]> bbs.cooldavid.org Git - net-next-2.6.git/blob - fs/btrfs/transaction.c
Btrfs: add START_SYNC, WAIT_SYNC ioctls
[net-next-2.6.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30
31 #define BTRFS_ROOT_TRANS_TAG 0
32
33 static noinline void put_transaction(struct btrfs_transaction *transaction)
34 {
35         WARN_ON(transaction->use_count == 0);
36         transaction->use_count--;
37         if (transaction->use_count == 0) {
38                 list_del_init(&transaction->list);
39                 memset(transaction, 0, sizeof(*transaction));
40                 kmem_cache_free(btrfs_transaction_cachep, transaction);
41         }
42 }
43
44 static noinline void switch_commit_root(struct btrfs_root *root)
45 {
46         free_extent_buffer(root->commit_root);
47         root->commit_root = btrfs_root_node(root);
48 }
49
50 /*
51  * either allocate a new transaction or hop into the existing one
52  */
53 static noinline int join_transaction(struct btrfs_root *root)
54 {
55         struct btrfs_transaction *cur_trans;
56         cur_trans = root->fs_info->running_transaction;
57         if (!cur_trans) {
58                 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
59                                              GFP_NOFS);
60                 BUG_ON(!cur_trans);
61                 root->fs_info->generation++;
62                 cur_trans->num_writers = 1;
63                 cur_trans->num_joined = 0;
64                 cur_trans->transid = root->fs_info->generation;
65                 init_waitqueue_head(&cur_trans->writer_wait);
66                 init_waitqueue_head(&cur_trans->commit_wait);
67                 cur_trans->in_commit = 0;
68                 cur_trans->blocked = 0;
69                 cur_trans->use_count = 1;
70                 cur_trans->commit_done = 0;
71                 cur_trans->start_time = get_seconds();
72
73                 cur_trans->delayed_refs.root = RB_ROOT;
74                 cur_trans->delayed_refs.num_entries = 0;
75                 cur_trans->delayed_refs.num_heads_ready = 0;
76                 cur_trans->delayed_refs.num_heads = 0;
77                 cur_trans->delayed_refs.flushing = 0;
78                 cur_trans->delayed_refs.run_delayed_start = 0;
79                 spin_lock_init(&cur_trans->delayed_refs.lock);
80
81                 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
82                 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
83                 extent_io_tree_init(&cur_trans->dirty_pages,
84                                      root->fs_info->btree_inode->i_mapping,
85                                      GFP_NOFS);
86                 spin_lock(&root->fs_info->new_trans_lock);
87                 root->fs_info->running_transaction = cur_trans;
88                 spin_unlock(&root->fs_info->new_trans_lock);
89         } else {
90                 cur_trans->num_writers++;
91                 cur_trans->num_joined++;
92         }
93
94         return 0;
95 }
96
97 /*
98  * this does all the record keeping required to make sure that a reference
99  * counted root is properly recorded in a given transaction.  This is required
100  * to make sure the old root from before we joined the transaction is deleted
101  * when the transaction commits
102  */
103 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
104                                          struct btrfs_root *root)
105 {
106         if (root->ref_cows && root->last_trans < trans->transid) {
107                 WARN_ON(root == root->fs_info->extent_root);
108                 WARN_ON(root->commit_root != root->node);
109
110                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
111                            (unsigned long)root->root_key.objectid,
112                            BTRFS_ROOT_TRANS_TAG);
113                 root->last_trans = trans->transid;
114                 btrfs_init_reloc_root(trans, root);
115         }
116         return 0;
117 }
118
119 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
120                                struct btrfs_root *root)
121 {
122         if (!root->ref_cows)
123                 return 0;
124
125         mutex_lock(&root->fs_info->trans_mutex);
126         if (root->last_trans == trans->transid) {
127                 mutex_unlock(&root->fs_info->trans_mutex);
128                 return 0;
129         }
130
131         record_root_in_trans(trans, root);
132         mutex_unlock(&root->fs_info->trans_mutex);
133         return 0;
134 }
135
136 /* wait for commit against the current transaction to become unblocked
137  * when this is done, it is safe to start a new transaction, but the current
138  * transaction might not be fully on disk.
