]> bbs.cooldavid.org Git - net-next-2.6.git/blame - block/cfq-iosched.c
Merge branch 'for-jens' of git://git.drbd.org/linux-2.6-drbd into for-2.6.33
[net-next-2.6.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
ad5ebd2f 12#include <linux/jiffies.h>
1da177e4 13#include <linux/rbtree.h>
22e2c507 14#include <linux/ioprio.h>
7b679138 15#include <linux/blktrace_api.h>
1da177e4
LT
16
17/*
18 * tunables
19 */
fe094d98
JA
20/* max queue in one round of service */
21static const int cfq_quantum = 4;
64100099 22static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
23/* maximum backwards seek, in KiB */
24static const int cfq_back_max = 16 * 1024;
25/* penalty of a backwards seek */
26static const int cfq_back_penalty = 2;
64100099 27static const int cfq_slice_sync = HZ / 10;
3b18152c 28static int cfq_slice_async = HZ / 25;
64100099 29static const int cfq_slice_async_rq = 2;
caaa5f9f 30static int cfq_slice_idle = HZ / 125;
5db5d642
CZ
31static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
32static const int cfq_hist_divisor = 4;
22e2c507 33
d9e7620e 34/*
0871714e 35 * offset from end of service tree
d9e7620e 36 */
0871714e 37#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
38
39/*
40 * below this threshold, we consider thinktime immediate
41 */
42#define CFQ_MIN_TT (2)
43
e6c5bc73
JM
44/*
45 * Allow merged cfqqs to perform this amount of seeky I/O before
46 * deciding to break the queues up again.
47 */
48#define CFQQ_COOP_TOUT (HZ)
49
22e2c507 50#define CFQ_SLICE_SCALE (5)
45333d5a 51#define CFQ_HW_QUEUE_MIN (5)
22e2c507 52
fe094d98
JA
53#define RQ_CIC(rq) \
54 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 55#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 56
e18b890b
CL
57static struct kmem_cache *cfq_pool;
58static struct kmem_cache *cfq_ioc_pool;
1da177e4 59
245b2e70 60static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 61static struct completion *ioc_gone;
9a11b4ed 62static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 63
22e2c507
JA
64#define CFQ_PRIO_LISTS IOPRIO_BE_NR
65#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
66#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
67
206dc69b
JA
68#define sample_valid(samples) ((samples) > 80)
69
cc09e299
JA
70/*
71 * Most of our rbtree usage is for sorting with min extraction, so
72 * if we cache the leftmost node we don't have to walk down the tree
73 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
74 * move this into the elevator for the rq sorting as well.
75 */
76struct cfq_rb_root {
77 struct rb_root rb;
78 struct rb_node *left;
aa6f6a3d 79 unsigned count;
cc09e299 80};
aa6f6a3d 81#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, }
cc09e299 82
6118b70b
JA
83/*
84 * Per process-grouping structure
85 */
86struct cfq_queue {
87 /* reference count */
88 atomic_t ref;
89 /* various state flags, see below */
90 unsigned int flags;
91 /* parent cfq_data */
92 struct cfq_data *cfqd;
93 /* service_tree member */
94 struct rb_node rb_node;
95 /* service_tree key */
96 unsigned long rb_key;
97 /* prio tree member */
98 struct rb_node p_node;
99 /* prio tree root we belong to, if any */
100 struct rb_root *p_root;
101 /* sorted list of pending requests */
102 struct rb_root sort_list;
103 /* if fifo isn't expired, next request to serve */
104 struct request *next_rq;
105 /* requests queued in sort_list */
106 int queued[2];
107 /* currently allocated requests */
108 int allocated[2];
109 /* fifo list of requests in sort_list */
110 struct list_head fifo;
111
112 unsigned long slice_end;
113 long slice_resid;
114 unsigned int slice_dispatch;
115
116 /* pending metadata requests */
117 int meta_pending;
118 /* number of requests that are on the dispatch list or inside driver */
119 int dispatched;
120
121 /* io prio of this group */
122 unsigned short ioprio, org_ioprio;
123 unsigned short ioprio_class, org_ioprio_class;
124
b2c18e1e
JM
125 unsigned int seek_samples;
126 u64 seek_total;
127 sector_t seek_mean;
128 sector_t last_request_pos;
e6c5bc73 129 unsigned long seeky_start;
b2c18e1e 130
6118b70b 131 pid_t pid;
df5fe3e8 132
aa6f6a3d 133 struct cfq_rb_root *service_tree;
df5fe3e8 134 struct cfq_queue *new_cfqq;
6118b70b
JA
135};
136
c0324a02 137/*
718eee05 138 * First index in the service_trees.
c0324a02
CZ
139 * IDLE is handled separately, so it has negative index
140 */
141enum wl_prio_t {
142 IDLE_WORKLOAD = -1,
143 BE_WORKLOAD = 0,
144 RT_WORKLOAD = 1
145};
146
718eee05
CZ
147/*
148 * Second index in the service_trees.
149 */
150enum wl_type_t {
151 ASYNC_WORKLOAD = 0,
152 SYNC_NOIDLE_WORKLOAD = 1,
153 SYNC_WORKLOAD = 2
154};
155
156
22e2c507
JA
157/*
158 * Per block device queue structure
159 */
1da177e4 160struct cfq_data {
165125e1 161 struct request_queue *queue;
22e2c507
JA
162
163 /*
c0324a02
CZ
164 * rr lists of queues with requests, onle rr for each priority class.
165 * Counts are embedded in the cfq_rb_root
166 */
718eee05 167 struct cfq_rb_root service_trees[2][3];
c0324a02
CZ
168 struct cfq_rb_root service_tree_idle;
169 /*
170 * The priority currently being served
22e2c507 171 */
c0324a02 172 enum wl_prio_t serving_prio;
718eee05
CZ
173 enum wl_type_t serving_type;
174 unsigned long workload_expires;
a36e71f9
JA
175
176 /*
177 * Each priority tree is sorted by next_request position. These
178 * trees are used when determining if two or more queues are
179 * interleaving requests (see cfq_close_cooperator).
180 */
181 struct rb_root prio_trees[CFQ_PRIO_LISTS];
182
22e2c507 183 unsigned int busy_queues;
5db5d642 184 unsigned int busy_queues_avg[2];
22e2c507 185
5ad531db 186 int rq_in_driver[2];
3ed9a296 187 int sync_flight;
45333d5a
AC
188
189 /*
190 * queue-depth detection
191 */
192 int rq_queued;
25776e35 193 int hw_tag;
45333d5a
AC
194 int hw_tag_samples;
195 int rq_in_driver_peak;
1da177e4 196
22e2c507
JA
197 /*
198 * idle window management
199 */
200 struct timer_list idle_slice_timer;
23e018a1 201 struct work_struct unplug_work;
1da177e4 202
22e2c507
JA
203 struct cfq_queue *active_queue;
204 struct cfq_io_context *active_cic;
22e2c507 205
c2dea2d1
VT
206 /*
207 * async queue for each priority case
208 */
209 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
210 struct cfq_queue *async_idle_cfqq;
15c31be4 211
6d048f53 212 sector_t last_position;
1da177e4 213
1da177e4
LT
214 /*
215 * tunables, see top of file
216 */
217 unsigned int cfq_quantum;
22e2c507 218 unsigned int cfq_fifo_expire[2];
1da177e4
LT
219 unsigned int cfq_back_penalty;
220 unsigned int cfq_back_max;
22e2c507
JA
221 unsigned int cfq_slice[2];
222 unsigned int cfq_slice_async_rq;
223 unsigned int cfq_slice_idle;
963b72fc 224 unsigned int cfq_latency;
d9ff4187
AV
225
226 struct list_head cic_list;
1da177e4 227
6118b70b
JA
228 /*
229 * Fallback dummy cfqq for extreme OOM conditions
230 */
231 struct cfq_queue oom_cfqq;
365722bb
VG
232
233 unsigned long last_end_sync_rq;
1da177e4
LT
234};
235
c0324a02 236static struct cfq_rb_root *service_tree_for(enum wl_prio_t prio,
718eee05 237 enum wl_type_t type,
c0324a02
CZ
238 struct cfq_data *cfqd)
239{
240 if (prio == IDLE_WORKLOAD)
241 return &cfqd->service_tree_idle;
242
718eee05 243 return &cfqd->service_trees[prio][type];
c0324a02
CZ
244}
245
3b18152c 246enum cfqq_state_flags {
b0b8d749
JA
247 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
248 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 249 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 250 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
251 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
252 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
253 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 254 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 255 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 256 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
3b18152c
JA
257};
258
259#define CFQ_CFQQ_FNS(name) \
260static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
261{ \
fe094d98 262 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
263} \
264static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
265{ \
fe094d98 266 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
267} \
268static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
269{ \
fe094d98 270 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
271}
272
273CFQ_CFQQ_FNS(on_rr);
274CFQ_CFQQ_FNS(wait_request);
b029195d 275CFQ_CFQQ_FNS(must_dispatch);
3b18152c 276CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
277CFQ_CFQQ_FNS(fifo_expire);
278CFQ_CFQQ_FNS(idle_window);
279CFQ_CFQQ_FNS(prio_changed);
44f7c160 280CFQ_CFQQ_FNS(slice_new);
91fac317 281CFQ_CFQQ_FNS(sync);
a36e71f9 282CFQ_CFQQ_FNS(coop);
3b18152c
JA
283#undef CFQ_CFQQ_FNS
284
7b679138
JA
285#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
286 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
287#define cfq_log(cfqd, fmt, args...) \
288 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
289
c0324a02
CZ
290static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
291{
292 if (cfq_class_idle(cfqq))
293 return IDLE_WORKLOAD;
294 if (cfq_class_rt(cfqq))
295 return RT_WORKLOAD;
296 return BE_WORKLOAD;
297}
298
718eee05
CZ
299
300static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
301{
302 if (!cfq_cfqq_sync(cfqq))
303 return ASYNC_WORKLOAD;
304 if (!cfq_cfqq_idle_window(cfqq))
305 return SYNC_NOIDLE_WORKLOAD;
306 return SYNC_WORKLOAD;
307}
308
c0324a02
CZ
309static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd)
310{
311 if (wl == IDLE_WORKLOAD)
312 return cfqd->service_tree_idle.count;
313
718eee05
CZ
314 return cfqd->service_trees[wl][ASYNC_WORKLOAD].count
315 + cfqd->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
316 + cfqd->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
317}
318
165125e1 319static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 320static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 321 struct io_context *, gfp_t);
4ac845a2 322static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
323 struct io_context *);
324
5ad531db
JA
325static inline int rq_in_driver(struct cfq_data *cfqd)
326{
327 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
328}
329
91fac317 330static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 331 bool is_sync)
91fac317 332{
a6151c3a 333 return cic->cfqq[is_sync];
91fac317
VT
334}
335
336static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 337 struct cfq_queue *cfqq, bool is_sync)
91fac317 338{
a6151c3a 339 cic->cfqq[is_sync] = cfqq;
91fac317
VT
340}
341
342/*
343 * We regard a request as SYNC, if it's either a read or has the SYNC bit
344 * set (in which case it could also be direct WRITE).
345 */
a6151c3a 346static inline bool cfq_bio_sync(struct bio *bio)
91fac317 347{
a6151c3a 348 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
91fac317 349}
1da177e4 350
99f95e52
AM
351/*
352 * scheduler run of queue, if there are requests pending and no one in the
353 * driver that will restart queueing
354 */
23e018a1 355static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 356{
7b679138
JA
357 if (cfqd->busy_queues) {
358 cfq_log(cfqd, "schedule dispatch");
23e018a1 359 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 360 }
99f95e52
AM
361}
362
165125e1 363static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
364{
365 struct cfq_data *cfqd = q->elevator->elevator_data;
366
b4878f24 367 return !cfqd->busy_queues;
99f95e52
AM
368}
369
44f7c160
JA
370/*
371 * Scale schedule slice based on io priority. Use the sync time slice only
372 * if a queue is marked sync and has sync io queued. A sync queue with async
373 * io only, should not get full sync slice length.
374 */
a6151c3a 375static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 376 unsigned short prio)
44f7c160 377{
d9e7620e 378 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 379
d9e7620e
JA
380 WARN_ON(prio >= IOPRIO_BE_NR);
381
382 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
383}
44f7c160 384
d9e7620e
JA
385static inline int
386cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
387{
388 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
389}
390
5db5d642
CZ
391/*
392 * get averaged number of queues of RT/BE priority.
