]> bbs.cooldavid.org Git - net-next-2.6.git/blame - block/cfq-iosched.c
cfq-iosched: fix corner cases in idling logic
[net-next-2.6.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
ad5ebd2f 12#include <linux/jiffies.h>
1da177e4 13#include <linux/rbtree.h>
22e2c507 14#include <linux/ioprio.h>
7b679138 15#include <linux/blktrace_api.h>
1da177e4
LT
16
17/*
18 * tunables
19 */
fe094d98
JA
20/* max queue in one round of service */
21static const int cfq_quantum = 4;
64100099 22static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
23/* maximum backwards seek, in KiB */
24static const int cfq_back_max = 16 * 1024;
25/* penalty of a backwards seek */
26static const int cfq_back_penalty = 2;
64100099 27static const int cfq_slice_sync = HZ / 10;
3b18152c 28static int cfq_slice_async = HZ / 25;
64100099 29static const int cfq_slice_async_rq = 2;
caaa5f9f 30static int cfq_slice_idle = HZ / 125;
5db5d642
CZ
31static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
32static const int cfq_hist_divisor = 4;
22e2c507 33
d9e7620e 34/*
0871714e 35 * offset from end of service tree
d9e7620e 36 */
0871714e 37#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
38
39/*
40 * below this threshold, we consider thinktime immediate
41 */
42#define CFQ_MIN_TT (2)
43
e6c5bc73
JM
44/*
45 * Allow merged cfqqs to perform this amount of seeky I/O before
46 * deciding to break the queues up again.
47 */
48#define CFQQ_COOP_TOUT (HZ)
49
22e2c507 50#define CFQ_SLICE_SCALE (5)
45333d5a 51#define CFQ_HW_QUEUE_MIN (5)
22e2c507 52
fe094d98
JA
53#define RQ_CIC(rq) \
54 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 55#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 56
e18b890b
CL
57static struct kmem_cache *cfq_pool;
58static struct kmem_cache *cfq_ioc_pool;
1da177e4 59
245b2e70 60static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 61static struct completion *ioc_gone;
9a11b4ed 62static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 63
22e2c507
JA
64#define CFQ_PRIO_LISTS IOPRIO_BE_NR
65#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
66#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
67
206dc69b
JA
68#define sample_valid(samples) ((samples) > 80)
69
cc09e299
JA
70/*
71 * Most of our rbtree usage is for sorting with min extraction, so
72 * if we cache the leftmost node we don't have to walk down the tree
73 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
74 * move this into the elevator for the rq sorting as well.
75 */
76struct cfq_rb_root {
77 struct rb_root rb;
78 struct rb_node *left;
aa6f6a3d 79 unsigned count;
cc09e299 80};
aa6f6a3d 81#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, }
cc09e299 82
6118b70b
JA
83/*
84 * Per process-grouping structure
85 */
86struct cfq_queue {
87 /* reference count */
88 atomic_t ref;
89 /* various state flags, see below */
90 unsigned int flags;
91 /* parent cfq_data */
92 struct cfq_data *cfqd;
93 /* service_tree member */
94 struct rb_node rb_node;
95 /* service_tree key */
96 unsigned long rb_key;
97 /* prio tree member */
98 struct rb_node p_node;
99 /* prio tree root we belong to, if any */
100 struct rb_root *p_root;
101 /* sorted list of pending requests */
102 struct rb_root sort_list;
103 /* if fifo isn't expired, next request to serve */
104 struct request *next_rq;
105 /* requests queued in sort_list */
106 int queued[2];
107 /* currently allocated requests */
108 int allocated[2];
109 /* fifo list of requests in sort_list */
110 struct list_head fifo;
111
112 unsigned long slice_end;
113 long slice_resid;
114 unsigned int slice_dispatch;
115
116 /* pending metadata requests */
117 int meta_pending;
118 /* number of requests that are on the dispatch list or inside driver */
119 int dispatched;
120
121 /* io prio of this group */
122 unsigned short ioprio, org_ioprio;
123 unsigned short ioprio_class, org_ioprio_class;
124
b2c18e1e
JM
125 unsigned int seek_samples;
126 u64 seek_total;
127 sector_t seek_mean;
128 sector_t last_request_pos;
e6c5bc73 129 unsigned long seeky_start;
b2c18e1e 130
6118b70b 131 pid_t pid;
df5fe3e8 132
aa6f6a3d 133 struct cfq_rb_root *service_tree;
df5fe3e8 134 struct cfq_queue *new_cfqq;
6118b70b
JA
135};
136
c0324a02 137/*
718eee05 138 * First index in the service_trees.
c0324a02
CZ
139 * IDLE is handled separately, so it has negative index
140 */
141enum wl_prio_t {
142 IDLE_WORKLOAD = -1,
143 BE_WORKLOAD = 0,
144 RT_WORKLOAD = 1
145};
146
718eee05
CZ
147/*
148 * Second index in the service_trees.
149 */
150enum wl_type_t {
151 ASYNC_WORKLOAD = 0,
152 SYNC_NOIDLE_WORKLOAD = 1,
153 SYNC_WORKLOAD = 2
154};
155
156
22e2c507
JA
157/*
158 * Per block device queue structure
159 */
1da177e4 160struct cfq_data {
165125e1 161 struct request_queue *queue;
22e2c507
JA
162
163 /*
c0324a02
CZ
164 * rr lists of queues with requests, onle rr for each priority class.
165 * Counts are embedded in the cfq_rb_root
166 */
718eee05 167 struct cfq_rb_root service_trees[2][3];
c0324a02
CZ
168 struct cfq_rb_root service_tree_idle;
169 /*
170 * The priority currently being served
22e2c507 171 */
c0324a02 172 enum wl_prio_t serving_prio;
718eee05
CZ
173 enum wl_type_t serving_type;
174 unsigned long workload_expires;
8e550632 175 bool noidle_tree_requires_idle;
a36e71f9
JA
176
177 /*
178 * Each priority tree is sorted by next_request position. These
179 * trees are used when determining if two or more queues are
180 * interleaving requests (see cfq_close_cooperator).
181 */
182 struct rb_root prio_trees[CFQ_PRIO_LISTS];
183
22e2c507 184 unsigned int busy_queues;
5db5d642 185 unsigned int busy_queues_avg[2];
22e2c507 186
5ad531db 187 int rq_in_driver[2];
3ed9a296 188 int sync_flight;
45333d5a
AC
189
190 /*
191 * queue-depth detection
192 */
193 int rq_queued;
25776e35 194 int hw_tag;
e459dd08
CZ
195 /*
196 * hw_tag can be
197 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
198 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
199 * 0 => no NCQ
200 */
201 int hw_tag_est_depth;
202 unsigned int hw_tag_samples;
1da177e4 203
22e2c507
JA
204 /*
205 * idle window management
206 */
207 struct timer_list idle_slice_timer;
23e018a1 208 struct work_struct unplug_work;
1da177e4 209
22e2c507
JA
210 struct cfq_queue *active_queue;
211 struct cfq_io_context *active_cic;
22e2c507 212
c2dea2d1
VT
213 /*
214 * async queue for each priority case
215 */
216 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
217 struct cfq_queue *async_idle_cfqq;
15c31be4 218
6d048f53 219 sector_t last_position;
1da177e4 220
1da177e4
LT
221 /*
222 * tunables, see top of file
223 */
224 unsigned int cfq_quantum;
22e2c507 225 unsigned int cfq_fifo_expire[2];
1da177e4
LT
226 unsigned int cfq_back_penalty;
227 unsigned int cfq_back_max;
22e2c507
JA
228 unsigned int cfq_slice[2];
229 unsigned int cfq_slice_async_rq;
230 unsigned int cfq_slice_idle;
963b72fc 231 unsigned int cfq_latency;
d9ff4187
AV
232
233 struct list_head cic_list;
1da177e4 234
6118b70b
JA
235 /*
236 * Fallback dummy cfqq for extreme OOM conditions
237 */
238 struct cfq_queue oom_cfqq;
365722bb
VG
239
240 unsigned long last_end_sync_rq;
1da177e4
LT
241};
242
c0324a02 243static struct cfq_rb_root *service_tree_for(enum wl_prio_t prio,
718eee05 244 enum wl_type_t type,
c0324a02
CZ
245 struct cfq_data *cfqd)
246{
247 if (prio == IDLE_WORKLOAD)
248 return &cfqd->service_tree_idle;
249
718eee05 250 return &cfqd->service_trees[prio][type];
c0324a02
CZ
251}
252
3b18152c 253enum cfqq_state_flags {
b0b8d749
JA
254 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
255 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 256 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 257 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
258 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
259 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
260 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 261 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 262 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 263 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
76280aff 264 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
3b18152c
JA
265};
266
267#define CFQ_CFQQ_FNS(name) \
268static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
269{ \
fe094d98 270 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
271} \
272static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
273{ \
fe094d98 274 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
275} \
276static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
277{ \
fe094d98 278 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
279}
280
281CFQ_CFQQ_FNS(on_rr);
282CFQ_CFQQ_FNS(wait_request);
b029195d 283CFQ_CFQQ_FNS(must_dispatch);
3b18152c 284CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
285CFQ_CFQQ_FNS(fifo_expire);
286CFQ_CFQQ_FNS(idle_window);
287CFQ_CFQQ_FNS(prio_changed);
44f7c160 288CFQ_CFQQ_FNS(slice_new);
91fac317 289CFQ_CFQQ_FNS(sync);
a36e71f9 290CFQ_CFQQ_FNS(coop);
76280aff 291CFQ_CFQQ_FNS(deep);
3b18152c
JA
292#undef CFQ_CFQQ_FNS
293
7b679138
JA
294#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
295 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
296#define cfq_log(cfqd, fmt, args...) \
297 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
298
c0324a02
CZ
299static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
300{
301 if (cfq_class_idle(cfqq))
302 return IDLE_WORKLOAD;
303 if (cfq_class_rt(cfqq))
304 return RT_WORKLOAD;
305 return BE_WORKLOAD;
306}
307
718eee05
CZ
308
309static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
310{
311 if (!cfq_cfqq_sync(cfqq))
312 return ASYNC_WORKLOAD;
313 if (!cfq_cfqq_idle_window(cfqq))
314 return SYNC_NOIDLE_WORKLOAD;
315 return SYNC_WORKLOAD;
316}
317
c0324a02
CZ
318static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd)
319{
320 if (wl == IDLE_WORKLOAD)
321 return cfqd->service_tree_idle.count;
322
718eee05
CZ
323 return cfqd->service_trees[wl][ASYNC_WORKLOAD].count
324 + cfqd->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
325 + cfqd->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
326}
327
165125e1 328static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 329static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 330 struct io_context *, gfp_t);
4ac845a2 331static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
332 struct io_context *);
333
5ad531db
JA
334static inline int rq_in_driver(struct cfq_data *cfqd)
335{
336 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
337}
338
91fac317 339static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 340 bool is_sync)
91fac317 341{
a6151c3a 342 return cic->cfqq[is_sync];
91fac317
VT
343}
344
345static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 346 struct cfq_queue *cfqq, bool is_sync)
91fac317 347{
a6151c3a 348 cic->cfqq[is_sync] = cfqq;
91fac317
VT
349}
350
351/*
352 * We regard a request as SYNC, if it's either a read or has the SYNC bit
353 * set (in which case it could also be direct WRITE).
354 */
a6151c3a 355static inline bool cfq_bio_sync(struct bio *bio)
91fac317 356{
a6151c3a 357 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
91fac317 358}
1da177e4 359
99f95e52
AM
360/*
361 * scheduler run of queue, if there are requests pending and no one in the
362 * driver that will restart queueing
363 */
23e018a1 364static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 365{
7b679138
JA
366 if (cfqd->busy_queues) {
367 cfq_log(cfqd, "schedule dispatch");
23e018a1 368 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 369 }
99f95e52
AM
370}
371
165125e1 372static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
373{
374 struct cfq_data *cfqd = q->elevator->elevator_data;
375
b4878f24 376 return !cfqd->busy_queues;
99f95e52
AM
377}
378
44f7c160
JA
379/*
380 * Scale schedule slice based on io priority. Use the sync time slice only
381 * if a queue is marked sync and has sync io queued. A sync queue with async
382 * io only, should not get full sync slice length.
383 */
a6151c3a 384static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 385 unsigned short prio)
44f7c160 386{
d9e7620e 387 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 388
d9e7620e
JA
389 WARN_ON(prio >= IOPRIO_BE_NR);
390
391 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
392}
44f7c160 393
d9e7620e
JA
394static inline int
395cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
396{
397 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
398}
399
5db5d642
CZ
400/*
401 * get averaged number of queues of RT/BE priority.