139  */
140 static void wait_current_trans(struct btrfs_root *root)
141 {
142         struct btrfs_transaction *cur_trans;
143
144         cur_trans = root->fs_info->running_transaction;
145         if (cur_trans && cur_trans->blocked) {
146                 DEFINE_WAIT(wait);
147                 cur_trans->use_count++;
148                 while (1) {
149                         prepare_to_wait(&root->fs_info->transaction_wait, &wait,
150                                         TASK_UNINTERRUPTIBLE);
151                         if (!cur_trans->blocked)
152                                 break;
153                         mutex_unlock(&root->fs_info->trans_mutex);
154                         schedule();
155                         mutex_lock(&root->fs_info->trans_mutex);
156                 }
157                 finish_wait(&root->fs_info->transaction_wait, &wait);
158                 put_transaction(cur_trans);
159         }
160 }
161
162 enum btrfs_trans_type {
163         TRANS_START,
164         TRANS_JOIN,
165         TRANS_USERSPACE,
166         TRANS_JOIN_NOLOCK,
167 };
168
169 static int may_wait_transaction(struct btrfs_root *root, int type)
170 {
171         if (!root->fs_info->log_root_recovering &&
172             ((type == TRANS_START && !root->fs_info->open_ioctl_trans) ||
173              type == TRANS_USERSPACE))
174                 return 1;
175         return 0;
176 }
177
178 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
179                                                     u64 num_items, int type)
180 {
181         struct btrfs_trans_handle *h;
182         struct btrfs_transaction *cur_trans;
183         int ret;
184 again:
185         h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
186         if (!h)
187                 return ERR_PTR(-ENOMEM);
188
189         if (type != TRANS_JOIN_NOLOCK)
190                 mutex_lock(&root->fs_info->trans_mutex);
191         if (may_wait_transaction(root, type))
192                 wait_current_trans(root);
193
194         ret = join_transaction(root);
195         BUG_ON(ret);
196
197         cur_trans = root->fs_info->running_transaction;
198         cur_trans->use_count++;
199         if (type != TRANS_JOIN_NOLOCK)
200                 mutex_unlock(&root->fs_info->trans_mutex);
201
202         h->transid = cur_trans->transid;
203         h->transaction = cur_trans;
204         h->blocks_used = 0;
205         h->block_group = 0;
206         h->bytes_reserved = 0;
207         h->delayed_ref_updates = 0;
208         h->block_rsv = NULL;
209
210         smp_mb();
211         if (cur_trans->blocked && may_wait_transaction(root, type)) {
212                 btrfs_commit_transaction(h, root);
213                 goto again;
214         }
215
216         if (num_items > 0) {
217                 ret = btrfs_trans_reserve_metadata(h, root, num_items);
218                 if (ret == -EAGAIN) {
219                         btrfs_commit_transaction(h, root);
220                         goto again;
221                 }
222                 if (ret < 0) {
223                         btrfs_end_transaction(h, root);
224                         return ERR_PTR(ret);
225                 }
226         }
227
228         if (type != TRANS_JOIN_NOLOCK)
229                 mutex_lock(&root->fs_info->trans_mutex);
230         record_root_in_trans(h, root);
231         if (type != TRANS_JOIN_NOLOCK)
232                 mutex_unlock(&root->fs_info->trans_mutex);
233
234         if (!current->journal_info && type != TRANS_USERSPACE)
235                 current->journal_info = h;
236         return h;
237 }
238
239 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
240                                                    int num_items)
241 {
242         return start_transaction(root, num_items, TRANS_START);
243 }
244 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
245                                                    int num_blocks)
246 {
247         return start_transaction(root, 0, TRANS_JOIN);
248 }
249
250 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root,
251                                                           int num_blocks)
252 {
253         return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
254 }
255
256 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
257                                                          int num_blocks)
258 {
259         return start_transaction(r, 0, TRANS_USERSPACE);
260 }
261
262 /* wait for a transaction commit to be fully complete */
263 static noinline int wait_for_commit(struct btrfs_root *root,
264                                     struct btrfs_transaction *commit)
265 {
266         DEFINE_WAIT(wait);
267         mutex_lock(&root->fs_info->trans_mutex);
268         while (!commit->commit_done) {
269                 prepare_to_wait(&commit->commit_wait, &wait,
270                                 TASK_UNINTERRUPTIBLE);
271                 if (commit->commit_done)
272                         break;
273                 mutex_unlock(&root->fs_info->trans_mutex);
274                 schedule();
275                 mutex_lock(&root->fs_info->trans_mutex);
276         }
277         mutex_unlock(&root->fs_info->trans_mutex);
278         finish_wait(&commit->commit_wait, &wait);
279         return 0;
280 }
281
282 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
283 {
284         struct btrfs_transaction *cur_trans = NULL, *t;
285         int ret;
286
287         mutex_lock(&root->fs_info->trans_mutex);
288
289         ret = 0;
290         if (transid) {
291                 if (transid <= root->fs_info->last_trans_committed)
292                         goto out_unlock;
293
294                 /* find specified transaction */
295                 list_for_each_entry(t, &root->fs_info->trans_list, list) {
296                         if (t->transid == transid) {
297                                 cur_trans = t;
298                                 break;
299                         }
300                         if (t->transid > transid)
301                                 break;
302                 }
303                 ret = -EINVAL;
304                 if (!cur_trans)
305                         goto out_unlock;  /* bad transid */
306         } else {
307                 /* find newest transaction that is committing | committed */
308                 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
309                                             list) {
310                         if (t->in_commit) {
311                                 if (t->commit_done)
312                                         goto out_unlock;
313                                 cur_trans = t;
314                                 break;
315                         }
316                 }
317                 if (!cur_trans)
318                         goto out_unlock;  /* nothing committing|committed */
319         }
320
321         cur_trans->use_count++;
322         mutex_unlock(&root->fs_info->trans_mutex);
323
324         wait_for_commit(root, cur_trans);
325
326         mutex_lock(&root->fs_info->trans_mutex);
327         put_transaction(cur_trans);
328         ret = 0;
329 out_unlock:
330         mutex_unlock(&root->fs_info->trans_mutex);
331         return ret;
332 }
333
334 #if 0
335 /*
336  * rate limit against the drop_snapshot code.  This helps to slow down new
337  * operations if the drop_snapshot code isn't able to keep up.
