d 2621
4faa3c81
FC
2622 if (ioc->ioc_data == cic)
2623 rcu_assign_pointer(ioc->ioc_data, NULL);
2624
ff6657c6
JA
2625 if (cic->cfqq[BLK_RW_ASYNC]) {
2626 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2627 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2628 }
2629
ff6657c6
JA
2630 if (cic->cfqq[BLK_RW_SYNC]) {
2631 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2632 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2633 }
89850f7e
JA
2634}
2635
4ac845a2
JA
2636static void cfq_exit_single_io_context(struct io_context *ioc,
2637 struct cfq_io_context *cic)
89850f7e 2638{
bca4b914 2639 struct cfq_data *cfqd = cic_to_cfqd(cic);
89850f7e 2640
89850f7e 2641 if (cfqd) {
165125e1 2642 struct request_queue *q = cfqd->queue;
4ac845a2 2643 unsigned long flags;
89850f7e 2644
4ac845a2 2645 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
2646
2647 /*
2648 * Ensure we get a fresh copy of the ->key to prevent
2649 * race between exiting task and queue
2650 */
2651 smp_read_barrier_depends();
bca4b914 2652 if (cic->key == cfqd)
62c1fe9d
JA
2653 __cfq_exit_single_io_context(cfqd, cic);
2654
4ac845a2 2655 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 2656 }
1da177e4
LT
2657}
2658
498d3aa2
JA
2659/*
2660 * The process that ioc belongs to has exited, we need to clean up
2661 * and put the internal structures we have that belongs to that process.
2662 */
e2d74ac0 2663static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 2664{
4ac845a2 2665 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
2666}
2667
22e2c507 2668static struct cfq_io_context *
8267e268 2669cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2670{
b5deef90 2671 struct cfq_io_context *cic;
1da177e4 2672
94f6030c
CL
2673 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2674 cfqd->queue->node);
1da177e4 2675 if (cic) {
22e2c507 2676 cic->last_end_request = jiffies;
553698f9 2677 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 2678 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
2679 cic->dtor = cfq_free_io_context;
2680 cic->exit = cfq_exit_io_context;
245b2e70 2681 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
2682 }
2683
2684 return cic;
2685}
2686
fd0928df 2687static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2688{
2689 struct task_struct *tsk = current;
2690 int ioprio_class;
2691
3b18152c 2692 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2693 return;
2694
fd0928df 2695 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2696 switch (ioprio_class) {
fe094d98
JA
2697 default:
2698 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2699 case IOPRIO_CLASS_NONE:
2700 /*
6d63c275 2701 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2702 */
2703 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2704 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2705 break;
2706 case IOPRIO_CLASS_RT:
2707 cfqq->ioprio = task_ioprio(ioc);
2708 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2709 break;
2710 case IOPRIO_CLASS_BE:
2711 cfqq->ioprio = task_ioprio(ioc);
2712 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2713 break;
2714 case IOPRIO_CLASS_IDLE:
2715 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2716 cfqq->ioprio = 7;
2717 cfq_clear_cfqq_idle_window(cfqq);
2718 break;
22e2c507
JA
2719 }
2720
2721 /*
2722 * keep track of original prio settings in case we have to temporarily
2723 * elevate the priority of this queue
2724 */
2725 cfqq->org_ioprio = cfqq->ioprio;
2726 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 2727 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2728}
2729
febffd61 2730static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2731{
bca4b914 2732 struct cfq_data *cfqd = cic_to_cfqd(cic);
478a82b0 2733 struct cfq_queue *cfqq;
c1b707d2 2734 unsigned long flags;
35e6077c 2735
caaa5f9f
JA
2736 if (unlikely(!cfqd))
2737 return;
2738
c1b707d2 2739 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2740
ff6657c6 2741 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2742 if (cfqq) {
2743 struct cfq_queue *new_cfqq;
ff6657c6
JA
2744 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2745 GFP_ATOMIC);
caaa5f9f 2746 if (new_cfqq) {
ff6657c6 2747 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2748 cfq_put_queue(cfqq);
2749 }
22e2c507 2750 }
caaa5f9f 2751
ff6657c6 2752 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2753 if (cfqq)
2754 cfq_mark_cfqq_prio_changed(cfqq);
2755
c1b707d2 2756 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2757}
2758
fc46379d 2759static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2760{
4ac845a2 2761 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2762 ioc->ioprio_changed = 0;
22e2c507
JA
2763}
2764
d5036d77 2765static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2766 pid_t pid, bool is_sync)
d5036d77
JA
2767{
2768 RB_CLEAR_NODE(&cfqq->rb_node);
2769 RB_CLEAR_NODE(&cfqq->p_node);
2770 INIT_LIST_HEAD(&cfqq->fifo);
2771
2772 atomic_set(&cfqq->ref, 0);
2773 cfqq->cfqd = cfqd;
2774
2775 cfq_mark_cfqq_prio_changed(cfqq);
2776
2777 if (is_sync) {
2778 if (!cfq_class_idle(cfqq))
2779 cfq_mark_cfqq_idle_window(cfqq);
2780 cfq_mark_cfqq_sync(cfqq);
2781 }
2782 cfqq->pid = pid;
2783}
2784
24610333
VG
2785#ifdef CONFIG_CFQ_GROUP_IOSCHED
2786static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2787{
2788 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
bca4b914 2789 struct cfq_data *cfqd = cic_to_cfqd(cic);
24610333
VG
2790 unsigned long flags;
2791 struct request_queue *q;
2792
2793 if (unlikely(!cfqd))
2794 return;
2795
2796 q = cfqd->queue;
2797
2798 spin_lock_irqsave(q->queue_lock, flags);
2799
2800 if (sync_cfqq) {
2801 /*
2802 * Drop reference to sync queue. A new sync queue will be
2803 * assigned in new group upon arrival of a fresh request.
