]> bbs.cooldavid.org Git - net-next-2.6.git/blob - fs/ecryptfs/keystore.c
fs/ecryptfs: Return -ENOMEM on memory allocation failure
[net-next-2.6.git] / fs / ecryptfs / keystore.c
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  * In-kernel key management code.  Includes functions to parse and
4  * write authentication token-related packets with the underlying
5  * file.
6  *
7  * Copyright (C) 2004-2006 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
9  *              Michael C. Thompson <mcthomps@us.ibm.com>
10  *              Trevor S. Highland <trevor.highland@gmail.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
25  * 02111-1307, USA.
26  */
27
28 #include <linux/string.h>
29 #include <linux/syscalls.h>
30 #include <linux/pagemap.h>
31 #include <linux/key.h>
32 #include <linux/random.h>
33 #include <linux/crypto.h>
34 #include <linux/scatterlist.h>
35 #include <linux/slab.h>
36 #include "ecryptfs_kernel.h"
37
38 /**
39  * request_key returned an error instead of a valid key address;
40  * determine the type of error, make appropriate log entries, and
41  * return an error code.
42  */
43 static int process_request_key_err(long err_code)
44 {
45         int rc = 0;
46
47         switch (err_code) {
48         case -ENOKEY:
49                 ecryptfs_printk(KERN_WARNING, "No key\n");
50                 rc = -ENOENT;
51                 break;
52         case -EKEYEXPIRED:
53                 ecryptfs_printk(KERN_WARNING, "Key expired\n");
54                 rc = -ETIME;
55                 break;
56         case -EKEYREVOKED:
57                 ecryptfs_printk(KERN_WARNING, "Key revoked\n");
58                 rc = -EINVAL;
59                 break;
60         default:
61                 ecryptfs_printk(KERN_WARNING, "Unknown error code: "
62                                 "[0x%.16x]\n", err_code);
63                 rc = -EINVAL;
64         }
65         return rc;
66 }
67
68 /**
69  * ecryptfs_parse_packet_length
70  * @data: Pointer to memory containing length at offset
71  * @size: This function writes the decoded size to this memory
72  *        address; zero on error
73  * @length_size: The number of bytes occupied by the encoded length
74  *
75  * Returns zero on success; non-zero on error
76  */
77 int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
78                                  size_t *length_size)
79 {
80         int rc = 0;
81
82         (*length_size) = 0;
83         (*size) = 0;
84         if (data[0] < 192) {
85                 /* One-byte length */
86                 (*size) = (unsigned char)data[0];
87                 (*length_size) = 1;
88         } else if (data[0] < 224) {
89                 /* Two-byte length */
90                 (*size) = (((unsigned char)(data[0]) - 192) * 256);
91                 (*size) += ((unsigned char)(data[1]) + 192);
92                 (*length_size) = 2;
93         } else if (data[0] == 255) {
94                 /* Five-byte length; we're not supposed to see this */
95                 ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
96                                 "supported\n");
97                 rc = -EINVAL;
98                 goto out;
99         } else {
100                 ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
101                 rc = -EINVAL;
102                 goto out;
103         }
104 out:
105         return rc;
106 }
107
108 /**
109  * ecryptfs_write_packet_length
110  * @dest: The byte array target into which to write the length. Must
111  *        have at least 5 bytes allocated.
112  * @size: The length to write.
113  * @packet_size_length: The number of bytes used to encode the packet
114  *                      length is written to this address.
115  *
116  * Returns zero on success; non-zero on error.
117  */
118 int ecryptfs_write_packet_length(char *dest, size_t size,
119                                  size_t *packet_size_length)
120 {
121         int rc = 0;
122
123         if (size < 192) {
124                 dest[0] = size;
125                 (*packet_size_length) = 1;
126         } else if (size < 65536) {
127                 dest[0] = (((size - 192) / 256) + 192);
128                 dest[1] = ((size - 192) % 256);
129                 (*packet_size_length) = 2;
130         } else {
131                 rc = -EINVAL;
132                 ecryptfs_printk(KERN_WARNING,
133                                 "Unsupported packet size: [%d]\n", size);
134         }
135         return rc;
136 }
137
138 static int
139 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
140                     char **packet, size_t *packet_len)
141 {
142         size_t i = 0;
143         size_t data_len;
144         size_t packet_size_len;
145         char *message;
146         int rc;
147
148         /*
149          *              ***** TAG 64 Packet Format *****
150          *    | Content Type                       | 1 byte       |
151          *    | Key Identifier Size                | 1 or 2 bytes |
152          *    | Key Identifier                     | arbitrary    |
153          *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
154          *    | Encrypted File Encryption Key      | arbitrary    |
155          */
156         data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
157                     + session_key->encrypted_key_size);
158         *packet = kmalloc(data_len, GFP_KERNEL);
159         message = *packet;
160         if (!message) {
161                 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
162                 rc = -ENOMEM;
163                 goto out;
164         }
165         message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
166         rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
167                                           &packet_size_len);
168         if (rc) {
169                 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
170                                 "header; cannot generate packet length\n");
171                 goto out;
172         }
173         i += packet_size_len;
174         memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
175         i += ECRYPTFS_SIG_SIZE_HEX;
176         rc = ecryptfs_write_packet_length(&message[i],
177                                           session_key->encrypted_key_size,
178                                           &packet_size_len);
179         if (rc) {
180                 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
181                                 "header; cannot generate packet length\n");
182                 goto out;
183         }
184         i += packet_size_len;
185         memcpy(&message[i], session_key->encrypted_key,
186                session_key->encrypted_key_size);
187         i += session_key->encrypted_key_size;
188         *packet_len = i;
189 out:
190         return rc;
191 }
192
193 static int
194 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
195                     struct ecryptfs_message *msg)
196 {
197         size_t i = 0;
198         char *data;
199         size_t data_len;
200         size_t m_size;
201         size_t message_len;
202         u16 checksum = 0;
203         u16 expected_checksum = 0;
204         int rc;
205
206         /*
207          *              ***** TAG 65 Packet Format *****
208          *         | Content Type             | 1 byte       |
209          *         | Status Indicator         | 1 byte       |
210          *         | File Encryption Key Size | 1 or 2 bytes |
211          *         | File Encryption Key      | arbitrary    |
212          */
213         message_len = msg->data_len;
214         data = msg->data;
215         if (message_len < 4) {
216                 rc = -EIO;
217                 goto out;
218         }
219         if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
220                 ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
221                 rc = -EIO;
222                 goto out;
223         }
224         if (data[i++]) {
225                 ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
226                                 "[%d]\n", data[i-1]);
227                 rc = -EIO;
228                 goto out;
229         }
230         rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
231         if (rc) {
232                 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
233                                 "rc = [%d]\n", rc);
234                 goto out;
235         }
236         i += data_len;
237         if (message_len < (i + m_size)) {
238                 ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
239                                 "is shorter than expected\n");
240                 rc = -EIO;
241                 goto out;
242         }
243         if (m_size < 3) {
244                 ecryptfs_printk(KERN_ERR,
245                                 "The decrypted key is not long enough to "
246                                 "include a cipher code and checksum\n");
247                 rc = -EIO;
248                 goto out;
249         }
250         *cipher_code = data[i++];
251         /* The decrypted key includes 1 byte cipher code and 2 byte checksum */
252         session_key->decrypted_key_size = m_size - 3;
253         if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
254                 ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
255                                 "the maximum key size [%d]\n",
256                                 session_key->decrypted_key_size,
257                                 ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
258                 rc = -EIO;
259                 goto out;
260         }
261         memcpy(session_key->decrypted_key, &data[i],
262                session_key->decrypted_key_size);
263         i += session_key->decrypted_key_size;
264         expected_checksum += (unsigned char)(data[i++]) << 8;
265         expected_checksum += (unsigned char)(data[i++]);
266         for (i = 0; i < session_key->decrypted_key_size; i++)
267                 checksum += session_key->decrypted_key[i];
268         if (expected_checksum != checksum) {
269                 ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
270                                 "encryption  key; expected [%x]; calculated "
271                                 "[%x]\n", expected_checksum, checksum);
272                 rc = -EIO;
273         }
274 out:
275         return rc;
276 }
277
278
279 static int
280 write_tag_66_packet(char *signature, u8 cipher_code,
281                     struct ecryptfs_crypt_stat *crypt_stat, char **packet,
282                     size_t *packet_len)
283 {
284         size_t i = 0;
285         size_t j;
286         size_t data_len;
287         size_t checksum = 0;
288         size_t packet_size_len;
289         char *message;
290         int rc;
291
292         /*
293          *              ***** TAG 66 Packet Format *****
294          *         | Content Type             | 1 byte       |
295          *         | Key Identifier Size      | 1 or 2 bytes |
296          *         | Key Identifier           | arbitrary    |
297          *         | File Encryption Key Size | 1 or 2 bytes |
298          *         | File Encryption Key      | arbitrary    |
299          */
300         data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
301         *packet = kmalloc(data_len, GFP_KERNEL);
302         message = *packet;
303         if (!message) {
304                 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
305                 rc = -ENOMEM;
306                 goto out;
307         }
308         message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
309         rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
310                                           &packet_size_len);
311         if (rc) {
312                 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
313                                 "header; cannot generate packet length\n");
314                 goto out;
315         }
316         i += packet_size_len;
317         memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
318         i += ECRYPTFS_SIG_SIZE_HEX;
319         /* The encrypted key includes 1 byte cipher code and 2 byte checksum */
320         rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
321                                           &packet_size_len);
322         if (rc) {
323                 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
324                                 "header; cannot generate packet length\n");
325                 goto out;
326         }
327         i += packet_size_len;
328         message[i++] = cipher_code;
329         memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
330         i += crypt_stat->key_size;
331         for (j = 0; j < crypt_stat->key_size; j++)
332                 checksum += crypt_stat->key[j];
333         message[i++] = (checksum / 256) % 256;
334         message[i++] = (checksum % 256);
335         *packet_len = i;
336 out:
337         return rc;
338 }
339
340 static int
341 parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
342                     struct ecryptfs_message *msg)
343 {
344         size_t i = 0;
345         char *data;
346         size_t data_len;
347         size_t message_len;
348         int rc;
349
350         /*
351          *              ***** TAG 65 Packet Format *****
352          *    | Content Type                       | 1 byte       |
353          *    | Status Indicator                   | 1 byte       |
354          *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
355          *    | Encrypted File Encryption Key      | arbitrary    |
356          */
357         message_len = msg->data_len;
358         data = msg->data;
359         /* verify that everything through the encrypted FEK size is present */
360         if (message_len < 4) {
361                 rc = -EIO;
362                 printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
363                        "message length is [%d]\n", __func__, message_len, 4);
364                 goto out;
365         }
366         if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
367                 rc = -EIO;
368                 printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
369                        __func__);
370                 goto out;
371         }
372         if (data[i++]) {
373                 rc = -EIO;
374                 printk(KERN_ERR "%s: Status indicator has non zero "
375                        "value [%d]\n", __func__, data[i-1]);
376
377                 goto out;
378         }
379         rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
380                                           &data_len);
381         if (rc) {
382                 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
383                                 "rc = [%d]\n", rc);
384                 goto out;
385         }
386         i += data_len;
387         if (message_len < (i + key_rec->enc_key_size)) {
388                 rc = -EIO;
389                 printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
390                        __func__, message_len, (i + key_rec->enc_key_size));
391                 goto out;
392         }
393         if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
394                 rc = -EIO;
395                 printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
396                        "the maximum key size [%d]\n", __func__,
397                        key_rec->enc_key_size,
398                        ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
399                 goto out;
400         }
401         memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
402 out:
403         return rc;
404 }
405
406 static int
407 ecryptfs_find_global_auth_tok_for_sig(
408         struct ecryptfs_global_auth_tok **global_auth_tok,
409         struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
410 {
411         struct ecryptfs_global_auth_tok *walker;
412         int rc = 0;
413
414         (*global_auth_tok) = NULL;
415         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
416         list_for_each_entry(walker,
417                             &mount_crypt_stat->global_auth_tok_list,
418                             mount_crypt_stat_list) {
419                 if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX) == 0) {
420                         rc = key_validate(walker->global_auth_tok_key);
421                         if (!rc)
422                                 (*global_auth_tok) = walker;
423                         goto out;
424                 }
425         }
426         rc = -EINVAL;
427 out:
428         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
429         return rc;
430 }
431
432 /**
433  * ecryptfs_find_auth_tok_for_sig
434  * @auth_tok: Set to the matching auth_tok; NULL if not found
435  * @crypt_stat: inode crypt_stat crypto context
436  * @sig: Sig of auth_tok to find
437  *
438  * For now, this function simply looks at the registered auth_tok's
439  * linked off the mount_crypt_stat, so all the auth_toks that can be
440  * used must be registered at mount time. This function could
441  * potentially try a lot harder to find auth_tok's (e.g., by calling
442  * out to ecryptfsd to dynamically retrieve an auth_tok object) so
443  * that static registration of auth_tok's will no longer be necessary.
