]> bbs.cooldavid.org Git - net-next-2.6.git/blame - block/cfq-iosched.c
blkio: Export some symbols from blkio as its user CFQ can be a module
[net-next-2.6.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
ad5ebd2f 12#include <linux/jiffies.h>
1da177e4 13#include <linux/rbtree.h>
22e2c507 14#include <linux/ioprio.h>
7b679138 15#include <linux/blktrace_api.h>
25bc6b07 16#include "blk-cgroup.h"
f2eecb91 17#include "cfq-iosched.h"
1da177e4
LT
18
19/*
20 * tunables
21 */
fe094d98
JA
22/* max queue in one round of service */
23static const int cfq_quantum = 4;
64100099 24static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
25/* maximum backwards seek, in KiB */
26static const int cfq_back_max = 16 * 1024;
27/* penalty of a backwards seek */
28static const int cfq_back_penalty = 2;
64100099 29static const int cfq_slice_sync = HZ / 10;
3b18152c 30static int cfq_slice_async = HZ / 25;
64100099 31static const int cfq_slice_async_rq = 2;
caaa5f9f 32static int cfq_slice_idle = HZ / 125;
5db5d642
CZ
33static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
34static const int cfq_hist_divisor = 4;
22e2c507 35
d9e7620e 36/*
0871714e 37 * offset from end of service tree
d9e7620e 38 */
0871714e 39#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
40
41/*
42 * below this threshold, we consider thinktime immediate
43 */
44#define CFQ_MIN_TT (2)
45
e6c5bc73
JM
46/*
47 * Allow merged cfqqs to perform this amount of seeky I/O before
48 * deciding to break the queues up again.
49 */
50#define CFQQ_COOP_TOUT (HZ)
51
22e2c507 52#define CFQ_SLICE_SCALE (5)
45333d5a 53#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 54#define CFQ_SERVICE_SHIFT 12
22e2c507 55
fe094d98
JA
56#define RQ_CIC(rq) \
57 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 58#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 59
e18b890b
CL
60static struct kmem_cache *cfq_pool;
61static struct kmem_cache *cfq_ioc_pool;
1da177e4 62
245b2e70 63static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 64static struct completion *ioc_gone;
9a11b4ed 65static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 66
22e2c507
JA
67#define CFQ_PRIO_LISTS IOPRIO_BE_NR
68#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
69#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
70
206dc69b 71#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 72#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 73
cc09e299
JA
74/*
75 * Most of our rbtree usage is for sorting with min extraction, so
76 * if we cache the leftmost node we don't have to walk down the tree
77 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
78 * move this into the elevator for the rq sorting as well.
79 */
80struct cfq_rb_root {
81 struct rb_root rb;
82 struct rb_node *left;
aa6f6a3d 83 unsigned count;
1fa8f6d6 84 u64 min_vdisktime;
25bc6b07 85 struct rb_node *active;
58ff82f3 86 unsigned total_weight;
cc09e299 87};
1fa8f6d6 88#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
cc09e299 89
6118b70b
JA
90/*
91 * Per process-grouping structure
92 */
93struct cfq_queue {
94 /* reference count */
95 atomic_t ref;
96 /* various state flags, see below */
97 unsigned int flags;
98 /* parent cfq_data */
99 struct cfq_data *cfqd;
100 /* service_tree member */
101 struct rb_node rb_node;
102 /* service_tree key */
103 unsigned long rb_key;
104 /* prio tree member */
105 struct rb_node p_node;
106 /* prio tree root we belong to, if any */
107 struct rb_root *p_root;
108 /* sorted list of pending requests */
109 struct rb_root sort_list;
110 /* if fifo isn't expired, next request to serve */
111 struct request *next_rq;
112 /* requests queued in sort_list */
113 int queued[2];
114 /* currently allocated requests */
115 int allocated[2];
116 /* fifo list of requests in sort_list */
117 struct list_head fifo;
118
dae739eb
VG
119 /* time when queue got scheduled in to dispatch first request. */
120 unsigned long dispatch_start;
f75edf2d 121 unsigned int allocated_slice;
dae739eb
VG
122 /* time when first request from queue completed and slice started. */
123 unsigned long slice_start;
6118b70b
JA
124 unsigned long slice_end;
125 long slice_resid;
126 unsigned int slice_dispatch;
127
128 /* pending metadata requests */
129 int meta_pending;
130 /* number of requests that are on the dispatch list or inside driver */
131 int dispatched;
132
133 /* io prio of this group */
134 unsigned short ioprio, org_ioprio;
135 unsigned short ioprio_class, org_ioprio_class;
136
b2c18e1e
JM
137 unsigned int seek_samples;
138 u64 seek_total;
139 sector_t seek_mean;
140 sector_t last_request_pos;
e6c5bc73 141 unsigned long seeky_start;
b2c18e1e 142
6118b70b 143 pid_t pid;
df5fe3e8 144
aa6f6a3d 145 struct cfq_rb_root *service_tree;
df5fe3e8 146 struct cfq_queue *new_cfqq;
cdb16e8f 147 struct cfq_group *cfqg;
ae30c286 148 struct cfq_group *orig_cfqg;
22084190
VG
149 /* Sectors dispatched in current dispatch round */
150 unsigned long nr_sectors;
6118b70b
JA
151};
152
c0324a02 153/*
718eee05 154 * First index in the service_trees.
c0324a02
CZ
155 * IDLE is handled separately, so it has negative index
156 */
157enum wl_prio_t {
c0324a02 158 BE_WORKLOAD = 0,
615f0259
VG
159 RT_WORKLOAD = 1,
160 IDLE_WORKLOAD = 2,
c0324a02
CZ
161};
162
718eee05
CZ
163/*
164 * Second index in the service_trees.
165 */
166enum wl_type_t {
167 ASYNC_WORKLOAD = 0,
168 SYNC_NOIDLE_WORKLOAD = 1,
169 SYNC_WORKLOAD = 2
170};
171
cdb16e8f
VG
172/* This is per cgroup per device grouping structure */
173struct cfq_group {
1fa8f6d6
VG
174 /* group service_tree member */
175 struct rb_node rb_node;
176
177 /* group service_tree key */
178 u64 vdisktime;
25bc6b07 179 unsigned int weight;
1fa8f6d6
VG
180 bool on_st;
181
182 /* number of cfqq currently on this group */
183 int nr_cfqq;
184
58ff82f3
VG
185 /* Per group busy queus average. Useful for workload slice calc. */
186 unsigned int busy_queues_avg[2];
cdb16e8f
VG
187 /*
188 * rr lists of queues with requests, onle rr for each priority class.
189 * Counts are embedded in the cfq_rb_root
190 */
191 struct cfq_rb_root service_trees[2][3];
192 struct cfq_rb_root service_tree_idle;
dae739eb
VG
193
194 unsigned long saved_workload_slice;
195 enum wl_type_t saved_workload;
196 enum wl_prio_t saved_serving_prio;
25fb5169
VG
197 struct blkio_group blkg;
198#ifdef CONFIG_CFQ_GROUP_IOSCHED
199 struct hlist_node cfqd_node;
b1c35769 200 atomic_t ref;
25fb5169 201#endif
cdb16e8f 202};
718eee05 203
22e2c507
JA
204/*
205 * Per block device queue structure
206 */
1da177e4 207struct cfq_data {
165125e1 208 struct request_queue *queue;
1fa8f6d6
VG
209 /* Root service tree for cfq_groups */
210 struct cfq_rb_root grp_service_tree;
cdb16e8f 211 struct cfq_group root_group;
58ff82f3
VG
212 /* Number of active cfq groups on group service tree */
213 int nr_groups;
22e2c507 214
c0324a02
CZ
215 /*
216 * The priority currently being served
22e2c507 217 */
c0324a02 218 enum wl_prio_t serving_prio;
718eee05
CZ
219 enum wl_type_t serving_type;
220 unsigned long workload_expires;
cdb16e8f 221 struct cfq_group *serving_group;
8e550632 222 bool noidle_tree_requires_idle;
a36e71f9
JA
223
224 /*
225 * Each priority tree is sorted by next_request position. These
226 * trees are used when determining if two or more queues are
227 * interleaving requests (see cfq_close_cooperator).
228 */
229 struct rb_root prio_trees[CFQ_PRIO_LISTS];
230
22e2c507
JA
231 unsigned int busy_queues;
232
5ad531db 233 int rq_in_driver[2];
3ed9a296 234 int sync_flight;
45333d5a
AC
235
236 /*
237 * queue-depth detection
238 */
239 int rq_queued;
25776e35 240 int hw_tag;
e459dd08
CZ
241 /*
242 * hw_tag can be
243 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
244 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
245 * 0 => no NCQ
246 */
247 int hw_tag_est_depth;
248 unsigned int hw_tag_samples;
1da177e4 249
22e2c507
JA
250 /*
251 * idle window management
252 */
253 struct timer_list idle_slice_timer;
23e018a1 254 struct work_struct unplug_work;
1da177e4 255
22e2c507
JA
256 struct cfq_queue *active_queue;
257 struct cfq_io_context *active_cic;
22e2c507 258
c2dea2d1
VT
259 /*
260 * async queue for each priority case
261 */
262 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
263 struct cfq_queue *async_idle_cfqq;
15c31be4 264
6d048f53 265 sector_t last_position;
1da177e4 266
1da177e4
LT
267 /*
268 * tunables, see top of file
269 */
270 unsigned int cfq_quantum;
22e2c507 271 unsigned int cfq_fifo_expire[2];
1da177e4
LT
272 unsigned int cfq_back_penalty;
273 unsigned int cfq_back_max;
22e2c507
JA
274 unsigned int cfq_slice[2];
275 unsigned int cfq_slice_async_rq;
276 unsigned int cfq_slice_idle;
963b72fc 277 unsigned int cfq_latency;
ae30c286 278 unsigned int cfq_group_isolation;
d9ff4187
AV
279
280 struct list_head cic_list;
1da177e4 281
6118b70b
JA
282 /*
283 * Fallback dummy cfqq for extreme OOM conditions
284 */
285 struct cfq_queue oom_cfqq;
365722bb
VG
286
287 unsigned long last_end_sync_rq;
25fb5169
VG
288
289 /* List of cfq groups being managed on this device*/
290 struct hlist_head cfqg_list;
1da177e4
LT
291};
292
25fb5169
VG
293static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
294
cdb16e8f
VG
295static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
296 enum wl_prio_t prio,
718eee05 297 enum wl_type_t type,
c0324a02
CZ
298 struct cfq_data *cfqd)
299{
1fa8f6d6
VG
300 if (!cfqg)
301 return NULL;
302
c0324a02 303 if (prio == IDLE_WORKLOAD)
cdb16e8f 304 return &cfqg->service_tree_idle;
c0324a02 305
cdb16e8f 306 return &cfqg->service_trees[prio][type];
c0324a02
CZ
307}
308
3b18152c 309enum cfqq_state_flags {
b0b8d749
JA
310 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
311 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 312 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 313 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
314 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
315 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
316 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 317 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 318 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 319 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
76280aff 320 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
f75edf2d
VG
321 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
322 CFQ_CFQQ_FLAG_wait_busy_done, /* Got new request. Expire the queue */
3b18152c
JA
323};
324
325#define CFQ_CFQQ_FNS(name) \
326static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
327{ \
fe094d98 328 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
329} \
330static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
331{ \
fe094d98 332 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
333} \
334static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
335{ \
fe094d98 336 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
337}
338
339CFQ_CFQQ_FNS(on_rr);
340CFQ_CFQQ_FNS(wait_request);
b029195d 341CFQ_CFQQ_FNS(must_dispatch);
3b18152c 342CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
343CFQ_CFQQ_FNS(fifo_expire);
344CFQ_CFQQ_FNS(idle_window);
345CFQ_CFQQ_FNS(prio_changed);
44f7c160 346CFQ_CFQQ_FNS(slice_new);
91fac317 347CFQ_CFQQ_FNS(sync);
a36e71f9 348CFQ_CFQQ_FNS(coop);
76280aff 349CFQ_CFQQ_FNS(deep);
f75edf2d
VG
350CFQ_CFQQ_FNS(wait_busy);
351CFQ_CFQQ_FNS(wait_busy_done);
3b18152c
JA
352#undef CFQ_CFQQ_FNS
353
2868ef7b
VG
354#ifdef CONFIG_DEBUG_CFQ_IOSCHED
355#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
356 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
357 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
358 blkg_path(&(cfqq)->cfqg->blkg), ##args);
359
360#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
361 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
362 blkg_path(&(cfqg)->blkg), ##args); \
363
364#else
7b679138
JA
365#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
366 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
2868ef7b
VG
367#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
368#endif
7b679138
JA
369#define cfq_log(cfqd, fmt, args...) \
370 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
371
615f0259
VG
372/* Traverses through cfq group service trees */
373#define for_each_cfqg_st(cfqg, i, j, st) \
374 for (i = 0; i <= IDLE_WORKLOAD; i++) \
375 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
376 : &cfqg->service_tree_idle; \
377 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
378 (i == IDLE_WORKLOAD && j == 0); \
379 j++, st = i < IDLE_WORKLOAD ? \
380 &cfqg->service_trees[i][j]: NULL) \
381
382
c0324a02
CZ
383static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
384{
385 if (cfq_class_idle(cfqq))
386 return IDLE_WORKLOAD;
387 if (cfq_class_rt(cfqq))
388 return RT_WORKLOAD;
389 return BE_WORKLOAD;
390}
391
718eee05
CZ
392
393static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
394{
395 if (!cfq_cfqq_sync(cfqq))
396 return ASYNC_WORKLOAD;
397 if (!cfq_cfqq_idle_window(cfqq))
398 return SYNC_NOIDLE_WORKLOAD;
399 return SYNC_WORKLOAD;
400}
401
58ff82f3
VG
402static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
403 struct cfq_data *cfqd,
404 struct cfq_group *cfqg)
c0324a02
CZ
405{
406 if (wl == IDLE_WORKLOAD)
cdb16e8f 407 return cfqg->service_tree_idle.count;
c0324a02 408
cdb16e8f
VG
409 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
410 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
411 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
412}
413
f26bd1f0
VG
414static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
415 struct cfq_group *cfqg)
416{
417 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
418 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
419}
420
165125e1 421static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 422static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 423 struct io_context *, gfp_t);
4ac845a2 424static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
425 struct io_context *);
426
5ad531db
JA
427static inline int rq_in_driver(struct cfq_data *cfqd)
428{
429 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
430}
431
91fac317 432static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 433 bool is_sync)
91fac317 434{
a6151c3a 435 return cic->cfqq[is_sync];
91fac317
VT
436}
437
438static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 439 struct cfq_queue *cfqq, bool is_sync)
91fac317 440{
a6151c3a 441 cic->cfqq[is_sync] = cfqq;
91fac317
VT
442}
443
444/*
445 * We regard a request as SYNC, if it's either a read or has the SYNC bit
446 * set (in which case it could also be direct WRITE).
447 */
a6151c3a 448static inline bool cfq_bio_sync(struct bio *bio)
91fac317 449{
a6151c3a 450 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
91fac317 451}
1da177e4 452
99f95e52
AM
453/*
454 * scheduler run of queue, if there are requests pending and no one in the
455 * driver that will restart queueing
456 */
23e018a1 457static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 458{
7b679138
JA
459 if (cfqd->busy_queues) {
460 cfq_log(cfqd, "schedule dispatch");
23e018a1 461 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 462 }
99f95e52
AM
463}
464
165125e1 465static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
466{
467 struct cfq_data *cfqd = q->elevator->elevator_data;
468
f04a6424 469 return !cfqd->rq_queued;
99f95e52
AM
470}
471
44f7c160
JA
472/*
473 * Scale schedule slice based on io priority. Use the sync time slice only
474 * if a queue is marked sync and has sync io queued. A sync queue with async
475 * io only, should not get full sync slice length.