338  */
339 static void throttle_on_drops(struct btrfs_root *root)
340 {
341         struct btrfs_fs_info *info = root->fs_info;
342         int harder_count = 0;
343
344 harder:
345         if (atomic_read(&info->throttles)) {
346                 DEFINE_WAIT(wait);
347                 int thr;
348                 thr = atomic_read(&info->throttle_gen);
349
350                 do {
351                         prepare_to_wait(&info->transaction_throttle,
352                                         &wait, TASK_UNINTERRUPTIBLE);
353                         if (!atomic_read(&info->throttles)) {
354                                 finish_wait(&info->transaction_throttle, &wait);
355                                 break;
356                         }
357                         schedule();
358                         finish_wait(&info->transaction_throttle, &wait);
359                 } while (thr == atomic_read(&info->throttle_gen));
360                 harder_count++;
361
362                 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
363                     harder_count < 2)
364                         goto harder;
365
366                 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
367                     harder_count < 10)
368                         goto harder;
369
370                 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
371                     harder_count < 20)
372                         goto harder;
373         }
374 }
375 #endif
376
377 void btrfs_throttle(struct btrfs_root *root)
378 {
379         mutex_lock(&root->fs_info->trans_mutex);
380         if (!root->fs_info->open_ioctl_trans)
381                 wait_current_trans(root);
382         mutex_unlock(&root->fs_info->trans_mutex);
383 }
384
385 static int should_end_transaction(struct btrfs_trans_handle *trans,
386                                   struct btrfs_root *root)
387 {
388         int ret;
389         ret = btrfs_block_rsv_check(trans, root,
390                                     &root->fs_info->global_block_rsv, 0, 5);
391         return ret ? 1 : 0;
392 }
393
394 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
395                                  struct btrfs_root *root)
396 {
397         struct btrfs_transaction *cur_trans = trans->transaction;
398         int updates;
399
400         if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
401                 return 1;
402
403         updates = trans->delayed_ref_updates;
404         trans->delayed_ref_updates = 0;
405         if (updates)
406                 btrfs_run_delayed_refs(trans, root, updates);
407
408         return should_end_transaction(trans, root);
409 }
410
411 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
412                           struct btrfs_root *root, int throttle, int lock)
413 {
414         struct btrfs_transaction *cur_trans = trans->transaction;
415         struct btrfs_fs_info *info = root->fs_info;
416         int count = 0;
417
418         while (count < 4) {
419                 unsigned long cur = trans->delayed_ref_updates;
420                 trans->delayed_ref_updates = 0;
421                 if (cur &&
422                     trans->transaction->delayed_refs.num_heads_ready > 64) {
423                         trans->delayed_ref_updates = 0;
424
425                         /*
426                          * do a full flush if the transaction is trying
427                          * to close
428                          */
429                         if (trans->transaction->delayed_refs.flushing)
430                                 cur = 0;
431                         btrfs_run_delayed_refs(trans, root, cur);
432                 } else {
433                         break;
434                 }
435                 count++;
436         }
437
438         btrfs_trans_release_metadata(trans, root);
439
440         if (lock && !root->fs_info->open_ioctl_trans &&
441             should_end_transaction(trans, root))
442                 trans->transaction->blocked = 1;
443
444         if (lock && cur_trans->blocked && !cur_trans->in_commit) {
445                 if (throttle)
446                         return btrfs_commit_transaction(trans, root);
447                 else
448                         wake_up_process(info->transaction_kthread);
449         }
450
451         if (lock)
452                 mutex_lock(&info->trans_mutex);
453         WARN_ON(cur_trans != info->running_transaction);
454         WARN_ON(cur_trans->num_writers < 1);
455         cur_trans->num_writers--;
456
457         smp_mb();
458         if (waitqueue_active(&cur_trans->writer_wait))
459                 wake_up(&cur_trans->writer_wait);
460         put_transaction(cur_trans);
461         if (lock)
462                 mutex_unlock(&info->trans_mutex);
463
464         if (current->journal_info == trans)
465                 current->journal_info = NULL;
466         memset(trans, 0, sizeof(*trans));
467         kmem_cache_free(btrfs_trans_handle_cachep, trans);
468
469         if (throttle)
470                 btrfs_run_delayed_iputs(root);
471
472         return 0;
473 }
474
475 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
476                           struct btrfs_root *root)
477 {
478         return __btrfs_end_transaction(trans, root, 0, 1);
479 }
480
481 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
482                                    struct btrfs_root *root)
483 {
484         return __btrfs_end_transaction(trans, root, 1, 1);
485 }
486
487 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
488                                  struct btrfs_root *root)
489 {
490         return __btrfs_end_transaction(trans, root, 0, 0);
491 }
492
493 /*
494  * when btree blocks are allocated, they have some corresponding bits set for
495  * them in one of two extent_io trees.  This is used to make sure all of
496  * those extents are sent to disk but does not wait on them
497  */
498 int btrfs_write_marked_extents(struct btrfs_root *root,
499                                struct extent_io_tree *dirty_pages, int mark)
500 {
501         int ret;
502         int err = 0;
503         int werr = 0;
504         struct page *page;
505         struct inode *btree_inode = root->fs_info->btree_inode;
506         u64 start = 0;
507         u64 end;
508         unsigned long index;
509
510         while (1) {
511                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
512                                             mark);
513                 if (ret)
514                         break;
515                 while (start <= end) {
516                         cond_resched();
517
518                         index = start >> PAGE_CACHE_SHIFT;
519                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
520                         page = find_get_page(btree_inode->i_mapping, index);
521                         if (!page)
522                                 continue;
523
524                         btree_lock_page_hook(page);
525                         if (!page->mapping) {
526                                 unlock_page(page);
527                                 page_cache_release(page);
528                                 continue;
529                         }
530
531                         if (PageWriteback(page)) {
532                                 if (PageDirty(page))
533                                         wait_on_page_writeback(page);
534                                 else {
535                                         unlock_page(page);
536                                         page_cache_release(page);
537                                         continue;
538                                 }
539                         }
540                         err = write_one_page(page, 0);
541                         if (err)
542                                 werr = err;
543                         page_cache_release(page);
544                 }
545         }
546         if (err)
547                 werr = err;
548         return werr;
549 }
550
551 /*
552  * when btree blocks are allocated, they have some corresponding bits set for
553  * them in one of two extent_io trees.  This is used to make sure all of
554  * those extents are on disk for transaction or log commit.  We wait
555  * on all the pages and clear them from the dirty pages state tree
556  */
