]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/gpu/drm/i915/intel_display.c
14c45b1e8778b08b4e47bbd16b3b1779e4f2573d
[net-next-2.6.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/vgaarb.h>
33 #include "drmP.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "drm_dp_helper.h"
39
40 #include "drm_crtc_helper.h"
41
42 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
43
44 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
45 static void intel_update_watermarks(struct drm_device *dev);
46 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
47 static void intel_crtc_update_cursor(struct drm_crtc *crtc);
48
49 typedef struct {
50     /* given values */
51     int n;
52     int m1, m2;
53     int p1, p2;
54     /* derived values */
55     int dot;
56     int vco;
57     int m;
58     int p;
59 } intel_clock_t;
60
61 typedef struct {
62     int min, max;
63 } intel_range_t;
64
65 typedef struct {
66     int dot_limit;
67     int p2_slow, p2_fast;
68 } intel_p2_t;
69
70 #define INTEL_P2_NUM                  2
71 typedef struct intel_limit intel_limit_t;
72 struct intel_limit {
73     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
74     intel_p2_t      p2;
75     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
76                       int, int, intel_clock_t *);
77 };
78
79 #define I8XX_DOT_MIN              25000
80 #define I8XX_DOT_MAX             350000
81 #define I8XX_VCO_MIN             930000
82 #define I8XX_VCO_MAX            1400000
83 #define I8XX_N_MIN                    3
84 #define I8XX_N_MAX                   16
85 #define I8XX_M_MIN                   96
86 #define I8XX_M_MAX                  140
87 #define I8XX_M1_MIN                  18
88 #define I8XX_M1_MAX                  26
89 #define I8XX_M2_MIN                   6
90 #define I8XX_M2_MAX                  16
91 #define I8XX_P_MIN                    4
92 #define I8XX_P_MAX                  128
93 #define I8XX_P1_MIN                   2
94 #define I8XX_P1_MAX                  33
95 #define I8XX_P1_LVDS_MIN              1
96 #define I8XX_P1_LVDS_MAX              6
97 #define I8XX_P2_SLOW                  4
98 #define I8XX_P2_FAST                  2
99 #define I8XX_P2_LVDS_SLOW             14
100 #define I8XX_P2_LVDS_FAST             7
101 #define I8XX_P2_SLOW_LIMIT       165000
102
103 #define I9XX_DOT_MIN              20000
104 #define I9XX_DOT_MAX             400000
105 #define I9XX_VCO_MIN            1400000
106 #define I9XX_VCO_MAX            2800000
107 #define PINEVIEW_VCO_MIN                1700000
108 #define PINEVIEW_VCO_MAX                3500000
109 #define I9XX_N_MIN                    1
110 #define I9XX_N_MAX                    6
111 /* Pineview's Ncounter is a ring counter */
112 #define PINEVIEW_N_MIN                3
113 #define PINEVIEW_N_MAX                6
114 #define I9XX_M_MIN                   70
115 #define I9XX_M_MAX                  120
116 #define PINEVIEW_M_MIN                2
117 #define PINEVIEW_M_MAX              256
118 #define I9XX_M1_MIN                  10
119 #define I9XX_M1_MAX                  22
120 #define I9XX_M2_MIN                   5
121 #define I9XX_M2_MAX                   9
122 /* Pineview M1 is reserved, and must be 0 */
123 #define PINEVIEW_M1_MIN               0
124 #define PINEVIEW_M1_MAX               0
125 #define PINEVIEW_M2_MIN               0
126 #define PINEVIEW_M2_MAX               254
127 #define I9XX_P_SDVO_DAC_MIN           5
128 #define I9XX_P_SDVO_DAC_MAX          80
129 #define I9XX_P_LVDS_MIN               7
130 #define I9XX_P_LVDS_MAX              98
131 #define PINEVIEW_P_LVDS_MIN                   7
132 #define PINEVIEW_P_LVDS_MAX                  112
133 #define I9XX_P1_MIN                   1
134 #define I9XX_P1_MAX                   8
135 #define I9XX_P2_SDVO_DAC_SLOW                10
136 #define I9XX_P2_SDVO_DAC_FAST                 5
137 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT      200000
138 #define I9XX_P2_LVDS_SLOW                    14
139 #define I9XX_P2_LVDS_FAST                     7
140 #define I9XX_P2_LVDS_SLOW_LIMIT          112000
141
142 /*The parameter is for SDVO on G4x platform*/
143 #define G4X_DOT_SDVO_MIN           25000
144 #define G4X_DOT_SDVO_MAX           270000
145 #define G4X_VCO_MIN                1750000
146 #define G4X_VCO_MAX                3500000
147 #define G4X_N_SDVO_MIN             1
148 #define G4X_N_SDVO_MAX             4
149 #define G4X_M_SDVO_MIN             104
150 #define G4X_M_SDVO_MAX             138
151 #define G4X_M1_SDVO_MIN            17
152 #define G4X_M1_SDVO_MAX            23
153 #define G4X_M2_SDVO_MIN            5
154 #define G4X_M2_SDVO_MAX            11
155 #define G4X_P_SDVO_MIN             10
156 #define G4X_P_SDVO_MAX             30
157 #define G4X_P1_SDVO_MIN            1
158 #define G4X_P1_SDVO_MAX            3
159 #define G4X_P2_SDVO_SLOW           10
160 #define G4X_P2_SDVO_FAST           10
161 #define G4X_P2_SDVO_LIMIT          270000
162
163 /*The parameter is for HDMI_DAC on G4x platform*/
164 #define G4X_DOT_HDMI_DAC_MIN           22000
165 #define G4X_DOT_HDMI_DAC_MAX           400000
166 #define G4X_N_HDMI_DAC_MIN             1
167 #define G4X_N_HDMI_DAC_MAX             4
168 #define G4X_M_HDMI_DAC_MIN             104
169 #define G4X_M_HDMI_DAC_MAX             138
170 #define G4X_M1_HDMI_DAC_MIN            16
171 #define G4X_M1_HDMI_DAC_MAX            23
172 #define G4X_M2_HDMI_DAC_MIN            5
173 #define G4X_M2_HDMI_DAC_MAX            11
174 #define G4X_P_HDMI_DAC_MIN             5
175 #define G4X_P_HDMI_DAC_MAX             80
176 #define G4X_P1_HDMI_DAC_MIN            1
177 #define G4X_P1_HDMI_DAC_MAX            8
178 #define G4X_P2_HDMI_DAC_SLOW           10
179 #define G4X_P2_HDMI_DAC_FAST           5
180 #define G4X_P2_HDMI_DAC_LIMIT          165000
181
182 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
183 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN           20000
184 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX           115000
185 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN             1
186 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX             3
187 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN             104
188 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX             138
189 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN            17
190 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX            23
191 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN            5
192 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX            11
193 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN             28
194 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX             112
195 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN            2
196 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX            8
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW           14
198 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST           14
199 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT          0
200
201 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
202 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN           80000
203 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX           224000
204 #define G4X_N_DUAL_CHANNEL_LVDS_MIN             1
205 #define G4X_N_DUAL_CHANNEL_LVDS_MAX             3
206 #define G4X_M_DUAL_CHANNEL_LVDS_MIN             104
207 #define G4X_M_DUAL_CHANNEL_LVDS_MAX             138
208 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN            17
209 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX            23
210 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN            5
211 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX            11
212 #define G4X_P_DUAL_CHANNEL_LVDS_MIN             14
213 #define G4X_P_DUAL_CHANNEL_LVDS_MAX             42
214 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN            2
215 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX            6
216 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW           7
217 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST           7
218 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT          0
219
220 /*The parameter is for DISPLAY PORT on G4x platform*/
221 #define G4X_DOT_DISPLAY_PORT_MIN           161670
222 #define G4X_DOT_DISPLAY_PORT_MAX           227000
223 #define G4X_N_DISPLAY_PORT_MIN             1
224 #define G4X_N_DISPLAY_PORT_MAX             2
225 #define G4X_M_DISPLAY_PORT_MIN             97
226 #define G4X_M_DISPLAY_PORT_MAX             108
227 #define G4X_M1_DISPLAY_PORT_MIN            0x10
228 #define G4X_M1_DISPLAY_PORT_MAX            0x12
229 #define G4X_M2_DISPLAY_PORT_MIN            0x05
230 #define G4X_M2_DISPLAY_PORT_MAX            0x06
231 #define G4X_P_DISPLAY_PORT_MIN             10
232 #define G4X_P_DISPLAY_PORT_MAX             20
233 #define G4X_P1_DISPLAY_PORT_MIN            1
234 #define G4X_P1_DISPLAY_PORT_MAX            2
235 #define G4X_P2_DISPLAY_PORT_SLOW           10
236 #define G4X_P2_DISPLAY_PORT_FAST           10
237 #define G4X_P2_DISPLAY_PORT_LIMIT          0
238
239 /* Ironlake / Sandybridge */
240 /* as we calculate clock using (register_value + 2) for
241    N/M1/M2, so here the range value for them is (actual_value-2).
242  */
243 #define IRONLAKE_DOT_MIN         25000
244 #define IRONLAKE_DOT_MAX         350000
245 #define IRONLAKE_VCO_MIN         1760000
246 #define IRONLAKE_VCO_MAX         3510000
247 #define IRONLAKE_M1_MIN          12
248 #define IRONLAKE_M1_MAX          22
249 #define IRONLAKE_M2_MIN          5
250 #define IRONLAKE_M2_MAX          9
251 #define IRONLAKE_P2_DOT_LIMIT    225000 /* 225Mhz */
252
253 /* We have parameter ranges for different type of outputs. */
254
255 /* DAC & HDMI Refclk 120Mhz */
256 #define IRONLAKE_DAC_N_MIN      1
257 #define IRONLAKE_DAC_N_MAX      5
258 #define IRONLAKE_DAC_M_MIN      79
259 #define IRONLAKE_DAC_M_MAX      127
260 #define IRONLAKE_DAC_P_MIN      5
261 #define IRONLAKE_DAC_P_MAX      80
262 #define IRONLAKE_DAC_P1_MIN     1
263 #define IRONLAKE_DAC_P1_MAX     8
264 #define IRONLAKE_DAC_P2_SLOW    10
265 #define IRONLAKE_DAC_P2_FAST    5
266
267 /* LVDS single-channel 120Mhz refclk */
268 #define IRONLAKE_LVDS_S_N_MIN   1
269 #define IRONLAKE_LVDS_S_N_MAX   3
270 #define IRONLAKE_LVDS_S_M_MIN   79
271 #define IRONLAKE_LVDS_S_M_MAX   118
272 #define IRONLAKE_LVDS_S_P_MIN   28
273 #define IRONLAKE_LVDS_S_P_MAX   112
274 #define IRONLAKE_LVDS_S_P1_MIN  2
275 #define IRONLAKE_LVDS_S_P1_MAX  8
276 #define IRONLAKE_LVDS_S_P2_SLOW 14
277 #define IRONLAKE_LVDS_S_P2_FAST 14
278
279 /* LVDS dual-channel 120Mhz refclk */
280 #define IRONLAKE_LVDS_D_N_MIN   1
281 #define IRONLAKE_LVDS_D_N_MAX   3
282 #define IRONLAKE_LVDS_D_M_MIN   79
283 #define IRONLAKE_LVDS_D_M_MAX   127
284 #define IRONLAKE_LVDS_D_P_MIN   14
285 #define IRONLAKE_LVDS_D_P_MAX   56
286 #define IRONLAKE_LVDS_D_P1_MIN  2
287 #define IRONLAKE_LVDS_D_P1_MAX  8
288 #define IRONLAKE_LVDS_D_P2_SLOW 7
289 #define IRONLAKE_LVDS_D_P2_FAST 7
290
291 /* LVDS single-channel 100Mhz refclk */
292 #define IRONLAKE_LVDS_S_SSC_N_MIN       1
293 #define IRONLAKE_LVDS_S_SSC_N_MAX       2
294 #define IRONLAKE_LVDS_S_SSC_M_MIN       79
295 #define IRONLAKE_LVDS_S_SSC_M_MAX       126
296 #define IRONLAKE_LVDS_S_SSC_P_MIN       28
297 #define IRONLAKE_LVDS_S_SSC_P_MAX       112
298 #define IRONLAKE_LVDS_S_SSC_P1_MIN      2
299 #define IRONLAKE_LVDS_S_SSC_P1_MAX      8
300 #define IRONLAKE_LVDS_S_SSC_P2_SLOW     14
301 #define IRONLAKE_LVDS_S_SSC_P2_FAST     14
302
303 /* LVDS dual-channel 100Mhz refclk */
304 #define IRONLAKE_LVDS_D_SSC_N_MIN       1
305 #define IRONLAKE_LVDS_D_SSC_N_MAX       3
306 #define IRONLAKE_LVDS_D_SSC_M_MIN       79
307 #define IRONLAKE_LVDS_D_SSC_M_MAX       126
308 #define IRONLAKE_LVDS_D_SSC_P_MIN       14
309 #define IRONLAKE_LVDS_D_SSC_P_MAX       42
310 #define IRONLAKE_LVDS_D_SSC_P1_MIN      2
311 #define IRONLAKE_LVDS_D_SSC_P1_MAX      6
312 #define IRONLAKE_LVDS_D_SSC_P2_SLOW     7
313 #define IRONLAKE_LVDS_D_SSC_P2_FAST     7
314
315 /* DisplayPort */
316 #define IRONLAKE_DP_N_MIN               1
317 #define IRONLAKE_DP_N_MAX               2
318 #define IRONLAKE_DP_M_MIN               81
319 #define IRONLAKE_DP_M_MAX               90
320 #define IRONLAKE_DP_P_MIN               10
321 #define IRONLAKE_DP_P_MAX               20
322 #define IRONLAKE_DP_P2_FAST             10
323 #define IRONLAKE_DP_P2_SLOW             10
324 #define IRONLAKE_DP_P2_LIMIT            0
325 #define IRONLAKE_DP_P1_MIN              1
326 #define IRONLAKE_DP_P1_MAX              2
327
328 /* FDI */
329 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
330
331 static bool
332 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
333                     int target, int refclk, intel_clock_t *best_clock);
334 static bool
335 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
336                         int target, int refclk, intel_clock_t *best_clock);
337
338 static bool
339 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
340                       int target, int refclk, intel_clock_t *best_clock);
341 static bool
342 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
343                            int target, int refclk, intel_clock_t *best_clock);
344
345 static const intel_limit_t intel_limits_i8xx_dvo = {
346         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
347         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
348         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
349         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
350         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
351         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
352         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
353         .p1  = { .min = I8XX_P1_MIN,            .max = I8XX_P1_MAX },
354         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
355                  .p2_slow = I8XX_P2_SLOW,       .p2_fast = I8XX_P2_FAST },
356         .find_pll = intel_find_best_PLL,
357 };
358
359 static const intel_limit_t intel_limits_i8xx_lvds = {
360         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
361         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
362         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
363         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
364         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
365         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
366         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
367         .p1  = { .min = I8XX_P1_LVDS_MIN,       .max = I8XX_P1_LVDS_MAX },
368         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
369                  .p2_slow = I8XX_P2_LVDS_SLOW,  .p2_fast = I8XX_P2_LVDS_FAST },
370         .find_pll = intel_find_best_PLL,
371 };
372         
373 static const intel_limit_t intel_limits_i9xx_sdvo = {
374         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
375         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
376         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
377         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
378         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
379         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
380         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
381         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
382         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
383                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
384         .find_pll = intel_find_best_PLL,
385 };
386
387 static const intel_limit_t intel_limits_i9xx_lvds = {
388         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
389         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
390         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
391         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
392         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
393         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
394         .p   = { .min = I9XX_P_LVDS_MIN,        .max = I9XX_P_LVDS_MAX },
395         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
396         /* The single-channel range is 25-112Mhz, and dual-channel
397          * is 80-224Mhz.  Prefer single channel as much as possible.
398          */
399         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
400                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_FAST },
401         .find_pll = intel_find_best_PLL,
402 };
403
404     /* below parameter and function is for G4X Chipset Family*/
405 static const intel_limit_t intel_limits_g4x_sdvo = {
406         .dot = { .min = G4X_DOT_SDVO_MIN,       .max = G4X_DOT_SDVO_MAX },
407         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
408         .n   = { .min = G4X_N_SDVO_MIN,         .max = G4X_N_SDVO_MAX },
409         .m   = { .min = G4X_M_SDVO_MIN,         .max = G4X_M_SDVO_MAX },
410         .m1  = { .min = G4X_M1_SDVO_MIN,        .max = G4X_M1_SDVO_MAX },
411         .m2  = { .min = G4X_M2_SDVO_MIN,        .max = G4X_M2_SDVO_MAX },
412         .p   = { .min = G4X_P_SDVO_MIN,         .max = G4X_P_SDVO_MAX },
413         .p1  = { .min = G4X_P1_SDVO_MIN,        .max = G4X_P1_SDVO_MAX},
414         .p2  = { .dot_limit = G4X_P2_SDVO_LIMIT,
415                  .p2_slow = G4X_P2_SDVO_SLOW,
416                  .p2_fast = G4X_P2_SDVO_FAST
417         },
418         .find_pll = intel_g4x_find_best_PLL,
419 };
420
421 static const intel_limit_t intel_limits_g4x_hdmi = {
422         .dot = { .min = G4X_DOT_HDMI_DAC_MIN,   .max = G4X_DOT_HDMI_DAC_MAX },
423         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
424         .n   = { .min = G4X_N_HDMI_DAC_MIN,     .max = G4X_N_HDMI_DAC_MAX },
425         .m   = { .min = G4X_M_HDMI_DAC_MIN,     .max = G4X_M_HDMI_DAC_MAX },
426         .m1  = { .min = G4X_M1_HDMI_DAC_MIN,    .max = G4X_M1_HDMI_DAC_MAX },
427         .m2  = { .min = G4X_M2_HDMI_DAC_MIN,    .max = G4X_M2_HDMI_DAC_MAX },
428         .p   = { .min = G4X_P_HDMI_DAC_MIN,     .max = G4X_P_HDMI_DAC_MAX },
429         .p1  = { .min = G4X_P1_HDMI_DAC_MIN,    .max = G4X_P1_HDMI_DAC_MAX},
430         .p2  = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
431                  .p2_slow = G4X_P2_HDMI_DAC_SLOW,
432                  .p2_fast = G4X_P2_HDMI_DAC_FAST
433         },
434         .find_pll = intel_g4x_find_best_PLL,
435 };
436
437 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
438         .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
439                  .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
440         .vco = { .min = G4X_VCO_MIN,
441                  .max = G4X_VCO_MAX },
442         .n   = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
443                  .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
444         .m   = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
445                  .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
446         .m1  = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
447                  .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
448         .m2  = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
449                  .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
450         .p   = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
451                  .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
452         .p1  = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
453                  .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
454         .p2  = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
455                  .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
456                  .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
457         },
458         .find_pll = intel_g4x_find_best_PLL,
459 };
460
461 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
462         .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
463                  .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
464         .vco = { .min = G4X_VCO_MIN,
465                  .max = G4X_VCO_MAX },
466         .n   = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
467                  .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
468         .m   = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
469                  .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
470         .m1  = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
471                  .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
472         .m2  = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
473                  .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
474         .p   = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
475                  .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
476         .p1  = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
477                  .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
478         .p2  = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
479                  .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
480                  .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
481         },
482         .find_pll = intel_g4x_find_best_PLL,
483 };
484
485 static const intel_limit_t intel_limits_g4x_display_port = {
486         .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
487                  .max = G4X_DOT_DISPLAY_PORT_MAX },
488         .vco = { .min = G4X_VCO_MIN,
489                  .max = G4X_VCO_MAX},
490         .n   = { .min = G4X_N_DISPLAY_PORT_MIN,
491                  .max = G4X_N_DISPLAY_PORT_MAX },
492         .m   = { .min = G4X_M_DISPLAY_PORT_MIN,
493                  .max = G4X_M_DISPLAY_PORT_MAX },
494         .m1  = { .min = G4X_M1_DISPLAY_PORT_MIN,
495                  .max = G4X_M1_DISPLAY_PORT_MAX },
496         .m2  = { .min = G4X_M2_DISPLAY_PORT_MIN,
497                  .max = G4X_M2_DISPLAY_PORT_MAX },
498         .p   = { .min = G4X_P_DISPLAY_PORT_MIN,
499                  .max = G4X_P_DISPLAY_PORT_MAX },
500         .p1  = { .min = G4X_P1_DISPLAY_PORT_MIN,
501                  .max = G4X_P1_DISPLAY_PORT_MAX},
502         .p2  = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
503                  .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
504                  .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
505         .find_pll = intel_find_pll_g4x_dp,
506 };
507
508 static const intel_limit_t intel_limits_pineview_sdvo = {
509         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX},
510         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
511         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
512         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
513         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
514         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
515         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
516         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
517         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
518                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
519         .find_pll = intel_find_best_PLL,
520 };
521
522 static const intel_limit_t intel_limits_pineview_lvds = {
523         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
524         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
525         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
526         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
527         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
528         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
529         .p   = { .min = PINEVIEW_P_LVDS_MIN,    .max = PINEVIEW_P_LVDS_MAX },
530         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
531         /* Pineview only supports single-channel mode. */
532         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
533                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_SLOW },
534         .find_pll = intel_find_best_PLL,
535 };
536
537 static const intel_limit_t intel_limits_ironlake_dac = {
538         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
539         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
540         .n   = { .min = IRONLAKE_DAC_N_MIN,        .max = IRONLAKE_DAC_N_MAX },
541         .m   = { .min = IRONLAKE_DAC_M_MIN,        .max = IRONLAKE_DAC_M_MAX },
542         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
543         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
544         .p   = { .min = IRONLAKE_DAC_P_MIN,        .max = IRONLAKE_DAC_P_MAX },
545         .p1  = { .min = IRONLAKE_DAC_P1_MIN,       .max = IRONLAKE_DAC_P1_MAX },
546         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
547                  .p2_slow = IRONLAKE_DAC_P2_SLOW,
548                  .p2_fast = IRONLAKE_DAC_P2_FAST },
549         .find_pll = intel_g4x_find_best_PLL,
550 };
551
552 static const intel_limit_t intel_limits_ironlake_single_lvds = {
553         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
554         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
555         .n   = { .min = IRONLAKE_LVDS_S_N_MIN,     .max = IRONLAKE_LVDS_S_N_MAX },
556         .m   = { .min = IRONLAKE_LVDS_S_M_MIN,     .max = IRONLAKE_LVDS_S_M_MAX },
557         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
558         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
559         .p   = { .min = IRONLAKE_LVDS_S_P_MIN,     .max = IRONLAKE_LVDS_S_P_MAX },
560         .p1  = { .min = IRONLAKE_LVDS_S_P1_MIN,    .max = IRONLAKE_LVDS_S_P1_MAX },
561         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
562                  .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
563                  .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
564         .find_pll = intel_g4x_find_best_PLL,
565 };
566
567 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
568         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
569         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
570         .n   = { .min = IRONLAKE_LVDS_D_N_MIN,     .max = IRONLAKE_LVDS_D_N_MAX },
571         .m   = { .min = IRONLAKE_LVDS_D_M_MIN,     .max = IRONLAKE_LVDS_D_M_MAX },
572         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
573         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
574         .p   = { .min = IRONLAKE_LVDS_D_P_MIN,     .max = IRONLAKE_LVDS_D_P_MAX },
575         .p1  = { .min = IRONLAKE_LVDS_D_P1_MIN,    .max = IRONLAKE_LVDS_D_P1_MAX },
576         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
577                  .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
578                  .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
579         .find_pll = intel_g4x_find_best_PLL,
580 };
581
582 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
583         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
584         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
585         .n   = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
586         .m   = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
587         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
588         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
589         .p   = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
590         .p1  = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
591         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
592                  .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
593                  .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
594         .find_pll = intel_g4x_find_best_PLL,
595 };
596
597 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
598         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
599         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
600         .n   = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
601         .m   = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
602         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
603         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
604         .p   = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
605         .p1  = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
606         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
607                  .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
608                  .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
609         .find_pll = intel_g4x_find_best_PLL,
610 };
611
612 static const intel_limit_t intel_limits_ironlake_display_port = {
613         .dot = { .min = IRONLAKE_DOT_MIN,
614                  .max = IRONLAKE_DOT_MAX },
615         .vco = { .min = IRONLAKE_VCO_MIN,
616                  .max = IRONLAKE_VCO_MAX},
617         .n   = { .min = IRONLAKE_DP_N_MIN,
618                  .max = IRONLAKE_DP_N_MAX },
619         .m   = { .min = IRONLAKE_DP_M_MIN,
620                  .max = IRONLAKE_DP_M_MAX },
621         .m1  = { .min = IRONLAKE_M1_MIN,
622                  .max = IRONLAKE_M1_MAX },
623         .m2  = { .min = IRONLAKE_M2_MIN,
624                  .max = IRONLAKE_M2_MAX },
625         .p   = { .min = IRONLAKE_DP_P_MIN,
626                  .max = IRONLAKE_DP_P_MAX },
627         .p1  = { .min = IRONLAKE_DP_P1_MIN,
628                  .max = IRONLAKE_DP_P1_MAX},
629         .p2  = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
630                  .p2_slow = IRONLAKE_DP_P2_SLOW,
631                  .p2_fast = IRONLAKE_DP_P2_FAST },
632         .find_pll = intel_find_pll_ironlake_dp,
633 };
634
635 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
636 {
637         struct drm_device *dev = crtc->dev;
638         struct drm_i915_private *dev_priv = dev->dev_private;
639         const intel_limit_t *limit;
640         int refclk = 120;
641
642         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
643                 if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
644                         refclk = 100;
645
646                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
647                     LVDS_CLKB_POWER_UP) {
648                         /* LVDS dual channel */
649                         if (refclk == 100)
650                                 limit = &intel_limits_ironlake_dual_lvds_100m;
651                         else
652                                 limit = &intel_limits_ironlake_dual_lvds;
653                 } else {
654                         if (refclk == 100)
655                                 limit = &intel_limits_ironlake_single_lvds_100m;
656                         else
657                                 limit = &intel_limits_ironlake_single_lvds;
658                 }
659         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
660                         HAS_eDP)
661                 limit = &intel_limits_ironlake_display_port;
662         else
663                 limit = &intel_limits_ironlake_dac;
664
665         return limit;
666 }
667
668 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
669 {
670         struct drm_device *dev = crtc->dev;
671         struct drm_i915_private *dev_priv = dev->dev_private;
672         const intel_limit_t *limit;
673
674         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
675                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
676                     LVDS_CLKB_POWER_UP)
677                         /* LVDS with dual channel */
678                         limit = &intel_limits_g4x_dual_channel_lvds;
679                 else
680                         /* LVDS with dual channel */
681                         limit = &intel_limits_g4x_single_channel_lvds;
682         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
683                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
684                 limit = &intel_limits_g4x_hdmi;
685         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
686                 limit = &intel_limits_g4x_sdvo;
687         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
688                 limit = &intel_limits_g4x_display_port;
689         } else /* The option is for other outputs */
690                 limit = &intel_limits_i9xx_sdvo;
691
692         return limit;
693 }
694
695 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
696 {
697         struct drm_device *dev = crtc->dev;
698         const intel_limit_t *limit;
699
700         if (HAS_PCH_SPLIT(dev))
701                 limit = intel_ironlake_limit(crtc);
702         else if (IS_G4X(dev)) {
703                 limit = intel_g4x_limit(crtc);
704         } else if (IS_I9XX(dev) && !IS_PINEVIEW(dev)) {
705                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
706                         limit = &intel_limits_i9xx_lvds;
707                 else
708                         limit = &intel_limits_i9xx_sdvo;
709         } else if (IS_PINEVIEW(dev)) {
710                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
711                         limit = &intel_limits_pineview_lvds;
712                 else
713                         limit = &intel_limits_pineview_sdvo;
714         } else {
715                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
716                         limit = &intel_limits_i8xx_lvds;
717                 else
718                         limit = &intel_limits_i8xx_dvo;
719         }
720         return limit;
721 }
722
723 /* m1 is reserved as 0 in Pineview, n is a ring counter */
724 static void pineview_clock(int refclk, intel_clock_t *clock)
725 {
726         clock->m = clock->m2 + 2;
727         clock->p = clock->p1 * clock->p2;
728         clock->vco = refclk * clock->m / clock->n;
729         clock->dot = clock->vco / clock->p;
730 }
731
732 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
733 {
734         if (IS_PINEVIEW(dev)) {
735                 pineview_clock(refclk, clock);
736                 return;
737         }
738         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
739         clock->p = clock->p1 * clock->p2;
740         clock->vco = refclk * clock->m / (clock->n + 2);
741         clock->dot = clock->vco / clock->p;
742 }
743
744 /**
745  * Returns whether any output on the specified pipe is of the specified type
746  */
747 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
748 {
749     struct drm_device *dev = crtc->dev;
750     struct drm_mode_config *mode_config = &dev->mode_config;
751     struct drm_encoder *l_entry;
752
753     list_for_each_entry(l_entry, &mode_config->encoder_list, head) {
754             if (l_entry && l_entry->crtc == crtc) {
755                     struct intel_encoder *intel_encoder = enc_to_intel_encoder(l_entry);
756                     if (intel_encoder->type == type)
757                             return true;
758             }
759     }
760     return false;
761 }
762
763 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
764 /**
765  * Returns whether the given set of divisors are valid for a given refclk with
766  * the given connectors.