476 */
a6151c3a 477static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 478 unsigned short prio)
44f7c160 479{
d9e7620e 480 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 481
d9e7620e
JA
482 WARN_ON(prio >= IOPRIO_BE_NR);
483
484 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
485}
44f7c160 486
d9e7620e
JA
487static inline int
488cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
489{
490 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
491}
492
25bc6b07
VG
493static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
494{
495 u64 d = delta << CFQ_SERVICE_SHIFT;
496
497 d = d * BLKIO_WEIGHT_DEFAULT;
498 do_div(d, cfqg->weight);
499 return d;
500}
501
502static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
503{
504 s64 delta = (s64)(vdisktime - min_vdisktime);
505 if (delta > 0)
506 min_vdisktime = vdisktime;
507
508 return min_vdisktime;
509}
510
511static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
512{
513 s64 delta = (s64)(vdisktime - min_vdisktime);
514 if (delta < 0)
515 min_vdisktime = vdisktime;
516
517 return min_vdisktime;
518}
519
520static void update_min_vdisktime(struct cfq_rb_root *st)
521{
522 u64 vdisktime = st->min_vdisktime;
523 struct cfq_group *cfqg;
524
525 if (st->active) {
526 cfqg = rb_entry_cfqg(st->active);
527 vdisktime = cfqg->vdisktime;
528 }
529
530 if (st->left) {
531 cfqg = rb_entry_cfqg(st->left);
532 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
533 }
534
535 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
536}
537
5db5d642
CZ
538/*
539 * get averaged number of queues of RT/BE priority.
540 * average is updated, with a formula that gives more weight to higher numbers,
541 * to quickly follows sudden increases and decrease slowly
542 */
543
58ff82f3
VG
544static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
545 struct cfq_group *cfqg, bool rt)
5869619c 546{
5db5d642
CZ
547 unsigned min_q, max_q;
548 unsigned mult = cfq_hist_divisor - 1;
549 unsigned round = cfq_hist_divisor / 2;
58ff82f3 550 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 551
58ff82f3
VG
552 min_q = min(cfqg->busy_queues_avg[rt], busy);
553 max_q = max(cfqg->busy_queues_avg[rt], busy);
554 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 555 cfq_hist_divisor;
58ff82f3
VG
556 return cfqg->busy_queues_avg[rt];
557}
558
559static inline unsigned
560cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
561{
562 struct cfq_rb_root *st = &cfqd->grp_service_tree;
563
564 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
565}
566
44f7c160
JA
567static inline void
568cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
569{
5db5d642
CZ
570 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
571 if (cfqd->cfq_latency) {
58ff82f3
VG
572 /*
573 * interested queues (we consider only the ones with the same
574 * priority class in the cfq group)
575 */
576 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
577 cfq_class_rt(cfqq));
5db5d642
CZ
578 unsigned sync_slice = cfqd->cfq_slice[1];
579 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
580 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
581
582 if (expect_latency > group_slice) {
5db5d642
CZ
583 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
584 /* scale low_slice according to IO priority
585 * and sync vs async */
586 unsigned low_slice =
587 min(slice, base_low_slice * slice / sync_slice);
588 /* the adapted slice value is scaled to fit all iqs
589 * into the target latency */
58ff82f3 590 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
591 low_slice);
592 }
593 }
dae739eb 594 cfqq->slice_start = jiffies;
5db5d642 595 cfqq->slice_end = jiffies + slice;
f75edf2d 596 cfqq->allocated_slice = slice;
7b679138 597 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
598}
599
600/*
601 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
602 * isn't valid until the first request from the dispatch is activated
603 * and the slice time set.
604 */
a6151c3a 605static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
606{
607 if (cfq_cfqq_slice_new(cfqq))
608 return 0;
609 if (time_before(jiffies, cfqq->slice_end))
610 return 0;
611
612 return 1;
613}
614
1da177e4 615/*
5e705374 616 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 617 * We choose the request that is closest to the head right now. Distance
e8a99053 618 * behind the head is penalized and only allowed to a certain extent.
1da177e4 619 */
5e705374 620static struct request *
cf7c25cf 621cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 622{
cf7c25cf 623 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 624 unsigned long back_max;
e8a99053
AM
625#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
626#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
627 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 628
5e705374
JA
629 if (rq1 == NULL || rq1 == rq2)
630 return rq2;
631 if (rq2 == NULL)
632 return rq1;
9c2c38a1 633
5e705374
JA
634 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
635 return rq1;
636 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
637 return rq2;
374f84ac
JA
638 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
639 return rq1;
640 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
641 return rq2;
1da177e4 642
83096ebf
TH
643 s1 = blk_rq_pos(rq1);
644 s2 = blk_rq_pos(rq2);
1da177e4 645
1da177e4
LT
646 /*
647 * by definition, 1KiB is 2 sectors
648 */
649 back_max = cfqd->cfq_back_max * 2;
650
651 /*
652 * Strict one way elevator _except_ in the case where we allow
653 * short backward seeks which are biased as twice the cost of a
654 * similar forward seek.
655 */
656 if (s1 >= last)
657 d1 = s1 - last;
658 else if (s1 + back_max >= last)
659 d1 = (last - s1) * cfqd->cfq_back_penalty;
660 else
e8a99053 661 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
662
663 if (s2 >= last)
664 d2 = s2 - last;
665 else if (s2 + back_max >= last)
666 d2 = (last - s2) * cfqd->cfq_back_penalty;
667 else
e8a99053 668 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
669
670 /* Found required data */
e8a99053
AM
671
672 /*
673 * By doing switch() on the bit mask "wrap" we avoid having to
674 * check two variables for all permutations: --> faster!
675 */
676 switch (wrap) {
5e705374 677 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 678 if (d1 < d2)
5e705374 679 return rq1;
e8a99053 680 else if (d2 < d1)
5e705374 681 return rq2;
e8a99053
AM
682 else {
683 if (s1 >= s2)
5e705374 684 return rq1;
e8a99053 685 else
5e705374 686 return rq2;
e8a99053 687 }
1da177e4 688
e8a99053 689 case CFQ_RQ2_WRAP:
5e705374 690 return rq1;
e8a99053 691 case CFQ_RQ1_WRAP:
5e705374
JA
692 return rq2;
693 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
694 default:
695 /*
696 * Since both rqs are wrapped,
697 * start with the one that's further behind head
698 * (--> only *one* back seek required),
699 * since back seek takes more time than forward.
700 */
701 if (s1 <= s2)
5e705374 702 return rq1;
1da177e4 703 else
5e705374 704 return rq2;
1da177e4
LT
705 }
706}
707
498d3aa2
JA
708/*
709 * The below is leftmost cache rbtree addon
710 */
0871714e 711static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 712{
615f0259
VG
713 /* Service tree is empty */
714 if (!root->count)
715 return NULL;
716
cc09e299
JA
717 if (!root->left)
718 root->left = rb_first(&root->rb);
719
0871714e
JA
720 if (root->left)
721 return rb_entry(root->left, struct cfq_queue, rb_node);
722
723 return NULL;
cc09e299
JA
724}
725
1fa8f6d6
VG
726static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
727{
728 if (!root->left)
729 root->left = rb_first(&root->rb);
730
731 if (root->left)
732 return rb_entry_cfqg(root->left);
733
734 return NULL;
735}
736
a36e71f9
JA
737static void rb_erase_init(struct rb_node *n, struct rb_root *root)
738{
739 rb_erase(n, root);
740 RB_CLEAR_NODE(n);
741}
742
cc09e299
JA
743static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
744{
745 if (root->left == n)
746 root->left = NULL;
a36e71f9 747 rb_erase_init(n, &root->rb);
aa6f6a3d 748 --root->count;
cc09e299
JA
749}
750
1da177e4
LT
751/*
752 * would be nice to take fifo expire time into account as well
753 */
5e705374
JA
754static struct request *
755cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
756 struct request *last)
1da177e4 757{
21183b07
JA
758 struct rb_node *rbnext = rb_next(&last->rb_node);
759 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 760 struct request *next = NULL, *prev = NULL;
1da177e4 761
21183b07 762 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
763
764 if (rbprev)
5e705374 765 prev = rb_entry_rq(rbprev);
1da177e4 766
21183b07 767 if (rbnext)
5e705374 768 next = rb_entry_rq(rbnext);
21183b07
JA
769 else {
770 rbnext = rb_first(&cfqq->sort_list);
771 if (rbnext && rbnext != &last->rb_node)
5e705374 772 next = rb_entry_rq(rbnext);
21183b07 773 }
1da177e4 774
cf7c25cf 775 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
776}
777
d9e7620e
JA
778static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
779 struct cfq_queue *cfqq)
1da177e4 780{
d9e7620e
JA
781 /*
782 * just an approximation, should be ok.
783 */
cdb16e8f 784 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 785 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
786}
787
1fa8f6d6
VG
788static inline s64
789cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
790{
791 return cfqg->vdisktime - st->min_vdisktime;
792}
793
794static void
795__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
796{
797 struct rb_node **node = &st->rb.rb_node;
798 struct rb_node *parent = NULL;
799 struct cfq_group *__cfqg;
800 s64 key = cfqg_key(st, cfqg);
801 int left = 1;
802
803 while (*node != NULL) {
804 parent = *node;
805 __cfqg = rb_entry_cfqg(parent);
806
807 if (key < cfqg_key(st, __cfqg))
808 node = &parent->rb_left;
809 else {
810 node = &parent->rb_right;
811 left = 0;
812 }
813 }
814
815 if (left)
816 st->left = &cfqg->rb_node;
817
818 rb_link_node(&cfqg->rb_node, parent, node);
819 rb_insert_color(&cfqg->rb_node, &st->rb);
820}
821
822static void
823cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
824{
825 struct cfq_rb_root *st = &cfqd->grp_service_tree;
826 struct cfq_group *__cfqg;
827 struct rb_node *n;
828
829 cfqg->nr_cfqq++;
830 if (cfqg->on_st)
831 return;
832
833 /*
834 * Currently put the group at the end. Later implement something
835 * so that groups get lesser vtime based on their weights, so that
836 * if group does not loose all if it was not continously backlogged.
837 */
838 n = rb_last(&st->rb);
839 if (n) {
840 __cfqg = rb_entry_cfqg(n);
841 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
842 } else
843 cfqg->vdisktime = st->min_vdisktime;
844
845 __cfq_group_service_tree_add(st, cfqg);
846 cfqg->on_st = true;
58ff82f3
VG
847 cfqd->nr_groups++;
848 st->total_weight += cfqg->weight;
1fa8f6d6
VG
849}
850
851static void
852cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
853{
854 struct cfq_rb_root *st = &cfqd->grp_service_tree;
855
25bc6b07
VG
856 if (st->active == &cfqg->rb_node)
857 st->active = NULL;
858
1fa8f6d6
VG
859 BUG_ON(cfqg->nr_cfqq < 1);
860 cfqg->nr_cfqq--;
25bc6b07 861
1fa8f6d6
VG
862 /* If there are other cfq queues under this group, don't delete it */
863 if (cfqg->nr_cfqq)
864 return;
865
2868ef7b 866 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1fa8f6d6 867 cfqg->on_st = false;
58ff82f3
VG
868 cfqd->nr_groups--;
869 st->total_weight -= cfqg->weight;
1fa8f6d6
VG
870 if (!RB_EMPTY_NODE(&cfqg->rb_node))
871 cfq_rb_erase(&cfqg->rb_node, st);
dae739eb 872 cfqg->saved_workload_slice = 0;
22084190 873 blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
dae739eb
VG
874}
875
876static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
877{
f75edf2d 878 unsigned int slice_used;
dae739eb
VG
879
880 /*
881 * Queue got expired before even a single request completed or
882 * got expired immediately after first request completion.
883 */
884 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
885 /*
886 * Also charge the seek time incurred to the group, otherwise
887 * if there are mutiple queues in the group, each can dispatch
888 * a single request on seeky media and cause lots of seek time
889 * and group will never know it.
890 */
891 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
892 1);
893 } else {
894 slice_used = jiffies - cfqq->slice_start;
f75edf2d
VG
895 if (slice_used > cfqq->allocated_slice)
896 slice_used = cfqq->allocated_slice;
dae739eb
VG
897 }
898
22084190
VG
899 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
900 cfqq->nr_sectors);
dae739eb
VG
901 return slice_used;
902}
903
904static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
905 struct cfq_queue *cfqq)
906{
907 struct cfq_rb_root *st = &cfqd->grp_service_tree;
f26bd1f0
VG
908 unsigned int used_sl, charge_sl;
909 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
910 - cfqg->service_tree_idle.count;
911
912 BUG_ON(nr_sync < 0);
913 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
dae739eb 914
f26bd1f0
VG
915 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
916 charge_sl = cfqq->allocated_slice;
dae739eb
VG
917
918 /* Can't update vdisktime while group is on service tree */
919 cfq_rb_erase(&cfqg->rb_node, st);
f26bd1f0 920 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
dae739eb
VG
921 __cfq_group_service_tree_add(st, cfqg);
922
923 /* This group is being expired. Save the context */
924 if (time_after(cfqd->workload_expires, jiffies)) {
925 cfqg->saved_workload_slice = cfqd->workload_expires
926 - jiffies;
927 cfqg->saved_workload = cfqd->serving_type;
928 cfqg->saved_serving_prio = cfqd->serving_prio;
929 } else
930 cfqg->saved_workload_slice = 0;
2868ef7b
VG
931
932 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
933 st->min_vdisktime);
22084190
VG
934 blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
935 cfqq->nr_sectors);
1fa8f6d6
VG
936}
937
25fb5169
VG
938#ifdef CONFIG_CFQ_GROUP_IOSCHED
939static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
940{
941 if (blkg)
942 return container_of(blkg, struct cfq_group, blkg);
943 return NULL;
944}
945
f8d461d6
VG
946void
947cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
948{
949 cfqg_of_blkg(blkg)->weight = weight;
950}
951
25fb5169
VG
952static struct cfq_group *
953cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
954{
955 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
956 struct cfq_group *cfqg = NULL;
957 void *key = cfqd;
958 int i, j;
959 struct cfq_rb_root *st;
22084190
VG
960 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
961 unsigned int major, minor;
25fb5169
VG
962
963 /* Do we need to take this reference */
9d6a986c 964 if (!blkiocg_css_tryget(blkcg))
25fb5169
VG
965 return NULL;;
966
967 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
968 if (cfqg || !create)
969 goto done;
970
971 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
972 if (!cfqg)
973 goto done;
974
975 cfqg->weight = blkcg->weight;
976 for_each_cfqg_st(cfqg, i, j, st)
977 *st = CFQ_RB_ROOT;
978 RB_CLEAR_NODE(&cfqg->rb_node);
979
b1c35769
VG
980 /*
981 * Take the initial reference that will be released on destroy
982 * This can be thought of a joint reference by cgroup and
983 * elevator which will be dropped by either elevator exit
984 * or cgroup deletion path depending on who is exiting first.