557 int btrfs_wait_marked_extents(struct btrfs_root *root,
558                               struct extent_io_tree *dirty_pages, int mark)
559 {
560         int ret;
561         int err = 0;
562         int werr = 0;
563         struct page *page;
564         struct inode *btree_inode = root->fs_info->btree_inode;
565         u64 start = 0;
566         u64 end;
567         unsigned long index;
568
569         while (1) {
570                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
571                                             mark);
572                 if (ret)
573                         break;
574
575                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
576                 while (start <= end) {
577                         index = start >> PAGE_CACHE_SHIFT;
578                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
579                         page = find_get_page(btree_inode->i_mapping, index);
580                         if (!page)
581                                 continue;
582                         if (PageDirty(page)) {
583                                 btree_lock_page_hook(page);
584                                 wait_on_page_writeback(page);
585                                 err = write_one_page(page, 0);
586                                 if (err)
587                                         werr = err;
588                         }
589                         wait_on_page_writeback(page);
590                         page_cache_release(page);
591                         cond_resched();
592                 }
593         }
594         if (err)
595                 werr = err;
596         return werr;
597 }
598
599 /*
600  * when btree blocks are allocated, they have some corresponding bits set for
601  * them in one of two extent_io trees.  This is used to make sure all of
602  * those extents are on disk for transaction or log commit
603  */
604 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
605                                 struct extent_io_tree *dirty_pages, int mark)
606 {
607         int ret;
608         int ret2;
609
610         ret = btrfs_write_marked_extents(root, dirty_pages, mark);
611         ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
612         return ret || ret2;
613 }
614
615 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
616                                      struct btrfs_root *root)
617 {
618         if (!trans || !trans->transaction) {
619                 struct inode *btree_inode;
620                 btree_inode = root->fs_info->btree_inode;
621                 return filemap_write_and_wait(btree_inode->i_mapping);
622         }
623         return btrfs_write_and_wait_marked_extents(root,
624                                            &trans->transaction->dirty_pages,
625                                            EXTENT_DIRTY);
626 }
627
628 /*
629  * this is used to update the root pointer in the tree of tree roots.
630  *
631  * But, in the case of the extent allocation tree, updating the root
632  * pointer may allocate blocks which may change the root of the extent
633  * allocation tree.
634  *
635  * So, this loops and repeats and makes sure the cowonly root didn't
636  * change while the root pointer was being updated in the metadata.
637  */
638 static int update_cowonly_root(struct btrfs_trans_handle *trans,
639                                struct btrfs_root *root)
640 {
641         int ret;
642         u64 old_root_bytenr;
643         u64 old_root_used;
644         struct btrfs_root *tree_root = root->fs_info->tree_root;
645
646         old_root_used = btrfs_root_used(&root->root_item);
647         btrfs_write_dirty_block_groups(trans, root);
648
649         while (1) {
650                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
651                 if (old_root_bytenr == root->node->start &&
652                     old_root_used == btrfs_root_used(&root->root_item))
653                         break;
654
655                 btrfs_set_root_node(&root->root_item, root->node);
656                 ret = btrfs_update_root(trans, tree_root,
657                                         &root->root_key,
658                                         &root->root_item);
659                 BUG_ON(ret);
660
661                 old_root_used = btrfs_root_used(&root->root_item);
662                 ret = btrfs_write_dirty_block_groups(trans, root);
663                 BUG_ON(ret);
664         }
665
666         if (root != root->fs_info->extent_root)
667                 switch_commit_root(root);
668
669         return 0;
670 }
671
672 /*
673  * update all the cowonly tree roots on disk
674  */
675 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
676                                          struct btrfs_root *root)
677 {
678         struct btrfs_fs_info *fs_info = root->fs_info;
679         struct list_head *next;
680         struct extent_buffer *eb;
681         int ret;
682
683         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
684         BUG_ON(ret);
685
686         eb = btrfs_lock_root_node(fs_info->tree_root);
687         btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
688         btrfs_tree_unlock(eb);
689         free_extent_buffer(eb);
690
691         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
692         BUG_ON(ret);
693
694         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
695                 next = fs_info->dirty_cowonly_roots.next;
696                 list_del_init(next);
697                 root = list_entry(next, struct btrfs_root, dirty_list);
698
699                 update_cowonly_root(trans, root);
700         }
701
702         down_write(&fs_info->extent_commit_sem);
703         switch_commit_root(fs_info->extent_root);
704         up_write(&fs_info->extent_commit_sem);
705
706         return 0;
707 }
708
709 /*
710  * dead roots are old snapshots that need to be deleted.  This allocates
711  * a dirty root struct and adds it into the list of dead roots that need to
712  * be deleted
713  */
714 int btrfs_add_dead_root(struct btrfs_root *root)
715 {
716         mutex_lock(&root->fs_info->trans_mutex);
717         list_add(&root->root_list, &root->fs_info->dead_roots);
718         mutex_unlock(&root->fs_info->trans_mutex);
719         return 0;
720 }
721
722 /*
723  * update all the cowonly tree roots on disk
724  */
725 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
726                                     struct btrfs_root *root)
727 {
728         struct btrfs_root *gang[8];
729         struct btrfs_fs_info *fs_info = root->fs_info;
730         int i;
731         int ret;
732         int err = 0;
733
734         while (1) {
735                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
736                                                  (void **)gang, 0,
737                                                  ARRAY_SIZE(gang),
738                                                  BTRFS_ROOT_TRANS_TAG);
739                 if (ret == 0)
740                         break;
741                 for (i = 0; i < ret; i++) {
742                         root = gang[i];
743                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
744                                         (unsigned long)root->root_key.objectid,
745                                         BTRFS_ROOT_TRANS_TAG);
746
747                         btrfs_free_log(trans, root);
748                         btrfs_update_reloc_root(trans, root);
749                         btrfs_orphan_commit_root(trans, root);
750
751                         if (root->commit_root != root->node) {
752                                 switch_commit_root(root);
753                                 btrfs_set_root_node(&root->root_item,
754                                                     root->node);
755                         }
756
757                         err = btrfs_update_root(trans, fs_info->tree_root,
758                                                 &root->root_key,
759                                                 &root->root_item);
760                         if (err)
761                                 break;
762                 }
763         }
764         return err;
765 }
766
767 /*
768  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
769  * otherwise every leaf in the btree is read and defragged.
