]> bbs.cooldavid.org Git - net-next-2.6.git/blame - net/ipv4/tcp_output.c
[PATCH] tcp: fix TSO sizing bugs
[net-next-2.6.git] / net / ipv4 / tcp_output.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_output.c,v 1.146 2002/02/01 22:01:04 davem Exp $
9 *
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23/*
24 * Changes: Pedro Roque : Retransmit queue handled by TCP.
25 * : Fragmentation on mtu decrease
26 * : Segment collapse on retransmit
27 * : AF independence
28 *
29 * Linus Torvalds : send_delayed_ack
30 * David S. Miller : Charge memory using the right skb
31 * during syn/ack processing.
32 * David S. Miller : Output engine completely rewritten.
33 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
34 * Cacophonix Gaul : draft-minshall-nagle-01
35 * J Hadi Salim : ECN support
36 *
37 */
38
39#include <net/tcp.h>
40
41#include <linux/compiler.h>
42#include <linux/module.h>
43#include <linux/smp_lock.h>
44
45/* People can turn this off for buggy TCP's found in printers etc. */
46int sysctl_tcp_retrans_collapse = 1;
47
48/* This limits the percentage of the congestion window which we
49 * will allow a single TSO frame to consume. Building TSO frames
50 * which are too large can cause TCP streams to be bursty.
51 */
c1b4a7e6 52int sysctl_tcp_tso_win_divisor = 3;
1da177e4
LT
53
54static inline void update_send_head(struct sock *sk, struct tcp_sock *tp,
55 struct sk_buff *skb)
56{
57 sk->sk_send_head = skb->next;
58 if (sk->sk_send_head == (struct sk_buff *)&sk->sk_write_queue)
59 sk->sk_send_head = NULL;
60 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
61 tcp_packets_out_inc(sk, tp, skb);
62}
63
64/* SND.NXT, if window was not shrunk.
65 * If window has been shrunk, what should we make? It is not clear at all.
66 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
67 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
68 * invalid. OK, let's make this for now:
69 */
70static inline __u32 tcp_acceptable_seq(struct sock *sk, struct tcp_sock *tp)
71{
72 if (!before(tp->snd_una+tp->snd_wnd, tp->snd_nxt))
73 return tp->snd_nxt;
74 else
75 return tp->snd_una+tp->snd_wnd;
76}
77
78/* Calculate mss to advertise in SYN segment.
79 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
80 *
81 * 1. It is independent of path mtu.
82 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
83 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
84 * attached devices, because some buggy hosts are confused by
85 * large MSS.
86 * 4. We do not make 3, we advertise MSS, calculated from first
87 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
88 * This may be overridden via information stored in routing table.
89 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
90 * probably even Jumbo".
91 */
92static __u16 tcp_advertise_mss(struct sock *sk)
93{
94 struct tcp_sock *tp = tcp_sk(sk);
95 struct dst_entry *dst = __sk_dst_get(sk);
96 int mss = tp->advmss;
97
98 if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) {
99 mss = dst_metric(dst, RTAX_ADVMSS);
100 tp->advmss = mss;
101 }
102
103 return (__u16)mss;
104}
105
106/* RFC2861. Reset CWND after idle period longer RTO to "restart window".
107 * This is the first part of cwnd validation mechanism. */
108static void tcp_cwnd_restart(struct tcp_sock *tp, struct dst_entry *dst)
109{
110 s32 delta = tcp_time_stamp - tp->lsndtime;
111 u32 restart_cwnd = tcp_init_cwnd(tp, dst);
112 u32 cwnd = tp->snd_cwnd;
113
317a76f9 114 tcp_ca_event(tp, CA_EVENT_CWND_RESTART);
1da177e4
LT
115
116 tp->snd_ssthresh = tcp_current_ssthresh(tp);
117 restart_cwnd = min(restart_cwnd, cwnd);
118
119 while ((delta -= tp->rto) > 0 && cwnd > restart_cwnd)
120 cwnd >>= 1;
121 tp->snd_cwnd = max(cwnd, restart_cwnd);
122 tp->snd_cwnd_stamp = tcp_time_stamp;
123 tp->snd_cwnd_used = 0;
124}
125
126static inline void tcp_event_data_sent(struct tcp_sock *tp,
127 struct sk_buff *skb, struct sock *sk)
128{
129 u32 now = tcp_time_stamp;
130
131 if (!tp->packets_out && (s32)(now - tp->lsndtime) > tp->rto)
132 tcp_cwnd_restart(tp, __sk_dst_get(sk));
133
134 tp->lsndtime = now;
135
136 /* If it is a reply for ato after last received
137 * packet, enter pingpong mode.
138 */
139 if ((u32)(now - tp->ack.lrcvtime) < tp->ack.ato)
140 tp->ack.pingpong = 1;
141}
142
fc6415bc 143static __inline__ void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
1da177e4
LT
144{
145 struct tcp_sock *tp = tcp_sk(sk);
146
fc6415bc 147 tcp_dec_quickack_mode(tp, pkts);
1da177e4
LT
148 tcp_clear_xmit_timer(sk, TCP_TIME_DACK);
149}
150
151/* Determine a window scaling and initial window to offer.
152 * Based on the assumption that the given amount of space
153 * will be offered. Store the results in the tp structure.
154 * NOTE: for smooth operation initial space offering should
155 * be a multiple of mss if possible. We assume here that mss >= 1.
156 * This MUST be enforced by all callers.
157 */
158void tcp_select_initial_window(int __space, __u32 mss,
159 __u32 *rcv_wnd, __u32 *window_clamp,
160 int wscale_ok, __u8 *rcv_wscale)
161{
162 unsigned int space = (__space < 0 ? 0 : __space);
163
164 /* If no clamp set the clamp to the max possible scaled window */
165 if (*window_clamp == 0)
166 (*window_clamp) = (65535 << 14);
167 space = min(*window_clamp, space);
168
169 /* Quantize space offering to a multiple of mss if possible. */
170 if (space > mss)
171 space = (space / mss) * mss;
172
173 /* NOTE: offering an initial window larger than 32767
174 * will break some buggy TCP stacks. We try to be nice.
175 * If we are not window scaling, then this truncates
176 * our initial window offering to 32k. There should also
177 * be a sysctl option to stop being nice.
178 */
179 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
180 (*rcv_wscale) = 0;
181 if (wscale_ok) {
182 /* Set window scaling on max possible window
183 * See RFC1323 for an explanation of the limit to 14
184 */
185 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
186 while (space > 65535 && (*rcv_wscale) < 14) {
187 space >>= 1;
188 (*rcv_wscale)++;
189 }
190 }
191
192 /* Set initial window to value enough for senders,
193 * following RFC1414. Senders, not following this RFC,
194 * will be satisfied with 2.
195 */
196 if (mss > (1<<*rcv_wscale)) {
197 int init_cwnd = 4;
198 if (mss > 1460*3)
199 init_cwnd = 2;
200 else if (mss > 1460)
201 init_cwnd = 3;
202 if (*rcv_wnd > init_cwnd*mss)
203 *rcv_wnd = init_cwnd*mss;
204 }
205
206 /* Set the clamp no higher than max representable value */
207 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
208}
209
210/* Chose a new window to advertise, update state in tcp_sock for the
211 * socket, and return result with RFC1323 scaling applied. The return
212 * value can be stuffed directly into th->window for an outgoing
213 * frame.
214 */
215static __inline__ u16 tcp_select_window(struct sock *sk)
216{
217 struct tcp_sock *tp = tcp_sk(sk);
218 u32 cur_win = tcp_receive_window(tp);
219 u32 new_win = __tcp_select_window(sk);
220
221 /* Never shrink the offered window */
222 if(new_win < cur_win) {
223 /* Danger Will Robinson!
224 * Don't update rcv_wup/rcv_wnd here or else
225 * we will not be able to advertise a zero
226 * window in time. --DaveM
227 *
228 * Relax Will Robinson.
229 */
230 new_win = cur_win;
231 }
232 tp->rcv_wnd = new_win;
233 tp->rcv_wup = tp->rcv_nxt;
234
235 /* Make sure we do not exceed the maximum possible
236 * scaled window.
237 */
238 if (!tp->rx_opt.rcv_wscale)
239 new_win = min(new_win, MAX_TCP_WINDOW);
240 else
241 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
242
243 /* RFC1323 scaling applied */
244 new_win >>= tp->rx_opt.rcv_wscale;
245
246 /* If we advertise zero window, disable fast path. */
247 if (new_win == 0)
248 tp->pred_flags = 0;
249
250 return new_win;
251}
252
253
254/* This routine actually transmits TCP packets queued in by
255 * tcp_do_sendmsg(). This is used by both the initial
256 * transmission and possible later retransmissions.
257 * All SKB's seen here are completely headerless. It is our
258 * job to build the TCP header, and pass the packet down to
259 * IP so it can do the same plus pass the packet off to the
260 * device.
261 *
262 * We are working here with either a clone of the original
263 * SKB, or a fresh unique copy made by the retransmit engine.