985 */
986 atomic_set(&cfqg->ref, 1);
987
25fb5169 988 /* Add group onto cgroup list */
22084190
VG
989 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
990 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
991 MKDEV(major, minor));
25fb5169
VG
992
993 /* Add group on cfqd list */
994 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
995
996done:
9d6a986c 997 blkiocg_css_put(blkcg);
25fb5169
VG
998 return cfqg;
999}
1000
1001/*
1002 * Search for the cfq group current task belongs to. If create = 1, then also
1003 * create the cfq group if it does not exist. request_queue lock must be held.
1004 */
1005static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1006{
1007 struct cgroup *cgroup;
1008 struct cfq_group *cfqg = NULL;
1009
1010 rcu_read_lock();
1011 cgroup = task_cgroup(current, blkio_subsys_id);
1012 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1013 if (!cfqg && create)
1014 cfqg = &cfqd->root_group;
1015 rcu_read_unlock();
1016 return cfqg;
1017}
1018
1019static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1020{
1021 /* Currently, all async queues are mapped to root group */
1022 if (!cfq_cfqq_sync(cfqq))
1023 cfqg = &cfqq->cfqd->root_group;
1024
1025 cfqq->cfqg = cfqg;
b1c35769
VG
1026 /* cfqq reference on cfqg */
1027 atomic_inc(&cfqq->cfqg->ref);
1028}
1029
1030static void cfq_put_cfqg(struct cfq_group *cfqg)
1031{
1032 struct cfq_rb_root *st;
1033 int i, j;
1034
1035 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1036 if (!atomic_dec_and_test(&cfqg->ref))
1037 return;
1038 for_each_cfqg_st(cfqg, i, j, st)
1039 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1040 kfree(cfqg);
1041}
1042
1043static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1044{
1045 /* Something wrong if we are trying to remove same group twice */
1046 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1047
1048 hlist_del_init(&cfqg->cfqd_node);
1049
1050 /*
1051 * Put the reference taken at the time of creation so that when all
1052 * queues are gone, group can be destroyed.
1053 */
1054 cfq_put_cfqg(cfqg);
1055}
1056
1057static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1058{
1059 struct hlist_node *pos, *n;
1060 struct cfq_group *cfqg;
1061
1062 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1063 /*
1064 * If cgroup removal path got to blk_group first and removed
1065 * it from cgroup list, then it will take care of destroying
1066 * cfqg also.
1067 */
1068 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1069 cfq_destroy_cfqg(cfqd, cfqg);
1070 }
25fb5169 1071}
b1c35769
VG
1072
1073/*
1074 * Blk cgroup controller notification saying that blkio_group object is being
1075 * delinked as associated cgroup object is going away. That also means that
1076 * no new IO will come in this group. So get rid of this group as soon as
1077 * any pending IO in the group is finished.
1078 *
1079 * This function is called under rcu_read_lock(). key is the rcu protected
1080 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1081 * read lock.
1082 *
1083 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1084 * it should not be NULL as even if elevator was exiting, cgroup deltion
1085 * path got to it first.
1086 */
1087void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1088{
1089 unsigned long flags;
1090 struct cfq_data *cfqd = key;
1091
1092 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1093 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1094 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1095}
1096
25fb5169
VG
1097#else /* GROUP_IOSCHED */
1098static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1099{
1100 return &cfqd->root_group;
1101}
1102static inline void
1103cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1104 cfqq->cfqg = cfqg;
1105}
1106
b1c35769
VG
1107static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1108static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1109
25fb5169
VG
1110#endif /* GROUP_IOSCHED */
1111
498d3aa2 1112/*
c0324a02 1113 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
1114 * requests waiting to be processed. It is sorted in the order that
1115 * we will service the queues.
1116 */
a36e71f9 1117static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1118 bool add_front)
d9e7620e 1119{
0871714e
JA
1120 struct rb_node **p, *parent;
1121 struct cfq_queue *__cfqq;
d9e7620e 1122 unsigned long rb_key;
c0324a02 1123 struct cfq_rb_root *service_tree;
498d3aa2 1124 int left;
dae739eb 1125 int new_cfqq = 1;
ae30c286
VG
1126 int group_changed = 0;
1127
1128#ifdef CONFIG_CFQ_GROUP_IOSCHED
1129 if (!cfqd->cfq_group_isolation
1130 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1131 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1132 /* Move this cfq to root group */
1133 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1134 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1135 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1136 cfqq->orig_cfqg = cfqq->cfqg;
1137 cfqq->cfqg = &cfqd->root_group;
1138 atomic_inc(&cfqd->root_group.ref);
1139 group_changed = 1;
1140 } else if (!cfqd->cfq_group_isolation
1141 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1142 /* cfqq is sequential now needs to go to its original group */
1143 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1144 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1145 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1146 cfq_put_cfqg(cfqq->cfqg);
1147 cfqq->cfqg = cfqq->orig_cfqg;
1148 cfqq->orig_cfqg = NULL;
1149 group_changed = 1;
1150 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1151 }
1152#endif
d9e7620e 1153
cdb16e8f
VG
1154 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1155 cfqq_type(cfqq), cfqd);
0871714e
JA
1156 if (cfq_class_idle(cfqq)) {
1157 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 1158 parent = rb_last(&service_tree->rb);
0871714e
JA
1159 if (parent && parent != &cfqq->rb_node) {
1160 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1161 rb_key += __cfqq->rb_key;
1162 } else
1163 rb_key += jiffies;
1164 } else if (!add_front) {
b9c8946b
JA
1165 /*
1166 * Get our rb key offset. Subtract any residual slice
1167 * value carried from last service. A negative resid
1168 * count indicates slice overrun, and this should position
1169 * the next service time further away in the tree.
1170 */
edd75ffd 1171 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 1172 rb_key -= cfqq->slice_resid;
edd75ffd 1173 cfqq->slice_resid = 0;
48e025e6
CZ
1174 } else {
1175 rb_key = -HZ;
aa6f6a3d 1176 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
1177 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1178 }
1da177e4 1179
d9e7620e 1180 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 1181 new_cfqq = 0;
99f9628a 1182 /*
d9e7620e 1183 * same position, nothing more to do
99f9628a 1184 */
c0324a02
CZ
1185 if (rb_key == cfqq->rb_key &&
1186 cfqq->service_tree == service_tree)
d9e7620e 1187 return;
1da177e4 1188
aa6f6a3d
CZ
1189 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1190 cfqq->service_tree = NULL;
1da177e4 1191 }
d9e7620e 1192
498d3aa2 1193 left = 1;
0871714e 1194 parent = NULL;
aa6f6a3d
CZ
1195 cfqq->service_tree = service_tree;
1196 p = &service_tree->rb.rb_node;
d9e7620e 1197 while (*p) {
67060e37 1198 struct rb_node **n;
cc09e299 1199
d9e7620e
JA
1200 parent = *p;
1201 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1202
0c534e0a 1203 /*
c0324a02 1204 * sort by key, that represents service time.
0c534e0a 1205 */
c0324a02 1206 if (time_before(rb_key, __cfqq->rb_key))
67060e37 1207 n = &(*p)->rb_left;
c0324a02 1208 else {
67060e37 1209 n = &(*p)->rb_right;
cc09e299 1210 left = 0;
c0324a02 1211 }
67060e37
JA
1212
1213 p = n;
d9e7620e
JA
1214 }
1215
cc09e299 1216 if (left)
aa6f6a3d 1217 service_tree->left = &cfqq->rb_node;
cc09e299 1218
d9e7620e
JA
1219 cfqq->rb_key = rb_key;
1220 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
1221 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1222 service_tree->count++;
ae30c286 1223 if ((add_front || !new_cfqq) && !group_changed)
dae739eb 1224 return;
1fa8f6d6 1225 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1da177e4
LT
1226}
1227
a36e71f9 1228static struct cfq_queue *
f2d1f0ae
JA
1229cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1230 sector_t sector, struct rb_node **ret_parent,
1231 struct rb_node ***rb_link)
a36e71f9 1232{
a36e71f9
JA
1233 struct rb_node **p, *parent;
1234 struct cfq_queue *cfqq = NULL;
1235
1236 parent = NULL;
1237 p = &root->rb_node;
1238 while (*p) {
1239 struct rb_node **n;
1240
1241 parent = *p;
1242 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1243
1244 /*
1245 * Sort strictly based on sector. Smallest to the left,
1246 * largest to the right.
1247 */
2e46e8b2 1248 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 1249 n = &(*p)->rb_right;
2e46e8b2 1250 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
1251 n = &(*p)->rb_left;
1252 else
1253 break;
1254 p = n;
3ac6c9f8 1255 cfqq = NULL;
a36e71f9
JA
1256 }
1257
1258 *ret_parent = parent;
1259 if (rb_link)
1260 *rb_link = p;
3ac6c9f8 1261 return cfqq;
a36e71f9
JA
1262}
1263
1264static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1265{
a36e71f9
JA
1266 struct rb_node **p, *parent;
1267 struct cfq_queue *__cfqq;
1268
f2d1f0ae
JA
1269 if (cfqq->p_root) {
1270 rb_erase(&cfqq->p_node, cfqq->p_root);
1271 cfqq->p_root = NULL;
1272 }
a36e71f9
JA
1273
1274 if (cfq_class_idle(cfqq))
1275 return;
1276 if (!cfqq->next_rq)
1277 return;
1278
f2d1f0ae 1279 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1280 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1281 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1282 if (!__cfqq) {
1283 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1284 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1285 } else
1286 cfqq->p_root = NULL;
a36e71f9
JA
1287}
1288
498d3aa2
JA
1289/*
1290 * Update cfqq's position in the service tree.
1291 */
edd75ffd 1292static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1293{
6d048f53
JA
1294 /*
1295 * Resorting requires the cfqq to be on the RR list already.
1296 */
a36e71f9 1297 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1298 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1299 cfq_prio_tree_add(cfqd, cfqq);
1300 }
6d048f53
JA
1301}
1302
1da177e4
LT
1303/*
1304 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1305 * the pending list according to last request service
1da177e4 1306 */
febffd61 1307static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1308{
7b679138 1309 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1310 BUG_ON(cfq_cfqq_on_rr(cfqq));
1311 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
1312 cfqd->busy_queues++;
1313
edd75ffd 1314 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1315}
1316
498d3aa2
JA
1317/*
1318 * Called when the cfqq no longer has requests pending, remove it from
1319 * the service tree.
1320 */
febffd61 1321static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1322{
7b679138 1323 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1324 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1325 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1326
aa6f6a3d
CZ
1327 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1328 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1329 cfqq->service_tree = NULL;
1330 }
f2d1f0ae
JA
1331 if (cfqq->p_root) {
1332 rb_erase(&cfqq->p_node, cfqq->p_root);
1333 cfqq->p_root = NULL;
1334 }
d9e7620e 1335
1fa8f6d6 1336 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1da177e4
LT
1337 BUG_ON(!cfqd->busy_queues);
1338 cfqd->busy_queues--;
1339}
1340
1341/*
1342 * rb tree support functions
1343 */
febffd61 1344static void cfq_del_rq_rb(struct request *rq)
1da177e4 1345{
5e705374 1346 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1347 const int sync = rq_is_sync(rq);
1da177e4 1348
b4878f24
JA
1349 BUG_ON(!cfqq->queued[sync]);
1350 cfqq->queued[sync]--;
1da177e4 1351
5e705374 1352 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1353
f04a6424
VG
1354 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1355 /*
1356 * Queue will be deleted from service tree when we actually
1357 * expire it later. Right now just remove it from prio tree
1358 * as it is empty.
1359 */
1360 if (cfqq->p_root) {
1361 rb_erase(&cfqq->p_node, cfqq->p_root);
1362 cfqq->p_root = NULL;
1363 }
1364 }
1da177e4
LT
1365}
1366
5e705374 1367static void cfq_add_rq_rb(struct request *rq)
1da177e4 1368{
5e705374 1369 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1370 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 1371 struct request *__alias, *prev;
1da177e4 1372
5380a101 1373 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
1374
1375 /*
1376 * looks a little odd, but the first insert might return an alias.
1377 * if that happens, put the alias on the dispatch list
1378 */
21183b07 1379 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 1380 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
1381
1382 if (!cfq_cfqq_on_rr(cfqq))
1383 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1384
1385 /*
1386 * check if this request is a better next-serve candidate
1387 */
a36e71f9 1388 prev = cfqq->next_rq;
cf7c25cf 1389 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1390
1391 /*
1392 * adjust priority tree position, if ->next_rq changes
1393 */
1394 if (prev != cfqq->next_rq)
1395 cfq_prio_tree_add(cfqd, cfqq);
1396
5044eed4 1397 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1398}
1399
febffd61 1400static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1401{
5380a101
JA
1402 elv_rb_del(&cfqq->sort_list, rq);
1403 cfqq->queued[rq_is_sync(rq)]--;
5e705374 1404 cfq_add_rq_rb(rq);
1da177e4
LT
1405}
1406
206dc69b
JA
1407static struct request *
1408cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1409{
206dc69b 1410 struct task_struct *tsk = current;
91fac317 1411 struct cfq_io_context *cic;
206dc69b 1412 struct cfq_queue *cfqq;
1da177e4 1413
4ac845a2 1414 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1415 if (!cic)
1416 return NULL;
1417
1418 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1419 if (cfqq) {
1420 sector_t sector = bio->bi_sector + bio_sectors(bio);
1421
21183b07 1422 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1423 }
1da177e4 1424
1da177e4
LT
1425 return NULL;
1426}
1427
165125e1 1428static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1429{
22e2c507 1430 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1431
5ad531db 1432 cfqd->rq_in_driver[rq_is_sync(rq)]++;
7b679138 1433 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
5ad531db 1434 rq_in_driver(cfqd));
25776e35 1435
5b93629b 1436 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1437}
1438
165125e1 1439static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1440{
b4878f24 1441 struct cfq_data *cfqd = q->elevator->elevator_data;
5ad531db 1442 const int sync = rq_is_sync(rq);
b4878f24 1443
5ad531db
JA
1444 WARN_ON(!cfqd->rq_in_driver[sync]);
1445 cfqd->rq_in_driver[sync]--;
7b679138 1446 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
5ad531db 1447 rq_in_driver(cfqd));
1da177e4
LT
1448}
1449
b4878f24 1450static void cfq_remove_request(struct request *rq)
1da177e4 1451{
5e705374 1452 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1453
5e705374
JA
1454 if (cfqq->next_rq == rq)
1455 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1456
b4878f24 1457 list_del_init(&rq->queuelist);
5e705374 1458 cfq_del_rq_rb(rq);
374f84ac 1459
45333d5a 1460 cfqq->cfqd->rq_queued--;
374f84ac
JA
1461 if (rq_is_meta(rq)) {
1462 WARN_ON(!cfqq->meta_pending);
1463 cfqq->meta_pending--;
1464 }
1da177e4
LT
1465}
1466
165125e1
JA
1467static int cfq_merge(struct request_queue *q, struct request **req,
1468 struct bio *bio)
1da177e4
LT
1469{
1470 struct cfq_data *cfqd = q->elevator->elevator_data;
1471 struct request *__rq;
1da177e4 1472
206dc69b 1473 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1474 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1475 *req = __rq;
1476 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1477 }
1478
1479 return ELEVATOR_NO_MERGE;
1da177e4
LT
1480}
1481
165125e1 1482static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1483 int type)
1da177e4 1484{
21183b07 1485 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1486 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1487
5e705374 1488 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1489 }
1da177e4
LT
1490}
1491
1492static void
165125e1 1493cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1494 struct request *next)
1495{
cf7c25cf 1496 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
1497 /*
1498 * reposition in fifo if next is older than rq
1499 */
1500 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1501 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1502 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1503 rq_set_fifo_time(rq, rq_fifo_time(next));
1504 }
22e2c507 1505
cf7c25cf
CZ
1506 if (cfqq->next_rq == next)
1507 cfqq->next_rq = rq;
b4878f24 1508 cfq_remove_request(next);
22e2c507
JA
1509}
1510
165125e1 1511static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1512 struct bio *bio)
1513{
1514 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1515 struct cfq_io_context *cic;
da775265 1516 struct cfq_queue *cfqq;
da775265 1517
8682e1f1
VG
1518 /* Deny merge if bio and rq don't belong to same cfq group */
1519 if ((RQ_CFQQ(rq))->cfqg != cfq_get_cfqg(cfqd, 0))
1520 return false;
da775265 1521 /*
ec8acb69 1522 * Disallow merge of a sync bio into an async request.