444  *
445  * Returns zero on no error; non-zero on error
446  */
447 static int
448 ecryptfs_find_auth_tok_for_sig(
449         struct ecryptfs_auth_tok **auth_tok,
450         struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
451         char *sig)
452 {
453         struct ecryptfs_global_auth_tok *global_auth_tok;
454         int rc = 0;
455
456         (*auth_tok) = NULL;
457         if (ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
458                                                   mount_crypt_stat, sig)) {
459                 struct key *auth_tok_key;
460
461                 rc = ecryptfs_keyring_auth_tok_for_sig(&auth_tok_key, auth_tok,
462                                                        sig);
463         } else
464                 (*auth_tok) = global_auth_tok->global_auth_tok;
465         return rc;
466 }
467
468 /**
469  * write_tag_70_packet can gobble a lot of stack space. We stuff most
470  * of the function's parameters in a kmalloc'd struct to help reduce
471  * eCryptfs' overall stack usage.
472  */
473 struct ecryptfs_write_tag_70_packet_silly_stack {
474         u8 cipher_code;
475         size_t max_packet_size;
476         size_t packet_size_len;
477         size_t block_aligned_filename_size;
478         size_t block_size;
479         size_t i;
480         size_t j;
481         size_t num_rand_bytes;
482         struct mutex *tfm_mutex;
483         char *block_aligned_filename;
484         struct ecryptfs_auth_tok *auth_tok;
485         struct scatterlist src_sg;
486         struct scatterlist dst_sg;
487         struct blkcipher_desc desc;
488         char iv[ECRYPTFS_MAX_IV_BYTES];
489         char hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
490         char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
491         struct hash_desc hash_desc;
492         struct scatterlist hash_sg;
493 };
494
495 /**
496  * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
497  * @filename: NULL-terminated filename string
498  *
499  * This is the simplest mechanism for achieving filename encryption in
500  * eCryptfs. It encrypts the given filename with the mount-wide
501  * filename encryption key (FNEK) and stores it in a packet to @dest,
502  * which the callee will encode and write directly into the dentry
503  * name.
504  */
505 int
506 ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
507                              size_t *packet_size,
508                              struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
509                              char *filename, size_t filename_size)
510 {
511         struct ecryptfs_write_tag_70_packet_silly_stack *s;
512         int rc = 0;
513
514         s = kmalloc(sizeof(*s), GFP_KERNEL);
515         if (!s) {
516                 printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
517                        "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
518                 rc = -ENOMEM;
519                 goto out;
520         }
521         s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
522         (*packet_size) = 0;
523         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
524                 &s->desc.tfm,
525                 &s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
526         if (unlikely(rc)) {
527                 printk(KERN_ERR "Internal error whilst attempting to get "
528                        "tfm and mutex for cipher name [%s]; rc = [%d]\n",
529                        mount_crypt_stat->global_default_fn_cipher_name, rc);
530                 goto out;
531         }
532         mutex_lock(s->tfm_mutex);
533         s->block_size = crypto_blkcipher_blocksize(s->desc.tfm);
534         /* Plus one for the \0 separator between the random prefix
535          * and the plaintext filename */
536         s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
537         s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
538         if ((s->block_aligned_filename_size % s->block_size) != 0) {
539                 s->num_rand_bytes += (s->block_size
540                                       - (s->block_aligned_filename_size
541                                          % s->block_size));
542                 s->block_aligned_filename_size = (s->num_rand_bytes
543                                                   + filename_size);
544         }
545         /* Octet 0: Tag 70 identifier
546          * Octets 1-N1: Tag 70 packet size (includes cipher identifier
547          *              and block-aligned encrypted filename size)
548          * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
549          * Octet N2-N3: Cipher identifier (1 octet)
550          * Octets N3-N4: Block-aligned encrypted filename
551          *  - Consists of a minimum number of random characters, a \0
552          *    separator, and then the filename */
553         s->max_packet_size = (1                   /* Tag 70 identifier */
554                               + 3                 /* Max Tag 70 packet size */
555                               + ECRYPTFS_SIG_SIZE /* FNEK sig */
556                               + 1                 /* Cipher identifier */
557                               + s->block_aligned_filename_size);
558         if (dest == NULL) {
559                 (*packet_size) = s->max_packet_size;
560                 goto out_unlock;
561         }
562         if (s->max_packet_size > (*remaining_bytes)) {
563                 printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
564                        "[%zd] available\n", __func__, s->max_packet_size,
565                        (*remaining_bytes));
566                 rc = -EINVAL;
567                 goto out_unlock;
568         }
569         s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
570                                             GFP_KERNEL);
571         if (!s->block_aligned_filename) {
572                 printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
573                        "kzalloc [%zd] bytes\n", __func__,
574                        s->block_aligned_filename_size);
575                 rc = -ENOMEM;
576                 goto out_unlock;
577         }
578         s->i = 0;
579         dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
580         rc = ecryptfs_write_packet_length(&dest[s->i],
581                                           (ECRYPTFS_SIG_SIZE
582                                            + 1 /* Cipher code */
583                                            + s->block_aligned_filename_size),
584                                           &s->packet_size_len);
585         if (rc) {
586                 printk(KERN_ERR "%s: Error generating tag 70 packet "
587                        "header; cannot generate packet length; rc = [%d]\n",
588                        __func__, rc);
589                 goto out_free_unlock;
590         }
591         s->i += s->packet_size_len;
592         ecryptfs_from_hex(&dest[s->i],
593                           mount_crypt_stat->global_default_fnek_sig,
594                           ECRYPTFS_SIG_SIZE);
595         s->i += ECRYPTFS_SIG_SIZE;
596         s->cipher_code = ecryptfs_code_for_cipher_string(
597                 mount_crypt_stat->global_default_fn_cipher_name,
598                 mount_crypt_stat->global_default_fn_cipher_key_bytes);
599         if (s->cipher_code == 0) {
600                 printk(KERN_WARNING "%s: Unable to generate code for "
601                        "cipher [%s] with key bytes [%zd]\n", __func__,
602                        mount_crypt_stat->global_default_fn_cipher_name,
603                        mount_crypt_stat->global_default_fn_cipher_key_bytes);
604                 rc = -EINVAL;
605                 goto out_free_unlock;
606         }
607         dest[s->i++] = s->cipher_code;
608         rc = ecryptfs_find_auth_tok_for_sig(
609                 &s->auth_tok, mount_crypt_stat,
610                 mount_crypt_stat->global_default_fnek_sig);
611         if (rc) {
612                 printk(KERN_ERR "%s: Error attempting to find auth tok for "
613                        "fnek sig [%s]; rc = [%d]\n", __func__,
614                        mount_crypt_stat->global_default_fnek_sig, rc);
615                 goto out_free_unlock;
616         }
617         /* TODO: Support other key modules than passphrase for
618          * filename encryption */
619         if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
620                 rc = -EOPNOTSUPP;
621                 printk(KERN_INFO "%s: Filename encryption only supports "
622                        "password tokens\n", __func__);
623                 goto out_free_unlock;
624         }
625         sg_init_one(
626                 &s->hash_sg,
627                 (u8 *)s->auth_tok->token.password.session_key_encryption_key,
628                 s->auth_tok->token.password.session_key_encryption_key_bytes);
629         s->hash_desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
630         s->hash_desc.tfm = crypto_alloc_hash(ECRYPTFS_TAG_70_DIGEST, 0,
631                                              CRYPTO_ALG_ASYNC);
632         if (IS_ERR(s->hash_desc.tfm)) {
633                         rc = PTR_ERR(s->hash_desc.tfm);
634                         printk(KERN_ERR "%s: Error attempting to "
635                                "allocate hash crypto context; rc = [%d]\n",
636                                __func__, rc);
637                         goto out_free_unlock;
638         }
639         rc = crypto_hash_init(&s->hash_desc);
640         if (rc) {
641                 printk(KERN_ERR
642                        "%s: Error initializing crypto hash; rc = [%d]\n",
643                        __func__, rc);
644                 goto out_release_free_unlock;
645         }
646         rc = crypto_hash_update(
647                 &s->hash_desc, &s->hash_sg,
648                 s->auth_tok->token.password.session_key_encryption_key_bytes);
649         if (rc) {
650                 printk(KERN_ERR
651                        "%s: Error updating crypto hash; rc = [%d]\n",
652                        __func__, rc);
653                 goto out_release_free_unlock;
654         }
655         rc = crypto_hash_final(&s->hash_desc, s->hash);
656         if (rc) {
657                 printk(KERN_ERR
658                        "%s: Error finalizing crypto hash; rc = [%d]\n",
659                        __func__, rc);
660                 goto out_release_free_unlock;
661         }
662         for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
663                 s->block_aligned_filename[s->j] =
664                         s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)];
665                 if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)
666                     == (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) {
667                         sg_init_one(&s->hash_sg, (u8 *)s->hash,
668                                     ECRYPTFS_TAG_70_DIGEST_SIZE);
669                         rc = crypto_hash_init(&s->hash_desc);
670                         if (rc) {
671                                 printk(KERN_ERR
672                                        "%s: Error initializing crypto hash; "
673                                        "rc = [%d]\n", __func__, rc);
674                                 goto out_release_free_unlock;
675                         }
676                         rc = crypto_hash_update(&s->hash_desc, &s->hash_sg,
677                                                 ECRYPTFS_TAG_70_DIGEST_SIZE);
678                         if (rc) {
679                                 printk(KERN_ERR
680                                        "%s: Error updating crypto hash; "
681                                        "rc = [%d]\n", __func__, rc);
682                                 goto out_release_free_unlock;
683                         }
684                         rc = crypto_hash_final(&s->hash_desc, s->tmp_hash);
685                         if (rc) {
686                                 printk(KERN_ERR
687                                        "%s: Error finalizing crypto hash; "
688                                        "rc = [%d]\n", __func__, rc);
689                                 goto out_release_free_unlock;
690                         }
691                         memcpy(s->hash, s->tmp_hash,
692                                ECRYPTFS_TAG_70_DIGEST_SIZE);
693                 }
694                 if (s->block_aligned_filename[s->j] == '\0')
695                         s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
696         }
697         memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
698                filename_size);
699         rc = virt_to_scatterlist(s->block_aligned_filename,
700                                  s->block_aligned_filename_size, &s->src_sg, 1);
701         if (rc != 1) {
702                 printk(KERN_ERR "%s: Internal error whilst attempting to "
703                        "convert filename memory to scatterlist; "
704                        "expected rc = 1; got rc = [%d]. "
705                        "block_aligned_filename_size = [%zd]\n", __func__, rc,
706                        s->block_aligned_filename_size);
707                 goto out_release_free_unlock;
708         }
709         rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
710                                  &s->dst_sg, 1);
711         if (rc != 1) {
712                 printk(KERN_ERR "%s: Internal error whilst attempting to "
713                        "convert encrypted filename memory to scatterlist; "
714                        "expected rc = 1; got rc = [%d]. "
715                        "block_aligned_filename_size = [%zd]\n", __func__, rc,
716                        s->block_aligned_filename_size);
717                 goto out_release_free_unlock;
718         }
719         /* The characters in the first block effectively do the job
720          * of the IV here, so we just use 0's for the IV. Note the
721          * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
722          * >= ECRYPTFS_MAX_IV_BYTES. */