2804 */
2805 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2806 cic_set_cfqq(cic, NULL, 1);
2807 cfq_put_queue(sync_cfqq);
2808 }
2809
2810 spin_unlock_irqrestore(q->queue_lock, flags);
2811}
2812
2813static void cfq_ioc_set_cgroup(struct io_context *ioc)
2814{
2815 call_for_each_cic(ioc, changed_cgroup);
2816 ioc->cgroup_changed = 0;
2817}
2818#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2819
22e2c507 2820static struct cfq_queue *
a6151c3a 2821cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2822 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2823{
22e2c507 2824 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2825 struct cfq_io_context *cic;
cdb16e8f 2826 struct cfq_group *cfqg;
22e2c507
JA
2827
2828retry:
cdb16e8f 2829 cfqg = cfq_get_cfqg(cfqd, 1);
4ac845a2 2830 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2831 /* cic always exists here */
2832 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2833
6118b70b
JA
2834 /*
2835 * Always try a new alloc if we fell back to the OOM cfqq
2836 * originally, since it should just be a temporary situation.
2837 */
2838 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2839 cfqq = NULL;
22e2c507
JA
2840 if (new_cfqq) {
2841 cfqq = new_cfqq;
2842 new_cfqq = NULL;
2843 } else if (gfp_mask & __GFP_WAIT) {
2844 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2845 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2846 gfp_mask | __GFP_ZERO,
94f6030c 2847 cfqd->queue->node);
22e2c507 2848 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2849 if (new_cfqq)
2850 goto retry;
22e2c507 2851 } else {
94f6030c
CL
2852 cfqq = kmem_cache_alloc_node(cfq_pool,
2853 gfp_mask | __GFP_ZERO,
2854 cfqd->queue->node);
22e2c507
JA
2855 }
2856
6118b70b
JA
2857 if (cfqq) {
2858 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2859 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 2860 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
2861 cfq_log_cfqq(cfqd, cfqq, "alloced");
2862 } else
2863 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2864 }
2865
2866 if (new_cfqq)
2867 kmem_cache_free(cfq_pool, new_cfqq);
2868
22e2c507
JA
2869 return cfqq;
2870}
2871
c2dea2d1
VT
2872static struct cfq_queue **
2873cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2874{
fe094d98 2875 switch (ioprio_class) {
c2dea2d1
VT
2876 case IOPRIO_CLASS_RT:
2877 return &cfqd->async_cfqq[0][ioprio];
2878 case IOPRIO_CLASS_BE:
2879 return &cfqd->async_cfqq[1][ioprio];
2880 case IOPRIO_CLASS_IDLE:
2881 return &cfqd->async_idle_cfqq;
2882 default:
2883 BUG();
2884 }
2885}
2886
15c31be4 2887static struct cfq_queue *
a6151c3a 2888cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2889 gfp_t gfp_mask)
2890{
fd0928df
JA
2891 const int ioprio = task_ioprio(ioc);
2892 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2893 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2894 struct cfq_queue *cfqq = NULL;
2895
c2dea2d1
VT
2896 if (!is_sync) {
2897 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2898 cfqq = *async_cfqq;
2899 }
2900
6118b70b 2901 if (!cfqq)
fd0928df 2902 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2903
2904 /*
2905 * pin the queue now that it's allocated, scheduler exit will prune it
2906 */
c2dea2d1 2907 if (!is_sync && !(*async_cfqq)) {
15c31be4 2908 atomic_inc(&cfqq->ref);
c2dea2d1 2909 *async_cfqq = cfqq;
15c31be4
JA
2910 }
2911
2912 atomic_inc(&cfqq->ref);
2913 return cfqq;
2914}
2915
498d3aa2
JA
2916/*
2917 * We drop cfq io contexts lazily, so we may find a dead one.
2918 */
dbecf3ab 2919static void
4ac845a2
JA
2920cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2921 struct cfq_io_context *cic)
dbecf3ab 2922{
4ac845a2
JA
2923 unsigned long flags;
2924
fc46379d 2925 WARN_ON(!list_empty(&cic->queue_list));
bca4b914 2926 BUG_ON(cic->key != cfqd_dead_key(cfqd));
597bc485 2927
4ac845a2
JA
2928 spin_lock_irqsave(&ioc->lock, flags);
2929
4faa3c81 2930 BUG_ON(ioc->ioc_data == cic);
597bc485 2931
80b15c73 2932 radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
ffc4e759 2933 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2934 spin_unlock_irqrestore(&ioc->lock, flags);
2935
2936 cfq_cic_free(cic);
dbecf3ab
OH
2937}
2938
e2d74ac0 2939static struct cfq_io_context *
4ac845a2 2940cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 2941{
e2d74ac0 2942 struct cfq_io_context *cic;
d6de8be7 2943 unsigned long flags;
e2d74ac0 2944
91fac317
VT
2945 if (unlikely(!ioc))
2946 return NULL;
2947
d6de8be7
JA
2948 rcu_read_lock();
2949
597bc485
JA
2950 /*
2951 * we maintain a last-hit cache, to avoid browsing over the tree
2952 */
4ac845a2 2953 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
2954 if (cic && cic->key == cfqd) {
2955 rcu_read_unlock();
597bc485 2956 return cic;
d6de8be7 2957 }
597bc485 2958
4ac845a2 2959 do {
80b15c73 2960 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
4ac845a2
JA
2961 rcu_read_unlock();
2962 if (!cic)
2963 break;
bca4b914 2964 if (unlikely(cic->key != cfqd)) {
4ac845a2 2965 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 2966 rcu_read_lock();
4ac845a2 2967 continue;
dbecf3ab 2968 }
e2d74ac0 2969
d6de8be7 2970 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 2971 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 2972 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
2973 break;
2974 } while (1);
e2d74ac0 2975
4ac845a2 2976 return cic;
e2d74ac0
JA
2977}
2978
4ac845a2
JA
2979/*
2980 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2981 * the process specific cfq io context when entered from the block layer.