402 * average is updated, with a formula that gives more weight to higher numbers,
403 * to quickly follows sudden increases and decrease slowly
404 */
405
5869619c
JA
406static inline unsigned cfq_get_avg_queues(struct cfq_data *cfqd, bool rt)
407{
5db5d642
CZ
408 unsigned min_q, max_q;
409 unsigned mult = cfq_hist_divisor - 1;
410 unsigned round = cfq_hist_divisor / 2;
c0324a02 411 unsigned busy = cfq_busy_queues_wl(rt, cfqd);
5db5d642
CZ
412
413 min_q = min(cfqd->busy_queues_avg[rt], busy);
414 max_q = max(cfqd->busy_queues_avg[rt], busy);
415 cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
416 cfq_hist_divisor;
417 return cfqd->busy_queues_avg[rt];
418}
419
44f7c160
JA
420static inline void
421cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
422{
5db5d642
CZ
423 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
424 if (cfqd->cfq_latency) {
425 /* interested queues (we consider only the ones with the same
426 * priority class) */
427 unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
428 unsigned sync_slice = cfqd->cfq_slice[1];
429 unsigned expect_latency = sync_slice * iq;
430 if (expect_latency > cfq_target_latency) {
431 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
432 /* scale low_slice according to IO priority
433 * and sync vs async */
434 unsigned low_slice =
435 min(slice, base_low_slice * slice / sync_slice);
436 /* the adapted slice value is scaled to fit all iqs
437 * into the target latency */
438 slice = max(slice * cfq_target_latency / expect_latency,
439 low_slice);
440 }
441 }
442 cfqq->slice_end = jiffies + slice;
7b679138 443 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
444}
445
446/*
447 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
448 * isn't valid until the first request from the dispatch is activated
449 * and the slice time set.
450 */
a6151c3a 451static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
452{
453 if (cfq_cfqq_slice_new(cfqq))
454 return 0;
455 if (time_before(jiffies, cfqq->slice_end))
456 return 0;
457
458 return 1;
459}
460
1da177e4 461/*
5e705374 462 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 463 * We choose the request that is closest to the head right now. Distance
e8a99053 464 * behind the head is penalized and only allowed to a certain extent.
1da177e4 465 */
5e705374 466static struct request *
cf7c25cf 467cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 468{
cf7c25cf 469 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 470 unsigned long back_max;
e8a99053
AM
471#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
472#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
473 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 474
5e705374
JA
475 if (rq1 == NULL || rq1 == rq2)
476 return rq2;
477 if (rq2 == NULL)
478 return rq1;
9c2c38a1 479
5e705374
JA
480 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
481 return rq1;
482 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
483 return rq2;
374f84ac
JA
484 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
485 return rq1;
486 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
487 return rq2;
1da177e4 488
83096ebf
TH
489 s1 = blk_rq_pos(rq1);
490 s2 = blk_rq_pos(rq2);
1da177e4 491
1da177e4
LT
492 /*
493 * by definition, 1KiB is 2 sectors
494 */
495 back_max = cfqd->cfq_back_max * 2;
496
497 /*
498 * Strict one way elevator _except_ in the case where we allow
499 * short backward seeks which are biased as twice the cost of a
500 * similar forward seek.
501 */
502 if (s1 >= last)
503 d1 = s1 - last;
504 else if (s1 + back_max >= last)
505 d1 = (last - s1) * cfqd->cfq_back_penalty;
506 else
e8a99053 507 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
508
509 if (s2 >= last)
510 d2 = s2 - last;
511 else if (s2 + back_max >= last)
512 d2 = (last - s2) * cfqd->cfq_back_penalty;
513 else
e8a99053 514 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
515
516 /* Found required data */
e8a99053
AM
517
518 /*
519 * By doing switch() on the bit mask "wrap" we avoid having to
520 * check two variables for all permutations: --> faster!
521 */
522 switch (wrap) {
5e705374 523 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 524 if (d1 < d2)
5e705374 525 return rq1;
e8a99053 526 else if (d2 < d1)
5e705374 527 return rq2;
e8a99053
AM
528 else {
529 if (s1 >= s2)
5e705374 530 return rq1;
e8a99053 531 else
5e705374 532 return rq2;
e8a99053 533 }
1da177e4 534
e8a99053 535 case CFQ_RQ2_WRAP:
5e705374 536 return rq1;
e8a99053 537 case CFQ_RQ1_WRAP:
5e705374
JA
538 return rq2;
539 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
540 default:
541 /*
542 * Since both rqs are wrapped,
543 * start with the one that's further behind head
544 * (--> only *one* back seek required),
545 * since back seek takes more time than forward.
546 */
547 if (s1 <= s2)
5e705374 548 return rq1;
1da177e4 549 else
5e705374 550 return rq2;
1da177e4
LT
551 }
552}
553
498d3aa2
JA
554/*
555 * The below is leftmost cache rbtree addon
556 */
0871714e 557static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299
JA
558{
559 if (!root->left)
560 root->left = rb_first(&root->rb);
561
0871714e
JA
562 if (root->left)
563 return rb_entry(root->left, struct cfq_queue, rb_node);
564
565 return NULL;
cc09e299
JA
566}
567
a36e71f9
JA
568static void rb_erase_init(struct rb_node *n, struct rb_root *root)
569{
570 rb_erase(n, root);
571 RB_CLEAR_NODE(n);
572}
573
cc09e299
JA
574static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
575{
576 if (root->left == n)
577 root->left = NULL;
a36e71f9 578 rb_erase_init(n, &root->rb);
aa6f6a3d 579 --root->count;
cc09e299
JA
580}
581
1da177e4
LT
582/*
583 * would be nice to take fifo expire time into account as well
584 */
5e705374
JA
585static struct request *
586cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
587 struct request *last)
1da177e4 588{
21183b07
JA
589 struct rb_node *rbnext = rb_next(&last->rb_node);
590 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 591 struct request *next = NULL, *prev = NULL;
1da177e4 592
21183b07 593 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
594
595 if (rbprev)
5e705374 596 prev = rb_entry_rq(rbprev);
1da177e4 597
21183b07 598 if (rbnext)
5e705374 599 next = rb_entry_rq(rbnext);
21183b07
JA
600 else {
601 rbnext = rb_first(&cfqq->sort_list);
602 if (rbnext && rbnext != &last->rb_node)
5e705374 603 next = rb_entry_rq(rbnext);
21183b07 604 }
1da177e4 605
cf7c25cf 606 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
607}
608
d9e7620e
JA
609static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
610 struct cfq_queue *cfqq)
1da177e4 611{
3586e917
GJ
612 struct cfq_rb_root *service_tree;
613
614 service_tree = service_tree_for(cfqq_prio(cfqq), cfqq_type(cfqq), cfqd);
615
d9e7620e
JA
616 /*
617 * just an approximation, should be ok.
618 */
3586e917
GJ
619 return service_tree->count * (cfq_prio_slice(cfqd, 1, 0) -
620 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
621}
622
498d3aa2 623/*
c0324a02 624 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
625 * requests waiting to be processed. It is sorted in the order that
626 * we will service the queues.
627 */
a36e71f9 628static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 629 bool add_front)
d9e7620e 630{
0871714e
JA
631 struct rb_node **p, *parent;
632 struct cfq_queue *__cfqq;
d9e7620e 633 unsigned long rb_key;
c0324a02 634 struct cfq_rb_root *service_tree;
498d3aa2 635 int left;
d9e7620e 636
718eee05 637 service_tree = service_tree_for(cfqq_prio(cfqq), cfqq_type(cfqq), cfqd);
0871714e
JA
638 if (cfq_class_idle(cfqq)) {
639 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 640 parent = rb_last(&service_tree->rb);
0871714e
JA
641 if (parent && parent != &cfqq->rb_node) {
642 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
643 rb_key += __cfqq->rb_key;
644 } else
645 rb_key += jiffies;
646 } else if (!add_front) {
b9c8946b
JA
647 /*
648 * Get our rb key offset. Subtract any residual slice
649 * value carried from last service. A negative resid
650 * count indicates slice overrun, and this should position
651 * the next service time further away in the tree.
652 */
edd75ffd 653 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 654 rb_key -= cfqq->slice_resid;
edd75ffd 655 cfqq->slice_resid = 0;
48e025e6
CZ
656 } else {
657 rb_key = -HZ;
aa6f6a3d 658 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
659 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
660 }
1da177e4 661
d9e7620e 662 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
99f9628a 663 /*
d9e7620e 664 * same position, nothing more to do
99f9628a 665 */
c0324a02
CZ
666 if (rb_key == cfqq->rb_key &&
667 cfqq->service_tree == service_tree)
d9e7620e 668 return;
1da177e4 669
aa6f6a3d
CZ
670 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
671 cfqq->service_tree = NULL;
1da177e4 672 }
d9e7620e 673
498d3aa2 674 left = 1;
0871714e 675 parent = NULL;
aa6f6a3d
CZ
676 cfqq->service_tree = service_tree;
677 p = &service_tree->rb.rb_node;
d9e7620e 678 while (*p) {
67060e37 679 struct rb_node **n;
cc09e299 680
d9e7620e
JA
681 parent = *p;
682 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
683
0c534e0a 684 /*
c0324a02 685 * sort by key, that represents service time.
0c534e0a 686 */
c0324a02 687 if (time_before(rb_key, __cfqq->rb_key))
67060e37 688 n = &(*p)->rb_left;
c0324a02 689 else {
67060e37 690 n = &(*p)->rb_right;
cc09e299 691 left = 0;
c0324a02 692 }
67060e37
JA
693
694 p = n;
d9e7620e
JA
695 }
696
cc09e299 697 if (left)
aa6f6a3d 698 service_tree->left = &cfqq->rb_node;
cc09e299 699
d9e7620e
JA
700 cfqq->rb_key = rb_key;
701 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
702 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
703 service_tree->count++;
1da177e4
LT
704}
705
a36e71f9 706static struct cfq_queue *
f2d1f0ae
JA
707cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
708 sector_t sector, struct rb_node **ret_parent,
709 struct rb_node ***rb_link)
a36e71f9 710{
a36e71f9
JA
711 struct rb_node **p, *parent;
712 struct cfq_queue *cfqq = NULL;
713
714 parent = NULL;
715 p = &root->rb_node;
716 while (*p) {
717 struct rb_node **n;
718
719 parent = *p;
720 cfqq = rb_entry(parent, struct cfq_queue, p_node);
721
722 /*
723 * Sort strictly based on sector. Smallest to the left,
724 * largest to the right.
725 */
2e46e8b2 726 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 727 n = &(*p)->rb_right;
2e46e8b2 728 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
729 n = &(*p)->rb_left;
730 else
731 break;
732 p = n;
3ac6c9f8 733 cfqq = NULL;
a36e71f9
JA
734 }
735
736 *ret_parent = parent;
737 if (rb_link)
738 *rb_link = p;
3ac6c9f8 739 return cfqq;
a36e71f9
JA
740}
741
742static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
743{
a36e71f9
JA
744 struct rb_node **p, *parent;
745 struct cfq_queue *__cfqq;
746
f2d1f0ae
JA
747 if (cfqq->p_root) {
748 rb_erase(&cfqq->p_node, cfqq->p_root);
749 cfqq->p_root = NULL;
750 }
a36e71f9
JA
751
752 if (cfq_class_idle(cfqq))
753 return;
754 if (!cfqq->next_rq)
755 return;
756
f2d1f0ae 757 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
758 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
759 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
760 if (!__cfqq) {
761 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
762 rb_insert_color(&cfqq->p_node, cfqq->p_root);
763 } else
764 cfqq->p_root = NULL;
a36e71f9
JA
765}
766
498d3aa2
JA
767/*
768 * Update cfqq's position in the service tree.
769 */
edd75ffd 770static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 771{
6d048f53
JA
772 /*
773 * Resorting requires the cfqq to be on the RR list already.
774 */
a36e71f9 775 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 776 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
777 cfq_prio_tree_add(cfqd, cfqq);
778 }
6d048f53
JA
779}
780
1da177e4
LT
781/*
782 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 783 * the pending list according to last request service
1da177e4 784 */
febffd61 785static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 786{
7b679138 787 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
788 BUG_ON(cfq_cfqq_on_rr(cfqq));
789 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
790 cfqd->busy_queues++;
791
edd75ffd 792 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
793}
794
498d3aa2
JA
795/*
796 * Called when the cfqq no longer has requests pending, remove it from
797 * the service tree.