723         memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
724         s->desc.info = s->iv;
725         rc = crypto_blkcipher_setkey(
726                 s->desc.tfm,
727                 s->auth_tok->token.password.session_key_encryption_key,
728                 mount_crypt_stat->global_default_fn_cipher_key_bytes);
729         if (rc < 0) {
730                 printk(KERN_ERR "%s: Error setting key for crypto context; "
731                        "rc = [%d]. s->auth_tok->token.password.session_key_"
732                        "encryption_key = [0x%p]; mount_crypt_stat->"
733                        "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
734                        rc,
735                        s->auth_tok->token.password.session_key_encryption_key,
736                        mount_crypt_stat->global_default_fn_cipher_key_bytes);
737                 goto out_release_free_unlock;
738         }
739         rc = crypto_blkcipher_encrypt_iv(&s->desc, &s->dst_sg, &s->src_sg,
740                                          s->block_aligned_filename_size);
741         if (rc) {
742                 printk(KERN_ERR "%s: Error attempting to encrypt filename; "
743                        "rc = [%d]\n", __func__, rc);
744                 goto out_release_free_unlock;
745         }
746         s->i += s->block_aligned_filename_size;
747         (*packet_size) = s->i;
748         (*remaining_bytes) -= (*packet_size);
749 out_release_free_unlock:
750         crypto_free_hash(s->hash_desc.tfm);
751 out_free_unlock:
752         kzfree(s->block_aligned_filename);
753 out_unlock:
754         mutex_unlock(s->tfm_mutex);
755 out:
756         kfree(s);
757         return rc;
758 }
759
760 struct ecryptfs_parse_tag_70_packet_silly_stack {
761         u8 cipher_code;
762         size_t max_packet_size;
763         size_t packet_size_len;
764         size_t parsed_tag_70_packet_size;
765         size_t block_aligned_filename_size;
766         size_t block_size;
767         size_t i;
768         struct mutex *tfm_mutex;
769         char *decrypted_filename;
770         struct ecryptfs_auth_tok *auth_tok;
771         struct scatterlist src_sg;
772         struct scatterlist dst_sg;
773         struct blkcipher_desc desc;
774         char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
775         char iv[ECRYPTFS_MAX_IV_BYTES];
776         char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE];
777 };
778
779 /**
780  * parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
781  * @filename: This function kmalloc's the memory for the filename
782  * @filename_size: This function sets this to the amount of memory
783  *                 kmalloc'd for the filename
784  * @packet_size: This function sets this to the the number of octets
785  *               in the packet parsed
786  * @mount_crypt_stat: The mount-wide cryptographic context
787  * @data: The memory location containing the start of the tag 70
788  *        packet
789  * @max_packet_size: The maximum legal size of the packet to be parsed
790  *                   from @data
791  *
792  * Returns zero on success; non-zero otherwise
793  */
794 int
795 ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
796                              size_t *packet_size,
797                              struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
798                              char *data, size_t max_packet_size)
799 {
800         struct ecryptfs_parse_tag_70_packet_silly_stack *s;
801         int rc = 0;
802
803         (*packet_size) = 0;
804         (*filename_size) = 0;
805         (*filename) = NULL;
806         s = kmalloc(sizeof(*s), GFP_KERNEL);
807         if (!s) {
808                 printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
809                        "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
810                 rc = -ENOMEM;
811                 goto out;
812         }
813         s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
814         if (max_packet_size < (1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1)) {
815                 printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
816                        "at least [%d]\n", __func__, max_packet_size,
817                         (1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1));
818                 rc = -EINVAL;
819                 goto out;
820         }
821         /* Octet 0: Tag 70 identifier
822          * Octets 1-N1: Tag 70 packet size (includes cipher identifier
823          *              and block-aligned encrypted filename size)
824          * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
825          * Octet N2-N3: Cipher identifier (1 octet)
826          * Octets N3-N4: Block-aligned encrypted filename
827          *  - Consists of a minimum number of random numbers, a \0
828          *    separator, and then the filename */
829         if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
830                 printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
831                        "tag [0x%.2x]\n", __func__,
832                        data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
833                 rc = -EINVAL;
834                 goto out;
835         }
836         rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
837                                           &s->parsed_tag_70_packet_size,
838                                           &s->packet_size_len);
839         if (rc) {
840                 printk(KERN_WARNING "%s: Error parsing packet length; "
841                        "rc = [%d]\n", __func__, rc);
842                 goto out;
843         }
844         s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
845                                           - ECRYPTFS_SIG_SIZE - 1);
846         if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
847             > max_packet_size) {
848                 printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
849                        "size is [%zd]\n", __func__, max_packet_size,
850                        (1 + s->packet_size_len + 1
851                         + s->block_aligned_filename_size));
852                 rc = -EINVAL;
853                 goto out;
854         }
855         (*packet_size) += s->packet_size_len;
856         ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
857                         ECRYPTFS_SIG_SIZE);
858         s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
859         (*packet_size) += ECRYPTFS_SIG_SIZE;
860         s->cipher_code = data[(*packet_size)++];
861         rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
862         if (rc) {
863                 printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
864                        __func__, s->cipher_code);
865                 goto out;
866         }
867         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->desc.tfm,
868                                                         &s->tfm_mutex,
869                                                         s->cipher_string);
870         if (unlikely(rc)) {
871                 printk(KERN_ERR "Internal error whilst attempting to get "
872                        "tfm and mutex for cipher name [%s]; rc = [%d]\n",
873                        s->cipher_string, rc);
874                 goto out;
875         }
876         mutex_lock(s->tfm_mutex);
877         rc = virt_to_scatterlist(&data[(*packet_size)],
878                                  s->block_aligned_filename_size, &s->src_sg, 1);
879         if (rc != 1) {
880                 printk(KERN_ERR "%s: Internal error whilst attempting to "
881                        "convert encrypted filename memory to scatterlist; "
882                        "expected rc = 1; got rc = [%d]. "
883                        "block_aligned_filename_size = [%zd]\n", __func__, rc,
884                        s->block_aligned_filename_size);
885                 goto out_unlock;
886         }
887         (*packet_size) += s->block_aligned_filename_size;
888         s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
889                                         GFP_KERNEL);
890         if (!s->decrypted_filename) {
891                 printk(KERN_ERR "%s: Out of memory whilst attempting to "
892                        "kmalloc [%zd] bytes\n", __func__,
893                        s->block_aligned_filename_size);
894                 rc = -ENOMEM;
895                 goto out_unlock;
896         }
897         rc = virt_to_scatterlist(s->decrypted_filename,
898                                  s->block_aligned_filename_size, &s->dst_sg, 1);
899         if (rc != 1) {
900                 printk(KERN_ERR "%s: Internal error whilst attempting to "
901                        "convert decrypted filename memory to scatterlist; "
902                        "expected rc = 1; got rc = [%d]. "
903                        "block_aligned_filename_size = [%zd]\n", __func__, rc,
904                        s->block_aligned_filename_size);
905                 goto out_free_unlock;
906         }
907         /* The characters in the first block effectively do the job of
908          * the IV here, so we just use 0's for the IV. Note the
909          * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
910          * >= ECRYPTFS_MAX_IV_BYTES. */
911         memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
912         s->desc.info = s->iv;
913         rc = ecryptfs_find_auth_tok_for_sig(&s->auth_tok, mount_crypt_stat,
914                                             s->fnek_sig_hex);
915         if (rc) {
916                 printk(KERN_ERR "%s: Error attempting to find auth tok for "
917                        "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
918                        rc);
919                 goto out_free_unlock;
920         }
921         /* TODO: Support other key modules than passphrase for
922          * filename encryption */
923         if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
924                 rc = -EOPNOTSUPP;
925                 printk(KERN_INFO "%s: Filename encryption only supports "
926                        "password tokens\n", __func__);
927                 goto out_free_unlock;
928         }
929         rc = crypto_blkcipher_setkey(
930                 s->desc.tfm,
931                 s->auth_tok->token.password.session_key_encryption_key,
932                 mount_crypt_stat->global_default_fn_cipher_key_bytes);
933         if (rc < 0) {
934                 printk(KERN_ERR "%s: Error setting key for crypto context; "
935                        "rc = [%d]. s->auth_tok->token.password.session_key_"
936                        "encryption_key = [0x%p]; mount_crypt_stat->"
937                        "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
938                        rc,
939                        s->auth_tok->token.password.session_key_encryption_key,
940                        mount_crypt_stat->global_default_fn_cipher_key_bytes);
941                 goto out_free_unlock;
942         }
943         rc = crypto_blkcipher_decrypt_iv(&s->desc, &s->dst_sg, &s->src_sg,
944                                          s->block_aligned_filename_size);
945         if (rc) {
946                 printk(KERN_ERR "%s: Error attempting to decrypt filename; "
947                        "rc = [%d]\n", __func__, rc);
948                 goto out_free_unlock;
949         }
950         s->i = 0;
951         while (s->decrypted_filename[s->i] != '\0'
952                && s->i < s->block_aligned_filename_size)
953                 s->i++;
954         if (s->i == s->block_aligned_filename_size) {
955                 printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
956                        "find valid separator between random characters and "
957                        "the filename\n", __func__);
958                 rc = -EINVAL;
959                 goto out_free_unlock;
960         }
961         s->i++;
962         (*filename_size) = (s->block_aligned_filename_size - s->i);
963         if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
964                 printk(KERN_WARNING "%s: Filename size is [%zd], which is "
965                        "invalid\n", __func__, (*filename_size));
966                 rc = -EINVAL;
967                 goto out_free_unlock;
968         }
969         (*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
970         if (!(*filename)) {
971                 printk(KERN_ERR "%s: Out of memory whilst attempting to "
972                        "kmalloc [%zd] bytes\n", __func__,
973                        ((*filename_size) + 1));
974                 rc = -ENOMEM;
975                 goto out_free_unlock;
976         }
977         memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
978         (*filename)[(*filename_size)] = '\0';
979 out_free_unlock:
980         kfree(s->decrypted_filename);
981 out_unlock:
982         mutex_unlock(s->tfm_mutex);
983 out:
984         if (rc) {
985                 (*packet_size) = 0;
986                 (*filename_size) = 0;
987                 (*filename) = NULL;
988         }
989         kfree(s);
990         return rc;
991 }
992
993 static int
994 ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
995 {
996         int rc = 0;
997
998         (*sig) = NULL;
999         switch (auth_tok->token_type) {
1000         case ECRYPTFS_PASSWORD:
1001                 (*sig) = auth_tok->token.password.signature;
1002                 break;
1003         case ECRYPTFS_PRIVATE_KEY:
1004                 (*sig) = auth_tok->token.private_key.signature;
1005                 break;
1006         default:
1007                 printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
1008                        auth_tok->token_type);
1009                 rc = -EINVAL;
1010         }
1011         return rc;
1012 }
1013
1014 /**
1015  * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1016  * @auth_tok: The key authentication token used to decrypt the session key
1017  * @crypt_stat: The cryptographic context
1018  *
1019  * Returns zero on success; non-zero error otherwise.