770  */
771 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
772 {
773         struct btrfs_fs_info *info = root->fs_info;
774         struct btrfs_trans_handle *trans;
775         int ret;
776         unsigned long nr;
777
778         if (xchg(&root->defrag_running, 1))
779                 return 0;
780
781         while (1) {
782                 trans = btrfs_start_transaction(root, 0);
783                 if (IS_ERR(trans))
784                         return PTR_ERR(trans);
785
786                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
787
788                 nr = trans->blocks_used;
789                 btrfs_end_transaction(trans, root);
790                 btrfs_btree_balance_dirty(info->tree_root, nr);
791                 cond_resched();
792
793                 if (root->fs_info->closing || ret != -EAGAIN)
794                         break;
795         }
796         root->defrag_running = 0;
797         return ret;
798 }
799
800 #if 0
801 /*
802  * when dropping snapshots, we generate a ton of delayed refs, and it makes
803  * sense not to join the transaction while it is trying to flush the current
804  * queue of delayed refs out.
805  *
806  * This is used by the drop snapshot code only
807  */
808 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
809 {
810         DEFINE_WAIT(wait);
811
812         mutex_lock(&info->trans_mutex);
813         while (info->running_transaction &&
814                info->running_transaction->delayed_refs.flushing) {
815                 prepare_to_wait(&info->transaction_wait, &wait,
816                                 TASK_UNINTERRUPTIBLE);
817                 mutex_unlock(&info->trans_mutex);
818
819                 schedule();
820
821                 mutex_lock(&info->trans_mutex);
822                 finish_wait(&info->transaction_wait, &wait);
823         }
824         mutex_unlock(&info->trans_mutex);
825         return 0;
826 }
827
828 /*
829  * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
830  * all of them
831  */
832 int btrfs_drop_dead_root(struct btrfs_root *root)
833 {
834         struct btrfs_trans_handle *trans;
835         struct btrfs_root *tree_root = root->fs_info->tree_root;
836         unsigned long nr;
837         int ret;
838
839         while (1) {
840                 /*
841                  * we don't want to jump in and create a bunch of
842                  * delayed refs if the transaction is starting to close
843                  */
844                 wait_transaction_pre_flush(tree_root->fs_info);
845                 trans = btrfs_start_transaction(tree_root, 1);
846
847                 /*
848                  * we've joined a transaction, make sure it isn't
849                  * closing right now
850                  */
851                 if (trans->transaction->delayed_refs.flushing) {
852                         btrfs_end_transaction(trans, tree_root);
853                         continue;
854                 }
855
856                 ret = btrfs_drop_snapshot(trans, root);
857                 if (ret != -EAGAIN)
858                         break;
859
860                 ret = btrfs_update_root(trans, tree_root,
861                                         &root->root_key,
862                                         &root->root_item);
863                 if (ret)
864                         break;
865
866                 nr = trans->blocks_used;
867                 ret = btrfs_end_transaction(trans, tree_root);
868                 BUG_ON(ret);
869
870                 btrfs_btree_balance_dirty(tree_root, nr);
871                 cond_resched();
872         }
873         BUG_ON(ret);
874
875         ret = btrfs_del_root(trans, tree_root, &root->root_key);
876         BUG_ON(ret);
877
878         nr = trans->blocks_used;
879         ret = btrfs_end_transaction(trans, tree_root);
880         BUG_ON(ret);
881
882         free_extent_buffer(root->node);
883         free_extent_buffer(root->commit_root);
884         kfree(root);
885
886         btrfs_btree_balance_dirty(tree_root, nr);
887         return ret;
888 }
889 #endif
890
891 /*
892  * new snapshots need to be created at a very specific time in the
893  * transaction commit.  This does the actual creation
894  */
895 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
896                                    struct btrfs_fs_info *fs_info,
897                                    struct btrfs_pending_snapshot *pending)
898 {
899         struct btrfs_key key;
900         struct btrfs_root_item *new_root_item;
901         struct btrfs_root *tree_root = fs_info->tree_root;
902         struct btrfs_root *root = pending->root;
903         struct btrfs_root *parent_root;
904         struct inode *parent_inode;
905         struct dentry *dentry;
906         struct extent_buffer *tmp;
907         struct extent_buffer *old;
908         int ret;
909         u64 to_reserve = 0;
910         u64 index = 0;
911         u64 objectid;
912
913         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
914         if (!new_root_item) {
915                 pending->error = -ENOMEM;
916                 goto fail;
917         }
918
919         ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
920         if (ret) {
921                 pending->error = ret;
922                 goto fail;
923         }
924
925         btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
926         btrfs_orphan_pre_snapshot(trans, pending, &to_reserve);
927
928         if (to_reserve > 0) {
929                 ret = btrfs_block_rsv_add(trans, root, &pending->block_rsv,
930                                           to_reserve);
931                 if (ret) {
932                         pending->error = ret;
933                         goto fail;
934                 }
935         }
936
937         key.objectid = objectid;
938         key.offset = (u64)-1;