798 */
febffd61 799static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 800{
7b679138 801 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
802 BUG_ON(!cfq_cfqq_on_rr(cfqq));
803 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 804
aa6f6a3d
CZ
805 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
806 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
807 cfqq->service_tree = NULL;
808 }
f2d1f0ae
JA
809 if (cfqq->p_root) {
810 rb_erase(&cfqq->p_node, cfqq->p_root);
811 cfqq->p_root = NULL;
812 }
d9e7620e 813
1da177e4
LT
814 BUG_ON(!cfqd->busy_queues);
815 cfqd->busy_queues--;
816}
817
818/*
819 * rb tree support functions
820 */
febffd61 821static void cfq_del_rq_rb(struct request *rq)
1da177e4 822{
5e705374 823 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 824 struct cfq_data *cfqd = cfqq->cfqd;
5e705374 825 const int sync = rq_is_sync(rq);
1da177e4 826
b4878f24
JA
827 BUG_ON(!cfqq->queued[sync]);
828 cfqq->queued[sync]--;
1da177e4 829
5e705374 830 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 831
dd67d051 832 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
b4878f24 833 cfq_del_cfqq_rr(cfqd, cfqq);
1da177e4
LT
834}
835
5e705374 836static void cfq_add_rq_rb(struct request *rq)
1da177e4 837{
5e705374 838 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 839 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 840 struct request *__alias, *prev;
1da177e4 841
5380a101 842 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
843
844 /*
845 * looks a little odd, but the first insert might return an alias.
846 * if that happens, put the alias on the dispatch list
847 */
21183b07 848 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 849 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
850
851 if (!cfq_cfqq_on_rr(cfqq))
852 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
853
854 /*
855 * check if this request is a better next-serve candidate
856 */
a36e71f9 857 prev = cfqq->next_rq;
cf7c25cf 858 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
859
860 /*
861 * adjust priority tree position, if ->next_rq changes
862 */
863 if (prev != cfqq->next_rq)
864 cfq_prio_tree_add(cfqd, cfqq);
865
5044eed4 866 BUG_ON(!cfqq->next_rq);
1da177e4
LT
867}
868
febffd61 869static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 870{
5380a101
JA
871 elv_rb_del(&cfqq->sort_list, rq);
872 cfqq->queued[rq_is_sync(rq)]--;
5e705374 873 cfq_add_rq_rb(rq);
1da177e4
LT
874}
875
206dc69b
JA
876static struct request *
877cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 878{
206dc69b 879 struct task_struct *tsk = current;
91fac317 880 struct cfq_io_context *cic;
206dc69b 881 struct cfq_queue *cfqq;
1da177e4 882
4ac845a2 883 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
884 if (!cic)
885 return NULL;
886
887 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
888 if (cfqq) {
889 sector_t sector = bio->bi_sector + bio_sectors(bio);
890
21183b07 891 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 892 }
1da177e4 893
1da177e4
LT
894 return NULL;
895}
896
165125e1 897static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 898{
22e2c507 899 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 900
5ad531db 901 cfqd->rq_in_driver[rq_is_sync(rq)]++;
7b679138 902 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
5ad531db 903 rq_in_driver(cfqd));
25776e35 904
5b93629b 905 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
906}
907
165125e1 908static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 909{
b4878f24 910 struct cfq_data *cfqd = q->elevator->elevator_data;
5ad531db 911 const int sync = rq_is_sync(rq);
b4878f24 912
5ad531db
JA
913 WARN_ON(!cfqd->rq_in_driver[sync]);
914 cfqd->rq_in_driver[sync]--;
7b679138 915 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
5ad531db 916 rq_in_driver(cfqd));
1da177e4
LT
917}
918
b4878f24 919static void cfq_remove_request(struct request *rq)
1da177e4 920{
5e705374 921 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 922
5e705374
JA
923 if (cfqq->next_rq == rq)
924 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 925
b4878f24 926 list_del_init(&rq->queuelist);
5e705374 927 cfq_del_rq_rb(rq);
374f84ac 928
45333d5a 929 cfqq->cfqd->rq_queued--;
374f84ac
JA
930 if (rq_is_meta(rq)) {
931 WARN_ON(!cfqq->meta_pending);
932 cfqq->meta_pending--;
933 }
1da177e4
LT
934}
935
165125e1
JA
936static int cfq_merge(struct request_queue *q, struct request **req,
937 struct bio *bio)
1da177e4
LT
938{
939 struct cfq_data *cfqd = q->elevator->elevator_data;
940 struct request *__rq;
1da177e4 941
206dc69b 942 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 943 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
944 *req = __rq;
945 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
946 }
947
948 return ELEVATOR_NO_MERGE;
1da177e4
LT
949}
950
165125e1 951static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 952 int type)
1da177e4 953{
21183b07 954 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 955 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 956
5e705374 957 cfq_reposition_rq_rb(cfqq, req);
1da177e4 958 }
1da177e4
LT
959}
960
961static void
165125e1 962cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
963 struct request *next)
964{
cf7c25cf 965 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
966 /*
967 * reposition in fifo if next is older than rq
968 */
969 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 970 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 971 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
972 rq_set_fifo_time(rq, rq_fifo_time(next));
973 }
22e2c507 974
cf7c25cf
CZ
975 if (cfqq->next_rq == next)
976 cfqq->next_rq = rq;
b4878f24 977 cfq_remove_request(next);
22e2c507
JA
978}
979
165125e1 980static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
981 struct bio *bio)
982{
983 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 984 struct cfq_io_context *cic;
da775265 985 struct cfq_queue *cfqq;
da775265
JA
986
987 /*
ec8acb69 988 * Disallow merge of a sync bio into an async request.
da775265 989 */
91fac317 990 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 991 return false;
da775265
JA
992
993 /*
719d3402
JA
994 * Lookup the cfqq that this bio will be queued with. Allow
995 * merge only if rq is queued there.
da775265 996 */
4ac845a2 997 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 998 if (!cic)
a6151c3a 999 return false;
719d3402 1000
91fac317 1001 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1002 return cfqq == RQ_CFQQ(rq);
da775265
JA
1003}
1004
febffd61
JA
1005static void __cfq_set_active_queue(struct cfq_data *cfqd,
1006 struct cfq_queue *cfqq)
22e2c507
JA
1007{
1008 if (cfqq) {
7b679138 1009 cfq_log_cfqq(cfqd, cfqq, "set_active");
22e2c507 1010 cfqq->slice_end = 0;
2f5cb738
JA
1011 cfqq->slice_dispatch = 0;
1012
2f5cb738 1013 cfq_clear_cfqq_wait_request(cfqq);
b029195d 1014 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
1015 cfq_clear_cfqq_must_alloc_slice(cfqq);
1016 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 1017 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
1018
1019 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
1020 }
1021
1022 cfqd->active_queue = cfqq;
1023}
1024
7b14e3b5
JA
1025/*
1026 * current cfqq expired its slice (or was too idle), select new one
1027 */
1028static void
1029__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1030 bool timed_out)
7b14e3b5 1031{
7b679138
JA
1032 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1033
7b14e3b5
JA
1034 if (cfq_cfqq_wait_request(cfqq))
1035 del_timer(&cfqd->idle_slice_timer);
1036
7b14e3b5
JA
1037 cfq_clear_cfqq_wait_request(cfqq);
1038
1039 /*
6084cdda 1040 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1041 */
7b679138 1042 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 1043 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1044 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1045 }
7b14e3b5 1046
edd75ffd 1047 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1048
1049 if (cfqq == cfqd->active_queue)
1050 cfqd->active_queue = NULL;
1051
1052 if (cfqd->active_cic) {
1053 put_io_context(cfqd->active_cic->ioc);
1054 cfqd->active_cic = NULL;
1055 }
7b14e3b5
JA
1056}
1057
a6151c3a 1058static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1059{
1060 struct cfq_queue *cfqq = cfqd->active_queue;
1061
1062 if (cfqq)
6084cdda 1063 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1064}
1065
498d3aa2
JA
1066/*
1067 * Get next queue for service. Unless we have a queue preemption,
1068 * we'll simply select the first cfqq in the service tree.
1069 */
6d048f53 1070static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1071{
c0324a02 1072 struct cfq_rb_root *service_tree =
718eee05 1073 service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd);
d9e7620e 1074
c0324a02
CZ
1075 if (RB_EMPTY_ROOT(&service_tree->rb))
1076 return NULL;
1077 return cfq_rb_first(service_tree);
6d048f53
JA
1078}
1079
498d3aa2
JA
1080/*
1081 * Get and set a new active queue for service.
1082 */
a36e71f9
JA
1083static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1084 struct cfq_queue *cfqq)
6d048f53 1085{
e00ef799 1086 if (!cfqq)
a36e71f9 1087 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1088
22e2c507 1089 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1090 return cfqq;
22e2c507
JA
1091}
1092
d9e7620e
JA
1093static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1094 struct request *rq)
1095{
83096ebf
TH
1096 if (blk_rq_pos(rq) >= cfqd->last_position)
1097 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1098 else
83096ebf 1099 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1100}
1101
b2c18e1e
JM
1102#define CFQQ_SEEK_THR 8 * 1024
1103#define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
04dc6e71 1104
b2c18e1e
JM
1105static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1106 struct request *rq)
6d048f53 1107{
b2c18e1e 1108 sector_t sdist = cfqq->seek_mean;
6d048f53 1109
b2c18e1e
JM
1110 if (!sample_valid(cfqq->seek_samples))
1111 sdist = CFQQ_SEEK_THR;
6d048f53 1112
04dc6e71 1113 return cfq_dist_from_last(cfqd, rq) <= sdist;
6d048f53
JA
1114}
1115
a36e71f9
JA
1116static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1117 struct cfq_queue *cur_cfqq)
1118{
f2d1f0ae 1119 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1120 struct rb_node *parent, *node;
1121 struct cfq_queue *__cfqq;
1122 sector_t sector = cfqd->last_position;
1123
1124 if (RB_EMPTY_ROOT(root))
1125 return NULL;
1126
1127 /*
1128 * First, if we find a request starting at the end of the last
1129 * request, choose it.
1130 */
f2d1f0ae 1131 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1132 if (__cfqq)
1133 return __cfqq;
1134
1135 /*
1136 * If the exact sector wasn't found, the parent of the NULL leaf
1137 * will contain the closest sector.
1138 */
1139 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
b2c18e1e 1140 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1141 return __cfqq;
1142
2e46e8b2 1143 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1144 node = rb_next(&__cfqq->p_node);
1145 else
1146 node = rb_prev(&__cfqq->p_node);
1147 if (!node)
1148 return NULL;
1149
1150 __cfqq = rb_entry(node, struct cfq_queue, p_node);
b2c18e1e 1151 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1152 return __cfqq;
1153
1154 return NULL;
1155}
1156
1157/*
1158 * cfqd - obvious
1159 * cur_cfqq - passed in so that we don't decide that the current queue is
1160 * closely cooperating with itself.
1161 *
1162 * So, basically we're assuming that that cur_cfqq has dispatched at least
1163 * one request, and that cfqd->last_position reflects a position on the disk
1164 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1165 * assumption.
1166 */
1167static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1168 struct cfq_queue *cur_cfqq)
6d048f53 1169{
a36e71f9
JA
1170 struct cfq_queue *cfqq;
1171
e6c5bc73
JM
1172 if (!cfq_cfqq_sync(cur_cfqq))
1173 return NULL;
1174 if (CFQQ_SEEKY(cur_cfqq))
1175 return NULL;
1176
6d048f53 1177 /*
d9e7620e
JA
1178 * We should notice if some of the queues are cooperating, eg
1179 * working closely on the same area of the disk. In that case,
1180 * we can group them together and don't waste time idling.
6d048f53 1181 */
a36e71f9
JA
1182 cfqq = cfqq_close(cfqd, cur_cfqq);
1183 if (!cfqq)
1184 return NULL;
1185
df5fe3e8
JM
1186 /*
1187 * It only makes sense to merge sync queues.
1188 */
1189 if (!cfq_cfqq_sync(cfqq))
1190 return NULL;
e6c5bc73
JM
1191 if (CFQQ_SEEKY(cfqq))
1192 return NULL;
df5fe3e8 1193
c0324a02
CZ
1194 /*
1195 * Do not merge queues of different priority classes
1196 */
1197 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1198 return NULL;
1199
a36e71f9 1200 return cfqq;
6d048f53
JA
1201}
1202
a6d44e98
CZ
1203/*
1204 * Determine whether we should enforce idle window for this queue.