1020  */
1021 static int
1022 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1023                                   struct ecryptfs_crypt_stat *crypt_stat)
1024 {
1025         u8 cipher_code = 0;
1026         struct ecryptfs_msg_ctx *msg_ctx;
1027         struct ecryptfs_message *msg = NULL;
1028         char *auth_tok_sig;
1029         char *payload;
1030         size_t payload_len;
1031         int rc;
1032
1033         rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1034         if (rc) {
1035                 printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1036                        auth_tok->token_type);
1037                 goto out;
1038         }
1039         rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1040                                  &payload, &payload_len);
1041         if (rc) {
1042                 ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1043                 goto out;
1044         }
1045         rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1046         if (rc) {
1047                 ecryptfs_printk(KERN_ERR, "Error sending message to "
1048                                 "ecryptfsd\n");
1049                 goto out;
1050         }
1051         rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1052         if (rc) {
1053                 ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1054                                 "from the user space daemon\n");
1055                 rc = -EIO;
1056                 goto out;
1057         }
1058         rc = parse_tag_65_packet(&(auth_tok->session_key),
1059                                  &cipher_code, msg);
1060         if (rc) {
1061                 printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1062                        rc);
1063                 goto out;
1064         }
1065         auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1066         memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1067                auth_tok->session_key.decrypted_key_size);
1068         crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1069         rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1070         if (rc) {
1071                 ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1072                                 cipher_code)
1073                 goto out;
1074         }
1075         crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1076         if (ecryptfs_verbosity > 0) {
1077                 ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1078                 ecryptfs_dump_hex(crypt_stat->key,
1079                                   crypt_stat->key_size);
1080         }
1081 out:
1082         if (msg)
1083                 kfree(msg);
1084         return rc;
1085 }
1086
1087 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1088 {
1089         struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1090         struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1091
1092         list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1093                                  auth_tok_list_head, list) {
1094                 list_del(&auth_tok_list_item->list);
1095                 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1096                                 auth_tok_list_item);
1097         }
1098 }
1099
1100 struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1101
1102 /**
1103  * parse_tag_1_packet
1104  * @crypt_stat: The cryptographic context to modify based on packet contents
1105  * @data: The raw bytes of the packet.
1106  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1107  *                 a new authentication token will be placed at the
1108  *                 end of this list for this packet.
1109  * @new_auth_tok: Pointer to a pointer to memory that this function
1110  *                allocates; sets the memory address of the pointer to
1111  *                NULL on error. This object is added to the
1112  *                auth_tok_list.
1113  * @packet_size: This function writes the size of the parsed packet
1114  *               into this memory location; zero on error.
1115  * @max_packet_size: The maximum allowable packet size
1116  *
1117  * Returns zero on success; non-zero on error.
1118  */
1119 static int
1120 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1121                    unsigned char *data, struct list_head *auth_tok_list,
1122                    struct ecryptfs_auth_tok **new_auth_tok,
1123                    size_t *packet_size, size_t max_packet_size)
1124 {
1125         size_t body_size;
1126         struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1127         size_t length_size;
1128         int rc = 0;
1129
1130         (*packet_size) = 0;
1131         (*new_auth_tok) = NULL;
1132         /**
1133          * This format is inspired by OpenPGP; see RFC 2440
1134          * packet tag 1
1135          *
1136          * Tag 1 identifier (1 byte)
1137          * Max Tag 1 packet size (max 3 bytes)
1138          * Version (1 byte)
1139          * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1140          * Cipher identifier (1 byte)
1141          * Encrypted key size (arbitrary)
1142          *
1143          * 12 bytes minimum packet size
1144          */
1145         if (unlikely(max_packet_size < 12)) {
1146                 printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1147                 rc = -EINVAL;
1148                 goto out;
1149         }
1150         if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1151                 printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1152                        ECRYPTFS_TAG_1_PACKET_TYPE);
1153                 rc = -EINVAL;
1154                 goto out;
1155         }
1156         /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1157          * at end of function upon failure */
1158         auth_tok_list_item =
1159                 kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1160                                   GFP_KERNEL);
1161         if (!auth_tok_list_item) {
1162                 printk(KERN_ERR "Unable to allocate memory\n");
1163                 rc = -ENOMEM;
1164                 goto out;
1165         }
1166         (*new_auth_tok) = &auth_tok_list_item->auth_tok;
1167         rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1168                                           &length_size);
1169         if (rc) {
1170                 printk(KERN_WARNING "Error parsing packet length; "
1171                        "rc = [%d]\n", rc);
1172                 goto out_free;
1173         }
1174         if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1175                 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1176                 rc = -EINVAL;
1177                 goto out_free;
1178         }
1179         (*packet_size) += length_size;
1180         if (unlikely((*packet_size) + body_size > max_packet_size)) {
1181                 printk(KERN_WARNING "Packet size exceeds max\n");
1182                 rc = -EINVAL;
1183                 goto out_free;
1184         }
1185         if (unlikely(data[(*packet_size)++] != 0x03)) {
1186                 printk(KERN_WARNING "Unknown version number [%d]\n",
1187                        data[(*packet_size) - 1]);
1188                 rc = -EINVAL;
1189                 goto out_free;
1190         }
1191         ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1192                         &data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1193         *packet_size += ECRYPTFS_SIG_SIZE;
1194         /* This byte is skipped because the kernel does not need to
1195          * know which public key encryption algorithm was used */
1196         (*packet_size)++;
1197         (*new_auth_tok)->session_key.encrypted_key_size =
1198                 body_size - (ECRYPTFS_SIG_SIZE + 2);
1199         if ((*new_auth_tok)->session_key.encrypted_key_size
1200             > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1201                 printk(KERN_WARNING "Tag 1 packet contains key larger "
1202                        "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES");
1203                 rc = -EINVAL;
1204                 goto out;
1205         }
1206         memcpy((*new_auth_tok)->session_key.encrypted_key,
1207                &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1208         (*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1209         (*new_auth_tok)->session_key.flags &=
1210                 ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1211         (*new_auth_tok)->session_key.flags |=
1212                 ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1213         (*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1214         (*new_auth_tok)->flags = 0;
1215         (*new_auth_tok)->session_key.flags &=
1216                 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1217         (*new_auth_tok)->session_key.flags &=
1218                 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1219         list_add(&auth_tok_list_item->list, auth_tok_list);
1220         goto out;
1221 out_free:
1222         (*new_auth_tok) = NULL;
1223         memset(auth_tok_list_item, 0,
1224                sizeof(struct ecryptfs_auth_tok_list_item));
1225         kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1226                         auth_tok_list_item);
1227 out:
1228         if (rc)
1229                 (*packet_size) = 0;
1230         return rc;
1231 }
1232
1233 /**
1234  * parse_tag_3_packet
1235  * @crypt_stat: The cryptographic context to modify based on packet
1236  *              contents.
1237  * @data: The raw bytes of the packet.
1238  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1239  *                 a new authentication token will be placed at the end
1240  *                 of this list for this packet.
1241  * @new_auth_tok: Pointer to a pointer to memory that this function
1242  *                allocates; sets the memory address of the pointer to
1243  *                NULL on error. This object is added to the
1244  *                auth_tok_list.
1245  * @packet_size: This function writes the size of the parsed packet
1246  *               into this memory location; zero on error.
1247  * @max_packet_size: maximum number of bytes to parse
1248  *
1249  * Returns zero on success; non-zero on error.