767  */
768
769 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
770 {
771         const intel_limit_t *limit = intel_limit (crtc);
772         struct drm_device *dev = crtc->dev;
773
774         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
775                 INTELPllInvalid ("p1 out of range\n");
776         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
777                 INTELPllInvalid ("p out of range\n");
778         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
779                 INTELPllInvalid ("m2 out of range\n");
780         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
781                 INTELPllInvalid ("m1 out of range\n");
782         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
783                 INTELPllInvalid ("m1 <= m2\n");
784         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
785                 INTELPllInvalid ("m out of range\n");
786         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
787                 INTELPllInvalid ("n out of range\n");
788         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
789                 INTELPllInvalid ("vco out of range\n");
790         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
791          * connector, etc., rather than just a single range.
792          */
793         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
794                 INTELPllInvalid ("dot out of range\n");
795
796         return true;
797 }
798
799 static bool
800 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
801                     int target, int refclk, intel_clock_t *best_clock)
802
803 {
804         struct drm_device *dev = crtc->dev;
805         struct drm_i915_private *dev_priv = dev->dev_private;
806         intel_clock_t clock;
807         int err = target;
808
809         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
810             (I915_READ(LVDS)) != 0) {
811                 /*
812                  * For LVDS, if the panel is on, just rely on its current
813                  * settings for dual-channel.  We haven't figured out how to
814                  * reliably set up different single/dual channel state, if we
815                  * even can.
816                  */
817                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
818                     LVDS_CLKB_POWER_UP)
819                         clock.p2 = limit->p2.p2_fast;
820                 else
821                         clock.p2 = limit->p2.p2_slow;
822         } else {
823                 if (target < limit->p2.dot_limit)
824                         clock.p2 = limit->p2.p2_slow;
825                 else
826                         clock.p2 = limit->p2.p2_fast;
827         }
828
829         memset (best_clock, 0, sizeof (*best_clock));
830
831         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
832              clock.m1++) {
833                 for (clock.m2 = limit->m2.min;
834                      clock.m2 <= limit->m2.max; clock.m2++) {
835                         /* m1 is always 0 in Pineview */
836                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
837                                 break;
838                         for (clock.n = limit->n.min;
839                              clock.n <= limit->n.max; clock.n++) {
840                                 for (clock.p1 = limit->p1.min;
841                                         clock.p1 <= limit->p1.max; clock.p1++) {
842                                         int this_err;
843
844                                         intel_clock(dev, refclk, &clock);
845
846                                         if (!intel_PLL_is_valid(crtc, &clock))
847                                                 continue;
848
849                                         this_err = abs(clock.dot - target);
850                                         if (this_err < err) {
851                                                 *best_clock = clock;
852                                                 err = this_err;
853                                         }
854                                 }
855                         }
856                 }
857         }
858
859         return (err != target);
860 }
861
862 static bool
863 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
864                         int target, int refclk, intel_clock_t *best_clock)
865 {
866         struct drm_device *dev = crtc->dev;
867         struct drm_i915_private *dev_priv = dev->dev_private;
868         intel_clock_t clock;
869         int max_n;
870         bool found;
871         /* approximately equals target * 0.00585 */
872         int err_most = (target >> 8) + (target >> 9);
873         found = false;
874
875         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
876                 int lvds_reg;
877
878                 if (HAS_PCH_SPLIT(dev))
879                         lvds_reg = PCH_LVDS;
880                 else
881                         lvds_reg = LVDS;
882                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
883                     LVDS_CLKB_POWER_UP)
884                         clock.p2 = limit->p2.p2_fast;
885                 else
886                         clock.p2 = limit->p2.p2_slow;
887         } else {
888                 if (target < limit->p2.dot_limit)
889                         clock.p2 = limit->p2.p2_slow;
890                 else
891                         clock.p2 = limit->p2.p2_fast;
892         }
893
894         memset(best_clock, 0, sizeof(*best_clock));
895         max_n = limit->n.max;
896         /* based on hardware requirement, prefer smaller n to precision */
897         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
898                 /* based on hardware requirement, prefere larger m1,m2 */
899                 for (clock.m1 = limit->m1.max;
900                      clock.m1 >= limit->m1.min; clock.m1--) {
901                         for (clock.m2 = limit->m2.max;
902                              clock.m2 >= limit->m2.min; clock.m2--) {
903                                 for (clock.p1 = limit->p1.max;
904                                      clock.p1 >= limit->p1.min; clock.p1--) {
905                                         int this_err;
906
907                                         intel_clock(dev, refclk, &clock);
908                                         if (!intel_PLL_is_valid(crtc, &clock))
909                                                 continue;
910                                         this_err = abs(clock.dot - target) ;
911                                         if (this_err < err_most) {
912                                                 *best_clock = clock;
913                                                 err_most = this_err;
914                                                 max_n = clock.n;
915                                                 found = true;
916                                         }
917                                 }
918                         }
919                 }
920         }
921         return found;
922 }
923
924 static bool
925 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
926                            int target, int refclk, intel_clock_t *best_clock)
927 {
928         struct drm_device *dev = crtc->dev;
929         intel_clock_t clock;
930
931         /* return directly when it is eDP */
932         if (HAS_eDP)
933                 return true;
934
935         if (target < 200000) {
936                 clock.n = 1;
937                 clock.p1 = 2;
938                 clock.p2 = 10;
939                 clock.m1 = 12;
940                 clock.m2 = 9;
941         } else {
942                 clock.n = 2;
943                 clock.p1 = 1;
944                 clock.p2 = 10;
945                 clock.m1 = 14;
946                 clock.m2 = 8;
947         }
948         intel_clock(dev, refclk, &clock);
949         memcpy(best_clock, &clock, sizeof(intel_clock_t));
950         return true;
951 }
952
953 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
954 static bool
955 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
956                       int target, int refclk, intel_clock_t *best_clock)
957 {
958     intel_clock_t clock;
959     if (target < 200000) {
960         clock.p1 = 2;
961         clock.p2 = 10;
962         clock.n = 2;
963         clock.m1 = 23;
964         clock.m2 = 8;
965     } else {
966         clock.p1 = 1;
967         clock.p2 = 10;
968         clock.n = 1;
969         clock.m1 = 14;
970         clock.m2 = 2;
971     }
972     clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
973     clock.p = (clock.p1 * clock.p2);
974     clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
975     clock.vco = 0;
976     memcpy(best_clock, &clock, sizeof(intel_clock_t));
977     return true;
978 }
979
980 void
981 intel_wait_for_vblank(struct drm_device *dev)
982 {
983         /* Wait for 20ms, i.e. one cycle at 50hz. */
984         if (in_dbg_master())
985                 mdelay(20); /* The kernel debugger cannot call msleep() */
986         else
987                 msleep(20);
988 }
989
990 /* Parameters have changed, update FBC info */
991 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
992 {
993         struct drm_device *dev = crtc->dev;
994         struct drm_i915_private *dev_priv = dev->dev_private;
995         struct drm_framebuffer *fb = crtc->fb;
996         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
997         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
998         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
999         int plane, i;
1000         u32 fbc_ctl, fbc_ctl2;
1001
1002         dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1003
1004         if (fb->pitch < dev_priv->cfb_pitch)
1005                 dev_priv->cfb_pitch = fb->pitch;
1006
1007         /* FBC_CTL wants 64B units */
1008         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1009         dev_priv->cfb_fence = obj_priv->fence_reg;
1010         dev_priv->cfb_plane = intel_crtc->plane;
1011         plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1012
1013         /* Clear old tags */
1014         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1015                 I915_WRITE(FBC_TAG + (i * 4), 0);
1016
1017         /* Set it up... */
1018         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1019         if (obj_priv->tiling_mode != I915_TILING_NONE)
1020                 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1021         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1022         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1023
1024         /* enable it... */
1025         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1026         if (IS_I945GM(dev))
1027                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1028         fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1029         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1030         if (obj_priv->tiling_mode != I915_TILING_NONE)
1031                 fbc_ctl |= dev_priv->cfb_fence;
1032         I915_WRITE(FBC_CONTROL, fbc_ctl);
1033
1034         DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1035                   dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1036 }
1037
1038 void i8xx_disable_fbc(struct drm_device *dev)
1039 {
1040         struct drm_i915_private *dev_priv = dev->dev_private;
1041         u32 fbc_ctl;
1042
1043         if (!I915_HAS_FBC(dev))
1044                 return;
1045
1046         if (!(I915_READ(FBC_CONTROL) & FBC_CTL_EN))
1047                 return; /* Already off, just return */
1048
1049         /* Disable compression */
1050         fbc_ctl = I915_READ(FBC_CONTROL);
1051         fbc_ctl &= ~FBC_CTL_EN;
1052         I915_WRITE(FBC_CONTROL, fbc_ctl);
1053
1054         /* Wait for compressing bit to clear */
1055         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10, 0)) {
1056                 DRM_DEBUG_KMS("FBC idle timed out\n");
1057                 return;
1058         }
1059
1060         intel_wait_for_vblank(dev);
1061
1062         DRM_DEBUG_KMS("disabled FBC\n");
1063 }
1064
1065 static bool i8xx_fbc_enabled(struct drm_device *dev)
1066 {
1067         struct drm_i915_private *dev_priv = dev->dev_private;
1068
1069         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1070 }
1071
1072 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1073 {
1074         struct drm_device *dev = crtc->dev;
1075         struct drm_i915_private *dev_priv = dev->dev_private;
1076         struct drm_framebuffer *fb = crtc->fb;
1077         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1078         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1079         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1080         int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
1081                      DPFC_CTL_PLANEB);
1082         unsigned long stall_watermark = 200;
1083         u32 dpfc_ctl;
1084
1085         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1086         dev_priv->cfb_fence = obj_priv->fence_reg;
1087         dev_priv->cfb_plane = intel_crtc->plane;
1088
1089         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1090         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1091                 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1092                 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1093         } else {
1094                 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1095         }
1096
1097         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1098         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1099                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1100                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1101         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1102
1103         /* enable it... */
1104         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1105
1106         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1107 }
1108
1109 void g4x_disable_fbc(struct drm_device *dev)
1110 {
1111         struct drm_i915_private *dev_priv = dev->dev_private;
1112         u32 dpfc_ctl;
1113
1114         /* Disable compression */
1115         dpfc_ctl = I915_READ(DPFC_CONTROL);
1116         dpfc_ctl &= ~DPFC_CTL_EN;
1117         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1118         intel_wait_for_vblank(dev);
1119
1120         DRM_DEBUG_KMS("disabled FBC\n");
1121 }
1122
1123 static bool g4x_fbc_enabled(struct drm_device *dev)
1124 {
1125         struct drm_i915_private *dev_priv = dev->dev_private;
1126
1127         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1128 }
1129
1130 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1131 {
1132         struct drm_device *dev = crtc->dev;
1133         struct drm_i915_private *dev_priv = dev->dev_private;
1134         struct drm_framebuffer *fb = crtc->fb;
1135         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1136         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1137         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1138         int plane = (intel_crtc->plane == 0) ? DPFC_CTL_PLANEA :
1139                                                DPFC_CTL_PLANEB;
1140         unsigned long stall_watermark = 200;
1141         u32 dpfc_ctl;
1142
1143         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1144         dev_priv->cfb_fence = obj_priv->fence_reg;
1145         dev_priv->cfb_plane = intel_crtc->plane;
1146
1147         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1148         dpfc_ctl &= DPFC_RESERVED;
1149         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1150         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1151                 dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
1152                 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1153         } else {
1154                 I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1155         }
1156
1157         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1158         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1159                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1160                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1161         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1162         I915_WRITE(ILK_FBC_RT_BASE, obj_priv->gtt_offset | ILK_FBC_RT_VALID);
1163         /* enable it... */
1164         I915_WRITE(ILK_DPFC_CONTROL, I915_READ(ILK_DPFC_CONTROL) |
1165                    DPFC_CTL_EN);
1166
1167         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1168 }
1169
1170 void ironlake_disable_fbc(struct drm_device *dev)
1171 {
1172         struct drm_i915_private *dev_priv = dev->dev_private;
1173         u32 dpfc_ctl;
1174
1175         /* Disable compression */
1176         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1177         dpfc_ctl &= ~DPFC_CTL_EN;
1178         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1179         intel_wait_for_vblank(dev);
1180
1181         DRM_DEBUG_KMS("disabled FBC\n");
1182 }
1183
1184 static bool ironlake_fbc_enabled(struct drm_device *dev)
1185 {
1186         struct drm_i915_private *dev_priv = dev->dev_private;
1187
1188         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1189 }
1190
1191 bool intel_fbc_enabled(struct drm_device *dev)
1192 {
1193         struct drm_i915_private *dev_priv = dev->dev_private;
1194
1195         if (!dev_priv->display.fbc_enabled)
1196                 return false;
1197
1198         return dev_priv->display.fbc_enabled(dev);
1199 }
1200
1201 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1202 {
1203         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1204
1205         if (!dev_priv->display.enable_fbc)
1206                 return;
1207
1208         dev_priv->display.enable_fbc(crtc, interval);
1209 }
1210
1211 void intel_disable_fbc(struct drm_device *dev)
1212 {
1213         struct drm_i915_private *dev_priv = dev->dev_private;
1214
1215         if (!dev_priv->display.disable_fbc)
1216                 return;
1217
1218         dev_priv->display.disable_fbc(dev);
1219 }
1220
1221 /**
1222  * intel_update_fbc - enable/disable FBC as needed
1223  * @crtc: CRTC to point the compressor at
1224  * @mode: mode in use
1225  *
1226  * Set up the framebuffer compression hardware at mode set time.  We
1227  * enable it if possible:
1228  *   - plane A only (on pre-965)
1229  *   - no pixel mulitply/line duplication
1230  *   - no alpha buffer discard
1231  *   - no dual wide
1232  *   - framebuffer <= 2048 in width, 1536 in height
1233  *
1234  * We can't assume that any compression will take place (worst case),
1235  * so the compressed buffer has to be the same size as the uncompressed
1236  * one.  It also must reside (along with the line length buffer) in
1237  * stolen memory.
1238  *
1239  * We need to enable/disable FBC on a global basis.
1240  */
1241 static void intel_update_fbc(struct drm_crtc *crtc,
1242                              struct drm_display_mode *mode)
1243 {
1244         struct drm_device *dev = crtc->dev;
1245         struct drm_i915_private *dev_priv = dev->dev_private;
1246         struct drm_framebuffer *fb = crtc->fb;
1247         struct intel_framebuffer *intel_fb;
1248         struct drm_i915_gem_object *obj_priv;
1249         struct drm_crtc *tmp_crtc;
1250         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1251         int plane = intel_crtc->plane;
1252         int crtcs_enabled = 0;
1253
1254         DRM_DEBUG_KMS("\n");
1255
1256         if (!i915_powersave)
1257                 return;
1258
1259         if (!I915_HAS_FBC(dev))
1260                 return;
1261
1262         if (!crtc->fb)
1263                 return;
1264
1265         intel_fb = to_intel_framebuffer(fb);
1266         obj_priv = to_intel_bo(intel_fb->obj);
1267
1268         /*
1269          * If FBC is already on, we just have to verify that we can
1270          * keep it that way...
1271          * Need to disable if:
1272          *   - more than one pipe is active
1273          *   - changing FBC params (stride, fence, mode)
1274          *   - new fb is too large to fit in compressed buffer
1275          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1276          */
1277         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1278                 if (tmp_crtc->enabled)
1279                         crtcs_enabled++;
1280         }
1281         DRM_DEBUG_KMS("%d pipes active\n", crtcs_enabled);
1282         if (crtcs_enabled > 1) {
1283                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1284                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1285                 goto out_disable;
1286         }
1287         if (intel_fb->obj->size > dev_priv->cfb_size) {
1288                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1289                                 "compression\n");
1290                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1291                 goto out_disable;
1292         }
1293         if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
1294             (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
1295                 DRM_DEBUG_KMS("mode incompatible with compression, "
1296                                 "disabling\n");
1297                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1298                 goto out_disable;
1299         }
1300         if ((mode->hdisplay > 2048) ||
1301             (mode->vdisplay > 1536)) {
1302                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1303                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1304                 goto out_disable;
1305         }
1306         if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
1307                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1308                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1309                 goto out_disable;
1310         }
1311         if (obj_priv->tiling_mode != I915_TILING_X) {
1312                 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1313                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1314                 goto out_disable;
1315         }
1316
1317         /* If the kernel debugger is active, always disable compression */
1318         if (in_dbg_master())
1319                 goto out_disable;
1320
1321         if (intel_fbc_enabled(dev)) {
1322                 /* We can re-enable it in this case, but need to update pitch */
1323                 if ((fb->pitch > dev_priv->cfb_pitch) ||
1324                     (obj_priv->fence_reg != dev_priv->cfb_fence) ||
1325                     (plane != dev_priv->cfb_plane))
1326                         intel_disable_fbc(dev);
1327         }
1328
1329         /* Now try to turn it back on if possible */
1330         if (!intel_fbc_enabled(dev))
1331                 intel_enable_fbc(crtc, 500);
1332
1333         return;
1334
1335 out_disable:
1336         /* Multiple disables should be harmless */
1337         if (intel_fbc_enabled(dev)) {
1338                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1339                 intel_disable_fbc(dev);
1340         }
1341 }
1342
1343 int
1344 intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_gem_object *obj)
1345 {
1346         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1347         u32 alignment;
1348         int ret;
1349
1350         switch (obj_priv->tiling_mode) {
1351         case I915_TILING_NONE:
1352                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1353                         alignment = 128 * 1024;
1354                 else if (IS_I965G(dev))
1355                         alignment = 4 * 1024;
1356                 else
1357                         alignment = 64 * 1024;
1358                 break;
1359         case I915_TILING_X:
1360                 /* pin() will align the object as required by fence */
1361                 alignment = 0;
1362                 break;
1363         case I915_TILING_Y:
1364                 /* FIXME: Is this true? */
1365                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1366                 return -EINVAL;
1367         default:
1368                 BUG();
1369         }
1370
1371         ret = i915_gem_object_pin(obj, alignment);
1372         if (ret != 0)
1373                 return ret;
1374
1375         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1376          * fence, whereas 965+ only requires a fence if using
1377          * framebuffer compression.  For simplicity, we always install
1378          * a fence as the cost is not that onerous.