264 */
265static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb)
266{
267 if (skb != NULL) {
268 struct inet_sock *inet = inet_sk(sk);
269 struct tcp_sock *tp = tcp_sk(sk);
270 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
271 int tcp_header_size = tp->tcp_header_len;
272 struct tcphdr *th;
273 int sysctl_flags;
274 int err;
275
276 BUG_ON(!tcp_skb_pcount(skb));
277
278#define SYSCTL_FLAG_TSTAMPS 0x1
279#define SYSCTL_FLAG_WSCALE 0x2
280#define SYSCTL_FLAG_SACK 0x4
281
317a76f9
SH
282 /* If congestion control is doing timestamping */
283 if (tp->ca_ops->rtt_sample)
284 do_gettimeofday(&skb->stamp);
285
1da177e4
LT
286 sysctl_flags = 0;
287 if (tcb->flags & TCPCB_FLAG_SYN) {
288 tcp_header_size = sizeof(struct tcphdr) + TCPOLEN_MSS;
289 if(sysctl_tcp_timestamps) {
290 tcp_header_size += TCPOLEN_TSTAMP_ALIGNED;
291 sysctl_flags |= SYSCTL_FLAG_TSTAMPS;
292 }
293 if(sysctl_tcp_window_scaling) {
294 tcp_header_size += TCPOLEN_WSCALE_ALIGNED;
295 sysctl_flags |= SYSCTL_FLAG_WSCALE;
296 }
297 if(sysctl_tcp_sack) {
298 sysctl_flags |= SYSCTL_FLAG_SACK;
299 if(!(sysctl_flags & SYSCTL_FLAG_TSTAMPS))
300 tcp_header_size += TCPOLEN_SACKPERM_ALIGNED;
301 }
302 } else if (tp->rx_opt.eff_sacks) {
303 /* A SACK is 2 pad bytes, a 2 byte header, plus
304 * 2 32-bit sequence numbers for each SACK block.
305 */
306 tcp_header_size += (TCPOLEN_SACK_BASE_ALIGNED +
307 (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK));
308 }
309
317a76f9
SH
310 if (tcp_packets_in_flight(tp) == 0)
311 tcp_ca_event(tp, CA_EVENT_TX_START);
1da177e4
LT
312
313 th = (struct tcphdr *) skb_push(skb, tcp_header_size);
314 skb->h.th = th;
315 skb_set_owner_w(skb, sk);
316
317 /* Build TCP header and checksum it. */
318 th->source = inet->sport;
319 th->dest = inet->dport;
320 th->seq = htonl(tcb->seq);
321 th->ack_seq = htonl(tp->rcv_nxt);
322 *(((__u16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | tcb->flags);
323 if (tcb->flags & TCPCB_FLAG_SYN) {
324 /* RFC1323: The window in SYN & SYN/ACK segments
325 * is never scaled.
326 */
327 th->window = htons(tp->rcv_wnd);
328 } else {
329 th->window = htons(tcp_select_window(sk));
330 }
331 th->check = 0;
332 th->urg_ptr = 0;
333
334 if (tp->urg_mode &&
335 between(tp->snd_up, tcb->seq+1, tcb->seq+0xFFFF)) {
336 th->urg_ptr = htons(tp->snd_up-tcb->seq);
337 th->urg = 1;
338 }
339
340 if (tcb->flags & TCPCB_FLAG_SYN) {
341 tcp_syn_build_options((__u32 *)(th + 1),
342 tcp_advertise_mss(sk),
343 (sysctl_flags & SYSCTL_FLAG_TSTAMPS),
344 (sysctl_flags & SYSCTL_FLAG_SACK),
345 (sysctl_flags & SYSCTL_FLAG_WSCALE),
346 tp->rx_opt.rcv_wscale,
347 tcb->when,
348 tp->rx_opt.ts_recent);
349 } else {
350 tcp_build_and_update_options((__u32 *)(th + 1),
351 tp, tcb->when);
352
353 TCP_ECN_send(sk, tp, skb, tcp_header_size);
354 }
355 tp->af_specific->send_check(sk, th, skb->len, skb);
356
357 if (tcb->flags & TCPCB_FLAG_ACK)
fc6415bc 358 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1da177e4
LT
359
360 if (skb->len != tcp_header_size)
361 tcp_event_data_sent(tp, skb, sk);
362
363 TCP_INC_STATS(TCP_MIB_OUTSEGS);
364
365 err = tp->af_specific->queue_xmit(skb, 0);
366 if (err <= 0)
367 return err;
368
369 tcp_enter_cwr(tp);
370
371 /* NET_XMIT_CN is special. It does not guarantee,
372 * that this packet is lost. It tells that device
373 * is about to start to drop packets or already
374 * drops some packets of the same priority and
375 * invokes us to send less aggressively.
376 */
377 return err == NET_XMIT_CN ? 0 : err;
378 }
379 return -ENOBUFS;
380#undef SYSCTL_FLAG_TSTAMPS
381#undef SYSCTL_FLAG_WSCALE
382#undef SYSCTL_FLAG_SACK
383}
384
385
386/* This routine just queue's the buffer
387 *
388 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
389 * otherwise socket can stall.
390 */
391static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
392{
393 struct tcp_sock *tp = tcp_sk(sk);
394
395 /* Advance write_seq and place onto the write_queue. */
396 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
397 skb_header_release(skb);
398 __skb_queue_tail(&sk->sk_write_queue, skb);
399 sk_charge_skb(sk, skb);
400
401 /* Queue it, remembering where we must start sending. */
402 if (sk->sk_send_head == NULL)
403 sk->sk_send_head = skb;
404}
405
846998ae 406static void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb, unsigned int mss_now)
f6302d1d 407{
846998ae 408 if (skb->len <= mss_now ||
f6302d1d
DM
409 !(sk->sk_route_caps & NETIF_F_TSO)) {
410 /* Avoid the costly divide in the normal
411 * non-TSO case.
412 */
413 skb_shinfo(skb)->tso_segs = 1;
414 skb_shinfo(skb)->tso_size = 0;
415 } else {
416 unsigned int factor;
417
846998ae
DM
418 factor = skb->len + (mss_now - 1);
419 factor /= mss_now;
f6302d1d 420 skb_shinfo(skb)->tso_segs = factor;
846998ae 421 skb_shinfo(skb)->tso_size = mss_now;
1da177e4
LT
422 }
423}
424
1da177e4
LT
425/* Function to create two new TCP segments. Shrinks the given segment
426 * to the specified size and appends a new segment with the rest of the
427 * packet to the list. This won't be called frequently, I hope.
428 * Remember, these are still headerless SKBs at this point.
429 */
846998ae 430static int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, unsigned int mss_now)
1da177e4
LT
431{
432 struct tcp_sock *tp = tcp_sk(sk);
433 struct sk_buff *buff;
434 int nsize;
435 u16 flags;
436
437 nsize = skb_headlen(skb) - len;
438 if (nsize < 0)
439 nsize = 0;
440
441 if (skb_cloned(skb) &&
442 skb_is_nonlinear(skb) &&
443 pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
444 return -ENOMEM;
445
446 /* Get a new skb... force flag on. */
447 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
448 if (buff == NULL)
449 return -ENOMEM; /* We'll just try again later. */
450 sk_charge_skb(sk, buff);
451
452 /* Correct the sequence numbers. */
453 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
454 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
455 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
456
457 /* PSH and FIN should only be set in the second packet. */
458 flags = TCP_SKB_CB(skb)->flags;
459 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH);
460 TCP_SKB_CB(buff)->flags = flags;
461 TCP_SKB_CB(buff)->sacked =
462 (TCP_SKB_CB(skb)->sacked &
463 (TCPCB_LOST | TCPCB_EVER_RETRANS | TCPCB_AT_TAIL));
464 TCP_SKB_CB(skb)->sacked &= ~TCPCB_AT_TAIL;
465
466 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_HW) {
467 /* Copy and checksum data tail into the new buffer. */
468 buff->csum = csum_partial_copy_nocheck(skb->data + len, skb_put(buff, nsize),
469 nsize, 0);
470
471 skb_trim(skb, len);
472
473 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
474 } else {
475 skb->ip_summed = CHECKSUM_HW;
476 skb_split(skb, buff, len);
477 }
478
479 buff->ip_summed = skb->ip_summed;
480
481 /* Looks stupid, but our code really uses when of
482 * skbs, which it never sent before. --ANK
483 */
484 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
317a76f9 485 buff->stamp = skb->stamp;
1da177e4
LT
486
487 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) {
488 tp->lost_out -= tcp_skb_pcount(skb);
489 tp->left_out -= tcp_skb_pcount(skb);
490 }
491
492 /* Fix up tso_factor for both original and new SKB. */
846998ae
DM
493 tcp_set_skb_tso_segs(sk, skb, mss_now);
494 tcp_set_skb_tso_segs(sk, buff, mss_now);
1da177e4
LT
495
496 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) {
497 tp->lost_out += tcp_skb_pcount(skb);
498 tp->left_out += tcp_skb_pcount(skb);
499 }
500
501 if (TCP_SKB_CB(buff)->sacked&TCPCB_LOST) {
502 tp->lost_out += tcp_skb_pcount(buff);
503 tp->left_out += tcp_skb_pcount(buff);
504 }
505
506 /* Link BUFF into the send queue. */
f44b5271 507 skb_header_release(buff);
1da177e4
LT
508 __skb_append(skb, buff);
509
510 return 0;
511}
512
513/* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
514 * eventually). The difference is that pulled data not copied, but
515 * immediately discarded.