1250  */
1251 static int
1252 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1253                    unsigned char *data, struct list_head *auth_tok_list,
1254                    struct ecryptfs_auth_tok **new_auth_tok,
1255                    size_t *packet_size, size_t max_packet_size)
1256 {
1257         size_t body_size;
1258         struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1259         size_t length_size;
1260         int rc = 0;
1261
1262         (*packet_size) = 0;
1263         (*new_auth_tok) = NULL;
1264         /**
1265          *This format is inspired by OpenPGP; see RFC 2440
1266          * packet tag 3
1267          *
1268          * Tag 3 identifier (1 byte)
1269          * Max Tag 3 packet size (max 3 bytes)
1270          * Version (1 byte)
1271          * Cipher code (1 byte)
1272          * S2K specifier (1 byte)
1273          * Hash identifier (1 byte)
1274          * Salt (ECRYPTFS_SALT_SIZE)
1275          * Hash iterations (1 byte)
1276          * Encrypted key (arbitrary)
1277          *
1278          * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1279          */
1280         if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1281                 printk(KERN_ERR "Max packet size too large\n");
1282                 rc = -EINVAL;
1283                 goto out;
1284         }
1285         if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1286                 printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1287                        ECRYPTFS_TAG_3_PACKET_TYPE);
1288                 rc = -EINVAL;
1289                 goto out;
1290         }
1291         /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1292          * at end of function upon failure */
1293         auth_tok_list_item =
1294             kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1295         if (!auth_tok_list_item) {
1296                 printk(KERN_ERR "Unable to allocate memory\n");
1297                 rc = -ENOMEM;
1298                 goto out;
1299         }
1300         (*new_auth_tok) = &auth_tok_list_item->auth_tok;
1301         rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1302                                           &length_size);
1303         if (rc) {
1304                 printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1305                        rc);
1306                 goto out_free;
1307         }
1308         if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1309                 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1310                 rc = -EINVAL;
1311                 goto out_free;
1312         }
1313         (*packet_size) += length_size;
1314         if (unlikely((*packet_size) + body_size > max_packet_size)) {
1315                 printk(KERN_ERR "Packet size exceeds max\n");
1316                 rc = -EINVAL;
1317                 goto out_free;
1318         }
1319         (*new_auth_tok)->session_key.encrypted_key_size =
1320                 (body_size - (ECRYPTFS_SALT_SIZE + 5));
1321         if ((*new_auth_tok)->session_key.encrypted_key_size
1322             > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1323                 printk(KERN_WARNING "Tag 3 packet contains key larger "
1324                        "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1325                 rc = -EINVAL;
1326                 goto out_free;
1327         }
1328         if (unlikely(data[(*packet_size)++] != 0x04)) {
1329                 printk(KERN_WARNING "Unknown version number [%d]\n",
1330                        data[(*packet_size) - 1]);
1331                 rc = -EINVAL;
1332                 goto out_free;
1333         }
1334         rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1335                                             (u16)data[(*packet_size)]);
1336         if (rc)
1337                 goto out_free;
1338         /* A little extra work to differentiate among the AES key
1339          * sizes; see RFC2440 */
1340         switch(data[(*packet_size)++]) {
1341         case RFC2440_CIPHER_AES_192:
1342                 crypt_stat->key_size = 24;
1343                 break;
1344         default:
1345                 crypt_stat->key_size =
1346                         (*new_auth_tok)->session_key.encrypted_key_size;
1347         }
1348         rc = ecryptfs_init_crypt_ctx(crypt_stat);
1349         if (rc)
1350                 goto out_free;
1351         if (unlikely(data[(*packet_size)++] != 0x03)) {
1352                 printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1353                 rc = -ENOSYS;
1354                 goto out_free;
1355         }
1356         /* TODO: finish the hash mapping */
1357         switch (data[(*packet_size)++]) {
1358         case 0x01: /* See RFC2440 for these numbers and their mappings */
1359                 /* Choose MD5 */
1360                 memcpy((*new_auth_tok)->token.password.salt,
1361                        &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1362                 (*packet_size) += ECRYPTFS_SALT_SIZE;
1363                 /* This conversion was taken straight from RFC2440 */
1364                 (*new_auth_tok)->token.password.hash_iterations =
1365                         ((u32) 16 + (data[(*packet_size)] & 15))
1366                                 << ((data[(*packet_size)] >> 4) + 6);
1367                 (*packet_size)++;
1368                 /* Friendly reminder:
1369                  * (*new_auth_tok)->session_key.encrypted_key_size =
1370                  *         (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1371                 memcpy((*new_auth_tok)->session_key.encrypted_key,
1372                        &data[(*packet_size)],
1373                        (*new_auth_tok)->session_key.encrypted_key_size);
1374                 (*packet_size) +=
1375                         (*new_auth_tok)->session_key.encrypted_key_size;
1376                 (*new_auth_tok)->session_key.flags &=
1377                         ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1378                 (*new_auth_tok)->session_key.flags |=
1379                         ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1380                 (*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1381                 break;
1382         default:
1383                 ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1384                                 "[%d]\n", data[(*packet_size) - 1]);
1385                 rc = -ENOSYS;
1386                 goto out_free;
1387         }
1388         (*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1389         /* TODO: Parametarize; we might actually want userspace to
1390          * decrypt the session key. */
1391         (*new_auth_tok)->session_key.flags &=
1392                             ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1393         (*new_auth_tok)->session_key.flags &=
1394                             ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1395         list_add(&auth_tok_list_item->list, auth_tok_list);
1396         goto out;
1397 out_free:
1398         (*new_auth_tok) = NULL;
1399         memset(auth_tok_list_item, 0,
1400                sizeof(struct ecryptfs_auth_tok_list_item));
1401         kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1402                         auth_tok_list_item);
1403 out:
1404         if (rc)
1405                 (*packet_size) = 0;
1406         return rc;
1407 }
1408
1409 /**
1410  * parse_tag_11_packet
1411  * @data: The raw bytes of the packet
1412  * @contents: This function writes the data contents of the literal
1413  *            packet into this memory location
1414  * @max_contents_bytes: The maximum number of bytes that this function
1415  *                      is allowed to write into contents
1416  * @tag_11_contents_size: This function writes the size of the parsed
1417  *                        contents into this memory location; zero on
1418  *                        error
1419  * @packet_size: This function writes the size of the parsed packet
1420  *               into this memory location; zero on error
1421  * @max_packet_size: maximum number of bytes to parse
1422  *
1423  * Returns zero on success; non-zero on error.
1424  */
1425 static int
1426 parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1427                     size_t max_contents_bytes, size_t *tag_11_contents_size,
1428                     size_t *packet_size, size_t max_packet_size)
1429 {
1430         size_t body_size;
1431         size_t length_size;
1432         int rc = 0;
1433
1434         (*packet_size) = 0;
1435         (*tag_11_contents_size) = 0;
1436         /* This format is inspired by OpenPGP; see RFC 2440
1437          * packet tag 11
1438          *
1439          * Tag 11 identifier (1 byte)
1440          * Max Tag 11 packet size (max 3 bytes)
1441          * Binary format specifier (1 byte)
1442          * Filename length (1 byte)
1443          * Filename ("_CONSOLE") (8 bytes)
1444          * Modification date (4 bytes)
1445          * Literal data (arbitrary)
1446          *
1447          * We need at least 16 bytes of data for the packet to even be
1448          * valid.
1449          */
1450         if (max_packet_size < 16) {
1451                 printk(KERN_ERR "Maximum packet size too small\n");
1452                 rc = -EINVAL;
1453                 goto out;
1454         }
1455         if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1456                 printk(KERN_WARNING "Invalid tag 11 packet format\n");
1457                 rc = -EINVAL;
1458                 goto out;
1459         }
1460         rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1461                                           &length_size);
1462         if (rc) {
1463                 printk(KERN_WARNING "Invalid tag 11 packet format\n");
1464                 goto out;
1465         }
1466         if (body_size < 14) {
1467                 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1468                 rc = -EINVAL;
1469                 goto out;
1470         }
1471         (*packet_size) += length_size;
1472         (*tag_11_contents_size) = (body_size - 14);
1473         if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1474                 printk(KERN_ERR "Packet size exceeds max\n");
1475                 rc = -EINVAL;
1476                 goto out;
1477         }
1478         if (unlikely((*tag_11_contents_size) > max_contents_bytes)) {
1479                 printk(KERN_ERR "Literal data section in tag 11 packet exceeds "
1480                        "expected size\n");
1481                 rc = -EINVAL;
1482                 goto out;
1483         }
1484         if (data[(*packet_size)++] != 0x62) {
1485                 printk(KERN_WARNING "Unrecognizable packet\n");
1486                 rc = -EINVAL;
1487                 goto out;
1488         }
1489         if (data[(*packet_size)++] != 0x08) {
1490                 printk(KERN_WARNING "Unrecognizable packet\n");
1491                 rc = -EINVAL;
1492                 goto out;
1493         }
1494         (*packet_size) += 12; /* Ignore filename and modification date */
1495         memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1496         (*packet_size) += (*tag_11_contents_size);
1497 out:
1498         if (rc) {
1499                 (*packet_size) = 0;
1500                 (*tag_11_contents_size) = 0;
1501         }
1502         return rc;
1503 }
1504
1505 /**
1506  * ecryptfs_verify_version
1507  * @version: The version number to confirm
1508  *
1509  * Returns zero on good version; non-zero otherwise
1510  */
1511 static int ecryptfs_verify_version(u16 version)
1512 {
1513         int rc = 0;
1514         unsigned char major;
1515         unsigned char minor;
1516
1517         major = ((version >> 8) & 0xFF);
1518         minor = (version & 0xFF);
1519         if (major != ECRYPTFS_VERSION_MAJOR) {
1520                 ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
1521                                 "Expected [%d]; got [%d]\n",
1522                                 ECRYPTFS_VERSION_MAJOR, major);
1523                 rc = -EINVAL;
1524                 goto out;
1525         }
1526         if (minor != ECRYPTFS_VERSION_MINOR) {
1527                 ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
1528                                 "Expected [%d]; got [%d]\n",
1529                                 ECRYPTFS_VERSION_MINOR, minor);
1530                 rc = -EINVAL;
1531                 goto out;
1532         }
1533 out:
1534         return rc;
1535 }
1536
1537 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1538                                       struct ecryptfs_auth_tok **auth_tok,
1539                                       char *sig)
1540 {
1541         int rc = 0;
1542
1543         (*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1544         if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1545                 printk(KERN_ERR "Could not find key with description: [%s]\n",
1546                        sig);
1547                 rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1548                 goto out;
1549         }
1550         (*auth_tok) = ecryptfs_get_key_payload_data(*auth_tok_key);
1551         if (ecryptfs_verify_version((*auth_tok)->version)) {
1552                 printk(KERN_ERR
1553                        "Data structure version mismatch. "
1554                        "Userspace tools must match eCryptfs "
1555                        "kernel module with major version [%d] "
1556                        "and minor version [%d]\n",
1557                        ECRYPTFS_VERSION_MAJOR,
1558                        ECRYPTFS_VERSION_MINOR);
1559                 rc = -EINVAL;
1560                 goto out;
1561         }
1562         if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
1563             && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
1564                 printk(KERN_ERR "Invalid auth_tok structure "
1565                        "returned from key query\n");
1566                 rc = -EINVAL;
1567                 goto out;
1568         }
1569 out:
1570         return rc;
1571 }
1572
1573 /**
1574  * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1575  * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1576  * @crypt_stat: The cryptographic context
1577  *
1578  * Returns zero on success; non-zero error otherwise
1579  */
1580 static int
1581 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1582                                          struct ecryptfs_crypt_stat *crypt_stat)
1583 {
1584         struct scatterlist dst_sg[2];
1585         struct scatterlist src_sg[2];
1586         struct mutex *tfm_mutex;
1587         struct blkcipher_desc desc = {
1588                 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
1589         };
1590         int rc = 0;
1591
1592         if (unlikely(ecryptfs_verbosity > 0)) {
1593                 ecryptfs_printk(
1594                         KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1595                         auth_tok->token.password.session_key_encryption_key_bytes);
1596                 ecryptfs_dump_hex(
1597                         auth_tok->token.password.session_key_encryption_key,
1598                         auth_tok->token.password.session_key_encryption_key_bytes);
1599         }
1600         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
1601                                                         crypt_stat->cipher);
1602         if (unlikely(rc)) {
1603                 printk(KERN_ERR "Internal error whilst attempting to get "
1604                        "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1605                        crypt_stat->cipher, rc);
1606                 goto out;
1607         }
1608         rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1609                                  auth_tok->session_key.encrypted_key_size,
1610                                  src_sg, 2);
1611         if (rc < 1 || rc > 2) {
1612                 printk(KERN_ERR "Internal error whilst attempting to convert "
1613                         "auth_tok->session_key.encrypted_key to scatterlist; "
1614                         "expected rc = 1; got rc = [%d]. "
1615                        "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1616                         auth_tok->session_key.encrypted_key_size);
1617                 goto out;
1618         }
1619         auth_tok->session_key.decrypted_key_size =
1620                 auth_tok->session_key.encrypted_key_size;
1621         rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1622                                  auth_tok->session_key.decrypted_key_size,
1623                                  dst_sg, 2);
1624         if (rc < 1 || rc > 2) {
1625                 printk(KERN_ERR "Internal error whilst attempting to convert "
1626                         "auth_tok->session_key.decrypted_key to scatterlist; "
1627                         "expected rc = 1; got rc = [%d]\n", rc);
1628                 goto out;
1629         }
1630         mutex_lock(tfm_mutex);
1631         rc = crypto_blkcipher_setkey(
1632                 desc.tfm, auth_tok->token.password.session_key_encryption_key,
1633                 crypt_stat->key_size);
1634         if (unlikely(rc < 0)) {
1635                 mutex_unlock(tfm_mutex);
1636                 printk(KERN_ERR "Error setting key for crypto context\n");
1637                 rc = -EINVAL;
1638                 goto out;
1639         }
1640         rc = crypto_blkcipher_decrypt(&desc, dst_sg, src_sg,
1641                                       auth_tok->session_key.encrypted_key_size);
1642         mutex_unlock(tfm_mutex);
1643         if (unlikely(rc)) {
1644                 printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1645                 goto out;
1646         }
1647         auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1648         memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1649                auth_tok->session_key.decrypted_key_size);
1650         crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1651         if (unlikely(ecryptfs_verbosity > 0)) {
1652                 ecryptfs_printk(KERN_DEBUG, "FEK of size [%d]:\n",
1653                                 crypt_stat->key_size);
1654                 ecryptfs_dump_hex(crypt_stat->key,
1655                                   crypt_stat->key_size);
1656         }
1657 out:
1658         return rc;
1659 }
1660
1661 /**
1662  * ecryptfs_parse_packet_set
1663  * @crypt_stat: The cryptographic context
1664  * @src: Virtual address of region of memory containing the packets
1665  * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1666  *
1667  * Get crypt_stat to have the file's session key if the requisite key
1668  * is available to decrypt the session key.