1379          */
1380         if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1381             obj_priv->tiling_mode != I915_TILING_NONE) {
1382                 ret = i915_gem_object_get_fence_reg(obj);
1383                 if (ret != 0) {
1384                         i915_gem_object_unpin(obj);
1385                         return ret;
1386                 }
1387         }
1388
1389         return 0;
1390 }
1391
1392 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1393 static int
1394 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1395                            int x, int y)
1396 {
1397         struct drm_device *dev = crtc->dev;
1398         struct drm_i915_private *dev_priv = dev->dev_private;
1399         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1400         struct intel_framebuffer *intel_fb;
1401         struct drm_i915_gem_object *obj_priv;
1402         struct drm_gem_object *obj;
1403         int plane = intel_crtc->plane;
1404         unsigned long Start, Offset;
1405         int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1406         int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1407         int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1408         int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1409         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1410         u32 dspcntr;
1411
1412         switch (plane) {
1413         case 0:
1414         case 1:
1415                 break;
1416         default:
1417                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1418                 return -EINVAL;
1419         }
1420
1421         intel_fb = to_intel_framebuffer(fb);
1422         obj = intel_fb->obj;
1423         obj_priv = to_intel_bo(obj);
1424
1425         dspcntr = I915_READ(dspcntr_reg);
1426         /* Mask out pixel format bits in case we change it */
1427         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1428         switch (fb->bits_per_pixel) {
1429         case 8:
1430                 dspcntr |= DISPPLANE_8BPP;
1431                 break;
1432         case 16:
1433                 if (fb->depth == 15)
1434                         dspcntr |= DISPPLANE_15_16BPP;
1435                 else
1436                         dspcntr |= DISPPLANE_16BPP;
1437                 break;
1438         case 24:
1439         case 32:
1440                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1441                 break;
1442         default:
1443                 DRM_ERROR("Unknown color depth\n");
1444                 return -EINVAL;
1445         }
1446         if (IS_I965G(dev)) {
1447                 if (obj_priv->tiling_mode != I915_TILING_NONE)
1448                         dspcntr |= DISPPLANE_TILED;
1449                 else
1450                         dspcntr &= ~DISPPLANE_TILED;
1451         }
1452
1453         if (IS_IRONLAKE(dev))
1454                 /* must disable */
1455                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1456
1457         I915_WRITE(dspcntr_reg, dspcntr);
1458
1459         Start = obj_priv->gtt_offset;
1460         Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
1461
1462         DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
1463         I915_WRITE(dspstride, fb->pitch);
1464         if (IS_I965G(dev)) {
1465                 I915_WRITE(dspbase, Offset);
1466                 I915_READ(dspbase);
1467                 I915_WRITE(dspsurf, Start);
1468                 I915_READ(dspsurf);
1469                 I915_WRITE(dsptileoff, (y << 16) | x);
1470         } else {
1471                 I915_WRITE(dspbase, Start + Offset);
1472                 I915_READ(dspbase);
1473         }
1474
1475         if ((IS_I965G(dev) || plane == 0))
1476                 intel_update_fbc(crtc, &crtc->mode);
1477
1478         intel_wait_for_vblank(dev);
1479         intel_increase_pllclock(crtc, true);
1480
1481         return 0;
1482 }
1483
1484 static int
1485 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1486                     struct drm_framebuffer *old_fb)
1487 {
1488         struct drm_device *dev = crtc->dev;
1489         struct drm_i915_private *dev_priv = dev->dev_private;
1490         struct drm_i915_master_private *master_priv;
1491         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1492         struct intel_framebuffer *intel_fb;
1493         struct drm_i915_gem_object *obj_priv;
1494         struct drm_gem_object *obj;
1495         int pipe = intel_crtc->pipe;
1496         int plane = intel_crtc->plane;
1497         unsigned long Start, Offset;
1498         int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1499         int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1500         int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1501         int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1502         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1503         u32 dspcntr;
1504         int ret;
1505
1506         /* no fb bound */
1507         if (!crtc->fb) {
1508                 DRM_DEBUG_KMS("No FB bound\n");
1509                 return 0;
1510         }
1511
1512         switch (plane) {
1513         case 0:
1514         case 1:
1515                 break;
1516         default:
1517                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1518                 return -EINVAL;
1519         }
1520
1521         intel_fb = to_intel_framebuffer(crtc->fb);
1522         obj = intel_fb->obj;
1523         obj_priv = to_intel_bo(obj);
1524
1525         mutex_lock(&dev->struct_mutex);
1526         ret = intel_pin_and_fence_fb_obj(dev, obj);
1527         if (ret != 0) {
1528                 mutex_unlock(&dev->struct_mutex);
1529                 return ret;
1530         }
1531
1532         ret = i915_gem_object_set_to_display_plane(obj);
1533         if (ret != 0) {
1534                 i915_gem_object_unpin(obj);
1535                 mutex_unlock(&dev->struct_mutex);
1536                 return ret;
1537         }
1538
1539         dspcntr = I915_READ(dspcntr_reg);
1540         /* Mask out pixel format bits in case we change it */
1541         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1542         switch (crtc->fb->bits_per_pixel) {
1543         case 8:
1544                 dspcntr |= DISPPLANE_8BPP;
1545                 break;
1546         case 16:
1547                 if (crtc->fb->depth == 15)
1548                         dspcntr |= DISPPLANE_15_16BPP;
1549                 else
1550                         dspcntr |= DISPPLANE_16BPP;
1551                 break;
1552         case 24:
1553         case 32:
1554                 if (crtc->fb->depth == 30)
1555                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
1556                 else
1557                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1558                 break;
1559         default:
1560                 DRM_ERROR("Unknown color depth\n");
1561                 i915_gem_object_unpin(obj);
1562                 mutex_unlock(&dev->struct_mutex);
1563                 return -EINVAL;
1564         }
1565         if (IS_I965G(dev)) {
1566                 if (obj_priv->tiling_mode != I915_TILING_NONE)
1567                         dspcntr |= DISPPLANE_TILED;
1568                 else
1569                         dspcntr &= ~DISPPLANE_TILED;
1570         }
1571
1572         if (HAS_PCH_SPLIT(dev))
1573                 /* must disable */
1574                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1575
1576         I915_WRITE(dspcntr_reg, dspcntr);
1577
1578         Start = obj_priv->gtt_offset;
1579         Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
1580
1581         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1582                       Start, Offset, x, y, crtc->fb->pitch);
1583         I915_WRITE(dspstride, crtc->fb->pitch);
1584         if (IS_I965G(dev)) {
1585                 I915_WRITE(dspsurf, Start);
1586                 I915_WRITE(dsptileoff, (y << 16) | x);
1587                 I915_WRITE(dspbase, Offset);
1588         } else {
1589                 I915_WRITE(dspbase, Start + Offset);
1590         }
1591         POSTING_READ(dspbase);
1592
1593         if ((IS_I965G(dev) || plane == 0))
1594                 intel_update_fbc(crtc, &crtc->mode);
1595
1596         intel_wait_for_vblank(dev);
1597
1598         if (old_fb) {
1599                 intel_fb = to_intel_framebuffer(old_fb);
1600                 obj_priv = to_intel_bo(intel_fb->obj);
1601                 i915_gem_object_unpin(intel_fb->obj);
1602         }
1603         intel_increase_pllclock(crtc, true);
1604
1605         mutex_unlock(&dev->struct_mutex);
1606
1607         if (!dev->primary->master)
1608                 return 0;
1609
1610         master_priv = dev->primary->master->driver_priv;
1611         if (!master_priv->sarea_priv)
1612                 return 0;
1613
1614         if (pipe) {
1615                 master_priv->sarea_priv->pipeB_x = x;
1616                 master_priv->sarea_priv->pipeB_y = y;
1617         } else {
1618                 master_priv->sarea_priv->pipeA_x = x;
1619                 master_priv->sarea_priv->pipeA_y = y;
1620         }
1621
1622         return 0;
1623 }
1624
1625 static void ironlake_set_pll_edp (struct drm_crtc *crtc, int clock)
1626 {
1627         struct drm_device *dev = crtc->dev;
1628         struct drm_i915_private *dev_priv = dev->dev_private;
1629         u32 dpa_ctl;
1630
1631         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1632         dpa_ctl = I915_READ(DP_A);
1633         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1634
1635         if (clock < 200000) {
1636                 u32 temp;
1637                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1638                 /* workaround for 160Mhz:
1639                    1) program 0x4600c bits 15:0 = 0x8124
1640                    2) program 0x46010 bit 0 = 1
1641                    3) program 0x46034 bit 24 = 1
1642                    4) program 0x64000 bit 14 = 1
1643                    */
1644                 temp = I915_READ(0x4600c);
1645                 temp &= 0xffff0000;
1646                 I915_WRITE(0x4600c, temp | 0x8124);
1647
1648                 temp = I915_READ(0x46010);
1649                 I915_WRITE(0x46010, temp | 1);
1650
1651                 temp = I915_READ(0x46034);
1652                 I915_WRITE(0x46034, temp | (1 << 24));
1653         } else {
1654                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1655         }
1656         I915_WRITE(DP_A, dpa_ctl);
1657
1658         udelay(500);
1659 }
1660
1661 /* The FDI link training functions for ILK/Ibexpeak. */
1662 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
1663 {
1664         struct drm_device *dev = crtc->dev;
1665         struct drm_i915_private *dev_priv = dev->dev_private;
1666         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1667         int pipe = intel_crtc->pipe;
1668         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1669         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1670         int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1671         int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1672         u32 temp, tries = 0;
1673
1674         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1675            for train result */
1676         temp = I915_READ(fdi_rx_imr_reg);
1677         temp &= ~FDI_RX_SYMBOL_LOCK;
1678         temp &= ~FDI_RX_BIT_LOCK;
1679         I915_WRITE(fdi_rx_imr_reg, temp);
1680         I915_READ(fdi_rx_imr_reg);
1681         udelay(150);
1682
1683         /* enable CPU FDI TX and PCH FDI RX */
1684         temp = I915_READ(fdi_tx_reg);
1685         temp |= FDI_TX_ENABLE;
1686         temp &= ~(7 << 19);
1687         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1688         temp &= ~FDI_LINK_TRAIN_NONE;
1689         temp |= FDI_LINK_TRAIN_PATTERN_1;
1690         I915_WRITE(fdi_tx_reg, temp);
1691         I915_READ(fdi_tx_reg);
1692
1693         temp = I915_READ(fdi_rx_reg);
1694         temp &= ~FDI_LINK_TRAIN_NONE;
1695         temp |= FDI_LINK_TRAIN_PATTERN_1;
1696         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1697         I915_READ(fdi_rx_reg);
1698         udelay(150);
1699
1700         for (tries = 0; tries < 5; tries++) {
1701                 temp = I915_READ(fdi_rx_iir_reg);
1702                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1703
1704                 if ((temp & FDI_RX_BIT_LOCK)) {
1705                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1706                         I915_WRITE(fdi_rx_iir_reg,
1707                                    temp | FDI_RX_BIT_LOCK);
1708                         break;
1709                 }
1710         }
1711         if (tries == 5)
1712                 DRM_DEBUG_KMS("FDI train 1 fail!\n");
1713
1714         /* Train 2 */
1715         temp = I915_READ(fdi_tx_reg);
1716         temp &= ~FDI_LINK_TRAIN_NONE;
1717         temp |= FDI_LINK_TRAIN_PATTERN_2;
1718         I915_WRITE(fdi_tx_reg, temp);
1719
1720         temp = I915_READ(fdi_rx_reg);
1721         temp &= ~FDI_LINK_TRAIN_NONE;
1722         temp |= FDI_LINK_TRAIN_PATTERN_2;
1723         I915_WRITE(fdi_rx_reg, temp);
1724         udelay(150);
1725
1726         tries = 0;
1727
1728         for (tries = 0; tries < 5; tries++) {
1729                 temp = I915_READ(fdi_rx_iir_reg);
1730                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1731
1732                 if (temp & FDI_RX_SYMBOL_LOCK) {
1733                         I915_WRITE(fdi_rx_iir_reg,
1734                                    temp | FDI_RX_SYMBOL_LOCK);
1735                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1736                         break;
1737                 }
1738         }
1739         if (tries == 5)
1740                 DRM_DEBUG_KMS("FDI train 2 fail!\n");
1741
1742         DRM_DEBUG_KMS("FDI train done\n");
1743 }
1744
1745 static int snb_b_fdi_train_param [] = {
1746         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
1747         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
1748         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
1749         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
1750 };
1751
1752 /* The FDI link training functions for SNB/Cougarpoint. */
1753 static void gen6_fdi_link_train(struct drm_crtc *crtc)
1754 {
1755         struct drm_device *dev = crtc->dev;
1756         struct drm_i915_private *dev_priv = dev->dev_private;
1757         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1758         int pipe = intel_crtc->pipe;
1759         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1760         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1761         int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1762         int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1763         u32 temp, i;
1764
1765         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1766            for train result */
1767         temp = I915_READ(fdi_rx_imr_reg);
1768         temp &= ~FDI_RX_SYMBOL_LOCK;
1769         temp &= ~FDI_RX_BIT_LOCK;
1770         I915_WRITE(fdi_rx_imr_reg, temp);
1771         I915_READ(fdi_rx_imr_reg);
1772         udelay(150);
1773
1774         /* enable CPU FDI TX and PCH FDI RX */
1775         temp = I915_READ(fdi_tx_reg);
1776         temp |= FDI_TX_ENABLE;
1777         temp &= ~(7 << 19);
1778         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1779         temp &= ~FDI_LINK_TRAIN_NONE;
1780         temp |= FDI_LINK_TRAIN_PATTERN_1;
1781         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1782         /* SNB-B */
1783         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1784         I915_WRITE(fdi_tx_reg, temp);
1785         I915_READ(fdi_tx_reg);
1786
1787         temp = I915_READ(fdi_rx_reg);
1788         if (HAS_PCH_CPT(dev)) {
1789                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1790                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
1791         } else {
1792                 temp &= ~FDI_LINK_TRAIN_NONE;
1793                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1794         }
1795         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1796         I915_READ(fdi_rx_reg);
1797         udelay(150);
1798
1799         for (i = 0; i < 4; i++ ) {
1800                 temp = I915_READ(fdi_tx_reg);
1801                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1802                 temp |= snb_b_fdi_train_param[i];
1803                 I915_WRITE(fdi_tx_reg, temp);
1804                 udelay(500);
1805
1806                 temp = I915_READ(fdi_rx_iir_reg);
1807                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1808
1809                 if (temp & FDI_RX_BIT_LOCK) {
1810                         I915_WRITE(fdi_rx_iir_reg,
1811                                    temp | FDI_RX_BIT_LOCK);
1812                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1813                         break;
1814                 }
1815         }
1816         if (i == 4)
1817                 DRM_DEBUG_KMS("FDI train 1 fail!\n");
1818
1819         /* Train 2 */
1820         temp = I915_READ(fdi_tx_reg);
1821         temp &= ~FDI_LINK_TRAIN_NONE;
1822         temp |= FDI_LINK_TRAIN_PATTERN_2;
1823         if (IS_GEN6(dev)) {
1824                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1825                 /* SNB-B */
1826                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1827         }
1828         I915_WRITE(fdi_tx_reg, temp);
1829
1830         temp = I915_READ(fdi_rx_reg);
1831         if (HAS_PCH_CPT(dev)) {
1832                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1833                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
1834         } else {
1835                 temp &= ~FDI_LINK_TRAIN_NONE;
1836                 temp |= FDI_LINK_TRAIN_PATTERN_2;
1837         }
1838         I915_WRITE(fdi_rx_reg, temp);
1839         udelay(150);
1840
1841         for (i = 0; i < 4; i++ ) {
1842                 temp = I915_READ(fdi_tx_reg);
1843                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1844                 temp |= snb_b_fdi_train_param[i];
1845                 I915_WRITE(fdi_tx_reg, temp);
1846                 udelay(500);
1847
1848                 temp = I915_READ(fdi_rx_iir_reg);
1849                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1850
1851                 if (temp & FDI_RX_SYMBOL_LOCK) {
1852                         I915_WRITE(fdi_rx_iir_reg,
1853                                    temp | FDI_RX_SYMBOL_LOCK);
1854                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1855                         break;
1856                 }
1857         }
1858         if (i == 4)
1859                 DRM_DEBUG_KMS("FDI train 2 fail!\n");
1860
1861         DRM_DEBUG_KMS("FDI train done.\n");
1862 }
1863
1864 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
1865 {
1866         struct drm_device *dev = crtc->dev;
1867         struct drm_i915_private *dev_priv = dev->dev_private;
1868         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1869         int pipe = intel_crtc->pipe;
1870         int plane = intel_crtc->plane;
1871         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1872         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1873         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1874         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1875         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1876         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1877         int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1878         int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1879         int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
1880         int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
1881         int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1882         int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1883         int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1884         int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1885         int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1886         int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1887         int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1888         int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1889         int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1890         int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1891         int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1892         int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1893         int trans_dpll_sel = (pipe == 0) ? 0 : 1;
1894         u32 temp;
1895         u32 pipe_bpc;
1896
1897         temp = I915_READ(pipeconf_reg);
1898         pipe_bpc = temp & PIPE_BPC_MASK;
1899
1900         /* XXX: When our outputs are all unaware of DPMS modes other than off
1901          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1902          */
1903         switch (mode) {
1904         case DRM_MODE_DPMS_ON:
1905         case DRM_MODE_DPMS_STANDBY:
1906         case DRM_MODE_DPMS_SUSPEND:
1907                 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
1908
1909                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1910                         temp = I915_READ(PCH_LVDS);
1911                         if ((temp & LVDS_PORT_EN) == 0) {
1912                                 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
1913                                 POSTING_READ(PCH_LVDS);
1914                         }
1915                 }
1916
1917                 if (!HAS_eDP) {
1918
1919                         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1920                         temp = I915_READ(fdi_rx_reg);
1921                         /*
1922                          * make the BPC in FDI Rx be consistent with that in
1923                          * pipeconf reg.
1924                          */
1925                         temp &= ~(0x7 << 16);
1926                         temp |= (pipe_bpc << 11);
1927                         temp &= ~(7 << 19);
1928                         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1929                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
1930                         I915_READ(fdi_rx_reg);
1931                         udelay(200);
1932
1933                         /* Switch from Rawclk to PCDclk */
1934                         temp = I915_READ(fdi_rx_reg);
1935                         I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
1936                         I915_READ(fdi_rx_reg);
1937                         udelay(200);
1938
1939                         /* Enable CPU FDI TX PLL, always on for Ironlake */
1940                         temp = I915_READ(fdi_tx_reg);
1941                         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1942                                 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1943                                 I915_READ(fdi_tx_reg);
1944                                 udelay(100);
1945                         }
1946                 }
1947
1948                 /* Enable panel fitting for LVDS */
1949                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)
1950                     || HAS_eDP || intel_pch_has_edp(crtc)) {
1951                         if (dev_priv->pch_pf_size) {
1952                                 temp = I915_READ(pf_ctl_reg);
1953                                 I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
1954                                 I915_WRITE(pf_win_pos, dev_priv->pch_pf_pos);
1955                                 I915_WRITE(pf_win_size, dev_priv->pch_pf_size);
1956                         } else
1957                                 I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
1958                 }
1959
1960                 /* Enable CPU pipe */
1961                 temp = I915_READ(pipeconf_reg);
1962                 if ((temp & PIPEACONF_ENABLE) == 0) {
1963                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1964                         I915_READ(pipeconf_reg);
1965                         udelay(100);
1966                 }
1967
1968                 /* configure and enable CPU plane */
1969                 temp = I915_READ(dspcntr_reg);
1970                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1971                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1972                         /* Flush the plane changes */
1973                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1974                 }
1975
1976                 if (!HAS_eDP) {
1977                         /* For PCH output, training FDI link */
1978                         if (IS_GEN6(dev))
1979                                 gen6_fdi_link_train(crtc);
1980                         else
1981                                 ironlake_fdi_link_train(crtc);
1982
1983                         /* enable PCH DPLL */
1984                         temp = I915_READ(pch_dpll_reg);
1985                         if ((temp & DPLL_VCO_ENABLE) == 0) {
1986                                 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1987                                 I915_READ(pch_dpll_reg);
1988                         }
1989                         udelay(200);
1990
1991                         if (HAS_PCH_CPT(dev)) {
1992                                 /* Be sure PCH DPLL SEL is set */
1993                                 temp = I915_READ(PCH_DPLL_SEL);
1994                                 if (trans_dpll_sel == 0 &&
1995                                                 (temp & TRANSA_DPLL_ENABLE) == 0)
1996                                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
1997                                 else if (trans_dpll_sel == 1 &&
1998                                                 (temp & TRANSB_DPLL_ENABLE) == 0)
1999                                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2000                                 I915_WRITE(PCH_DPLL_SEL, temp);
2001                                 I915_READ(PCH_DPLL_SEL);
2002                         }
2003
2004                         /* set transcoder timing */
2005                         I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
2006                         I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
2007                         I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
2008
2009                         I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
2010                         I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
2011                         I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
2012
2013                         /* enable normal train */
2014                         temp = I915_READ(fdi_tx_reg);
2015                         temp &= ~FDI_LINK_TRAIN_NONE;
2016                         I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
2017                                         FDI_TX_ENHANCE_FRAME_ENABLE);
2018                         I915_READ(fdi_tx_reg);
2019
2020                         temp = I915_READ(fdi_rx_reg);
2021                         if (HAS_PCH_CPT(dev)) {
2022                                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2023                                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2024                         } else {
2025                                 temp &= ~FDI_LINK_TRAIN_NONE;
2026                                 temp |= FDI_LINK_TRAIN_NONE;
2027                         }
2028                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2029                         I915_READ(fdi_rx_reg);
2030
2031                         /* wait one idle pattern time */
2032                         udelay(100);
2033
2034                         /* For PCH DP, enable TRANS_DP_CTL */
2035                         if (HAS_PCH_CPT(dev) &&
2036                             intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2037                                 int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
2038                                 int reg;
2039
2040                                 reg = I915_READ(trans_dp_ctl);
2041                                 reg &= ~(TRANS_DP_PORT_SEL_MASK |
2042                                          TRANS_DP_SYNC_MASK);
2043                                 reg |= (TRANS_DP_OUTPUT_ENABLE |
2044                                         TRANS_DP_ENH_FRAMING);
2045
2046                                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2047                                       reg |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2048                                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2049                                       reg |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2050
2051                                 switch (intel_trans_dp_port_sel(crtc)) {
2052                                 case PCH_DP_B:
2053                                         reg |= TRANS_DP_PORT_SEL_B;
2054                                         break;
2055                                 case PCH_DP_C:
2056                                         reg |= TRANS_DP_PORT_SEL_C;
2057                                         break;
2058                                 case PCH_DP_D:
2059                                         reg |= TRANS_DP_PORT_SEL_D;
2060                                         break;
2061                                 default:
2062                                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2063                                         reg |= TRANS_DP_PORT_SEL_B;
2064                                         break;
2065                                 }
2066
2067                                 I915_WRITE(trans_dp_ctl, reg);
2068                                 POSTING_READ(trans_dp_ctl);
2069                         }
2070
2071                         /* enable PCH transcoder */
2072                         temp = I915_READ(transconf_reg);
2073                         /*
2074                          * make the BPC in transcoder be consistent with
2075                          * that in pipeconf reg.
2076                          */
2077                         temp &= ~PIPE_BPC_MASK;
2078                         temp |= pipe_bpc;
2079                         I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
2080                         I915_READ(transconf_reg);
2081
2082                         if (wait_for(I915_READ(transconf_reg) & TRANS_STATE_ENABLE, 10, 0))
2083                                 DRM_ERROR("failed to enable transcoder\n");
2084                 }
2085
2086                 intel_crtc_load_lut(crtc);
2087
2088                 intel_update_fbc(crtc, &crtc->mode);
2089                 break;
2090
2091         case DRM_MODE_DPMS_OFF:
2092                 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2093
2094                 drm_vblank_off(dev, pipe);
2095                 /* Disable display plane */
2096                 temp = I915_READ(dspcntr_reg);
2097                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
2098                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
2099                         /* Flush the plane changes */
2100                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2101                         I915_READ(dspbase_reg);
2102                 }
2103
2104                 if (dev_priv->cfb_plane == plane &&
2105                     dev_priv->display.disable_fbc)
2106                         dev_priv->display.disable_fbc(dev);
2107
2108                 /* disable cpu pipe, disable after all planes disabled */
2109                 temp = I915_READ(pipeconf_reg);
2110                 if ((temp & PIPEACONF_ENABLE) != 0) {
2111                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
2112
2113                         /* wait for cpu pipe off, pipe state */
2114                         if (wait_for((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) == 0, 50, 1))
2115                                 DRM_ERROR("failed to turn off cpu pipe\n");
2116                 } else
2117                         DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
2118
2119                 udelay(100);
2120
2121                 /* Disable PF */
2122                 temp = I915_READ(pf_ctl_reg);
2123                 if ((temp & PF_ENABLE) != 0) {
2124                         I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
2125                         I915_READ(pf_ctl_reg);
2126                 }
2127                 I915_WRITE(pf_win_size, 0);
2128                 POSTING_READ(pf_win_size);
2129
2130
2131                 /* disable CPU FDI tx and PCH FDI rx */
2132                 temp = I915_READ(fdi_tx_reg);
2133                 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
2134                 I915_READ(fdi_tx_reg);
2135
2136                 temp = I915_READ(fdi_rx_reg);
2137                 /* BPC in FDI rx is consistent with that in pipeconf */
2138                 temp &= ~(0x07 << 16);
2139                 temp |= (pipe_bpc << 11);
2140                 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
2141                 I915_READ(fdi_rx_reg);
2142
2143                 udelay(100);
2144
2145                 /* still set train pattern 1 */
2146                 temp = I915_READ(fdi_tx_reg);
2147                 temp &= ~FDI_LINK_TRAIN_NONE;
2148                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2149                 I915_WRITE(fdi_tx_reg, temp);
2150                 POSTING_READ(fdi_tx_reg);
2151
2152                 temp = I915_READ(fdi_rx_reg);
2153                 if (HAS_PCH_CPT(dev)) {
2154                         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2155                         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2156                 } else {
2157                         temp &= ~FDI_LINK_TRAIN_NONE;
2158                         temp |= FDI_LINK_TRAIN_PATTERN_1;
2159                 }
2160                 I915_WRITE(fdi_rx_reg, temp);
2161                 POSTING_READ(fdi_rx_reg);
2162
2163                 udelay(100);
2164
2165                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2166                         temp = I915_READ(PCH_LVDS);
2167                         I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
2168                         I915_READ(PCH_LVDS);
2169                         udelay(100);
2170                 }
2171
2172                 /* disable PCH transcoder */
2173                 temp = I915_READ(transconf_reg);
2174                 if ((temp & TRANS_ENABLE) != 0) {
2175                         I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
2176
2177                         /* wait for PCH transcoder off, transcoder state */
2178                         if (wait_for((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0, 50, 1))
2179                                 DRM_ERROR("failed to disable transcoder\n");
2180                 }
2181
2182                 temp = I915_READ(transconf_reg);
2183                 /* BPC in transcoder is consistent with that in pipeconf */
2184                 temp &= ~PIPE_BPC_MASK;
2185                 temp |= pipe_bpc;
2186                 I915_WRITE(transconf_reg, temp);
2187                 I915_READ(transconf_reg);
2188                 udelay(100);
2189
2190                 if (HAS_PCH_CPT(dev)) {
2191                         /* disable TRANS_DP_CTL */
2192                         int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
2193                         int reg;
2194
2195                         reg = I915_READ(trans_dp_ctl);
2196                         reg &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2197                         I915_WRITE(trans_dp_ctl, reg);
2198                         POSTING_READ(trans_dp_ctl);
2199
2200                         /* disable DPLL_SEL */
2201                         temp = I915_READ(PCH_DPLL_SEL);
2202                         if (trans_dpll_sel == 0)
2203                                 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2204                         else
2205                                 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2206                         I915_WRITE(PCH_DPLL_SEL, temp);
2207                         I915_READ(PCH_DPLL_SEL);
2208
2209                 }
2210
2211                 /* disable PCH DPLL */
2212                 temp = I915_READ(pch_dpll_reg);
2213                 I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
2214                 I915_READ(pch_dpll_reg);
2215
2216                 /* Switch from PCDclk to Rawclk */
2217                 temp = I915_READ(fdi_rx_reg);
2218                 temp &= ~FDI_SEL_PCDCLK;
2219                 I915_WRITE(fdi_rx_reg, temp);
2220                 I915_READ(fdi_rx_reg);
2221
2222                 /* Disable CPU FDI TX PLL */
2223                 temp = I915_READ(fdi_tx_reg);
2224                 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
2225                 I915_READ(fdi_tx_reg);
2226                 udelay(100);
2227
2228                 temp = I915_READ(fdi_rx_reg);
2229                 temp &= ~FDI_RX_PLL_ENABLE;
2230                 I915_WRITE(fdi_rx_reg, temp);
2231                 I915_READ(fdi_rx_reg);
2232
2233                 /* Wait for the clocks to turn off. */
2234                 udelay(100);
2235                 break;
2236         }
2237 }
2238
2239 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2240 {
2241         struct intel_overlay *overlay;
2242         int ret;
2243
2244         if (!enable && intel_crtc->overlay) {
2245                 overlay = intel_crtc->overlay;
2246                 mutex_lock(&overlay->dev->struct_mutex);
2247                 for (;;) {
2248                         ret = intel_overlay_switch_off(overlay);
2249                         if (ret == 0)
2250                                 break;
2251
2252                         ret = intel_overlay_recover_from_interrupt(overlay, 0);
2253                         if (ret != 0) {
2254                                 /* overlay doesn't react anymore. Usually
2255                                  * results in a black screen and an unkillable
2256                                  * X server. */
2257                                 BUG();
2258                                 overlay->hw_wedged = HW_WEDGED;
2259                                 break;
2260                         }
2261                 }
2262                 mutex_unlock(&overlay->dev->struct_mutex);
2263         }
2264         /* Let userspace switch the overlay on again. In most cases userspace
2265          * has to recompute where to put it anyway. */
2266
2267         return;
2268 }
2269
2270 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2271 {
2272         struct drm_device *dev = crtc->dev;
2273         struct drm_i915_private *dev_priv = dev->dev_private;
2274         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2275         int pipe = intel_crtc->pipe;
2276         int plane = intel_crtc->plane;
2277         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2278         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
2279         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
2280         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2281         u32 temp;
2282
2283         /* XXX: When our outputs are all unaware of DPMS modes other than off
2284          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2285          */
2286         switch (mode) {
2287         case DRM_MODE_DPMS_ON:
2288         case DRM_MODE_DPMS_STANDBY:
2289         case DRM_MODE_DPMS_SUSPEND:
2290                 /* Enable the DPLL */
2291                 temp = I915_READ(dpll_reg);
2292                 if ((temp & DPLL_VCO_ENABLE) == 0) {
2293                         I915_WRITE(dpll_reg, temp);
2294                         I915_READ(dpll_reg);
2295                         /* Wait for the clocks to stabilize. */
2296                         udelay(150);
2297                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
2298                         I915_READ(dpll_reg);
2299                         /* Wait for the clocks to stabilize. */
2300                         udelay(150);
2301                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
2302                         I915_READ(dpll_reg);
2303                         /* Wait for the clocks to stabilize. */
2304                         udelay(150);
2305                 }
2306
2307                 /* Enable the pipe */
2308                 temp = I915_READ(pipeconf_reg);
2309                 if ((temp & PIPEACONF_ENABLE) == 0)
2310                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
2311
2312                 /* Enable the plane */
2313                 temp = I915_READ(dspcntr_reg);
2314                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2315                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
2316                         /* Flush the plane changes */
2317                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2318                 }
2319
2320                 intel_crtc_load_lut(crtc);
2321
2322                 if ((IS_I965G(dev) || plane == 0))
2323                         intel_update_fbc(crtc, &crtc->mode);
2324
2325                 /* Give the overlay scaler a chance to enable if it's on this pipe */
2326                 intel_crtc_dpms_overlay(intel_crtc, true);
2327         break;
2328         case DRM_MODE_DPMS_OFF:
2329                 /* Give the overlay scaler a chance to disable if it's on this pipe */
2330                 intel_crtc_dpms_overlay(intel_crtc, false);
2331                 drm_vblank_off(dev, pipe);
2332
2333                 if (dev_priv->cfb_plane == plane &&
2334                     dev_priv->display.disable_fbc)
2335                         dev_priv->display.disable_fbc(dev);
2336
2337                 /* Disable display plane */
2338                 temp = I915_READ(dspcntr_reg);
2339                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
2340                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
2341                         /* Flush the plane changes */
2342                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2343                         I915_READ(dspbase_reg);
2344                 }
2345
2346                 if (!IS_I9XX(dev)) {
2347                         /* Wait for vblank for the disable to take effect */
2348                         intel_wait_for_vblank(dev);
2349                 }
2350
2351                 /* Don't disable pipe A or pipe A PLLs if needed */
2352                 if (pipeconf_reg == PIPEACONF &&
2353                     (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2354                         goto skip_pipe_off;
2355
2356                 /* Next, disable display pipes */
2357                 temp = I915_READ(pipeconf_reg);
2358                 if ((temp & PIPEACONF_ENABLE) != 0) {
2359                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
2360                         I915_READ(pipeconf_reg);
2361                 }
2362
2363                 /* Wait for vblank for the disable to take effect. */
2364                 intel_wait_for_vblank(dev);
2365
2366                 temp = I915_READ(dpll_reg);
2367                 if ((temp & DPLL_VCO_ENABLE) != 0) {
2368                         I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
2369                         I915_READ(dpll_reg);
2370                 }
2371         skip_pipe_off:
2372                 /* Wait for the clocks to turn off. */
2373                 udelay(150);
2374                 break;
2375         }
2376 }
2377
2378 /**
2379  * Sets the power management mode of the pipe and plane.