393 * average is updated, with a formula that gives more weight to higher numbers,
394 * to quickly follows sudden increases and decrease slowly
395 */
396
5869619c
JA
397static inline unsigned cfq_get_avg_queues(struct cfq_data *cfqd, bool rt)
398{
5db5d642
CZ
399 unsigned min_q, max_q;
400 unsigned mult = cfq_hist_divisor - 1;
401 unsigned round = cfq_hist_divisor / 2;
c0324a02 402 unsigned busy = cfq_busy_queues_wl(rt, cfqd);
5db5d642
CZ
403
404 min_q = min(cfqd->busy_queues_avg[rt], busy);
405 max_q = max(cfqd->busy_queues_avg[rt], busy);
406 cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
407 cfq_hist_divisor;
408 return cfqd->busy_queues_avg[rt];
409}
410
44f7c160
JA
411static inline void
412cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
413{
5db5d642
CZ
414 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
415 if (cfqd->cfq_latency) {
416 /* interested queues (we consider only the ones with the same
417 * priority class) */
418 unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
419 unsigned sync_slice = cfqd->cfq_slice[1];
420 unsigned expect_latency = sync_slice * iq;
421 if (expect_latency > cfq_target_latency) {
422 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
423 /* scale low_slice according to IO priority
424 * and sync vs async */
425 unsigned low_slice =
426 min(slice, base_low_slice * slice / sync_slice);
427 /* the adapted slice value is scaled to fit all iqs
428 * into the target latency */
429 slice = max(slice * cfq_target_latency / expect_latency,
430 low_slice);
431 }
432 }
433 cfqq->slice_end = jiffies + slice;
7b679138 434 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
435}
436
437/*
438 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
439 * isn't valid until the first request from the dispatch is activated
440 * and the slice time set.
441 */
a6151c3a 442static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
443{
444 if (cfq_cfqq_slice_new(cfqq))
445 return 0;
446 if (time_before(jiffies, cfqq->slice_end))
447 return 0;
448
449 return 1;
450}
451
1da177e4 452/*
5e705374 453 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 454 * We choose the request that is closest to the head right now. Distance
e8a99053 455 * behind the head is penalized and only allowed to a certain extent.
1da177e4 456 */
5e705374 457static struct request *
cf7c25cf 458cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 459{
cf7c25cf 460 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 461 unsigned long back_max;
e8a99053
AM
462#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
463#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
464 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 465
5e705374
JA
466 if (rq1 == NULL || rq1 == rq2)
467 return rq2;
468 if (rq2 == NULL)
469 return rq1;
9c2c38a1 470
5e705374
JA
471 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
472 return rq1;
473 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
474 return rq2;
374f84ac
JA
475 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
476 return rq1;
477 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
478 return rq2;
1da177e4 479
83096ebf
TH
480 s1 = blk_rq_pos(rq1);
481 s2 = blk_rq_pos(rq2);
1da177e4 482
1da177e4
LT
483 /*
484 * by definition, 1KiB is 2 sectors
485 */
486 back_max = cfqd->cfq_back_max * 2;
487
488 /*
489 * Strict one way elevator _except_ in the case where we allow
490 * short backward seeks which are biased as twice the cost of a
491 * similar forward seek.
492 */
493 if (s1 >= last)
494 d1 = s1 - last;
495 else if (s1 + back_max >= last)
496 d1 = (last - s1) * cfqd->cfq_back_penalty;
497 else
e8a99053 498 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
499
500 if (s2 >= last)
501 d2 = s2 - last;
502 else if (s2 + back_max >= last)
503 d2 = (last - s2) * cfqd->cfq_back_penalty;
504 else
e8a99053 505 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
506
507 /* Found required data */
e8a99053
AM
508
509 /*
510 * By doing switch() on the bit mask "wrap" we avoid having to
511 * check two variables for all permutations: --> faster!
512 */
513 switch (wrap) {
5e705374 514 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 515 if (d1 < d2)
5e705374 516 return rq1;
e8a99053 517 else if (d2 < d1)
5e705374 518 return rq2;
e8a99053
AM
519 else {
520 if (s1 >= s2)
5e705374 521 return rq1;
e8a99053 522 else
5e705374 523 return rq2;
e8a99053 524 }
1da177e4 525
e8a99053 526 case CFQ_RQ2_WRAP:
5e705374 527 return rq1;
e8a99053 528 case CFQ_RQ1_WRAP:
5e705374
JA
529 return rq2;
530 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
531 default:
532 /*
533 * Since both rqs are wrapped,
534 * start with the one that's further behind head
535 * (--> only *one* back seek required),
536 * since back seek takes more time than forward.
537 */
538 if (s1 <= s2)
5e705374 539 return rq1;
1da177e4 540 else
5e705374 541 return rq2;
1da177e4
LT
542 }
543}
544
498d3aa2
JA
545/*
546 * The below is leftmost cache rbtree addon
547 */
0871714e 548static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299
JA
549{
550 if (!root->left)
551 root->left = rb_first(&root->rb);
552
0871714e
JA
553 if (root->left)
554 return rb_entry(root->left, struct cfq_queue, rb_node);
555
556 return NULL;
cc09e299
JA
557}
558
a36e71f9
JA
559static void rb_erase_init(struct rb_node *n, struct rb_root *root)
560{
561 rb_erase(n, root);
562 RB_CLEAR_NODE(n);
563}
564
cc09e299
JA
565static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
566{
567 if (root->left == n)
568 root->left = NULL;
a36e71f9 569 rb_erase_init(n, &root->rb);
aa6f6a3d 570 --root->count;
cc09e299
JA
571}
572
1da177e4
LT
573/*
574 * would be nice to take fifo expire time into account as well
575 */
5e705374
JA
576static struct request *
577cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
578 struct request *last)
1da177e4 579{
21183b07
JA
580 struct rb_node *rbnext = rb_next(&last->rb_node);
581 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 582 struct request *next = NULL, *prev = NULL;
1da177e4 583
21183b07 584 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
585
586 if (rbprev)
5e705374 587 prev = rb_entry_rq(rbprev);
1da177e4 588
21183b07 589 if (rbnext)
5e705374 590 next = rb_entry_rq(rbnext);
21183b07
JA
591 else {
592 rbnext = rb_first(&cfqq->sort_list);
593 if (rbnext && rbnext != &last->rb_node)
5e705374 594 next = rb_entry_rq(rbnext);
21183b07 595 }
1da177e4 596
cf7c25cf 597 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
598}
599
d9e7620e
JA
600static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
601 struct cfq_queue *cfqq)
1da177e4 602{
3586e917
GJ
603 struct cfq_rb_root *service_tree;
604
605 service_tree = service_tree_for(cfqq_prio(cfqq), cfqq_type(cfqq), cfqd);
606
d9e7620e
JA
607 /*
608 * just an approximation, should be ok.
609 */
3586e917
GJ
610 return service_tree->count * (cfq_prio_slice(cfqd, 1, 0) -
611 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
612}
613
498d3aa2 614/*
c0324a02 615 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
616 * requests waiting to be processed. It is sorted in the order that
617 * we will service the queues.
618 */
a36e71f9 619static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 620 bool add_front)
d9e7620e 621{
0871714e
JA
622 struct rb_node **p, *parent;
623 struct cfq_queue *__cfqq;
d9e7620e 624 unsigned long rb_key;
c0324a02 625 struct cfq_rb_root *service_tree;
498d3aa2 626 int left;
d9e7620e 627
718eee05 628 service_tree = service_tree_for(cfqq_prio(cfqq), cfqq_type(cfqq), cfqd);
0871714e
JA
629 if (cfq_class_idle(cfqq)) {
630 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 631 parent = rb_last(&service_tree->rb);
0871714e
JA
632 if (parent && parent != &cfqq->rb_node) {
633 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
634 rb_key += __cfqq->rb_key;
635 } else
636 rb_key += jiffies;
637 } else if (!add_front) {
b9c8946b
JA
638 /*
639 * Get our rb key offset. Subtract any residual slice
640 * value carried from last service. A negative resid
641 * count indicates slice overrun, and this should position
642 * the next service time further away in the tree.
643 */
edd75ffd 644 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 645 rb_key -= cfqq->slice_resid;
edd75ffd 646 cfqq->slice_resid = 0;
48e025e6
CZ
647 } else {
648 rb_key = -HZ;
aa6f6a3d 649 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
650 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
651 }
1da177e4 652
d9e7620e 653 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
99f9628a 654 /*
d9e7620e 655 * same position, nothing more to do
99f9628a 656 */
c0324a02
CZ
657 if (rb_key == cfqq->rb_key &&
658 cfqq->service_tree == service_tree)
d9e7620e 659 return;
1da177e4 660
aa6f6a3d
CZ
661 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
662 cfqq->service_tree = NULL;
1da177e4 663 }
d9e7620e 664
498d3aa2 665 left = 1;
0871714e 666 parent = NULL;
aa6f6a3d
CZ
667 cfqq->service_tree = service_tree;
668 p = &service_tree->rb.rb_node;
d9e7620e 669 while (*p) {
67060e37 670 struct rb_node **n;
cc09e299 671
d9e7620e
JA
672 parent = *p;
673 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
674
0c534e0a 675 /*
c0324a02 676 * sort by key, that represents service time.
0c534e0a 677 */
c0324a02 678 if (time_before(rb_key, __cfqq->rb_key))
67060e37 679 n = &(*p)->rb_left;
c0324a02 680 else {
67060e37 681 n = &(*p)->rb_right;
cc09e299 682 left = 0;
c0324a02 683 }
67060e37
JA
684
685 p = n;
d9e7620e
JA
686 }
687
cc09e299 688 if (left)
aa6f6a3d 689 service_tree->left = &cfqq->rb_node;
cc09e299 690
d9e7620e
JA
691 cfqq->rb_key = rb_key;
692 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
693 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
694 service_tree->count++;
1da177e4
LT
695}
696
a36e71f9 697static struct cfq_queue *
f2d1f0ae
JA
698cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
699 sector_t sector, struct rb_node **ret_parent,
700 struct rb_node ***rb_link)
a36e71f9 701{
a36e71f9
JA
702 struct rb_node **p, *parent;
703 struct cfq_queue *cfqq = NULL;
704
705 parent = NULL;
706 p = &root->rb_node;
707 while (*p) {
708 struct rb_node **n;
709
710 parent = *p;
711 cfqq = rb_entry(parent, struct cfq_queue, p_node);
712
713 /*
714 * Sort strictly based on sector. Smallest to the left,
715 * largest to the right.
716 */
2e46e8b2 717 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 718 n = &(*p)->rb_right;
2e46e8b2 719 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
720 n = &(*p)->rb_left;
721 else
722 break;
723 p = n;
3ac6c9f8 724 cfqq = NULL;
a36e71f9
JA
725 }
726
727 *ret_parent = parent;
728 if (rb_link)
729 *rb_link = p;
3ac6c9f8 730 return cfqq;
a36e71f9
JA
731}
732
733static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
734{
a36e71f9
JA
735 struct rb_node **p, *parent;
736 struct cfq_queue *__cfqq;
737
f2d1f0ae
JA
738 if (cfqq->p_root) {
739 rb_erase(&cfqq->p_node, cfqq->p_root);
740 cfqq->p_root = NULL;
741 }
a36e71f9
JA
742
743 if (cfq_class_idle(cfqq))
744 return;
745 if (!cfqq->next_rq)
746 return;
747
f2d1f0ae 748 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
749 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
750 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
751 if (!__cfqq) {
752 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
753 rb_insert_color(&cfqq->p_node, cfqq->p_root);
754 } else
755 cfqq->p_root = NULL;
a36e71f9
JA
756}
757
498d3aa2
JA
758/*
759 * Update cfqq's position in the service tree.
760 */
edd75ffd 761static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 762{
6d048f53
JA
763 /*
764 * Resorting requires the cfqq to be on the RR list already.
765 */
a36e71f9 766 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 767 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
768 cfq_prio_tree_add(cfqd, cfqq);
769 }
6d048f53
JA
770}
771
1da177e4
LT
772/*
773 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 774 * the pending list according to last request service
1da177e4 775 */
febffd61 776static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 777{
7b679138 778 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
779 BUG_ON(cfq_cfqq_on_rr(cfqq));
780 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
781 cfqd->busy_queues++;
782
edd75ffd 783 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
784}
785
498d3aa2
JA
786/*
787 * Called when the cfqq no longer has requests pending, remove it from
788 * the service tree.