1669  *
1670  * Returns Zero if a valid authentication token was retrieved and
1671  * processed; negative value for file not encrypted or for error
1672  * conditions.
1673  */
1674 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1675                               unsigned char *src,
1676                               struct dentry *ecryptfs_dentry)
1677 {
1678         size_t i = 0;
1679         size_t found_auth_tok;
1680         size_t next_packet_is_auth_tok_packet;
1681         struct list_head auth_tok_list;
1682         struct ecryptfs_auth_tok *matching_auth_tok;
1683         struct ecryptfs_auth_tok *candidate_auth_tok;
1684         char *candidate_auth_tok_sig;
1685         size_t packet_size;
1686         struct ecryptfs_auth_tok *new_auth_tok;
1687         unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1688         struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1689         size_t tag_11_contents_size;
1690         size_t tag_11_packet_size;
1691         int rc = 0;
1692
1693         INIT_LIST_HEAD(&auth_tok_list);
1694         /* Parse the header to find as many packets as we can; these will be
1695          * added the our &auth_tok_list */
1696         next_packet_is_auth_tok_packet = 1;
1697         while (next_packet_is_auth_tok_packet) {
1698                 size_t max_packet_size = ((PAGE_CACHE_SIZE - 8) - i);
1699
1700                 switch (src[i]) {
1701                 case ECRYPTFS_TAG_3_PACKET_TYPE:
1702                         rc = parse_tag_3_packet(crypt_stat,
1703                                                 (unsigned char *)&src[i],
1704                                                 &auth_tok_list, &new_auth_tok,
1705                                                 &packet_size, max_packet_size);
1706                         if (rc) {
1707                                 ecryptfs_printk(KERN_ERR, "Error parsing "
1708                                                 "tag 3 packet\n");
1709                                 rc = -EIO;
1710                                 goto out_wipe_list;
1711                         }
1712                         i += packet_size;
1713                         rc = parse_tag_11_packet((unsigned char *)&src[i],
1714                                                  sig_tmp_space,
1715                                                  ECRYPTFS_SIG_SIZE,
1716                                                  &tag_11_contents_size,
1717                                                  &tag_11_packet_size,
1718                                                  max_packet_size);
1719                         if (rc) {
1720                                 ecryptfs_printk(KERN_ERR, "No valid "
1721                                                 "(ecryptfs-specific) literal "
1722                                                 "packet containing "
1723                                                 "authentication token "
1724                                                 "signature found after "
1725                                                 "tag 3 packet\n");
1726                                 rc = -EIO;
1727                                 goto out_wipe_list;
1728                         }
1729                         i += tag_11_packet_size;
1730                         if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1731                                 ecryptfs_printk(KERN_ERR, "Expected "
1732                                                 "signature of size [%d]; "
1733                                                 "read size [%d]\n",
1734                                                 ECRYPTFS_SIG_SIZE,
1735                                                 tag_11_contents_size);
1736                                 rc = -EIO;
1737                                 goto out_wipe_list;
1738                         }
1739                         ecryptfs_to_hex(new_auth_tok->token.password.signature,
1740                                         sig_tmp_space, tag_11_contents_size);
1741                         new_auth_tok->token.password.signature[
1742                                 ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1743                         crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1744                         break;
1745                 case ECRYPTFS_TAG_1_PACKET_TYPE:
1746                         rc = parse_tag_1_packet(crypt_stat,
1747                                                 (unsigned char *)&src[i],
1748                                                 &auth_tok_list, &new_auth_tok,
1749                                                 &packet_size, max_packet_size);
1750                         if (rc) {
1751                                 ecryptfs_printk(KERN_ERR, "Error parsing "
1752                                                 "tag 1 packet\n");
1753                                 rc = -EIO;
1754                                 goto out_wipe_list;
1755                         }
1756                         i += packet_size;
1757                         crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1758                         break;
1759                 case ECRYPTFS_TAG_11_PACKET_TYPE:
1760                         ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1761                                         "(Tag 11 not allowed by itself)\n");
1762                         rc = -EIO;
1763                         goto out_wipe_list;
1764                         break;
1765                 default:
1766                         ecryptfs_printk(KERN_DEBUG, "No packet at offset "
1767                                         "[%d] of the file header; hex value of "
1768                                         "character is [0x%.2x]\n", i, src[i]);
1769                         next_packet_is_auth_tok_packet = 0;
1770                 }
1771         }
1772         if (list_empty(&auth_tok_list)) {
1773                 printk(KERN_ERR "The lower file appears to be a non-encrypted "
1774                        "eCryptfs file; this is not supported in this version "
1775                        "of the eCryptfs kernel module\n");
1776                 rc = -EINVAL;
1777                 goto out;
1778         }
1779         /* auth_tok_list contains the set of authentication tokens
1780          * parsed from the metadata. We need to find a matching
1781          * authentication token that has the secret component(s)
1782          * necessary to decrypt the EFEK in the auth_tok parsed from
1783          * the metadata. There may be several potential matches, but
1784          * just one will be sufficient to decrypt to get the FEK. */
1785 find_next_matching_auth_tok:
1786         found_auth_tok = 0;
1787         list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1788                 candidate_auth_tok = &auth_tok_list_item->auth_tok;
1789                 if (unlikely(ecryptfs_verbosity > 0)) {
1790                         ecryptfs_printk(KERN_DEBUG,
1791                                         "Considering cadidate auth tok:\n");
1792                         ecryptfs_dump_auth_tok(candidate_auth_tok);
1793                 }
1794                 rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1795                                                candidate_auth_tok);
1796                 if (rc) {
1797                         printk(KERN_ERR
1798                                "Unrecognized candidate auth tok type: [%d]\n",
1799                                candidate_auth_tok->token_type);
1800                         rc = -EINVAL;
1801                         goto out_wipe_list;
1802                 }
1803                 ecryptfs_find_auth_tok_for_sig(&matching_auth_tok,
1804                                                crypt_stat->mount_crypt_stat,
1805                                                candidate_auth_tok_sig);
1806                 if (matching_auth_tok) {
1807                         found_auth_tok = 1;
1808                         goto found_matching_auth_tok;
1809                 }
1810         }
1811         if (!found_auth_tok) {
1812                 ecryptfs_printk(KERN_ERR, "Could not find a usable "
1813                                 "authentication token\n");
1814                 rc = -EIO;
1815                 goto out_wipe_list;
1816         }
1817 found_matching_auth_tok:
1818         if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1819                 memcpy(&(candidate_auth_tok->token.private_key),
1820                        &(matching_auth_tok->token.private_key),
1821                        sizeof(struct ecryptfs_private_key));
1822                 rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1823                                                        crypt_stat);
1824         } else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1825                 memcpy(&(candidate_auth_tok->token.password),
1826                        &(matching_auth_tok->token.password),
1827                        sizeof(struct ecryptfs_password));
1828                 rc = decrypt_passphrase_encrypted_session_key(
1829                         candidate_auth_tok, crypt_stat);
1830         }
1831         if (rc) {
1832                 struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1833
1834                 ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1835                                 "session key for authentication token with sig "
1836                                 "[%.*s]; rc = [%d]. Removing auth tok "
1837                                 "candidate from the list and searching for "
1838                                 "the next match.\n", candidate_auth_tok_sig,
1839                                 ECRYPTFS_SIG_SIZE_HEX, rc);
1840                 list_for_each_entry_safe(auth_tok_list_item,
1841                                          auth_tok_list_item_tmp,
1842                                          &auth_tok_list, list) {
1843                         if (candidate_auth_tok
1844                             == &auth_tok_list_item->auth_tok) {
1845                                 list_del(&auth_tok_list_item->list);
1846                                 kmem_cache_free(
1847                                         ecryptfs_auth_tok_list_item_cache,
1848                                         auth_tok_list_item);
1849                                 goto find_next_matching_auth_tok;
1850                         }
1851                 }
1852                 BUG();
1853         }
1854         rc = ecryptfs_compute_root_iv(crypt_stat);
1855         if (rc) {
1856                 ecryptfs_printk(KERN_ERR, "Error computing "
1857                                 "the root IV\n");
1858                 goto out_wipe_list;
1859         }
1860         rc = ecryptfs_init_crypt_ctx(crypt_stat);
1861         if (rc) {
1862                 ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1863                                 "context for cipher [%s]; rc = [%d]\n",
1864                                 crypt_stat->cipher, rc);
1865         }
1866 out_wipe_list:
1867         wipe_auth_tok_list(&auth_tok_list);
1868 out:
1869         return rc;
1870 }
1871
1872 static int
1873 pki_encrypt_session_key(struct ecryptfs_auth_tok *auth_tok,
1874                         struct ecryptfs_crypt_stat *crypt_stat,
1875                         struct ecryptfs_key_record *key_rec)
1876 {
1877         struct ecryptfs_msg_ctx *msg_ctx = NULL;
1878         char *payload = NULL;
1879         size_t payload_len;
1880         struct ecryptfs_message *msg;
1881         int rc;
1882
1883         rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1884                                  ecryptfs_code_for_cipher_string(
1885                                          crypt_stat->cipher,
1886                                          crypt_stat->key_size),
1887                                  crypt_stat, &payload, &payload_len);
1888         if (rc) {
1889                 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1890                 goto out;
1891         }
1892         rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1893         if (rc) {
1894                 ecryptfs_printk(KERN_ERR, "Error sending message to "
1895                                 "ecryptfsd\n");
1896                 goto out;
1897         }
1898         rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1899         if (rc) {
1900                 ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
1901                                 "from the user space daemon\n");
1902                 rc = -EIO;
1903                 goto out;
1904         }
1905         rc = parse_tag_67_packet(key_rec, msg);
1906         if (rc)
1907                 ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
1908         kfree(msg);
1909 out:
1910         kfree(payload);
1911         return rc;
1912 }
1913 /**
1914  * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
1915  * @dest: Buffer into which to write the packet
1916  * @remaining_bytes: Maximum number of bytes that can be writtn
1917  * @auth_tok: The authentication token used for generating the tag 1 packet
1918  * @crypt_stat: The cryptographic context
1919  * @key_rec: The key record struct for the tag 1 packet
1920  * @packet_size: This function will write the number of bytes that end
1921  *               up constituting the packet; set to zero on error
1922  *
1923  * Returns zero on success; non-zero on error.