516 */
517static unsigned char *__pskb_trim_head(struct sk_buff *skb, int len)
518{
519 int i, k, eat;
520
521 eat = len;
522 k = 0;
523 for (i=0; i<skb_shinfo(skb)->nr_frags; i++) {
524 if (skb_shinfo(skb)->frags[i].size <= eat) {
525 put_page(skb_shinfo(skb)->frags[i].page);
526 eat -= skb_shinfo(skb)->frags[i].size;
527 } else {
528 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
529 if (eat) {
530 skb_shinfo(skb)->frags[k].page_offset += eat;
531 skb_shinfo(skb)->frags[k].size -= eat;
532 eat = 0;
533 }
534 k++;
535 }
536 }
537 skb_shinfo(skb)->nr_frags = k;
538
539 skb->tail = skb->data;
540 skb->data_len -= len;
541 skb->len = skb->data_len;
542 return skb->tail;
543}
544
545int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
546{
547 if (skb_cloned(skb) &&
548 pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
549 return -ENOMEM;
550
551 if (len <= skb_headlen(skb)) {
552 __skb_pull(skb, len);
553 } else {
554 if (__pskb_trim_head(skb, len-skb_headlen(skb)) == NULL)
555 return -ENOMEM;
556 }
557
558 TCP_SKB_CB(skb)->seq += len;
559 skb->ip_summed = CHECKSUM_HW;
560
561 skb->truesize -= len;
562 sk->sk_wmem_queued -= len;
563 sk->sk_forward_alloc += len;
564 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
565
566 /* Any change of skb->len requires recalculation of tso
567 * factor and mss.
568 */
569 if (tcp_skb_pcount(skb) > 1)
846998ae 570 tcp_set_skb_tso_segs(sk, skb, tcp_current_mss(sk, 1));
1da177e4
LT
571
572 return 0;
573}
574
575/* This function synchronize snd mss to current pmtu/exthdr set.
576
577 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
578 for TCP options, but includes only bare TCP header.
579
580 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
581 It is minumum of user_mss and mss received with SYN.
582 It also does not include TCP options.
583
584 tp->pmtu_cookie is last pmtu, seen by this function.
585
586 tp->mss_cache is current effective sending mss, including
587 all tcp options except for SACKs. It is evaluated,
588 taking into account current pmtu, but never exceeds
589 tp->rx_opt.mss_clamp.
590
591 NOTE1. rfc1122 clearly states that advertised MSS
592 DOES NOT include either tcp or ip options.
593
594 NOTE2. tp->pmtu_cookie and tp->mss_cache are READ ONLY outside
595 this function. --ANK (980731)
596 */
597
598unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
599{
600 struct tcp_sock *tp = tcp_sk(sk);
601 int mss_now;
602
603 /* Calculate base mss without TCP options:
604 It is MMS_S - sizeof(tcphdr) of rfc1122
605 */
606 mss_now = pmtu - tp->af_specific->net_header_len - sizeof(struct tcphdr);
607
608 /* Clamp it (mss_clamp does not include tcp options) */
609 if (mss_now > tp->rx_opt.mss_clamp)
610 mss_now = tp->rx_opt.mss_clamp;
611
612 /* Now subtract optional transport overhead */
613 mss_now -= tp->ext_header_len;
614
615 /* Then reserve room for full set of TCP options and 8 bytes of data */
616 if (mss_now < 48)
617 mss_now = 48;
618
619 /* Now subtract TCP options size, not including SACKs */
620 mss_now -= tp->tcp_header_len - sizeof(struct tcphdr);
621
622 /* Bound mss with half of window */
623 if (tp->max_window && mss_now > (tp->max_window>>1))
624 mss_now = max((tp->max_window>>1), 68U - tp->tcp_header_len);
625
626 /* And store cached results */
627 tp->pmtu_cookie = pmtu;
c1b4a7e6 628 tp->mss_cache = mss_now;
1da177e4
LT
629
630 return mss_now;
631}
632
633/* Compute the current effective MSS, taking SACKs and IP options,
634 * and even PMTU discovery events into account.
635 *
636 * LARGESEND note: !urg_mode is overkill, only frames up to snd_up
637 * cannot be large. However, taking into account rare use of URG, this
638 * is not a big flaw.
639 */
c1b4a7e6 640unsigned int tcp_current_mss(struct sock *sk, int large_allowed)
1da177e4
LT
641{
642 struct tcp_sock *tp = tcp_sk(sk);
643 struct dst_entry *dst = __sk_dst_get(sk);
c1b4a7e6
DM
644 u32 mss_now;
645 u16 xmit_size_goal;
646 int doing_tso = 0;
647
648 mss_now = tp->mss_cache;
649
650 if (large_allowed &&
651 (sk->sk_route_caps & NETIF_F_TSO) &&
652 !tp->urg_mode)
653 doing_tso = 1;
1da177e4 654
1da177e4
LT
655 if (dst) {
656 u32 mtu = dst_mtu(dst);
657 if (mtu != tp->pmtu_cookie)
658 mss_now = tcp_sync_mss(sk, mtu);
659 }
660
c1b4a7e6
DM
661 if (tp->rx_opt.eff_sacks)
662 mss_now -= (TCPOLEN_SACK_BASE_ALIGNED +
663 (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK));
1da177e4 664
c1b4a7e6 665 xmit_size_goal = mss_now;
1da177e4 666
c1b4a7e6
DM
667 if (doing_tso) {
668 xmit_size_goal = 65535 -
669 tp->af_specific->net_header_len -
1da177e4
LT
670 tp->ext_header_len - tp->tcp_header_len;
671
c1b4a7e6
DM
672 if (tp->max_window &&
673 (xmit_size_goal > (tp->max_window >> 1)))
674 xmit_size_goal = max((tp->max_window >> 1),
675 68U - tp->tcp_header_len);
1da177e4 676
c1b4a7e6 677 xmit_size_goal -= (xmit_size_goal % mss_now);
1da177e4 678 }
c1b4a7e6 679 tp->xmit_size_goal = xmit_size_goal;
1da177e4 680
1da177e4
LT
681 return mss_now;
682}
683
a762a980
DM
684/* Congestion window validation. (RFC2861) */
685
686static inline void tcp_cwnd_validate(struct sock *sk, struct tcp_sock *tp)
687{
688 __u32 packets_out = tp->packets_out;
689
690 if (packets_out >= tp->snd_cwnd) {
691 /* Network is feed fully. */
692 tp->snd_cwnd_used = 0;
693 tp->snd_cwnd_stamp = tcp_time_stamp;
694 } else {
695 /* Network starves. */
696 if (tp->packets_out > tp->snd_cwnd_used)
697 tp->snd_cwnd_used = tp->packets_out;
698
699 if ((s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= tp->rto)
700 tcp_cwnd_application_limited(sk);
701 }
702}
703
c1b4a7e6
DM
704static unsigned int tcp_window_allows(struct tcp_sock *tp, struct sk_buff *skb, unsigned int mss_now, unsigned int cwnd)
705{
706 u32 window, cwnd_len;
707
708 window = (tp->snd_una + tp->snd_wnd - TCP_SKB_CB(skb)->seq);
709 cwnd_len = mss_now * cwnd;
710 return min(window, cwnd_len);
711}
712
713/* Can at least one segment of SKB be sent right now, according to the
714 * congestion window rules? If so, return how many segments are allowed.
715 */
716static inline unsigned int tcp_cwnd_test(struct tcp_sock *tp, struct sk_buff *skb)
717{
718 u32 in_flight, cwnd;
719
720 /* Don't be strict about the congestion window for the final FIN. */
721 if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)
722 return 1;
723
724 in_flight = tcp_packets_in_flight(tp);
725 cwnd = tp->snd_cwnd;
726 if (in_flight < cwnd)
727 return (cwnd - in_flight);
728
729 return 0;
730}
731
732/* This must be invoked the first time we consider transmitting
733 * SKB onto the wire.
734 */
846998ae 735static inline int tcp_init_tso_segs(struct sock *sk, struct sk_buff *skb, unsigned int mss_now)
c1b4a7e6
DM
736{
737 int tso_segs = tcp_skb_pcount(skb);
738
846998ae
DM
739 if (!tso_segs ||
740 (tso_segs > 1 &&
741 skb_shinfo(skb)->tso_size != mss_now)) {
742 tcp_set_skb_tso_segs(sk, skb, mss_now);
c1b4a7e6
DM
743 tso_segs = tcp_skb_pcount(skb);
744 }
745 return tso_segs;
746}
747
748static inline int tcp_minshall_check(const struct tcp_sock *tp)
749{
750 return after(tp->snd_sml,tp->snd_una) &&
751 !after(tp->snd_sml, tp->snd_nxt);
752}
753
754/* Return 0, if packet can be sent now without violation Nagle's rules:
755 * 1. It is full sized.