2982 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2983 */
febffd61
JA
2984static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2985 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 2986{
0261d688 2987 unsigned long flags;
4ac845a2 2988 int ret;
e2d74ac0 2989
4ac845a2
JA
2990 ret = radix_tree_preload(gfp_mask);
2991 if (!ret) {
2992 cic->ioc = ioc;
2993 cic->key = cfqd;
e2d74ac0 2994
4ac845a2
JA
2995 spin_lock_irqsave(&ioc->lock, flags);
2996 ret = radix_tree_insert(&ioc->radix_root,
80b15c73 2997 cfqd->cic_index, cic);
ffc4e759
JA
2998 if (!ret)
2999 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 3000 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 3001
4ac845a2
JA
3002 radix_tree_preload_end();
3003
3004 if (!ret) {
3005 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3006 list_add(&cic->queue_list, &cfqd->cic_list);
3007 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3008 }
e2d74ac0
JA
3009 }
3010
4ac845a2
JA
3011 if (ret)
3012 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 3013
4ac845a2 3014 return ret;
e2d74ac0
JA
3015}
3016
1da177e4
LT
3017/*
3018 * Setup general io context and cfq io context. There can be several cfq
3019 * io contexts per general io context, if this process is doing io to more
e2d74ac0 3020 * than one device managed by cfq.
1da177e4
LT
3021 */
3022static struct cfq_io_context *
e2d74ac0 3023cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 3024{
22e2c507 3025 struct io_context *ioc = NULL;
1da177e4 3026 struct cfq_io_context *cic;
1da177e4 3027
22e2c507 3028 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 3029
b5deef90 3030 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
3031 if (!ioc)
3032 return NULL;
3033
4ac845a2 3034 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
3035 if (cic)
3036 goto out;
1da177e4 3037
e2d74ac0
JA
3038 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3039 if (cic == NULL)
3040 goto err;
1da177e4 3041
4ac845a2
JA
3042 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3043 goto err_free;
3044
1da177e4 3045out:
fc46379d
JA
3046 smp_read_barrier_depends();
3047 if (unlikely(ioc->ioprio_changed))
3048 cfq_ioc_set_ioprio(ioc);
3049
24610333
VG
3050#ifdef CONFIG_CFQ_GROUP_IOSCHED
3051 if (unlikely(ioc->cgroup_changed))
3052 cfq_ioc_set_cgroup(ioc);
3053#endif
1da177e4 3054 return cic;
4ac845a2
JA
3055err_free:
3056 cfq_cic_free(cic);
1da177e4
LT
3057err:
3058 put_io_context(ioc);
3059 return NULL;
3060}
3061
22e2c507
JA
3062static void
3063cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 3064{
aaf1228d
JA
3065 unsigned long elapsed = jiffies - cic->last_end_request;
3066 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 3067
22e2c507
JA
3068 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3069 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3070 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3071}
1da177e4 3072
206dc69b 3073static void
b2c18e1e 3074cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 3075 struct request *rq)
206dc69b 3076{
3dde36dd 3077 sector_t sdist = 0;
41647e7a 3078 sector_t n_sec = blk_rq_sectors(rq);
3dde36dd
CZ
3079 if (cfqq->last_request_pos) {
3080 if (cfqq->last_request_pos < blk_rq_pos(rq))
3081 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3082 else
3083 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3084 }
206dc69b 3085
3dde36dd 3086 cfqq->seek_history <<= 1;
41647e7a
CZ
3087 if (blk_queue_nonrot(cfqd->queue))
3088 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3089 else
3090 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
206dc69b 3091}
1da177e4 3092
22e2c507
JA
3093/*
3094 * Disable idle window if the process thinks too long or seeks so much that
3095 * it doesn't matter
3096 */
3097static void
3098cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3099 struct cfq_io_context *cic)
3100{
7b679138 3101 int old_idle, enable_idle;
1be92f2f 3102
0871714e
JA
3103 /*
3104 * Don't idle for async or idle io prio class
3105 */
3106 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
3107 return;
3108
c265a7f4 3109 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 3110
76280aff
CZ
3111 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3112 cfq_mark_cfqq_deep(cfqq);
3113
66dac98e 3114 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3dde36dd 3115 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
22e2c507
JA
3116 enable_idle = 0;
3117 else if (sample_valid(cic->ttime_samples)) {
718eee05 3118 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
3119 enable_idle = 0;
3120 else
3121 enable_idle = 1;
1da177e4
LT
3122 }
3123
7b679138
JA
3124 if (old_idle != enable_idle) {
3125 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3126 if (enable_idle)
3127 cfq_mark_cfqq_idle_window(cfqq);
3128 else
3129 cfq_clear_cfqq_idle_window(cfqq);
3130 }
22e2c507 3131}
1da177e4 3132
22e2c507
JA
3133/*
3134 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3135 * no or if we aren't sure, a 1 will cause a preempt.
3136 */
a6151c3a 3137static bool
22e2c507 3138cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 3139 struct request *rq)
22e2c507 3140{
6d048f53 3141 struct cfq_queue *cfqq;
22e2c507 3142
6d048f53
JA
3143 cfqq = cfqd->active_queue;
3144 if (!cfqq)
a6151c3a 3145 return false;
22e2c507 3146
6d048f53 3147 if (cfq_class_idle(new_cfqq))
a6151c3a 3148 return false;
22e2c507
JA
3149
3150 if (cfq_class_idle(cfqq))
a6151c3a 3151 return true;
1e3335de 3152
875feb63
DS
3153 /*
3154 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3155 */
3156 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3157 return false;
3158
374f84ac
JA
3159 /*
3160 * if the new request is sync, but the currently running queue is
3161 * not, let the sync request have priority.
3162 */
5e705374 3163 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 3164 return true;
1e3335de 3165
8682e1f1
VG
3166 if (new_cfqq->cfqg != cfqq->cfqg)
3167 return false;
3168
3169 if (cfq_slice_used(cfqq))
3170 return true;
3171
3172 /* Allow preemption only if we are idling on sync-noidle tree */
3173 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3174 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3175 new_cfqq->service_tree->count == 2 &&
3176 RB_EMPTY_ROOT(&cfqq->sort_list))
3177 return true;
3178
374f84ac
JA
3179 /*
3180 * So both queues are sync. Let the new request get disk time if
3181 * it's a metadata request and the current queue is doing regular IO.