1205 */
1206
1207static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1208{
1209 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1210 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98
CZ
1211
1212 /* We never do for idle class queues. */
1213 if (prio == IDLE_WORKLOAD)
1214 return false;
1215
1216 /* We do for queues that were marked with idle window flag. */
1217 if (cfq_cfqq_idle_window(cfqq))
1218 return true;
1219
1220 /*
1221 * Otherwise, we do only if they are the last ones
1222 * in their service tree.
1223 */
718eee05
CZ
1224 if (!service_tree)
1225 service_tree = service_tree_for(prio, cfqq_type(cfqq), cfqd);
1226
a6d44e98
CZ
1227 if (service_tree->count == 0)
1228 return true;
1229
1230 return (service_tree->count == 1 && cfq_rb_first(service_tree) == cfqq);
1231}
1232
6d048f53 1233static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1234{
1792669c 1235 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1236 struct cfq_io_context *cic;
7b14e3b5
JA
1237 unsigned long sl;
1238
a68bbddb 1239 /*
f7d7b7a7
JA
1240 * SSD device without seek penalty, disable idling. But only do so
1241 * for devices that support queuing, otherwise we still have a problem
1242 * with sync vs async workloads.
a68bbddb 1243 */
f7d7b7a7 1244 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1245 return;
1246
dd67d051 1247 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1248 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1249
1250 /*
1251 * idle is disabled, either manually or by past process history
1252 */
a6d44e98 1253 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
6d048f53
JA
1254 return;
1255
7b679138 1256 /*
8e550632 1257 * still active requests from this queue, don't idle
7b679138 1258 */
8e550632 1259 if (cfqq->dispatched)
7b679138
JA
1260 return;
1261
22e2c507
JA
1262 /*
1263 * task has exited, don't wait
1264 */
206dc69b 1265 cic = cfqd->active_cic;
66dac98e 1266 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1267 return;
1268
355b659c
CZ
1269 /*
1270 * If our average think time is larger than the remaining time
1271 * slice, then don't idle. This avoids overrunning the allotted
1272 * time slice.
1273 */
1274 if (sample_valid(cic->ttime_samples) &&
1275 (cfqq->slice_end - jiffies < cic->ttime_mean))
1276 return;
1277
3b18152c 1278 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1279
6d048f53 1280 sl = cfqd->cfq_slice_idle;
206dc69b 1281
7b14e3b5 1282 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1283 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1284}
1285
498d3aa2
JA
1286/*
1287 * Move request from internal lists to the request queue dispatch list.
1288 */
165125e1 1289static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1290{
3ed9a296 1291 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1292 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1293
7b679138
JA
1294 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1295
06d21886 1296 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1297 cfq_remove_request(rq);
6d048f53 1298 cfqq->dispatched++;
5380a101 1299 elv_dispatch_sort(q, rq);
3ed9a296
JA
1300
1301 if (cfq_cfqq_sync(cfqq))
1302 cfqd->sync_flight++;
1da177e4
LT
1303}
1304
1305/*
1306 * return expired entry, or NULL to just start from scratch in rbtree
1307 */
febffd61 1308static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1309{
30996f40 1310 struct request *rq = NULL;
1da177e4 1311
3b18152c 1312 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1313 return NULL;
cb887411
JA
1314
1315 cfq_mark_cfqq_fifo_expire(cfqq);
1316
89850f7e
JA
1317 if (list_empty(&cfqq->fifo))
1318 return NULL;
1da177e4 1319
89850f7e 1320 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1321 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1322 rq = NULL;
1da177e4 1323
30996f40 1324 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1325 return rq;
1da177e4
LT
1326}
1327
22e2c507
JA
1328static inline int
1329cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1330{
1331 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1332
22e2c507 1333 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1334
22e2c507 1335 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1336}
1337
df5fe3e8
JM
1338/*
1339 * Must be called with the queue_lock held.
1340 */
1341static int cfqq_process_refs(struct cfq_queue *cfqq)
1342{
1343 int process_refs, io_refs;
1344
1345 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1346 process_refs = atomic_read(&cfqq->ref) - io_refs;
1347 BUG_ON(process_refs < 0);
1348 return process_refs;
1349}
1350
1351static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1352{
e6c5bc73 1353 int process_refs, new_process_refs;
df5fe3e8
JM
1354 struct cfq_queue *__cfqq;
1355
1356 /* Avoid a circular list and skip interim queue merges */
1357 while ((__cfqq = new_cfqq->new_cfqq)) {
1358 if (__cfqq == cfqq)
1359 return;
1360 new_cfqq = __cfqq;
1361 }
1362
1363 process_refs = cfqq_process_refs(cfqq);
1364 /*
1365 * If the process for the cfqq has gone away, there is no
1366 * sense in merging the queues.
1367 */
1368 if (process_refs == 0)
1369 return;
1370
e6c5bc73
JM
1371 /*
1372 * Merge in the direction of the lesser amount of work.
1373 */
1374 new_process_refs = cfqq_process_refs(new_cfqq);
1375 if (new_process_refs >= process_refs) {
1376 cfqq->new_cfqq = new_cfqq;
1377 atomic_add(process_refs, &new_cfqq->ref);
1378 } else {
1379 new_cfqq->new_cfqq = cfqq;
1380 atomic_add(new_process_refs, &cfqq->ref);
1381 }
df5fe3e8
JM
1382}
1383
718eee05
CZ
1384static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd, enum wl_prio_t prio,
1385 bool prio_changed)
1386{
1387 struct cfq_queue *queue;
1388 int i;
1389 bool key_valid = false;
1390 unsigned long lowest_key = 0;
1391 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1392
1393 if (prio_changed) {
1394 /*
1395 * When priorities switched, we prefer starting
1396 * from SYNC_NOIDLE (first choice), or just SYNC
1397 * over ASYNC
1398 */
1399 if (service_tree_for(prio, cur_best, cfqd)->count)
1400 return cur_best;
1401 cur_best = SYNC_WORKLOAD;
1402 if (service_tree_for(prio, cur_best, cfqd)->count)
1403 return cur_best;
1404
1405 return ASYNC_WORKLOAD;
1406 }
1407
1408 for (i = 0; i < 3; ++i) {
1409 /* otherwise, select the one with lowest rb_key */
1410 queue = cfq_rb_first(service_tree_for(prio, i, cfqd));
1411 if (queue &&
1412 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1413 lowest_key = queue->rb_key;
1414 cur_best = i;
1415 key_valid = true;
1416 }
1417 }
1418
1419 return cur_best;
1420}
1421
1422static void choose_service_tree(struct cfq_data *cfqd)
1423{
1424 enum wl_prio_t previous_prio = cfqd->serving_prio;
1425 bool prio_changed;
1426 unsigned slice;
1427 unsigned count;
1428
1429 /* Choose next priority. RT > BE > IDLE */
1430 if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd))
1431 cfqd->serving_prio = RT_WORKLOAD;
1432 else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd))
1433 cfqd->serving_prio = BE_WORKLOAD;
1434 else {
1435 cfqd->serving_prio = IDLE_WORKLOAD;
1436 cfqd->workload_expires = jiffies + 1;
1437 return;
1438 }
1439
1440 /*
1441 * For RT and BE, we have to choose also the type
1442 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1443 * expiration time
1444 */
1445 prio_changed = (cfqd->serving_prio != previous_prio);
1446 count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
1447 ->count;
1448
1449 /*
1450 * If priority didn't change, check workload expiration,
1451 * and that we still have other queues ready
1452 */
1453 if (!prio_changed && count &&
1454 !time_after(jiffies, cfqd->workload_expires))
1455 return;
1456
1457 /* otherwise select new workload type */
1458 cfqd->serving_type =
1459 cfq_choose_wl(cfqd, cfqd->serving_prio, prio_changed);
1460 count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
1461 ->count;
1462
1463 /*
1464 * the workload slice is computed as a fraction of target latency
1465 * proportional to the number of queues in that workload, over
1466 * all the queues in the same priority class
1467 */
1468 slice = cfq_target_latency * count /
1469 max_t(unsigned, cfqd->busy_queues_avg[cfqd->serving_prio],
1470 cfq_busy_queues_wl(cfqd->serving_prio, cfqd));
1471
1472 if (cfqd->serving_type == ASYNC_WORKLOAD)
1473 /* async workload slice is scaled down according to
1474 * the sync/async slice ratio. */
1475 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
1476 else
1477 /* sync workload slice is at least 2 * cfq_slice_idle */
1478 slice = max(slice, 2 * cfqd->cfq_slice_idle);
1479
1480 slice = max_t(unsigned, slice, CFQ_MIN_TT);
1481 cfqd->workload_expires = jiffies + slice;
8e550632 1482 cfqd->noidle_tree_requires_idle = false;
718eee05
CZ
1483}
1484
22e2c507 1485/*
498d3aa2
JA
1486 * Select a queue for service. If we have a current active queue,
1487 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 1488 */
1b5ed5e1 1489static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 1490{
a36e71f9 1491 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 1492
22e2c507
JA
1493 cfqq = cfqd->active_queue;
1494 if (!cfqq)
1495 goto new_queue;
1da177e4 1496
22e2c507 1497 /*
6d048f53 1498 * The active queue has run out of time, expire it and select new.
22e2c507 1499 */
b029195d 1500 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
3b18152c 1501 goto expire;
1da177e4 1502
22e2c507 1503 /*
6d048f53
JA
1504 * The active queue has requests and isn't expired, allow it to
1505 * dispatch.
22e2c507 1506 */
dd67d051 1507 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 1508 goto keep_queue;
6d048f53 1509
a36e71f9
JA
1510 /*
1511 * If another queue has a request waiting within our mean seek
1512 * distance, let it run. The expire code will check for close
1513 * cooperators and put the close queue at the front of the service
df5fe3e8 1514 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 1515 */
b3b6d040 1516 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
1517 if (new_cfqq) {
1518 if (!cfqq->new_cfqq)
1519 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 1520 goto expire;
df5fe3e8 1521 }
a36e71f9 1522
6d048f53
JA
1523 /*
1524 * No requests pending. If the active queue still has requests in
1525 * flight or is idling for a new request, allow either of these
1526 * conditions to happen (or time out) before selecting a new queue.
1527 */
cc197479 1528 if (timer_pending(&cfqd->idle_slice_timer) ||
a6d44e98 1529 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
caaa5f9f
JA
1530 cfqq = NULL;
1531 goto keep_queue;
22e2c507
JA
1532 }
1533
3b18152c 1534expire:
6084cdda 1535 cfq_slice_expired(cfqd, 0);
3b18152c 1536new_queue:
718eee05
CZ
1537 /*
1538 * Current queue expired. Check if we have to switch to a new
1539 * service tree
1540 */
1541 if (!new_cfqq)
1542 choose_service_tree(cfqd);
1543
a36e71f9 1544 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 1545keep_queue:
3b18152c 1546 return cfqq;
22e2c507
JA
1547}
1548
febffd61 1549static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
1550{
1551 int dispatched = 0;
1552
1553 while (cfqq->next_rq) {
1554 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1555 dispatched++;
1556 }
1557
1558 BUG_ON(!list_empty(&cfqq->fifo));
1559 return dispatched;
1560}
1561
498d3aa2
JA
1562/*
1563 * Drain our current requests. Used for barriers and when switching
1564 * io schedulers on-the-fly.
1565 */
d9e7620e 1566static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 1567{
0871714e 1568 struct cfq_queue *cfqq;
d9e7620e 1569 int dispatched = 0;
718eee05 1570 int i, j;
c0324a02 1571 for (i = 0; i < 2; ++i)
718eee05
CZ
1572 for (j = 0; j < 3; ++j)
1573 while ((cfqq = cfq_rb_first(&cfqd->service_trees[i][j]))
1574 != NULL)
1575 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 1576
c0324a02 1577 while ((cfqq = cfq_rb_first(&cfqd->service_tree_idle)) != NULL)
d9e7620e 1578 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 1579
6084cdda 1580 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
1581
1582 BUG_ON(cfqd->busy_queues);
1583
6923715a 1584 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
1585 return dispatched;
1586}
1587
0b182d61 1588static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 1589{
2f5cb738 1590 unsigned int max_dispatch;
22e2c507 1591
5ad531db
JA
1592 /*
1593 * Drain async requests before we start sync IO
1594 */
a6d44e98 1595 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
0b182d61 1596 return false;
5ad531db 1597
2f5cb738
JA
1598 /*
1599 * If this is an async queue and we have sync IO in flight, let it wait
1600 */
1601 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
0b182d61 1602 return false;
2f5cb738
JA
1603
1604 max_dispatch = cfqd->cfq_quantum;
1605 if (cfq_class_idle(cfqq))
1606 max_dispatch = 1;
b4878f24 1607
2f5cb738
JA
1608 /*
1609 * Does this cfqq already have too much IO in flight?