1924  */
1925 static int
1926 write_tag_1_packet(char *dest, size_t *remaining_bytes,
1927                    struct ecryptfs_auth_tok *auth_tok,
1928                    struct ecryptfs_crypt_stat *crypt_stat,
1929                    struct ecryptfs_key_record *key_rec, size_t *packet_size)
1930 {
1931         size_t i;
1932         size_t encrypted_session_key_valid = 0;
1933         size_t packet_size_length;
1934         size_t max_packet_size;
1935         int rc = 0;
1936
1937         (*packet_size) = 0;
1938         ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
1939                           ECRYPTFS_SIG_SIZE);
1940         encrypted_session_key_valid = 0;
1941         for (i = 0; i < crypt_stat->key_size; i++)
1942                 encrypted_session_key_valid |=
1943                         auth_tok->session_key.encrypted_key[i];
1944         if (encrypted_session_key_valid) {
1945                 memcpy(key_rec->enc_key,
1946                        auth_tok->session_key.encrypted_key,
1947                        auth_tok->session_key.encrypted_key_size);
1948                 goto encrypted_session_key_set;
1949         }
1950         if (auth_tok->session_key.encrypted_key_size == 0)
1951                 auth_tok->session_key.encrypted_key_size =
1952                         auth_tok->token.private_key.key_size;
1953         rc = pki_encrypt_session_key(auth_tok, crypt_stat, key_rec);
1954         if (rc) {
1955                 printk(KERN_ERR "Failed to encrypt session key via a key "
1956                        "module; rc = [%d]\n", rc);
1957                 goto out;
1958         }
1959         if (ecryptfs_verbosity > 0) {
1960                 ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
1961                 ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
1962         }
1963 encrypted_session_key_set:
1964         /* This format is inspired by OpenPGP; see RFC 2440
1965          * packet tag 1 */
1966         max_packet_size = (1                         /* Tag 1 identifier */
1967                            + 3                       /* Max Tag 1 packet size */
1968                            + 1                       /* Version */
1969                            + ECRYPTFS_SIG_SIZE       /* Key identifier */
1970                            + 1                       /* Cipher identifier */
1971                            + key_rec->enc_key_size); /* Encrypted key size */
1972         if (max_packet_size > (*remaining_bytes)) {
1973                 printk(KERN_ERR "Packet length larger than maximum allowable; "
1974                        "need up to [%td] bytes, but there are only [%td] "
1975                        "available\n", max_packet_size, (*remaining_bytes));
1976                 rc = -EINVAL;
1977                 goto out;
1978         }
1979         dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
1980         rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
1981                                           (max_packet_size - 4),
1982                                           &packet_size_length);
1983         if (rc) {
1984                 ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
1985                                 "header; cannot generate packet length\n");
1986                 goto out;
1987         }
1988         (*packet_size) += packet_size_length;
1989         dest[(*packet_size)++] = 0x03; /* version 3 */
1990         memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
1991         (*packet_size) += ECRYPTFS_SIG_SIZE;
1992         dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
1993         memcpy(&dest[(*packet_size)], key_rec->enc_key,
1994                key_rec->enc_key_size);
1995         (*packet_size) += key_rec->enc_key_size;
1996 out:
1997         if (rc)
1998                 (*packet_size) = 0;
1999         else
2000                 (*remaining_bytes) -= (*packet_size);
2001         return rc;
2002 }
2003
2004 /**
2005  * write_tag_11_packet
2006  * @dest: Target into which Tag 11 packet is to be written
2007  * @remaining_bytes: Maximum packet length
2008  * @contents: Byte array of contents to copy in
2009  * @contents_length: Number of bytes in contents
2010  * @packet_length: Length of the Tag 11 packet written; zero on error
2011  *
2012  * Returns zero on success; non-zero on error.
2013  */
2014 static int
2015 write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
2016                     size_t contents_length, size_t *packet_length)
2017 {
2018         size_t packet_size_length;
2019         size_t max_packet_size;
2020         int rc = 0;
2021
2022         (*packet_length) = 0;
2023         /* This format is inspired by OpenPGP; see RFC 2440
2024          * packet tag 11 */
2025         max_packet_size = (1                   /* Tag 11 identifier */
2026                            + 3                 /* Max Tag 11 packet size */
2027                            + 1                 /* Binary format specifier */
2028                            + 1                 /* Filename length */
2029                            + 8                 /* Filename ("_CONSOLE") */
2030                            + 4                 /* Modification date */
2031                            + contents_length); /* Literal data */
2032         if (max_packet_size > (*remaining_bytes)) {
2033                 printk(KERN_ERR "Packet length larger than maximum allowable; "
2034                        "need up to [%td] bytes, but there are only [%td] "
2035                        "available\n", max_packet_size, (*remaining_bytes));
2036                 rc = -EINVAL;
2037                 goto out;
2038         }
2039         dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2040         rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2041                                           (max_packet_size - 4),
2042                                           &packet_size_length);
2043         if (rc) {
2044                 printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2045                        "generate packet length. rc = [%d]\n", rc);
2046                 goto out;
2047         }
2048         (*packet_length) += packet_size_length;
2049         dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2050         dest[(*packet_length)++] = 8;
2051         memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2052         (*packet_length) += 8;
2053         memset(&dest[(*packet_length)], 0x00, 4);
2054         (*packet_length) += 4;
2055         memcpy(&dest[(*packet_length)], contents, contents_length);
2056         (*packet_length) += contents_length;
2057  out:
2058         if (rc)
2059                 (*packet_length) = 0;
2060         else
2061                 (*remaining_bytes) -= (*packet_length);
2062         return rc;
2063 }
2064
2065 /**
2066  * write_tag_3_packet
2067  * @dest: Buffer into which to write the packet
2068  * @remaining_bytes: Maximum number of bytes that can be written
2069  * @auth_tok: Authentication token
2070  * @crypt_stat: The cryptographic context
2071  * @key_rec: encrypted key
2072  * @packet_size: This function will write the number of bytes that end
2073  *               up constituting the packet; set to zero on error
2074  *
2075  * Returns zero on success; non-zero on error.
2076  */
2077 static int
2078 write_tag_3_packet(char *dest, size_t *remaining_bytes,
2079                    struct ecryptfs_auth_tok *auth_tok,
2080                    struct ecryptfs_crypt_stat *crypt_stat,
2081                    struct ecryptfs_key_record *key_rec, size_t *packet_size)
2082 {
2083         size_t i;
2084         size_t encrypted_session_key_valid = 0;
2085         char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2086         struct scatterlist dst_sg[2];
2087         struct scatterlist src_sg[2];
2088         struct mutex *tfm_mutex = NULL;
2089         u8 cipher_code;
2090         size_t packet_size_length;
2091         size_t max_packet_size;
2092         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2093                 crypt_stat->mount_crypt_stat;
2094         struct blkcipher_desc desc = {
2095                 .tfm = NULL,
2096                 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
2097         };
2098         int rc = 0;
2099
2100         (*packet_size) = 0;
2101         ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2102                           ECRYPTFS_SIG_SIZE);
2103         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2104                                                         crypt_stat->cipher);
2105         if (unlikely(rc)) {
2106                 printk(KERN_ERR "Internal error whilst attempting to get "
2107                        "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2108                        crypt_stat->cipher, rc);
2109                 goto out;
2110         }
2111         if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2112                 struct blkcipher_alg *alg = crypto_blkcipher_alg(desc.tfm);
2113
2114                 printk(KERN_WARNING "No key size specified at mount; "
2115                        "defaulting to [%d]\n", alg->max_keysize);
2116                 mount_crypt_stat->global_default_cipher_key_size =
2117                         alg->max_keysize;
2118         }
2119         if (crypt_stat->key_size == 0)
2120                 crypt_stat->key_size =
2121                         mount_crypt_stat->global_default_cipher_key_size;
2122         if (auth_tok->session_key.encrypted_key_size == 0)
2123                 auth_tok->session_key.encrypted_key_size =
2124                         crypt_stat->key_size;
2125         if (crypt_stat->key_size == 24
2126             && strcmp("aes", crypt_stat->cipher) == 0) {
2127                 memset((crypt_stat->key + 24), 0, 8);
2128                 auth_tok->session_key.encrypted_key_size = 32;
2129         } else
2130                 auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2131         key_rec->enc_key_size =
2132                 auth_tok->session_key.encrypted_key_size;
2133         encrypted_session_key_valid = 0;
2134         for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2135                 encrypted_session_key_valid |=
2136                         auth_tok->session_key.encrypted_key[i];
2137         if (encrypted_session_key_valid) {
2138                 ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2139                                 "using auth_tok->session_key.encrypted_key, "
2140                                 "where key_rec->enc_key_size = [%d]\n",
2141                                 key_rec->enc_key_size);
2142                 memcpy(key_rec->enc_key,
2143                        auth_tok->session_key.encrypted_key,
2144                        key_rec->enc_key_size);
2145                 goto encrypted_session_key_set;
2146         }
2147         if (auth_tok->token.password.flags &
2148             ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2149                 ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2150                                 "session key encryption key of size [%d]\n",
2151                                 auth_tok->token.password.