3182 */
7b6d91da 3183 if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
e6ec4fe2 3184 return true;
22e2c507 3185
3a9a3f6c
DS
3186 /*
3187 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3188 */
3189 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 3190 return true;
3a9a3f6c 3191
1e3335de 3192 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 3193 return false;
1e3335de
JA
3194
3195 /*
3196 * if this request is as-good as one we would expect from the
3197 * current cfqq, let it preempt
3198 */
e9ce335d 3199 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 3200 return true;
1e3335de 3201
a6151c3a 3202 return false;
22e2c507
JA
3203}
3204
3205/*
3206 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3207 * let it have half of its nominal slice.
3208 */
3209static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3210{
7b679138 3211 cfq_log_cfqq(cfqd, cfqq, "preempt");
e5ff082e 3212 cfq_slice_expired(cfqd, 1);
22e2c507 3213
bf572256
JA
3214 /*
3215 * Put the new queue at the front of the of the current list,
3216 * so we know that it will be selected next.
3217 */
3218 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
3219
3220 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 3221
44f7c160
JA
3222 cfqq->slice_end = 0;
3223 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
3224}
3225
22e2c507 3226/*
5e705374 3227 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
3228 * something we should do about it
3229 */
3230static void
5e705374
JA
3231cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3232 struct request *rq)
22e2c507 3233{
5e705374 3234 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 3235
45333d5a 3236 cfqd->rq_queued++;
7b6d91da 3237 if (rq->cmd_flags & REQ_META)
374f84ac
JA
3238 cfqq->meta_pending++;
3239
9c2c38a1 3240 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 3241 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
3242 cfq_update_idle_window(cfqd, cfqq, cic);
3243
b2c18e1e 3244 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
3245
3246 if (cfqq == cfqd->active_queue) {
3247 /*
b029195d
JA
3248 * Remember that we saw a request from this process, but
3249 * don't start queuing just yet. Otherwise we risk seeing lots
3250 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
3251 * and merging. If the request is already larger than a single
3252 * page, let it rip immediately. For that case we assume that
2d870722
JA
3253 * merging is already done. Ditto for a busy system that
3254 * has other work pending, don't risk delaying until the
3255 * idle timer unplug to continue working.
22e2c507 3256 */
d6ceb25e 3257 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
3258 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3259 cfqd->busy_queues > 1) {
812df48d 3260 cfq_del_timer(cfqd, cfqq);
554554f6 3261 cfq_clear_cfqq_wait_request(cfqq);
bf791937 3262 __blk_run_queue(cfqd->queue);
a11cdaa7 3263 } else {
e98ef89b 3264 cfq_blkiocg_update_idle_time_stats(
a11cdaa7 3265 &cfqq->cfqg->blkg);
bf791937 3266 cfq_mark_cfqq_must_dispatch(cfqq);
a11cdaa7 3267 }
d6ceb25e 3268 }
5e705374 3269 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
3270 /*
3271 * not the active queue - expire current slice if it is
3272 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
3273 * has some old slice time left and is of higher priority or
3274 * this new queue is RT and the current one is BE
22e2c507
JA
3275 */
3276 cfq_preempt_queue(cfqd, cfqq);
a7f55792 3277 __blk_run_queue(cfqd->queue);
22e2c507 3278 }
1da177e4
LT
3279}
3280
165125e1 3281static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 3282{
b4878f24 3283 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 3284 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 3285
7b679138 3286 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 3287 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 3288
30996f40 3289 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 3290 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 3291 cfq_add_rq_rb(rq);
e98ef89b 3292 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
cdc1184c
DS
3293 &cfqd->serving_group->blkg, rq_data_dir(rq),
3294 rq_is_sync(rq));
5e705374 3295 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
3296}
3297
45333d5a
AC
3298/*
3299 * Update hw_tag based on peak queue depth over 50 samples under
3300 * sufficient load.
3301 */
3302static void cfq_update_hw_tag(struct cfq_data *cfqd)
3303{
1a1238a7
SL
3304 struct cfq_queue *cfqq = cfqd->active_queue;
3305
53c583d2
CZ
3306 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3307 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
e459dd08
CZ
3308
3309 if (cfqd->hw_tag == 1)
3310 return;
45333d5a
AC
3311
3312 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
53c583d2 3313 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3314 return;
3315
1a1238a7
SL
3316 /*
3317 * If active queue hasn't enough requests and can idle, cfq might not
3318 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3319 * case
3320 */
3321 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3322 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
53c583d2 3323 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
1a1238a7
SL
3324 return;
3325
45333d5a
AC
3326 if (cfqd->hw_tag_samples++ < 50)
3327 return;
3328
e459dd08 3329 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3330 cfqd->hw_tag = 1;
3331 else
3332 cfqd->hw_tag = 0;
45333d5a
AC
3333}
3334
7667aa06
VG
3335static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3336{
3337 struct cfq_io_context *cic = cfqd->active_cic;
3338
3339 /* If there are other queues in the group, don't wait */
3340 if (cfqq->cfqg->nr_cfqq > 1)
3341 return false;
3342
3343 if (cfq_slice_used(cfqq))
3344 return true;
3345
3346 /* if slice left is less than think time, wait busy */
3347 if (cic && sample_valid(cic->ttime_samples)
3348 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3349 return true;
3350
3351 /*
3352 * If think times is less than a jiffy than ttime_mean=0 and above
3353 * will not be true. It might happen that slice has not expired yet
3354 * but will expire soon (4-5 ns) during select_queue(). To cover the
3355 * case where think time is less than a jiffy, mark the queue wait
3356 * busy if only 1 jiffy is left in the slice.
3357 */
3358 if (cfqq->slice_end - jiffies == 1)
3359 return true;
3360
3361 return false;
3362}
3363
165125e1 3364static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 3365{
5e705374 3366 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 3367 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 3368 const int sync = rq_is_sync(rq);
b4878f24 3369 unsigned long now;
1da177e4 3370
b4878f24 3371 now = jiffies;
33659ebb
CH
3372 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3373 !!(rq->cmd_flags & REQ_NOIDLE));
1da177e4 3374
45333d5a
AC
3375 cfq_update_hw_tag(cfqd);
3376
53c583d2 3377 WARN_ON(!cfqd->rq_in_driver);
6d048f53 3378 WARN_ON(!cfqq->dispatched);
53c583d2 3379 cfqd->rq_in_driver--;
6d048f53 3380 cfqq->dispatched--;
e98ef89b
VG
3381 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3382 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3383 rq_data_dir(rq), rq_is_sync(rq));
1da177e4 3384
53c583d2 3385 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3ed9a296 3386
365722bb 3387 if (sync) {
5e705374 3388 RQ_CIC(rq)->last_end_request = now;
573412b2
CZ
3389 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3390 cfqd->last_delayed_sync = now;
365722bb 3391 }
caaa5f9f
JA
3392
3393 /*
3394 * If this is the active queue, check if it needs to be expired,
3395 * or if we want to idle in case it has no pending requests.