da775265 1523 */
91fac317 1524 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1525 return false;
da775265
JA
1526
1527 /*
719d3402
JA
1528 * Lookup the cfqq that this bio will be queued with. Allow
1529 * merge only if rq is queued there.
da775265 1530 */
4ac845a2 1531 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1532 if (!cic)
a6151c3a 1533 return false;
719d3402 1534
91fac317 1535 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1536 return cfqq == RQ_CFQQ(rq);
da775265
JA
1537}
1538
febffd61
JA
1539static void __cfq_set_active_queue(struct cfq_data *cfqd,
1540 struct cfq_queue *cfqq)
22e2c507
JA
1541{
1542 if (cfqq) {
7b679138 1543 cfq_log_cfqq(cfqd, cfqq, "set_active");
dae739eb
VG
1544 cfqq->slice_start = 0;
1545 cfqq->dispatch_start = jiffies;
f75edf2d 1546 cfqq->allocated_slice = 0;
22e2c507 1547 cfqq->slice_end = 0;
2f5cb738 1548 cfqq->slice_dispatch = 0;
22084190 1549 cfqq->nr_sectors = 0;
2f5cb738 1550
2f5cb738 1551 cfq_clear_cfqq_wait_request(cfqq);
b029195d 1552 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
1553 cfq_clear_cfqq_must_alloc_slice(cfqq);
1554 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 1555 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
1556
1557 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
1558 }
1559
1560 cfqd->active_queue = cfqq;
1561}
1562
7b14e3b5
JA
1563/*
1564 * current cfqq expired its slice (or was too idle), select new one
1565 */
1566static void
1567__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1568 bool timed_out)
7b14e3b5 1569{
7b679138
JA
1570 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1571
7b14e3b5
JA
1572 if (cfq_cfqq_wait_request(cfqq))
1573 del_timer(&cfqd->idle_slice_timer);
1574
7b14e3b5 1575 cfq_clear_cfqq_wait_request(cfqq);
f75edf2d
VG
1576 cfq_clear_cfqq_wait_busy(cfqq);
1577 cfq_clear_cfqq_wait_busy_done(cfqq);
7b14e3b5
JA
1578
1579 /*
6084cdda 1580 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1581 */
7b679138 1582 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 1583 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1584 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1585 }
7b14e3b5 1586
dae739eb
VG
1587 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1588
f04a6424
VG
1589 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1590 cfq_del_cfqq_rr(cfqd, cfqq);
1591
edd75ffd 1592 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1593
1594 if (cfqq == cfqd->active_queue)
1595 cfqd->active_queue = NULL;
1596
dae739eb
VG
1597 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1598 cfqd->grp_service_tree.active = NULL;
1599
7b14e3b5
JA
1600 if (cfqd->active_cic) {
1601 put_io_context(cfqd->active_cic->ioc);
1602 cfqd->active_cic = NULL;
1603 }
7b14e3b5
JA
1604}
1605
a6151c3a 1606static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1607{
1608 struct cfq_queue *cfqq = cfqd->active_queue;
1609
1610 if (cfqq)
6084cdda 1611 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1612}
1613
498d3aa2
JA
1614/*
1615 * Get next queue for service. Unless we have a queue preemption,
1616 * we'll simply select the first cfqq in the service tree.
1617 */
6d048f53 1618static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1619{
c0324a02 1620 struct cfq_rb_root *service_tree =
cdb16e8f
VG
1621 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1622 cfqd->serving_type, cfqd);
d9e7620e 1623
f04a6424
VG
1624 if (!cfqd->rq_queued)
1625 return NULL;
1626
1fa8f6d6
VG
1627 /* There is nothing to dispatch */
1628 if (!service_tree)
1629 return NULL;
c0324a02
CZ
1630 if (RB_EMPTY_ROOT(&service_tree->rb))
1631 return NULL;
1632 return cfq_rb_first(service_tree);
6d048f53
JA
1633}
1634
f04a6424
VG
1635static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1636{
25fb5169 1637 struct cfq_group *cfqg;
f04a6424
VG
1638 struct cfq_queue *cfqq;
1639 int i, j;
1640 struct cfq_rb_root *st;
1641
1642 if (!cfqd->rq_queued)
1643 return NULL;
1644
25fb5169
VG
1645 cfqg = cfq_get_next_cfqg(cfqd);
1646 if (!cfqg)
1647 return NULL;
1648
f04a6424
VG
1649 for_each_cfqg_st(cfqg, i, j, st)
1650 if ((cfqq = cfq_rb_first(st)) != NULL)
1651 return cfqq;
1652 return NULL;
1653}
1654
498d3aa2
JA
1655/*
1656 * Get and set a new active queue for service.
1657 */
a36e71f9
JA
1658static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1659 struct cfq_queue *cfqq)
6d048f53 1660{
e00ef799 1661 if (!cfqq)
a36e71f9 1662 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1663
22e2c507 1664 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1665 return cfqq;
22e2c507
JA
1666}
1667
d9e7620e
JA
1668static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1669 struct request *rq)
1670{
83096ebf
TH
1671 if (blk_rq_pos(rq) >= cfqd->last_position)
1672 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1673 else
83096ebf 1674 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1675}
1676
b2c18e1e
JM
1677#define CFQQ_SEEK_THR 8 * 1024
1678#define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
04dc6e71 1679
b2c18e1e
JM
1680static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1681 struct request *rq)
6d048f53 1682{
b2c18e1e 1683 sector_t sdist = cfqq->seek_mean;
6d048f53 1684
b2c18e1e
JM
1685 if (!sample_valid(cfqq->seek_samples))
1686 sdist = CFQQ_SEEK_THR;
6d048f53 1687
04dc6e71 1688 return cfq_dist_from_last(cfqd, rq) <= sdist;
6d048f53
JA
1689}
1690
a36e71f9
JA
1691static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1692 struct cfq_queue *cur_cfqq)
1693{
f2d1f0ae 1694 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1695 struct rb_node *parent, *node;
1696 struct cfq_queue *__cfqq;
1697 sector_t sector = cfqd->last_position;
1698
1699 if (RB_EMPTY_ROOT(root))
1700 return NULL;
1701
1702 /*
1703 * First, if we find a request starting at the end of the last
1704 * request, choose it.
1705 */
f2d1f0ae 1706 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1707 if (__cfqq)
1708 return __cfqq;
1709
1710 /*
1711 * If the exact sector wasn't found, the parent of the NULL leaf
1712 * will contain the closest sector.
1713 */
1714 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
b2c18e1e 1715 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1716 return __cfqq;
1717
2e46e8b2 1718 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1719 node = rb_next(&__cfqq->p_node);
1720 else
1721 node = rb_prev(&__cfqq->p_node);
1722 if (!node)
1723 return NULL;
1724
1725 __cfqq = rb_entry(node, struct cfq_queue, p_node);
b2c18e1e 1726 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1727 return __cfqq;
1728
1729 return NULL;
1730}
1731
1732/*
1733 * cfqd - obvious
1734 * cur_cfqq - passed in so that we don't decide that the current queue is
1735 * closely cooperating with itself.
1736 *
1737 * So, basically we're assuming that that cur_cfqq has dispatched at least
1738 * one request, and that cfqd->last_position reflects a position on the disk
1739 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1740 * assumption.
1741 */
1742static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1743 struct cfq_queue *cur_cfqq)
6d048f53 1744{
a36e71f9
JA
1745 struct cfq_queue *cfqq;
1746
e6c5bc73
JM
1747 if (!cfq_cfqq_sync(cur_cfqq))
1748 return NULL;
1749 if (CFQQ_SEEKY(cur_cfqq))
1750 return NULL;
1751
6d048f53 1752 /*
d9e7620e
JA
1753 * We should notice if some of the queues are cooperating, eg
1754 * working closely on the same area of the disk. In that case,
1755 * we can group them together and don't waste time idling.
6d048f53 1756 */
a36e71f9
JA
1757 cfqq = cfqq_close(cfqd, cur_cfqq);
1758 if (!cfqq)
1759 return NULL;
1760
8682e1f1
VG
1761 /* If new queue belongs to different cfq_group, don't choose it */
1762 if (cur_cfqq->cfqg != cfqq->cfqg)
1763 return NULL;
1764
df5fe3e8
JM
1765 /*
1766 * It only makes sense to merge sync queues.
1767 */
1768 if (!cfq_cfqq_sync(cfqq))
1769 return NULL;
e6c5bc73
JM
1770 if (CFQQ_SEEKY(cfqq))
1771 return NULL;
df5fe3e8 1772
c0324a02
CZ
1773 /*
1774 * Do not merge queues of different priority classes
1775 */
1776 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1777 return NULL;
1778
a36e71f9 1779 return cfqq;
6d048f53
JA
1780}
1781
a6d44e98
CZ
1782/*
1783 * Determine whether we should enforce idle window for this queue.
1784 */
1785
1786static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1787{
1788 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1789 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1790
f04a6424
VG
1791 BUG_ON(!service_tree);
1792 BUG_ON(!service_tree->count);
1793
a6d44e98
CZ
1794 /* We never do for idle class queues. */
1795 if (prio == IDLE_WORKLOAD)
1796 return false;
1797
1798 /* We do for queues that were marked with idle window flag. */
3c764b7a
SL
1799 if (cfq_cfqq_idle_window(cfqq) &&
1800 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
a6d44e98
CZ
1801 return true;
1802
1803 /*
1804 * Otherwise, we do only if they are the last ones
1805 * in their service tree.
1806 */
f04a6424 1807 return service_tree->count == 1;
a6d44e98
CZ
1808}
1809
6d048f53 1810static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1811{
1792669c 1812 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1813 struct cfq_io_context *cic;
7b14e3b5
JA
1814 unsigned long sl;
1815
a68bbddb 1816 /*
f7d7b7a7
JA
1817 * SSD device without seek penalty, disable idling. But only do so
1818 * for devices that support queuing, otherwise we still have a problem
1819 * with sync vs async workloads.
a68bbddb 1820 */
f7d7b7a7 1821 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1822 return;
1823
dd67d051 1824 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1825 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1826
1827 /*
1828 * idle is disabled, either manually or by past process history
1829 */
a6d44e98 1830 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
6d048f53
JA
1831 return;
1832
7b679138 1833 /*
8e550632 1834 * still active requests from this queue, don't idle
7b679138 1835 */
8e550632 1836 if (cfqq->dispatched)
7b679138
JA
1837 return;
1838
22e2c507
JA
1839 /*
1840 * task has exited, don't wait
1841 */
206dc69b 1842 cic = cfqd->active_cic;
66dac98e 1843 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1844 return;
1845
355b659c
CZ
1846 /*
1847 * If our average think time is larger than the remaining time
1848 * slice, then don't idle. This avoids overrunning the allotted
1849 * time slice.
1850 */
1851 if (sample_valid(cic->ttime_samples) &&
1852 (cfqq->slice_end - jiffies < cic->ttime_mean))
1853 return;
1854
3b18152c 1855 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1856
6d048f53 1857 sl = cfqd->cfq_slice_idle;
206dc69b 1858
7b14e3b5 1859 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1860 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1861}
1862
498d3aa2
JA
1863/*
1864 * Move request from internal lists to the request queue dispatch list.
1865 */
165125e1 1866static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1867{
3ed9a296 1868 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1869 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1870
7b679138
JA
1871 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1872
06d21886 1873 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1874 cfq_remove_request(rq);
6d048f53 1875 cfqq->dispatched++;
5380a101 1876 elv_dispatch_sort(q, rq);
3ed9a296
JA
1877
1878 if (cfq_cfqq_sync(cfqq))
1879 cfqd->sync_flight++;
22084190 1880 cfqq->nr_sectors += blk_rq_sectors(rq);
1da177e4
LT
1881}
1882
1883/*
1884 * return expired entry, or NULL to just start from scratch in rbtree
1885 */
febffd61 1886static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1887{
30996f40 1888 struct request *rq = NULL;
1da177e4 1889
3b18152c 1890 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1891 return NULL;
cb887411
JA
1892
1893 cfq_mark_cfqq_fifo_expire(cfqq);
1894
89850f7e
JA
1895 if (list_empty(&cfqq->fifo))
1896 return NULL;
1da177e4 1897
89850f7e 1898 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1899 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1900 rq = NULL;
1da177e4 1901
30996f40 1902 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1903 return rq;
1da177e4
LT
1904}
1905
22e2c507
JA
1906static inline int
1907cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1908{
1909 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1910
22e2c507 1911 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1912
22e2c507 1913 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1914}
1915
df5fe3e8
JM
1916/*
1917 * Must be called with the queue_lock held.
1918 */
1919static int cfqq_process_refs(struct cfq_queue *cfqq)
1920{
1921 int process_refs, io_refs;
1922
1923 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1924 process_refs = atomic_read(&cfqq->ref) - io_refs;
1925 BUG_ON(process_refs < 0);
1926 return process_refs;
1927}
1928
1929static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1930{
e6c5bc73 1931 int process_refs, new_process_refs;
df5fe3e8
JM
1932 struct cfq_queue *__cfqq;
1933
1934 /* Avoid a circular list and skip interim queue merges */
1935 while ((__cfqq = new_cfqq->new_cfqq)) {
1936 if (__cfqq == cfqq)
1937 return;
1938 new_cfqq = __cfqq;
1939 }
1940
1941 process_refs = cfqq_process_refs(cfqq);
1942 /*
1943 * If the process for the cfqq has gone away, there is no
1944 * sense in merging the queues.
1945 */
1946 if (process_refs == 0)
1947 return;
1948
e6c5bc73
JM
1949 /*
1950 * Merge in the direction of the lesser amount of work.