2380  */
2381 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2382 {
2383         struct drm_device *dev = crtc->dev;
2384         struct drm_i915_private *dev_priv = dev->dev_private;
2385         struct drm_i915_master_private *master_priv;
2386         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2387         int pipe = intel_crtc->pipe;
2388         bool enabled;
2389
2390         intel_crtc->dpms_mode = mode;
2391         intel_crtc->cursor_on = mode == DRM_MODE_DPMS_ON;
2392
2393         /* When switching on the display, ensure that SR is disabled
2394          * with multiple pipes prior to enabling to new pipe.
2395          *
2396          * When switching off the display, make sure the cursor is
2397          * properly hidden prior to disabling the pipe.
2398          */
2399         if (mode == DRM_MODE_DPMS_ON)
2400                 intel_update_watermarks(dev);
2401         else
2402                 intel_crtc_update_cursor(crtc);
2403
2404         dev_priv->display.dpms(crtc, mode);
2405
2406         if (mode == DRM_MODE_DPMS_ON)
2407                 intel_crtc_update_cursor(crtc);
2408         else
2409                 intel_update_watermarks(dev);
2410
2411         if (!dev->primary->master)
2412                 return;
2413
2414         master_priv = dev->primary->master->driver_priv;
2415         if (!master_priv->sarea_priv)
2416                 return;
2417
2418         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2419
2420         switch (pipe) {
2421         case 0:
2422                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2423                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2424                 break;
2425         case 1:
2426                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2427                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2428                 break;
2429         default:
2430                 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2431                 break;
2432         }
2433 }
2434
2435 static void intel_crtc_prepare (struct drm_crtc *crtc)
2436 {
2437         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2438         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2439 }
2440
2441 static void intel_crtc_commit (struct drm_crtc *crtc)
2442 {
2443         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2444         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2445 }
2446
2447 void intel_encoder_prepare (struct drm_encoder *encoder)
2448 {
2449         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2450         /* lvds has its own version of prepare see intel_lvds_prepare */
2451         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2452 }
2453
2454 void intel_encoder_commit (struct drm_encoder *encoder)
2455 {
2456         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2457         /* lvds has its own version of commit see intel_lvds_commit */
2458         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2459 }
2460
2461 void intel_encoder_destroy(struct drm_encoder *encoder)
2462 {
2463         struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
2464
2465         if (intel_encoder->ddc_bus)
2466                 intel_i2c_destroy(intel_encoder->ddc_bus);
2467
2468         if (intel_encoder->i2c_bus)
2469                 intel_i2c_destroy(intel_encoder->i2c_bus);
2470
2471         drm_encoder_cleanup(encoder);
2472         kfree(intel_encoder);
2473 }
2474
2475 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2476                                   struct drm_display_mode *mode,
2477                                   struct drm_display_mode *adjusted_mode)
2478 {
2479         struct drm_device *dev = crtc->dev;
2480         if (HAS_PCH_SPLIT(dev)) {
2481                 /* FDI link clock is fixed at 2.7G */
2482                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
2483                         return false;
2484         }
2485         return true;
2486 }
2487
2488 static int i945_get_display_clock_speed(struct drm_device *dev)
2489 {
2490         return 400000;
2491 }
2492
2493 static int i915_get_display_clock_speed(struct drm_device *dev)
2494 {
2495         return 333000;
2496 }
2497
2498 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2499 {
2500         return 200000;
2501 }
2502
2503 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2504 {
2505         u16 gcfgc = 0;
2506
2507         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2508
2509         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2510                 return 133000;
2511         else {
2512                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2513                 case GC_DISPLAY_CLOCK_333_MHZ:
2514                         return 333000;
2515                 default:
2516                 case GC_DISPLAY_CLOCK_190_200_MHZ:
2517                         return 190000;
2518                 }
2519         }
2520 }
2521
2522 static int i865_get_display_clock_speed(struct drm_device *dev)
2523 {
2524         return 266000;
2525 }
2526
2527 static int i855_get_display_clock_speed(struct drm_device *dev)
2528 {
2529         u16 hpllcc = 0;
2530         /* Assume that the hardware is in the high speed state.  This
2531          * should be the default.
2532          */
2533         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2534         case GC_CLOCK_133_200:
2535         case GC_CLOCK_100_200:
2536                 return 200000;
2537         case GC_CLOCK_166_250:
2538                 return 250000;
2539         case GC_CLOCK_100_133:
2540                 return 133000;
2541         }
2542
2543         /* Shouldn't happen */
2544         return 0;
2545 }
2546
2547 static int i830_get_display_clock_speed(struct drm_device *dev)
2548 {
2549         return 133000;
2550 }
2551
2552 /**
2553  * Return the pipe currently connected to the panel fitter,
2554  * or -1 if the panel fitter is not present or not in use
2555  */
2556 int intel_panel_fitter_pipe (struct drm_device *dev)
2557 {
2558         struct drm_i915_private *dev_priv = dev->dev_private;
2559         u32  pfit_control;
2560
2561         /* i830 doesn't have a panel fitter */
2562         if (IS_I830(dev))
2563                 return -1;
2564
2565         pfit_control = I915_READ(PFIT_CONTROL);
2566
2567         /* See if the panel fitter is in use */
2568         if ((pfit_control & PFIT_ENABLE) == 0)
2569                 return -1;
2570
2571         /* 965 can place panel fitter on either pipe */
2572         if (IS_I965G(dev))
2573                 return (pfit_control >> 29) & 0x3;
2574
2575         /* older chips can only use pipe 1 */
2576         return 1;
2577 }
2578
2579 struct fdi_m_n {
2580         u32        tu;
2581         u32        gmch_m;
2582         u32        gmch_n;
2583         u32        link_m;
2584         u32        link_n;
2585 };
2586
2587 static void
2588 fdi_reduce_ratio(u32 *num, u32 *den)
2589 {
2590         while (*num > 0xffffff || *den > 0xffffff) {
2591                 *num >>= 1;
2592                 *den >>= 1;
2593         }
2594 }
2595
2596 #define DATA_N 0x800000
2597 #define LINK_N 0x80000
2598
2599 static void
2600 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2601                      int link_clock, struct fdi_m_n *m_n)
2602 {
2603         u64 temp;
2604
2605         m_n->tu = 64; /* default size */
2606
2607         temp = (u64) DATA_N * pixel_clock;
2608         temp = div_u64(temp, link_clock);
2609         m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2610         m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2611         m_n->gmch_n = DATA_N;
2612         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2613
2614         temp = (u64) LINK_N * pixel_clock;
2615         m_n->link_m = div_u64(temp, link_clock);
2616         m_n->link_n = LINK_N;
2617         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2618 }
2619
2620
2621 struct intel_watermark_params {
2622         unsigned long fifo_size;
2623         unsigned long max_wm;
2624         unsigned long default_wm;
2625         unsigned long guard_size;
2626         unsigned long cacheline_size;
2627 };
2628
2629 /* Pineview has different values for various configs */
2630 static struct intel_watermark_params pineview_display_wm = {
2631         PINEVIEW_DISPLAY_FIFO,
2632         PINEVIEW_MAX_WM,
2633         PINEVIEW_DFT_WM,
2634         PINEVIEW_GUARD_WM,
2635         PINEVIEW_FIFO_LINE_SIZE
2636 };
2637 static struct intel_watermark_params pineview_display_hplloff_wm = {
2638         PINEVIEW_DISPLAY_FIFO,
2639         PINEVIEW_MAX_WM,
2640         PINEVIEW_DFT_HPLLOFF_WM,
2641         PINEVIEW_GUARD_WM,
2642         PINEVIEW_FIFO_LINE_SIZE
2643 };
2644 static struct intel_watermark_params pineview_cursor_wm = {
2645         PINEVIEW_CURSOR_FIFO,
2646         PINEVIEW_CURSOR_MAX_WM,
2647         PINEVIEW_CURSOR_DFT_WM,
2648         PINEVIEW_CURSOR_GUARD_WM,
2649         PINEVIEW_FIFO_LINE_SIZE,
2650 };
2651 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2652         PINEVIEW_CURSOR_FIFO,
2653         PINEVIEW_CURSOR_MAX_WM,
2654         PINEVIEW_CURSOR_DFT_WM,
2655         PINEVIEW_CURSOR_GUARD_WM,
2656         PINEVIEW_FIFO_LINE_SIZE
2657 };
2658 static struct intel_watermark_params g4x_wm_info = {
2659         G4X_FIFO_SIZE,
2660         G4X_MAX_WM,
2661         G4X_MAX_WM,
2662         2,
2663         G4X_FIFO_LINE_SIZE,
2664 };
2665 static struct intel_watermark_params g4x_cursor_wm_info = {
2666         I965_CURSOR_FIFO,
2667         I965_CURSOR_MAX_WM,
2668         I965_CURSOR_DFT_WM,
2669         2,
2670         G4X_FIFO_LINE_SIZE,
2671 };
2672 static struct intel_watermark_params i965_cursor_wm_info = {
2673         I965_CURSOR_FIFO,
2674         I965_CURSOR_MAX_WM,
2675         I965_CURSOR_DFT_WM,
2676         2,
2677         I915_FIFO_LINE_SIZE,
2678 };
2679 static struct intel_watermark_params i945_wm_info = {
2680         I945_FIFO_SIZE,
2681         I915_MAX_WM,
2682         1,
2683         2,
2684         I915_FIFO_LINE_SIZE
2685 };
2686 static struct intel_watermark_params i915_wm_info = {
2687         I915_FIFO_SIZE,
2688         I915_MAX_WM,
2689         1,
2690         2,
2691         I915_FIFO_LINE_SIZE
2692 };
2693 static struct intel_watermark_params i855_wm_info = {
2694         I855GM_FIFO_SIZE,
2695         I915_MAX_WM,
2696         1,
2697         2,
2698         I830_FIFO_LINE_SIZE
2699 };
2700 static struct intel_watermark_params i830_wm_info = {
2701         I830_FIFO_SIZE,
2702         I915_MAX_WM,
2703         1,
2704         2,
2705         I830_FIFO_LINE_SIZE
2706 };
2707
2708 static struct intel_watermark_params ironlake_display_wm_info = {
2709         ILK_DISPLAY_FIFO,
2710         ILK_DISPLAY_MAXWM,
2711         ILK_DISPLAY_DFTWM,
2712         2,
2713         ILK_FIFO_LINE_SIZE
2714 };
2715
2716 static struct intel_watermark_params ironlake_cursor_wm_info = {
2717         ILK_CURSOR_FIFO,
2718         ILK_CURSOR_MAXWM,
2719         ILK_CURSOR_DFTWM,
2720         2,
2721         ILK_FIFO_LINE_SIZE
2722 };
2723
2724 static struct intel_watermark_params ironlake_display_srwm_info = {
2725         ILK_DISPLAY_SR_FIFO,
2726         ILK_DISPLAY_MAX_SRWM,
2727         ILK_DISPLAY_DFT_SRWM,
2728         2,
2729         ILK_FIFO_LINE_SIZE
2730 };
2731
2732 static struct intel_watermark_params ironlake_cursor_srwm_info = {
2733         ILK_CURSOR_SR_FIFO,
2734         ILK_CURSOR_MAX_SRWM,
2735         ILK_CURSOR_DFT_SRWM,
2736         2,
2737         ILK_FIFO_LINE_SIZE
2738 };
2739
2740 /**
2741  * intel_calculate_wm - calculate watermark level
2742  * @clock_in_khz: pixel clock
2743  * @wm: chip FIFO params
2744  * @pixel_size: display pixel size
2745  * @latency_ns: memory latency for the platform
2746  *
2747  * Calculate the watermark level (the level at which the display plane will
2748  * start fetching from memory again).  Each chip has a different display
2749  * FIFO size and allocation, so the caller needs to figure that out and pass
2750  * in the correct intel_watermark_params structure.
2751  *
2752  * As the pixel clock runs, the FIFO will be drained at a rate that depends
2753  * on the pixel size.  When it reaches the watermark level, it'll start
2754  * fetching FIFO line sized based chunks from memory until the FIFO fills
2755  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
2756  * will occur, and a display engine hang could result.
2757  */
2758 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2759                                         struct intel_watermark_params *wm,
2760                                         int pixel_size,
2761                                         unsigned long latency_ns)
2762 {
2763         long entries_required, wm_size;
2764
2765         /*
2766          * Note: we need to make sure we don't overflow for various clock &
2767          * latency values.
2768          * clocks go from a few thousand to several hundred thousand.
2769          * latency is usually a few thousand
2770          */
2771         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2772                 1000;
2773         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
2774
2775         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2776
2777         wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2778
2779         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2780
2781         /* Don't promote wm_size to unsigned... */
2782         if (wm_size > (long)wm->max_wm)
2783                 wm_size = wm->max_wm;
2784         if (wm_size <= 0) {
2785                 wm_size = wm->default_wm;
2786                 DRM_ERROR("Insufficient FIFO for plane, expect flickering:"
2787                           " entries required = %ld, available = %lu.\n",
2788                           entries_required + wm->guard_size,
2789                           wm->fifo_size);
2790         }
2791
2792         return wm_size;
2793 }
2794
2795 struct cxsr_latency {
2796         int is_desktop;
2797         int is_ddr3;
2798         unsigned long fsb_freq;
2799         unsigned long mem_freq;
2800         unsigned long display_sr;
2801         unsigned long display_hpll_disable;
2802         unsigned long cursor_sr;
2803         unsigned long cursor_hpll_disable;
2804 };
2805
2806 static const struct cxsr_latency cxsr_latency_table[] = {
2807         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
2808         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
2809         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
2810         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
2811         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
2812
2813         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
2814         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
2815         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
2816         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
2817         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
2818
2819         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
2820         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
2821         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
2822         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
2823         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
2824
2825         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
2826         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
2827         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
2828         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
2829         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
2830
2831         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
2832         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
2833         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
2834         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
2835         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
2836
2837         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
2838         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
2839         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
2840         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
2841         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
2842 };
2843
2844 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
2845                                                          int is_ddr3,
2846                                                          int fsb,
2847                                                          int mem)
2848 {
2849         const struct cxsr_latency *latency;
2850         int i;
2851
2852         if (fsb == 0 || mem == 0)
2853                 return NULL;
2854
2855         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2856                 latency = &cxsr_latency_table[i];
2857                 if (is_desktop == latency->is_desktop &&
2858                     is_ddr3 == latency->is_ddr3 &&
2859                     fsb == latency->fsb_freq && mem == latency->mem_freq)
2860                         return latency;
2861         }
2862
2863         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2864
2865         return NULL;
2866 }
2867
2868 static void pineview_disable_cxsr(struct drm_device *dev)
2869 {
2870         struct drm_i915_private *dev_priv = dev->dev_private;
2871
2872         /* deactivate cxsr */
2873         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
2874 }
2875
2876 /*
2877  * Latency for FIFO fetches is dependent on several factors:
2878  *   - memory configuration (speed, channels)
2879  *   - chipset
2880  *   - current MCH state
2881  * It can be fairly high in some situations, so here we assume a fairly
2882  * pessimal value.  It's a tradeoff between extra memory fetches (if we
2883  * set this value too high, the FIFO will fetch frequently to stay full)
2884  * and power consumption (set it too low to save power and we might see
2885  * FIFO underruns and display "flicker").
2886  *
2887  * A value of 5us seems to be a good balance; safe for very low end
2888  * platforms but not overly aggressive on lower latency configs.
2889  */
2890 static const int latency_ns = 5000;
2891
2892 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2893 {
2894         struct drm_i915_private *dev_priv = dev->dev_private;
2895         uint32_t dsparb = I915_READ(DSPARB);
2896         int size;
2897
2898         size = dsparb & 0x7f;
2899         if (plane)
2900                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
2901
2902         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2903                         plane ? "B" : "A", size);
2904
2905         return size;
2906 }
2907
2908 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2909 {
2910         struct drm_i915_private *dev_priv = dev->dev_private;
2911         uint32_t dsparb = I915_READ(DSPARB);
2912         int size;
2913
2914         size = dsparb & 0x1ff;
2915         if (plane)
2916                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
2917         size >>= 1; /* Convert to cachelines */
2918
2919         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2920                         plane ? "B" : "A", size);
2921
2922         return size;
2923 }
2924
2925 static int i845_get_fifo_size(struct drm_device *dev, int plane)
2926 {
2927         struct drm_i915_private *dev_priv = dev->dev_private;
2928         uint32_t dsparb = I915_READ(DSPARB);
2929         int size;
2930
2931         size = dsparb & 0x7f;
2932         size >>= 2; /* Convert to cachelines */
2933
2934         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2935                         plane ? "B" : "A",
2936                   size);
2937
2938         return size;
2939 }
2940
2941 static int i830_get_fifo_size(struct drm_device *dev, int plane)
2942 {
2943         struct drm_i915_private *dev_priv = dev->dev_private;
2944         uint32_t dsparb = I915_READ(DSPARB);
2945         int size;
2946
2947         size = dsparb & 0x7f;
2948         size >>= 1; /* Convert to cachelines */
2949
2950         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2951                         plane ? "B" : "A", size);
2952
2953         return size;
2954 }
2955
2956 static void pineview_update_wm(struct drm_device *dev,  int planea_clock,
2957                           int planeb_clock, int sr_hdisplay, int unused,
2958                           int pixel_size)
2959 {
2960         struct drm_i915_private *dev_priv = dev->dev_private;
2961         const struct cxsr_latency *latency;
2962         u32 reg;
2963         unsigned long wm;
2964         int sr_clock;
2965
2966         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
2967                                          dev_priv->fsb_freq, dev_priv->mem_freq);
2968         if (!latency) {
2969                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2970                 pineview_disable_cxsr(dev);
2971                 return;
2972         }
2973
2974         if (!planea_clock || !planeb_clock) {
2975                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2976
2977                 /* Display SR */
2978                 wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
2979                                         pixel_size, latency->display_sr);
2980                 reg = I915_READ(DSPFW1);
2981                 reg &= ~DSPFW_SR_MASK;
2982                 reg |= wm << DSPFW_SR_SHIFT;
2983                 I915_WRITE(DSPFW1, reg);
2984                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
2985
2986                 /* cursor SR */
2987                 wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
2988                                         pixel_size, latency->cursor_sr);
2989                 reg = I915_READ(DSPFW3);
2990                 reg &= ~DSPFW_CURSOR_SR_MASK;
2991                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
2992                 I915_WRITE(DSPFW3, reg);
2993
2994                 /* Display HPLL off SR */
2995                 wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
2996                                         pixel_size, latency->display_hpll_disable);
2997                 reg = I915_READ(DSPFW3);
2998                 reg &= ~DSPFW_HPLL_SR_MASK;
2999                 reg |= wm & DSPFW_HPLL_SR_MASK;
3000                 I915_WRITE(DSPFW3, reg);
3001
3002                 /* cursor HPLL off SR */
3003                 wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
3004                                         pixel_size, latency->cursor_hpll_disable);
3005                 reg = I915_READ(DSPFW3);
3006                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3007                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3008                 I915_WRITE(DSPFW3, reg);
3009                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3010
3011                 /* activate cxsr */
3012                 I915_WRITE(DSPFW3,
3013                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3014                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3015         } else {
3016                 pineview_disable_cxsr(dev);
3017                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3018         }
3019 }
3020
3021 static void g4x_update_wm(struct drm_device *dev,  int planea_clock,
3022                           int planeb_clock, int sr_hdisplay, int sr_htotal,
3023                           int pixel_size)
3024 {
3025         struct drm_i915_private *dev_priv = dev->dev_private;
3026         int total_size, cacheline_size;
3027         int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
3028         struct intel_watermark_params planea_params, planeb_params;
3029         unsigned long line_time_us;
3030         int sr_clock, sr_entries = 0, entries_required;
3031
3032         /* Create copies of the base settings for each pipe */
3033         planea_params = planeb_params = g4x_wm_info;
3034
3035         /* Grab a couple of global values before we overwrite them */
3036         total_size = planea_params.fifo_size;
3037         cacheline_size = planea_params.cacheline_size;
3038
3039         /*
3040          * Note: we need to make sure we don't overflow for various clock &
3041          * latency values.
3042          * clocks go from a few thousand to several hundred thousand.