789 */
febffd61 790static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 791{
7b679138 792 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
793 BUG_ON(!cfq_cfqq_on_rr(cfqq));
794 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 795
aa6f6a3d
CZ
796 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
797 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
798 cfqq->service_tree = NULL;
799 }
f2d1f0ae
JA
800 if (cfqq->p_root) {
801 rb_erase(&cfqq->p_node, cfqq->p_root);
802 cfqq->p_root = NULL;
803 }
d9e7620e 804
1da177e4
LT
805 BUG_ON(!cfqd->busy_queues);
806 cfqd->busy_queues--;
807}
808
809/*
810 * rb tree support functions
811 */
febffd61 812static void cfq_del_rq_rb(struct request *rq)
1da177e4 813{
5e705374 814 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 815 struct cfq_data *cfqd = cfqq->cfqd;
5e705374 816 const int sync = rq_is_sync(rq);
1da177e4 817
b4878f24
JA
818 BUG_ON(!cfqq->queued[sync]);
819 cfqq->queued[sync]--;
1da177e4 820
5e705374 821 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 822
dd67d051 823 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
b4878f24 824 cfq_del_cfqq_rr(cfqd, cfqq);
1da177e4
LT
825}
826
5e705374 827static void cfq_add_rq_rb(struct request *rq)
1da177e4 828{
5e705374 829 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 830 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 831 struct request *__alias, *prev;
1da177e4 832
5380a101 833 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
834
835 /*
836 * looks a little odd, but the first insert might return an alias.
837 * if that happens, put the alias on the dispatch list
838 */
21183b07 839 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 840 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
841
842 if (!cfq_cfqq_on_rr(cfqq))
843 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
844
845 /*
846 * check if this request is a better next-serve candidate
847 */
a36e71f9 848 prev = cfqq->next_rq;
cf7c25cf 849 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
850
851 /*
852 * adjust priority tree position, if ->next_rq changes
853 */
854 if (prev != cfqq->next_rq)
855 cfq_prio_tree_add(cfqd, cfqq);
856
5044eed4 857 BUG_ON(!cfqq->next_rq);
1da177e4
LT
858}
859
febffd61 860static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 861{
5380a101
JA
862 elv_rb_del(&cfqq->sort_list, rq);
863 cfqq->queued[rq_is_sync(rq)]--;
5e705374 864 cfq_add_rq_rb(rq);
1da177e4
LT
865}
866
206dc69b
JA
867static struct request *
868cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 869{
206dc69b 870 struct task_struct *tsk = current;
91fac317 871 struct cfq_io_context *cic;
206dc69b 872 struct cfq_queue *cfqq;
1da177e4 873
4ac845a2 874 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
875 if (!cic)
876 return NULL;
877
878 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
879 if (cfqq) {
880 sector_t sector = bio->bi_sector + bio_sectors(bio);
881
21183b07 882 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 883 }
1da177e4 884
1da177e4
LT
885 return NULL;
886}
887
165125e1 888static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 889{
22e2c507 890 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 891
5ad531db 892 cfqd->rq_in_driver[rq_is_sync(rq)]++;
7b679138 893 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
5ad531db 894 rq_in_driver(cfqd));
25776e35 895
5b93629b 896 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
897}
898
165125e1 899static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 900{
b4878f24 901 struct cfq_data *cfqd = q->elevator->elevator_data;
5ad531db 902 const int sync = rq_is_sync(rq);
b4878f24 903
5ad531db
JA
904 WARN_ON(!cfqd->rq_in_driver[sync]);
905 cfqd->rq_in_driver[sync]--;
7b679138 906 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
5ad531db 907 rq_in_driver(cfqd));
1da177e4
LT
908}
909
b4878f24 910static void cfq_remove_request(struct request *rq)
1da177e4 911{
5e705374 912 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 913
5e705374
JA
914 if (cfqq->next_rq == rq)
915 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 916
b4878f24 917 list_del_init(&rq->queuelist);
5e705374 918 cfq_del_rq_rb(rq);
374f84ac 919
45333d5a 920 cfqq->cfqd->rq_queued--;
374f84ac
JA
921 if (rq_is_meta(rq)) {
922 WARN_ON(!cfqq->meta_pending);
923 cfqq->meta_pending--;
924 }
1da177e4
LT
925}
926
165125e1
JA
927static int cfq_merge(struct request_queue *q, struct request **req,
928 struct bio *bio)
1da177e4
LT
929{
930 struct cfq_data *cfqd = q->elevator->elevator_data;
931 struct request *__rq;
1da177e4 932
206dc69b 933 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 934 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
935 *req = __rq;
936 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
937 }
938
939 return ELEVATOR_NO_MERGE;
1da177e4
LT
940}
941
165125e1 942static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 943 int type)
1da177e4 944{
21183b07 945 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 946 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 947
5e705374 948 cfq_reposition_rq_rb(cfqq, req);
1da177e4 949 }
1da177e4
LT
950}
951
952static void
165125e1 953cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
954 struct request *next)
955{
cf7c25cf 956 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
957 /*
958 * reposition in fifo if next is older than rq
959 */
960 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 961 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 962 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
963 rq_set_fifo_time(rq, rq_fifo_time(next));
964 }
22e2c507 965
cf7c25cf
CZ
966 if (cfqq->next_rq == next)
967 cfqq->next_rq = rq;
b4878f24 968 cfq_remove_request(next);
22e2c507
JA
969}
970
165125e1 971static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
972 struct bio *bio)
973{
974 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 975 struct cfq_io_context *cic;
da775265 976 struct cfq_queue *cfqq;
da775265
JA
977
978 /*
ec8acb69 979 * Disallow merge of a sync bio into an async request.
da775265 980 */
91fac317 981 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 982 return false;
da775265
JA
983
984 /*
719d3402
JA
985 * Lookup the cfqq that this bio will be queued with. Allow
986 * merge only if rq is queued there.
da775265 987 */
4ac845a2 988 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 989 if (!cic)
a6151c3a 990 return false;
719d3402 991
91fac317 992 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 993 return cfqq == RQ_CFQQ(rq);
da775265
JA
994}
995
febffd61
JA
996static void __cfq_set_active_queue(struct cfq_data *cfqd,
997 struct cfq_queue *cfqq)
22e2c507
JA
998{
999 if (cfqq) {
7b679138 1000 cfq_log_cfqq(cfqd, cfqq, "set_active");
22e2c507 1001 cfqq->slice_end = 0;
2f5cb738
JA
1002 cfqq->slice_dispatch = 0;
1003
2f5cb738 1004 cfq_clear_cfqq_wait_request(cfqq);
b029195d 1005 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
1006 cfq_clear_cfqq_must_alloc_slice(cfqq);
1007 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 1008 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
1009
1010 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
1011 }
1012
1013 cfqd->active_queue = cfqq;
1014}
1015
7b14e3b5
JA
1016/*
1017 * current cfqq expired its slice (or was too idle), select new one
1018 */
1019static void
1020__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1021 bool timed_out)
7b14e3b5 1022{
7b679138
JA
1023 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1024
7b14e3b5
JA
1025 if (cfq_cfqq_wait_request(cfqq))
1026 del_timer(&cfqd->idle_slice_timer);
1027
7b14e3b5
JA
1028 cfq_clear_cfqq_wait_request(cfqq);
1029
1030 /*
6084cdda 1031 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1032 */
7b679138 1033 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 1034 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1035 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1036 }
7b14e3b5 1037
edd75ffd 1038 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1039
1040 if (cfqq == cfqd->active_queue)
1041 cfqd->active_queue = NULL;
1042
1043 if (cfqd->active_cic) {
1044 put_io_context(cfqd->active_cic->ioc);
1045 cfqd->active_cic = NULL;
1046 }
7b14e3b5
JA
1047}
1048
a6151c3a 1049static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1050{
1051 struct cfq_queue *cfqq = cfqd->active_queue;
1052
1053 if (cfqq)
6084cdda 1054 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1055}
1056
498d3aa2
JA
1057/*
1058 * Get next queue for service. Unless we have a queue preemption,
1059 * we'll simply select the first cfqq in the service tree.
1060 */
6d048f53 1061static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1062{
c0324a02 1063 struct cfq_rb_root *service_tree =
718eee05 1064 service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd);
d9e7620e 1065
c0324a02
CZ
1066 if (RB_EMPTY_ROOT(&service_tree->rb))
1067 return NULL;
1068 return cfq_rb_first(service_tree);
6d048f53
JA
1069}
1070
498d3aa2
JA
1071/*
1072 * Get and set a new active queue for service.
1073 */
a36e71f9
JA
1074static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1075 struct cfq_queue *cfqq)
6d048f53 1076{
e00ef799 1077 if (!cfqq)
a36e71f9 1078 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1079
22e2c507 1080 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1081 return cfqq;
22e2c507
JA
1082}
1083
d9e7620e
JA
1084static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1085 struct request *rq)
1086{
83096ebf
TH
1087 if (blk_rq_pos(rq) >= cfqd->last_position)
1088 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1089 else
83096ebf 1090 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1091}
1092
b2c18e1e
JM
1093#define CFQQ_SEEK_THR 8 * 1024
1094#define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
04dc6e71 1095
b2c18e1e
JM
1096static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1097 struct request *rq)
6d048f53 1098{
b2c18e1e 1099 sector_t sdist = cfqq->seek_mean;
6d048f53 1100
b2c18e1e
JM
1101 if (!sample_valid(cfqq->seek_samples))
1102 sdist = CFQQ_SEEK_THR;
6d048f53 1103
04dc6e71 1104 return cfq_dist_from_last(cfqd, rq) <= sdist;
6d048f53
JA
1105}
1106
a36e71f9
JA
1107static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1108 struct cfq_queue *cur_cfqq)
1109{
f2d1f0ae 1110 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1111 struct rb_node *parent, *node;
1112 struct cfq_queue *__cfqq;
1113 sector_t sector = cfqd->last_position;
1114
1115 if (RB_EMPTY_ROOT(root))
1116 return NULL;
1117
1118 /*
1119 * First, if we find a request starting at the end of the last
1120 * request, choose it.
1121 */
f2d1f0ae 1122 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1123 if (__cfqq)
1124 return __cfqq;
1125
1126 /*
1127 * If the exact sector wasn't found, the parent of the NULL leaf
1128 * will contain the closest sector.
1129 */
1130 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
b2c18e1e 1131 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1132 return __cfqq;
1133
2e46e8b2 1134 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1135 node = rb_next(&__cfqq->p_node);
1136 else
1137 node = rb_prev(&__cfqq->p_node);
1138 if (!node)
1139 return NULL;
1140
1141 __cfqq = rb_entry(node, struct cfq_queue, p_node);
b2c18e1e 1142 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1143 return __cfqq;
1144
1145 return NULL;
1146}
1147
1148/*
1149 * cfqd - obvious
1150 * cur_cfqq - passed in so that we don't decide that the current queue is
1151 * closely cooperating with itself.
1152 *
1153 * So, basically we're assuming that that cur_cfqq has dispatched at least
1154 * one request, and that cfqd->last_position reflects a position on the disk
1155 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1156 * assumption.
1157 */
1158static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1159 struct cfq_queue *cur_cfqq)
6d048f53 1160{
a36e71f9
JA
1161 struct cfq_queue *cfqq;
1162
e6c5bc73
JM
1163 if (!cfq_cfqq_sync(cur_cfqq))
1164 return NULL;
1165 if (CFQQ_SEEKY(cur_cfqq))
1166 return NULL;
1167
6d048f53 1168 /*
d9e7620e
JA
1169 * We should notice if some of the queues are cooperating, eg
1170 * working closely on the same area of the disk. In that case,
1171 * we can group them together and don't waste time idling.
6d048f53 1172 */
a36e71f9
JA
1173 cfqq = cfqq_close(cfqd, cur_cfqq);
1174 if (!cfqq)
1175 return NULL;
1176
df5fe3e8
JM
1177 /*
1178 * It only makes sense to merge sync queues.
1179 */
1180 if (!cfq_cfqq_sync(cfqq))
1181 return NULL;
e6c5bc73
JM
1182 if (CFQQ_SEEKY(cfqq))
1183 return NULL;
df5fe3e8 1184
c0324a02
CZ
1185 /*
1186 * Do not merge queues of different priority classes
1187 */
1188 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1189 return NULL;
1190
a36e71f9 1191 return cfqq;
6d048f53
JA
1192}
1193
a6d44e98
CZ
1194/*
1195 * Determine whether we should enforce idle window for this queue.