3396 */
3397 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
3398 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3399
44f7c160
JA
3400 if (cfq_cfqq_slice_new(cfqq)) {
3401 cfq_set_prio_slice(cfqd, cfqq);
3402 cfq_clear_cfqq_slice_new(cfqq);
3403 }
f75edf2d
VG
3404
3405 /*
7667aa06
VG
3406 * Should we wait for next request to come in before we expire
3407 * the queue.
f75edf2d 3408 */
7667aa06 3409 if (cfq_should_wait_busy(cfqd, cfqq)) {
f75edf2d
VG
3410 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3411 cfq_mark_cfqq_wait_busy(cfqq);
b1ffe737 3412 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
f75edf2d
VG
3413 }
3414
a36e71f9 3415 /*
8e550632
CZ
3416 * Idling is not enabled on:
3417 * - expired queues
3418 * - idle-priority queues
3419 * - async queues
3420 * - queues with still some requests queued
3421 * - when there is a close cooperator
a36e71f9 3422 */
0871714e 3423 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
e5ff082e 3424 cfq_slice_expired(cfqd, 1);
8e550632
CZ
3425 else if (sync && cfqq_empty &&
3426 !cfq_close_cooperator(cfqd, cfqq)) {
33659ebb
CH
3427 cfqd->noidle_tree_requires_idle |=
3428 !(rq->cmd_flags & REQ_NOIDLE);
8e550632
CZ
3429 /*
3430 * Idling is enabled for SYNC_WORKLOAD.
3431 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
33659ebb 3432 * only if we processed at least one !REQ_NOIDLE request
8e550632
CZ
3433 */
3434 if (cfqd->serving_type == SYNC_WORKLOAD
c04645e5
VG
3435 || cfqd->noidle_tree_requires_idle
3436 || cfqq->cfqg->nr_cfqq == 1)
8e550632
CZ
3437 cfq_arm_slice_timer(cfqd);
3438 }
caaa5f9f 3439 }
6d048f53 3440
53c583d2 3441 if (!cfqd->rq_in_driver)
23e018a1 3442 cfq_schedule_dispatch(cfqd);
1da177e4
LT
3443}
3444
22e2c507
JA
3445/*
3446 * we temporarily boost lower priority queues if they are holding fs exclusive
3447 * resources. they are boosted to normal prio (CLASS_BE/4)
3448 */
3449static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 3450{
22e2c507
JA
3451 if (has_fs_excl()) {
3452 /*
3453 * boost idle prio on transactions that would lock out other
3454 * users of the filesystem
3455 */
3456 if (cfq_class_idle(cfqq))
3457 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3458 if (cfqq->ioprio > IOPRIO_NORM)
3459 cfqq->ioprio = IOPRIO_NORM;
3460 } else {
3461 /*
dddb7451 3462 * unboost the queue (if needed)
22e2c507 3463 */
dddb7451
CZ
3464 cfqq->ioprio_class = cfqq->org_ioprio_class;
3465 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 3466 }
22e2c507 3467}
1da177e4 3468
89850f7e 3469static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3470{
1b379d8d 3471 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3472 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3473 return ELV_MQUEUE_MUST;
3b18152c 3474 }
1da177e4 3475
22e2c507 3476 return ELV_MQUEUE_MAY;
22e2c507
JA
3477}
3478
165125e1 3479static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3480{
3481 struct cfq_data *cfqd = q->elevator->elevator_data;
3482 struct task_struct *tsk = current;
91fac317 3483 struct cfq_io_context *cic;
22e2c507
JA
3484 struct cfq_queue *cfqq;
3485
3486 /*
3487 * don't force setup of a queue from here, as a call to may_queue
3488 * does not necessarily imply that a request actually will be queued.
3489 * so just lookup a possibly existing queue, or return 'may queue'
3490 * if that fails
3491 */
4ac845a2 3492 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3493 if (!cic)
3494 return ELV_MQUEUE_MAY;
3495
b0b78f81 3496 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3497 if (cfqq) {
fd0928df 3498 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
3499 cfq_prio_boost(cfqq);
3500
89850f7e 3501 return __cfq_may_queue(cfqq);
22e2c507
JA
3502 }
3503
3504 return ELV_MQUEUE_MAY;
1da177e4
LT
3505}
3506
1da177e4
LT
3507/*
3508 * queue lock held here
3509 */
bb37b94c 3510static void cfq_put_request(struct request *rq)
1da177e4 3511{
5e705374 3512 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3513
5e705374 3514 if (cfqq) {
22e2c507 3515 const int rw = rq_data_dir(rq);
1da177e4 3516
22e2c507
JA
3517 BUG_ON(!cfqq->allocated[rw]);
3518 cfqq->allocated[rw]--;
1da177e4 3519
5e705374 3520 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 3521
1da177e4 3522 rq->elevator_private = NULL;
5e705374 3523 rq->elevator_private2 = NULL;
1da177e4 3524
7f1dc8a2
VG
3525 /* Put down rq reference on cfqg */
3526 cfq_put_cfqg(RQ_CFQG(rq));
3527 rq->elevator_private3 = NULL;
3528
1da177e4
LT
3529 cfq_put_queue(cfqq);
3530 }
3531}
3532
df5fe3e8
JM
3533static struct cfq_queue *
3534cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3535 struct cfq_queue *cfqq)
3536{
3537 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3538 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3539 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3540 cfq_put_queue(cfqq);
3541 return cic_to_cfqq(cic, 1);
3542}
3543
e6c5bc73
JM
3544/*
3545 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3546 * was the last process referring to said cfqq.