1610 */
1611 if (cfqq->dispatched >= max_dispatch) {
1612 /*
1613 * idle queue must always only have a single IO in flight
1614 */
3ed9a296 1615 if (cfq_class_idle(cfqq))
0b182d61 1616 return false;
3ed9a296 1617
2f5cb738
JA
1618 /*
1619 * We have other queues, don't allow more IO from this one
1620 */
1621 if (cfqd->busy_queues > 1)
0b182d61 1622 return false;
9ede209e 1623
365722bb 1624 /*
8e296755 1625 * Sole queue user, allow bigger slice
365722bb 1626 */
8e296755
JA
1627 max_dispatch *= 4;
1628 }
1629
1630 /*
1631 * Async queues must wait a bit before being allowed dispatch.
1632 * We also ramp up the dispatch depth gradually for async IO,
1633 * based on the last sync IO we serviced
1634 */
963b72fc 1635 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
8e296755
JA
1636 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1637 unsigned int depth;
365722bb 1638
61f0c1dc 1639 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
1640 if (!depth && !cfqq->dispatched)
1641 depth = 1;
8e296755
JA
1642 if (depth < max_dispatch)
1643 max_dispatch = depth;
2f5cb738 1644 }
3ed9a296 1645
0b182d61
JA
1646 /*
1647 * If we're below the current max, allow a dispatch
1648 */
1649 return cfqq->dispatched < max_dispatch;
1650}
1651
1652/*
1653 * Dispatch a request from cfqq, moving them to the request queue
1654 * dispatch list.
1655 */
1656static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1657{
1658 struct request *rq;
1659
1660 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1661
1662 if (!cfq_may_dispatch(cfqd, cfqq))
1663 return false;
1664
1665 /*
1666 * follow expired path, else get first next available
1667 */
1668 rq = cfq_check_fifo(cfqq);
1669 if (!rq)
1670 rq = cfqq->next_rq;
1671
1672 /*
1673 * insert request into driver dispatch list
1674 */
1675 cfq_dispatch_insert(cfqd->queue, rq);
1676
1677 if (!cfqd->active_cic) {
1678 struct cfq_io_context *cic = RQ_CIC(rq);
1679
1680 atomic_long_inc(&cic->ioc->refcount);
1681 cfqd->active_cic = cic;
1682 }
1683
1684 return true;
1685}
1686
1687/*
1688 * Find the cfqq that we need to service and move a request from that to the
1689 * dispatch list
1690 */
1691static int cfq_dispatch_requests(struct request_queue *q, int force)
1692{
1693 struct cfq_data *cfqd = q->elevator->elevator_data;
1694 struct cfq_queue *cfqq;
1695
1696 if (!cfqd->busy_queues)
1697 return 0;
1698
1699 if (unlikely(force))
1700 return cfq_forced_dispatch(cfqd);
1701
1702 cfqq = cfq_select_queue(cfqd);
1703 if (!cfqq)
8e296755
JA
1704 return 0;
1705
2f5cb738 1706 /*
0b182d61 1707 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 1708 */
0b182d61
JA
1709 if (!cfq_dispatch_request(cfqd, cfqq))
1710 return 0;
1711
2f5cb738 1712 cfqq->slice_dispatch++;
b029195d 1713 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 1714
2f5cb738
JA
1715 /*
1716 * expire an async queue immediately if it has used up its slice. idle
1717 * queue always expire after 1 dispatch round.
1718 */
1719 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1720 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1721 cfq_class_idle(cfqq))) {
1722 cfqq->slice_end = jiffies + 1;
1723 cfq_slice_expired(cfqd, 0);
1da177e4
LT
1724 }
1725
b217a903 1726 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 1727 return 1;
1da177e4
LT
1728}
1729
1da177e4 1730/*
5e705374
JA
1731 * task holds one reference to the queue, dropped when task exits. each rq
1732 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4
LT
1733 *
1734 * queue lock must be held here.
1735 */
1736static void cfq_put_queue(struct cfq_queue *cfqq)
1737{
22e2c507
JA
1738 struct cfq_data *cfqd = cfqq->cfqd;
1739
1740 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
1741
1742 if (!atomic_dec_and_test(&cfqq->ref))
1743 return;
1744
7b679138 1745 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 1746 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 1747 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3b18152c 1748 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 1749
28f95cbc 1750 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 1751 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 1752 cfq_schedule_dispatch(cfqd);
28f95cbc 1753 }
22e2c507 1754
1da177e4
LT
1755 kmem_cache_free(cfq_pool, cfqq);
1756}
1757
d6de8be7
JA
1758/*
1759 * Must always be called with the rcu_read_lock() held
1760 */
07416d29
JA
1761static void
1762__call_for_each_cic(struct io_context *ioc,
1763 void (*func)(struct io_context *, struct cfq_io_context *))
1764{
1765 struct cfq_io_context *cic;
1766 struct hlist_node *n;
1767
1768 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1769 func(ioc, cic);
1770}
1771
4ac845a2 1772/*
34e6bbf2 1773 * Call func for each cic attached to this ioc.
4ac845a2 1774 */
34e6bbf2 1775static void
4ac845a2
JA
1776call_for_each_cic(struct io_context *ioc,
1777 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 1778{
4ac845a2 1779 rcu_read_lock();
07416d29 1780 __call_for_each_cic(ioc, func);
4ac845a2 1781 rcu_read_unlock();
34e6bbf2
FC
1782}
1783
1784static void cfq_cic_free_rcu(struct rcu_head *head)
1785{
1786 struct cfq_io_context *cic;
1787
1788 cic = container_of(head, struct cfq_io_context, rcu_head);
1789
1790 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 1791 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 1792
9a11b4ed
JA
1793 if (ioc_gone) {
1794 /*
1795 * CFQ scheduler is exiting, grab exit lock and check
1796 * the pending io context count. If it hits zero,
1797 * complete ioc_gone and set it back to NULL
1798 */
1799 spin_lock(&ioc_gone_lock);
245b2e70 1800 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
1801 complete(ioc_gone);
1802 ioc_gone = NULL;
1803 }
1804 spin_unlock(&ioc_gone_lock);
1805 }
34e6bbf2 1806}
4ac845a2 1807
34e6bbf2
FC
1808static void cfq_cic_free(struct cfq_io_context *cic)
1809{
1810 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
1811}
1812
1813static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1814{
1815 unsigned long flags;
1816
1817 BUG_ON(!cic->dead_key);
1818
1819 spin_lock_irqsave(&ioc->lock, flags);
1820 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 1821 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
1822 spin_unlock_irqrestore(&ioc->lock, flags);
1823
34e6bbf2 1824 cfq_cic_free(cic);
4ac845a2
JA
1825}
1826
d6de8be7
JA
1827/*
1828 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1829 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1830 * and ->trim() which is called with the task lock held
1831 */
4ac845a2
JA
1832static void cfq_free_io_context(struct io_context *ioc)
1833{
4ac845a2 1834 /*
34e6bbf2
FC
1835 * ioc->refcount is zero here, or we are called from elv_unregister(),
1836 * so no more cic's are allowed to be linked into this ioc. So it
1837 * should be ok to iterate over the known list, we will see all cic's
1838 * since no new ones are added.
4ac845a2 1839 */
07416d29 1840 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
1841}
1842
89850f7e 1843static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1844{
df5fe3e8
JM
1845 struct cfq_queue *__cfqq, *next;
1846
28f95cbc 1847 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 1848 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 1849 cfq_schedule_dispatch(cfqd);
28f95cbc 1850 }
22e2c507 1851
df5fe3e8
JM
1852 /*
1853 * If this queue was scheduled to merge with another queue, be
1854 * sure to drop the reference taken on that queue (and others in
1855 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
1856 */
1857 __cfqq = cfqq->new_cfqq;
1858 while (__cfqq) {
1859 if (__cfqq == cfqq) {
1860 WARN(1, "cfqq->new_cfqq loop detected\n");
1861 break;
1862 }
1863 next = __cfqq->new_cfqq;
1864 cfq_put_queue(__cfqq);
1865 __cfqq = next;
1866 }
1867
89850f7e
JA
1868 cfq_put_queue(cfqq);
1869}
22e2c507 1870
89850f7e
JA
1871static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1872 struct cfq_io_context *cic)
1873{
4faa3c81
FC
1874 struct io_context *ioc = cic->ioc;
1875
fc46379d 1876 list_del_init(&cic->queue_list);
4ac845a2
JA
1877
1878 /*
1879 * Make sure key == NULL is seen for dead queues
1880 */
fc46379d 1881 smp_wmb();
4ac845a2 1882 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
1883 cic->key = NULL;
1884
4faa3c81
FC
1885 if (ioc->ioc_data == cic)
1886 rcu_assign_pointer(ioc->ioc_data, NULL);
1887
ff6657c6
JA
1888 if (cic->cfqq[BLK_RW_ASYNC]) {
1889 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1890 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
1891 }
1892
ff6657c6
JA
1893 if (cic->cfqq[BLK_RW_SYNC]) {
1894 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1895 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 1896 }
89850f7e
JA
1897}
1898
4ac845a2
JA
1899static void cfq_exit_single_io_context(struct io_context *ioc,
1900 struct cfq_io_context *cic)
89850f7e
JA
1901{
1902 struct cfq_data *cfqd = cic->key;
1903
89850f7e 1904 if (cfqd) {
165125e1 1905 struct request_queue *q = cfqd->queue;
4ac845a2 1906 unsigned long flags;
89850f7e 1907
4ac845a2 1908 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
1909
1910 /*
1911 * Ensure we get a fresh copy of the ->key to prevent
1912 * race between exiting task and queue
1913 */
1914 smp_read_barrier_depends();
1915 if (cic->key)
1916 __cfq_exit_single_io_context(cfqd, cic);
1917
4ac845a2 1918 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 1919 }
1da177e4
LT
1920}
1921
498d3aa2
JA
1922/*
1923 * The process that ioc belongs to has exited, we need to clean up
1924 * and put the internal structures we have that belongs to that process.
1925 */
e2d74ac0 1926static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 1927{
4ac845a2 1928 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
1929}
1930
22e2c507 1931static struct cfq_io_context *
8267e268 1932cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 1933{
b5deef90 1934 struct cfq_io_context *cic;
1da177e4 1935
94f6030c
CL
1936 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1937 cfqd->queue->node);
1da177e4 1938 if (cic) {
22e2c507 1939 cic->last_end_request = jiffies;
553698f9 1940 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 1941 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
1942 cic->dtor = cfq_free_io_context;
1943 cic->exit = cfq_exit_io_context;
245b2e70 1944 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
1945 }
1946
1947 return cic;
1948}
1949
fd0928df 1950static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
1951{
1952 struct task_struct *tsk = current;
1953 int ioprio_class;
1954
3b18152c 1955 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
1956 return;
1957
fd0928df 1958 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 1959 switch (ioprio_class) {
fe094d98
JA
1960 default:
1961 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1962 case IOPRIO_CLASS_NONE:
1963 /*
6d63c275 1964 * no prio set, inherit CPU scheduling settings
fe094d98
JA
1965 */
1966 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 1967 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
1968 break;
1969 case IOPRIO_CLASS_RT:
1970 cfqq->ioprio = task_ioprio(ioc);
1971 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1972 break;
1973 case IOPRIO_CLASS_BE:
1974 cfqq->ioprio = task_ioprio(ioc);
1975 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1976 break;
1977 case IOPRIO_CLASS_IDLE:
1978 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1979 cfqq->ioprio = 7;
1980 cfq_clear_cfqq_idle_window(cfqq);
1981 break;
22e2c507
JA
1982 }
1983
1984 /*
1985 * keep track of original prio settings in case we have to temporarily
1986 * elevate the priority of this queue
1987 */
1988 cfqq->org_ioprio = cfqq->ioprio;
1989 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 1990 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
1991}
1992
febffd61 1993static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 1994{
478a82b0
AV
1995 struct cfq_data *cfqd = cic->key;
1996 struct cfq_queue *cfqq;
c1b707d2 1997 unsigned long flags;
35e6077c 1998
caaa5f9f
JA
1999 if (unlikely(!cfqd))
2000 return;
2001
c1b707d2 2002 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2003
ff6657c6 2004 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2005 if (cfqq) {
2006 struct cfq_queue *new_cfqq;
ff6657c6
JA
2007 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2008 GFP_ATOMIC);
caaa5f9f 2009 if (new_cfqq) {
ff6657c6 2010 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2011 cfq_put_queue(cfqq);
2012 }
22e2c507 2013 }
caaa5f9f 2014
ff6657c6 2015 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2016 if (cfqq)
2017 cfq_mark_cfqq_prio_changed(cfqq);
2018
c1b707d2 2019 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2020}
2021
fc46379d 2022static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2023{
4ac845a2 2024 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2025 ioc->ioprio_changed = 0;
22e2c507
JA
2026}
2027
d5036d77 2028static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2029 pid_t pid, bool is_sync)
d5036d77
JA
2030{
2031 RB_CLEAR_NODE(&cfqq->rb_node);
2032 RB_CLEAR_NODE(&cfqq->p_node);
2033 INIT_LIST_HEAD(&cfqq->fifo);
2034
2035 atomic_set(&cfqq->ref, 0);
2036 cfqq->cfqd = cfqd;
2037
2038 cfq_mark_cfqq_prio_changed(cfqq);
2039
2040 if (is_sync) {
2041 if (!cfq_class_idle(cfqq))
2042 cfq_mark_cfqq_idle_window(cfqq);
2043 cfq_mark_cfqq_sync(cfqq);
2044 }
2045 cfqq->pid = pid;
2046}
2047
22e2c507 2048static struct cfq_queue *
a6151c3a 2049cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2050 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2051{
22e2c507 2052 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2053 struct cfq_io_context *cic;
22e2c507
JA
2054
2055retry:
4ac845a2 2056 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2057 /* cic always exists here */
2058 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2059
6118b70b
JA
2060 /*
2061 * Always try a new alloc if we fell back to the OOM cfqq
2062 * originally, since it should just be a temporary situation.