1196 */
1197
1198static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1199{
1200 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1201 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98
CZ
1202
1203 /* We never do for idle class queues. */
1204 if (prio == IDLE_WORKLOAD)
1205 return false;
1206
1207 /* We do for queues that were marked with idle window flag. */
1208 if (cfq_cfqq_idle_window(cfqq))
1209 return true;
1210
1211 /*
1212 * Otherwise, we do only if they are the last ones
1213 * in their service tree.
1214 */
718eee05
CZ
1215 if (!service_tree)
1216 service_tree = service_tree_for(prio, cfqq_type(cfqq), cfqd);
1217
a6d44e98
CZ
1218 if (service_tree->count == 0)
1219 return true;
1220
1221 return (service_tree->count == 1 && cfq_rb_first(service_tree) == cfqq);
1222}
1223
6d048f53 1224static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1225{
1792669c 1226 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1227 struct cfq_io_context *cic;
7b14e3b5
JA
1228 unsigned long sl;
1229
a68bbddb 1230 /*
f7d7b7a7
JA
1231 * SSD device without seek penalty, disable idling. But only do so
1232 * for devices that support queuing, otherwise we still have a problem
1233 * with sync vs async workloads.
a68bbddb 1234 */
f7d7b7a7 1235 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1236 return;
1237
dd67d051 1238 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1239 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1240
1241 /*
1242 * idle is disabled, either manually or by past process history
1243 */
a6d44e98 1244 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
6d048f53
JA
1245 return;
1246
7b679138
JA
1247 /*
1248 * still requests with the driver, don't idle
1249 */
5ad531db 1250 if (rq_in_driver(cfqd))
7b679138
JA
1251 return;
1252
22e2c507
JA
1253 /*
1254 * task has exited, don't wait
1255 */
206dc69b 1256 cic = cfqd->active_cic;
66dac98e 1257 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1258 return;
1259
355b659c
CZ
1260 /*
1261 * If our average think time is larger than the remaining time
1262 * slice, then don't idle. This avoids overrunning the allotted
1263 * time slice.
1264 */
1265 if (sample_valid(cic->ttime_samples) &&
1266 (cfqq->slice_end - jiffies < cic->ttime_mean))
1267 return;
1268
3b18152c 1269 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1270
6d048f53 1271 sl = cfqd->cfq_slice_idle;
206dc69b 1272
7b14e3b5 1273 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1274 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1275}
1276
498d3aa2
JA
1277/*
1278 * Move request from internal lists to the request queue dispatch list.
1279 */
165125e1 1280static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1281{
3ed9a296 1282 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1283 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1284
7b679138
JA
1285 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1286
06d21886 1287 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1288 cfq_remove_request(rq);
6d048f53 1289 cfqq->dispatched++;
5380a101 1290 elv_dispatch_sort(q, rq);
3ed9a296
JA
1291
1292 if (cfq_cfqq_sync(cfqq))
1293 cfqd->sync_flight++;
1da177e4
LT
1294}
1295
1296/*
1297 * return expired entry, or NULL to just start from scratch in rbtree
1298 */
febffd61 1299static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1300{
30996f40 1301 struct request *rq = NULL;
1da177e4 1302
3b18152c 1303 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1304 return NULL;
cb887411
JA
1305
1306 cfq_mark_cfqq_fifo_expire(cfqq);
1307
89850f7e
JA
1308 if (list_empty(&cfqq->fifo))
1309 return NULL;
1da177e4 1310
89850f7e 1311 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1312 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1313 rq = NULL;
1da177e4 1314
30996f40 1315 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1316 return rq;
1da177e4
LT
1317}
1318
22e2c507
JA
1319static inline int
1320cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1321{
1322 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1323
22e2c507 1324 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1325
22e2c507 1326 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1327}
1328
df5fe3e8
JM
1329/*
1330 * Must be called with the queue_lock held.
1331 */
1332static int cfqq_process_refs(struct cfq_queue *cfqq)
1333{
1334 int process_refs, io_refs;
1335
1336 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1337 process_refs = atomic_read(&cfqq->ref) - io_refs;
1338 BUG_ON(process_refs < 0);
1339 return process_refs;
1340}
1341
1342static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1343{
e6c5bc73 1344 int process_refs, new_process_refs;
df5fe3e8
JM
1345 struct cfq_queue *__cfqq;
1346
1347 /* Avoid a circular list and skip interim queue merges */
1348 while ((__cfqq = new_cfqq->new_cfqq)) {
1349 if (__cfqq == cfqq)
1350 return;
1351 new_cfqq = __cfqq;
1352 }
1353
1354 process_refs = cfqq_process_refs(cfqq);
1355 /*
1356 * If the process for the cfqq has gone away, there is no
1357 * sense in merging the queues.
1358 */
1359 if (process_refs == 0)
1360 return;
1361
e6c5bc73
JM
1362 /*
1363 * Merge in the direction of the lesser amount of work.
1364 */
1365 new_process_refs = cfqq_process_refs(new_cfqq);
1366 if (new_process_refs >= process_refs) {
1367 cfqq->new_cfqq = new_cfqq;
1368 atomic_add(process_refs, &new_cfqq->ref);
1369 } else {
1370 new_cfqq->new_cfqq = cfqq;
1371 atomic_add(new_process_refs, &cfqq->ref);
1372 }
df5fe3e8
JM
1373}
1374
718eee05
CZ
1375static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd, enum wl_prio_t prio,
1376 bool prio_changed)
1377{
1378 struct cfq_queue *queue;
1379 int i;
1380 bool key_valid = false;
1381 unsigned long lowest_key = 0;
1382 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1383
1384 if (prio_changed) {
1385 /*
1386 * When priorities switched, we prefer starting
1387 * from SYNC_NOIDLE (first choice), or just SYNC
1388 * over ASYNC
1389 */
1390 if (service_tree_for(prio, cur_best, cfqd)->count)
1391 return cur_best;
1392 cur_best = SYNC_WORKLOAD;
1393 if (service_tree_for(prio, cur_best, cfqd)->count)
1394 return cur_best;
1395
1396 return ASYNC_WORKLOAD;
1397 }
1398
1399 for (i = 0; i < 3; ++i) {
1400 /* otherwise, select the one with lowest rb_key */
1401 queue = cfq_rb_first(service_tree_for(prio, i, cfqd));
1402 if (queue &&
1403 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1404 lowest_key = queue->rb_key;
1405 cur_best = i;
1406 key_valid = true;
1407 }
1408 }
1409
1410 return cur_best;
1411}
1412
1413static void choose_service_tree(struct cfq_data *cfqd)
1414{
1415 enum wl_prio_t previous_prio = cfqd->serving_prio;
1416 bool prio_changed;
1417 unsigned slice;
1418 unsigned count;
1419
1420 /* Choose next priority. RT > BE > IDLE */
1421 if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd))
1422 cfqd->serving_prio = RT_WORKLOAD;
1423 else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd))
1424 cfqd->serving_prio = BE_WORKLOAD;
1425 else {
1426 cfqd->serving_prio = IDLE_WORKLOAD;
1427 cfqd->workload_expires = jiffies + 1;
1428 return;
1429 }
1430
1431 /*
1432 * For RT and BE, we have to choose also the type
1433 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1434 * expiration time
1435 */
1436 prio_changed = (cfqd->serving_prio != previous_prio);
1437 count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
1438 ->count;
1439
1440 /*
1441 * If priority didn't change, check workload expiration,
1442 * and that we still have other queues ready
1443 */
1444 if (!prio_changed && count &&
1445 !time_after(jiffies, cfqd->workload_expires))
1446 return;
1447
1448 /* otherwise select new workload type */
1449 cfqd->serving_type =
1450 cfq_choose_wl(cfqd, cfqd->serving_prio, prio_changed);
1451 count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
1452 ->count;
1453
1454 /*
1455 * the workload slice is computed as a fraction of target latency
1456 * proportional to the number of queues in that workload, over
1457 * all the queues in the same priority class
1458 */
1459 slice = cfq_target_latency * count /
1460 max_t(unsigned, cfqd->busy_queues_avg[cfqd->serving_prio],
1461 cfq_busy_queues_wl(cfqd->serving_prio, cfqd));
1462
1463 if (cfqd->serving_type == ASYNC_WORKLOAD)
1464 /* async workload slice is scaled down according to
1465 * the sync/async slice ratio. */
1466 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
1467 else
1468 /* sync workload slice is at least 2 * cfq_slice_idle */
1469 slice = max(slice, 2 * cfqd->cfq_slice_idle);
1470
1471 slice = max_t(unsigned, slice, CFQ_MIN_TT);
1472 cfqd->workload_expires = jiffies + slice;
1473}
1474
22e2c507 1475/*
498d3aa2
JA
1476 * Select a queue for service. If we have a current active queue,
1477 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 1478 */
1b5ed5e1 1479static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 1480{
a36e71f9 1481 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 1482
22e2c507
JA
1483 cfqq = cfqd->active_queue;
1484 if (!cfqq)
1485 goto new_queue;
1da177e4 1486
22e2c507 1487 /*
6d048f53 1488 * The active queue has run out of time, expire it and select new.
22e2c507 1489 */
b029195d 1490 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
3b18152c 1491 goto expire;
1da177e4 1492
22e2c507 1493 /*
6d048f53
JA
1494 * The active queue has requests and isn't expired, allow it to
1495 * dispatch.
22e2c507 1496 */
dd67d051 1497 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 1498 goto keep_queue;
6d048f53 1499
a36e71f9
JA
1500 /*
1501 * If another queue has a request waiting within our mean seek
1502 * distance, let it run. The expire code will check for close
1503 * cooperators and put the close queue at the front of the service
df5fe3e8 1504 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 1505 */
b3b6d040 1506 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
1507 if (new_cfqq) {
1508 if (!cfqq->new_cfqq)
1509 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 1510 goto expire;
df5fe3e8 1511 }
a36e71f9 1512
6d048f53
JA
1513 /*
1514 * No requests pending. If the active queue still has requests in
1515 * flight or is idling for a new request, allow either of these
1516 * conditions to happen (or time out) before selecting a new queue.
1517 */
cc197479 1518 if (timer_pending(&cfqd->idle_slice_timer) ||
a6d44e98 1519 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
caaa5f9f
JA
1520 cfqq = NULL;
1521 goto keep_queue;
22e2c507
JA
1522 }
1523
3b18152c 1524expire:
6084cdda 1525 cfq_slice_expired(cfqd, 0);
3b18152c 1526new_queue:
718eee05
CZ
1527 /*
1528 * Current queue expired. Check if we have to switch to a new
1529 * service tree
1530 */
1531 if (!new_cfqq)
1532 choose_service_tree(cfqd);
1533
a36e71f9 1534 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 1535keep_queue:
3b18152c 1536 return cfqq;
22e2c507
JA
1537}
1538
febffd61 1539static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
1540{
1541 int dispatched = 0;
1542
1543 while (cfqq->next_rq) {
1544 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1545 dispatched++;
1546 }
1547
1548 BUG_ON(!list_empty(&cfqq->fifo));
1549 return dispatched;
1550}
1551
498d3aa2
JA
1552/*
1553 * Drain our current requests. Used for barriers and when switching
1554 * io schedulers on-the-fly.
1555 */
d9e7620e 1556static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 1557{
0871714e 1558 struct cfq_queue *cfqq;
d9e7620e 1559 int dispatched = 0;
718eee05 1560 int i, j;
c0324a02 1561 for (i = 0; i < 2; ++i)
718eee05
CZ
1562 for (j = 0; j < 3; ++j)
1563 while ((cfqq = cfq_rb_first(&cfqd->service_trees[i][j]))
1564 != NULL)
1565 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 1566
c0324a02 1567 while ((cfqq = cfq_rb_first(&cfqd->service_tree_idle)) != NULL)
d9e7620e 1568 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 1569
6084cdda 1570 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
1571
1572 BUG_ON(cfqd->busy_queues);
1573
6923715a 1574 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
1575 return dispatched;
1576}
1577
0b182d61 1578static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 1579{
2f5cb738 1580 unsigned int max_dispatch;
22e2c507 1581
5ad531db
JA
1582 /*
1583 * Drain async requests before we start sync IO
1584 */
a6d44e98 1585 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
0b182d61 1586 return false;
5ad531db 1587
2f5cb738
JA
1588 /*
1589 * If this is an async queue and we have sync IO in flight, let it wait
1590 */
1591 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
0b182d61 1592 return false;
2f5cb738
JA
1593
1594 max_dispatch = cfqd->cfq_quantum;
1595 if (cfq_class_idle(cfqq))
1596 max_dispatch = 1;
b4878f24 1597
2f5cb738
JA
1598 /*
1599 * Does this cfqq already have too much IO in flight?