756 * 2. Or it contains FIN. (already checked by caller)
757 * 3. Or TCP_NODELAY was set.
758 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
759 * With Minshall's modification: all sent small packets are ACKed.
760 */
761
762static inline int tcp_nagle_check(const struct tcp_sock *tp,
763 const struct sk_buff *skb,
764 unsigned mss_now, int nonagle)
765{
766 return (skb->len < mss_now &&
767 ((nonagle&TCP_NAGLE_CORK) ||
768 (!nonagle &&
769 tp->packets_out &&
770 tcp_minshall_check(tp))));
771}
772
773/* Return non-zero if the Nagle test allows this packet to be
774 * sent now.
775 */
776static inline int tcp_nagle_test(struct tcp_sock *tp, struct sk_buff *skb,
777 unsigned int cur_mss, int nonagle)
778{
779 /* Nagle rule does not apply to frames, which sit in the middle of the
780 * write_queue (they have no chances to get new data).
781 *
782 * This is implemented in the callers, where they modify the 'nonagle'
783 * argument based upon the location of SKB in the send queue.
784 */
785 if (nonagle & TCP_NAGLE_PUSH)
786 return 1;
787
788 /* Don't use the nagle rule for urgent data (or for the final FIN). */
789 if (tp->urg_mode ||
790 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN))
791 return 1;
792
793 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle))
794 return 1;
795
796 return 0;
797}
798
799/* Does at least the first segment of SKB fit into the send window? */
800static inline int tcp_snd_wnd_test(struct tcp_sock *tp, struct sk_buff *skb, unsigned int cur_mss)
801{
802 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
803
804 if (skb->len > cur_mss)
805 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
806
807 return !after(end_seq, tp->snd_una + tp->snd_wnd);
808}
809
810/* This checks if the data bearing packet SKB (usually sk->sk_send_head)
811 * should be put on the wire right now. If so, it returns the number of
812 * packets allowed by the congestion window.
813 */
814static unsigned int tcp_snd_test(struct sock *sk, struct sk_buff *skb,
815 unsigned int cur_mss, int nonagle)
816{
817 struct tcp_sock *tp = tcp_sk(sk);
818 unsigned int cwnd_quota;
819
846998ae 820 tcp_init_tso_segs(sk, skb, cur_mss);
c1b4a7e6
DM
821
822 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
823 return 0;
824
825 cwnd_quota = tcp_cwnd_test(tp, skb);
826 if (cwnd_quota &&
827 !tcp_snd_wnd_test(tp, skb, cur_mss))
828 cwnd_quota = 0;
829
830 return cwnd_quota;
831}
832
833static inline int tcp_skb_is_last(const struct sock *sk,
834 const struct sk_buff *skb)
835{
836 return skb->next == (struct sk_buff *)&sk->sk_write_queue;
837}
838
839int tcp_may_send_now(struct sock *sk, struct tcp_sock *tp)
840{
841 struct sk_buff *skb = sk->sk_send_head;
842
843 return (skb &&
844 tcp_snd_test(sk, skb, tcp_current_mss(sk, 1),
845 (tcp_skb_is_last(sk, skb) ?
846 TCP_NAGLE_PUSH :
847 tp->nonagle)));
848}
849
850/* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
851 * which is put after SKB on the list. It is very much like
852 * tcp_fragment() except that it may make several kinds of assumptions
853 * in order to speed up the splitting operation. In particular, we
854 * know that all the data is in scatter-gather pages, and that the
855 * packet has never been sent out before (and thus is not cloned).
856 */
846998ae 857static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, unsigned int mss_now)
c1b4a7e6
DM
858{
859 struct sk_buff *buff;
860 int nlen = skb->len - len;
861 u16 flags;
862
863 /* All of a TSO frame must be composed of paged data. */
864 BUG_ON(skb->len != skb->data_len);
865
866 buff = sk_stream_alloc_pskb(sk, 0, 0, GFP_ATOMIC);
867 if (unlikely(buff == NULL))
868 return -ENOMEM;
869
870 buff->truesize = nlen;
871 skb->truesize -= nlen;
872
873 /* Correct the sequence numbers. */
874 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
875 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
876 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
877
878 /* PSH and FIN should only be set in the second packet. */
879 flags = TCP_SKB_CB(skb)->flags;
880 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH);
881 TCP_SKB_CB(buff)->flags = flags;
882
883 /* This packet was never sent out yet, so no SACK bits. */
884 TCP_SKB_CB(buff)->sacked = 0;
885
886 buff->ip_summed = skb->ip_summed = CHECKSUM_HW;
887 skb_split(skb, buff, len);
888
889 /* Fix up tso_factor for both original and new SKB. */
846998ae
DM
890 tcp_set_skb_tso_segs(sk, skb, mss_now);
891 tcp_set_skb_tso_segs(sk, buff, mss_now);
c1b4a7e6
DM
892
893 /* Link BUFF into the send queue. */
894 skb_header_release(buff);
895 __skb_append(skb, buff);
896
897 return 0;
898}
899
900/* Try to defer sending, if possible, in order to minimize the amount
901 * of TSO splitting we do. View it as a kind of TSO Nagle test.
902 *
903 * This algorithm is from John Heffner.
904 */
905static int tcp_tso_should_defer(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
906{
907 u32 send_win, cong_win, limit, in_flight;
908
909 if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)
910 return 0;
911
908a75c1
DM
912 if (tp->ca_state != TCP_CA_Open)
913 return 0;
914
c1b4a7e6
DM
915 in_flight = tcp_packets_in_flight(tp);
916
917 BUG_ON(tcp_skb_pcount(skb) <= 1 ||
918 (tp->snd_cwnd <= in_flight));
919
920 send_win = (tp->snd_una + tp->snd_wnd) - TCP_SKB_CB(skb)->seq;
921
922 /* From in_flight test above, we know that cwnd > in_flight. */
923 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
924
925 limit = min(send_win, cong_win);
926
927 /* If sk_send_head can be sent fully now, just do it. */
928 if (skb->len <= limit)
929 return 0;
930
931 if (sysctl_tcp_tso_win_divisor) {
932 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
933
934 /* If at least some fraction of a window is available,
935 * just use it.
936 */
937 chunk /= sysctl_tcp_tso_win_divisor;
938 if (limit >= chunk)
939 return 0;
940 } else {
941 /* Different approach, try not to defer past a single
942 * ACK. Receiver should ACK every other full sized
943 * frame, so if we have space for more than 3 frames
944 * then send now.
945 */
946 if (limit > tcp_max_burst(tp) * tp->mss_cache)
947 return 0;
948 }
949
950 /* Ok, it looks like it is advisable to defer. */
951 return 1;
952}
953
1da177e4
LT
954/* This routine writes packets to the network. It advances the
955 * send_head. This happens as incoming acks open up the remote
956 * window for us.
957 *
958 * Returns 1, if no segments are in flight and we have queued segments, but
959 * cannot send anything now because of SWS or another problem.
960 */
a2e2a59c 961static int tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle)
1da177e4
LT
962{
963 struct tcp_sock *tp = tcp_sk(sk);
92df7b51 964 struct sk_buff *skb;
c1b4a7e6
DM
965 unsigned int tso_segs, sent_pkts;
966 int cwnd_quota;
1da177e4
LT
967
968 /* If we are closed, the bytes will have to remain here.
969 * In time closedown will finish, we empty the write queue and all
970 * will be happy.
971 */
92df7b51
DM
972 if (unlikely(sk->sk_state == TCP_CLOSE))
973 return 0;
1da177e4 974
aa93466b
DM
975 skb = sk->sk_send_head;
976 if (unlikely(!skb))
977 return 0;
978
846998ae 979 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
aa93466b 980 cwnd_quota = tcp_cwnd_test(tp, skb);
c1b4a7e6
DM
981 if (unlikely(!cwnd_quota))
982 goto out;
983
92df7b51 984 sent_pkts = 0;
c1b4a7e6
DM
985 while (likely(tcp_snd_wnd_test(tp, skb, mss_now))) {
986 BUG_ON(!tso_segs);
aa93466b 987
c1b4a7e6
DM
988 if (tso_segs == 1) {
989 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
990 (tcp_skb_is_last(sk, skb) ?
991 nonagle : TCP_NAGLE_PUSH))))
992 break;
993 } else {
994 if (tcp_tso_should_defer(sk, tp, skb))
995 break;
996 }
aa93466b 997
c1b4a7e6
DM
998 if (tso_segs > 1) {
999 u32 limit = tcp_window_allows(tp, skb,
1000 mss_now, cwnd_quota);
1001
1002 if (skb->len < limit) {
1003 unsigned int trim = skb->len % mss_now;
aa93466b 1004
c1b4a7e6
DM
1005 if (trim)
1006 limit = skb->len - trim;
1007 }
1008 if (skb->len > limit) {
846998ae 1009 if (tso_fragment(sk, skb, limit, mss_now))
c1b4a7e6
DM
1010 break;
1011 }
1012 } else if (unlikely(skb->len > mss_now)) {
846998ae 1013 if (unlikely(tcp_fragment(sk, skb, mss_now, mss_now)))
1da177e4 1014 break;
92df7b51 1015 }
1da177e4 1016
92df7b51 1017 TCP_SKB_CB(skb)->when = tcp_time_stamp;
c1b4a7e6 1018
aa93466b 1019 if (unlikely(tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC))))
92df7b51 1020 break;
1da177e4 1021
92df7b51
DM
1022 /* Advance the send_head. This one is sent out.