2063 */
2064 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2065 cfqq = NULL;
22e2c507
JA
2066 if (new_cfqq) {
2067 cfqq = new_cfqq;
2068 new_cfqq = NULL;
2069 } else if (gfp_mask & __GFP_WAIT) {
2070 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2071 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2072 gfp_mask | __GFP_ZERO,
94f6030c 2073 cfqd->queue->node);
22e2c507 2074 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2075 if (new_cfqq)
2076 goto retry;
22e2c507 2077 } else {
94f6030c
CL
2078 cfqq = kmem_cache_alloc_node(cfq_pool,
2079 gfp_mask | __GFP_ZERO,
2080 cfqd->queue->node);
22e2c507
JA
2081 }
2082
6118b70b
JA
2083 if (cfqq) {
2084 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2085 cfq_init_prio_data(cfqq, ioc);
2086 cfq_log_cfqq(cfqd, cfqq, "alloced");
2087 } else
2088 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2089 }
2090
2091 if (new_cfqq)
2092 kmem_cache_free(cfq_pool, new_cfqq);
2093
22e2c507
JA
2094 return cfqq;
2095}
2096
c2dea2d1
VT
2097static struct cfq_queue **
2098cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2099{
fe094d98 2100 switch (ioprio_class) {
c2dea2d1
VT
2101 case IOPRIO_CLASS_RT:
2102 return &cfqd->async_cfqq[0][ioprio];
2103 case IOPRIO_CLASS_BE:
2104 return &cfqd->async_cfqq[1][ioprio];
2105 case IOPRIO_CLASS_IDLE:
2106 return &cfqd->async_idle_cfqq;
2107 default:
2108 BUG();
2109 }
2110}
2111
15c31be4 2112static struct cfq_queue *
a6151c3a 2113cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2114 gfp_t gfp_mask)
2115{
fd0928df
JA
2116 const int ioprio = task_ioprio(ioc);
2117 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2118 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2119 struct cfq_queue *cfqq = NULL;
2120
c2dea2d1
VT
2121 if (!is_sync) {
2122 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2123 cfqq = *async_cfqq;
2124 }
2125
6118b70b 2126 if (!cfqq)
fd0928df 2127 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2128
2129 /*
2130 * pin the queue now that it's allocated, scheduler exit will prune it
2131 */
c2dea2d1 2132 if (!is_sync && !(*async_cfqq)) {
15c31be4 2133 atomic_inc(&cfqq->ref);
c2dea2d1 2134 *async_cfqq = cfqq;
15c31be4
JA
2135 }
2136
2137 atomic_inc(&cfqq->ref);
2138 return cfqq;
2139}
2140
498d3aa2
JA
2141/*
2142 * We drop cfq io contexts lazily, so we may find a dead one.
2143 */
dbecf3ab 2144static void
4ac845a2
JA
2145cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2146 struct cfq_io_context *cic)
dbecf3ab 2147{
4ac845a2
JA
2148 unsigned long flags;
2149
fc46379d 2150 WARN_ON(!list_empty(&cic->queue_list));
597bc485 2151
4ac845a2
JA
2152 spin_lock_irqsave(&ioc->lock, flags);
2153
4faa3c81 2154 BUG_ON(ioc->ioc_data == cic);
597bc485 2155
4ac845a2 2156 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 2157 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2158 spin_unlock_irqrestore(&ioc->lock, flags);
2159
2160 cfq_cic_free(cic);
dbecf3ab
OH
2161}
2162
e2d74ac0 2163static struct cfq_io_context *
4ac845a2 2164cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 2165{
e2d74ac0 2166 struct cfq_io_context *cic;
d6de8be7 2167 unsigned long flags;
4ac845a2 2168 void *k;
e2d74ac0 2169
91fac317
VT
2170 if (unlikely(!ioc))
2171 return NULL;
2172
d6de8be7
JA
2173 rcu_read_lock();
2174
597bc485
JA
2175 /*
2176 * we maintain a last-hit cache, to avoid browsing over the tree
2177 */
4ac845a2 2178 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
2179 if (cic && cic->key == cfqd) {
2180 rcu_read_unlock();
597bc485 2181 return cic;
d6de8be7 2182 }
597bc485 2183
4ac845a2 2184 do {
4ac845a2
JA
2185 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2186 rcu_read_unlock();
2187 if (!cic)
2188 break;
be3b0753
OH
2189 /* ->key must be copied to avoid race with cfq_exit_queue() */
2190 k = cic->key;
2191 if (unlikely(!k)) {
4ac845a2 2192 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 2193 rcu_read_lock();
4ac845a2 2194 continue;
dbecf3ab 2195 }
e2d74ac0 2196
d6de8be7 2197 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 2198 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 2199 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
2200 break;
2201 } while (1);
e2d74ac0 2202
4ac845a2 2203 return cic;
e2d74ac0
JA
2204}
2205
4ac845a2
JA
2206/*
2207 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2208 * the process specific cfq io context when entered from the block layer.
2209 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2210 */
febffd61
JA
2211static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2212 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 2213{
0261d688 2214 unsigned long flags;
4ac845a2 2215 int ret;
e2d74ac0 2216
4ac845a2
JA
2217 ret = radix_tree_preload(gfp_mask);
2218 if (!ret) {
2219 cic->ioc = ioc;
2220 cic->key = cfqd;
e2d74ac0 2221
4ac845a2
JA
2222 spin_lock_irqsave(&ioc->lock, flags);
2223 ret = radix_tree_insert(&ioc->radix_root,
2224 (unsigned long) cfqd, cic);
ffc4e759
JA
2225 if (!ret)
2226 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 2227 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 2228
4ac845a2
JA
2229 radix_tree_preload_end();
2230
2231 if (!ret) {
2232 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2233 list_add(&cic->queue_list, &cfqd->cic_list);
2234 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2235 }
e2d74ac0
JA
2236 }
2237
4ac845a2
JA
2238 if (ret)
2239 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 2240
4ac845a2 2241 return ret;
e2d74ac0
JA
2242}
2243
1da177e4
LT
2244/*
2245 * Setup general io context and cfq io context. There can be several cfq
2246 * io contexts per general io context, if this process is doing io to more
e2d74ac0 2247 * than one device managed by cfq.
1da177e4
LT
2248 */
2249static struct cfq_io_context *
e2d74ac0 2250cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2251{
22e2c507 2252 struct io_context *ioc = NULL;
1da177e4 2253 struct cfq_io_context *cic;
1da177e4 2254
22e2c507 2255 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 2256
b5deef90 2257 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
2258 if (!ioc)
2259 return NULL;
2260
4ac845a2 2261 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
2262 if (cic)
2263 goto out;
1da177e4 2264
e2d74ac0
JA
2265 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2266 if (cic == NULL)
2267 goto err;
1da177e4 2268
4ac845a2
JA
2269 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2270 goto err_free;
2271
1da177e4 2272out:
fc46379d
JA
2273 smp_read_barrier_depends();
2274 if (unlikely(ioc->ioprio_changed))
2275 cfq_ioc_set_ioprio(ioc);
2276
1da177e4 2277 return cic;
4ac845a2
JA
2278err_free:
2279 cfq_cic_free(cic);
1da177e4
LT
2280err:
2281 put_io_context(ioc);
2282 return NULL;
2283}
2284
22e2c507
JA
2285static void
2286cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 2287{
aaf1228d
JA
2288 unsigned long elapsed = jiffies - cic->last_end_request;
2289 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 2290
22e2c507
JA
2291 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2292 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2293 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2294}
1da177e4 2295
206dc69b 2296static void
b2c18e1e 2297cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 2298 struct request *rq)
206dc69b
JA
2299{
2300 sector_t sdist;
2301 u64 total;
2302
b2c18e1e 2303 if (!cfqq->last_request_pos)
4d00aa47 2304 sdist = 0;
b2c18e1e
JM
2305 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2306 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
206dc69b 2307 else
b2c18e1e 2308 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
206dc69b
JA
2309
2310 /*
2311 * Don't allow the seek distance to get too large from the
2312 * odd fragment, pagein, etc
2313 */
b2c18e1e
JM
2314 if (cfqq->seek_samples <= 60) /* second&third seek */
2315 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
206dc69b 2316 else
b2c18e1e 2317 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
206dc69b 2318
b2c18e1e
JM
2319 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2320 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2321 total = cfqq->seek_total + (cfqq->seek_samples/2);
2322 do_div(total, cfqq->seek_samples);
2323 cfqq->seek_mean = (sector_t)total;
e6c5bc73
JM
2324
2325 /*
2326 * If this cfqq is shared between multiple processes, check to
2327 * make sure that those processes are still issuing I/Os within
2328 * the mean seek distance. If not, it may be time to break the
2329 * queues apart again.
2330 */
2331 if (cfq_cfqq_coop(cfqq)) {
2332 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2333 cfqq->seeky_start = jiffies;
2334 else if (!CFQQ_SEEKY(cfqq))
2335 cfqq->seeky_start = 0;
2336 }
206dc69b 2337}
1da177e4 2338
22e2c507
JA
2339/*
2340 * Disable idle window if the process thinks too long or seeks so much that
2341 * it doesn't matter
2342 */
2343static void
2344cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2345 struct cfq_io_context *cic)
2346{
7b679138 2347 int old_idle, enable_idle;
1be92f2f 2348
0871714e
JA
2349 /*
2350 * Don't idle for async or idle io prio class
2351 */
2352 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
2353 return;
2354
c265a7f4 2355 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 2356
76280aff
CZ
2357 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
2358 cfq_mark_cfqq_deep(cfqq);
2359
66dac98e 2360 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
76280aff
CZ
2361 (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
2362 && CFQQ_SEEKY(cfqq)))
22e2c507
JA
2363 enable_idle = 0;
2364 else if (sample_valid(cic->ttime_samples)) {
718eee05 2365 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
2366 enable_idle = 0;
2367 else
2368 enable_idle = 1;
1da177e4
LT
2369 }
2370
7b679138
JA
2371 if (old_idle != enable_idle) {
2372 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2373 if (enable_idle)
2374 cfq_mark_cfqq_idle_window(cfqq);
2375 else
2376 cfq_clear_cfqq_idle_window(cfqq);
2377 }
22e2c507 2378}
1da177e4 2379
22e2c507
JA
2380/*
2381 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2382 * no or if we aren't sure, a 1 will cause a preempt.
2383 */
a6151c3a 2384static bool
22e2c507 2385cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 2386 struct request *rq)
22e2c507 2387{
6d048f53 2388 struct cfq_queue *cfqq;
22e2c507 2389
6d048f53
JA
2390 cfqq = cfqd->active_queue;
2391 if (!cfqq)
a6151c3a 2392 return false;
22e2c507 2393
6d048f53 2394 if (cfq_slice_used(cfqq))
a6151c3a 2395 return true;
6d048f53
JA
2396
2397 if (cfq_class_idle(new_cfqq))
a6151c3a 2398 return false;
22e2c507
JA
2399
2400 if (cfq_class_idle(cfqq))
a6151c3a 2401 return true;
1e3335de 2402
e4a22919
CZ
2403 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
2404 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
2405 new_cfqq->service_tree->count == 1)
718eee05
CZ
2406 return true;
2407
374f84ac
JA
2408 /*
2409 * if the new request is sync, but the currently running queue is
2410 * not, let the sync request have priority.