1600 */
1601 if (cfqq->dispatched >= max_dispatch) {
1602 /*
1603 * idle queue must always only have a single IO in flight
1604 */
3ed9a296 1605 if (cfq_class_idle(cfqq))
0b182d61 1606 return false;
3ed9a296 1607
2f5cb738
JA
1608 /*
1609 * We have other queues, don't allow more IO from this one
1610 */
1611 if (cfqd->busy_queues > 1)
0b182d61 1612 return false;
9ede209e 1613
365722bb 1614 /*
8e296755 1615 * Sole queue user, allow bigger slice
365722bb 1616 */
8e296755
JA
1617 max_dispatch *= 4;
1618 }
1619
1620 /*
1621 * Async queues must wait a bit before being allowed dispatch.
1622 * We also ramp up the dispatch depth gradually for async IO,
1623 * based on the last sync IO we serviced
1624 */
963b72fc 1625 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
8e296755
JA
1626 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1627 unsigned int depth;
365722bb 1628
61f0c1dc 1629 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
1630 if (!depth && !cfqq->dispatched)
1631 depth = 1;
8e296755
JA
1632 if (depth < max_dispatch)
1633 max_dispatch = depth;
2f5cb738 1634 }
3ed9a296 1635
0b182d61
JA
1636 /*
1637 * If we're below the current max, allow a dispatch
1638 */
1639 return cfqq->dispatched < max_dispatch;
1640}
1641
1642/*
1643 * Dispatch a request from cfqq, moving them to the request queue
1644 * dispatch list.
1645 */
1646static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1647{
1648 struct request *rq;
1649
1650 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1651
1652 if (!cfq_may_dispatch(cfqd, cfqq))
1653 return false;
1654
1655 /*
1656 * follow expired path, else get first next available
1657 */
1658 rq = cfq_check_fifo(cfqq);
1659 if (!rq)
1660 rq = cfqq->next_rq;
1661
1662 /*
1663 * insert request into driver dispatch list
1664 */
1665 cfq_dispatch_insert(cfqd->queue, rq);
1666
1667 if (!cfqd->active_cic) {
1668 struct cfq_io_context *cic = RQ_CIC(rq);
1669
1670 atomic_long_inc(&cic->ioc->refcount);
1671 cfqd->active_cic = cic;
1672 }
1673
1674 return true;
1675}
1676
1677/*
1678 * Find the cfqq that we need to service and move a request from that to the
1679 * dispatch list
1680 */
1681static int cfq_dispatch_requests(struct request_queue *q, int force)
1682{
1683 struct cfq_data *cfqd = q->elevator->elevator_data;
1684 struct cfq_queue *cfqq;
1685
1686 if (!cfqd->busy_queues)
1687 return 0;
1688
1689 if (unlikely(force))
1690 return cfq_forced_dispatch(cfqd);
1691
1692 cfqq = cfq_select_queue(cfqd);
1693 if (!cfqq)
8e296755
JA
1694 return 0;
1695
2f5cb738 1696 /*
0b182d61 1697 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 1698 */
0b182d61
JA
1699 if (!cfq_dispatch_request(cfqd, cfqq))
1700 return 0;
1701
2f5cb738 1702 cfqq->slice_dispatch++;
b029195d 1703 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 1704
2f5cb738
JA
1705 /*
1706 * expire an async queue immediately if it has used up its slice. idle
1707 * queue always expire after 1 dispatch round.
1708 */
1709 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1710 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1711 cfq_class_idle(cfqq))) {
1712 cfqq->slice_end = jiffies + 1;
1713 cfq_slice_expired(cfqd, 0);
1da177e4
LT
1714 }
1715
b217a903 1716 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 1717 return 1;
1da177e4
LT
1718}
1719
1da177e4 1720/*
5e705374
JA
1721 * task holds one reference to the queue, dropped when task exits. each rq
1722 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4
LT
1723 *
1724 * queue lock must be held here.
1725 */
1726static void cfq_put_queue(struct cfq_queue *cfqq)
1727{
22e2c507
JA
1728 struct cfq_data *cfqd = cfqq->cfqd;
1729
1730 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
1731
1732 if (!atomic_dec_and_test(&cfqq->ref))
1733 return;
1734
7b679138 1735 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 1736 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 1737 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3b18152c 1738 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 1739
28f95cbc 1740 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 1741 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 1742 cfq_schedule_dispatch(cfqd);
28f95cbc 1743 }
22e2c507 1744
1da177e4
LT
1745 kmem_cache_free(cfq_pool, cfqq);
1746}
1747
d6de8be7
JA
1748/*
1749 * Must always be called with the rcu_read_lock() held
1750 */
07416d29
JA
1751static void
1752__call_for_each_cic(struct io_context *ioc,
1753 void (*func)(struct io_context *, struct cfq_io_context *))
1754{
1755 struct cfq_io_context *cic;
1756 struct hlist_node *n;
1757
1758 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1759 func(ioc, cic);
1760}
1761
4ac845a2 1762/*
34e6bbf2 1763 * Call func for each cic attached to this ioc.
4ac845a2 1764 */
34e6bbf2 1765static void
4ac845a2
JA
1766call_for_each_cic(struct io_context *ioc,
1767 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 1768{
4ac845a2 1769 rcu_read_lock();
07416d29 1770 __call_for_each_cic(ioc, func);
4ac845a2 1771 rcu_read_unlock();
34e6bbf2
FC
1772}
1773
1774static void cfq_cic_free_rcu(struct rcu_head *head)
1775{
1776 struct cfq_io_context *cic;
1777
1778 cic = container_of(head, struct cfq_io_context, rcu_head);
1779
1780 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 1781 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 1782
9a11b4ed
JA
1783 if (ioc_gone) {
1784 /*
1785 * CFQ scheduler is exiting, grab exit lock and check
1786 * the pending io context count. If it hits zero,
1787 * complete ioc_gone and set it back to NULL
1788 */
1789 spin_lock(&ioc_gone_lock);
245b2e70 1790 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
1791 complete(ioc_gone);
1792 ioc_gone = NULL;
1793 }
1794 spin_unlock(&ioc_gone_lock);
1795 }
34e6bbf2 1796}
4ac845a2 1797
34e6bbf2
FC
1798static void cfq_cic_free(struct cfq_io_context *cic)
1799{
1800 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
1801}
1802
1803static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1804{
1805 unsigned long flags;
1806
1807 BUG_ON(!cic->dead_key);
1808
1809 spin_lock_irqsave(&ioc->lock, flags);
1810 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 1811 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
1812 spin_unlock_irqrestore(&ioc->lock, flags);
1813
34e6bbf2 1814 cfq_cic_free(cic);
4ac845a2
JA
1815}
1816
d6de8be7
JA
1817/*
1818 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1819 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1820 * and ->trim() which is called with the task lock held
1821 */
4ac845a2
JA
1822static void cfq_free_io_context(struct io_context *ioc)
1823{
4ac845a2 1824 /*
34e6bbf2
FC
1825 * ioc->refcount is zero here, or we are called from elv_unregister(),
1826 * so no more cic's are allowed to be linked into this ioc. So it
1827 * should be ok to iterate over the known list, we will see all cic's
1828 * since no new ones are added.
4ac845a2 1829 */
07416d29 1830 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
1831}
1832
89850f7e 1833static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1834{
df5fe3e8
JM
1835 struct cfq_queue *__cfqq, *next;
1836
28f95cbc 1837 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 1838 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 1839 cfq_schedule_dispatch(cfqd);
28f95cbc 1840 }
22e2c507 1841
df5fe3e8
JM
1842 /*
1843 * If this queue was scheduled to merge with another queue, be
1844 * sure to drop the reference taken on that queue (and others in
1845 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
1846 */
1847 __cfqq = cfqq->new_cfqq;
1848 while (__cfqq) {
1849 if (__cfqq == cfqq) {
1850 WARN(1, "cfqq->new_cfqq loop detected\n");
1851 break;
1852 }
1853 next = __cfqq->new_cfqq;
1854 cfq_put_queue(__cfqq);
1855 __cfqq = next;
1856 }
1857
89850f7e
JA
1858 cfq_put_queue(cfqq);
1859}
22e2c507 1860
89850f7e
JA
1861static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1862 struct cfq_io_context *cic)
1863{
4faa3c81
FC
1864 struct io_context *ioc = cic->ioc;
1865
fc46379d 1866 list_del_init(&cic->queue_list);
4ac845a2
JA
1867
1868 /*
1869 * Make sure key == NULL is seen for dead queues
1870 */
fc46379d 1871 smp_wmb();
4ac845a2 1872 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
1873 cic->key = NULL;
1874
4faa3c81
FC
1875 if (ioc->ioc_data == cic)
1876 rcu_assign_pointer(ioc->ioc_data, NULL);
1877
ff6657c6
JA
1878 if (cic->cfqq[BLK_RW_ASYNC]) {
1879 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1880 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
1881 }
1882
ff6657c6
JA
1883 if (cic->cfqq[BLK_RW_SYNC]) {
1884 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1885 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 1886 }
89850f7e
JA
1887}
1888
4ac845a2
JA
1889static void cfq_exit_single_io_context(struct io_context *ioc,
1890 struct cfq_io_context *cic)
89850f7e
JA
1891{
1892 struct cfq_data *cfqd = cic->key;
1893
89850f7e 1894 if (cfqd) {
165125e1 1895 struct request_queue *q = cfqd->queue;
4ac845a2 1896 unsigned long flags;
89850f7e 1897
4ac845a2 1898 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
1899
1900 /*
1901 * Ensure we get a fresh copy of the ->key to prevent
1902 * race between exiting task and queue
1903 */
1904 smp_read_barrier_depends();
1905 if (cic->key)
1906 __cfq_exit_single_io_context(cfqd, cic);
1907
4ac845a2 1908 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 1909 }
1da177e4
LT
1910}
1911
498d3aa2
JA
1912/*
1913 * The process that ioc belongs to has exited, we need to clean up
1914 * and put the internal structures we have that belongs to that process.
1915 */
e2d74ac0 1916static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 1917{
4ac845a2 1918 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
1919}
1920
22e2c507 1921static struct cfq_io_context *
8267e268 1922cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 1923{
b5deef90 1924 struct cfq_io_context *cic;
1da177e4 1925
94f6030c
CL
1926 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1927 cfqd->queue->node);
1da177e4 1928 if (cic) {
22e2c507 1929 cic->last_end_request = jiffies;
553698f9 1930 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 1931 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
1932 cic->dtor = cfq_free_io_context;
1933 cic->exit = cfq_exit_io_context;
245b2e70 1934 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
1935 }
1936
1937 return cic;
1938}
1939
fd0928df 1940static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
1941{
1942 struct task_struct *tsk = current;
1943 int ioprio_class;
1944
3b18152c 1945 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
1946 return;
1947
fd0928df 1948 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 1949 switch (ioprio_class) {
fe094d98
JA
1950 default:
1951 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1952 case IOPRIO_CLASS_NONE:
1953 /*
6d63c275 1954 * no prio set, inherit CPU scheduling settings
fe094d98
JA
1955 */
1956 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 1957 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
1958 break;
1959 case IOPRIO_CLASS_RT:
1960 cfqq->ioprio = task_ioprio(ioc);
1961 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1962 break;
1963 case IOPRIO_CLASS_BE:
1964 cfqq->ioprio = task_ioprio(ioc);
1965 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1966 break;
1967 case IOPRIO_CLASS_IDLE:
1968 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1969 cfqq->ioprio = 7;
1970 cfq_clear_cfqq_idle_window(cfqq);
1971 break;
22e2c507
JA
1972 }
1973
1974 /*
1975 * keep track of original prio settings in case we have to temporarily
1976 * elevate the priority of this queue
1977 */
1978 cfqq->org_ioprio = cfqq->ioprio;
1979 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 1980 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
1981}
1982
febffd61 1983static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 1984{
478a82b0
AV
1985 struct cfq_data *cfqd = cic->key;
1986 struct cfq_queue *cfqq;
c1b707d2 1987 unsigned long flags;
35e6077c 1988
caaa5f9f
JA
1989 if (unlikely(!cfqd))
1990 return;
1991
c1b707d2 1992 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 1993
ff6657c6 1994 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
1995 if (cfqq) {
1996 struct cfq_queue *new_cfqq;
ff6657c6
JA
1997 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1998 GFP_ATOMIC);
caaa5f9f 1999 if (new_cfqq) {
ff6657c6 2000 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2001 cfq_put_queue(cfqq);
2002 }
22e2c507 2003 }
caaa5f9f 2004
ff6657c6 2005 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2006 if (cfqq)
2007 cfq_mark_cfqq_prio_changed(cfqq);
2008
c1b707d2 2009 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2010}
2011
fc46379d 2012static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2013{
4ac845a2 2014 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2015 ioc->ioprio_changed = 0;
22e2c507
JA
2016}
2017
d5036d77 2018static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2019 pid_t pid, bool is_sync)
d5036d77
JA
2020{
2021 RB_CLEAR_NODE(&cfqq->rb_node);
2022 RB_CLEAR_NODE(&cfqq->p_node);
2023 INIT_LIST_HEAD(&cfqq->fifo);
2024
2025 atomic_set(&cfqq->ref, 0);
2026 cfqq->cfqd = cfqd;
2027
2028 cfq_mark_cfqq_prio_changed(cfqq);
2029
2030 if (is_sync) {
2031 if (!cfq_class_idle(cfqq))
2032 cfq_mark_cfqq_idle_window(cfqq);
2033 cfq_mark_cfqq_sync(cfqq);
2034 }
2035 cfqq->pid = pid;
2036}
2037
22e2c507 2038static struct cfq_queue *
a6151c3a 2039cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2040 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2041{
22e2c507 2042 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2043 struct cfq_io_context *cic;
22e2c507
JA
2044
2045retry:
4ac845a2 2046 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2047 /* cic always exists here */
2048 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2049
6118b70b
JA
2050 /*
2051 * Always try a new alloc if we fell back to the OOM cfqq
2052 * originally, since it should just be a temporary situation.