3043          * latency is usually a few thousand
3044          */
3045         entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
3046                 1000;
3047         entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3048         planea_wm = entries_required + planea_params.guard_size;
3049
3050         entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
3051                 1000;
3052         entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3053         planeb_wm = entries_required + planeb_params.guard_size;
3054
3055         cursora_wm = cursorb_wm = 16;
3056         cursor_sr = 32;
3057
3058         DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3059
3060         /* Calc sr entries for one plane configs */
3061         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3062                 /* self-refresh has much higher latency */
3063                 static const int sr_latency_ns = 12000;
3064
3065                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3066                 line_time_us = ((sr_htotal * 1000) / sr_clock);
3067
3068                 /* Use ns/us then divide to preserve precision */
3069                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3070                               pixel_size * sr_hdisplay;
3071                 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3072
3073                 entries_required = (((sr_latency_ns / line_time_us) +
3074                                      1000) / 1000) * pixel_size * 64;
3075                 entries_required = DIV_ROUND_UP(entries_required,
3076                                            g4x_cursor_wm_info.cacheline_size);
3077                 cursor_sr = entries_required + g4x_cursor_wm_info.guard_size;
3078
3079                 if (cursor_sr > g4x_cursor_wm_info.max_wm)
3080                         cursor_sr = g4x_cursor_wm_info.max_wm;
3081                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3082                               "cursor %d\n", sr_entries, cursor_sr);
3083
3084                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3085         } else {
3086                 /* Turn off self refresh if both pipes are enabled */
3087                 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3088                                         & ~FW_BLC_SELF_EN);
3089         }
3090
3091         DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
3092                   planea_wm, planeb_wm, sr_entries);
3093
3094         planea_wm &= 0x3f;
3095         planeb_wm &= 0x3f;
3096
3097         I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
3098                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3099                    (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
3100         I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3101                    (cursora_wm << DSPFW_CURSORA_SHIFT));
3102         /* HPLL off in SR has some issues on G4x... disable it */
3103         I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3104                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3105 }
3106
3107 static void i965_update_wm(struct drm_device *dev, int planea_clock,
3108                            int planeb_clock, int sr_hdisplay, int sr_htotal,
3109                            int pixel_size)
3110 {
3111         struct drm_i915_private *dev_priv = dev->dev_private;
3112         unsigned long line_time_us;
3113         int sr_clock, sr_entries, srwm = 1;
3114         int cursor_sr = 16;
3115
3116         /* Calc sr entries for one plane configs */
3117         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3118                 /* self-refresh has much higher latency */
3119                 static const int sr_latency_ns = 12000;
3120
3121                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3122                 line_time_us = ((sr_htotal * 1000) / sr_clock);
3123
3124                 /* Use ns/us then divide to preserve precision */
3125                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3126                               pixel_size * sr_hdisplay;
3127                 sr_entries = DIV_ROUND_UP(sr_entries, I915_FIFO_LINE_SIZE);
3128                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
3129                 srwm = I965_FIFO_SIZE - sr_entries;
3130                 if (srwm < 0)
3131                         srwm = 1;
3132                 srwm &= 0x1ff;
3133
3134                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3135                              pixel_size * 64;
3136                 sr_entries = DIV_ROUND_UP(sr_entries,
3137                                           i965_cursor_wm_info.cacheline_size);
3138                 cursor_sr = i965_cursor_wm_info.fifo_size -
3139                             (sr_entries + i965_cursor_wm_info.guard_size);
3140
3141                 if (cursor_sr > i965_cursor_wm_info.max_wm)
3142                         cursor_sr = i965_cursor_wm_info.max_wm;
3143
3144                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3145                               "cursor %d\n", srwm, cursor_sr);
3146
3147                 if (IS_I965GM(dev))
3148                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3149         } else {
3150                 /* Turn off self refresh if both pipes are enabled */
3151                 if (IS_I965GM(dev))
3152                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3153                                    & ~FW_BLC_SELF_EN);
3154         }
3155
3156         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3157                       srwm);
3158
3159         /* 965 has limitations... */
3160         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
3161                    (8 << 0));
3162         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
3163         /* update cursor SR watermark */
3164         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3165 }
3166
3167 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
3168                            int planeb_clock, int sr_hdisplay, int sr_htotal,
3169                            int pixel_size)
3170 {
3171         struct drm_i915_private *dev_priv = dev->dev_private;
3172         uint32_t fwater_lo;
3173         uint32_t fwater_hi;
3174         int total_size, cacheline_size, cwm, srwm = 1;
3175         int planea_wm, planeb_wm;
3176         struct intel_watermark_params planea_params, planeb_params;
3177         unsigned long line_time_us;
3178         int sr_clock, sr_entries = 0;
3179
3180         /* Create copies of the base settings for each pipe */
3181         if (IS_I965GM(dev) || IS_I945GM(dev))
3182                 planea_params = planeb_params = i945_wm_info;
3183         else if (IS_I9XX(dev))
3184                 planea_params = planeb_params = i915_wm_info;
3185         else
3186                 planea_params = planeb_params = i855_wm_info;
3187
3188         /* Grab a couple of global values before we overwrite them */
3189         total_size = planea_params.fifo_size;
3190         cacheline_size = planea_params.cacheline_size;
3191
3192         /* Update per-plane FIFO sizes */
3193         planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3194         planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3195
3196         planea_wm = intel_calculate_wm(planea_clock, &planea_params,
3197                                        pixel_size, latency_ns);
3198         planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
3199                                        pixel_size, latency_ns);
3200         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3201
3202         /*
3203          * Overlay gets an aggressive default since video jitter is bad.
3204          */
3205         cwm = 2;
3206
3207         /* Calc sr entries for one plane configs */
3208         if (HAS_FW_BLC(dev) && sr_hdisplay &&
3209             (!planea_clock || !planeb_clock)) {
3210                 /* self-refresh has much higher latency */
3211                 static const int sr_latency_ns = 6000;
3212
3213                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3214                 line_time_us = ((sr_htotal * 1000) / sr_clock);
3215
3216                 /* Use ns/us then divide to preserve precision */
3217                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3218                               pixel_size * sr_hdisplay;
3219                 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3220                 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
3221                 srwm = total_size - sr_entries;
3222                 if (srwm < 0)
3223                         srwm = 1;
3224
3225                 if (IS_I945G(dev) || IS_I945GM(dev))
3226                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3227                 else if (IS_I915GM(dev)) {
3228                         /* 915M has a smaller SRWM field */
3229                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3230                         I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3231                 }
3232         } else {
3233                 /* Turn off self refresh if both pipes are enabled */
3234                 if (IS_I945G(dev) || IS_I945GM(dev)) {
3235                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3236                                    & ~FW_BLC_SELF_EN);
3237                 } else if (IS_I915GM(dev)) {
3238                         I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3239                 }
3240         }
3241
3242         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3243                   planea_wm, planeb_wm, cwm, srwm);
3244
3245         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3246         fwater_hi = (cwm & 0x1f);
3247
3248         /* Set request length to 8 cachelines per fetch */
3249         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3250         fwater_hi = fwater_hi | (1 << 8);
3251
3252         I915_WRITE(FW_BLC, fwater_lo);
3253         I915_WRITE(FW_BLC2, fwater_hi);
3254 }
3255
3256 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
3257                            int unused2, int unused3, int pixel_size)
3258 {
3259         struct drm_i915_private *dev_priv = dev->dev_private;
3260         uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3261         int planea_wm;
3262
3263         i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3264
3265         planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
3266                                        pixel_size, latency_ns);
3267         fwater_lo |= (3<<8) | planea_wm;
3268
3269         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3270
3271         I915_WRITE(FW_BLC, fwater_lo);
3272 }
3273
3274 #define ILK_LP0_PLANE_LATENCY           700
3275 #define ILK_LP0_CURSOR_LATENCY          1300
3276
3277 static void ironlake_update_wm(struct drm_device *dev,  int planea_clock,
3278                        int planeb_clock, int sr_hdisplay, int sr_htotal,
3279                        int pixel_size)
3280 {
3281         struct drm_i915_private *dev_priv = dev->dev_private;
3282         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
3283         int sr_wm, cursor_wm;
3284         unsigned long line_time_us;
3285         int sr_clock, entries_required;
3286         u32 reg_value;
3287         int line_count;
3288         int planea_htotal = 0, planeb_htotal = 0;
3289         struct drm_crtc *crtc;
3290
3291         /* Need htotal for all active display plane */
3292         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3293                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3294                 if (intel_crtc->dpms_mode == DRM_MODE_DPMS_ON) {
3295                         if (intel_crtc->plane == 0)
3296                                 planea_htotal = crtc->mode.htotal;
3297                         else
3298                                 planeb_htotal = crtc->mode.htotal;
3299                 }
3300         }
3301
3302         /* Calculate and update the watermark for plane A */
3303         if (planea_clock) {
3304                 entries_required = ((planea_clock / 1000) * pixel_size *
3305                                      ILK_LP0_PLANE_LATENCY) / 1000;
3306                 entries_required = DIV_ROUND_UP(entries_required,
3307                                                 ironlake_display_wm_info.cacheline_size);
3308                 planea_wm = entries_required +
3309                             ironlake_display_wm_info.guard_size;
3310
3311                 if (planea_wm > (int)ironlake_display_wm_info.max_wm)
3312                         planea_wm = ironlake_display_wm_info.max_wm;
3313
3314                 /* Use the large buffer method to calculate cursor watermark */
3315                 line_time_us = (planea_htotal * 1000) / planea_clock;
3316
3317                 /* Use ns/us then divide to preserve precision */
3318                 line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000;
3319
3320                 /* calculate the cursor watermark for cursor A */
3321                 entries_required = line_count * 64 * pixel_size;
3322                 entries_required = DIV_ROUND_UP(entries_required,
3323                                                 ironlake_cursor_wm_info.cacheline_size);
3324                 cursora_wm = entries_required + ironlake_cursor_wm_info.guard_size;
3325                 if (cursora_wm > ironlake_cursor_wm_info.max_wm)
3326                         cursora_wm = ironlake_cursor_wm_info.max_wm;
3327
3328                 reg_value = I915_READ(WM0_PIPEA_ILK);
3329                 reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
3330                 reg_value |= (planea_wm << WM0_PIPE_PLANE_SHIFT) |
3331                              (cursora_wm & WM0_PIPE_CURSOR_MASK);
3332                 I915_WRITE(WM0_PIPEA_ILK, reg_value);
3333                 DRM_DEBUG_KMS("FIFO watermarks For pipe A - plane %d, "
3334                                 "cursor: %d\n", planea_wm, cursora_wm);
3335         }
3336         /* Calculate and update the watermark for plane B */
3337         if (planeb_clock) {
3338                 entries_required = ((planeb_clock / 1000) * pixel_size *
3339                                      ILK_LP0_PLANE_LATENCY) / 1000;
3340                 entries_required = DIV_ROUND_UP(entries_required,
3341                                                 ironlake_display_wm_info.cacheline_size);
3342                 planeb_wm = entries_required +
3343                             ironlake_display_wm_info.guard_size;
3344
3345                 if (planeb_wm > (int)ironlake_display_wm_info.max_wm)
3346                         planeb_wm = ironlake_display_wm_info.max_wm;
3347
3348                 /* Use the large buffer method to calculate cursor watermark */
3349                 line_time_us = (planeb_htotal * 1000) / planeb_clock;
3350
3351                 /* Use ns/us then divide to preserve precision */
3352                 line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000;
3353
3354                 /* calculate the cursor watermark for cursor B */
3355                 entries_required = line_count * 64 * pixel_size;
3356                 entries_required = DIV_ROUND_UP(entries_required,
3357                                                 ironlake_cursor_wm_info.cacheline_size);
3358                 cursorb_wm = entries_required + ironlake_cursor_wm_info.guard_size;
3359                 if (cursorb_wm > ironlake_cursor_wm_info.max_wm)
3360                         cursorb_wm = ironlake_cursor_wm_info.max_wm;
3361
3362                 reg_value = I915_READ(WM0_PIPEB_ILK);
3363                 reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
3364                 reg_value |= (planeb_wm << WM0_PIPE_PLANE_SHIFT) |
3365                              (cursorb_wm & WM0_PIPE_CURSOR_MASK);
3366                 I915_WRITE(WM0_PIPEB_ILK, reg_value);
3367                 DRM_DEBUG_KMS("FIFO watermarks For pipe B - plane %d, "
3368                                 "cursor: %d\n", planeb_wm, cursorb_wm);
3369         }
3370
3371         /*
3372          * Calculate and update the self-refresh watermark only when one
3373          * display plane is used.
3374          */
3375         if (!planea_clock || !planeb_clock) {
3376
3377                 /* Read the self-refresh latency. The unit is 0.5us */
3378                 int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK;
3379
3380                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3381                 line_time_us = ((sr_htotal * 1000) / sr_clock);
3382
3383                 /* Use ns/us then divide to preserve precision */
3384                 line_count = ((ilk_sr_latency * 500) / line_time_us + 1000)
3385                                / 1000;
3386
3387                 /* calculate the self-refresh watermark for display plane */
3388                 entries_required = line_count * sr_hdisplay * pixel_size;
3389                 entries_required = DIV_ROUND_UP(entries_required,
3390                                                 ironlake_display_srwm_info.cacheline_size);
3391                 sr_wm = entries_required +
3392                         ironlake_display_srwm_info.guard_size;
3393
3394                 /* calculate the self-refresh watermark for display cursor */
3395                 entries_required = line_count * pixel_size * 64;
3396                 entries_required = DIV_ROUND_UP(entries_required,
3397                                                 ironlake_cursor_srwm_info.cacheline_size);
3398                 cursor_wm = entries_required +
3399                             ironlake_cursor_srwm_info.guard_size;
3400
3401                 /* configure watermark and enable self-refresh */
3402                 reg_value = I915_READ(WM1_LP_ILK);
3403                 reg_value &= ~(WM1_LP_LATENCY_MASK | WM1_LP_SR_MASK |
3404                                WM1_LP_CURSOR_MASK);
3405                 reg_value |= WM1_LP_SR_EN |
3406                              (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) |
3407                              (sr_wm << WM1_LP_SR_SHIFT) | cursor_wm;
3408
3409                 I915_WRITE(WM1_LP_ILK, reg_value);
3410                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3411                                 "cursor %d\n", sr_wm, cursor_wm);
3412
3413         } else {
3414                 /* Turn off self refresh if both pipes are enabled */
3415                 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
3416         }
3417 }
3418 /**
3419  * intel_update_watermarks - update FIFO watermark values based on current modes
3420  *
3421  * Calculate watermark values for the various WM regs based on current mode
3422  * and plane configuration.
3423  *
3424  * There are several cases to deal with here:
3425  *   - normal (i.e. non-self-refresh)
3426  *   - self-refresh (SR) mode
3427  *   - lines are large relative to FIFO size (buffer can hold up to 2)
3428  *   - lines are small relative to FIFO size (buffer can hold more than 2
3429  *     lines), so need to account for TLB latency
3430  *
3431  *   The normal calculation is:
3432  *     watermark = dotclock * bytes per pixel * latency
3433  *   where latency is platform & configuration dependent (we assume pessimal
3434  *   values here).
3435  *
3436  *   The SR calculation is:
3437  *     watermark = (trunc(latency/line time)+1) * surface width *
3438  *       bytes per pixel
3439  *   where
3440  *     line time = htotal / dotclock
3441  *     surface width = hdisplay for normal plane and 64 for cursor
3442  *   and latency is assumed to be high, as above.
3443  *
3444  * The final value programmed to the register should always be rounded up,
3445  * and include an extra 2 entries to account for clock crossings.
3446  *
3447  * We don't use the sprite, so we can ignore that.  And on Crestline we have
3448  * to set the non-SR watermarks to 8.
3449   */
3450 static void intel_update_watermarks(struct drm_device *dev)
3451 {
3452         struct drm_i915_private *dev_priv = dev->dev_private;
3453         struct drm_crtc *crtc;
3454         int sr_hdisplay = 0;
3455         unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
3456         int enabled = 0, pixel_size = 0;
3457         int sr_htotal = 0;
3458
3459         if (!dev_priv->display.update_wm)
3460                 return;
3461
3462         /* Get the clock config from both planes */
3463         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3464                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3465                 if (intel_crtc->dpms_mode == DRM_MODE_DPMS_ON) {
3466                         enabled++;
3467                         if (intel_crtc->plane == 0) {
3468                                 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
3469                                           intel_crtc->pipe, crtc->mode.clock);
3470                                 planea_clock = crtc->mode.clock;
3471                         } else {
3472                                 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
3473                                           intel_crtc->pipe, crtc->mode.clock);
3474                                 planeb_clock = crtc->mode.clock;
3475                         }
3476                         sr_hdisplay = crtc->mode.hdisplay;
3477                         sr_clock = crtc->mode.clock;
3478                         sr_htotal = crtc->mode.htotal;
3479                         if (crtc->fb)
3480                                 pixel_size = crtc->fb->bits_per_pixel / 8;
3481                         else
3482                                 pixel_size = 4; /* by default */
3483                 }
3484         }
3485
3486         if (enabled <= 0)
3487                 return;
3488
3489         dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
3490                                     sr_hdisplay, sr_htotal, pixel_size);
3491 }
3492
3493 static int intel_crtc_mode_set(struct drm_crtc *crtc,
3494                                struct drm_display_mode *mode,
3495                                struct drm_display_mode *adjusted_mode,
3496                                int x, int y,
3497                                struct drm_framebuffer *old_fb)
3498 {
3499         struct drm_device *dev = crtc->dev;
3500         struct drm_i915_private *dev_priv = dev->dev_private;
3501         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3502         int pipe = intel_crtc->pipe;
3503         int plane = intel_crtc->plane;
3504         int fp_reg = (pipe == 0) ? FPA0 : FPB0;
3505         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3506         int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
3507         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
3508         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
3509         int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
3510         int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
3511         int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
3512         int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
3513         int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
3514         int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
3515         int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
3516         int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
3517         int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
3518         int refclk, num_connectors = 0;
3519         intel_clock_t clock, reduced_clock;
3520         u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
3521         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
3522         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3523         bool is_edp = false;
3524         struct drm_mode_config *mode_config = &dev->mode_config;
3525         struct drm_encoder *encoder;
3526         struct intel_encoder *intel_encoder = NULL;
3527         const intel_limit_t *limit;
3528         int ret;
3529         struct fdi_m_n m_n = {0};
3530         int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
3531         int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
3532         int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
3533         int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
3534         int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
3535         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
3536         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
3537         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
3538         int trans_dpll_sel = (pipe == 0) ? 0 : 1;
3539         int lvds_reg = LVDS;
3540         u32 temp;
3541         int sdvo_pixel_multiply;
3542         int target_clock;
3543
3544         drm_vblank_pre_modeset(dev, pipe);
3545
3546         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
3547
3548                 if (!encoder || encoder->crtc != crtc)
3549                         continue;
3550
3551                 intel_encoder = enc_to_intel_encoder(encoder);
3552
3553                 switch (intel_encoder->type) {
3554                 case INTEL_OUTPUT_LVDS:
3555                         is_lvds = true;
3556                         break;
3557                 case INTEL_OUTPUT_SDVO:
3558                 case INTEL_OUTPUT_HDMI:
3559                         is_sdvo = true;
3560                         if (intel_encoder->needs_tv_clock)
3561                                 is_tv = true;
3562                         break;
3563                 case INTEL_OUTPUT_DVO:
3564                         is_dvo = true;
3565                         break;
3566                 case INTEL_OUTPUT_TVOUT:
3567                         is_tv = true;
3568                         break;
3569                 case INTEL_OUTPUT_ANALOG:
3570                         is_crt = true;
3571                         break;
3572                 case INTEL_OUTPUT_DISPLAYPORT:
3573                         is_dp = true;
3574                         break;
3575                 case INTEL_OUTPUT_EDP:
3576                         is_edp = true;
3577                         break;
3578                 }
3579
3580                 num_connectors++;
3581         }
3582
3583         if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
3584                 refclk = dev_priv->lvds_ssc_freq * 1000;
3585                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3586                                         refclk / 1000);
3587         } else if (IS_I9XX(dev)) {
3588                 refclk = 96000;
3589                 if (HAS_PCH_SPLIT(dev))
3590                         refclk = 120000; /* 120Mhz refclk */
3591         } else {
3592                 refclk = 48000;
3593         }
3594         
3595
3596         /*
3597          * Returns a set of divisors for the desired target clock with the given
3598          * refclk, or FALSE.  The returned values represent the clock equation:
3599          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3600          */
3601         limit = intel_limit(crtc);
3602         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
3603         if (!ok) {
3604                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3605                 drm_vblank_post_modeset(dev, pipe);
3606                 return -EINVAL;
3607         }
3608
3609         /* Ensure that the cursor is valid for the new mode before changing... */
3610         intel_crtc_update_cursor(crtc);
3611
3612         if (is_lvds && dev_priv->lvds_downclock_avail) {
3613                 has_reduced_clock = limit->find_pll(limit, crtc,
3614                                                             dev_priv->lvds_downclock,
3615                                                             refclk,
3616                                                             &reduced_clock);
3617                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
3618                         /*
3619                          * If the different P is found, it means that we can't
3620                          * switch the display clock by using the FP0/FP1.
3621                          * In such case we will disable the LVDS downclock
3622                          * feature.
3623                          */
3624                         DRM_DEBUG_KMS("Different P is found for "
3625                                                 "LVDS clock/downclock\n");
3626                         has_reduced_clock = 0;
3627                 }
3628         }
3629         /* SDVO TV has fixed PLL values depend on its clock range,
3630            this mirrors vbios setting. */
3631         if (is_sdvo && is_tv) {
3632                 if (adjusted_mode->clock >= 100000
3633                                 && adjusted_mode->clock < 140500) {
3634                         clock.p1 = 2;
3635                         clock.p2 = 10;
3636                         clock.n = 3;
3637                         clock.m1 = 16;
3638                         clock.m2 = 8;
3639                 } else if (adjusted_mode->clock >= 140500
3640                                 && adjusted_mode->clock <= 200000) {
3641                         clock.p1 = 1;
3642                         clock.p2 = 10;
3643                         clock.n = 6;
3644                         clock.m1 = 12;
3645                         clock.m2 = 8;
3646                 }
3647         }
3648
3649         /* FDI link */
3650         if (HAS_PCH_SPLIT(dev)) {
3651                 int lane = 0, link_bw, bpp;
3652                 /* eDP doesn't require FDI link, so just set DP M/N
3653                    according to current link config */
3654                 if (is_edp) {
3655                         target_clock = mode->clock;
3656                         intel_edp_link_config(intel_encoder,
3657                                         &lane, &link_bw);
3658                 } else {
3659                         /* DP over FDI requires target mode clock
3660                            instead of link clock */
3661                         if (is_dp)
3662                                 target_clock = mode->clock;
3663                         else
3664                                 target_clock = adjusted_mode->clock;
3665                         link_bw = 270000;
3666                 }
3667
3668                 /* determine panel color depth */
3669                 temp = I915_READ(pipeconf_reg);
3670                 temp &= ~PIPE_BPC_MASK;
3671                 if (is_lvds) {
3672                         int lvds_reg = I915_READ(PCH_LVDS);
3673                         /* the BPC will be 6 if it is 18-bit LVDS panel */
3674                         if ((lvds_reg & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
3675                                 temp |= PIPE_8BPC;
3676                         else
3677                                 temp |= PIPE_6BPC;
3678                 } else if (is_edp || (is_dp && intel_pch_has_edp(crtc))) {
3679                         switch (dev_priv->edp_bpp/3) {
3680                         case 8:
3681                                 temp |= PIPE_8BPC;
3682                                 break;
3683                         case 10:
3684                                 temp |= PIPE_10BPC;
3685                                 break;
3686                         case 6:
3687                                 temp |= PIPE_6BPC;
3688                                 break;
3689                         case 12:
3690                                 temp |= PIPE_12BPC;
3691                                 break;
3692                         }
3693                 } else
3694                         temp |= PIPE_8BPC;
3695                 I915_WRITE(pipeconf_reg, temp);
3696                 I915_READ(pipeconf_reg);
3697
3698                 switch (temp & PIPE_BPC_MASK) {
3699                 case PIPE_8BPC:
3700                         bpp = 24;
3701                         break;
3702                 case PIPE_10BPC:
3703                         bpp = 30;
3704                         break;
3705                 case PIPE_6BPC:
3706                         bpp = 18;
3707                         break;
3708                 case PIPE_12BPC:
3709                         bpp = 36;
3710                         break;
3711                 default:
3712                         DRM_ERROR("unknown pipe bpc value\n");
3713                         bpp = 24;
3714                 }
3715
3716                 if (!lane) {
3717                         /* 
3718                          * Account for spread spectrum to avoid
3719                          * oversubscribing the link. Max center spread
3720                          * is 2.5%; use 5% for safety's sake.
3721                          */
3722                         u32 bps = target_clock * bpp * 21 / 20;
3723                         lane = bps / (link_bw * 8) + 1;
3724                 }
3725
3726                 intel_crtc->fdi_lanes = lane;
3727
3728                 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
3729         }
3730
3731         /* Ironlake: try to setup display ref clock before DPLL
3732          * enabling. This is only under driver's control after
3733          * PCH B stepping, previous chipset stepping should be
3734          * ignoring this setting.