2411 */
5e705374 2412 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 2413 return true;
1e3335de 2414
374f84ac
JA
2415 /*
2416 * So both queues are sync. Let the new request get disk time if
2417 * it's a metadata request and the current queue is doing regular IO.
2418 */
2419 if (rq_is_meta(rq) && !cfqq->meta_pending)
e6ec4fe2 2420 return true;
22e2c507 2421
3a9a3f6c
DS
2422 /*
2423 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2424 */
2425 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 2426 return true;
3a9a3f6c 2427
1e3335de 2428 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 2429 return false;
1e3335de
JA
2430
2431 /*
2432 * if this request is as-good as one we would expect from the
2433 * current cfqq, let it preempt
2434 */
e00ef799 2435 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 2436 return true;
1e3335de 2437
a6151c3a 2438 return false;
22e2c507
JA
2439}
2440
2441/*
2442 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2443 * let it have half of its nominal slice.
2444 */
2445static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2446{
7b679138 2447 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 2448 cfq_slice_expired(cfqd, 1);
22e2c507 2449
bf572256
JA
2450 /*
2451 * Put the new queue at the front of the of the current list,
2452 * so we know that it will be selected next.
2453 */
2454 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
2455
2456 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 2457
44f7c160
JA
2458 cfqq->slice_end = 0;
2459 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
2460}
2461
22e2c507 2462/*
5e705374 2463 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
2464 * something we should do about it
2465 */
2466static void
5e705374
JA
2467cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2468 struct request *rq)
22e2c507 2469{
5e705374 2470 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 2471
45333d5a 2472 cfqd->rq_queued++;
374f84ac
JA
2473 if (rq_is_meta(rq))
2474 cfqq->meta_pending++;
2475
9c2c38a1 2476 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 2477 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
2478 cfq_update_idle_window(cfqd, cfqq, cic);
2479
b2c18e1e 2480 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
2481
2482 if (cfqq == cfqd->active_queue) {
2483 /*
b029195d
JA
2484 * Remember that we saw a request from this process, but
2485 * don't start queuing just yet. Otherwise we risk seeing lots
2486 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
2487 * and merging. If the request is already larger than a single
2488 * page, let it rip immediately. For that case we assume that
2d870722
JA
2489 * merging is already done. Ditto for a busy system that
2490 * has other work pending, don't risk delaying until the
2491 * idle timer unplug to continue working.
22e2c507 2492 */
d6ceb25e 2493 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
2494 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2495 cfqd->busy_queues > 1) {
d6ceb25e 2496 del_timer(&cfqd->idle_slice_timer);
a7f55792 2497 __blk_run_queue(cfqd->queue);
d6ceb25e 2498 }
b029195d 2499 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 2500 }
5e705374 2501 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
2502 /*
2503 * not the active queue - expire current slice if it is
2504 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
2505 * has some old slice time left and is of higher priority or
2506 * this new queue is RT and the current one is BE
22e2c507
JA
2507 */
2508 cfq_preempt_queue(cfqd, cfqq);
a7f55792 2509 __blk_run_queue(cfqd->queue);
22e2c507 2510 }
1da177e4
LT
2511}
2512
165125e1 2513static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 2514{
b4878f24 2515 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 2516 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 2517
7b679138 2518 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 2519 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 2520
30996f40 2521 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 2522 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 2523 cfq_add_rq_rb(rq);
22e2c507 2524
5e705374 2525 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
2526}
2527
45333d5a
AC
2528/*
2529 * Update hw_tag based on peak queue depth over 50 samples under
2530 * sufficient load.
2531 */
2532static void cfq_update_hw_tag(struct cfq_data *cfqd)
2533{
1a1238a7
SL
2534 struct cfq_queue *cfqq = cfqd->active_queue;
2535
e459dd08
CZ
2536 if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
2537 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
2538
2539 if (cfqd->hw_tag == 1)
2540 return;
45333d5a
AC
2541
2542 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
5ad531db 2543 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
2544 return;
2545
1a1238a7
SL
2546 /*
2547 * If active queue hasn't enough requests and can idle, cfq might not
2548 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
2549 * case
2550 */
2551 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
2552 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
2553 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
2554 return;
2555
45333d5a
AC
2556 if (cfqd->hw_tag_samples++ < 50)
2557 return;
2558
e459dd08 2559 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
2560 cfqd->hw_tag = 1;
2561 else
2562 cfqd->hw_tag = 0;
45333d5a
AC
2563}
2564
165125e1 2565static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 2566{
5e705374 2567 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 2568 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 2569 const int sync = rq_is_sync(rq);
b4878f24 2570 unsigned long now;
1da177e4 2571
b4878f24 2572 now = jiffies;
7b679138 2573 cfq_log_cfqq(cfqd, cfqq, "complete");
1da177e4 2574
45333d5a
AC
2575 cfq_update_hw_tag(cfqd);
2576
5ad531db 2577 WARN_ON(!cfqd->rq_in_driver[sync]);
6d048f53 2578 WARN_ON(!cfqq->dispatched);
5ad531db 2579 cfqd->rq_in_driver[sync]--;
6d048f53 2580 cfqq->dispatched--;
1da177e4 2581
3ed9a296
JA
2582 if (cfq_cfqq_sync(cfqq))
2583 cfqd->sync_flight--;
2584
365722bb 2585 if (sync) {
5e705374 2586 RQ_CIC(rq)->last_end_request = now;
365722bb
VG
2587 cfqd->last_end_sync_rq = now;
2588 }
caaa5f9f
JA
2589
2590 /*
2591 * If this is the active queue, check if it needs to be expired,
2592 * or if we want to idle in case it has no pending requests.
2593 */
2594 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
2595 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2596
44f7c160
JA
2597 if (cfq_cfqq_slice_new(cfqq)) {
2598 cfq_set_prio_slice(cfqd, cfqq);
2599 cfq_clear_cfqq_slice_new(cfqq);
2600 }
a36e71f9 2601 /*
8e550632
CZ
2602 * Idling is not enabled on:
2603 * - expired queues
2604 * - idle-priority queues
2605 * - async queues
2606 * - queues with still some requests queued
2607 * - when there is a close cooperator
a36e71f9 2608 */
0871714e 2609 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 2610 cfq_slice_expired(cfqd, 1);
8e550632
CZ
2611 else if (sync && cfqq_empty &&
2612 !cfq_close_cooperator(cfqd, cfqq)) {
2613 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
2614 /*
2615 * Idling is enabled for SYNC_WORKLOAD.
2616 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
2617 * only if we processed at least one !rq_noidle request
2618 */
2619 if (cfqd->serving_type == SYNC_WORKLOAD
2620 || cfqd->noidle_tree_requires_idle)
2621 cfq_arm_slice_timer(cfqd);
2622 }
caaa5f9f 2623 }
6d048f53 2624
5ad531db 2625 if (!rq_in_driver(cfqd))
23e018a1 2626 cfq_schedule_dispatch(cfqd);
1da177e4
LT
2627}
2628
22e2c507
JA
2629/*
2630 * we temporarily boost lower priority queues if they are holding fs exclusive
2631 * resources. they are boosted to normal prio (CLASS_BE/4)
2632 */
2633static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 2634{
22e2c507
JA
2635 if (has_fs_excl()) {
2636 /*
2637 * boost idle prio on transactions that would lock out other
2638 * users of the filesystem
2639 */
2640 if (cfq_class_idle(cfqq))
2641 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2642 if (cfqq->ioprio > IOPRIO_NORM)
2643 cfqq->ioprio = IOPRIO_NORM;
2644 } else {
2645 /*
dddb7451 2646 * unboost the queue (if needed)
22e2c507 2647 */
dddb7451
CZ
2648 cfqq->ioprio_class = cfqq->org_ioprio_class;
2649 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 2650 }
22e2c507 2651}
1da177e4 2652
89850f7e 2653static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 2654{
1b379d8d 2655 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 2656 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 2657 return ELV_MQUEUE_MUST;
3b18152c 2658 }
1da177e4 2659
22e2c507 2660 return ELV_MQUEUE_MAY;
22e2c507
JA
2661}
2662
165125e1 2663static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
2664{
2665 struct cfq_data *cfqd = q->elevator->elevator_data;
2666 struct task_struct *tsk = current;
91fac317 2667 struct cfq_io_context *cic;
22e2c507
JA
2668 struct cfq_queue *cfqq;
2669
2670 /*
2671 * don't force setup of a queue from here, as a call to may_queue
2672 * does not necessarily imply that a request actually will be queued.
2673 * so just lookup a possibly existing queue, or return 'may queue'
2674 * if that fails
2675 */
4ac845a2 2676 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
2677 if (!cic)
2678 return ELV_MQUEUE_MAY;
2679
b0b78f81 2680 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 2681 if (cfqq) {
fd0928df 2682 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
2683 cfq_prio_boost(cfqq);
2684
89850f7e 2685 return __cfq_may_queue(cfqq);
22e2c507
JA
2686 }
2687
2688 return ELV_MQUEUE_MAY;
1da177e4
LT
2689}
2690
1da177e4
LT
2691/*
2692 * queue lock held here
2693 */
bb37b94c 2694static void cfq_put_request(struct request *rq)
1da177e4 2695{
5e705374 2696 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 2697
5e705374 2698 if (cfqq) {
22e2c507 2699 const int rw = rq_data_dir(rq);
1da177e4 2700
22e2c507
JA
2701 BUG_ON(!cfqq->allocated[rw]);
2702 cfqq->allocated[rw]--;
1da177e4 2703
5e705374 2704 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 2705
1da177e4 2706 rq->elevator_private = NULL;
5e705374 2707 rq->elevator_private2 = NULL;
1da177e4 2708
1da177e4
LT
2709 cfq_put_queue(cfqq);
2710 }
2711}
2712
df5fe3e8
JM
2713static struct cfq_queue *
2714cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
2715 struct cfq_queue *cfqq)
2716{
2717 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
2718 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 2719 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
2720 cfq_put_queue(cfqq);
2721 return cic_to_cfqq(cic, 1);
2722}
2723
e6c5bc73
JM
2724static int should_split_cfqq(struct cfq_queue *cfqq)
2725{
2726 if (cfqq->seeky_start &&
2727 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
2728 return 1;
2729 return 0;
2730}
2731
2732/*
2733 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
2734 * was the last process referring to said cfqq.
2735 */
2736static struct cfq_queue *
2737split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
2738{
2739 if (cfqq_process_refs(cfqq) == 1) {
2740 cfqq->seeky_start = 0;
2741 cfqq->pid = current->pid;
2742 cfq_clear_cfqq_coop(cfqq);
2743 return cfqq;
2744 }
2745
2746 cic_set_cfqq(cic, NULL, 1);
2747 cfq_put_queue(cfqq);
2748 return NULL;
2749}
1da177e4 2750/*
22e2c507 2751 * Allocate cfq data structures associated with this request.
1da177e4 2752 */
22e2c507 2753static int
165125e1 2754cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
2755{
2756 struct cfq_data *cfqd = q->elevator->elevator_data;
2757 struct cfq_io_context *cic;
2758 const int rw = rq_data_dir(rq);
a6151c3a 2759 const bool is_sync = rq_is_sync(rq);
22e2c507 2760 struct cfq_queue *cfqq;
1da177e4
LT
2761 unsigned long flags;
2762
2763 might_sleep_if(gfp_mask & __GFP_WAIT);
2764
e2d74ac0 2765 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 2766
1da177e4
LT
2767 spin_lock_irqsave(q->queue_lock, flags);
2768
22e2c507
JA
2769 if (!cic)
2770 goto queue_fail;
2771
e6c5bc73 2772new_queue:
91fac317 2773 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 2774 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 2775 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 2776 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 2777 } else {
e6c5bc73
JM
2778 /*
2779 * If the queue was seeky for too long, break it apart.
2780 */
2781 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
2782 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
2783 cfqq = split_cfqq(cic, cfqq);
2784 if (!cfqq)
2785 goto new_queue;
2786 }
2787
df5fe3e8
JM
2788 /*
2789 * Check to see if this queue is scheduled to merge with
2790 * another, closely cooperating queue. The merging of
2791 * queues happens here as it must be done in process context.
2792 * The reference on new_cfqq was taken in merge_cfqqs.