1023 * This call will increment packets_out.
1024 */
1025 update_send_head(sk, tp, skb);
1da177e4 1026
92df7b51 1027 tcp_minshall_update(tp, mss_now, skb);
aa93466b
DM
1028 sent_pkts++;
1029
1030 /* Do not optimize this to use tso_segs. If we chopped up
1031 * the packet above, tso_segs will no longer be valid.
1032 */
1033 cwnd_quota -= tcp_skb_pcount(skb);
c1b4a7e6
DM
1034
1035 BUG_ON(cwnd_quota < 0);
1036 if (!cwnd_quota)
1037 break;
1038
aa93466b
DM
1039 skb = sk->sk_send_head;
1040 if (!skb)
1041 break;
846998ae 1042 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
92df7b51 1043 }
1da177e4 1044
aa93466b 1045 if (likely(sent_pkts)) {
92df7b51
DM
1046 tcp_cwnd_validate(sk, tp);
1047 return 0;
1da177e4 1048 }
c1b4a7e6 1049out:
92df7b51 1050 return !tp->packets_out && sk->sk_send_head;
1da177e4
LT
1051}
1052
a762a980
DM
1053/* Push out any pending frames which were held back due to
1054 * TCP_CORK or attempt at coalescing tiny packets.
1055 * The socket must be locked by the caller.
1056 */
1057void __tcp_push_pending_frames(struct sock *sk, struct tcp_sock *tp,
a2e2a59c 1058 unsigned int cur_mss, int nonagle)
a762a980
DM
1059{
1060 struct sk_buff *skb = sk->sk_send_head;
1061
1062 if (skb) {
55c97f3e 1063 if (tcp_write_xmit(sk, cur_mss, nonagle))
a762a980
DM
1064 tcp_check_probe_timer(sk, tp);
1065 }
1066}
1067
c1b4a7e6
DM
1068/* Send _single_ skb sitting at the send head. This function requires
1069 * true push pending frames to setup probe timer etc.
1070 */
1071void tcp_push_one(struct sock *sk, unsigned int mss_now)
1072{
1073 struct tcp_sock *tp = tcp_sk(sk);
1074 struct sk_buff *skb = sk->sk_send_head;
1075 unsigned int tso_segs, cwnd_quota;
1076
1077 BUG_ON(!skb || skb->len < mss_now);
1078
846998ae 1079 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
c1b4a7e6
DM
1080 cwnd_quota = tcp_snd_test(sk, skb, mss_now, TCP_NAGLE_PUSH);
1081
1082 if (likely(cwnd_quota)) {
1083 BUG_ON(!tso_segs);
1084
1085 if (tso_segs > 1) {
1086 u32 limit = tcp_window_allows(tp, skb,
1087 mss_now, cwnd_quota);
1088
1089 if (skb->len < limit) {
1090 unsigned int trim = skb->len % mss_now;
1091
1092 if (trim)
1093 limit = skb->len - trim;
1094 }
1095 if (skb->len > limit) {
846998ae 1096 if (unlikely(tso_fragment(sk, skb, limit, mss_now)))
c1b4a7e6
DM
1097 return;
1098 }
1099 } else if (unlikely(skb->len > mss_now)) {
846998ae 1100 if (unlikely(tcp_fragment(sk, skb, mss_now, mss_now)))
c1b4a7e6
DM
1101 return;
1102 }
1103
1104 /* Send it out now. */
1105 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1106
1107 if (likely(!tcp_transmit_skb(sk, skb_clone(skb, sk->sk_allocation)))) {
1108 update_send_head(sk, tp, skb);
1109 tcp_cwnd_validate(sk, tp);
1110 return;
1111 }
1112 }
1113}
1114
1da177e4
LT
1115/* This function returns the amount that we can raise the
1116 * usable window based on the following constraints
1117 *
1118 * 1. The window can never be shrunk once it is offered (RFC 793)
1119 * 2. We limit memory per socket
1120 *
1121 * RFC 1122:
1122 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
1123 * RECV.NEXT + RCV.WIN fixed until:
1124 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
1125 *
1126 * i.e. don't raise the right edge of the window until you can raise
1127 * it at least MSS bytes.
1128 *
1129 * Unfortunately, the recommended algorithm breaks header prediction,
1130 * since header prediction assumes th->window stays fixed.
1131 *
1132 * Strictly speaking, keeping th->window fixed violates the receiver
1133 * side SWS prevention criteria. The problem is that under this rule
1134 * a stream of single byte packets will cause the right side of the
1135 * window to always advance by a single byte.
1136 *
1137 * Of course, if the sender implements sender side SWS prevention
1138 * then this will not be a problem.
1139 *
1140 * BSD seems to make the following compromise:
1141 *
1142 * If the free space is less than the 1/4 of the maximum
1143 * space available and the free space is less than 1/2 mss,
1144 * then set the window to 0.
1145 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
1146 * Otherwise, just prevent the window from shrinking
1147 * and from being larger than the largest representable value.
1148 *
1149 * This prevents incremental opening of the window in the regime
1150 * where TCP is limited by the speed of the reader side taking
1151 * data out of the TCP receive queue. It does nothing about
1152 * those cases where the window is constrained on the sender side
1153 * because the pipeline is full.
1154 *
1155 * BSD also seems to "accidentally" limit itself to windows that are a
1156 * multiple of MSS, at least until the free space gets quite small.
1157 * This would appear to be a side effect of the mbuf implementation.
1158 * Combining these two algorithms results in the observed behavior
1159 * of having a fixed window size at almost all times.
1160 *
1161 * Below we obtain similar behavior by forcing the offered window to
1162 * a multiple of the mss when it is feasible to do so.
1163 *
1164 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
1165 * Regular options like TIMESTAMP are taken into account.
1166 */
1167u32 __tcp_select_window(struct sock *sk)
1168{
1169 struct tcp_sock *tp = tcp_sk(sk);
1170 /* MSS for the peer's data. Previous verions used mss_clamp
1171 * here. I don't know if the value based on our guesses
1172 * of peer's MSS is better for the performance. It's more correct
1173 * but may be worse for the performance because of rcv_mss
1174 * fluctuations. --SAW 1998/11/1
1175 */
1176 int mss = tp->ack.rcv_mss;
1177 int free_space = tcp_space(sk);
1178 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
1179 int window;
1180
1181 if (mss > full_space)
1182 mss = full_space;
1183
1184 if (free_space < full_space/2) {
1185 tp->ack.quick = 0;
1186
1187 if (tcp_memory_pressure)
1188 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U*tp->advmss);
1189
1190 if (free_space < mss)
1191 return 0;
1192 }
1193
1194 if (free_space > tp->rcv_ssthresh)
1195 free_space = tp->rcv_ssthresh;
1196
1197 /* Don't do rounding if we are using window scaling, since the
1198 * scaled window will not line up with the MSS boundary anyway.
1199 */
1200 window = tp->rcv_wnd;
1201 if (tp->rx_opt.rcv_wscale) {
1202 window = free_space;
1203
1204 /* Advertise enough space so that it won't get scaled away.
1205 * Import case: prevent zero window announcement if
1206 * 1<<rcv_wscale > mss.
1207 */
1208 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
1209 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
1210 << tp->rx_opt.rcv_wscale);
1211 } else {
1212 /* Get the largest window that is a nice multiple of mss.
1213 * Window clamp already applied above.
1214 * If our current window offering is within 1 mss of the
1215 * free space we just keep it. This prevents the divide
1216 * and multiply from happening most of the time.
1217 * We also don't do any window rounding when the free space
1218 * is too small.
1219 */
1220 if (window <= free_space - mss || window > free_space)
1221 window = (free_space/mss)*mss;
1222 }
1223
1224 return window;
1225}
1226
1227/* Attempt to collapse two adjacent SKB's during retransmission. */
1228static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *skb, int mss_now)
1229{
1230 struct tcp_sock *tp = tcp_sk(sk);
1231 struct sk_buff *next_skb = skb->next;
1232
1233 /* The first test we must make is that neither of these two
1234 * SKB's are still referenced by someone else.
1235 */
1236 if (!skb_cloned(skb) && !skb_cloned(next_skb)) {
1237 int skb_size = skb->len, next_skb_size = next_skb->len;
1238 u16 flags = TCP_SKB_CB(skb)->flags;
1239
1240 /* Also punt if next skb has been SACK'd. */
1241 if(TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_ACKED)
1242 return;
1243
1244 /* Next skb is out of window. */
1245 if (after(TCP_SKB_CB(next_skb)->end_seq, tp->snd_una+tp->snd_wnd))
1246 return;
1247
1248 /* Punt if not enough space exists in the first SKB for
1249 * the data in the second, or the total combined payload
1250 * would exceed the MSS.