3547 */
3548static struct cfq_queue *
3549split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3550{
3551 if (cfqq_process_refs(cfqq) == 1) {
e6c5bc73
JM
3552 cfqq->pid = current->pid;
3553 cfq_clear_cfqq_coop(cfqq);
ae54abed 3554 cfq_clear_cfqq_split_coop(cfqq);
e6c5bc73
JM
3555 return cfqq;
3556 }
3557
3558 cic_set_cfqq(cic, NULL, 1);
d02a2c07
SL
3559
3560 cfq_put_cooperator(cfqq);
3561
e6c5bc73
JM
3562 cfq_put_queue(cfqq);
3563 return NULL;
3564}
1da177e4 3565/*
22e2c507 3566 * Allocate cfq data structures associated with this request.
1da177e4 3567 */
22e2c507 3568static int
165125e1 3569cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3570{
3571 struct cfq_data *cfqd = q->elevator->elevator_data;
3572 struct cfq_io_context *cic;
3573 const int rw = rq_data_dir(rq);
a6151c3a 3574 const bool is_sync = rq_is_sync(rq);
22e2c507 3575 struct cfq_queue *cfqq;
1da177e4
LT
3576 unsigned long flags;
3577
3578 might_sleep_if(gfp_mask & __GFP_WAIT);
3579
e2d74ac0 3580 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 3581
1da177e4
LT
3582 spin_lock_irqsave(q->queue_lock, flags);
3583
22e2c507
JA
3584 if (!cic)
3585 goto queue_fail;
3586
e6c5bc73 3587new_queue:
91fac317 3588 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3589 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 3590 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 3591 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3592 } else {
e6c5bc73
JM
3593 /*
3594 * If the queue was seeky for too long, break it apart.
3595 */
ae54abed 3596 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
e6c5bc73
JM
3597 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3598 cfqq = split_cfqq(cic, cfqq);
3599 if (!cfqq)
3600 goto new_queue;
3601 }
3602
df5fe3e8
JM
3603 /*
3604 * Check to see if this queue is scheduled to merge with
3605 * another, closely cooperating queue. The merging of
3606 * queues happens here as it must be done in process context.
3607 * The reference on new_cfqq was taken in merge_cfqqs.
3608 */
3609 if (cfqq->new_cfqq)
3610 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3611 }
1da177e4
LT
3612
3613 cfqq->allocated[rw]++;
22e2c507 3614 atomic_inc(&cfqq->ref);
1da177e4 3615
5e705374 3616 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 3617
5e705374
JA
3618 rq->elevator_private = cic;
3619 rq->elevator_private2 = cfqq;
7f1dc8a2 3620 rq->elevator_private3 = cfq_ref_get_cfqg(cfqq->cfqg);
5e705374 3621 return 0;
1da177e4 3622
22e2c507
JA
3623queue_fail:
3624 if (cic)
3625 put_io_context(cic->ioc);
89850f7e 3626
23e018a1 3627 cfq_schedule_dispatch(cfqd);
1da177e4 3628 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 3629 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3630 return 1;
3631}
3632
65f27f38 3633static void cfq_kick_queue(struct work_struct *work)
22e2c507 3634{
65f27f38 3635 struct cfq_data *cfqd =
23e018a1 3636 container_of(work, struct cfq_data, unplug_work);
165125e1 3637 struct request_queue *q = cfqd->queue;
22e2c507 3638
40bb54d1 3639 spin_lock_irq(q->queue_lock);
a7f55792 3640 __blk_run_queue(cfqd->queue);
40bb54d1 3641 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3642}
3643
3644/*
3645 * Timer running if the active_queue is currently idling inside its time slice
3646 */
3647static void cfq_idle_slice_timer(unsigned long data)
3648{
3649 struct cfq_data *cfqd = (struct cfq_data *) data;
3650 struct cfq_queue *cfqq;
3651 unsigned long flags;
3c6bd2f8 3652 int timed_out = 1;
22e2c507 3653
7b679138
JA
3654 cfq_log(cfqd, "idle timer fired");
3655
22e2c507
JA
3656 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3657
fe094d98
JA
3658 cfqq = cfqd->active_queue;
3659 if (cfqq) {
3c6bd2f8
JA
3660 timed_out = 0;
3661
b029195d
JA
3662 /*
3663 * We saw a request before the queue expired, let it through
3664 */
3665 if (cfq_cfqq_must_dispatch(cfqq))
3666 goto out_kick;
3667
22e2c507
JA
3668 /*
3669 * expired
3670 */
44f7c160 3671 if (cfq_slice_used(cfqq))
22e2c507
JA
3672 goto expire;
3673
3674 /*
3675 * only expire and reinvoke request handler, if there are
3676 * other queues with pending requests
3677 */
caaa5f9f 3678 if (!cfqd->busy_queues)
22e2c507 3679 goto out_cont;
22e2c507
JA
3680
3681 /*
3682 * not expired and it has a request pending, let it dispatch
3683 */
75e50984 3684 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3685 goto out_kick;
76280aff
CZ
3686
3687 /*
3688 * Queue depth flag is reset only when the idle didn't succeed
3689 */
3690 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3691 }
3692expire:
e5ff082e 3693 cfq_slice_expired(cfqd, timed_out);
22e2c507 3694out_kick:
23e018a1 3695 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3696out_cont:
3697 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3698}
3699
3b18152c
JA
3700static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3701{
3702 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3703 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3704}
22e2c507 3705
c2dea2d1
VT
3706static void cfq_put_async_queues(struct cfq_data *cfqd)
3707{
3708 int i;
3709
3710 for (i = 0; i < IOPRIO_BE_NR; i++) {
3711 if (cfqd->async_cfqq[0][i])
3712 cfq_put_queue(cfqd->async_cfqq[0][i]);
3713 if (cfqd->async_cfqq[1][i])
3714 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3715 }
2389d1ef
ON
3716