2793 */
2794 if (cfqq->new_cfqq)
2795 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 2796 }
1da177e4
LT
2797
2798 cfqq->allocated[rw]++;
22e2c507 2799 atomic_inc(&cfqq->ref);
1da177e4 2800
5e705374 2801 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 2802
5e705374
JA
2803 rq->elevator_private = cic;
2804 rq->elevator_private2 = cfqq;
2805 return 0;
1da177e4 2806
22e2c507
JA
2807queue_fail:
2808 if (cic)
2809 put_io_context(cic->ioc);
89850f7e 2810
23e018a1 2811 cfq_schedule_dispatch(cfqd);
1da177e4 2812 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 2813 cfq_log(cfqd, "set_request fail");
1da177e4
LT
2814 return 1;
2815}
2816
65f27f38 2817static void cfq_kick_queue(struct work_struct *work)
22e2c507 2818{
65f27f38 2819 struct cfq_data *cfqd =
23e018a1 2820 container_of(work, struct cfq_data, unplug_work);
165125e1 2821 struct request_queue *q = cfqd->queue;
22e2c507 2822
40bb54d1 2823 spin_lock_irq(q->queue_lock);
a7f55792 2824 __blk_run_queue(cfqd->queue);
40bb54d1 2825 spin_unlock_irq(q->queue_lock);
22e2c507
JA
2826}
2827
2828/*
2829 * Timer running if the active_queue is currently idling inside its time slice
2830 */
2831static void cfq_idle_slice_timer(unsigned long data)
2832{
2833 struct cfq_data *cfqd = (struct cfq_data *) data;
2834 struct cfq_queue *cfqq;
2835 unsigned long flags;
3c6bd2f8 2836 int timed_out = 1;
22e2c507 2837
7b679138
JA
2838 cfq_log(cfqd, "idle timer fired");
2839
22e2c507
JA
2840 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2841
fe094d98
JA
2842 cfqq = cfqd->active_queue;
2843 if (cfqq) {
3c6bd2f8
JA
2844 timed_out = 0;
2845
b029195d
JA
2846 /*
2847 * We saw a request before the queue expired, let it through
2848 */
2849 if (cfq_cfqq_must_dispatch(cfqq))
2850 goto out_kick;
2851
22e2c507
JA
2852 /*
2853 * expired
2854 */
44f7c160 2855 if (cfq_slice_used(cfqq))
22e2c507
JA
2856 goto expire;
2857
2858 /*
2859 * only expire and reinvoke request handler, if there are
2860 * other queues with pending requests
2861 */
caaa5f9f 2862 if (!cfqd->busy_queues)
22e2c507 2863 goto out_cont;
22e2c507
JA
2864
2865 /*
2866 * not expired and it has a request pending, let it dispatch
2867 */
75e50984 2868 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2869 goto out_kick;
76280aff
CZ
2870
2871 /*
2872 * Queue depth flag is reset only when the idle didn't succeed
2873 */
2874 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
2875 }
2876expire:
6084cdda 2877 cfq_slice_expired(cfqd, timed_out);
22e2c507 2878out_kick:
23e018a1 2879 cfq_schedule_dispatch(cfqd);
22e2c507
JA
2880out_cont:
2881 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2882}
2883
3b18152c
JA
2884static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2885{
2886 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 2887 cancel_work_sync(&cfqd->unplug_work);
3b18152c 2888}
22e2c507 2889
c2dea2d1
VT
2890static void cfq_put_async_queues(struct cfq_data *cfqd)
2891{
2892 int i;
2893
2894 for (i = 0; i < IOPRIO_BE_NR; i++) {
2895 if (cfqd->async_cfqq[0][i])
2896 cfq_put_queue(cfqd->async_cfqq[0][i]);
2897 if (cfqd->async_cfqq[1][i])
2898 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 2899 }
2389d1ef
ON
2900
2901 if (cfqd->async_idle_cfqq)
2902 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
2903}
2904
b374d18a 2905static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 2906{
22e2c507 2907 struct cfq_data *cfqd = e->elevator_data;
165125e1 2908 struct request_queue *q = cfqd->queue;
22e2c507 2909
3b18152c 2910 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 2911
d9ff4187 2912 spin_lock_irq(q->queue_lock);
e2d74ac0 2913
d9ff4187 2914 if (cfqd->active_queue)
6084cdda 2915 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
2916
2917 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
2918 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2919 struct cfq_io_context,
2920 queue_list);
89850f7e
JA
2921
2922 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 2923 }
e2d74ac0 2924
c2dea2d1 2925 cfq_put_async_queues(cfqd);
15c31be4 2926
d9ff4187 2927 spin_unlock_irq(q->queue_lock);
a90d742e
AV
2928
2929 cfq_shutdown_timer_wq(cfqd);
2930
a90d742e 2931 kfree(cfqd);
1da177e4
LT
2932}
2933
165125e1 2934static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
2935{
2936 struct cfq_data *cfqd;
718eee05 2937 int i, j;
1da177e4 2938
94f6030c 2939 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 2940 if (!cfqd)
bc1c1169 2941 return NULL;
1da177e4 2942
c0324a02 2943 for (i = 0; i < 2; ++i)
718eee05
CZ
2944 for (j = 0; j < 3; ++j)
2945 cfqd->service_trees[i][j] = CFQ_RB_ROOT;
c0324a02 2946 cfqd->service_tree_idle = CFQ_RB_ROOT;
26a2ac00
JA
2947
2948 /*
2949 * Not strictly needed (since RB_ROOT just clears the node and we
2950 * zeroed cfqd on alloc), but better be safe in case someone decides
2951 * to add magic to the rb code
2952 */
2953 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2954 cfqd->prio_trees[i] = RB_ROOT;
2955
6118b70b
JA
2956 /*
2957 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2958 * Grab a permanent reference to it, so that the normal code flow
2959 * will not attempt to free it.
2960 */
2961 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2962 atomic_inc(&cfqd->oom_cfqq.ref);
2963
d9ff4187 2964 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 2965
1da177e4 2966 cfqd->queue = q;
1da177e4 2967
22e2c507
JA
2968 init_timer(&cfqd->idle_slice_timer);
2969 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2970 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2971
23e018a1 2972 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 2973
1da177e4 2974 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
2975 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2976 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
2977 cfqd->cfq_back_max = cfq_back_max;
2978 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
2979 cfqd->cfq_slice[0] = cfq_slice_async;
2980 cfqd->cfq_slice[1] = cfq_slice_sync;
2981 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2982 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 2983 cfqd->cfq_latency = 1;
e459dd08 2984 cfqd->hw_tag = -1;
365722bb 2985 cfqd->last_end_sync_rq = jiffies;
bc1c1169 2986 return cfqd;
1da177e4
LT
2987}
2988
2989static void cfq_slab_kill(void)
2990{
d6de8be7
JA
2991 /*
2992 * Caller already ensured that pending RCU callbacks are completed,
2993 * so we should have no busy allocations at this point.
2994 */
1da177e4
LT
2995 if (cfq_pool)
2996 kmem_cache_destroy(cfq_pool);
2997 if (cfq_ioc_pool)
2998 kmem_cache_destroy(cfq_ioc_pool);
2999}
3000
3001static int __init cfq_slab_setup(void)
3002{
0a31bd5f 3003 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
3004 if (!cfq_pool)
3005 goto fail;
3006
34e6bbf2 3007 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
3008 if (!cfq_ioc_pool)
3009 goto fail;
3010
3011 return 0;
3012fail:
3013 cfq_slab_kill();
3014 return -ENOMEM;
3015}
3016
1da177e4
LT
3017/*
3018 * sysfs parts below -->
3019 */
1da177e4
LT
3020static ssize_t
3021cfq_var_show(unsigned int var, char *page)
3022{
3023 return sprintf(page, "%d\n", var);
3024}
3025
3026static ssize_t
3027cfq_var_store(unsigned int *var, const char *page, size_t count)
3028{
3029 char *p = (char *) page;
3030
3031 *var = simple_strtoul(p, &p, 10);
3032 return count;
3033}
3034
1da177e4 3035#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3036static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3037{ \
3d1ab40f 3038 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3039 unsigned int __data = __VAR; \
3040 if (__CONV) \
3041 __data = jiffies_to_msecs(__data); \
3042 return cfq_var_show(__data, (page)); \
3043}
3044SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
3045SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3046SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
3047SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3048SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
3049SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3050SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3051SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3052SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 3053SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
1da177e4
LT
3054#undef SHOW_FUNCTION
3055
3056#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 3057static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 3058{ \
3d1ab40f 3059 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3060 unsigned int __data; \
3061 int ret = cfq_var_store(&__data, (page), count); \
3062 if (__data < (MIN)) \
3063 __data = (MIN); \
3064 else if (__data > (MAX)) \
3065 __data = (MAX); \
3066 if (__CONV) \
3067 *(__PTR) = msecs_to_jiffies(__data); \
3068 else \
3069 *(__PTR) = __data; \
3070 return ret; \
3071}
3072STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
3073STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3074 UINT_MAX, 1);
3075STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3076 UINT_MAX, 1);
e572ec7e 3077STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
3078STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3079 UINT_MAX, 0);
22e2c507
JA
3080STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3081STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3082STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
3083STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3084 UINT_MAX, 0);
963b72fc 3085STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
1da177e4
LT
3086#undef STORE_FUNCTION
3087
e572ec7e
AV
3088#define CFQ_ATTR(name) \
3089 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3090
3091static struct elv_fs_entry cfq_attrs[] = {
3092 CFQ_ATTR(quantum),
e572ec7e
AV
3093 CFQ_ATTR(fifo_expire_sync),
3094 CFQ_ATTR(fifo_expire_async),
3095 CFQ_ATTR(back_seek_max),
3096 CFQ_ATTR(back_seek_penalty),
3097 CFQ_ATTR(slice_sync),
3098 CFQ_ATTR(slice_async),
3099 CFQ_ATTR(slice_async_rq),
3100 CFQ_ATTR(slice_idle),
963b72fc 3101 CFQ_ATTR(low_latency),
e572ec7e 3102 __ATTR_NULL
1da177e4
LT
3103};
3104
1da177e4
LT
3105static struct elevator_type iosched_cfq = {
3106 .ops = {
3107 .elevator_merge_fn = cfq_merge,
3108 .elevator_merged_fn = cfq_merged_request,
3109 .elevator_merge_req_fn = cfq_merged_requests,
da775265 3110 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 3111 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 3112 .elevator_add_req_fn = cfq_insert_request,
b4878f24 3113 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
3114 .elevator_deactivate_req_fn = cfq_deactivate_request,
3115 .elevator_queue_empty_fn = cfq_queue_empty,
3116 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
3117 .elevator_former_req_fn = elv_rb_former_request,
3118 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
3119 .elevator_set_req_fn = cfq_set_request,
3120 .elevator_put_req_fn = cfq_put_request,
3121 .elevator_may_queue_fn = cfq_may_queue,
3122 .elevator_init_fn = cfq_init_queue,
3123 .elevator_exit_fn = cfq_exit_queue,
fc46379d 3124 .trim = cfq_free_io_context,
1da177e4 3125 },
3d1ab40f 3126 .elevator_attrs = cfq_attrs,
1da177e4
LT
3127 .elevator_name = "cfq",
3128 .elevator_owner = THIS_MODULE,
3129};
3130
3131static int __init cfq_init(void)
3132{
22e2c507
JA
3133 /*
3134 * could be 0 on HZ < 1000 setups
3135 */
3136 if (!cfq_slice_async)
3137 cfq_slice_async = 1;
3138 if (!cfq_slice_idle)
3139 cfq_slice_idle = 1;
3140
1da177e4
LT
3141 if (cfq_slab_setup())
3142 return -ENOMEM;
3143
2fdd82bd 3144 elv_register(&iosched_cfq);
1da177e4 3145
2fdd82bd 3146 return 0;
1da177e4
LT
3147}
3148
3149static void __exit cfq_exit(void)
3150{
6e9a4738 3151 DECLARE_COMPLETION_ONSTACK(all_gone);
1da177e4 3152 elv_unregister(&iosched_cfq);
334e94de 3153 ioc_gone = &all_gone;
fba82272
OH
3154 /* ioc_gone's update must be visible before reading ioc_count */
3155 smp_wmb();
d6de8be7
JA
3156
3157 /*
3158 * this also protects us from entering cfq_slab_kill() with
3159 * pending RCU callbacks
3160 */
245b2e70 3161 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 3162 wait_for_completion(&all_gone);
83521d3e 3163 cfq_slab_kill();
1da177e4
LT
3164}
3165
3166module_init(cfq_init);
3167module_exit(cfq_exit);
3168
3169MODULE_AUTHOR("Jens Axboe");
3170MODULE_LICENSE("GPL");
3171MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");