3735          */
3736         if (HAS_PCH_SPLIT(dev)) {
3737                 temp = I915_READ(PCH_DREF_CONTROL);
3738                 /* Always enable nonspread source */
3739                 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3740                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3741                 I915_WRITE(PCH_DREF_CONTROL, temp);
3742                 POSTING_READ(PCH_DREF_CONTROL);
3743
3744                 temp &= ~DREF_SSC_SOURCE_MASK;
3745                 temp |= DREF_SSC_SOURCE_ENABLE;
3746                 I915_WRITE(PCH_DREF_CONTROL, temp);
3747                 POSTING_READ(PCH_DREF_CONTROL);
3748
3749                 udelay(200);
3750
3751                 if (is_edp) {
3752                         if (dev_priv->lvds_use_ssc) {
3753                                 temp |= DREF_SSC1_ENABLE;
3754                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3755                                 POSTING_READ(PCH_DREF_CONTROL);
3756
3757                                 udelay(200);
3758
3759                                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3760                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3761                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3762                                 POSTING_READ(PCH_DREF_CONTROL);
3763                         } else {
3764                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3765                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3766                                 POSTING_READ(PCH_DREF_CONTROL);
3767                         }
3768                 }
3769         }
3770
3771         if (IS_PINEVIEW(dev)) {
3772                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
3773                 if (has_reduced_clock)
3774                         fp2 = (1 << reduced_clock.n) << 16 |
3775                                 reduced_clock.m1 << 8 | reduced_clock.m2;
3776         } else {
3777                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
3778                 if (has_reduced_clock)
3779                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
3780                                 reduced_clock.m2;
3781         }
3782
3783         if (!HAS_PCH_SPLIT(dev))
3784                 dpll = DPLL_VGA_MODE_DIS;
3785
3786         if (IS_I9XX(dev)) {
3787                 if (is_lvds)
3788                         dpll |= DPLLB_MODE_LVDS;
3789                 else
3790                         dpll |= DPLLB_MODE_DAC_SERIAL;
3791                 if (is_sdvo) {
3792                         dpll |= DPLL_DVO_HIGH_SPEED;
3793                         sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3794                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3795                                 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3796                         else if (HAS_PCH_SPLIT(dev))
3797                                 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3798                 }
3799                 if (is_dp)
3800                         dpll |= DPLL_DVO_HIGH_SPEED;
3801
3802                 /* compute bitmask from p1 value */
3803                 if (IS_PINEVIEW(dev))
3804                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3805                 else {
3806                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3807                         /* also FPA1 */
3808                         if (HAS_PCH_SPLIT(dev))
3809                                 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3810                         if (IS_G4X(dev) && has_reduced_clock)
3811                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3812                 }
3813                 switch (clock.p2) {
3814                 case 5:
3815                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3816                         break;
3817                 case 7:
3818                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3819                         break;
3820                 case 10:
3821                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3822                         break;
3823                 case 14:
3824                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3825                         break;
3826                 }
3827                 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev))
3828                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3829         } else {
3830                 if (is_lvds) {
3831                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3832                 } else {
3833                         if (clock.p1 == 2)
3834                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
3835                         else
3836                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3837                         if (clock.p2 == 4)
3838                                 dpll |= PLL_P2_DIVIDE_BY_4;
3839                 }
3840         }
3841
3842         if (is_sdvo && is_tv)
3843                 dpll |= PLL_REF_INPUT_TVCLKINBC;
3844         else if (is_tv)
3845                 /* XXX: just matching BIOS for now */
3846                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
3847                 dpll |= 3;
3848         else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
3849                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3850         else
3851                 dpll |= PLL_REF_INPUT_DREFCLK;
3852
3853         /* setup pipeconf */
3854         pipeconf = I915_READ(pipeconf_reg);
3855
3856         /* Set up the display plane register */
3857         dspcntr = DISPPLANE_GAMMA_ENABLE;
3858
3859         /* Ironlake's plane is forced to pipe, bit 24 is to
3860            enable color space conversion */
3861         if (!HAS_PCH_SPLIT(dev)) {
3862                 if (pipe == 0)
3863                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3864                 else
3865                         dspcntr |= DISPPLANE_SEL_PIPE_B;
3866         }
3867
3868         if (pipe == 0 && !IS_I965G(dev)) {
3869                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3870                  * core speed.
3871                  *
3872                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3873                  * pipe == 0 check?
3874                  */
3875                 if (mode->clock >
3876                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3877                         pipeconf |= PIPEACONF_DOUBLE_WIDE;
3878                 else
3879                         pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
3880         }
3881
3882         dspcntr |= DISPLAY_PLANE_ENABLE;
3883         pipeconf |= PIPEACONF_ENABLE;
3884         dpll |= DPLL_VCO_ENABLE;
3885
3886
3887         /* Disable the panel fitter if it was on our pipe */
3888         if (!HAS_PCH_SPLIT(dev) && intel_panel_fitter_pipe(dev) == pipe)
3889                 I915_WRITE(PFIT_CONTROL, 0);
3890
3891         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3892         drm_mode_debug_printmodeline(mode);
3893
3894         /* assign to Ironlake registers */
3895         if (HAS_PCH_SPLIT(dev)) {
3896                 fp_reg = pch_fp_reg;
3897                 dpll_reg = pch_dpll_reg;
3898         }
3899
3900         if (!is_edp) {
3901                 I915_WRITE(fp_reg, fp);
3902                 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3903                 I915_READ(dpll_reg);
3904                 udelay(150);
3905         }
3906
3907         /* enable transcoder DPLL */
3908         if (HAS_PCH_CPT(dev)) {
3909                 temp = I915_READ(PCH_DPLL_SEL);
3910                 if (trans_dpll_sel == 0)
3911                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
3912                 else
3913                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3914                 I915_WRITE(PCH_DPLL_SEL, temp);
3915                 I915_READ(PCH_DPLL_SEL);
3916                 udelay(150);
3917         }
3918
3919         if (HAS_PCH_SPLIT(dev)) {
3920                 pipeconf &= ~PIPE_ENABLE_DITHER;
3921                 pipeconf &= ~PIPE_DITHER_TYPE_MASK;
3922         }
3923
3924         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3925          * This is an exception to the general rule that mode_set doesn't turn
3926          * things on.
3927          */
3928         if (is_lvds) {
3929                 u32 lvds;
3930
3931                 if (HAS_PCH_SPLIT(dev))
3932                         lvds_reg = PCH_LVDS;
3933
3934                 lvds = I915_READ(lvds_reg);
3935                 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3936                 if (pipe == 1) {
3937                         if (HAS_PCH_CPT(dev))
3938                                 lvds |= PORT_TRANS_B_SEL_CPT;
3939                         else
3940                                 lvds |= LVDS_PIPEB_SELECT;
3941                 } else {
3942                         if (HAS_PCH_CPT(dev))
3943                                 lvds &= ~PORT_TRANS_SEL_MASK;
3944                         else
3945                                 lvds &= ~LVDS_PIPEB_SELECT;
3946                 }
3947                 /* set the corresponsding LVDS_BORDER bit */
3948                 lvds |= dev_priv->lvds_border_bits;
3949                 /* Set the B0-B3 data pairs corresponding to whether we're going to
3950                  * set the DPLLs for dual-channel mode or not.
3951                  */
3952                 if (clock.p2 == 7)
3953                         lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3954                 else
3955                         lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3956
3957                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3958                  * appropriately here, but we need to look more thoroughly into how
3959                  * panels behave in the two modes.
3960                  */
3961                 /* set the dithering flag */
3962                 if (IS_I965G(dev)) {
3963                         if (dev_priv->lvds_dither) {
3964                                 if (HAS_PCH_SPLIT(dev)) {
3965                                         pipeconf |= PIPE_ENABLE_DITHER;
3966                                         pipeconf |= PIPE_DITHER_TYPE_ST01;
3967                                 } else
3968                                         lvds |= LVDS_ENABLE_DITHER;
3969                         } else {
3970                                 if (!HAS_PCH_SPLIT(dev)) {
3971                                         lvds &= ~LVDS_ENABLE_DITHER;
3972                                 }
3973                         }
3974                 }
3975                 I915_WRITE(lvds_reg, lvds);
3976                 I915_READ(lvds_reg);
3977         }
3978         if (is_dp)
3979                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
3980         else if (HAS_PCH_SPLIT(dev)) {
3981                 /* For non-DP output, clear any trans DP clock recovery setting.*/
3982                 if (pipe == 0) {
3983                         I915_WRITE(TRANSA_DATA_M1, 0);
3984                         I915_WRITE(TRANSA_DATA_N1, 0);
3985                         I915_WRITE(TRANSA_DP_LINK_M1, 0);
3986                         I915_WRITE(TRANSA_DP_LINK_N1, 0);
3987                 } else {
3988                         I915_WRITE(TRANSB_DATA_M1, 0);
3989                         I915_WRITE(TRANSB_DATA_N1, 0);
3990                         I915_WRITE(TRANSB_DP_LINK_M1, 0);
3991                         I915_WRITE(TRANSB_DP_LINK_N1, 0);
3992                 }
3993         }
3994
3995         if (!is_edp) {
3996                 I915_WRITE(fp_reg, fp);
3997                 I915_WRITE(dpll_reg, dpll);
3998                 I915_READ(dpll_reg);
3999                 /* Wait for the clocks to stabilize. */
4000                 udelay(150);
4001
4002                 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev)) {
4003                         if (is_sdvo) {
4004                                 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
4005                                 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
4006                                         ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
4007                         } else
4008                                 I915_WRITE(dpll_md_reg, 0);
4009                 } else {
4010                         /* write it again -- the BIOS does, after all */
4011                         I915_WRITE(dpll_reg, dpll);
4012                 }
4013                 I915_READ(dpll_reg);
4014                 /* Wait for the clocks to stabilize. */
4015                 udelay(150);
4016         }
4017
4018         if (is_lvds && has_reduced_clock && i915_powersave) {
4019                 I915_WRITE(fp_reg + 4, fp2);
4020                 intel_crtc->lowfreq_avail = true;
4021                 if (HAS_PIPE_CXSR(dev)) {
4022                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4023                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4024                 }
4025         } else {
4026                 I915_WRITE(fp_reg + 4, fp);
4027                 intel_crtc->lowfreq_avail = false;
4028                 if (HAS_PIPE_CXSR(dev)) {
4029                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4030                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4031                 }
4032         }
4033
4034         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4035                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4036                 /* the chip adds 2 halflines automatically */
4037                 adjusted_mode->crtc_vdisplay -= 1;
4038                 adjusted_mode->crtc_vtotal -= 1;
4039                 adjusted_mode->crtc_vblank_start -= 1;
4040                 adjusted_mode->crtc_vblank_end -= 1;
4041                 adjusted_mode->crtc_vsync_end -= 1;
4042                 adjusted_mode->crtc_vsync_start -= 1;
4043         } else
4044                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
4045
4046         I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
4047                    ((adjusted_mode->crtc_htotal - 1) << 16));
4048         I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
4049                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4050         I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
4051                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4052         I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
4053                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4054         I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
4055                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4056         I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
4057                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4058         /* pipesrc and dspsize control the size that is scaled from, which should
4059          * always be the user's requested size.
4060          */
4061         if (!HAS_PCH_SPLIT(dev)) {
4062                 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
4063                                 (mode->hdisplay - 1));
4064                 I915_WRITE(dsppos_reg, 0);
4065         }
4066         I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4067
4068         if (HAS_PCH_SPLIT(dev)) {
4069                 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
4070                 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
4071                 I915_WRITE(link_m1_reg, m_n.link_m);
4072                 I915_WRITE(link_n1_reg, m_n.link_n);
4073
4074                 if (is_edp) {
4075                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4076                 } else {
4077                         /* enable FDI RX PLL too */
4078                         temp = I915_READ(fdi_rx_reg);
4079                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
4080                         I915_READ(fdi_rx_reg);
4081                         udelay(200);
4082
4083                         /* enable FDI TX PLL too */
4084                         temp = I915_READ(fdi_tx_reg);
4085                         I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
4086                         I915_READ(fdi_tx_reg);
4087
4088                         /* enable FDI RX PCDCLK */
4089                         temp = I915_READ(fdi_rx_reg);
4090                         I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
4091                         I915_READ(fdi_rx_reg);
4092                         udelay(200);
4093                 }
4094         }
4095
4096         I915_WRITE(pipeconf_reg, pipeconf);
4097         I915_READ(pipeconf_reg);
4098
4099         intel_wait_for_vblank(dev);
4100
4101         if (IS_IRONLAKE(dev)) {
4102                 /* enable address swizzle for tiling buffer */
4103                 temp = I915_READ(DISP_ARB_CTL);
4104                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
4105         }
4106
4107         I915_WRITE(dspcntr_reg, dspcntr);
4108
4109         /* Flush the plane changes */
4110         ret = intel_pipe_set_base(crtc, x, y, old_fb);
4111
4112         intel_update_watermarks(dev);
4113
4114         drm_vblank_post_modeset(dev, pipe);
4115
4116         return ret;
4117 }
4118
4119 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4120 void intel_crtc_load_lut(struct drm_crtc *crtc)
4121 {
4122         struct drm_device *dev = crtc->dev;
4123         struct drm_i915_private *dev_priv = dev->dev_private;
4124         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4125         int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
4126         int i;
4127
4128         /* The clocks have to be on to load the palette. */
4129         if (!crtc->enabled)
4130                 return;
4131
4132         /* use legacy palette for Ironlake */
4133         if (HAS_PCH_SPLIT(dev))
4134                 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
4135                                                    LGC_PALETTE_B;
4136
4137         for (i = 0; i < 256; i++) {
4138                 I915_WRITE(palreg + 4 * i,
4139                            (intel_crtc->lut_r[i] << 16) |
4140                            (intel_crtc->lut_g[i] << 8) |
4141                            intel_crtc->lut_b[i]);
4142         }
4143 }
4144
4145 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
4146 {
4147         struct drm_device *dev = crtc->dev;
4148         struct drm_i915_private *dev_priv = dev->dev_private;
4149         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4150         bool visible = base != 0;
4151         u32 cntl;
4152
4153         if (intel_crtc->cursor_visible == visible)
4154                 return;
4155
4156         cntl = I915_READ(CURACNTR);
4157         if (visible) {
4158                 /* On these chipsets we can only modify the base whilst
4159                  * the cursor is disabled.
4160                  */
4161                 I915_WRITE(CURABASE, base);
4162
4163                 cntl &= ~(CURSOR_FORMAT_MASK);
4164                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
4165                 cntl |= CURSOR_ENABLE |
4166                         CURSOR_GAMMA_ENABLE |
4167                         CURSOR_FORMAT_ARGB;
4168         } else
4169                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
4170         I915_WRITE(CURACNTR, cntl);
4171
4172         intel_crtc->cursor_visible = visible;
4173 }
4174
4175 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
4176 {
4177         struct drm_device *dev = crtc->dev;
4178         struct drm_i915_private *dev_priv = dev->dev_private;
4179         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4180         int pipe = intel_crtc->pipe;
4181         bool visible = base != 0;
4182
4183         if (intel_crtc->cursor_visible != visible) {
4184                 uint32_t cntl = I915_READ(pipe == 0 ? CURACNTR : CURBCNTR);
4185                 if (base) {
4186                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
4187                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4188                         cntl |= pipe << 28; /* Connect to correct pipe */
4189                 } else {
4190                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
4191                         cntl |= CURSOR_MODE_DISABLE;
4192                 }
4193                 I915_WRITE(pipe == 0 ? CURACNTR : CURBCNTR, cntl);
4194
4195                 intel_crtc->cursor_visible = visible;
4196         }
4197         /* and commit changes on next vblank */
4198         I915_WRITE(pipe == 0 ? CURABASE : CURBBASE, base);
4199 }
4200
4201 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
4202 static void intel_crtc_update_cursor(struct drm_crtc *crtc)
4203 {
4204         struct drm_device *dev = crtc->dev;
4205         struct drm_i915_private *dev_priv = dev->dev_private;
4206         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4207         int pipe = intel_crtc->pipe;
4208         int x = intel_crtc->cursor_x;
4209         int y = intel_crtc->cursor_y;
4210         u32 base, pos;
4211         bool visible;
4212
4213         pos = 0;
4214
4215         if (intel_crtc->cursor_on && crtc->fb) {
4216                 base = intel_crtc->cursor_addr;
4217                 if (x > (int) crtc->fb->width)
4218                         base = 0;
4219
4220                 if (y > (int) crtc->fb->height)
4221                         base = 0;
4222         } else
4223                 base = 0;
4224
4225         if (x < 0) {
4226                 if (x + intel_crtc->cursor_width < 0)
4227                         base = 0;
4228
4229                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
4230                 x = -x;
4231         }
4232         pos |= x << CURSOR_X_SHIFT;
4233
4234         if (y < 0) {
4235                 if (y + intel_crtc->cursor_height < 0)
4236                         base = 0;
4237
4238                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
4239                 y = -y;
4240         }
4241         pos |= y << CURSOR_Y_SHIFT;
4242
4243         visible = base != 0;
4244         if (!visible && !intel_crtc->cursor_visible)
4245                 return;
4246
4247         I915_WRITE(pipe == 0 ? CURAPOS : CURBPOS, pos);
4248         if (IS_845G(dev) || IS_I865G(dev))
4249                 i845_update_cursor(crtc, base);
4250         else
4251                 i9xx_update_cursor(crtc, base);
4252
4253         if (visible)
4254                 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
4255 }
4256
4257 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
4258                                  struct drm_file *file_priv,
4259                                  uint32_t handle,
4260                                  uint32_t width, uint32_t height)
4261 {
4262         struct drm_device *dev = crtc->dev;
4263         struct drm_i915_private *dev_priv = dev->dev_private;
4264         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4265         struct drm_gem_object *bo;
4266         struct drm_i915_gem_object *obj_priv;
4267         uint32_t addr;
4268         int ret;
4269
4270         DRM_DEBUG_KMS("\n");
4271
4272         /* if we want to turn off the cursor ignore width and height */
4273         if (!handle) {
4274                 DRM_DEBUG_KMS("cursor off\n");
4275                 addr = 0;
4276                 bo = NULL;
4277                 mutex_lock(&dev->struct_mutex);
4278                 goto finish;
4279         }
4280
4281         /* Currently we only support 64x64 cursors */
4282         if (width != 64 || height != 64) {
4283                 DRM_ERROR("we currently only support 64x64 cursors\n");
4284                 return -EINVAL;
4285         }
4286
4287         bo = drm_gem_object_lookup(dev, file_priv, handle);
4288         if (!bo)
4289                 return -ENOENT;
4290
4291         obj_priv = to_intel_bo(bo);
4292
4293         if (bo->size < width * height * 4) {
4294                 DRM_ERROR("buffer is to small\n");
4295                 ret = -ENOMEM;
4296                 goto fail;
4297         }
4298
4299         /* we only need to pin inside GTT if cursor is non-phy */
4300         mutex_lock(&dev->struct_mutex);
4301         if (!dev_priv->info->cursor_needs_physical) {
4302                 ret = i915_gem_object_pin(bo, PAGE_SIZE);
4303                 if (ret) {
4304                         DRM_ERROR("failed to pin cursor bo\n");
4305                         goto fail_locked;
4306                 }
4307
4308                 ret = i915_gem_object_set_to_gtt_domain(bo, 0);
4309                 if (ret) {
4310                         DRM_ERROR("failed to move cursor bo into the GTT\n");
4311                         goto fail_unpin;
4312                 }
4313
4314                 addr = obj_priv->gtt_offset;
4315         } else {
4316                 int align = IS_I830(dev) ? 16 * 1024 : 256;
4317                 ret = i915_gem_attach_phys_object(dev, bo,
4318                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
4319                                                   align);
4320                 if (ret) {
4321                         DRM_ERROR("failed to attach phys object\n");
4322                         goto fail_locked;
4323                 }
4324                 addr = obj_priv->phys_obj->handle->busaddr;
4325         }
4326
4327         if (!IS_I9XX(dev))
4328                 I915_WRITE(CURSIZE, (height << 12) | width);
4329
4330  finish:
4331         if (intel_crtc->cursor_bo) {
4332                 if (dev_priv->info->cursor_needs_physical) {
4333                         if (intel_crtc->cursor_bo != bo)
4334                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
4335                 } else
4336                         i915_gem_object_unpin(intel_crtc->cursor_bo);
4337                 drm_gem_object_unreference(intel_crtc->cursor_bo);
4338         }
4339
4340         mutex_unlock(&dev->struct_mutex);
4341
4342         intel_crtc->cursor_addr = addr;
4343         intel_crtc->cursor_bo = bo;
4344         intel_crtc->cursor_width = width;
4345         intel_crtc->cursor_height = height;
4346
4347         intel_crtc_update_cursor(crtc);
4348
4349         return 0;
4350 fail_unpin:
4351         i915_gem_object_unpin(bo);
4352 fail_locked:
4353         mutex_unlock(&dev->struct_mutex);
4354 fail:
4355         drm_gem_object_unreference_unlocked(bo);
4356         return ret;
4357 }
4358
4359 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
4360 {
4361         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4362
4363         intel_crtc->cursor_x = x;
4364         intel_crtc->cursor_y = y;
4365
4366         intel_crtc_update_cursor(crtc);
4367
4368         return 0;
4369 }
4370
4371 /** Sets the color ramps on behalf of RandR */
4372 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
4373                                  u16 blue, int regno)
4374 {
4375         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4376
4377         intel_crtc->lut_r[regno] = red >> 8;
4378         intel_crtc->lut_g[regno] = green >> 8;
4379         intel_crtc->lut_b[regno] = blue >> 8;
4380 }
4381
4382 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
4383                              u16 *blue, int regno)
4384 {
4385         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4386
4387         *red = intel_crtc->lut_r[regno] << 8;
4388         *green = intel_crtc->lut_g[regno] << 8;
4389         *blue = intel_crtc->lut_b[regno] << 8;
4390 }
4391
4392 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
4393                                  u16 *blue, uint32_t size)
4394 {
4395         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4396         int i;
4397
4398         if (size != 256)
4399                 return;
4400
4401         for (i = 0; i < 256; i++) {
4402                 intel_crtc->lut_r[i] = red[i] >> 8;
4403                 intel_crtc->lut_g[i] = green[i] >> 8;
4404                 intel_crtc->lut_b[i] = blue[i] >> 8;
4405         }
4406
4407         intel_crtc_load_lut(crtc);
4408 }
4409
4410 /**
4411  * Get a pipe with a simple mode set on it for doing load-based monitor
4412  * detection.
4413  *
4414  * It will be up to the load-detect code to adjust the pipe as appropriate for
4415  * its requirements.  The pipe will be connected to no other encoders.
4416  *
4417  * Currently this code will only succeed if there is a pipe with no encoders
4418  * configured for it.  In the future, it could choose to temporarily disable
4419  * some outputs to free up a pipe for its use.
4420  *
4421  * \return crtc, or NULL if no pipes are available.
4422  */
4423
4424 /* VESA 640x480x72Hz mode to set on the pipe */
4425 static struct drm_display_mode load_detect_mode = {
4426         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
4427                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
4428 };
4429
4430 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
4431                                             struct drm_connector *connector,
4432                                             struct drm_display_mode *mode,
4433                                             int *dpms_mode)
4434 {
4435         struct intel_crtc *intel_crtc;
4436         struct drm_crtc *possible_crtc;
4437         struct drm_crtc *supported_crtc =NULL;
4438         struct drm_encoder *encoder = &intel_encoder->enc;
4439         struct drm_crtc *crtc = NULL;
4440         struct drm_device *dev = encoder->dev;
4441         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4442         struct drm_crtc_helper_funcs *crtc_funcs;
4443         int i = -1;
4444
4445         /*
4446          * Algorithm gets a little messy:
4447          *   - if the connector already has an assigned crtc, use it (but make
4448          *     sure it's on first)
4449          *   - try to find the first unused crtc that can drive this connector,
4450          *     and use that if we find one
4451          *   - if there are no unused crtcs available, try to use the first
4452          *     one we found that supports the connector
4453          */
4454
4455         /* See if we already have a CRTC for this connector */
4456         if (encoder->crtc) {
4457                 crtc = encoder->crtc;
4458                 /* Make sure the crtc and connector are running */
4459                 intel_crtc = to_intel_crtc(crtc);
4460                 *dpms_mode = intel_crtc->dpms_mode;
4461                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4462                         crtc_funcs = crtc->helper_private;
4463                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4464                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
4465                 }
4466                 return crtc;
4467         }
4468
4469         /* Find an unused one (if possible) */
4470         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
4471                 i++;
4472                 if (!(encoder->possible_crtcs & (1 << i)))
4473                         continue;
4474                 if (!possible_crtc->enabled) {
4475                         crtc = possible_crtc;
4476                         break;
4477                 }
4478                 if (!supported_crtc)
4479                         supported_crtc = possible_crtc;
4480         }
4481
4482         /*
4483          * If we didn't find an unused CRTC, don't use any.
4484          */
4485         if (!crtc) {
4486                 return NULL;
4487         }
4488
4489         encoder->crtc = crtc;
4490         connector->encoder = encoder;
4491         intel_encoder->load_detect_temp = true;
4492
4493         intel_crtc = to_intel_crtc(crtc);
4494         *dpms_mode = intel_crtc->dpms_mode;
4495
4496         if (!crtc->enabled) {
4497                 if (!mode)
4498                         mode = &load_detect_mode;
4499                 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
4500         } else {
4501                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4502                         crtc_funcs = crtc->helper_private;
4503                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4504                 }
4505
4506                 /* Add this connector to the crtc */
4507                 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
4508                 encoder_funcs->commit(encoder);
4509         }
4510         /* let the connector get through one full cycle before testing */
4511         intel_wait_for_vblank(dev);
4512
4513         return crtc;
4514 }
4515
4516 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
4517                                     struct drm_connector *connector, int dpms_mode)
4518 {
4519         struct drm_encoder *encoder = &intel_encoder->enc;
4520         struct drm_device *dev = encoder->dev;
4521         struct drm_crtc *crtc = encoder->crtc;
4522         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4523         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
4524
4525         if (intel_encoder->load_detect_temp) {
4526                 encoder->crtc = NULL;
4527                 connector->encoder = NULL;
4528                 intel_encoder->load_detect_temp = false;
4529                 crtc->enabled = drm_helper_crtc_in_use(crtc);
4530                 drm_helper_disable_unused_functions(dev);
4531         }
4532
4533         /* Switch crtc and encoder back off if necessary */
4534         if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
4535                 if (encoder->crtc == crtc)
4536                         encoder_funcs->dpms(encoder, dpms_mode);
4537                 crtc_funcs->dpms(crtc, dpms_mode);
4538         }
4539 }
4540
4541 /* Returns the clock of the currently programmed mode of the given pipe. */
4542 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
4543 {
4544         struct drm_i915_private *dev_priv = dev->dev_private;
4545         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4546         int pipe = intel_crtc->pipe;
4547         u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
4548         u32 fp;
4549         intel_clock_t clock;
4550
4551         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
4552                 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
4553         else
4554                 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
4555
4556         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
4557         if (IS_PINEVIEW(dev)) {
4558                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
4559                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
4560         } else {
4561                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
4562                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
4563         }
4564
4565         if (IS_I9XX(dev)) {
4566                 if (IS_PINEVIEW(dev))
4567                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
4568                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
4569                 else
4570                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
4571                                DPLL_FPA01_P1_POST_DIV_SHIFT);
4572
4573                 switch (dpll & DPLL_MODE_MASK) {
4574                 case DPLLB_MODE_DAC_SERIAL:
4575                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
4576                                 5 : 10;
4577                         break;
4578                 case DPLLB_MODE_LVDS:
4579                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
4580                                 7 : 14;
4581                         break;
4582                 default:
4583                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
4584                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
4585                         return 0;
4586                 }
4587
4588                 /* XXX: Handle the 100Mhz refclk */
4589                 intel_clock(dev, 96000, &clock);
4590         } else {
4591                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
4592
4593                 if (is_lvds) {
4594                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
4595                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
4596                         clock.p2 = 14;
4597
4598                         if ((dpll & PLL_REF_INPUT_MASK) ==
4599                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
4600                                 /* XXX: might not be 66MHz */
4601                                 intel_clock(dev, 66000, &clock);
4602                         } else
4603                                 intel_clock(dev, 48000, &clock);
4604                 } else {
4605                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
4606                                 clock.p1 = 2;
4607                         else {
4608                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
4609                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
4610                         }
4611                         if (dpll & PLL_P2_DIVIDE_BY_4)
4612                                 clock.p2 = 4;
4613                         else
4614                                 clock.p2 = 2;
4615
4616                         intel_clock(dev, 48000, &clock);
4617                 }
4618         }
4619
4620         /* XXX: It would be nice to validate the clocks, but we can't reuse
4621          * i830PllIsValid() because it relies on the xf86_config connector
4622          * configuration being accurate, which it isn't necessarily.