3717 if (cfqd->async_idle_cfqq)
3718 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3719}
3720
bb729bc9
JA
3721static void cfq_cfqd_free(struct rcu_head *head)
3722{
3723 kfree(container_of(head, struct cfq_data, rcu));
3724}
3725
b374d18a 3726static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3727{
22e2c507 3728 struct cfq_data *cfqd = e->elevator_data;
165125e1 3729 struct request_queue *q = cfqd->queue;
22e2c507 3730
3b18152c 3731 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3732
d9ff4187 3733 spin_lock_irq(q->queue_lock);
e2d74ac0 3734
d9ff4187 3735 if (cfqd->active_queue)
e5ff082e 3736 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
3737
3738 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
3739 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3740 struct cfq_io_context,
3741 queue_list);
89850f7e
JA
3742
3743 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 3744 }
e2d74ac0 3745
c2dea2d1 3746 cfq_put_async_queues(cfqd);
b1c35769 3747 cfq_release_cfq_groups(cfqd);
e98ef89b 3748 cfq_blkiocg_del_blkio_group(&cfqd->root_group.blkg);
15c31be4 3749
d9ff4187 3750 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3751
3752 cfq_shutdown_timer_wq(cfqd);
3753
80b15c73
KK
3754 spin_lock(&cic_index_lock);
3755 ida_remove(&cic_index_ida, cfqd->cic_index);
3756 spin_unlock(&cic_index_lock);
3757
b1c35769 3758 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
bb729bc9 3759 call_rcu(&cfqd->rcu, cfq_cfqd_free);
1da177e4
LT
3760}
3761
80b15c73
KK
3762static int cfq_alloc_cic_index(void)
3763{
3764 int index, error;
3765
3766 do {
3767 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3768 return -ENOMEM;
3769
3770 spin_lock(&cic_index_lock);
3771 error = ida_get_new(&cic_index_ida, &index);
3772 spin_unlock(&cic_index_lock);
3773 if (error && error != -EAGAIN)
3774 return error;
3775 } while (error);
3776
3777 return index;
3778}
3779
165125e1 3780static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3781{
3782 struct cfq_data *cfqd;
718eee05 3783 int i, j;
cdb16e8f 3784 struct cfq_group *cfqg;
615f0259 3785 struct cfq_rb_root *st;
1da177e4 3786
80b15c73
KK
3787 i = cfq_alloc_cic_index();
3788 if (i < 0)
3789 return NULL;
3790
94f6030c 3791 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 3792 if (!cfqd)
bc1c1169 3793 return NULL;
1da177e4 3794
80b15c73
KK
3795 cfqd->cic_index = i;
3796
1fa8f6d6
VG
3797 /* Init root service tree */
3798 cfqd->grp_service_tree = CFQ_RB_ROOT;
3799
cdb16e8f
VG
3800 /* Init root group */
3801 cfqg = &cfqd->root_group;
615f0259
VG
3802 for_each_cfqg_st(cfqg, i, j, st)
3803 *st = CFQ_RB_ROOT;
1fa8f6d6 3804 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 3805
25bc6b07
VG
3806 /* Give preference to root group over other groups */
3807 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3808
25fb5169 3809#ifdef CONFIG_CFQ_GROUP_IOSCHED
b1c35769
VG
3810 /*
3811 * Take a reference to root group which we never drop. This is just
3812 * to make sure that cfq_put_cfqg() does not try to kfree root group
3813 */
3814 atomic_set(&cfqg->ref, 1);
dcf097b2 3815 rcu_read_lock();
e98ef89b
VG
3816 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3817 (void *)cfqd, 0);
dcf097b2 3818 rcu_read_unlock();
25fb5169 3819#endif
26a2ac00
JA
3820 /*
3821 * Not strictly needed (since RB_ROOT just clears the node and we
3822 * zeroed cfqd on alloc), but better be safe in case someone decides
3823 * to add magic to the rb code
3824 */
3825 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3826 cfqd->prio_trees[i] = RB_ROOT;
3827
6118b70b
JA
3828 /*
3829 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3830 * Grab a permanent reference to it, so that the normal code flow
3831 * will not attempt to free it.
3832 */
3833 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3834 atomic_inc(&cfqd->oom_cfqq.ref);
cdb16e8f 3835 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 3836
d9ff4187 3837 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 3838
1da177e4 3839 cfqd->queue = q;
1da177e4 3840
22e2c507
JA
3841 init_timer(&cfqd->idle_slice_timer);
3842 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3843 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3844
23e018a1 3845 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 3846
1da177e4 3847 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
3848 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3849 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
3850 cfqd->cfq_back_max = cfq_back_max;
3851 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
3852 cfqd->cfq_slice[0] = cfq_slice_async;
3853 cfqd->cfq_slice[1] = cfq_slice_sync;
3854 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3855 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 3856 cfqd->cfq_latency = 1;
ae30c286 3857 cfqd->cfq_group_isolation = 0;
e459dd08 3858 cfqd->hw_tag = -1;
edc71131
CZ
3859 /*
3860 * we optimistically start assuming sync ops weren't delayed in last
3861 * second, in order to have larger depth for async operations.
3862 */
573412b2 3863 cfqd->last_delayed_sync = jiffies - HZ;
bc1c1169 3864 return cfqd;
1da177e4
LT
3865}
3866
3867static void cfq_slab_kill(void)
3868{
d6de8be7
JA
3869 /*
3870 * Caller already ensured that pending RCU callbacks are completed,
3871 * so we should have no busy allocations at this point.