2152                                 session_key_encryption_key_bytes);
2153                 memcpy(session_key_encryption_key,
2154                        auth_tok->token.password.session_key_encryption_key,
2155                        crypt_stat->key_size);
2156                 ecryptfs_printk(KERN_DEBUG,
2157                                 "Cached session key " "encryption key: \n");
2158                 if (ecryptfs_verbosity > 0)
2159                         ecryptfs_dump_hex(session_key_encryption_key, 16);
2160         }
2161         if (unlikely(ecryptfs_verbosity > 0)) {
2162                 ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2163                 ecryptfs_dump_hex(session_key_encryption_key, 16);
2164         }
2165         rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2166                                  src_sg, 2);
2167         if (rc < 1 || rc > 2) {
2168                 ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2169                                 "for crypt_stat session key; expected rc = 1; "
2170                                 "got rc = [%d]. key_rec->enc_key_size = [%d]\n",
2171                                 rc, key_rec->enc_key_size);
2172                 rc = -ENOMEM;
2173                 goto out;
2174         }
2175         rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2176                                  dst_sg, 2);
2177         if (rc < 1 || rc > 2) {
2178                 ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2179                                 "for crypt_stat encrypted session key; "
2180                                 "expected rc = 1; got rc = [%d]. "
2181                                 "key_rec->enc_key_size = [%d]\n", rc,
2182                                 key_rec->enc_key_size);
2183                 rc = -ENOMEM;
2184                 goto out;
2185         }
2186         mutex_lock(tfm_mutex);
2187         rc = crypto_blkcipher_setkey(desc.tfm, session_key_encryption_key,
2188                                      crypt_stat->key_size);
2189         if (rc < 0) {
2190                 mutex_unlock(tfm_mutex);
2191                 ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2192                                 "context; rc = [%d]\n", rc);
2193                 goto out;
2194         }
2195         rc = 0;
2196         ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes of the key\n",
2197                         crypt_stat->key_size);
2198         rc = crypto_blkcipher_encrypt(&desc, dst_sg, src_sg,
2199                                       (*key_rec).enc_key_size);
2200         mutex_unlock(tfm_mutex);
2201         if (rc) {
2202                 printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2203                 goto out;
2204         }
2205         ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2206         if (ecryptfs_verbosity > 0) {
2207                 ecryptfs_printk(KERN_DEBUG, "EFEK of size [%d]:\n",
2208                                 key_rec->enc_key_size);
2209                 ecryptfs_dump_hex(key_rec->enc_key,
2210                                   key_rec->enc_key_size);
2211         }
2212 encrypted_session_key_set:
2213         /* This format is inspired by OpenPGP; see RFC 2440
2214          * packet tag 3 */
2215         max_packet_size = (1                         /* Tag 3 identifier */
2216                            + 3                       /* Max Tag 3 packet size */
2217                            + 1                       /* Version */
2218                            + 1                       /* Cipher code */
2219                            + 1                       /* S2K specifier */
2220                            + 1                       /* Hash identifier */
2221                            + ECRYPTFS_SALT_SIZE      /* Salt */
2222                            + 1                       /* Hash iterations */
2223                            + key_rec->enc_key_size); /* Encrypted key size */
2224         if (max_packet_size > (*remaining_bytes)) {
2225                 printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2226                        "there are only [%td] available\n", max_packet_size,
2227                        (*remaining_bytes));
2228                 rc = -EINVAL;
2229                 goto out;
2230         }
2231         dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2232         /* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2233          * to get the number of octets in the actual Tag 3 packet */
2234         rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2235                                           (max_packet_size - 4),
2236                                           &packet_size_length);
2237         if (rc) {
2238                 printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2239                        "generate packet length. rc = [%d]\n", rc);
2240                 goto out;
2241         }
2242         (*packet_size) += packet_size_length;
2243         dest[(*packet_size)++] = 0x04; /* version 4 */
2244         /* TODO: Break from RFC2440 so that arbitrary ciphers can be
2245          * specified with strings */
2246         cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2247                                                       crypt_stat->key_size);
2248         if (cipher_code == 0) {
2249                 ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2250                                 "cipher [%s]\n", crypt_stat->cipher);
2251                 rc = -EINVAL;
2252                 goto out;
2253         }
2254         dest[(*packet_size)++] = cipher_code;
2255         dest[(*packet_size)++] = 0x03;  /* S2K */
2256         dest[(*packet_size)++] = 0x01;  /* MD5 (TODO: parameterize) */
2257         memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2258                ECRYPTFS_SALT_SIZE);
2259         (*packet_size) += ECRYPTFS_SALT_SIZE;   /* salt */
2260         dest[(*packet_size)++] = 0x60;  /* hash iterations (65536) */
2261         memcpy(&dest[(*packet_size)], key_rec->enc_key,
2262                key_rec->enc_key_size);
2263         (*packet_size) += key_rec->enc_key_size;
2264 out:
2265         if (rc)
2266                 (*packet_size) = 0;
2267         else
2268                 (*remaining_bytes) -= (*packet_size);
2269         return rc;
2270 }
2271
2272 struct kmem_cache *ecryptfs_key_record_cache;
2273
2274 /**
2275  * ecryptfs_generate_key_packet_set
2276  * @dest_base: Virtual address from which to write the key record set
2277  * @crypt_stat: The cryptographic context from which the
2278  *              authentication tokens will be retrieved
2279  * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2280  *                   for the global parameters
2281  * @len: The amount written
2282  * @max: The maximum amount of data allowed to be written
2283  *
2284  * Generates a key packet set and writes it to the virtual address
2285  * passed in.
2286  *
2287  * Returns zero on success; non-zero on error.
2288  */
2289 int
2290 ecryptfs_generate_key_packet_set(char *dest_base,
2291                                  struct ecryptfs_crypt_stat *crypt_stat,
2292                                  struct dentry *ecryptfs_dentry, size_t *len,
2293                                  size_t max)
2294 {
2295         struct ecryptfs_auth_tok *auth_tok;
2296         struct ecryptfs_global_auth_tok *global_auth_tok;
2297         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2298                 &ecryptfs_superblock_to_private(
2299                         ecryptfs_dentry->d_sb)->mount_crypt_stat;
2300         size_t written;
2301         struct ecryptfs_key_record *key_rec;
2302         struct ecryptfs_key_sig *key_sig;
2303         int rc = 0;
2304
2305         (*len) = 0;
2306         mutex_lock(&crypt_stat->keysig_list_mutex);
2307         key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2308         if (!key_rec) {
2309                 rc = -ENOMEM;
2310                 goto out;
2311         }
2312         list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2313                             crypt_stat_list) {
2314                 memset(key_rec, 0, sizeof(*key_rec));
2315                 rc = ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
2316                                                            mount_crypt_stat,
2317                                                            key_sig->keysig);
2318                 if (rc) {
2319                         printk(KERN_ERR "Error attempting to get the global "
2320                                "auth_tok; rc = [%d]\n", rc);
2321                         goto out_free;
2322                 }
2323                 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID) {
2324                         printk(KERN_WARNING
2325                                "Skipping invalid auth tok with sig = [%s]\n",
2326                                global_auth_tok->sig);
2327                         continue;
2328                 }
2329                 auth_tok = global_auth_tok->global_auth_tok;
2330                 if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2331                         rc = write_tag_3_packet((dest_base + (*len)),
2332                                                 &max, auth_tok,
2333                                                 crypt_stat, key_rec,
2334                                                 &written);
2335                         if (rc) {
2336                                 ecryptfs_printk(KERN_WARNING, "Error "
2337                                                 "writing tag 3 packet\n");
2338                                 goto out_free;
2339                         }
2340                         (*len) += written;
2341                         /* Write auth tok signature packet */
2342                         rc = write_tag_11_packet((dest_base + (*len)), &max,
2343                                                  key_rec->sig,
2344                                                  ECRYPTFS_SIG_SIZE, &written);
2345                         if (rc) {
2346                                 ecryptfs_printk(KERN_ERR, "Error writing "
2347                                                 "auth tok signature packet\n");
2348                                 goto out_free;
2349                         }
2350                         (*len) += written;
2351                 } else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2352                         rc = write_tag_1_packet(dest_base + (*len),
2353                                                 &max, auth_tok,
2354                                                 crypt_stat, key_rec, &written);
2355                         if (rc) {
2356                                 ecryptfs_printk(KERN_WARNING, "Error "
2357                                                 "writing tag 1 packet\n");
2358                                 goto out_free;
2359                         }
2360                         (*len) += written;
2361                 } else {
2362                         ecryptfs_printk(KERN_WARNING, "Unsupported "
2363                                         "authentication token type\n");
2364                         rc = -EINVAL;
2365                         goto out_free;
2366                 }
2367         }
2368         if (likely(max > 0)) {
2369                 dest_base[(*len)] = 0x00;
2370         } else {
2371                 ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2372                 rc = -EIO;
2373         }
2374 out_free:
2375         kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2376 out:
2377         if (rc)
2378                 (*len) = 0;
2379         mutex_unlock(&crypt_stat->keysig_list_mutex);
2380         return rc;
2381 }
2382
2383 struct kmem_cache *ecryptfs_key_sig_cache;
2384
2385 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2386 {
2387         struct ecryptfs_key_sig *new_key_sig;
2388
2389         new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2390         if (!new_key_sig) {
2391                 printk(KERN_ERR
2392                        "Error allocating from ecryptfs_key_sig_cache\n");
2393                 return -ENOMEM;
2394         }
2395         memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2396         /* Caller must hold keysig_list_mutex */
2397         list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2398
2399         return 0;
2400 }
2401
2402 struct kmem_cache *ecryptfs_global_auth_tok_cache;
2403
2404 int
2405 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2406                              char *sig, u32 global_auth_tok_flags)
2407 {
2408         struct ecryptfs_global_auth_tok *new_auth_tok;
2409         int rc = 0;
2410
2411         new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2412                                         GFP_KERNEL);
2413         if (!new_auth_tok) {
2414                 rc = -ENOMEM;
2415                 printk(KERN_ERR "Error allocating from "
2416                        "ecryptfs_global_auth_tok_cache\n");
2417                 goto out;
2418         }
2419         memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2420         new_auth_tok->flags = global_auth_tok_flags;
2421         new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2422         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2423         list_add(&new_auth_tok->mount_crypt_stat_list,
2424                  &mount_crypt_stat->global_auth_tok_list);
2425         mount_crypt_stat->num_global_auth_toks++;
2426         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2427 out:
2428         return rc;
2429 }
2430