1251 */
1252 if ((next_skb_size > skb_tailroom(skb)) ||
1253 ((skb_size + next_skb_size) > mss_now))
1254 return;
1255
1256 BUG_ON(tcp_skb_pcount(skb) != 1 ||
1257 tcp_skb_pcount(next_skb) != 1);
1258
1259 /* Ok. We will be able to collapse the packet. */
1260 __skb_unlink(next_skb, next_skb->list);
1261
1262 memcpy(skb_put(skb, next_skb_size), next_skb->data, next_skb_size);
1263
1264 if (next_skb->ip_summed == CHECKSUM_HW)
1265 skb->ip_summed = CHECKSUM_HW;
1266
1267 if (skb->ip_summed != CHECKSUM_HW)
1268 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
1269
1270 /* Update sequence range on original skb. */
1271 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
1272
1273 /* Merge over control information. */
1274 flags |= TCP_SKB_CB(next_skb)->flags; /* This moves PSH/FIN etc. over */
1275 TCP_SKB_CB(skb)->flags = flags;
1276
1277 /* All done, get rid of second SKB and account for it so
1278 * packet counting does not break.
1279 */
1280 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked&(TCPCB_EVER_RETRANS|TCPCB_AT_TAIL);
1281 if (TCP_SKB_CB(next_skb)->sacked&TCPCB_SACKED_RETRANS)
1282 tp->retrans_out -= tcp_skb_pcount(next_skb);
1283 if (TCP_SKB_CB(next_skb)->sacked&TCPCB_LOST) {
1284 tp->lost_out -= tcp_skb_pcount(next_skb);
1285 tp->left_out -= tcp_skb_pcount(next_skb);
1286 }
1287 /* Reno case is special. Sigh... */
1288 if (!tp->rx_opt.sack_ok && tp->sacked_out) {
1289 tcp_dec_pcount_approx(&tp->sacked_out, next_skb);
1290 tp->left_out -= tcp_skb_pcount(next_skb);
1291 }
1292
1293 /* Not quite right: it can be > snd.fack, but
1294 * it is better to underestimate fackets.
1295 */
1296 tcp_dec_pcount_approx(&tp->fackets_out, next_skb);
1297 tcp_packets_out_dec(tp, next_skb);
1298 sk_stream_free_skb(sk, next_skb);
1299 }
1300}
1301
1302/* Do a simple retransmit without using the backoff mechanisms in
1303 * tcp_timer. This is used for path mtu discovery.
1304 * The socket is already locked here.
1305 */
1306void tcp_simple_retransmit(struct sock *sk)
1307{
1308 struct tcp_sock *tp = tcp_sk(sk);
1309 struct sk_buff *skb;
1310 unsigned int mss = tcp_current_mss(sk, 0);
1311 int lost = 0;
1312
1313 sk_stream_for_retrans_queue(skb, sk) {
1314 if (skb->len > mss &&
1315 !(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1316 if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) {
1317 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1318 tp->retrans_out -= tcp_skb_pcount(skb);
1319 }
1320 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_LOST)) {
1321 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1322 tp->lost_out += tcp_skb_pcount(skb);
1323 lost = 1;
1324 }
1325 }
1326 }
1327
1328 if (!lost)
1329 return;
1330
1331 tcp_sync_left_out(tp);
1332
1333 /* Don't muck with the congestion window here.
1334 * Reason is that we do not increase amount of _data_
1335 * in network, but units changed and effective
1336 * cwnd/ssthresh really reduced now.
1337 */
1338 if (tp->ca_state != TCP_CA_Loss) {
1339 tp->high_seq = tp->snd_nxt;
1340 tp->snd_ssthresh = tcp_current_ssthresh(tp);
1341 tp->prior_ssthresh = 0;
1342 tp->undo_marker = 0;
1343 tcp_set_ca_state(tp, TCP_CA_Loss);
1344 }
1345 tcp_xmit_retransmit_queue(sk);
1346}
1347
1348/* This retransmits one SKB. Policy decisions and retransmit queue
1349 * state updates are done by the caller. Returns non-zero if an
1350 * error occurred which prevented the send.
1351 */
1352int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
1353{
1354 struct tcp_sock *tp = tcp_sk(sk);
1355 unsigned int cur_mss = tcp_current_mss(sk, 0);
1356 int err;
1357
1358 /* Do not sent more than we queued. 1/4 is reserved for possible
1359 * copying overhead: frgagmentation, tunneling, mangling etc.
1360 */
1361 if (atomic_read(&sk->sk_wmem_alloc) >
1362 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
1363 return -EAGAIN;
1364
1365 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
1366 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1367 BUG();
1368
1369 if (sk->sk_route_caps & NETIF_F_TSO) {
1370 sk->sk_route_caps &= ~NETIF_F_TSO;
1371 sock_set_flag(sk, SOCK_NO_LARGESEND);
1da177e4
LT
1372 }
1373
1374 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
1375 return -ENOMEM;
1376 }
1377
1378 /* If receiver has shrunk his window, and skb is out of
1379 * new window, do not retransmit it. The exception is the
1380 * case, when window is shrunk to zero. In this case
1381 * our retransmit serves as a zero window probe.
1382 */
1383 if (!before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)
1384 && TCP_SKB_CB(skb)->seq != tp->snd_una)
1385 return -EAGAIN;
1386
1387 if (skb->len > cur_mss) {
1388 int old_factor = tcp_skb_pcount(skb);
1389 int new_factor;
1390
846998ae 1391 if (tcp_fragment(sk, skb, cur_mss, cur_mss))
1da177e4
LT
1392 return -ENOMEM; /* We'll try again later. */
1393
1394 /* New SKB created, account for it. */
1395 new_factor = tcp_skb_pcount(skb);
1396 tp->packets_out -= old_factor - new_factor;
1397 tp->packets_out += tcp_skb_pcount(skb->next);
1398 }
1399
1400 /* Collapse two adjacent packets if worthwhile and we can. */
1401 if(!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) &&
1402 (skb->len < (cur_mss >> 1)) &&
1403 (skb->next != sk->sk_send_head) &&
1404 (skb->next != (struct sk_buff *)&sk->sk_write_queue) &&
1405 (skb_shinfo(skb)->nr_frags == 0 && skb_shinfo(skb->next)->nr_frags == 0) &&
1406 (tcp_skb_pcount(skb) == 1 && tcp_skb_pcount(skb->next) == 1) &&
1407 (sysctl_tcp_retrans_collapse != 0))
1408 tcp_retrans_try_collapse(sk, skb, cur_mss);
1409
1410 if(tp->af_specific->rebuild_header(sk))
1411 return -EHOSTUNREACH; /* Routing failure or similar. */
1412
1413 /* Some Solaris stacks overoptimize and ignore the FIN on a
1414 * retransmit when old data is attached. So strip it off
1415 * since it is cheap to do so and saves bytes on the network.
1416 */
1417 if(skb->len > 0 &&
1418 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) &&
1419 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
1420 if (!pskb_trim(skb, 0)) {
1421 TCP_SKB_CB(skb)->seq = TCP_SKB_CB(skb)->end_seq - 1;
1422 skb_shinfo(skb)->tso_segs = 1;
1423 skb_shinfo(skb)->tso_size = 0;
1424 skb->ip_summed = CHECKSUM_NONE;
1425 skb->csum = 0;
1426 }
1427 }
1428
1429 /* Make a copy, if the first transmission SKB clone we made
1430 * is still in somebody's hands, else make a clone.
1431 */
1432 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1da177e4
LT
1433
1434 err = tcp_transmit_skb(sk, (skb_cloned(skb) ?
1435 pskb_copy(skb, GFP_ATOMIC):
1436 skb_clone(skb, GFP_ATOMIC)));
1437
1438 if (err == 0) {
1439 /* Update global TCP statistics. */
1440 TCP_INC_STATS(TCP_MIB_RETRANSSEGS);
1441
1442 tp->total_retrans++;
1443
1444#if FASTRETRANS_DEBUG > 0
1445 if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) {
1446 if (net_ratelimit())
1447 printk(KERN_DEBUG "retrans_out leaked.\n");
1448 }
1449#endif
1450 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
1451 tp->retrans_out += tcp_skb_pcount(skb);
1452
1453 /* Save stamp of the first retransmit. */
1454 if (!tp->retrans_stamp)
1455 tp->retrans_stamp = TCP_SKB_CB(skb)->when;
1456
1457 tp->undo_retrans++;
1458
1459 /* snd_nxt is stored to detect loss of retransmitted segment,
1460 * see tcp_input.c tcp_sacktag_write_queue().
1461 */
1462 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
1463 }
1464 return err;
1465}
1466
1467/* This gets called after a retransmit timeout, and the initially
1468 * retransmitted data is acknowledged. It tries to continue
1469 * resending the rest of the retransmit queue, until either
1470 * we've sent it all or the congestion window limit is reached.