3872 */
1da177e4
LT
3873 if (cfq_pool)
3874 kmem_cache_destroy(cfq_pool);
3875 if (cfq_ioc_pool)
3876 kmem_cache_destroy(cfq_ioc_pool);
3877}
3878
3879static int __init cfq_slab_setup(void)
3880{
0a31bd5f 3881 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
3882 if (!cfq_pool)
3883 goto fail;
3884
34e6bbf2 3885 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
3886 if (!cfq_ioc_pool)
3887 goto fail;
3888
3889 return 0;
3890fail:
3891 cfq_slab_kill();
3892 return -ENOMEM;
3893}
3894
1da177e4
LT
3895/*
3896 * sysfs parts below -->
3897 */
1da177e4
LT
3898static ssize_t
3899cfq_var_show(unsigned int var, char *page)
3900{
3901 return sprintf(page, "%d\n", var);
3902}
3903
3904static ssize_t
3905cfq_var_store(unsigned int *var, const char *page, size_t count)
3906{
3907 char *p = (char *) page;
3908
3909 *var = simple_strtoul(p, &p, 10);
3910 return count;
3911}
3912
1da177e4 3913#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3914static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3915{ \
3d1ab40f 3916 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3917 unsigned int __data = __VAR; \
3918 if (__CONV) \
3919 __data = jiffies_to_msecs(__data); \
3920 return cfq_var_show(__data, (page)); \
3921}
3922SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
3923SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3924SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
3925SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3926SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
3927SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3928SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3929SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3930SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 3931SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
ae30c286 3932SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
1da177e4
LT
3933#undef SHOW_FUNCTION
3934
3935#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 3936static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 3937{ \
3d1ab40f 3938 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3939 unsigned int __data; \
3940 int ret = cfq_var_store(&__data, (page), count); \
3941 if (__data < (MIN)) \
3942 __data = (MIN); \
3943 else if (__data > (MAX)) \
3944 __data = (MAX); \
3945 if (__CONV) \
3946 *(__PTR) = msecs_to_jiffies(__data); \
3947 else \
3948 *(__PTR) = __data; \
3949 return ret; \
3950}
3951STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
3952STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3953 UINT_MAX, 1);
3954STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3955 UINT_MAX, 1);
e572ec7e 3956STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
3957STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3958 UINT_MAX, 0);
22e2c507
JA
3959STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3960STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3961STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
3962STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3963 UINT_MAX, 0);
963b72fc 3964STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
ae30c286 3965STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
1da177e4
LT
3966#undef STORE_FUNCTION
3967
e572ec7e
AV
3968#define CFQ_ATTR(name) \
3969 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3970
3971static struct elv_fs_entry cfq_attrs[] = {
3972 CFQ_ATTR(quantum),
e572ec7e
AV
3973 CFQ_ATTR(fifo_expire_sync),
3974 CFQ_ATTR(fifo_expire_async),
3975 CFQ_ATTR(back_seek_max),
3976 CFQ_ATTR(back_seek_penalty),
3977 CFQ_ATTR(slice_sync),
3978 CFQ_ATTR(slice_async),
3979 CFQ_ATTR(slice_async_rq),
3980 CFQ_ATTR(slice_idle),
963b72fc 3981 CFQ_ATTR(low_latency),
ae30c286 3982 CFQ_ATTR(group_isolation),
e572ec7e 3983 __ATTR_NULL
1da177e4
LT
3984};
3985
1da177e4
LT
3986static struct elevator_type iosched_cfq = {
3987 .ops = {
3988 .elevator_merge_fn = cfq_merge,
3989 .elevator_merged_fn = cfq_merged_request,
3990 .elevator_merge_req_fn = cfq_merged_requests,
da775265 3991 .elevator_allow_merge_fn = cfq_allow_merge,
812d4026 3992 .elevator_bio_merged_fn = cfq_bio_merged,
b4878f24 3993 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 3994 .elevator_add_req_fn = cfq_insert_request,
b4878f24 3995 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
3996 .elevator_deactivate_req_fn = cfq_deactivate_request,
3997 .elevator_queue_empty_fn = cfq_queue_empty,
3998 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
3999 .elevator_former_req_fn = elv_rb_former_request,
4000 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
4001 .elevator_set_req_fn = cfq_set_request,
4002 .elevator_put_req_fn = cfq_put_request,
4003 .elevator_may_queue_fn = cfq_may_queue,
4004 .elevator_init_fn = cfq_init_queue,
4005 .elevator_exit_fn = cfq_exit_queue,
fc46379d 4006 .trim = cfq_free_io_context,
1da177e4 4007 },
3d1ab40f 4008 .elevator_attrs = cfq_attrs,
1da177e4
LT
4009 .elevator_name = "cfq",
4010 .elevator_owner = THIS_MODULE,
4011};
4012
3e252066
VG
4013#ifdef CONFIG_CFQ_GROUP_IOSCHED
4014static struct blkio_policy_type blkio_policy_cfq = {
4015 .ops = {
4016 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4017 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4018 },
4019};
4020#else
4021static struct blkio_policy_type blkio_policy_cfq;
4022#endif
4023
1da177e4
LT
4024static int __init cfq_init(void)
4025{
22e2c507
JA
4026 /*
4027 * could be 0 on HZ < 1000 setups
4028 */
4029 if (!cfq_slice_async)
4030 cfq_slice_async = 1;
4031 if (!cfq_slice_idle)
4032 cfq_slice_idle = 1;
4033
1da177e4
LT
4034 if (cfq_slab_setup())
4035 return -ENOMEM;
4036
2fdd82bd 4037 elv_register(&iosched_cfq);
3e252066 4038 blkio_policy_register(&blkio_policy_cfq);
1da177e4 4039
2fdd82bd 4040 return 0;
1da177e4
LT
4041}
4042
4043static void __exit cfq_exit(void)
4044{
6e9a4738 4045 DECLARE_COMPLETION_ONSTACK(all_gone);
3e252066 4046 blkio_policy_unregister(&blkio_policy_cfq);
1da177e4 4047 elv_unregister(&iosched_cfq);
334e94de 4048 ioc_gone = &all_gone;
fba82272
OH
4049 /* ioc_gone's update must be visible before reading ioc_count */
4050 smp_wmb();
d6de8be7
JA
4051
4052 /*
4053 * this also protects us from entering cfq_slab_kill() with
4054 * pending RCU callbacks
4055 */
245b2e70 4056 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 4057 wait_for_completion(&all_gone);
80b15c73 4058 ida_destroy(&cic_index_ida);
83521d3e 4059 cfq_slab_kill();
1da177e4
LT
4060}
4061
4062module_init(cfq_init);
4063module_exit(cfq_exit);
4064
4065MODULE_AUTHOR("Jens Axboe");
4066MODULE_LICENSE("GPL");
4067MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");