2053 */
2054 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2055 cfqq = NULL;
22e2c507
JA
2056 if (new_cfqq) {
2057 cfqq = new_cfqq;
2058 new_cfqq = NULL;
2059 } else if (gfp_mask & __GFP_WAIT) {
2060 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2061 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2062 gfp_mask | __GFP_ZERO,
94f6030c 2063 cfqd->queue->node);
22e2c507 2064 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2065 if (new_cfqq)
2066 goto retry;
22e2c507 2067 } else {
94f6030c
CL
2068 cfqq = kmem_cache_alloc_node(cfq_pool,
2069 gfp_mask | __GFP_ZERO,
2070 cfqd->queue->node);
22e2c507
JA
2071 }
2072
6118b70b
JA
2073 if (cfqq) {
2074 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2075 cfq_init_prio_data(cfqq, ioc);
2076 cfq_log_cfqq(cfqd, cfqq, "alloced");
2077 } else
2078 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2079 }
2080
2081 if (new_cfqq)
2082 kmem_cache_free(cfq_pool, new_cfqq);
2083
22e2c507
JA
2084 return cfqq;
2085}
2086
c2dea2d1
VT
2087static struct cfq_queue **
2088cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2089{
fe094d98 2090 switch (ioprio_class) {
c2dea2d1
VT
2091 case IOPRIO_CLASS_RT:
2092 return &cfqd->async_cfqq[0][ioprio];
2093 case IOPRIO_CLASS_BE:
2094 return &cfqd->async_cfqq[1][ioprio];
2095 case IOPRIO_CLASS_IDLE:
2096 return &cfqd->async_idle_cfqq;
2097 default:
2098 BUG();
2099 }
2100}
2101
15c31be4 2102static struct cfq_queue *
a6151c3a 2103cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2104 gfp_t gfp_mask)
2105{
fd0928df
JA
2106 const int ioprio = task_ioprio(ioc);
2107 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2108 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2109 struct cfq_queue *cfqq = NULL;
2110
c2dea2d1
VT
2111 if (!is_sync) {
2112 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2113 cfqq = *async_cfqq;
2114 }
2115
6118b70b 2116 if (!cfqq)
fd0928df 2117 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2118
2119 /*
2120 * pin the queue now that it's allocated, scheduler exit will prune it
2121 */
c2dea2d1 2122 if (!is_sync && !(*async_cfqq)) {
15c31be4 2123 atomic_inc(&cfqq->ref);
c2dea2d1 2124 *async_cfqq = cfqq;
15c31be4
JA
2125 }
2126
2127 atomic_inc(&cfqq->ref);
2128 return cfqq;
2129}
2130
498d3aa2
JA
2131/*
2132 * We drop cfq io contexts lazily, so we may find a dead one.
2133 */
dbecf3ab 2134static void
4ac845a2
JA
2135cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2136 struct cfq_io_context *cic)
dbecf3ab 2137{
4ac845a2
JA
2138 unsigned long flags;
2139
fc46379d 2140 WARN_ON(!list_empty(&cic->queue_list));
597bc485 2141
4ac845a2
JA
2142 spin_lock_irqsave(&ioc->lock, flags);
2143
4faa3c81 2144 BUG_ON(ioc->ioc_data == cic);
597bc485 2145
4ac845a2 2146 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 2147 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2148 spin_unlock_irqrestore(&ioc->lock, flags);
2149
2150 cfq_cic_free(cic);
dbecf3ab
OH
2151}
2152
e2d74ac0 2153static struct cfq_io_context *
4ac845a2 2154cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 2155{
e2d74ac0 2156 struct cfq_io_context *cic;
d6de8be7 2157 unsigned long flags;
4ac845a2 2158 void *k;
e2d74ac0 2159
91fac317
VT
2160 if (unlikely(!ioc))
2161 return NULL;
2162
d6de8be7
JA
2163 rcu_read_lock();
2164
597bc485
JA
2165 /*
2166 * we maintain a last-hit cache, to avoid browsing over the tree
2167 */
4ac845a2 2168 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
2169 if (cic && cic->key == cfqd) {
2170 rcu_read_unlock();
597bc485 2171 return cic;
d6de8be7 2172 }
597bc485 2173
4ac845a2 2174 do {
4ac845a2
JA
2175 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2176 rcu_read_unlock();
2177 if (!cic)
2178 break;
be3b0753
OH
2179 /* ->key must be copied to avoid race with cfq_exit_queue() */
2180 k = cic->key;
2181 if (unlikely(!k)) {
4ac845a2 2182 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 2183 rcu_read_lock();
4ac845a2 2184 continue;
dbecf3ab 2185 }
e2d74ac0 2186
d6de8be7 2187 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 2188 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 2189 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
2190 break;
2191 } while (1);
e2d74ac0 2192
4ac845a2 2193 return cic;
e2d74ac0
JA
2194}
2195
4ac845a2
JA
2196/*
2197 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2198 * the process specific cfq io context when entered from the block layer.
2199 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2200 */
febffd61
JA
2201static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2202 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 2203{
0261d688 2204 unsigned long flags;
4ac845a2 2205 int ret;
e2d74ac0 2206
4ac845a2
JA
2207 ret = radix_tree_preload(gfp_mask);
2208 if (!ret) {
2209 cic->ioc = ioc;
2210 cic->key = cfqd;
e2d74ac0 2211
4ac845a2
JA
2212 spin_lock_irqsave(&ioc->lock, flags);
2213 ret = radix_tree_insert(&ioc->radix_root,
2214 (unsigned long) cfqd, cic);
ffc4e759
JA
2215 if (!ret)
2216 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 2217 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 2218
4ac845a2
JA
2219 radix_tree_preload_end();
2220
2221 if (!ret) {
2222 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2223 list_add(&cic->queue_list, &cfqd->cic_list);
2224 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2225 }
e2d74ac0
JA
2226 }
2227
4ac845a2
JA
2228 if (ret)
2229 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 2230
4ac845a2 2231 return ret;
e2d74ac0
JA
2232}
2233
1da177e4
LT
2234/*
2235 * Setup general io context and cfq io context. There can be several cfq
2236 * io contexts per general io context, if this process is doing io to more
e2d74ac0 2237 * than one device managed by cfq.
1da177e4
LT
2238 */
2239static struct cfq_io_context *
e2d74ac0 2240cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2241{
22e2c507 2242 struct io_context *ioc = NULL;
1da177e4 2243 struct cfq_io_context *cic;
1da177e4 2244
22e2c507 2245 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 2246
b5deef90 2247 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
2248 if (!ioc)
2249 return NULL;
2250
4ac845a2 2251 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
2252 if (cic)
2253 goto out;
1da177e4 2254
e2d74ac0
JA
2255 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2256 if (cic == NULL)
2257 goto err;
1da177e4 2258
4ac845a2
JA
2259 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2260 goto err_free;
2261
1da177e4 2262out:
fc46379d
JA
2263 smp_read_barrier_depends();
2264 if (unlikely(ioc->ioprio_changed))
2265 cfq_ioc_set_ioprio(ioc);
2266
1da177e4 2267 return cic;
4ac845a2
JA
2268err_free:
2269 cfq_cic_free(cic);
1da177e4
LT
2270err:
2271 put_io_context(ioc);
2272 return NULL;
2273}
2274
22e2c507
JA
2275static void
2276cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 2277{
aaf1228d
JA
2278 unsigned long elapsed = jiffies - cic->last_end_request;
2279 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 2280
22e2c507
JA
2281 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2282 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2283 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2284}
1da177e4 2285
206dc69b 2286static void
b2c18e1e 2287cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 2288 struct request *rq)
206dc69b
JA
2289{
2290 sector_t sdist;
2291 u64 total;
2292
b2c18e1e 2293 if (!cfqq->last_request_pos)
4d00aa47 2294 sdist = 0;
b2c18e1e
JM
2295 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2296 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
206dc69b 2297 else
b2c18e1e 2298 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
206dc69b
JA
2299
2300 /*
2301 * Don't allow the seek distance to get too large from the
2302 * odd fragment, pagein, etc
2303 */
b2c18e1e
JM
2304 if (cfqq->seek_samples <= 60) /* second&third seek */
2305 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
206dc69b 2306 else
b2c18e1e 2307 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
206dc69b 2308
b2c18e1e
JM
2309 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2310 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2311 total = cfqq->seek_total + (cfqq->seek_samples/2);
2312 do_div(total, cfqq->seek_samples);
2313 cfqq->seek_mean = (sector_t)total;
e6c5bc73
JM
2314
2315 /*
2316 * If this cfqq is shared between multiple processes, check to
2317 * make sure that those processes are still issuing I/Os within
2318 * the mean seek distance. If not, it may be time to break the
2319 * queues apart again.
2320 */
2321 if (cfq_cfqq_coop(cfqq)) {
2322 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2323 cfqq->seeky_start = jiffies;
2324 else if (!CFQQ_SEEKY(cfqq))
2325 cfqq->seeky_start = 0;
2326 }
206dc69b 2327}
1da177e4 2328
22e2c507
JA
2329/*
2330 * Disable idle window if the process thinks too long or seeks so much that
2331 * it doesn't matter
2332 */
2333static void
2334cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2335 struct cfq_io_context *cic)
2336{
7b679138 2337 int old_idle, enable_idle;
1be92f2f 2338
0871714e
JA
2339 /*
2340 * Don't idle for async or idle io prio class
2341 */
2342 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
2343 return;
2344
c265a7f4 2345 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 2346
66dac98e 2347 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
718eee05 2348 (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq)))
22e2c507
JA
2349 enable_idle = 0;
2350 else if (sample_valid(cic->ttime_samples)) {
718eee05 2351 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
2352 enable_idle = 0;
2353 else
2354 enable_idle = 1;
1da177e4
LT
2355 }
2356
7b679138
JA
2357 if (old_idle != enable_idle) {
2358 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2359 if (enable_idle)
2360 cfq_mark_cfqq_idle_window(cfqq);
2361 else
2362 cfq_clear_cfqq_idle_window(cfqq);
2363 }
22e2c507 2364}
1da177e4 2365
22e2c507
JA
2366/*
2367 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2368 * no or if we aren't sure, a 1 will cause a preempt.
2369 */
a6151c3a 2370static bool
22e2c507 2371cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 2372 struct request *rq)
22e2c507 2373{
6d048f53 2374 struct cfq_queue *cfqq;
22e2c507 2375
6d048f53
JA
2376 cfqq = cfqd->active_queue;
2377 if (!cfqq)
a6151c3a 2378 return false;
22e2c507 2379
6d048f53 2380 if (cfq_slice_used(cfqq))
a6151c3a 2381 return true;
6d048f53
JA
2382
2383 if (cfq_class_idle(new_cfqq))
a6151c3a 2384 return false;
22e2c507
JA
2385
2386 if (cfq_class_idle(cfqq))
a6151c3a 2387 return true;
1e3335de 2388
718eee05
CZ
2389 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD
2390 && new_cfqq->service_tree == cfqq->service_tree)
2391 return true;
2392
374f84ac
JA
2393 /*
2394 * if the new request is sync, but the currently running queue is
2395 * not, let the sync request have priority.