4623          */
4624
4625         return clock.dot;
4626 }
4627
4628 /** Returns the currently programmed mode of the given pipe. */
4629 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
4630                                              struct drm_crtc *crtc)
4631 {
4632         struct drm_i915_private *dev_priv = dev->dev_private;
4633         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4634         int pipe = intel_crtc->pipe;
4635         struct drm_display_mode *mode;
4636         int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
4637         int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
4638         int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
4639         int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
4640
4641         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
4642         if (!mode)
4643                 return NULL;
4644
4645         mode->clock = intel_crtc_clock_get(dev, crtc);
4646         mode->hdisplay = (htot & 0xffff) + 1;
4647         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
4648         mode->hsync_start = (hsync & 0xffff) + 1;
4649         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
4650         mode->vdisplay = (vtot & 0xffff) + 1;
4651         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
4652         mode->vsync_start = (vsync & 0xffff) + 1;
4653         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
4654
4655         drm_mode_set_name(mode);
4656         drm_mode_set_crtcinfo(mode, 0);
4657
4658         return mode;
4659 }
4660
4661 #define GPU_IDLE_TIMEOUT 500 /* ms */
4662
4663 /* When this timer fires, we've been idle for awhile */
4664 static void intel_gpu_idle_timer(unsigned long arg)
4665 {
4666         struct drm_device *dev = (struct drm_device *)arg;
4667         drm_i915_private_t *dev_priv = dev->dev_private;
4668
4669         DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
4670
4671         dev_priv->busy = false;
4672
4673         queue_work(dev_priv->wq, &dev_priv->idle_work);
4674 }
4675
4676 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
4677
4678 static void intel_crtc_idle_timer(unsigned long arg)
4679 {
4680         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
4681         struct drm_crtc *crtc = &intel_crtc->base;
4682         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
4683
4684         DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
4685
4686         intel_crtc->busy = false;
4687
4688         queue_work(dev_priv->wq, &dev_priv->idle_work);
4689 }
4690
4691 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
4692 {
4693         struct drm_device *dev = crtc->dev;
4694         drm_i915_private_t *dev_priv = dev->dev_private;
4695         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4696         int pipe = intel_crtc->pipe;
4697         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4698         int dpll = I915_READ(dpll_reg);
4699
4700         if (HAS_PCH_SPLIT(dev))
4701                 return;
4702
4703         if (!dev_priv->lvds_downclock_avail)
4704                 return;
4705
4706         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
4707                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
4708
4709                 /* Unlock panel regs */
4710                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4711                            PANEL_UNLOCK_REGS);
4712
4713                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
4714                 I915_WRITE(dpll_reg, dpll);
4715                 dpll = I915_READ(dpll_reg);
4716                 intel_wait_for_vblank(dev);
4717                 dpll = I915_READ(dpll_reg);
4718                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
4719                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
4720
4721                 /* ...and lock them again */
4722                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4723         }
4724
4725         /* Schedule downclock */
4726         if (schedule)
4727                 mod_timer(&intel_crtc->idle_timer, jiffies +
4728                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4729 }
4730
4731 static void intel_decrease_pllclock(struct drm_crtc *crtc)
4732 {
4733         struct drm_device *dev = crtc->dev;
4734         drm_i915_private_t *dev_priv = dev->dev_private;
4735         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4736         int pipe = intel_crtc->pipe;
4737         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4738         int dpll = I915_READ(dpll_reg);
4739
4740         if (HAS_PCH_SPLIT(dev))
4741                 return;
4742
4743         if (!dev_priv->lvds_downclock_avail)
4744                 return;
4745
4746         /*
4747          * Since this is called by a timer, we should never get here in
4748          * the manual case.
4749          */
4750         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
4751                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
4752
4753                 /* Unlock panel regs */
4754                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4755                            PANEL_UNLOCK_REGS);
4756
4757                 dpll |= DISPLAY_RATE_SELECT_FPA1;
4758                 I915_WRITE(dpll_reg, dpll);
4759                 dpll = I915_READ(dpll_reg);
4760                 intel_wait_for_vblank(dev);
4761                 dpll = I915_READ(dpll_reg);
4762                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
4763                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
4764
4765                 /* ...and lock them again */
4766                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4767         }
4768
4769 }
4770
4771 /**
4772  * intel_idle_update - adjust clocks for idleness
4773  * @work: work struct
4774  *
4775  * Either the GPU or display (or both) went idle.  Check the busy status
4776  * here and adjust the CRTC and GPU clocks as necessary.
4777  */
4778 static void intel_idle_update(struct work_struct *work)
4779 {
4780         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
4781                                                     idle_work);
4782         struct drm_device *dev = dev_priv->dev;
4783         struct drm_crtc *crtc;
4784         struct intel_crtc *intel_crtc;
4785         int enabled = 0;
4786
4787         if (!i915_powersave)
4788                 return;
4789
4790         mutex_lock(&dev->struct_mutex);
4791
4792         i915_update_gfx_val(dev_priv);
4793
4794         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4795                 /* Skip inactive CRTCs */
4796                 if (!crtc->fb)
4797                         continue;
4798
4799                 enabled++;
4800                 intel_crtc = to_intel_crtc(crtc);
4801                 if (!intel_crtc->busy)
4802                         intel_decrease_pllclock(crtc);
4803         }
4804
4805         if ((enabled == 1) && (IS_I945G(dev) || IS_I945GM(dev))) {
4806                 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4807                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4808         }
4809
4810         mutex_unlock(&dev->struct_mutex);
4811 }
4812
4813 /**
4814  * intel_mark_busy - mark the GPU and possibly the display busy
4815  * @dev: drm device
4816  * @obj: object we're operating on
4817  *
4818  * Callers can use this function to indicate that the GPU is busy processing
4819  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
4820  * buffer), we'll also mark the display as busy, so we know to increase its
4821  * clock frequency.
4822  */
4823 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
4824 {
4825         drm_i915_private_t *dev_priv = dev->dev_private;
4826         struct drm_crtc *crtc = NULL;
4827         struct intel_framebuffer *intel_fb;
4828         struct intel_crtc *intel_crtc;
4829
4830         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4831                 return;
4832
4833         if (!dev_priv->busy) {
4834                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4835                         u32 fw_blc_self;
4836
4837                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4838                         fw_blc_self = I915_READ(FW_BLC_SELF);
4839                         fw_blc_self &= ~FW_BLC_SELF_EN;
4840                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4841                 }
4842                 dev_priv->busy = true;
4843         } else
4844                 mod_timer(&dev_priv->idle_timer, jiffies +
4845                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
4846
4847         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4848                 if (!crtc->fb)
4849                         continue;
4850
4851                 intel_crtc = to_intel_crtc(crtc);
4852                 intel_fb = to_intel_framebuffer(crtc->fb);
4853                 if (intel_fb->obj == obj) {
4854                         if (!intel_crtc->busy) {
4855                                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4856                                         u32 fw_blc_self;
4857
4858                                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4859                                         fw_blc_self = I915_READ(FW_BLC_SELF);
4860                                         fw_blc_self &= ~FW_BLC_SELF_EN;
4861                                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4862                                 }
4863                                 /* Non-busy -> busy, upclock */
4864                                 intel_increase_pllclock(crtc, true);
4865                                 intel_crtc->busy = true;
4866                         } else {
4867                                 /* Busy -> busy, put off timer */
4868                                 mod_timer(&intel_crtc->idle_timer, jiffies +
4869                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4870                         }
4871                 }
4872         }
4873 }
4874
4875 static void intel_crtc_destroy(struct drm_crtc *crtc)
4876 {
4877         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4878
4879         drm_crtc_cleanup(crtc);
4880         kfree(intel_crtc);
4881 }
4882
4883 struct intel_unpin_work {
4884         struct work_struct work;
4885         struct drm_device *dev;
4886         struct drm_gem_object *old_fb_obj;
4887         struct drm_gem_object *pending_flip_obj;
4888         struct drm_pending_vblank_event *event;
4889         int pending;
4890 };
4891
4892 static void intel_unpin_work_fn(struct work_struct *__work)
4893 {
4894         struct intel_unpin_work *work =
4895                 container_of(__work, struct intel_unpin_work, work);
4896
4897         mutex_lock(&work->dev->struct_mutex);
4898         i915_gem_object_unpin(work->old_fb_obj);
4899         drm_gem_object_unreference(work->pending_flip_obj);
4900         drm_gem_object_unreference(work->old_fb_obj);
4901         mutex_unlock(&work->dev->struct_mutex);
4902         kfree(work);
4903 }
4904
4905 static void do_intel_finish_page_flip(struct drm_device *dev,
4906                                       struct drm_crtc *crtc)
4907 {
4908         drm_i915_private_t *dev_priv = dev->dev_private;
4909         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4910         struct intel_unpin_work *work;
4911         struct drm_i915_gem_object *obj_priv;
4912         struct drm_pending_vblank_event *e;
4913         struct timeval now;
4914         unsigned long flags;
4915
4916         /* Ignore early vblank irqs */
4917         if (intel_crtc == NULL)
4918                 return;
4919
4920         spin_lock_irqsave(&dev->event_lock, flags);
4921         work = intel_crtc->unpin_work;
4922         if (work == NULL || !work->pending) {
4923                 spin_unlock_irqrestore(&dev->event_lock, flags);
4924                 return;
4925         }
4926
4927         intel_crtc->unpin_work = NULL;
4928         drm_vblank_put(dev, intel_crtc->pipe);
4929
4930         if (work->event) {
4931                 e = work->event;
4932                 do_gettimeofday(&now);
4933                 e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
4934                 e->event.tv_sec = now.tv_sec;
4935                 e->event.tv_usec = now.tv_usec;
4936                 list_add_tail(&e->base.link,
4937                               &e->base.file_priv->event_list);
4938                 wake_up_interruptible(&e->base.file_priv->event_wait);
4939         }
4940
4941         spin_unlock_irqrestore(&dev->event_lock, flags);
4942
4943         obj_priv = to_intel_bo(work->pending_flip_obj);
4944
4945         /* Initial scanout buffer will have a 0 pending flip count */
4946         if ((atomic_read(&obj_priv->pending_flip) == 0) ||
4947             atomic_dec_and_test(&obj_priv->pending_flip))
4948                 DRM_WAKEUP(&dev_priv->pending_flip_queue);
4949         schedule_work(&work->work);
4950
4951         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
4952 }
4953
4954 void intel_finish_page_flip(struct drm_device *dev, int pipe)
4955 {
4956         drm_i915_private_t *dev_priv = dev->dev_private;
4957         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
4958
4959         do_intel_finish_page_flip(dev, crtc);
4960 }
4961
4962 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
4963 {
4964         drm_i915_private_t *dev_priv = dev->dev_private;
4965         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
4966
4967         do_intel_finish_page_flip(dev, crtc);
4968 }
4969
4970 void intel_prepare_page_flip(struct drm_device *dev, int plane)
4971 {
4972         drm_i915_private_t *dev_priv = dev->dev_private;
4973         struct intel_crtc *intel_crtc =
4974                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
4975         unsigned long flags;
4976
4977         spin_lock_irqsave(&dev->event_lock, flags);
4978         if (intel_crtc->unpin_work) {
4979                 intel_crtc->unpin_work->pending = 1;
4980         } else {
4981                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
4982         }
4983         spin_unlock_irqrestore(&dev->event_lock, flags);
4984 }
4985
4986 static int intel_crtc_page_flip(struct drm_crtc *crtc,
4987                                 struct drm_framebuffer *fb,
4988                                 struct drm_pending_vblank_event *event)
4989 {
4990         struct drm_device *dev = crtc->dev;
4991         struct drm_i915_private *dev_priv = dev->dev_private;
4992         struct intel_framebuffer *intel_fb;
4993         struct drm_i915_gem_object *obj_priv;
4994         struct drm_gem_object *obj;
4995         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4996         struct intel_unpin_work *work;
4997         unsigned long flags, offset;
4998         int pipesrc_reg = (intel_crtc->pipe == 0) ? PIPEASRC : PIPEBSRC;
4999         int ret, pipesrc;
5000         u32 flip_mask;
5001
5002         work = kzalloc(sizeof *work, GFP_KERNEL);
5003         if (work == NULL)
5004                 return -ENOMEM;
5005
5006         work->event = event;
5007         work->dev = crtc->dev;
5008         intel_fb = to_intel_framebuffer(crtc->fb);
5009         work->old_fb_obj = intel_fb->obj;
5010         INIT_WORK(&work->work, intel_unpin_work_fn);
5011
5012         /* We borrow the event spin lock for protecting unpin_work */
5013         spin_lock_irqsave(&dev->event_lock, flags);
5014         if (intel_crtc->unpin_work) {
5015                 spin_unlock_irqrestore(&dev->event_lock, flags);
5016                 kfree(work);
5017
5018                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5019                 return -EBUSY;
5020         }
5021         intel_crtc->unpin_work = work;
5022         spin_unlock_irqrestore(&dev->event_lock, flags);
5023
5024         intel_fb = to_intel_framebuffer(fb);
5025         obj = intel_fb->obj;
5026
5027         mutex_lock(&dev->struct_mutex);
5028         ret = intel_pin_and_fence_fb_obj(dev, obj);
5029         if (ret)
5030                 goto cleanup_work;
5031
5032         /* Reference the objects for the scheduled work. */
5033         drm_gem_object_reference(work->old_fb_obj);
5034         drm_gem_object_reference(obj);
5035
5036         crtc->fb = fb;
5037         ret = i915_gem_object_flush_write_domain(obj);
5038         if (ret)
5039                 goto cleanup_objs;
5040
5041         ret = drm_vblank_get(dev, intel_crtc->pipe);
5042         if (ret)
5043                 goto cleanup_objs;
5044
5045         obj_priv = to_intel_bo(obj);
5046         atomic_inc(&obj_priv->pending_flip);
5047         work->pending_flip_obj = obj;
5048
5049         if (intel_crtc->plane)
5050                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
5051         else
5052                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
5053
5054         if (IS_GEN3(dev) || IS_GEN2(dev)) {
5055                 BEGIN_LP_RING(2);
5056                 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
5057                 OUT_RING(0);
5058                 ADVANCE_LP_RING();
5059         }
5060
5061         /* Offset into the new buffer for cases of shared fbs between CRTCs */
5062         offset = obj_priv->gtt_offset;
5063         offset += (crtc->y * fb->pitch) + (crtc->x * (fb->bits_per_pixel) / 8);
5064
5065         BEGIN_LP_RING(4);
5066         if (IS_I965G(dev)) {
5067                 OUT_RING(MI_DISPLAY_FLIP |
5068                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5069                 OUT_RING(fb->pitch);
5070                 OUT_RING(offset | obj_priv->tiling_mode);
5071                 pipesrc = I915_READ(pipesrc_reg); 
5072                 OUT_RING(pipesrc & 0x0fff0fff);
5073         } else if (IS_GEN3(dev)) {
5074                 OUT_RING(MI_DISPLAY_FLIP_I915 |
5075                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5076                 OUT_RING(fb->pitch);
5077                 OUT_RING(offset);
5078                 OUT_RING(MI_NOOP);
5079         } else {
5080                 OUT_RING(MI_DISPLAY_FLIP |
5081                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5082                 OUT_RING(fb->pitch);
5083                 OUT_RING(offset);
5084                 OUT_RING(MI_NOOP);
5085         }
5086         ADVANCE_LP_RING();
5087
5088         mutex_unlock(&dev->struct_mutex);
5089
5090         trace_i915_flip_request(intel_crtc->plane, obj);
5091
5092         return 0;
5093
5094 cleanup_objs:
5095         drm_gem_object_unreference(work->old_fb_obj);
5096         drm_gem_object_unreference(obj);
5097 cleanup_work:
5098         mutex_unlock(&dev->struct_mutex);
5099
5100         spin_lock_irqsave(&dev->event_lock, flags);
5101         intel_crtc->unpin_work = NULL;
5102         spin_unlock_irqrestore(&dev->event_lock, flags);
5103
5104         kfree(work);
5105
5106         return ret;
5107 }
5108
5109 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
5110         .dpms = intel_crtc_dpms,
5111         .mode_fixup = intel_crtc_mode_fixup,
5112         .mode_set = intel_crtc_mode_set,
5113         .mode_set_base = intel_pipe_set_base,
5114         .mode_set_base_atomic = intel_pipe_set_base_atomic,
5115         .prepare = intel_crtc_prepare,
5116         .commit = intel_crtc_commit,
5117         .load_lut = intel_crtc_load_lut,
5118 };
5119
5120 static const struct drm_crtc_funcs intel_crtc_funcs = {
5121         .cursor_set = intel_crtc_cursor_set,
5122         .cursor_move = intel_crtc_cursor_move,
5123         .gamma_set = intel_crtc_gamma_set,
5124         .set_config = drm_crtc_helper_set_config,
5125         .destroy = intel_crtc_destroy,
5126         .page_flip = intel_crtc_page_flip,
5127 };
5128
5129
5130 static void intel_crtc_init(struct drm_device *dev, int pipe)
5131 {
5132         drm_i915_private_t *dev_priv = dev->dev_private;
5133         struct intel_crtc *intel_crtc;
5134         int i;
5135
5136         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
5137         if (intel_crtc == NULL)
5138                 return;
5139
5140         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
5141
5142         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
5143         intel_crtc->pipe = pipe;
5144         intel_crtc->plane = pipe;
5145         for (i = 0; i < 256; i++) {
5146                 intel_crtc->lut_r[i] = i;
5147                 intel_crtc->lut_g[i] = i;
5148                 intel_crtc->lut_b[i] = i;
5149         }
5150
5151         /* Swap pipes & planes for FBC on pre-965 */
5152         intel_crtc->pipe = pipe;
5153         intel_crtc->plane = pipe;
5154         if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
5155                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
5156                 intel_crtc->plane = ((pipe == 0) ? 1 : 0);
5157         }
5158
5159         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
5160                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
5161         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
5162         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
5163
5164         intel_crtc->cursor_addr = 0;
5165         intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
5166         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
5167
5168         intel_crtc->busy = false;
5169
5170         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
5171                     (unsigned long)intel_crtc);
5172 }
5173
5174 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
5175                                 struct drm_file *file_priv)
5176 {
5177         drm_i915_private_t *dev_priv = dev->dev_private;
5178         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
5179         struct drm_mode_object *drmmode_obj;
5180         struct intel_crtc *crtc;
5181
5182         if (!dev_priv) {
5183                 DRM_ERROR("called with no initialization\n");
5184                 return -EINVAL;
5185         }
5186
5187         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
5188                         DRM_MODE_OBJECT_CRTC);
5189
5190         if (!drmmode_obj) {
5191                 DRM_ERROR("no such CRTC id\n");
5192                 return -EINVAL;
5193         }
5194
5195         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
5196         pipe_from_crtc_id->pipe = crtc->pipe;
5197
5198         return 0;
5199 }
5200
5201 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
5202 {
5203         struct drm_crtc *crtc = NULL;
5204
5205         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5206                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5207                 if (intel_crtc->pipe == pipe)
5208                         break;
5209         }
5210         return crtc;
5211 }
5212
5213 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
5214 {
5215         int index_mask = 0;
5216         struct drm_encoder *encoder;
5217         int entry = 0;
5218
5219         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
5220                 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
5221                 if (type_mask & intel_encoder->clone_mask)
5222                         index_mask |= (1 << entry);
5223                 entry++;
5224         }
5225         return index_mask;
5226 }
5227
5228
5229 static void intel_setup_outputs(struct drm_device *dev)
5230 {
5231         struct drm_i915_private *dev_priv = dev->dev_private;
5232         struct drm_encoder *encoder;
5233         bool dpd_is_edp = false;
5234
5235         if (IS_MOBILE(dev) && !IS_I830(dev))
5236                 intel_lvds_init(dev);
5237
5238         if (HAS_PCH_SPLIT(dev)) {
5239                 dpd_is_edp = intel_dpd_is_edp(dev);
5240
5241                 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
5242                         intel_dp_init(dev, DP_A);
5243
5244                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5245                         intel_dp_init(dev, PCH_DP_D);
5246         }
5247
5248         intel_crt_init(dev);
5249
5250         if (HAS_PCH_SPLIT(dev)) {
5251                 int found;
5252
5253                 if (I915_READ(HDMIB) & PORT_DETECTED) {
5254                         /* PCH SDVOB multiplex with HDMIB */
5255                         found = intel_sdvo_init(dev, PCH_SDVOB);
5256                         if (!found)
5257                                 intel_hdmi_init(dev, HDMIB);
5258                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
5259                                 intel_dp_init(dev, PCH_DP_B);
5260                 }
5261
5262                 if (I915_READ(HDMIC) & PORT_DETECTED)
5263                         intel_hdmi_init(dev, HDMIC);
5264
5265                 if (I915_READ(HDMID) & PORT_DETECTED)
5266                         intel_hdmi_init(dev, HDMID);
5267
5268                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
5269                         intel_dp_init(dev, PCH_DP_C);
5270
5271                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5272                         intel_dp_init(dev, PCH_DP_D);
5273
5274         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
5275                 bool found = false;
5276
5277                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5278                         DRM_DEBUG_KMS("probing SDVOB\n");
5279                         found = intel_sdvo_init(dev, SDVOB);
5280                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
5281                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
5282                                 intel_hdmi_init(dev, SDVOB);
5283                         }
5284
5285                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
5286                                 DRM_DEBUG_KMS("probing DP_B\n");
5287                                 intel_dp_init(dev, DP_B);
5288                         }
5289                 }
5290
5291                 /* Before G4X SDVOC doesn't have its own detect register */
5292
5293                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5294                         DRM_DEBUG_KMS("probing SDVOC\n");
5295                         found = intel_sdvo_init(dev, SDVOC);
5296                 }
5297
5298                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
5299
5300                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
5301                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
5302                                 intel_hdmi_init(dev, SDVOC);
5303                         }
5304                         if (SUPPORTS_INTEGRATED_DP(dev)) {
5305                                 DRM_DEBUG_KMS("probing DP_C\n");
5306                                 intel_dp_init(dev, DP_C);
5307                         }
5308                 }
5309
5310                 if (SUPPORTS_INTEGRATED_DP(dev) &&
5311                     (I915_READ(DP_D) & DP_DETECTED)) {
5312                         DRM_DEBUG_KMS("probing DP_D\n");
5313                         intel_dp_init(dev, DP_D);
5314                 }
5315         } else if (IS_GEN2(dev))
5316                 intel_dvo_init(dev);
5317
5318         if (SUPPORTS_TV(dev))
5319                 intel_tv_init(dev);
5320
5321         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
5322                 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
5323
5324                 encoder->possible_crtcs = intel_encoder->crtc_mask;
5325                 encoder->possible_clones = intel_encoder_clones(dev,
5326                                                 intel_encoder->clone_mask);
5327         }
5328 }
5329
5330 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
5331 {
5332         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5333
5334         drm_framebuffer_cleanup(fb);
5335         drm_gem_object_unreference_unlocked(intel_fb->obj);
5336
5337         kfree(intel_fb);
5338 }
5339
5340 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
5341                                                 struct drm_file *file_priv,
5342                                                 unsigned int *handle)
5343 {
5344         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5345         struct drm_gem_object *object = intel_fb->obj;
5346
5347         return drm_gem_handle_create(file_priv, object, handle);
5348 }
5349
5350 static const struct drm_framebuffer_funcs intel_fb_funcs = {
5351         .destroy = intel_user_framebuffer_destroy,
5352         .create_handle = intel_user_framebuffer_create_handle,
5353 };
5354
5355 int intel_framebuffer_init(struct drm_device *dev,
5356                            struct intel_framebuffer *intel_fb,
5357                            struct drm_mode_fb_cmd *mode_cmd,
5358                            struct drm_gem_object *obj)
5359 {
5360         int ret;
5361
5362         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
5363         if (ret) {
5364                 DRM_ERROR("framebuffer init failed %d\n", ret);
5365                 return ret;
5366         }
5367
5368         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
5369         intel_fb->obj = obj;
5370         return 0;
5371 }
5372
5373 static struct drm_framebuffer *
5374 intel_user_framebuffer_create(struct drm_device *dev,
5375                               struct drm_file *filp,
5376                               struct drm_mode_fb_cmd *mode_cmd)
5377 {
5378         struct drm_gem_object *obj;
5379         struct intel_framebuffer *intel_fb;
5380         int ret;
5381
5382         obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
5383         if (!obj)
5384                 return NULL;
5385
5386         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5387         if (!intel_fb)
5388                 return NULL;
5389
5390         ret = intel_framebuffer_init(dev, intel_fb,
5391                                      mode_cmd, obj);