1951 */
1952 new_process_refs = cfqq_process_refs(new_cfqq);
1953 if (new_process_refs >= process_refs) {
1954 cfqq->new_cfqq = new_cfqq;
1955 atomic_add(process_refs, &new_cfqq->ref);
1956 } else {
1957 new_cfqq->new_cfqq = cfqq;
1958 atomic_add(new_process_refs, &cfqq->ref);
1959 }
df5fe3e8
JM
1960}
1961
cdb16e8f
VG
1962static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1963 struct cfq_group *cfqg, enum wl_prio_t prio,
1964 bool prio_changed)
718eee05
CZ
1965{
1966 struct cfq_queue *queue;
1967 int i;
1968 bool key_valid = false;
1969 unsigned long lowest_key = 0;
1970 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1971
1972 if (prio_changed) {
1973 /*
1974 * When priorities switched, we prefer starting
1975 * from SYNC_NOIDLE (first choice), or just SYNC
1976 * over ASYNC
1977 */
cdb16e8f 1978 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
718eee05
CZ
1979 return cur_best;
1980 cur_best = SYNC_WORKLOAD;
cdb16e8f 1981 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
718eee05
CZ
1982 return cur_best;
1983
1984 return ASYNC_WORKLOAD;
1985 }
1986
1987 for (i = 0; i < 3; ++i) {
1988 /* otherwise, select the one with lowest rb_key */
cdb16e8f 1989 queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
718eee05
CZ
1990 if (queue &&
1991 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1992 lowest_key = queue->rb_key;
1993 cur_best = i;
1994 key_valid = true;
1995 }
1996 }
1997
1998 return cur_best;
1999}
2000
cdb16e8f 2001static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05
CZ
2002{
2003 enum wl_prio_t previous_prio = cfqd->serving_prio;
2004 bool prio_changed;
2005 unsigned slice;
2006 unsigned count;
cdb16e8f 2007 struct cfq_rb_root *st;
58ff82f3 2008 unsigned group_slice;
718eee05 2009
1fa8f6d6
VG
2010 if (!cfqg) {
2011 cfqd->serving_prio = IDLE_WORKLOAD;
2012 cfqd->workload_expires = jiffies + 1;
2013 return;
2014 }
2015
718eee05 2016 /* Choose next priority. RT > BE > IDLE */
58ff82f3 2017 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 2018 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 2019 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
2020 cfqd->serving_prio = BE_WORKLOAD;
2021 else {
2022 cfqd->serving_prio = IDLE_WORKLOAD;
2023 cfqd->workload_expires = jiffies + 1;
2024 return;
2025 }
2026
2027 /*
2028 * For RT and BE, we have to choose also the type
2029 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2030 * expiration time
2031 */
2032 prio_changed = (cfqd->serving_prio != previous_prio);
cdb16e8f
VG
2033 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
2034 cfqd);
2035 count = st->count;
718eee05
CZ
2036
2037 /*
2038 * If priority didn't change, check workload expiration,
2039 * and that we still have other queues ready
2040 */
2041 if (!prio_changed && count &&
2042 !time_after(jiffies, cfqd->workload_expires))
2043 return;
2044
2045 /* otherwise select new workload type */
2046 cfqd->serving_type =
cdb16e8f
VG
2047 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
2048 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
2049 cfqd);
2050 count = st->count;
718eee05
CZ
2051
2052 /*
2053 * the workload slice is computed as a fraction of target latency
2054 * proportional to the number of queues in that workload, over
2055 * all the queues in the same priority class
2056 */
58ff82f3
VG
2057 group_slice = cfq_group_slice(cfqd, cfqg);
2058
2059 slice = group_slice * count /
2060 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2061 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05 2062
f26bd1f0
VG
2063 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2064 unsigned int tmp;
2065
2066 /*
2067 * Async queues are currently system wide. Just taking
2068 * proportion of queues with-in same group will lead to higher
2069 * async ratio system wide as generally root group is going
2070 * to have higher weight. A more accurate thing would be to
2071 * calculate system wide asnc/sync ratio.
2072 */
2073 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2074 tmp = tmp/cfqd->busy_queues;
2075 slice = min_t(unsigned, slice, tmp);
2076
718eee05
CZ
2077 /* async workload slice is scaled down according to
2078 * the sync/async slice ratio. */
2079 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
f26bd1f0 2080 } else
718eee05
CZ
2081 /* sync workload slice is at least 2 * cfq_slice_idle */
2082 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2083
2084 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2085 cfqd->workload_expires = jiffies + slice;
8e550632 2086 cfqd->noidle_tree_requires_idle = false;
718eee05
CZ
2087}
2088
1fa8f6d6
VG
2089static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2090{
2091 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 2092 struct cfq_group *cfqg;
1fa8f6d6
VG
2093
2094 if (RB_EMPTY_ROOT(&st->rb))
2095 return NULL;
25bc6b07
VG
2096 cfqg = cfq_rb_first_group(st);
2097 st->active = &cfqg->rb_node;
2098 update_min_vdisktime(st);
2099 return cfqg;
1fa8f6d6
VG
2100}
2101
cdb16e8f
VG
2102static void cfq_choose_cfqg(struct cfq_data *cfqd)
2103{
1fa8f6d6
VG
2104 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2105
2106 cfqd->serving_group = cfqg;
dae739eb
VG
2107
2108 /* Restore the workload type data */
2109 if (cfqg->saved_workload_slice) {
2110 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2111 cfqd->serving_type = cfqg->saved_workload;
2112 cfqd->serving_prio = cfqg->saved_serving_prio;
2113 }
1fa8f6d6 2114 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
2115}
2116
22e2c507 2117/*
498d3aa2
JA
2118 * Select a queue for service. If we have a current active queue,
2119 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 2120 */
1b5ed5e1 2121static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 2122{
a36e71f9 2123 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 2124
22e2c507
JA
2125 cfqq = cfqd->active_queue;
2126 if (!cfqq)
2127 goto new_queue;
1da177e4 2128
f04a6424
VG
2129 if (!cfqd->rq_queued)
2130 return NULL;
22e2c507 2131 /*
6d048f53 2132 * The active queue has run out of time, expire it and select new.
22e2c507 2133 */
f75edf2d
VG
2134 if ((cfq_slice_used(cfqq) || cfq_cfqq_wait_busy_done(cfqq))
2135 && !cfq_cfqq_must_dispatch(cfqq))
3b18152c 2136 goto expire;
1da177e4 2137
22e2c507 2138 /*
6d048f53
JA
2139 * The active queue has requests and isn't expired, allow it to
2140 * dispatch.
22e2c507 2141 */
dd67d051 2142 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2143 goto keep_queue;
6d048f53 2144
a36e71f9
JA
2145 /*
2146 * If another queue has a request waiting within our mean seek
2147 * distance, let it run. The expire code will check for close
2148 * cooperators and put the close queue at the front of the service
df5fe3e8 2149 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 2150 */
b3b6d040 2151 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
2152 if (new_cfqq) {
2153 if (!cfqq->new_cfqq)
2154 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 2155 goto expire;
df5fe3e8 2156 }
a36e71f9 2157
6d048f53
JA
2158 /*
2159 * No requests pending. If the active queue still has requests in
2160 * flight or is idling for a new request, allow either of these
2161 * conditions to happen (or time out) before selecting a new queue.
2162 */
cc197479 2163 if (timer_pending(&cfqd->idle_slice_timer) ||
a6d44e98 2164 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
caaa5f9f
JA
2165 cfqq = NULL;
2166 goto keep_queue;
22e2c507
JA
2167 }
2168
3b18152c 2169expire:
6084cdda 2170 cfq_slice_expired(cfqd, 0);
3b18152c 2171new_queue:
718eee05
CZ
2172 /*
2173 * Current queue expired. Check if we have to switch to a new
2174 * service tree
2175 */
2176 if (!new_cfqq)
cdb16e8f 2177 cfq_choose_cfqg(cfqd);
718eee05 2178
a36e71f9 2179 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 2180keep_queue:
3b18152c 2181 return cfqq;
22e2c507
JA
2182}
2183
febffd61 2184static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
2185{
2186 int dispatched = 0;
2187
2188 while (cfqq->next_rq) {
2189 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2190 dispatched++;
2191 }
2192
2193 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
2194
2195 /* By default cfqq is not expired if it is empty. Do it explicitly */
2196 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
2197 return dispatched;
2198}
2199
498d3aa2
JA
2200/*
2201 * Drain our current requests. Used for barriers and when switching
2202 * io schedulers on-the-fly.
2203 */
d9e7620e 2204static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 2205{
0871714e 2206 struct cfq_queue *cfqq;
d9e7620e 2207 int dispatched = 0;
cdb16e8f 2208
f04a6424
VG
2209 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2210 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 2211
6084cdda 2212 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
2213 BUG_ON(cfqd->busy_queues);
2214
6923715a 2215 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
2216 return dispatched;
2217}
2218
0b182d61 2219static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 2220{
2f5cb738 2221 unsigned int max_dispatch;
22e2c507 2222
5ad531db
JA
2223 /*
2224 * Drain async requests before we start sync IO
2225 */
a6d44e98 2226 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
0b182d61 2227 return false;
5ad531db 2228
2f5cb738
JA
2229 /*
2230 * If this is an async queue and we have sync IO in flight, let it wait
2231 */
2232 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
0b182d61 2233 return false;
2f5cb738
JA
2234
2235 max_dispatch = cfqd->cfq_quantum;
2236 if (cfq_class_idle(cfqq))
2237 max_dispatch = 1;
b4878f24 2238
2f5cb738
JA
2239 /*
2240 * Does this cfqq already have too much IO in flight?
2241 */
2242 if (cfqq->dispatched >= max_dispatch) {
2243 /*
2244 * idle queue must always only have a single IO in flight
2245 */
3ed9a296 2246 if (cfq_class_idle(cfqq))
0b182d61 2247 return false;
3ed9a296 2248
2f5cb738
JA
2249 /*
2250 * We have other queues, don't allow more IO from this one
2251 */
2252 if (cfqd->busy_queues > 1)
0b182d61 2253 return false;
9ede209e 2254
365722bb 2255 /*
474b18cc 2256 * Sole queue user, no limit
365722bb 2257 */
474b18cc 2258 max_dispatch = -1;
8e296755
JA
2259 }
2260
2261 /*
2262 * Async queues must wait a bit before being allowed dispatch.
2263 * We also ramp up the dispatch depth gradually for async IO,
2264 * based on the last sync IO we serviced
2265 */
963b72fc 2266 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
8e296755
JA
2267 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
2268 unsigned int depth;
365722bb 2269
61f0c1dc 2270 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
2271 if (!depth && !cfqq->dispatched)
2272 depth = 1;
8e296755
JA
2273 if (depth < max_dispatch)
2274 max_dispatch = depth;
2f5cb738 2275 }
3ed9a296 2276
0b182d61
JA
2277 /*
2278 * If we're below the current max, allow a dispatch
2279 */
2280 return cfqq->dispatched < max_dispatch;
2281}
2282
2283/*
2284 * Dispatch a request from cfqq, moving them to the request queue
2285 * dispatch list.
2286 */
2287static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2288{
2289 struct request *rq;
2290
2291 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2292
2293 if (!cfq_may_dispatch(cfqd, cfqq))
2294 return false;
2295
2296 /*
2297 * follow expired path, else get first next available
2298 */
2299 rq = cfq_check_fifo(cfqq);
2300 if (!rq)
2301 rq = cfqq->next_rq;
2302
2303 /*
2304 * insert request into driver dispatch list
2305 */
2306 cfq_dispatch_insert(cfqd->queue, rq);
2307
2308 if (!cfqd->active_cic) {
2309 struct cfq_io_context *cic = RQ_CIC(rq);
2310
2311 atomic_long_inc(&cic->ioc->refcount);
2312 cfqd->active_cic = cic;
2313 }
2314
2315 return true;
2316}
2317
2318/*
2319 * Find the cfqq that we need to service and move a request from that to the
2320 * dispatch list
2321 */
2322static int cfq_dispatch_requests(struct request_queue *q, int force)
2323{
2324 struct cfq_data *cfqd = q->elevator->elevator_data;
2325 struct cfq_queue *cfqq;
2326
2327 if (!cfqd->busy_queues)
2328 return 0;
2329
2330 if (unlikely(force))
2331 return cfq_forced_dispatch(cfqd);
2332
2333 cfqq = cfq_select_queue(cfqd);
2334 if (!cfqq)
8e296755
JA
2335 return 0;
2336
2f5cb738 2337 /*
0b182d61 2338 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2339 */
0b182d61
JA
2340 if (!cfq_dispatch_request(cfqd, cfqq))
2341 return 0;
2342
2f5cb738 2343 cfqq->slice_dispatch++;
b029195d 2344 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2345
2f5cb738
JA
2346 /*
2347 * expire an async queue immediately if it has used up its slice. idle
2348 * queue always expire after 1 dispatch round.
2349 */
2350 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2351 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2352 cfq_class_idle(cfqq))) {
2353 cfqq->slice_end = jiffies + 1;
2354 cfq_slice_expired(cfqd, 0);
1da177e4
LT
2355 }
2356
b217a903 2357 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 2358 return 1;
1da177e4
LT
2359}
2360
1da177e4 2361/*
5e705374
JA
2362 * task holds one reference to the queue, dropped when task exits. each rq
2363 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4 2364 *
b1c35769 2365 * Each cfq queue took a reference on the parent group. Drop it now.
1da177e4
LT
2366 * queue lock must be held here.
2367 */
2368static void cfq_put_queue(struct cfq_queue *cfqq)
2369{
22e2c507 2370 struct cfq_data *cfqd = cfqq->cfqd;
b1c35769 2371 struct cfq_group *cfqg;
22e2c507
JA
2372
2373 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
2374
2375 if (!atomic_dec_and_test(&cfqq->ref))
2376 return;
2377
7b679138 2378 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2379 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2380 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
b1c35769 2381 cfqg = cfqq->cfqg;
1da177e4 2382
28f95cbc 2383 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 2384 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2385 cfq_schedule_dispatch(cfqd);
28f95cbc 2386 }
22e2c507 2387
f04a6424 2388 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 2389 kmem_cache_free(cfq_pool, cfqq);
b1c35769 2390 cfq_put_cfqg(cfqg);
ae30c286
VG
2391 if (cfqq->orig_cfqg)
2392 cfq_put_cfqg(cfqq->orig_cfqg);
1da177e4
LT
2393}
2394
d6de8be7
JA
2395/*
2396 * Must always be called with the rcu_read_lock() held
2397 */
07416d29
JA
2398static void
2399__call_for_each_cic(struct io_context *ioc,
2400 void (*func)(struct io_context *, struct cfq_io_context *))
2401{
2402 struct cfq_io_context *cic;
2403 struct hlist_node *n;
2404
2405 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2406 func(ioc, cic);
2407}
2408
4ac845a2 2409/*
34e6bbf2 2410 * Call func for each cic attached to this ioc.
4ac845a2 2411 */
34e6bbf2 2412static void
4ac845a2
JA
2413call_for_each_cic(struct io_context *ioc,
2414 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 2415{
4ac845a2 2416 rcu_read_lock();
07416d29 2417 __call_for_each_cic(ioc, func);
4ac845a2 2418 rcu_read_unlock();
34e6bbf2
FC
2419}
2420
2421static void cfq_cic_free_rcu(struct rcu_head *head)
2422{
2423 struct cfq_io_context *cic;
2424
2425 cic = container_of(head, struct cfq_io_context, rcu_head);
2426
2427 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 2428 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 2429
9a11b4ed
JA
2430 if (ioc_gone) {
2431 /*
2432 * CFQ scheduler is exiting, grab exit lock and check
2433 * the pending io context count. If it hits zero,
2434 * complete ioc_gone and set it back to NULL
2435 */
2436 spin_lock(&ioc_gone_lock);
245b2e70 2437 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
2438 complete(ioc_gone);
2439 ioc_gone = NULL;
2440 }
2441 spin_unlock(&ioc_gone_lock);
2442 }
34e6bbf2 2443}
4ac845a2 2444
34e6bbf2
FC
2445static void cfq_cic_free(struct cfq_io_context *cic)
2446{
2447 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
2448}
2449
2450static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2451{
2452 unsigned long flags;
2453
2454 BUG_ON(!cic->dead_key);
2455
2456 spin_lock_irqsave(&ioc->lock, flags);
2457 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 2458 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2459 spin_unlock_irqrestore(&ioc->lock, flags);
2460
34e6bbf2 2461 cfq_cic_free(cic);
4ac845a2
JA
2462}
2463
d6de8be7
JA
2464/*
2465 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2466 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2467 * and ->trim() which is called with the task lock held
2468 */
4ac845a2
JA
2469static void cfq_free_io_context(struct io_context *ioc)
2470{
4ac845a2 2471 /*
34e6bbf2
FC
2472 * ioc->refcount is zero here, or we are called from elv_unregister(),
2473 * so no more cic's are allowed to be linked into this ioc. So it
2474 * should be ok to iterate over the known list, we will see all cic's
2475 * since no new ones are added.