1471 * If doing SACK, the first ACK which comes back for a timeout
1472 * based retransmit packet might feed us FACK information again.
1473 * If so, we use it to avoid unnecessarily retransmissions.
1474 */
1475void tcp_xmit_retransmit_queue(struct sock *sk)
1476{
1477 struct tcp_sock *tp = tcp_sk(sk);
1478 struct sk_buff *skb;
1479 int packet_cnt = tp->lost_out;
1480
1481 /* First pass: retransmit lost packets. */
1482 if (packet_cnt) {
1483 sk_stream_for_retrans_queue(skb, sk) {
1484 __u8 sacked = TCP_SKB_CB(skb)->sacked;
1485
1486 /* Assume this retransmit will generate
1487 * only one packet for congestion window
1488 * calculation purposes. This works because
1489 * tcp_retransmit_skb() will chop up the
1490 * packet to be MSS sized and all the
1491 * packet counting works out.
1492 */
1493 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
1494 return;
1495
1496 if (sacked&TCPCB_LOST) {
1497 if (!(sacked&(TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))) {
1498 if (tcp_retransmit_skb(sk, skb))
1499 return;
1500 if (tp->ca_state != TCP_CA_Loss)
1501 NET_INC_STATS_BH(LINUX_MIB_TCPFASTRETRANS);
1502 else
1503 NET_INC_STATS_BH(LINUX_MIB_TCPSLOWSTARTRETRANS);
1504
1505 if (skb ==
1506 skb_peek(&sk->sk_write_queue))
1507 tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
1508 }
1509
1510 packet_cnt -= tcp_skb_pcount(skb);
1511 if (packet_cnt <= 0)
1512 break;
1513 }
1514 }
1515 }
1516
1517 /* OK, demanded retransmission is finished. */
1518
1519 /* Forward retransmissions are possible only during Recovery. */
1520 if (tp->ca_state != TCP_CA_Recovery)
1521 return;
1522
1523 /* No forward retransmissions in Reno are possible. */
1524 if (!tp->rx_opt.sack_ok)
1525 return;
1526
1527 /* Yeah, we have to make difficult choice between forward transmission
1528 * and retransmission... Both ways have their merits...
1529 *
1530 * For now we do not retransmit anything, while we have some new
1531 * segments to send.
1532 */
1533
1534 if (tcp_may_send_now(sk, tp))
1535 return;
1536
1537 packet_cnt = 0;
1538
1539 sk_stream_for_retrans_queue(skb, sk) {
1540 /* Similar to the retransmit loop above we
1541 * can pretend that the retransmitted SKB
1542 * we send out here will be composed of one
1543 * real MSS sized packet because tcp_retransmit_skb()
1544 * will fragment it if necessary.
1545 */
1546 if (++packet_cnt > tp->fackets_out)
1547 break;
1548
1549 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
1550 break;
1551
1552 if (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS)
1553 continue;
1554
1555 /* Ok, retransmit it. */
1556 if (tcp_retransmit_skb(sk, skb))
1557 break;
1558
1559 if (skb == skb_peek(&sk->sk_write_queue))
1560 tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
1561
1562 NET_INC_STATS_BH(LINUX_MIB_TCPFORWARDRETRANS);
1563 }
1564}
1565
1566
1567/* Send a fin. The caller locks the socket for us. This cannot be
1568 * allowed to fail queueing a FIN frame under any circumstances.
1569 */
1570void tcp_send_fin(struct sock *sk)
1571{
1572 struct tcp_sock *tp = tcp_sk(sk);
1573 struct sk_buff *skb = skb_peek_tail(&sk->sk_write_queue);
1574 int mss_now;
1575
1576 /* Optimization, tack on the FIN if we have a queue of
1577 * unsent frames. But be careful about outgoing SACKS
1578 * and IP options.
1579 */
1580 mss_now = tcp_current_mss(sk, 1);
1581
1582 if (sk->sk_send_head != NULL) {
1583 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN;
1584 TCP_SKB_CB(skb)->end_seq++;
1585 tp->write_seq++;
1586 } else {
1587 /* Socket is locked, keep trying until memory is available. */
1588 for (;;) {
1589 skb = alloc_skb(MAX_TCP_HEADER, GFP_KERNEL);
1590 if (skb)
1591 break;
1592 yield();
1593 }
1594
1595 /* Reserve space for headers and prepare control bits. */
1596 skb_reserve(skb, MAX_TCP_HEADER);
1597 skb->csum = 0;
1598 TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_FIN);
1599 TCP_SKB_CB(skb)->sacked = 0;
1600 skb_shinfo(skb)->tso_segs = 1;
1601 skb_shinfo(skb)->tso_size = 0;
1602
1603 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
1604 TCP_SKB_CB(skb)->seq = tp->write_seq;
1605 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1;
1606 tcp_queue_skb(sk, skb);
1607 }
1608 __tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_OFF);
1609}
1610
1611/* We get here when a process closes a file descriptor (either due to
1612 * an explicit close() or as a byproduct of exit()'ing) and there
1613 * was unread data in the receive queue. This behavior is recommended
1614 * by draft-ietf-tcpimpl-prob-03.txt section 3.10. -DaveM
1615 */
86a76caf 1616void tcp_send_active_reset(struct sock *sk, unsigned int __nocast priority)
1da177e4
LT
1617{
1618 struct tcp_sock *tp = tcp_sk(sk);
1619 struct sk_buff *skb;
1620
1621 /* NOTE: No TCP options attached and we never retransmit this. */
1622 skb = alloc_skb(MAX_TCP_HEADER, priority);
1623 if (!skb) {
1624 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED);
1625 return;
1626 }
1627
1628 /* Reserve space for headers and prepare control bits. */
1629 skb_reserve(skb, MAX_TCP_HEADER);
1630 skb->csum = 0;
1631 TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_RST);
1632 TCP_SKB_CB(skb)->sacked = 0;
1633 skb_shinfo(skb)->tso_segs = 1;
1634 skb_shinfo(skb)->tso_size = 0;
1635
1636 /* Send it off. */
1637 TCP_SKB_CB(skb)->seq = tcp_acceptable_seq(sk, tp);
1638 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq;
1639 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1640 if (tcp_transmit_skb(sk, skb))
1641 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED);
1642}
1643
1644/* WARNING: This routine must only be called when we have already sent
1645 * a SYN packet that crossed the incoming SYN that caused this routine
1646 * to get called. If this assumption fails then the initial rcv_wnd
1647 * and rcv_wscale values will not be correct.
1648 */
1649int tcp_send_synack(struct sock *sk)
1650{
1651 struct sk_buff* skb;
1652
1653 skb = skb_peek(&sk->sk_write_queue);
1654 if (skb == NULL || !(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_SYN)) {
1655 printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n");
1656 return -EFAULT;
1657 }
1658 if (!(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_ACK)) {
1659 if (skb_cloned(skb)) {
1660 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
1661 if (nskb == NULL)
1662 return -ENOMEM;
1663 __skb_unlink(skb, &sk->sk_write_queue);
1664 skb_header_release(nskb);
1665 __skb_queue_head(&sk->sk_write_queue, nskb);
1666 sk_stream_free_skb(sk, skb);
1667 sk_charge_skb(sk, nskb);
1668 skb = nskb;
1669 }
1670
1671 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK;
1672 TCP_ECN_send_synack(tcp_sk(sk), skb);
1673 }
1674 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1675 return tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC));
1676}
1677
1678/*
1679 * Prepare a SYN-ACK.