2396 */
5e705374 2397 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 2398 return true;
1e3335de 2399
374f84ac
JA
2400 /*
2401 * So both queues are sync. Let the new request get disk time if
2402 * it's a metadata request and the current queue is doing regular IO.
2403 */
2404 if (rq_is_meta(rq) && !cfqq->meta_pending)
e6ec4fe2 2405 return true;
22e2c507 2406
3a9a3f6c
DS
2407 /*
2408 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2409 */
2410 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 2411 return true;
3a9a3f6c 2412
1e3335de 2413 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 2414 return false;
1e3335de
JA
2415
2416 /*
2417 * if this request is as-good as one we would expect from the
2418 * current cfqq, let it preempt
2419 */
e00ef799 2420 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 2421 return true;
1e3335de 2422
a6151c3a 2423 return false;
22e2c507
JA
2424}
2425
2426/*
2427 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2428 * let it have half of its nominal slice.
2429 */
2430static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2431{
7b679138 2432 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 2433 cfq_slice_expired(cfqd, 1);
22e2c507 2434
bf572256
JA
2435 /*
2436 * Put the new queue at the front of the of the current list,
2437 * so we know that it will be selected next.
2438 */
2439 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
2440
2441 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 2442
44f7c160
JA
2443 cfqq->slice_end = 0;
2444 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
2445}
2446
22e2c507 2447/*
5e705374 2448 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
2449 * something we should do about it
2450 */
2451static void
5e705374
JA
2452cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2453 struct request *rq)
22e2c507 2454{
5e705374 2455 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 2456
45333d5a 2457 cfqd->rq_queued++;
374f84ac
JA
2458 if (rq_is_meta(rq))
2459 cfqq->meta_pending++;
2460
9c2c38a1 2461 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 2462 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
2463 cfq_update_idle_window(cfqd, cfqq, cic);
2464
b2c18e1e 2465 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
2466
2467 if (cfqq == cfqd->active_queue) {
2468 /*
b029195d
JA
2469 * Remember that we saw a request from this process, but
2470 * don't start queuing just yet. Otherwise we risk seeing lots
2471 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
2472 * and merging. If the request is already larger than a single
2473 * page, let it rip immediately. For that case we assume that
2d870722
JA
2474 * merging is already done. Ditto for a busy system that
2475 * has other work pending, don't risk delaying until the
2476 * idle timer unplug to continue working.
22e2c507 2477 */
d6ceb25e 2478 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
2479 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2480 cfqd->busy_queues > 1) {
d6ceb25e 2481 del_timer(&cfqd->idle_slice_timer);
a7f55792 2482 __blk_run_queue(cfqd->queue);
d6ceb25e 2483 }
b029195d 2484 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 2485 }
5e705374 2486 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
2487 /*
2488 * not the active queue - expire current slice if it is
2489 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
2490 * has some old slice time left and is of higher priority or
2491 * this new queue is RT and the current one is BE
22e2c507
JA
2492 */
2493 cfq_preempt_queue(cfqd, cfqq);
a7f55792 2494 __blk_run_queue(cfqd->queue);
22e2c507 2495 }
1da177e4
LT
2496}
2497
165125e1 2498static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 2499{
b4878f24 2500 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 2501 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 2502
7b679138 2503 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 2504 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 2505
30996f40 2506 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 2507 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 2508 cfq_add_rq_rb(rq);
22e2c507 2509
5e705374 2510 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
2511}
2512
45333d5a
AC
2513/*
2514 * Update hw_tag based on peak queue depth over 50 samples under
2515 * sufficient load.
2516 */
2517static void cfq_update_hw_tag(struct cfq_data *cfqd)
2518{
1a1238a7
SL
2519 struct cfq_queue *cfqq = cfqd->active_queue;
2520
5ad531db
JA
2521 if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
2522 cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
45333d5a
AC
2523
2524 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
5ad531db 2525 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
2526 return;
2527
1a1238a7
SL
2528 /*
2529 * If active queue hasn't enough requests and can idle, cfq might not
2530 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
2531 * case
2532 */
2533 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
2534 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
2535 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
2536 return;
2537
45333d5a
AC
2538 if (cfqd->hw_tag_samples++ < 50)
2539 return;
2540
2541 if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2542 cfqd->hw_tag = 1;
2543 else
2544 cfqd->hw_tag = 0;
2545
2546 cfqd->hw_tag_samples = 0;
2547 cfqd->rq_in_driver_peak = 0;
2548}
2549
165125e1 2550static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 2551{
5e705374 2552 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 2553 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 2554 const int sync = rq_is_sync(rq);
b4878f24 2555 unsigned long now;
1da177e4 2556
b4878f24 2557 now = jiffies;
7b679138 2558 cfq_log_cfqq(cfqd, cfqq, "complete");
1da177e4 2559
45333d5a
AC
2560 cfq_update_hw_tag(cfqd);
2561
5ad531db 2562 WARN_ON(!cfqd->rq_in_driver[sync]);
6d048f53 2563 WARN_ON(!cfqq->dispatched);
5ad531db 2564 cfqd->rq_in_driver[sync]--;
6d048f53 2565 cfqq->dispatched--;
1da177e4 2566
3ed9a296
JA
2567 if (cfq_cfqq_sync(cfqq))
2568 cfqd->sync_flight--;
2569
365722bb 2570 if (sync) {
5e705374 2571 RQ_CIC(rq)->last_end_request = now;
365722bb
VG
2572 cfqd->last_end_sync_rq = now;
2573 }
caaa5f9f
JA
2574
2575 /*
2576 * If this is the active queue, check if it needs to be expired,
2577 * or if we want to idle in case it has no pending requests.
2578 */
2579 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
2580 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2581
44f7c160
JA
2582 if (cfq_cfqq_slice_new(cfqq)) {
2583 cfq_set_prio_slice(cfqd, cfqq);
2584 cfq_clear_cfqq_slice_new(cfqq);
2585 }
a36e71f9
JA
2586 /*
2587 * If there are no requests waiting in this queue, and
2588 * there are other queues ready to issue requests, AND
2589 * those other queues are issuing requests within our
2590 * mean seek distance, give them a chance to run instead
2591 * of idling.
2592 */
0871714e 2593 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 2594 cfq_slice_expired(cfqd, 1);
b3b6d040 2595 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq) &&
a36e71f9 2596 sync && !rq_noidle(rq))
6d048f53 2597 cfq_arm_slice_timer(cfqd);
caaa5f9f 2598 }
6d048f53 2599
5ad531db 2600 if (!rq_in_driver(cfqd))
23e018a1 2601 cfq_schedule_dispatch(cfqd);
1da177e4
LT
2602}
2603
22e2c507
JA
2604/*
2605 * we temporarily boost lower priority queues if they are holding fs exclusive
2606 * resources. they are boosted to normal prio (CLASS_BE/4)
2607 */
2608static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 2609{
22e2c507
JA
2610 if (has_fs_excl()) {
2611 /*
2612 * boost idle prio on transactions that would lock out other
2613 * users of the filesystem
2614 */
2615 if (cfq_class_idle(cfqq))
2616 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2617 if (cfqq->ioprio > IOPRIO_NORM)
2618 cfqq->ioprio = IOPRIO_NORM;
2619 } else {
2620 /*
dddb7451 2621 * unboost the queue (if needed)
22e2c507 2622 */
dddb7451
CZ
2623 cfqq->ioprio_class = cfqq->org_ioprio_class;
2624 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 2625 }
22e2c507 2626}
1da177e4 2627
89850f7e 2628static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 2629{
1b379d8d 2630 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 2631 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 2632 return ELV_MQUEUE_MUST;
3b18152c 2633 }
1da177e4 2634
22e2c507 2635 return ELV_MQUEUE_MAY;
22e2c507
JA
2636}
2637
165125e1 2638static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
2639{
2640 struct cfq_data *cfqd = q->elevator->elevator_data;
2641 struct task_struct *tsk = current;
91fac317 2642 struct cfq_io_context *cic;
22e2c507
JA
2643 struct cfq_queue *cfqq;
2644
2645 /*
2646 * don't force setup of a queue from here, as a call to may_queue
2647 * does not necessarily imply that a request actually will be queued.
2648 * so just lookup a possibly existing queue, or return 'may queue'
2649 * if that fails
2650 */
4ac845a2 2651 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
2652 if (!cic)
2653 return ELV_MQUEUE_MAY;
2654
b0b78f81 2655 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 2656 if (cfqq) {
fd0928df 2657 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
2658 cfq_prio_boost(cfqq);
2659
89850f7e 2660 return __cfq_may_queue(cfqq);
22e2c507
JA
2661 }
2662
2663 return ELV_MQUEUE_MAY;
1da177e4
LT
2664}
2665
1da177e4
LT
2666/*
2667 * queue lock held here
2668 */
bb37b94c 2669static void cfq_put_request(struct request *rq)
1da177e4 2670{
5e705374 2671 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 2672
5e705374 2673 if (cfqq) {
22e2c507 2674 const int rw = rq_data_dir(rq);
1da177e4 2675
22e2c507
JA
2676 BUG_ON(!cfqq->allocated[rw]);
2677 cfqq->allocated[rw]--;
1da177e4 2678
5e705374 2679 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 2680
1da177e4 2681 rq->elevator_private = NULL;
5e705374 2682 rq->elevator_private2 = NULL;
1da177e4 2683
1da177e4
LT
2684 cfq_put_queue(cfqq);
2685 }
2686}
2687
df5fe3e8
JM
2688static struct cfq_queue *
2689cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
2690 struct cfq_queue *cfqq)
2691{
2692 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
2693 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 2694 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
2695 cfq_put_queue(cfqq);
2696 return cic_to_cfqq(cic, 1);
2697}
2698
e6c5bc73
JM
2699static int should_split_cfqq(struct cfq_queue *cfqq)
2700{
2701 if (cfqq->seeky_start &&
2702 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
2703 return 1;
2704 return 0;
2705}
2706
2707/*
2708 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
2709 * was the last process referring to said cfqq.
2710 */
2711static struct cfq_queue *
2712split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
2713{
2714 if (cfqq_process_refs(cfqq) == 1) {
2715 cfqq->seeky_start = 0;
2716 cfqq->pid = current->pid;
2717 cfq_clear_cfqq_coop(cfqq);
2718 return cfqq;
2719 }
2720
2721 cic_set_cfqq(cic, NULL, 1);
2722 cfq_put_queue(cfqq);
2723 return NULL;
2724}
1da177e4 2725/*
22e2c507 2726 * Allocate cfq data structures associated with this request.
1da177e4 2727 */
22e2c507 2728static int
165125e1 2729cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
2730{
2731 struct cfq_data *cfqd = q->elevator->elevator_data;
2732 struct cfq_io_context *cic;
2733 const int rw = rq_data_dir(rq);
a6151c3a 2734 const bool is_sync = rq_is_sync(rq);
22e2c507 2735 struct cfq_queue *cfqq;
1da177e4
LT
2736 unsigned long flags;
2737
2738 might_sleep_if(gfp_mask & __GFP_WAIT);
2739
e2d74ac0 2740 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 2741
1da177e4
LT
2742 spin_lock_irqsave(q->queue_lock, flags);
2743
22e2c507
JA
2744 if (!cic)
2745 goto queue_fail;
2746
e6c5bc73 2747new_queue:
91fac317 2748 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 2749 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 2750 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 2751 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 2752 } else {
e6c5bc73
JM
2753 /*
2754 * If the queue was seeky for too long, break it apart.
2755 */
2756 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
2757 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
2758 cfqq = split_cfqq(cic, cfqq);
2759 if (!cfqq)
2760 goto new_queue;
2761 }
2762
df5fe3e8
JM
2763 /*
2764 * Check to see if this queue is scheduled to merge with
2765 * another, closely cooperating queue. The merging of
2766 * queues happens here as it must be done in process context.
2767 * The reference on new_cfqq was taken in merge_cfqqs.