4ac845a2 2476 */
07416d29 2477 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
2478}
2479
89850f7e 2480static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 2481{
df5fe3e8
JM
2482 struct cfq_queue *__cfqq, *next;
2483
28f95cbc 2484 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 2485 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2486 cfq_schedule_dispatch(cfqd);
28f95cbc 2487 }
22e2c507 2488
df5fe3e8
JM
2489 /*
2490 * If this queue was scheduled to merge with another queue, be
2491 * sure to drop the reference taken on that queue (and others in
2492 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2493 */
2494 __cfqq = cfqq->new_cfqq;
2495 while (__cfqq) {
2496 if (__cfqq == cfqq) {
2497 WARN(1, "cfqq->new_cfqq loop detected\n");
2498 break;
2499 }
2500 next = __cfqq->new_cfqq;
2501 cfq_put_queue(__cfqq);
2502 __cfqq = next;
2503 }
2504
89850f7e
JA
2505 cfq_put_queue(cfqq);
2506}
22e2c507 2507
89850f7e
JA
2508static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2509 struct cfq_io_context *cic)
2510{
4faa3c81
FC
2511 struct io_context *ioc = cic->ioc;
2512
fc46379d 2513 list_del_init(&cic->queue_list);
4ac845a2
JA
2514
2515 /*
2516 * Make sure key == NULL is seen for dead queues
2517 */
fc46379d 2518 smp_wmb();
4ac845a2 2519 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
2520 cic->key = NULL;
2521
4faa3c81
FC
2522 if (ioc->ioc_data == cic)
2523 rcu_assign_pointer(ioc->ioc_data, NULL);
2524
ff6657c6
JA
2525 if (cic->cfqq[BLK_RW_ASYNC]) {
2526 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2527 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2528 }
2529
ff6657c6
JA
2530 if (cic->cfqq[BLK_RW_SYNC]) {
2531 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2532 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2533 }
89850f7e
JA
2534}
2535
4ac845a2
JA
2536static void cfq_exit_single_io_context(struct io_context *ioc,
2537 struct cfq_io_context *cic)
89850f7e
JA
2538{
2539 struct cfq_data *cfqd = cic->key;
2540
89850f7e 2541 if (cfqd) {
165125e1 2542 struct request_queue *q = cfqd->queue;
4ac845a2 2543 unsigned long flags;
89850f7e 2544
4ac845a2 2545 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
2546
2547 /*
2548 * Ensure we get a fresh copy of the ->key to prevent
2549 * race between exiting task and queue
2550 */
2551 smp_read_barrier_depends();
2552 if (cic->key)
2553 __cfq_exit_single_io_context(cfqd, cic);
2554
4ac845a2 2555 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 2556 }
1da177e4
LT
2557}
2558
498d3aa2
JA
2559/*
2560 * The process that ioc belongs to has exited, we need to clean up
2561 * and put the internal structures we have that belongs to that process.
2562 */
e2d74ac0 2563static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 2564{
4ac845a2 2565 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
2566}
2567
22e2c507 2568static struct cfq_io_context *
8267e268 2569cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2570{
b5deef90 2571 struct cfq_io_context *cic;
1da177e4 2572
94f6030c
CL
2573 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2574 cfqd->queue->node);
1da177e4 2575 if (cic) {
22e2c507 2576 cic->last_end_request = jiffies;
553698f9 2577 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 2578 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
2579 cic->dtor = cfq_free_io_context;
2580 cic->exit = cfq_exit_io_context;
245b2e70 2581 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
2582 }
2583
2584 return cic;
2585}
2586
fd0928df 2587static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2588{
2589 struct task_struct *tsk = current;
2590 int ioprio_class;
2591
3b18152c 2592 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2593 return;
2594
fd0928df 2595 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2596 switch (ioprio_class) {
fe094d98
JA
2597 default:
2598 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2599 case IOPRIO_CLASS_NONE:
2600 /*
6d63c275 2601 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2602 */
2603 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2604 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2605 break;
2606 case IOPRIO_CLASS_RT:
2607 cfqq->ioprio = task_ioprio(ioc);
2608 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2609 break;
2610 case IOPRIO_CLASS_BE:
2611 cfqq->ioprio = task_ioprio(ioc);
2612 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2613 break;
2614 case IOPRIO_CLASS_IDLE:
2615 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2616 cfqq->ioprio = 7;
2617 cfq_clear_cfqq_idle_window(cfqq);
2618 break;
22e2c507
JA
2619 }
2620
2621 /*
2622 * keep track of original prio settings in case we have to temporarily
2623 * elevate the priority of this queue
2624 */
2625 cfqq->org_ioprio = cfqq->ioprio;
2626 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 2627 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2628}
2629
febffd61 2630static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2631{
478a82b0
AV
2632 struct cfq_data *cfqd = cic->key;
2633 struct cfq_queue *cfqq;
c1b707d2 2634 unsigned long flags;
35e6077c 2635
caaa5f9f
JA
2636 if (unlikely(!cfqd))
2637 return;
2638
c1b707d2 2639 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2640
ff6657c6 2641 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2642 if (cfqq) {
2643 struct cfq_queue *new_cfqq;
ff6657c6
JA
2644 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2645 GFP_ATOMIC);
caaa5f9f 2646 if (new_cfqq) {
ff6657c6 2647 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2648 cfq_put_queue(cfqq);
2649 }
22e2c507 2650 }
caaa5f9f 2651
ff6657c6 2652 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2653 if (cfqq)
2654 cfq_mark_cfqq_prio_changed(cfqq);
2655
c1b707d2 2656 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2657}
2658
fc46379d 2659static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2660{
4ac845a2 2661 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2662 ioc->ioprio_changed = 0;
22e2c507
JA
2663}
2664
d5036d77 2665static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2666 pid_t pid, bool is_sync)
d5036d77
JA
2667{
2668 RB_CLEAR_NODE(&cfqq->rb_node);
2669 RB_CLEAR_NODE(&cfqq->p_node);
2670 INIT_LIST_HEAD(&cfqq->fifo);
2671
2672 atomic_set(&cfqq->ref, 0);
2673 cfqq->cfqd = cfqd;
2674
2675 cfq_mark_cfqq_prio_changed(cfqq);
2676
2677 if (is_sync) {
2678 if (!cfq_class_idle(cfqq))
2679 cfq_mark_cfqq_idle_window(cfqq);
2680 cfq_mark_cfqq_sync(cfqq);
2681 }
2682 cfqq->pid = pid;
2683}
2684
24610333
VG
2685#ifdef CONFIG_CFQ_GROUP_IOSCHED
2686static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2687{
2688 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2689 struct cfq_data *cfqd = cic->key;
2690 unsigned long flags;
2691 struct request_queue *q;
2692
2693 if (unlikely(!cfqd))
2694 return;
2695
2696 q = cfqd->queue;
2697
2698 spin_lock_irqsave(q->queue_lock, flags);
2699
2700 if (sync_cfqq) {
2701 /*
2702 * Drop reference to sync queue. A new sync queue will be
2703 * assigned in new group upon arrival of a fresh request.
2704 */
2705 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2706 cic_set_cfqq(cic, NULL, 1);
2707 cfq_put_queue(sync_cfqq);
2708 }
2709
2710 spin_unlock_irqrestore(q->queue_lock, flags);
2711}
2712
2713static void cfq_ioc_set_cgroup(struct io_context *ioc)
2714{
2715 call_for_each_cic(ioc, changed_cgroup);
2716 ioc->cgroup_changed = 0;
2717}
2718#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2719
22e2c507 2720static struct cfq_queue *
a6151c3a 2721cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2722 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2723{
22e2c507 2724 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2725 struct cfq_io_context *cic;
cdb16e8f 2726 struct cfq_group *cfqg;
22e2c507
JA
2727
2728retry:
cdb16e8f 2729 cfqg = cfq_get_cfqg(cfqd, 1);
4ac845a2 2730 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2731 /* cic always exists here */
2732 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2733
6118b70b
JA
2734 /*
2735 * Always try a new alloc if we fell back to the OOM cfqq
2736 * originally, since it should just be a temporary situation.
2737 */
2738 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2739 cfqq = NULL;
22e2c507
JA
2740 if (new_cfqq) {
2741 cfqq = new_cfqq;
2742 new_cfqq = NULL;
2743 } else if (gfp_mask & __GFP_WAIT) {
2744 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2745 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2746 gfp_mask | __GFP_ZERO,
94f6030c 2747 cfqd->queue->node);
22e2c507 2748 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2749 if (new_cfqq)
2750 goto retry;
22e2c507 2751 } else {
94f6030c
CL
2752 cfqq = kmem_cache_alloc_node(cfq_pool,
2753 gfp_mask | __GFP_ZERO,
2754 cfqd->queue->node);
22e2c507
JA
2755 }
2756
6118b70b
JA
2757 if (cfqq) {
2758 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2759 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 2760 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
2761 cfq_log_cfqq(cfqd, cfqq, "alloced");
2762 } else
2763 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2764 }
2765
2766 if (new_cfqq)
2767 kmem_cache_free(cfq_pool, new_cfqq);
2768
22e2c507
JA
2769 return cfqq;
2770}
2771
c2dea2d1
VT
2772static struct cfq_queue **
2773cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2774{
fe094d98 2775 switch (ioprio_class) {
c2dea2d1
VT
2776 case IOPRIO_CLASS_RT:
2777 return &cfqd->async_cfqq[0][ioprio];
2778 case IOPRIO_CLASS_BE:
2779 return &cfqd->async_cfqq[1][ioprio];
2780 case IOPRIO_CLASS_IDLE:
2781 return &cfqd->async_idle_cfqq;
2782 default:
2783 BUG();
2784 }
2785}
2786
15c31be4 2787static struct cfq_queue *
a6151c3a 2788cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2789 gfp_t gfp_mask)
2790{
fd0928df
JA
2791 const int ioprio = task_ioprio(ioc);
2792 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2793 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2794 struct cfq_queue *cfqq = NULL;
2795
c2dea2d1
VT
2796 if (!is_sync) {
2797 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2798 cfqq = *async_cfqq;
2799 }
2800
6118b70b 2801 if (!cfqq)
fd0928df 2802 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2803
2804 /*
2805 * pin the queue now that it's allocated, scheduler exit will prune it
2806 */
c2dea2d1 2807 if (!is_sync && !(*async_cfqq)) {
15c31be4 2808 atomic_inc(&cfqq->ref);
c2dea2d1 2809 *async_cfqq = cfqq;
15c31be4
JA
2810 }
2811
2812 atomic_inc(&cfqq->ref);
2813 return cfqq;
2814}
2815
498d3aa2
JA
2816/*
2817 * We drop cfq io contexts lazily, so we may find a dead one.
2818 */
dbecf3ab 2819static void
4ac845a2
JA
2820cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2821 struct cfq_io_context *cic)
dbecf3ab 2822{
4ac845a2
JA
2823 unsigned long flags;
2824
fc46379d 2825 WARN_ON(!list_empty(&cic->queue_list));
597bc485 2826
4ac845a2
JA
2827 spin_lock_irqsave(&ioc->lock, flags);
2828
4faa3c81 2829 BUG_ON(ioc->ioc_data == cic);
597bc485 2830
4ac845a2 2831 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 2832 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2833 spin_unlock_irqrestore(&ioc->lock, flags);
2834
2835 cfq_cic_free(cic);
dbecf3ab
OH
2836}
2837
e2d74ac0 2838static struct cfq_io_context *
4ac845a2 2839cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 2840{
e2d74ac0 2841 struct cfq_io_context *cic;
d6de8be7 2842 unsigned long flags;
4ac845a2 2843 void *k;
e2d74ac0 2844
91fac317
VT
2845 if (unlikely(!ioc))
2846 return NULL;
2847
d6de8be7
JA
2848 rcu_read_lock();
2849
597bc485
JA
2850 /*
2851 * we maintain a last-hit cache, to avoid browsing over the tree
2852 */
4ac845a2 2853 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
2854 if (cic && cic->key == cfqd) {
2855 rcu_read_unlock();
597bc485 2856 return cic;
d6de8be7 2857 }
597bc485 2858
4ac845a2 2859 do {
4ac845a2
JA
2860 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2861 rcu_read_unlock();
2862 if (!cic)
2863 break;
be3b0753
OH
2864 /* ->key must be copied to avoid race with cfq_exit_queue() */
2865 k = cic->key;
2866 if (unlikely(!k)) {
4ac845a2 2867 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 2868 rcu_read_lock();
4ac845a2 2869 continue;
dbecf3ab 2870 }
e2d74ac0 2871
d6de8be7 2872 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 2873 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 2874 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
2875 break;
2876 } while (1);
e2d74ac0 2877
4ac845a2 2878 return cic;
e2d74ac0
JA
2879}
2880
4ac845a2
JA
2881/*
2882 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2883 * the process specific cfq io context when entered from the block layer.
2884 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2885 */
febffd61
JA
2886static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2887 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 2888{
0261d688 2889 unsigned long flags;
4ac845a2 2890 int ret;
e2d74ac0 2891
4ac845a2
JA
2892 ret = radix_tree_preload(gfp_mask);
2893 if (!ret) {
2894 cic->ioc = ioc;
2895 cic->key = cfqd;
e2d74ac0 2896
4ac845a2
JA
2897 spin_lock_irqsave(&ioc->lock, flags);
2898 ret = radix_tree_insert(&ioc->radix_root,
2899 (unsigned long) cfqd, cic);
ffc4e759
JA
2900 if (!ret)
2901 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 2902 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 2903
4ac845a2
JA
2904 radix_tree_preload_end();
2905
2906 if (!ret) {
2907 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2908 list_add(&cic->queue_list, &cfqd->cic_list);
2909 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2910 }
e2d74ac0
JA
2911 }
2912
4ac845a2
JA
2913 if (ret)
2914 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 2915
4ac845a2 2916 return ret;
e2d74ac0
JA
2917}
2918
1da177e4
LT
2919/*
2920 * Setup general io context and cfq io context. There can be several cfq
2921 * io contexts per general io context, if this process is doing io to more
e2d74ac0 2922 * than one device managed by cfq.