939         key.type = BTRFS_ROOT_ITEM_KEY;
940
941         trans->block_rsv = &pending->block_rsv;
942
943         dentry = pending->dentry;
944         parent_inode = dentry->d_parent->d_inode;
945         parent_root = BTRFS_I(parent_inode)->root;
946         record_root_in_trans(trans, parent_root);
947
948         /*
949          * insert the directory item
950          */
951         ret = btrfs_set_inode_index(parent_inode, &index);
952         BUG_ON(ret);
953         ret = btrfs_insert_dir_item(trans, parent_root,
954                                 dentry->d_name.name, dentry->d_name.len,
955                                 parent_inode->i_ino, &key,
956                                 BTRFS_FT_DIR, index);
957         BUG_ON(ret);
958
959         btrfs_i_size_write(parent_inode, parent_inode->i_size +
960                                          dentry->d_name.len * 2);
961         ret = btrfs_update_inode(trans, parent_root, parent_inode);
962         BUG_ON(ret);
963
964         record_root_in_trans(trans, root);
965         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
966         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
967
968         old = btrfs_lock_root_node(root);
969         btrfs_cow_block(trans, root, old, NULL, 0, &old);
970         btrfs_set_lock_blocking(old);
971
972         btrfs_copy_root(trans, root, old, &tmp, objectid);
973         btrfs_tree_unlock(old);
974         free_extent_buffer(old);
975
976         btrfs_set_root_node(new_root_item, tmp);
977         /* record when the snapshot was created in key.offset */
978         key.offset = trans->transid;
979         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
980         btrfs_tree_unlock(tmp);
981         free_extent_buffer(tmp);
982         BUG_ON(ret);
983
984         /*
985          * insert root back/forward references
986          */
987         ret = btrfs_add_root_ref(trans, tree_root, objectid,
988                                  parent_root->root_key.objectid,
989                                  parent_inode->i_ino, index,
990                                  dentry->d_name.name, dentry->d_name.len);
991         BUG_ON(ret);
992
993         key.offset = (u64)-1;
994         pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
995         BUG_ON(IS_ERR(pending->snap));
996
997         btrfs_reloc_post_snapshot(trans, pending);
998         btrfs_orphan_post_snapshot(trans, pending);
999 fail:
1000         kfree(new_root_item);
1001         btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1002         return 0;
1003 }
1004
1005 /*
1006  * create all the snapshots we've scheduled for creation
1007  */
1008 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1009                                              struct btrfs_fs_info *fs_info)
1010 {
1011         struct btrfs_pending_snapshot *pending;
1012         struct list_head *head = &trans->transaction->pending_snapshots;
1013         int ret;
1014
1015         list_for_each_entry(pending, head, list) {
1016                 ret = create_pending_snapshot(trans, fs_info, pending);
1017                 BUG_ON(ret);
1018         }
1019         return 0;
1020 }
1021
1022 static void update_super_roots(struct btrfs_root *root)
1023 {
1024         struct btrfs_root_item *root_item;
1025         struct btrfs_super_block *super;
1026
1027         super = &root->fs_info->super_copy;
1028
1029         root_item = &root->fs_info->chunk_root->root_item;
1030         super->chunk_root = root_item->bytenr;
1031         super->chunk_root_generation = root_item->generation;
1032         super->chunk_root_level = root_item->level;
1033
1034         root_item = &root->fs_info->tree_root->root_item;
1035         super->root = root_item->bytenr;
1036         super->generation = root_item->generation;
1037         super->root_level = root_item->level;
1038         if (super->cache_generation != 0 || btrfs_test_opt(root, SPACE_CACHE))
1039                 super->cache_generation = root_item->generation;
1040 }
1041
1042 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1043 {
1044         int ret = 0;
1045         spin_lock(&info->new_trans_lock);
1046         if (info->running_transaction)
1047                 ret = info->running_transaction->in_commit;
1048         spin_unlock(&info->new_trans_lock);
1049         return ret;
1050 }
1051
1052 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1053 {
1054         int ret = 0;
1055         spin_lock(&info->new_trans_lock);
1056         if (info->running_transaction)
1057                 ret = info->running_transaction->blocked;
1058         spin_unlock(&info->new_trans_lock);
1059         return ret;
1060 }
1061
1062 /*
1063  * wait for the current transaction commit to start and block subsequent
1064  * transaction joins
1065  */
1066 static void wait_current_trans_commit_start(struct btrfs_root *root,
1067                                             struct btrfs_transaction *trans)
1068 {
1069         DEFINE_WAIT(wait);
1070
1071         if (trans->in_commit)
1072                 return;
1073
1074         while (1) {
1075                 prepare_to_wait(&root->fs_info->transaction_blocked_wait, &wait,
1076                                 TASK_UNINTERRUPTIBLE);
1077                 if (trans->in_commit) {
1078                         finish_wait(&root->fs_info->transaction_blocked_wait,
1079                                     &wait);
1080                         break;
1081                 }
1082                 mutex_unlock(&root->fs_info->trans_mutex);
1083                 schedule();
1084                 mutex_lock(&root->fs_info->trans_mutex);
1085                 finish_wait(&root->fs_info->transaction_blocked_wait, &wait);
1086         }
1087 }
1088
1089 /*
1090  * wait for the current transaction to start and then become unblocked.
1091  * caller holds ref.