2768 */
2769 if (cfqq->new_cfqq)
2770 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 2771 }
1da177e4
LT
2772
2773 cfqq->allocated[rw]++;
22e2c507 2774 atomic_inc(&cfqq->ref);
1da177e4 2775
5e705374 2776 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 2777
5e705374
JA
2778 rq->elevator_private = cic;
2779 rq->elevator_private2 = cfqq;
2780 return 0;
1da177e4 2781
22e2c507
JA
2782queue_fail:
2783 if (cic)
2784 put_io_context(cic->ioc);
89850f7e 2785
23e018a1 2786 cfq_schedule_dispatch(cfqd);
1da177e4 2787 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 2788 cfq_log(cfqd, "set_request fail");
1da177e4
LT
2789 return 1;
2790}
2791
65f27f38 2792static void cfq_kick_queue(struct work_struct *work)
22e2c507 2793{
65f27f38 2794 struct cfq_data *cfqd =
23e018a1 2795 container_of(work, struct cfq_data, unplug_work);
165125e1 2796 struct request_queue *q = cfqd->queue;
22e2c507 2797
40bb54d1 2798 spin_lock_irq(q->queue_lock);
a7f55792 2799 __blk_run_queue(cfqd->queue);
40bb54d1 2800 spin_unlock_irq(q->queue_lock);
22e2c507
JA
2801}
2802
2803/*
2804 * Timer running if the active_queue is currently idling inside its time slice
2805 */
2806static void cfq_idle_slice_timer(unsigned long data)
2807{
2808 struct cfq_data *cfqd = (struct cfq_data *) data;
2809 struct cfq_queue *cfqq;
2810 unsigned long flags;
3c6bd2f8 2811 int timed_out = 1;
22e2c507 2812
7b679138
JA
2813 cfq_log(cfqd, "idle timer fired");
2814
22e2c507
JA
2815 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2816
fe094d98
JA
2817 cfqq = cfqd->active_queue;
2818 if (cfqq) {
3c6bd2f8
JA
2819 timed_out = 0;
2820
b029195d
JA
2821 /*
2822 * We saw a request before the queue expired, let it through
2823 */
2824 if (cfq_cfqq_must_dispatch(cfqq))
2825 goto out_kick;
2826
22e2c507
JA
2827 /*
2828 * expired
2829 */
44f7c160 2830 if (cfq_slice_used(cfqq))
22e2c507
JA
2831 goto expire;
2832
2833 /*
2834 * only expire and reinvoke request handler, if there are
2835 * other queues with pending requests
2836 */
caaa5f9f 2837 if (!cfqd->busy_queues)
22e2c507 2838 goto out_cont;
22e2c507
JA
2839
2840 /*
2841 * not expired and it has a request pending, let it dispatch
2842 */
75e50984 2843 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2844 goto out_kick;
22e2c507
JA
2845 }
2846expire:
6084cdda 2847 cfq_slice_expired(cfqd, timed_out);
22e2c507 2848out_kick:
23e018a1 2849 cfq_schedule_dispatch(cfqd);
22e2c507
JA
2850out_cont:
2851 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2852}
2853
3b18152c
JA
2854static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2855{
2856 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 2857 cancel_work_sync(&cfqd->unplug_work);
3b18152c 2858}
22e2c507 2859
c2dea2d1
VT
2860static void cfq_put_async_queues(struct cfq_data *cfqd)
2861{
2862 int i;
2863
2864 for (i = 0; i < IOPRIO_BE_NR; i++) {
2865 if (cfqd->async_cfqq[0][i])
2866 cfq_put_queue(cfqd->async_cfqq[0][i]);
2867 if (cfqd->async_cfqq[1][i])
2868 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 2869 }
2389d1ef
ON
2870
2871 if (cfqd->async_idle_cfqq)
2872 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
2873}
2874
b374d18a 2875static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 2876{
22e2c507 2877 struct cfq_data *cfqd = e->elevator_data;
165125e1 2878 struct request_queue *q = cfqd->queue;
22e2c507 2879
3b18152c 2880 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 2881
d9ff4187 2882 spin_lock_irq(q->queue_lock);
e2d74ac0 2883
d9ff4187 2884 if (cfqd->active_queue)
6084cdda 2885 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
2886
2887 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
2888 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2889 struct cfq_io_context,
2890 queue_list);
89850f7e
JA
2891
2892 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 2893 }
e2d74ac0 2894
c2dea2d1 2895 cfq_put_async_queues(cfqd);
15c31be4 2896
d9ff4187 2897 spin_unlock_irq(q->queue_lock);
a90d742e
AV
2898
2899 cfq_shutdown_timer_wq(cfqd);
2900
a90d742e 2901 kfree(cfqd);
1da177e4
LT
2902}
2903
165125e1 2904static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
2905{
2906 struct cfq_data *cfqd;
718eee05 2907 int i, j;
1da177e4 2908
94f6030c 2909 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 2910 if (!cfqd)
bc1c1169 2911 return NULL;
1da177e4 2912
c0324a02 2913 for (i = 0; i < 2; ++i)
718eee05
CZ
2914 for (j = 0; j < 3; ++j)
2915 cfqd->service_trees[i][j] = CFQ_RB_ROOT;
c0324a02 2916 cfqd->service_tree_idle = CFQ_RB_ROOT;
26a2ac00
JA
2917
2918 /*
2919 * Not strictly needed (since RB_ROOT just clears the node and we
2920 * zeroed cfqd on alloc), but better be safe in case someone decides
2921 * to add magic to the rb code
2922 */
2923 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2924 cfqd->prio_trees[i] = RB_ROOT;
2925
6118b70b
JA
2926 /*
2927 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2928 * Grab a permanent reference to it, so that the normal code flow
2929 * will not attempt to free it.
2930 */
2931 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2932 atomic_inc(&cfqd->oom_cfqq.ref);
2933
d9ff4187 2934 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 2935
1da177e4 2936 cfqd->queue = q;
1da177e4 2937
22e2c507
JA
2938 init_timer(&cfqd->idle_slice_timer);
2939 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2940 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2941
23e018a1 2942 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 2943
1da177e4 2944 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
2945 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2946 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
2947 cfqd->cfq_back_max = cfq_back_max;
2948 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
2949 cfqd->cfq_slice[0] = cfq_slice_async;
2950 cfqd->cfq_slice[1] = cfq_slice_sync;
2951 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2952 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 2953 cfqd->cfq_latency = 1;
45333d5a 2954 cfqd->hw_tag = 1;
365722bb 2955 cfqd->last_end_sync_rq = jiffies;
bc1c1169 2956 return cfqd;
1da177e4
LT
2957}
2958
2959static void cfq_slab_kill(void)
2960{
d6de8be7
JA
2961 /*
2962 * Caller already ensured that pending RCU callbacks are completed,
2963 * so we should have no busy allocations at this point.
2964 */
1da177e4
LT
2965 if (cfq_pool)
2966 kmem_cache_destroy(cfq_pool);
2967 if (cfq_ioc_pool)
2968 kmem_cache_destroy(cfq_ioc_pool);
2969}
2970
2971static int __init cfq_slab_setup(void)
2972{
0a31bd5f 2973 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
2974 if (!cfq_pool)
2975 goto fail;
2976
34e6bbf2 2977 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
2978 if (!cfq_ioc_pool)
2979 goto fail;
2980
2981 return 0;
2982fail:
2983 cfq_slab_kill();
2984 return -ENOMEM;
2985}
2986
1da177e4
LT
2987/*
2988 * sysfs parts below -->
2989 */
1da177e4
LT
2990static ssize_t
2991cfq_var_show(unsigned int var, char *page)
2992{
2993 return sprintf(page, "%d\n", var);
2994}
2995
2996static ssize_t
2997cfq_var_store(unsigned int *var, const char *page, size_t count)
2998{
2999 char *p = (char *) page;
3000
3001 *var = simple_strtoul(p, &p, 10);
3002 return count;
3003}
3004
1da177e4 3005#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3006static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3007{ \
3d1ab40f 3008 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3009 unsigned int __data = __VAR; \
3010 if (__CONV) \
3011 __data = jiffies_to_msecs(__data); \
3012 return cfq_var_show(__data, (page)); \
3013}
3014SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
3015SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3016SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
3017SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3018SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
3019SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3020SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3021SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3022SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 3023SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
1da177e4
LT
3024#undef SHOW_FUNCTION
3025
3026#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 3027static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 3028{ \
3d1ab40f 3029 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3030 unsigned int __data; \
3031 int ret = cfq_var_store(&__data, (page), count); \
3032 if (__data < (MIN)) \
3033 __data = (MIN); \
3034 else if (__data > (MAX)) \
3035 __data = (MAX); \
3036 if (__CONV) \
3037 *(__PTR) = msecs_to_jiffies(__data); \
3038 else \
3039 *(__PTR) = __data; \
3040 return ret; \
3041}
3042STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
3043STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3044 UINT_MAX, 1);
3045STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3046 UINT_MAX, 1);
e572ec7e 3047STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
3048STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3049 UINT_MAX, 0);
22e2c507
JA
3050STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3051STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3052STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
3053STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3054 UINT_MAX, 0);
963b72fc 3055STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
1da177e4
LT
3056#undef STORE_FUNCTION
3057
e572ec7e
AV
3058#define CFQ_ATTR(name) \
3059 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3060
3061static struct elv_fs_entry cfq_attrs[] = {
3062 CFQ_ATTR(quantum),
e572ec7e
AV
3063 CFQ_ATTR(fifo_expire_sync),
3064 CFQ_ATTR(fifo_expire_async),
3065 CFQ_ATTR(back_seek_max),
3066 CFQ_ATTR(back_seek_penalty),
3067 CFQ_ATTR(slice_sync),
3068 CFQ_ATTR(slice_async),
3069 CFQ_ATTR(slice_async_rq),
3070 CFQ_ATTR(slice_idle),
963b72fc 3071 CFQ_ATTR(low_latency),
e572ec7e 3072 __ATTR_NULL
1da177e4
LT
3073};
3074
1da177e4
LT
3075static struct elevator_type iosched_cfq = {
3076 .ops = {
3077 .elevator_merge_fn = cfq_merge,
3078 .elevator_merged_fn = cfq_merged_request,
3079 .elevator_merge_req_fn = cfq_merged_requests,
da775265 3080 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 3081 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 3082 .elevator_add_req_fn = cfq_insert_request,
b4878f24 3083 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
3084 .elevator_deactivate_req_fn = cfq_deactivate_request,
3085 .elevator_queue_empty_fn = cfq_queue_empty,
3086 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
3087 .elevator_former_req_fn = elv_rb_former_request,
3088 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
3089 .elevator_set_req_fn = cfq_set_request,
3090 .elevator_put_req_fn = cfq_put_request,
3091 .elevator_may_queue_fn = cfq_may_queue,
3092 .elevator_init_fn = cfq_init_queue,
3093 .elevator_exit_fn = cfq_exit_queue,
fc46379d 3094 .trim = cfq_free_io_context,
1da177e4 3095 },
3d1ab40f 3096 .elevator_attrs = cfq_attrs,
1da177e4
LT
3097 .elevator_name = "cfq",
3098 .elevator_owner = THIS_MODULE,
3099};
3100
3101static int __init cfq_init(void)
3102{
22e2c507
JA
3103 /*
3104 * could be 0 on HZ < 1000 setups
3105 */
3106 if (!cfq_slice_async)
3107 cfq_slice_async = 1;
3108 if (!cfq_slice_idle)
3109 cfq_slice_idle = 1;
3110
1da177e4
LT
3111 if (cfq_slab_setup())
3112 return -ENOMEM;
3113
2fdd82bd 3114 elv_register(&iosched_cfq);
1da177e4 3115
2fdd82bd 3116 return 0;
1da177e4
LT
3117}
3118
3119static void __exit cfq_exit(void)
3120{
6e9a4738 3121 DECLARE_COMPLETION_ONSTACK(all_gone);
1da177e4 3122 elv_unregister(&iosched_cfq);
334e94de 3123 ioc_gone = &all_gone;
fba82272
OH
3124 /* ioc_gone's update must be visible before reading ioc_count */
3125 smp_wmb();
d6de8be7
JA
3126
3127 /*
3128 * this also protects us from entering cfq_slab_kill() with
3129 * pending RCU callbacks
3130 */
245b2e70 3131 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 3132 wait_for_completion(&all_gone);
83521d3e 3133 cfq_slab_kill();
1da177e4
LT
3134}
3135
3136module_init(cfq_init);
3137module_exit(cfq_exit);
3138
3139MODULE_AUTHOR("Jens Axboe");
3140MODULE_LICENSE("GPL");
3141MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");