1da177e4
LT
2923 */
2924static struct cfq_io_context *
e2d74ac0 2925cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2926{
22e2c507 2927 struct io_context *ioc = NULL;
1da177e4 2928 struct cfq_io_context *cic;
1da177e4 2929
22e2c507 2930 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 2931
b5deef90 2932 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
2933 if (!ioc)
2934 return NULL;
2935
4ac845a2 2936 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
2937 if (cic)
2938 goto out;
1da177e4 2939
e2d74ac0
JA
2940 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2941 if (cic == NULL)
2942 goto err;
1da177e4 2943
4ac845a2
JA
2944 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2945 goto err_free;
2946
1da177e4 2947out:
fc46379d
JA
2948 smp_read_barrier_depends();
2949 if (unlikely(ioc->ioprio_changed))
2950 cfq_ioc_set_ioprio(ioc);
2951
24610333
VG
2952#ifdef CONFIG_CFQ_GROUP_IOSCHED
2953 if (unlikely(ioc->cgroup_changed))
2954 cfq_ioc_set_cgroup(ioc);
2955#endif
1da177e4 2956 return cic;
4ac845a2
JA
2957err_free:
2958 cfq_cic_free(cic);
1da177e4
LT
2959err:
2960 put_io_context(ioc);
2961 return NULL;
2962}
2963
22e2c507
JA
2964static void
2965cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 2966{
aaf1228d
JA
2967 unsigned long elapsed = jiffies - cic->last_end_request;
2968 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 2969
22e2c507
JA
2970 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2971 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2972 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2973}
1da177e4 2974
206dc69b 2975static void
b2c18e1e 2976cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 2977 struct request *rq)
206dc69b
JA
2978{
2979 sector_t sdist;
2980 u64 total;
2981
b2c18e1e 2982 if (!cfqq->last_request_pos)
4d00aa47 2983 sdist = 0;
b2c18e1e
JM
2984 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2985 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
206dc69b 2986 else
b2c18e1e 2987 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
206dc69b
JA
2988
2989 /*
2990 * Don't allow the seek distance to get too large from the
2991 * odd fragment, pagein, etc
2992 */
b2c18e1e
JM
2993 if (cfqq->seek_samples <= 60) /* second&third seek */
2994 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
206dc69b 2995 else
b2c18e1e 2996 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
206dc69b 2997
b2c18e1e
JM
2998 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2999 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
3000 total = cfqq->seek_total + (cfqq->seek_samples/2);
3001 do_div(total, cfqq->seek_samples);
3002 cfqq->seek_mean = (sector_t)total;
e6c5bc73
JM
3003
3004 /*
3005 * If this cfqq is shared between multiple processes, check to
3006 * make sure that those processes are still issuing I/Os within
3007 * the mean seek distance. If not, it may be time to break the
3008 * queues apart again.
3009 */
3010 if (cfq_cfqq_coop(cfqq)) {
3011 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
3012 cfqq->seeky_start = jiffies;
3013 else if (!CFQQ_SEEKY(cfqq))
3014 cfqq->seeky_start = 0;
3015 }
206dc69b 3016}
1da177e4 3017
22e2c507
JA
3018/*
3019 * Disable idle window if the process thinks too long or seeks so much that
3020 * it doesn't matter
3021 */
3022static void
3023cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3024 struct cfq_io_context *cic)
3025{
7b679138 3026 int old_idle, enable_idle;
1be92f2f 3027
0871714e
JA
3028 /*
3029 * Don't idle for async or idle io prio class
3030 */
3031 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
3032 return;
3033
c265a7f4 3034 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 3035
76280aff
CZ
3036 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3037 cfq_mark_cfqq_deep(cfqq);
3038
66dac98e 3039 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
76280aff
CZ
3040 (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
3041 && CFQQ_SEEKY(cfqq)))
22e2c507
JA
3042 enable_idle = 0;
3043 else if (sample_valid(cic->ttime_samples)) {
718eee05 3044 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
3045 enable_idle = 0;
3046 else
3047 enable_idle = 1;
1da177e4
LT
3048 }
3049
7b679138
JA
3050 if (old_idle != enable_idle) {
3051 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3052 if (enable_idle)
3053 cfq_mark_cfqq_idle_window(cfqq);
3054 else
3055 cfq_clear_cfqq_idle_window(cfqq);
3056 }
22e2c507 3057}
1da177e4 3058
22e2c507
JA
3059/*
3060 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3061 * no or if we aren't sure, a 1 will cause a preempt.
3062 */
a6151c3a 3063static bool
22e2c507 3064cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 3065 struct request *rq)
22e2c507 3066{
6d048f53 3067 struct cfq_queue *cfqq;
22e2c507 3068
6d048f53
JA
3069 cfqq = cfqd->active_queue;
3070 if (!cfqq)
a6151c3a 3071 return false;
22e2c507 3072
6d048f53 3073 if (cfq_class_idle(new_cfqq))
a6151c3a 3074 return false;
22e2c507
JA
3075
3076 if (cfq_class_idle(cfqq))
a6151c3a 3077 return true;
1e3335de 3078
374f84ac
JA
3079 /*
3080 * if the new request is sync, but the currently running queue is
3081 * not, let the sync request have priority.
3082 */
5e705374 3083 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 3084 return true;
1e3335de 3085
8682e1f1
VG
3086 if (new_cfqq->cfqg != cfqq->cfqg)
3087 return false;
3088
3089 if (cfq_slice_used(cfqq))
3090 return true;
3091
3092 /* Allow preemption only if we are idling on sync-noidle tree */
3093 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3094 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3095 new_cfqq->service_tree->count == 2 &&
3096 RB_EMPTY_ROOT(&cfqq->sort_list))
3097 return true;
3098
374f84ac
JA
3099 /*
3100 * So both queues are sync. Let the new request get disk time if
3101 * it's a metadata request and the current queue is doing regular IO.
3102 */
3103 if (rq_is_meta(rq) && !cfqq->meta_pending)
e6ec4fe2 3104 return true;
22e2c507 3105
3a9a3f6c
DS
3106 /*
3107 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3108 */
3109 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 3110 return true;
3a9a3f6c 3111
1e3335de 3112 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 3113 return false;
1e3335de
JA
3114
3115 /*
3116 * if this request is as-good as one we would expect from the
3117 * current cfqq, let it preempt
3118 */
e00ef799 3119 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 3120 return true;
1e3335de 3121
a6151c3a 3122 return false;
22e2c507
JA
3123}
3124
3125/*
3126 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3127 * let it have half of its nominal slice.
3128 */
3129static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3130{
7b679138 3131 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 3132 cfq_slice_expired(cfqd, 1);
22e2c507 3133
bf572256
JA
3134 /*
3135 * Put the new queue at the front of the of the current list,
3136 * so we know that it will be selected next.
3137 */
3138 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
3139
3140 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 3141
44f7c160
JA
3142 cfqq->slice_end = 0;
3143 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
3144}
3145
22e2c507 3146/*
5e705374 3147 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
3148 * something we should do about it
3149 */
3150static void
5e705374
JA
3151cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3152 struct request *rq)
22e2c507 3153{
5e705374 3154 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 3155
45333d5a 3156 cfqd->rq_queued++;
374f84ac
JA
3157 if (rq_is_meta(rq))
3158 cfqq->meta_pending++;
3159
9c2c38a1 3160 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 3161 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
3162 cfq_update_idle_window(cfqd, cfqq, cic);
3163
b2c18e1e 3164 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
3165
3166 if (cfqq == cfqd->active_queue) {
f75edf2d
VG
3167 if (cfq_cfqq_wait_busy(cfqq)) {
3168 cfq_clear_cfqq_wait_busy(cfqq);
3169 cfq_mark_cfqq_wait_busy_done(cfqq);
3170 }
22e2c507 3171 /*
b029195d
JA
3172 * Remember that we saw a request from this process, but
3173 * don't start queuing just yet. Otherwise we risk seeing lots
3174 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
3175 * and merging. If the request is already larger than a single
3176 * page, let it rip immediately. For that case we assume that
2d870722
JA
3177 * merging is already done. Ditto for a busy system that
3178 * has other work pending, don't risk delaying until the
3179 * idle timer unplug to continue working.
22e2c507 3180 */
d6ceb25e 3181 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
3182 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3183 cfqd->busy_queues > 1) {
d6ceb25e 3184 del_timer(&cfqd->idle_slice_timer);
bf791937
VG
3185 __blk_run_queue(cfqd->queue);
3186 } else
3187 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 3188 }
5e705374 3189 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
3190 /*
3191 * not the active queue - expire current slice if it is
3192 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
3193 * has some old slice time left and is of higher priority or
3194 * this new queue is RT and the current one is BE
22e2c507
JA
3195 */
3196 cfq_preempt_queue(cfqd, cfqq);
a7f55792 3197 __blk_run_queue(cfqd->queue);
22e2c507 3198 }
1da177e4
LT
3199}
3200
165125e1 3201static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 3202{
b4878f24 3203 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 3204 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 3205
7b679138 3206 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 3207 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 3208
30996f40 3209 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 3210 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 3211 cfq_add_rq_rb(rq);
22e2c507 3212
5e705374 3213 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
3214}
3215
45333d5a
AC
3216/*
3217 * Update hw_tag based on peak queue depth over 50 samples under
3218 * sufficient load.
3219 */
3220static void cfq_update_hw_tag(struct cfq_data *cfqd)
3221{
1a1238a7
SL
3222 struct cfq_queue *cfqq = cfqd->active_queue;
3223
e459dd08
CZ
3224 if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
3225 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
3226
3227 if (cfqd->hw_tag == 1)
3228 return;
45333d5a
AC
3229
3230 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
5ad531db 3231 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3232 return;
3233
1a1238a7
SL
3234 /*
3235 * If active queue hasn't enough requests and can idle, cfq might not
3236 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3237 * case
3238 */
3239 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3240 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3241 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
3242 return;
3243
45333d5a
AC
3244 if (cfqd->hw_tag_samples++ < 50)
3245 return;
3246
e459dd08 3247 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3248 cfqd->hw_tag = 1;
3249 else
3250 cfqd->hw_tag = 0;
45333d5a
AC
3251}
3252
165125e1 3253static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 3254{
5e705374 3255 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 3256 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 3257 const int sync = rq_is_sync(rq);
b4878f24 3258 unsigned long now;
1da177e4 3259
b4878f24 3260 now = jiffies;
2868ef7b 3261 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
1da177e4 3262
45333d5a
AC
3263 cfq_update_hw_tag(cfqd);
3264
5ad531db 3265 WARN_ON(!cfqd->rq_in_driver[sync]);
6d048f53 3266 WARN_ON(!cfqq->dispatched);
5ad531db 3267 cfqd->rq_in_driver[sync]--;
6d048f53 3268 cfqq->dispatched--;
1da177e4 3269
3ed9a296
JA
3270 if (cfq_cfqq_sync(cfqq))
3271 cfqd->sync_flight--;
3272
365722bb 3273 if (sync) {
5e705374 3274 RQ_CIC(rq)->last_end_request = now;
365722bb
VG
3275 cfqd->last_end_sync_rq = now;
3276 }
caaa5f9f
JA
3277
3278 /*
3279 * If this is the active queue, check if it needs to be expired,
3280 * or if we want to idle in case it has no pending requests.
3281 */
3282 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
3283 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3284
44f7c160
JA
3285 if (cfq_cfqq_slice_new(cfqq)) {
3286 cfq_set_prio_slice(cfqd, cfqq);
3287 cfq_clear_cfqq_slice_new(cfqq);
3288 }
f75edf2d
VG
3289
3290 /*
3291 * If this queue consumed its slice and this is last queue
3292 * in the group, wait for next request before we expire
3293 * the queue
3294 */
3295 if (cfq_slice_used(cfqq) && cfqq->cfqg->nr_cfqq == 1) {
3296 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3297 cfq_mark_cfqq_wait_busy(cfqq);
3298 }
3299
a36e71f9 3300 /*
8e550632
CZ
3301 * Idling is not enabled on:
3302 * - expired queues
3303 * - idle-priority queues
3304 * - async queues
3305 * - queues with still some requests queued
3306 * - when there is a close cooperator
a36e71f9 3307 */
0871714e 3308 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 3309 cfq_slice_expired(cfqd, 1);
8e550632
CZ
3310 else if (sync && cfqq_empty &&
3311 !cfq_close_cooperator(cfqd, cfqq)) {
3312 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3313 /*
3314 * Idling is enabled for SYNC_WORKLOAD.
3315 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3316 * only if we processed at least one !rq_noidle request
3317 */
3318 if (cfqd->serving_type == SYNC_WORKLOAD
c04645e5
VG
3319 || cfqd->noidle_tree_requires_idle
3320 || cfqq->cfqg->nr_cfqq == 1)
8e550632
CZ
3321 cfq_arm_slice_timer(cfqd);
3322 }
caaa5f9f 3323 }
6d048f53 3324
5ad531db 3325 if (!rq_in_driver(cfqd))
23e018a1 3326 cfq_schedule_dispatch(cfqd);
1da177e4
LT
3327}
3328
22e2c507
JA
3329/*
3330 * we temporarily boost lower priority queues if they are holding fs exclusive
3331 * resources. they are boosted to normal prio (CLASS_BE/4)
3332 */
3333static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 3334{
22e2c507
JA
3335 if (has_fs_excl()) {
3336 /*
3337 * boost idle prio on transactions that would lock out other
3338 * users of the filesystem
3339 */
3340 if (cfq_class_idle(cfqq))
3341 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3342 if (cfqq->ioprio > IOPRIO_NORM)
3343 cfqq->ioprio = IOPRIO_NORM;
3344 } else {
3345 /*
dddb7451 3346 * unboost the queue (if needed)
22e2c507 3347 */
dddb7451
CZ
3348 cfqq->ioprio_class = cfqq->org_ioprio_class;
3349 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 3350 }
22e2c507 3351}
1da177e4 3352
89850f7e 3353static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3354{
1b379d8d 3355 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3356 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3357 return ELV_MQUEUE_MUST;
3b18152c 3358 }
1da177e4 3359
22e2c507 3360 return ELV_MQUEUE_MAY;
22e2c507
JA
3361}
3362
165125e1 3363static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3364{
3365 struct cfq_data *cfqd = q->elevator->elevator_data;
3366 struct task_struct *tsk = current;
91fac317 3367 struct cfq_io_context *cic;
22e2c507
JA
3368 struct cfq_queue *cfqq;
3369
3370 /*
3371 * don't force setup of a queue from here, as a call to may_queue
3372 * does not necessarily imply that a request actually will be queued.
3373 * so just lookup a possibly existing queue, or return 'may queue'
3374 * if that fails
3375 */
4ac845a2 3376 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3377 if (!cic)
3378 return ELV_MQUEUE_MAY;
3379
b0b78f81 3380 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3381 if (cfqq) {
fd0928df 3382 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
3383 cfq_prio_boost(cfqq);
3384
89850f7e 3385 return __cfq_may_queue(cfqq);
22e2c507
JA
3386 }
3387
3388 return ELV_MQUEUE_MAY;
1da177e4
LT
3389}
3390
1da177e4
LT
3391/*
3392 * queue lock held here
3393 */
bb37b94c 3394static void cfq_put_request(struct request *rq)
1da177e4 3395{
5e705374 3396 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3397
5e705374 3398 if (cfqq) {
22e2c507 3399 const int rw = rq_data_dir(rq);
1da177e4 3400
22e2c507
JA
3401 BUG_ON(!cfqq->allocated[rw]);
3402 cfqq->allocated[rw]--;
1da177e4 3403
5e705374 3404 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 3405
1da177e4 3406 rq->elevator_private = NULL;
5e705374 3407 rq->elevator_private2 = NULL;
1da177e4 3408
1da177e4
LT
3409 cfq_put_queue(cfqq);
3410 }
3411}
3412
df5fe3e8
JM
3413static struct cfq_queue *
3414cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3415 struct cfq_queue *cfqq)
3416{
3417 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3418 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3419 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3420 cfq_put_queue(cfqq);
3421 return cic_to_cfqq(cic, 1);
3422}
3423
e6c5bc73
JM
3424static int should_split_cfqq(struct cfq_queue *cfqq)
3425{
3426 if (cfqq->seeky_start &&
3427 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
3428 return 1;
3429 return 0;
3430}
3431
3432/*
3433 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3434 * was the last process referring to said cfqq.