1092  */
1093 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1094                                          struct btrfs_transaction *trans)
1095 {
1096         DEFINE_WAIT(wait);
1097
1098         if (trans->commit_done || (trans->in_commit && !trans->blocked))
1099                 return;
1100
1101         while (1) {
1102                 prepare_to_wait(&root->fs_info->transaction_wait, &wait,
1103                                 TASK_UNINTERRUPTIBLE);
1104                 if (trans->commit_done ||
1105                     (trans->in_commit && !trans->blocked)) {
1106                         finish_wait(&root->fs_info->transaction_wait,
1107                                     &wait);
1108                         break;
1109                 }
1110                 mutex_unlock(&root->fs_info->trans_mutex);
1111                 schedule();
1112                 mutex_lock(&root->fs_info->trans_mutex);
1113                 finish_wait(&root->fs_info->transaction_wait,
1114                             &wait);
1115         }
1116 }
1117
1118 /*
1119  * commit transactions asynchronously. once btrfs_commit_transaction_async
1120  * returns, any subsequent transaction will not be allowed to join.
1121  */
1122 struct btrfs_async_commit {
1123         struct btrfs_trans_handle *newtrans;
1124         struct btrfs_root *root;
1125         struct delayed_work work;
1126 };
1127
1128 static void do_async_commit(struct work_struct *work)
1129 {
1130         struct btrfs_async_commit *ac =
1131                 container_of(work, struct btrfs_async_commit, work.work);
1132
1133         btrfs_commit_transaction(ac->newtrans, ac->root);
1134         kfree(ac);
1135 }
1136
1137 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1138                                    struct btrfs_root *root,
1139                                    int wait_for_unblock)
1140 {
1141         struct btrfs_async_commit *ac;
1142         struct btrfs_transaction *cur_trans;
1143
1144         ac = kmalloc(sizeof(*ac), GFP_NOFS);
1145         BUG_ON(!ac);
1146
1147         INIT_DELAYED_WORK(&ac->work, do_async_commit);
1148         ac->root = root;
1149         ac->newtrans = btrfs_join_transaction(root, 0);
1150
1151         /* take transaction reference */
1152         mutex_lock(&root->fs_info->trans_mutex);
1153         cur_trans = trans->transaction;
1154         cur_trans->use_count++;
1155         mutex_unlock(&root->fs_info->trans_mutex);
1156
1157         btrfs_end_transaction(trans, root);
1158         schedule_delayed_work(&ac->work, 0);
1159
1160         /* wait for transaction to start and unblock */
1161         mutex_lock(&root->fs_info->trans_mutex);
1162         if (wait_for_unblock)
1163                 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1164         else
1165                 wait_current_trans_commit_start(root, cur_trans);
1166         put_transaction(cur_trans);
1167         mutex_unlock(&root->fs_info->trans_mutex);
1168
1169         return 0;
1170 }
1171
1172 /*
1173  * btrfs_transaction state sequence:
1174  *    in_commit = 0, blocked = 0  (initial)
1175  *    in_commit = 1, blocked = 1
1176  *    blocked = 0
1177  *    commit_done = 1
1178  */
1179 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1180                              struct btrfs_root *root)
1181 {
1182         unsigned long joined = 0;
1183         struct btrfs_transaction *cur_trans;
1184         struct btrfs_transaction *prev_trans = NULL;
1185         DEFINE_WAIT(wait);
1186         int ret;
1187         int should_grow = 0;
1188         unsigned long now = get_seconds();
1189         int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1190
1191         btrfs_run_ordered_operations(root, 0);
1192
1193         /* make a pass through all the delayed refs we have so far
1194          * any runnings procs may add more while we are here
1195          */
1196         ret = btrfs_run_delayed_refs(trans, root, 0);
1197         BUG_ON(ret);
1198
1199         btrfs_trans_release_metadata(trans, root);
1200
1201         cur_trans = trans->transaction;
1202         /*
1203          * set the flushing flag so procs in this transaction have to
1204          * start sending their work down.
1205          */
1206         cur_trans->delayed_refs.flushing = 1;
1207
1208         ret = btrfs_run_delayed_refs(trans, root, 0);
1209         BUG_ON(ret);
1210
1211         mutex_lock(&root->fs_info->trans_mutex);
1212         if (cur_trans->in_commit) {
1213                 cur_trans->use_count++;
1214                 mutex_unlock(&root->fs_info->trans_mutex);
1215                 btrfs_end_transaction(trans, root);
1216
1217                 ret = wait_for_commit(root, cur_trans);
1218                 BUG_ON(ret);
1219
1220                 mutex_lock(&root->fs_info->trans_mutex);
1221                 put_transaction(cur_trans);
1222                 mutex_unlock(&root->fs_info->trans_mutex);
1223
1224                 return 0;
1225         }
1226
1227         trans->transaction->in_commit = 1;
1228         trans->transaction->blocked = 1;
1229         wake_up(&root->fs_info->transaction_blocked_wait);
1230
1231         if (cur_trans->list.prev != &root->fs_info->trans_list) {
1232                 prev_trans = list_entry(cur_trans->list.prev,
1233                                         struct btrfs_transaction, list);
1234                 if (!prev_trans->commit_done) {
1235                         prev_trans->use_count++;
1236                         mutex_unlock(&root->fs_info->trans_mutex);
1237
1238                         wait_for_commit(root, prev_trans);
1239
1240                         mutex_lock(&root->fs_info->trans_mutex);
1241                         put_transaction(prev_trans);
1242                 }
1243         }
1244
1245         if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1246                 should_grow = 1;
1247
1248         do {
1249                 int snap_pending = 0;
1250                 joined = cur_trans->num_joined;
1251                 if (!list_empty(&trans->transaction->pending_snapshots))
1252                         snap_pending = 1;
1253
1254                 WARN_ON(cur_trans != trans->transaction);