5392         if (ret) {
5393                 drm_gem_object_unreference_unlocked(obj);
5394                 kfree(intel_fb);
5395                 return NULL;
5396         }
5397
5398         return &intel_fb->base;
5399 }
5400
5401 static const struct drm_mode_config_funcs intel_mode_funcs = {
5402         .fb_create = intel_user_framebuffer_create,
5403         .output_poll_changed = intel_fb_output_poll_changed,
5404 };
5405
5406 static struct drm_gem_object *
5407 intel_alloc_context_page(struct drm_device *dev)
5408 {
5409         struct drm_gem_object *ctx;
5410         int ret;
5411
5412         ctx = i915_gem_alloc_object(dev, 4096);
5413         if (!ctx) {
5414                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
5415                 return NULL;
5416         }
5417
5418         mutex_lock(&dev->struct_mutex);
5419         ret = i915_gem_object_pin(ctx, 4096);
5420         if (ret) {
5421                 DRM_ERROR("failed to pin power context: %d\n", ret);
5422                 goto err_unref;
5423         }
5424
5425         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
5426         if (ret) {
5427                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
5428                 goto err_unpin;
5429         }
5430         mutex_unlock(&dev->struct_mutex);
5431
5432         return ctx;
5433
5434 err_unpin:
5435         i915_gem_object_unpin(ctx);
5436 err_unref:
5437         drm_gem_object_unreference(ctx);
5438         mutex_unlock(&dev->struct_mutex);
5439         return NULL;
5440 }
5441
5442 bool ironlake_set_drps(struct drm_device *dev, u8 val)
5443 {
5444         struct drm_i915_private *dev_priv = dev->dev_private;
5445         u16 rgvswctl;
5446
5447         rgvswctl = I915_READ16(MEMSWCTL);
5448         if (rgvswctl & MEMCTL_CMD_STS) {
5449                 DRM_DEBUG("gpu busy, RCS change rejected\n");
5450                 return false; /* still busy with another command */
5451         }
5452
5453         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5454                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5455         I915_WRITE16(MEMSWCTL, rgvswctl);
5456         POSTING_READ16(MEMSWCTL);
5457
5458         rgvswctl |= MEMCTL_CMD_STS;
5459         I915_WRITE16(MEMSWCTL, rgvswctl);
5460
5461         return true;
5462 }
5463
5464 void ironlake_enable_drps(struct drm_device *dev)
5465 {
5466         struct drm_i915_private *dev_priv = dev->dev_private;
5467         u32 rgvmodectl = I915_READ(MEMMODECTL);
5468         u8 fmax, fmin, fstart, vstart;
5469
5470         /* 100ms RC evaluation intervals */
5471         I915_WRITE(RCUPEI, 100000);
5472         I915_WRITE(RCDNEI, 100000);
5473
5474         /* Set max/min thresholds to 90ms and 80ms respectively */
5475         I915_WRITE(RCBMAXAVG, 90000);
5476         I915_WRITE(RCBMINAVG, 80000);
5477
5478         I915_WRITE(MEMIHYST, 1);
5479
5480         /* Set up min, max, and cur for interrupt handling */
5481         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5482         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5483         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5484                 MEMMODE_FSTART_SHIFT;
5485         fstart = fmax;
5486
5487         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
5488                 PXVFREQ_PX_SHIFT;
5489
5490         dev_priv->fmax = fstart; /* IPS callback will increase this */
5491         dev_priv->fstart = fstart;
5492
5493         dev_priv->max_delay = fmax;
5494         dev_priv->min_delay = fmin;
5495         dev_priv->cur_delay = fstart;
5496
5497         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n", fmax, fmin,
5498                          fstart);
5499
5500         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5501
5502         /*
5503          * Interrupts will be enabled in ironlake_irq_postinstall
5504          */
5505
5506         I915_WRITE(VIDSTART, vstart);
5507         POSTING_READ(VIDSTART);
5508
5509         rgvmodectl |= MEMMODE_SWMODE_EN;
5510         I915_WRITE(MEMMODECTL, rgvmodectl);
5511
5512         if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 1, 0))
5513                 DRM_ERROR("stuck trying to change perf mode\n");
5514         msleep(1);
5515
5516         ironlake_set_drps(dev, fstart);
5517
5518         dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
5519                 I915_READ(0x112e0);
5520         dev_priv->last_time1 = jiffies_to_msecs(jiffies);
5521         dev_priv->last_count2 = I915_READ(0x112f4);
5522         getrawmonotonic(&dev_priv->last_time2);
5523 }
5524
5525 void ironlake_disable_drps(struct drm_device *dev)
5526 {
5527         struct drm_i915_private *dev_priv = dev->dev_private;
5528         u16 rgvswctl = I915_READ16(MEMSWCTL);
5529
5530         /* Ack interrupts, disable EFC interrupt */
5531         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5532         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5533         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5534         I915_WRITE(DEIIR, DE_PCU_EVENT);
5535         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5536
5537         /* Go back to the starting frequency */
5538         ironlake_set_drps(dev, dev_priv->fstart);
5539         msleep(1);
5540         rgvswctl |= MEMCTL_CMD_STS;
5541         I915_WRITE(MEMSWCTL, rgvswctl);
5542         msleep(1);
5543
5544 }
5545
5546 static unsigned long intel_pxfreq(u32 vidfreq)
5547 {
5548         unsigned long freq;
5549         int div = (vidfreq & 0x3f0000) >> 16;
5550         int post = (vidfreq & 0x3000) >> 12;
5551         int pre = (vidfreq & 0x7);
5552
5553         if (!pre)
5554                 return 0;
5555
5556         freq = ((div * 133333) / ((1<<post) * pre));
5557
5558         return freq;
5559 }
5560
5561 void intel_init_emon(struct drm_device *dev)
5562 {
5563         struct drm_i915_private *dev_priv = dev->dev_private;
5564         u32 lcfuse;
5565         u8 pxw[16];
5566         int i;
5567
5568         /* Disable to program */
5569         I915_WRITE(ECR, 0);
5570         POSTING_READ(ECR);
5571
5572         /* Program energy weights for various events */
5573         I915_WRITE(SDEW, 0x15040d00);
5574         I915_WRITE(CSIEW0, 0x007f0000);
5575         I915_WRITE(CSIEW1, 0x1e220004);
5576         I915_WRITE(CSIEW2, 0x04000004);
5577
5578         for (i = 0; i < 5; i++)
5579                 I915_WRITE(PEW + (i * 4), 0);
5580         for (i = 0; i < 3; i++)
5581                 I915_WRITE(DEW + (i * 4), 0);
5582
5583         /* Program P-state weights to account for frequency power adjustment */
5584         for (i = 0; i < 16; i++) {
5585                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5586                 unsigned long freq = intel_pxfreq(pxvidfreq);
5587                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5588                         PXVFREQ_PX_SHIFT;
5589                 unsigned long val;
5590
5591                 val = vid * vid;
5592                 val *= (freq / 1000);
5593                 val *= 255;
5594                 val /= (127*127*900);
5595                 if (val > 0xff)
5596                         DRM_ERROR("bad pxval: %ld\n", val);
5597                 pxw[i] = val;
5598         }
5599         /* Render standby states get 0 weight */
5600         pxw[14] = 0;
5601         pxw[15] = 0;
5602
5603         for (i = 0; i < 4; i++) {
5604                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5605                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5606                 I915_WRITE(PXW + (i * 4), val);
5607         }
5608
5609         /* Adjust magic regs to magic values (more experimental results) */
5610         I915_WRITE(OGW0, 0);
5611         I915_WRITE(OGW1, 0);
5612         I915_WRITE(EG0, 0x00007f00);
5613         I915_WRITE(EG1, 0x0000000e);
5614         I915_WRITE(EG2, 0x000e0000);
5615         I915_WRITE(EG3, 0x68000300);
5616         I915_WRITE(EG4, 0x42000000);
5617         I915_WRITE(EG5, 0x00140031);
5618         I915_WRITE(EG6, 0);
5619         I915_WRITE(EG7, 0);
5620
5621         for (i = 0; i < 8; i++)
5622                 I915_WRITE(PXWL + (i * 4), 0);
5623
5624         /* Enable PMON + select events */
5625         I915_WRITE(ECR, 0x80000019);
5626
5627         lcfuse = I915_READ(LCFUSE02);
5628
5629         dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
5630 }
5631
5632 void intel_init_clock_gating(struct drm_device *dev)
5633 {
5634         struct drm_i915_private *dev_priv = dev->dev_private;
5635
5636         /*
5637          * Disable clock gating reported to work incorrectly according to the
5638          * specs, but enable as much else as we can.
5639          */
5640         if (HAS_PCH_SPLIT(dev)) {
5641                 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
5642
5643                 if (IS_IRONLAKE(dev)) {
5644                         /* Required for FBC */
5645                         dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
5646                         /* Required for CxSR */
5647                         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
5648
5649                         I915_WRITE(PCH_3DCGDIS0,
5650                                    MARIUNIT_CLOCK_GATE_DISABLE |
5651                                    SVSMUNIT_CLOCK_GATE_DISABLE);
5652                 }
5653
5654                 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
5655
5656                 /*
5657                  * According to the spec the following bits should be set in
5658                  * order to enable memory self-refresh
5659                  * The bit 22/21 of 0x42004
5660                  * The bit 5 of 0x42020
5661                  * The bit 15 of 0x45000
5662                  */
5663                 if (IS_IRONLAKE(dev)) {
5664                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5665                                         (I915_READ(ILK_DISPLAY_CHICKEN2) |
5666                                         ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5667                         I915_WRITE(ILK_DSPCLK_GATE,
5668                                         (I915_READ(ILK_DSPCLK_GATE) |
5669                                                 ILK_DPARB_CLK_GATE));
5670                         I915_WRITE(DISP_ARB_CTL,
5671                                         (I915_READ(DISP_ARB_CTL) |
5672                                                 DISP_FBC_WM_DIS));
5673                 }
5674                 /*
5675                  * Based on the document from hardware guys the following bits
5676                  * should be set unconditionally in order to enable FBC.
5677                  * The bit 22 of 0x42000
5678                  * The bit 22 of 0x42004
5679                  * The bit 7,8,9 of 0x42020.
5680                  */
5681                 if (IS_IRONLAKE_M(dev)) {
5682                         I915_WRITE(ILK_DISPLAY_CHICKEN1,
5683                                    I915_READ(ILK_DISPLAY_CHICKEN1) |
5684                                    ILK_FBCQ_DIS);
5685                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5686                                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5687                                    ILK_DPARB_GATE);
5688                         I915_WRITE(ILK_DSPCLK_GATE,
5689                                    I915_READ(ILK_DSPCLK_GATE) |
5690                                    ILK_DPFC_DIS1 |
5691                                    ILK_DPFC_DIS2 |
5692                                    ILK_CLK_FBC);
5693                 }
5694                 if (IS_GEN6(dev))
5695                         return;
5696         } else if (IS_G4X(dev)) {
5697                 uint32_t dspclk_gate;
5698                 I915_WRITE(RENCLK_GATE_D1, 0);
5699                 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5700                        GS_UNIT_CLOCK_GATE_DISABLE |
5701                        CL_UNIT_CLOCK_GATE_DISABLE);
5702                 I915_WRITE(RAMCLK_GATE_D, 0);
5703                 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5704                         OVRUNIT_CLOCK_GATE_DISABLE |
5705                         OVCUNIT_CLOCK_GATE_DISABLE;
5706                 if (IS_GM45(dev))
5707                         dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5708                 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5709         } else if (IS_I965GM(dev)) {
5710                 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5711                 I915_WRITE(RENCLK_GATE_D2, 0);
5712                 I915_WRITE(DSPCLK_GATE_D, 0);
5713                 I915_WRITE(RAMCLK_GATE_D, 0);
5714                 I915_WRITE16(DEUC, 0);
5715         } else if (IS_I965G(dev)) {
5716                 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5717                        I965_RCC_CLOCK_GATE_DISABLE |
5718                        I965_RCPB_CLOCK_GATE_DISABLE |
5719                        I965_ISC_CLOCK_GATE_DISABLE |
5720                        I965_FBC_CLOCK_GATE_DISABLE);
5721                 I915_WRITE(RENCLK_GATE_D2, 0);
5722         } else if (IS_I9XX(dev)) {
5723                 u32 dstate = I915_READ(D_STATE);
5724
5725                 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5726                         DSTATE_DOT_CLOCK_GATING;
5727                 I915_WRITE(D_STATE, dstate);
5728         } else if (IS_I85X(dev) || IS_I865G(dev)) {
5729                 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5730         } else if (IS_I830(dev)) {
5731                 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5732         }
5733
5734         /*
5735          * GPU can automatically power down the render unit if given a page
5736          * to save state.
5737          */
5738         if (IS_IRONLAKE_M(dev)) {
5739                 if (dev_priv->renderctx == NULL)
5740                         dev_priv->renderctx = intel_alloc_context_page(dev);
5741                 if (dev_priv->renderctx) {
5742                         struct drm_i915_gem_object *obj_priv;
5743                         obj_priv = to_intel_bo(dev_priv->renderctx);
5744                         if (obj_priv) {
5745                                 BEGIN_LP_RING(4);
5746                                 OUT_RING(MI_SET_CONTEXT);
5747                                 OUT_RING(obj_priv->gtt_offset |
5748                                                 MI_MM_SPACE_GTT |
5749                                                 MI_SAVE_EXT_STATE_EN |
5750                                                 MI_RESTORE_EXT_STATE_EN |
5751                                                 MI_RESTORE_INHIBIT);
5752                                 OUT_RING(MI_NOOP);
5753                                 OUT_RING(MI_FLUSH);
5754                                 ADVANCE_LP_RING();
5755                         }
5756                 } else {
5757                         DRM_DEBUG_KMS("Failed to allocate render context."
5758                                       "Disable RC6\n");
5759                         return;
5760                 }
5761         }
5762
5763         if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
5764                 struct drm_i915_gem_object *obj_priv = NULL;
5765
5766                 if (dev_priv->pwrctx) {
5767                         obj_priv = to_intel_bo(dev_priv->pwrctx);
5768                 } else {
5769                         struct drm_gem_object *pwrctx;
5770
5771                         pwrctx = intel_alloc_context_page(dev);
5772                         if (pwrctx) {
5773                                 dev_priv->pwrctx = pwrctx;
5774                                 obj_priv = to_intel_bo(pwrctx);
5775                         }
5776                 }
5777
5778                 if (obj_priv) {
5779                         I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
5780                         I915_WRITE(MCHBAR_RENDER_STANDBY,
5781                                    I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
5782                 }
5783         }
5784 }
5785
5786 /* Set up chip specific display functions */
5787 static void intel_init_display(struct drm_device *dev)
5788 {
5789         struct drm_i915_private *dev_priv = dev->dev_private;
5790
5791         /* We always want a DPMS function */
5792         if (HAS_PCH_SPLIT(dev))
5793                 dev_priv->display.dpms = ironlake_crtc_dpms;
5794         else
5795                 dev_priv->display.dpms = i9xx_crtc_dpms;
5796
5797         if (I915_HAS_FBC(dev)) {
5798                 if (IS_IRONLAKE_M(dev)) {
5799                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5800                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
5801                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
5802                 } else if (IS_GM45(dev)) {
5803                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5804                         dev_priv->display.enable_fbc = g4x_enable_fbc;
5805                         dev_priv->display.disable_fbc = g4x_disable_fbc;
5806                 } else if (IS_I965GM(dev)) {
5807                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5808                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
5809                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
5810                 }
5811                 /* 855GM needs testing */
5812         }
5813
5814         /* Returns the core display clock speed */
5815         if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
5816                 dev_priv->display.get_display_clock_speed =
5817                         i945_get_display_clock_speed;
5818         else if (IS_I915G(dev))
5819                 dev_priv->display.get_display_clock_speed =
5820                         i915_get_display_clock_speed;
5821         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
5822                 dev_priv->display.get_display_clock_speed =
5823                         i9xx_misc_get_display_clock_speed;
5824         else if (IS_I915GM(dev))
5825                 dev_priv->display.get_display_clock_speed =
5826                         i915gm_get_display_clock_speed;
5827         else if (IS_I865G(dev))
5828                 dev_priv->display.get_display_clock_speed =
5829                         i865_get_display_clock_speed;
5830         else if (IS_I85X(dev))
5831                 dev_priv->display.get_display_clock_speed =
5832                         i855_get_display_clock_speed;
5833         else /* 852, 830 */
5834                 dev_priv->display.get_display_clock_speed =
5835                         i830_get_display_clock_speed;
5836
5837         /* For FIFO watermark updates */
5838         if (HAS_PCH_SPLIT(dev)) {
5839                 if (IS_IRONLAKE(dev)) {
5840                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
5841                                 dev_priv->display.update_wm = ironlake_update_wm;
5842                         else {
5843                                 DRM_DEBUG_KMS("Failed to get proper latency. "
5844                                               "Disable CxSR\n");
5845                                 dev_priv->display.update_wm = NULL;
5846                         }
5847                 } else
5848                         dev_priv->display.update_wm = NULL;
5849         } else if (IS_PINEVIEW(dev)) {
5850                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5851                                             dev_priv->is_ddr3,
5852                                             dev_priv->fsb_freq,
5853                                             dev_priv->mem_freq)) {
5854                         DRM_INFO("failed to find known CxSR latency "
5855                                  "(found ddr%s fsb freq %d, mem freq %d), "
5856                                  "disabling CxSR\n",
5857                                  (dev_priv->is_ddr3 == 1) ? "3": "2",
5858                                  dev_priv->fsb_freq, dev_priv->mem_freq);
5859                         /* Disable CxSR and never update its watermark again */
5860                         pineview_disable_cxsr(dev);
5861                         dev_priv->display.update_wm = NULL;
5862                 } else
5863                         dev_priv->display.update_wm = pineview_update_wm;
5864         } else if (IS_G4X(dev))
5865                 dev_priv->display.update_wm = g4x_update_wm;
5866         else if (IS_I965G(dev))
5867                 dev_priv->display.update_wm = i965_update_wm;
5868         else if (IS_I9XX(dev)) {
5869                 dev_priv->display.update_wm = i9xx_update_wm;
5870                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5871         } else if (IS_I85X(dev)) {
5872                 dev_priv->display.update_wm = i9xx_update_wm;
5873                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5874         } else {
5875                 dev_priv->display.update_wm = i830_update_wm;
5876                 if (IS_845G(dev))
5877                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
5878                 else
5879                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
5880         }
5881 }
5882
5883 /*
5884  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
5885  * resume, or other times.  This quirk makes sure that's the case for
5886  * affected systems.
5887  */
5888 static void quirk_pipea_force (struct drm_device *dev)
5889 {
5890         struct drm_i915_private *dev_priv = dev->dev_private;
5891
5892         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
5893         DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
5894 }
5895
5896 struct intel_quirk {
5897         int device;
5898         int subsystem_vendor;
5899         int subsystem_device;
5900         void (*hook)(struct drm_device *dev);
5901 };
5902
5903 struct intel_quirk intel_quirks[] = {
5904         /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
5905         { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
5906         /* HP Mini needs pipe A force quirk (LP: #322104) */
5907         { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
5908
5909         /* Thinkpad R31 needs pipe A force quirk */
5910         { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
5911         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
5912         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
5913
5914         /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
5915         { 0x3577,  0x1014, 0x0513, quirk_pipea_force },
5916         /* ThinkPad X40 needs pipe A force quirk */
5917
5918         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
5919         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
5920
5921         /* 855 & before need to leave pipe A & dpll A up */
5922         { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
5923         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
5924 };
5925
5926 static void intel_init_quirks(struct drm_device *dev)
5927 {
5928         struct pci_dev *d = dev->pdev;
5929         int i;
5930
5931         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
5932                 struct intel_quirk *q = &intel_quirks[i];
5933
5934                 if (d->device == q->device &&
5935                     (d->subsystem_vendor == q->subsystem_vendor ||
5936                      q->subsystem_vendor == PCI_ANY_ID) &&
5937                     (d->subsystem_device == q->subsystem_device ||
5938                      q->subsystem_device == PCI_ANY_ID))
5939                         q->hook(dev);
5940         }
5941 }
5942
5943 /* Disable the VGA plane that we never use */
5944 static void i915_disable_vga(struct drm_device *dev)
5945 {
5946         struct drm_i915_private *dev_priv = dev->dev_private;
5947         u8 sr1;
5948         u32 vga_reg;
5949
5950         if (HAS_PCH_SPLIT(dev))
5951                 vga_reg = CPU_VGACNTRL;
5952         else
5953                 vga_reg = VGACNTRL;
5954
5955         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
5956         outb(1, VGA_SR_INDEX);
5957         sr1 = inb(VGA_SR_DATA);
5958         outb(sr1 | 1<<5, VGA_SR_DATA);
5959         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
5960         udelay(300);
5961
5962         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
5963         POSTING_READ(vga_reg);
5964 }
5965
5966 void intel_modeset_init(struct drm_device *dev)
5967 {
5968         struct drm_i915_private *dev_priv = dev->dev_private;
5969         int i;
5970
5971         drm_mode_config_init(dev);
5972
5973         dev->mode_config.min_width = 0;
5974         dev->mode_config.min_height = 0;
5975
5976         dev->mode_config.funcs = (void *)&intel_mode_funcs;
5977
5978         intel_init_quirks(dev);
5979
5980         intel_init_display(dev);
5981
5982         if (IS_I965G(dev)) {
5983                 dev->mode_config.max_width = 8192;
5984                 dev->mode_config.max_height = 8192;
5985         } else if (IS_I9XX(dev)) {
5986                 dev->mode_config.max_width = 4096;
5987                 dev->mode_config.max_height = 4096;
5988         } else {
5989                 dev->mode_config.max_width = 2048;
5990                 dev->mode_config.max_height = 2048;
5991         }
5992
5993         /* set memory base */
5994         if (IS_I9XX(dev))
5995                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
5996         else
5997                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
5998
5999         if (IS_MOBILE(dev) || IS_I9XX(dev))
6000                 dev_priv->num_pipe = 2;
6001         else
6002                 dev_priv->num_pipe = 1;
6003         DRM_DEBUG_KMS("%d display pipe%s available.\n",
6004                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
6005
6006         for (i = 0; i < dev_priv->num_pipe; i++) {
6007                 intel_crtc_init(dev, i);
6008         }
6009
6010         intel_setup_outputs(dev);
6011
6012         intel_init_clock_gating(dev);
6013
6014         /* Just disable it once at startup */
6015         i915_disable_vga(dev);
6016
6017         if (IS_IRONLAKE_M(dev)) {
6018                 ironlake_enable_drps(dev);
6019                 intel_init_emon(dev);
6020         }
6021
6022         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
6023         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
6024                     (unsigned long)dev);
6025
6026         intel_setup_overlay(dev);
6027 }
6028
6029 void intel_modeset_cleanup(struct drm_device *dev)
6030 {
6031         struct drm_i915_private *dev_priv = dev->dev_private;
6032         struct drm_crtc *crtc;
6033         struct intel_crtc *intel_crtc;
6034
6035         mutex_lock(&dev->struct_mutex);
6036
6037         drm_kms_helper_poll_fini(dev);
6038         intel_fbdev_fini(dev);
6039
6040         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6041                 /* Skip inactive CRTCs */
6042                 if (!crtc->fb)
6043                         continue;
6044
6045                 intel_crtc = to_intel_crtc(crtc);
6046                 intel_increase_pllclock(crtc, false);
6047                 del_timer_sync(&intel_crtc->idle_timer);
6048         }
6049
6050         del_timer_sync(&dev_priv->idle_timer);
6051
6052         if (dev_priv->display.disable_fbc)
6053                 dev_priv->display.disable_fbc(dev);
6054
6055         if (dev_priv->renderctx) {
6056                 struct drm_i915_gem_object *obj_priv;
6057
6058                 obj_priv = to_intel_bo(dev_priv->renderctx);
6059                 I915_WRITE(CCID, obj_priv->gtt_offset &~ CCID_EN);
6060                 I915_READ(CCID);
6061                 i915_gem_object_unpin(dev_priv->renderctx);
6062                 drm_gem_object_unreference(dev_priv->renderctx);
6063         }
6064
6065         if (dev_priv->pwrctx) {
6066                 struct drm_i915_gem_object *obj_priv;
6067
6068                 obj_priv = to_intel_bo(dev_priv->pwrctx);
6069                 I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
6070                 I915_READ(PWRCTXA);
6071                 i915_gem_object_unpin(dev_priv->pwrctx);
6072                 drm_gem_object_unreference(dev_priv->pwrctx);
6073         }
6074
6075         if (IS_IRONLAKE_M(dev))
6076                 ironlake_disable_drps(dev);
6077
6078         mutex_unlock(&dev->struct_mutex);
6079
6080         drm_mode_config_cleanup(dev);
6081 }
6082
6083
6084 /*
6085  * Return which encoder is currently attached for connector.
6086  */
6087 struct drm_encoder *intel_attached_encoder (struct drm_connector *connector)
6088 {
6089         struct drm_mode_object *obj;
6090         struct drm_encoder *encoder;
6091         int i;
6092
6093         for (i = 0; i < DRM_CONNECTOR_MAX_ENCODER; i++) {
6094                 if (connector->encoder_ids[i] == 0)
6095                         break;
6096
6097                 obj = drm_mode_object_find(connector->dev,
6098                                            connector->encoder_ids[i],
6099                                            DRM_MODE_OBJECT_ENCODER);
6100                 if (!obj)
6101                         continue;
6102
6103                 encoder = obj_to_encoder(obj);
6104                 return encoder;
6105         }
6106         return NULL;
6107 }
6108
6109 /*
6110  * set vga decode state - true == enable VGA decode
6111  */
6112 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
6113 {
6114         struct drm_i915_private *dev_priv = dev->dev_private;
6115         u16 gmch_ctrl;
6116
6117         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
6118         if (state)
6119                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
6120         else
6121                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
6122         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
6123         return 0;
6124 }