3435 */
3436static struct cfq_queue *
3437split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3438{
3439 if (cfqq_process_refs(cfqq) == 1) {
3440 cfqq->seeky_start = 0;
3441 cfqq->pid = current->pid;
3442 cfq_clear_cfqq_coop(cfqq);
3443 return cfqq;
3444 }
3445
3446 cic_set_cfqq(cic, NULL, 1);
3447 cfq_put_queue(cfqq);
3448 return NULL;
3449}
1da177e4 3450/*
22e2c507 3451 * Allocate cfq data structures associated with this request.
1da177e4 3452 */
22e2c507 3453static int
165125e1 3454cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3455{
3456 struct cfq_data *cfqd = q->elevator->elevator_data;
3457 struct cfq_io_context *cic;
3458 const int rw = rq_data_dir(rq);
a6151c3a 3459 const bool is_sync = rq_is_sync(rq);
22e2c507 3460 struct cfq_queue *cfqq;
1da177e4
LT
3461 unsigned long flags;
3462
3463 might_sleep_if(gfp_mask & __GFP_WAIT);
3464
e2d74ac0 3465 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 3466
1da177e4
LT
3467 spin_lock_irqsave(q->queue_lock, flags);
3468
22e2c507
JA
3469 if (!cic)
3470 goto queue_fail;
3471
e6c5bc73 3472new_queue:
91fac317 3473 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3474 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 3475 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 3476 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3477 } else {
e6c5bc73
JM
3478 /*
3479 * If the queue was seeky for too long, break it apart.
3480 */
3481 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
3482 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3483 cfqq = split_cfqq(cic, cfqq);
3484 if (!cfqq)
3485 goto new_queue;
3486 }
3487
df5fe3e8
JM
3488 /*
3489 * Check to see if this queue is scheduled to merge with
3490 * another, closely cooperating queue. The merging of
3491 * queues happens here as it must be done in process context.
3492 * The reference on new_cfqq was taken in merge_cfqqs.
3493 */
3494 if (cfqq->new_cfqq)
3495 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3496 }
1da177e4
LT
3497
3498 cfqq->allocated[rw]++;
22e2c507 3499 atomic_inc(&cfqq->ref);
1da177e4 3500
5e705374 3501 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 3502
5e705374
JA
3503 rq->elevator_private = cic;
3504 rq->elevator_private2 = cfqq;
3505 return 0;
1da177e4 3506
22e2c507
JA
3507queue_fail:
3508 if (cic)
3509 put_io_context(cic->ioc);
89850f7e 3510
23e018a1 3511 cfq_schedule_dispatch(cfqd);
1da177e4 3512 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 3513 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3514 return 1;
3515}
3516
65f27f38 3517static void cfq_kick_queue(struct work_struct *work)
22e2c507 3518{
65f27f38 3519 struct cfq_data *cfqd =
23e018a1 3520 container_of(work, struct cfq_data, unplug_work);
165125e1 3521 struct request_queue *q = cfqd->queue;
22e2c507 3522
40bb54d1 3523 spin_lock_irq(q->queue_lock);
a7f55792 3524 __blk_run_queue(cfqd->queue);
40bb54d1 3525 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3526}
3527
3528/*
3529 * Timer running if the active_queue is currently idling inside its time slice
3530 */
3531static void cfq_idle_slice_timer(unsigned long data)
3532{
3533 struct cfq_data *cfqd = (struct cfq_data *) data;
3534 struct cfq_queue *cfqq;
3535 unsigned long flags;
3c6bd2f8 3536 int timed_out = 1;
22e2c507 3537
7b679138
JA
3538 cfq_log(cfqd, "idle timer fired");
3539
22e2c507
JA
3540 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3541
fe094d98
JA
3542 cfqq = cfqd->active_queue;
3543 if (cfqq) {
3c6bd2f8
JA
3544 timed_out = 0;
3545
b029195d
JA
3546 /*
3547 * We saw a request before the queue expired, let it through
3548 */
3549 if (cfq_cfqq_must_dispatch(cfqq))
3550 goto out_kick;
3551
22e2c507
JA
3552 /*
3553 * expired
3554 */
44f7c160 3555 if (cfq_slice_used(cfqq))
22e2c507
JA
3556 goto expire;
3557
3558 /*
3559 * only expire and reinvoke request handler, if there are
3560 * other queues with pending requests
3561 */
caaa5f9f 3562 if (!cfqd->busy_queues)
22e2c507 3563 goto out_cont;
22e2c507
JA
3564
3565 /*
3566 * not expired and it has a request pending, let it dispatch
3567 */
75e50984 3568 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3569 goto out_kick;
76280aff
CZ
3570
3571 /*
3572 * Queue depth flag is reset only when the idle didn't succeed
3573 */
3574 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3575 }
3576expire:
6084cdda 3577 cfq_slice_expired(cfqd, timed_out);
22e2c507 3578out_kick:
23e018a1 3579 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3580out_cont:
3581 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3582}
3583
3b18152c
JA
3584static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3585{
3586 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3587 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3588}
22e2c507 3589
c2dea2d1
VT
3590static void cfq_put_async_queues(struct cfq_data *cfqd)
3591{
3592 int i;
3593
3594 for (i = 0; i < IOPRIO_BE_NR; i++) {
3595 if (cfqd->async_cfqq[0][i])
3596 cfq_put_queue(cfqd->async_cfqq[0][i]);
3597 if (cfqd->async_cfqq[1][i])
3598 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3599 }
2389d1ef
ON
3600
3601 if (cfqd->async_idle_cfqq)
3602 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3603}
3604
b374d18a 3605static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3606{
22e2c507 3607 struct cfq_data *cfqd = e->elevator_data;
165125e1 3608 struct request_queue *q = cfqd->queue;
22e2c507 3609
3b18152c 3610 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3611
d9ff4187 3612 spin_lock_irq(q->queue_lock);
e2d74ac0 3613
d9ff4187 3614 if (cfqd->active_queue)
6084cdda 3615 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
3616
3617 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
3618 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3619 struct cfq_io_context,
3620 queue_list);
89850f7e
JA
3621
3622 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 3623 }
e2d74ac0 3624
c2dea2d1 3625 cfq_put_async_queues(cfqd);
b1c35769
VG
3626 cfq_release_cfq_groups(cfqd);
3627 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
15c31be4 3628
d9ff4187 3629 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3630
3631 cfq_shutdown_timer_wq(cfqd);
3632
b1c35769
VG
3633 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3634 synchronize_rcu();
a90d742e 3635 kfree(cfqd);
1da177e4
LT
3636}
3637
165125e1 3638static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3639{
3640 struct cfq_data *cfqd;
718eee05 3641 int i, j;
cdb16e8f 3642 struct cfq_group *cfqg;
615f0259 3643 struct cfq_rb_root *st;
1da177e4 3644
94f6030c 3645 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 3646 if (!cfqd)
bc1c1169 3647 return NULL;
1da177e4 3648
1fa8f6d6
VG
3649 /* Init root service tree */
3650 cfqd->grp_service_tree = CFQ_RB_ROOT;
3651
cdb16e8f
VG
3652 /* Init root group */
3653 cfqg = &cfqd->root_group;
615f0259
VG
3654 for_each_cfqg_st(cfqg, i, j, st)
3655 *st = CFQ_RB_ROOT;
1fa8f6d6 3656 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 3657
25bc6b07
VG
3658 /* Give preference to root group over other groups */
3659 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3660
25fb5169 3661#ifdef CONFIG_CFQ_GROUP_IOSCHED
b1c35769
VG
3662 /*
3663 * Take a reference to root group which we never drop. This is just
3664 * to make sure that cfq_put_cfqg() does not try to kfree root group
3665 */
3666 atomic_set(&cfqg->ref, 1);
22084190
VG
3667 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3668 0);
25fb5169 3669#endif
26a2ac00
JA
3670 /*
3671 * Not strictly needed (since RB_ROOT just clears the node and we
3672 * zeroed cfqd on alloc), but better be safe in case someone decides
3673 * to add magic to the rb code
3674 */
3675 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3676 cfqd->prio_trees[i] = RB_ROOT;
3677
6118b70b
JA
3678 /*
3679 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3680 * Grab a permanent reference to it, so that the normal code flow
3681 * will not attempt to free it.
3682 */
3683 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3684 atomic_inc(&cfqd->oom_cfqq.ref);
cdb16e8f 3685 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 3686
d9ff4187 3687 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 3688
1da177e4 3689 cfqd->queue = q;
1da177e4 3690
22e2c507
JA
3691 init_timer(&cfqd->idle_slice_timer);
3692 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3693 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3694
23e018a1 3695 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 3696
1da177e4 3697 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
3698 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3699 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
3700 cfqd->cfq_back_max = cfq_back_max;
3701 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
3702 cfqd->cfq_slice[0] = cfq_slice_async;
3703 cfqd->cfq_slice[1] = cfq_slice_sync;
3704 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3705 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 3706 cfqd->cfq_latency = 1;
ae30c286 3707 cfqd->cfq_group_isolation = 0;
e459dd08 3708 cfqd->hw_tag = -1;
365722bb 3709 cfqd->last_end_sync_rq = jiffies;
bc1c1169 3710 return cfqd;
1da177e4
LT
3711}
3712
3713static void cfq_slab_kill(void)
3714{
d6de8be7
JA
3715 /*
3716 * Caller already ensured that pending RCU callbacks are completed,
3717 * so we should have no busy allocations at this point.
3718 */
1da177e4
LT
3719 if (cfq_pool)
3720 kmem_cache_destroy(cfq_pool);
3721 if (cfq_ioc_pool)
3722 kmem_cache_destroy(cfq_ioc_pool);
3723}
3724
3725static int __init cfq_slab_setup(void)
3726{
0a31bd5f 3727 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
3728 if (!cfq_pool)
3729 goto fail;
3730
34e6bbf2 3731 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
3732 if (!cfq_ioc_pool)
3733 goto fail;
3734
3735 return 0;
3736fail:
3737 cfq_slab_kill();
3738 return -ENOMEM;
3739}
3740
1da177e4
LT
3741/*
3742 * sysfs parts below -->
3743 */
1da177e4
LT
3744static ssize_t
3745cfq_var_show(unsigned int var, char *page)
3746{
3747 return sprintf(page, "%d\n", var);
3748}
3749
3750static ssize_t
3751cfq_var_store(unsigned int *var, const char *page, size_t count)
3752{
3753 char *p = (char *) page;
3754
3755 *var = simple_strtoul(p, &p, 10);
3756 return count;
3757}
3758
1da177e4 3759#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3760static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3761{ \
3d1ab40f 3762 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3763 unsigned int __data = __VAR; \
3764 if (__CONV) \
3765 __data = jiffies_to_msecs(__data); \
3766 return cfq_var_show(__data, (page)); \
3767}
3768SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
3769SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3770SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
3771SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3772SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
3773SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3774SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3775SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3776SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 3777SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
ae30c286 3778SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
1da177e4
LT
3779#undef SHOW_FUNCTION
3780
3781#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 3782static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 3783{ \
3d1ab40f 3784 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3785 unsigned int __data; \
3786 int ret = cfq_var_store(&__data, (page), count); \
3787 if (__data < (MIN)) \
3788 __data = (MIN); \
3789 else if (__data > (MAX)) \
3790 __data = (MAX); \
3791 if (__CONV) \
3792 *(__PTR) = msecs_to_jiffies(__data); \
3793 else \
3794 *(__PTR) = __data; \
3795 return ret; \
3796}
3797STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
3798STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3799 UINT_MAX, 1);
3800STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3801 UINT_MAX, 1);
e572ec7e 3802STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
3803STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3804 UINT_MAX, 0);
22e2c507
JA
3805STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3806STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3807STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
3808STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3809 UINT_MAX, 0);
963b72fc 3810STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
ae30c286 3811STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
1da177e4
LT
3812#undef STORE_FUNCTION
3813
e572ec7e
AV
3814#define CFQ_ATTR(name) \
3815 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3816
3817static struct elv_fs_entry cfq_attrs[] = {
3818 CFQ_ATTR(quantum),
e572ec7e
AV
3819 CFQ_ATTR(fifo_expire_sync),
3820 CFQ_ATTR(fifo_expire_async),
3821 CFQ_ATTR(back_seek_max),
3822 CFQ_ATTR(back_seek_penalty),
3823 CFQ_ATTR(slice_sync),
3824 CFQ_ATTR(slice_async),
3825 CFQ_ATTR(slice_async_rq),
3826 CFQ_ATTR(slice_idle),
963b72fc 3827 CFQ_ATTR(low_latency),
ae30c286 3828 CFQ_ATTR(group_isolation),
e572ec7e 3829 __ATTR_NULL
1da177e4
LT
3830};
3831
1da177e4
LT
3832static struct elevator_type iosched_cfq = {
3833 .ops = {
3834 .elevator_merge_fn = cfq_merge,
3835 .elevator_merged_fn = cfq_merged_request,
3836 .elevator_merge_req_fn = cfq_merged_requests,
da775265 3837 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 3838 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 3839 .elevator_add_req_fn = cfq_insert_request,
b4878f24 3840 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
3841 .elevator_deactivate_req_fn = cfq_deactivate_request,
3842 .elevator_queue_empty_fn = cfq_queue_empty,
3843 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
3844 .elevator_former_req_fn = elv_rb_former_request,
3845 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
3846 .elevator_set_req_fn = cfq_set_request,
3847 .elevator_put_req_fn = cfq_put_request,
3848 .elevator_may_queue_fn = cfq_may_queue,
3849 .elevator_init_fn = cfq_init_queue,
3850 .elevator_exit_fn = cfq_exit_queue,
fc46379d 3851 .trim = cfq_free_io_context,
1da177e4 3852 },
3d1ab40f 3853 .elevator_attrs = cfq_attrs,
1da177e4
LT
3854 .elevator_name = "cfq",
3855 .elevator_owner = THIS_MODULE,
3856};
3857
3858static int __init cfq_init(void)
3859{
22e2c507
JA
3860 /*
3861 * could be 0 on HZ < 1000 setups
3862 */
3863 if (!cfq_slice_async)
3864 cfq_slice_async = 1;
3865 if (!cfq_slice_idle)
3866 cfq_slice_idle = 1;
3867
1da177e4
LT
3868 if (cfq_slab_setup())
3869 return -ENOMEM;
3870
2fdd82bd 3871 elv_register(&iosched_cfq);
1da177e4 3872
2fdd82bd 3873 return 0;
1da177e4
LT
3874}
3875
3876static void __exit cfq_exit(void)
3877{
6e9a4738 3878 DECLARE_COMPLETION_ONSTACK(all_gone);
1da177e4 3879 elv_unregister(&iosched_cfq);
334e94de 3880 ioc_gone = &all_gone;
fba82272
OH
3881 /* ioc_gone's update must be visible before reading ioc_count */
3882 smp_wmb();
d6de8be7
JA
3883
3884 /*
3885 * this also protects us from entering cfq_slab_kill() with
3886 * pending RCU callbacks
3887 */
245b2e70 3888 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 3889 wait_for_completion(&all_gone);
83521d3e 3890 cfq_slab_kill();
1da177e4
LT
3891}
3892
3893module_init(cfq_init);
3894module_exit(cfq_exit);
3895
3896MODULE_AUTHOR("Jens Axboe");
3897MODULE_LICENSE("GPL");
3898MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");