1255                 mutex_unlock(&root->fs_info->trans_mutex);
1256
1257                 if (flush_on_commit || snap_pending) {
1258                         btrfs_start_delalloc_inodes(root, 1);
1259                         ret = btrfs_wait_ordered_extents(root, 0, 1);
1260                         BUG_ON(ret);
1261                 }
1262
1263                 /*
1264                  * rename don't use btrfs_join_transaction, so, once we
1265                  * set the transaction to blocked above, we aren't going
1266                  * to get any new ordered operations.  We can safely run
1267                  * it here and no for sure that nothing new will be added
1268                  * to the list
1269                  */
1270                 btrfs_run_ordered_operations(root, 1);
1271
1272                 prepare_to_wait(&cur_trans->writer_wait, &wait,
1273                                 TASK_UNINTERRUPTIBLE);
1274
1275                 smp_mb();
1276                 if (cur_trans->num_writers > 1)
1277                         schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1278                 else if (should_grow)
1279                         schedule_timeout(1);
1280
1281                 mutex_lock(&root->fs_info->trans_mutex);
1282                 finish_wait(&cur_trans->writer_wait, &wait);
1283         } while (cur_trans->num_writers > 1 ||
1284                  (should_grow && cur_trans->num_joined != joined));
1285
1286         ret = create_pending_snapshots(trans, root->fs_info);
1287         BUG_ON(ret);
1288
1289         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1290         BUG_ON(ret);
1291
1292         WARN_ON(cur_trans != trans->transaction);
1293
1294         /* btrfs_commit_tree_roots is responsible for getting the
1295          * various roots consistent with each other.  Every pointer
1296          * in the tree of tree roots has to point to the most up to date
1297          * root for every subvolume and other tree.  So, we have to keep
1298          * the tree logging code from jumping in and changing any
1299          * of the trees.
1300          *
1301          * At this point in the commit, there can't be any tree-log
1302          * writers, but a little lower down we drop the trans mutex
1303          * and let new people in.  By holding the tree_log_mutex
1304          * from now until after the super is written, we avoid races
1305          * with the tree-log code.
1306          */
1307         mutex_lock(&root->fs_info->tree_log_mutex);
1308
1309         ret = commit_fs_roots(trans, root);
1310         BUG_ON(ret);
1311
1312         /* commit_fs_roots gets rid of all the tree log roots, it is now
1313          * safe to free the root of tree log roots
1314          */
1315         btrfs_free_log_root_tree(trans, root->fs_info);
1316
1317         ret = commit_cowonly_roots(trans, root);
1318         BUG_ON(ret);
1319
1320         btrfs_prepare_extent_commit(trans, root);
1321
1322         cur_trans = root->fs_info->running_transaction;
1323         spin_lock(&root->fs_info->new_trans_lock);
1324         root->fs_info->running_transaction = NULL;
1325         spin_unlock(&root->fs_info->new_trans_lock);
1326
1327         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1328                             root->fs_info->tree_root->node);
1329         switch_commit_root(root->fs_info->tree_root);
1330
1331         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1332                             root->fs_info->chunk_root->node);
1333         switch_commit_root(root->fs_info->chunk_root);
1334
1335         update_super_roots(root);
1336
1337         if (!root->fs_info->log_root_recovering) {
1338                 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1339                 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1340         }
1341
1342         memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1343                sizeof(root->fs_info->super_copy));
1344
1345         trans->transaction->blocked = 0;
1346
1347         wake_up(&root->fs_info->transaction_wait);
1348
1349         mutex_unlock(&root->fs_info->trans_mutex);
1350         ret = btrfs_write_and_wait_transaction(trans, root);
1351         BUG_ON(ret);
1352         write_ctree_super(trans, root, 0);
1353
1354         /*
1355          * the super is written, we can safely allow the tree-loggers
1356          * to go about their business
1357          */
1358         mutex_unlock(&root->fs_info->tree_log_mutex);
1359
1360         btrfs_finish_extent_commit(trans, root);
1361
1362         mutex_lock(&root->fs_info->trans_mutex);
1363
1364         cur_trans->commit_done = 1;
1365
1366         root->fs_info->last_trans_committed = cur_trans->transid;
1367
1368         wake_up(&cur_trans->commit_wait);
1369
1370         put_transaction(cur_trans);
1371         put_transaction(cur_trans);
1372
1373         mutex_unlock(&root->fs_info->trans_mutex);
1374
1375         if (current->journal_info == trans)
1376                 current->journal_info = NULL;
1377
1378         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1379
1380         if (current != root->fs_info->transaction_kthread)
1381                 btrfs_run_delayed_iputs(root);
1382
1383         return ret;
1384 }
1385
1386 /*
1387  * interface function to delete all the snapshots we have scheduled for deletion
1388  */
1389 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1390 {
1391         LIST_HEAD(list);
1392         struct btrfs_fs_info *fs_info = root->fs_info;
1393
1394         mutex_lock(&fs_info->trans_mutex);
1395         list_splice_init(&fs_info->dead_roots, &list);
1396         mutex_unlock(&fs_info->trans_mutex);
1397
1398         while (!list_empty(&list)) {
1399                 root = list_entry(list.next, struct btrfs_root, root_list);
1400                 list_del(&root->root_list);
1401
1402                 if (btrfs_header_backref_rev(root->node) <
1403                     BTRFS_MIXED_BACKREF_REV)
1404                         btrfs_drop_snapshot(root, NULL, 0);
1405                 else
1406                         btrfs_drop_snapshot(root, NULL, 1);
1407         }
1408         return 0;
1409 }