1680 */
1681struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst,
60236fdd 1682 struct request_sock *req)
1da177e4 1683{
2e6599cb 1684 struct inet_request_sock *ireq = inet_rsk(req);
1da177e4
LT
1685 struct tcp_sock *tp = tcp_sk(sk);
1686 struct tcphdr *th;
1687 int tcp_header_size;
1688 struct sk_buff *skb;
1689
1690 skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC);
1691 if (skb == NULL)
1692 return NULL;
1693
1694 /* Reserve space for headers. */
1695 skb_reserve(skb, MAX_TCP_HEADER);
1696
1697 skb->dst = dst_clone(dst);
1698
1699 tcp_header_size = (sizeof(struct tcphdr) + TCPOLEN_MSS +
2e6599cb
ACM
1700 (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0) +
1701 (ireq->wscale_ok ? TCPOLEN_WSCALE_ALIGNED : 0) +
1da177e4 1702 /* SACK_PERM is in the place of NOP NOP of TS */
2e6599cb 1703 ((ireq->sack_ok && !ireq->tstamp_ok) ? TCPOLEN_SACKPERM_ALIGNED : 0));
1da177e4
LT
1704 skb->h.th = th = (struct tcphdr *) skb_push(skb, tcp_header_size);
1705
1706 memset(th, 0, sizeof(struct tcphdr));
1707 th->syn = 1;
1708 th->ack = 1;
1709 if (dst->dev->features&NETIF_F_TSO)
2e6599cb 1710 ireq->ecn_ok = 0;
1da177e4
LT
1711 TCP_ECN_make_synack(req, th);
1712 th->source = inet_sk(sk)->sport;
2e6599cb
ACM
1713 th->dest = ireq->rmt_port;
1714 TCP_SKB_CB(skb)->seq = tcp_rsk(req)->snt_isn;
1da177e4
LT
1715 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1;
1716 TCP_SKB_CB(skb)->sacked = 0;
1717 skb_shinfo(skb)->tso_segs = 1;
1718 skb_shinfo(skb)->tso_size = 0;
1719 th->seq = htonl(TCP_SKB_CB(skb)->seq);
2e6599cb 1720 th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1);
1da177e4
LT
1721 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
1722 __u8 rcv_wscale;
1723 /* Set this up on the first call only */
1724 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
1725 /* tcp_full_space because it is guaranteed to be the first packet */
1726 tcp_select_initial_window(tcp_full_space(sk),
2e6599cb 1727 dst_metric(dst, RTAX_ADVMSS) - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
1da177e4
LT
1728 &req->rcv_wnd,
1729 &req->window_clamp,
2e6599cb 1730 ireq->wscale_ok,
1da177e4 1731 &rcv_wscale);
2e6599cb 1732 ireq->rcv_wscale = rcv_wscale;
1da177e4
LT
1733 }
1734
1735 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
1736 th->window = htons(req->rcv_wnd);
1737
1738 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2e6599cb
ACM
1739 tcp_syn_build_options((__u32 *)(th + 1), dst_metric(dst, RTAX_ADVMSS), ireq->tstamp_ok,
1740 ireq->sack_ok, ireq->wscale_ok, ireq->rcv_wscale,
1da177e4
LT
1741 TCP_SKB_CB(skb)->when,
1742 req->ts_recent);
1743
1744 skb->csum = 0;
1745 th->doff = (tcp_header_size >> 2);
1746 TCP_INC_STATS(TCP_MIB_OUTSEGS);
1747 return skb;
1748}
1749
1750/*
1751 * Do all connect socket setups that can be done AF independent.
1752 */
1753static inline void tcp_connect_init(struct sock *sk)
1754{
1755 struct dst_entry *dst = __sk_dst_get(sk);
1756 struct tcp_sock *tp = tcp_sk(sk);
1757 __u8 rcv_wscale;
1758
1759 /* We'll fix this up when we get a response from the other end.
1760 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
1761 */
1762 tp->tcp_header_len = sizeof(struct tcphdr) +
1763 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
1764
1765 /* If user gave his TCP_MAXSEG, record it to clamp */
1766 if (tp->rx_opt.user_mss)
1767 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
1768 tp->max_window = 0;
1769 tcp_sync_mss(sk, dst_mtu(dst));
1770
1771 if (!tp->window_clamp)
1772 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
1773 tp->advmss = dst_metric(dst, RTAX_ADVMSS);
1774 tcp_initialize_rcv_mss(sk);
1da177e4
LT
1775
1776 tcp_select_initial_window(tcp_full_space(sk),
1777 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
1778 &tp->rcv_wnd,
1779 &tp->window_clamp,
1780 sysctl_tcp_window_scaling,
1781 &rcv_wscale);
1782
1783 tp->rx_opt.rcv_wscale = rcv_wscale;
1784 tp->rcv_ssthresh = tp->rcv_wnd;
1785
1786 sk->sk_err = 0;
1787 sock_reset_flag(sk, SOCK_DONE);
1788 tp->snd_wnd = 0;
1789 tcp_init_wl(tp, tp->write_seq, 0);
1790 tp->snd_una = tp->write_seq;
1791 tp->snd_sml = tp->write_seq;
1792 tp->rcv_nxt = 0;
1793 tp->rcv_wup = 0;
1794 tp->copied_seq = 0;
1795
1796 tp->rto = TCP_TIMEOUT_INIT;
1797 tp->retransmits = 0;
1798 tcp_clear_retrans(tp);
1799}
1800
1801/*
1802 * Build a SYN and send it off.
1803 */
1804int tcp_connect(struct sock *sk)
1805{
1806 struct tcp_sock *tp = tcp_sk(sk);
1807 struct sk_buff *buff;
1808
1809 tcp_connect_init(sk);
1810
1811 buff = alloc_skb(MAX_TCP_HEADER + 15, sk->sk_allocation);
1812 if (unlikely(buff == NULL))
1813 return -ENOBUFS;
1814
1815 /* Reserve space for headers. */
1816 skb_reserve(buff, MAX_TCP_HEADER);
1817
1818 TCP_SKB_CB(buff)->flags = TCPCB_FLAG_SYN;
1819 TCP_ECN_send_syn(sk, tp, buff);
1820 TCP_SKB_CB(buff)->sacked = 0;
1821 skb_shinfo(buff)->tso_segs = 1;
1822 skb_shinfo(buff)->tso_size = 0;
1823 buff->csum = 0;
1824 TCP_SKB_CB(buff)->seq = tp->write_seq++;
1825 TCP_SKB_CB(buff)->end_seq = tp->write_seq;
1826 tp->snd_nxt = tp->write_seq;
1827 tp->pushed_seq = tp->write_seq;
1da177e4
LT
1828
1829 /* Send it off. */
1830 TCP_SKB_CB(buff)->when = tcp_time_stamp;
1831 tp->retrans_stamp = TCP_SKB_CB(buff)->when;
1832 skb_header_release(buff);
1833 __skb_queue_tail(&sk->sk_write_queue, buff);
1834 sk_charge_skb(sk, buff);
1835 tp->packets_out += tcp_skb_pcount(buff);
1836 tcp_transmit_skb(sk, skb_clone(buff, GFP_KERNEL));
1837 TCP_INC_STATS(TCP_MIB_ACTIVEOPENS);
1838
1839 /* Timer for repeating the SYN until an answer. */
1840 tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
1841 return 0;
1842}
1843
1844/* Send out a delayed ack, the caller does the policy checking
1845 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
1846 * for details.
1847 */
1848void tcp_send_delayed_ack(struct sock *sk)
1849{
1850 struct tcp_sock *tp = tcp_sk(sk);
1851 int ato = tp->ack.ato;
1852 unsigned long timeout;
1853
1854 if (ato > TCP_DELACK_MIN) {
1855 int max_ato = HZ/2;
1856
1857 if (tp->ack.pingpong || (tp->ack.pending&TCP_ACK_PUSHED))
1858 max_ato = TCP_DELACK_MAX;
1859
1860 /* Slow path, intersegment interval is "high". */
1861
1862 /* If some rtt estimate is known, use it to bound delayed ack.
1863 * Do not use tp->rto here, use results of rtt measurements
1864 * directly.
1865 */
1866 if (tp->srtt) {
1867 int rtt = max(tp->srtt>>3, TCP_DELACK_MIN);
1868
1869 if (rtt < max_ato)
1870 max_ato = rtt;
1871 }
1872
1873 ato = min(ato, max_ato);
1874 }
1875
1876 /* Stay within the limit we were given */
1877 timeout = jiffies + ato;
1878
1879 /* Use new timeout only if there wasn't a older one earlier. */
1880 if (tp->ack.pending&TCP_ACK_TIMER) {
1881 /* If delack timer was blocked or is about to expire,
1882 * send ACK now.
1883 */
1884 if (tp->ack.blocked || time_before_eq(tp->ack.timeout, jiffies+(ato>>2))) {
1885 tcp_send_ack(sk);
1886 return;
1887 }
1888
1889 if (!time_before(timeout, tp->ack.timeout))
1890 timeout = tp->ack.timeout;
1891 }
1892 tp->ack.pending |= TCP_ACK_SCHED|TCP_ACK_TIMER;
1893 tp->ack.timeout = timeout;
1894 sk_reset_timer(sk, &tp->delack_timer, timeout);
1895}
1896
1897/* This routine sends an ack and also updates the window. */
1898void tcp_send_ack(struct sock *sk)
1899{
1900 /* If we have been reset, we may not send again. */
1901 if (sk->sk_state != TCP_CLOSE) {
1902 struct tcp_sock *tp = tcp_sk(sk);
1903 struct sk_buff *buff;
1904
1905 /* We are not putting this on the write queue, so
1906 * tcp_transmit_skb() will set the ownership to this
1907 * sock.
1908 */
1909 buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
1910 if (buff == NULL) {
1911 tcp_schedule_ack(tp);
1912 tp->ack.ato = TCP_ATO_MIN;
1913 tcp_reset_xmit_timer(sk, TCP_TIME_DACK, TCP_DELACK_MAX);
1914 return;
1915 }
1916
1917 /* Reserve space for headers and prepare control bits. */
1918 skb_reserve(buff, MAX_TCP_HEADER);
1919 buff->csum = 0;
1920 TCP_SKB_CB(buff)->flags = TCPCB_FLAG_ACK;
1921 TCP_SKB_CB(buff)->sacked = 0;
1922 skb_shinfo(buff)->tso_segs = 1;
1923 skb_shinfo(buff)->tso_size = 0;
1924
1925 /* Send it off, this clears delayed acks for us. */
1926 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(buff)->end_seq = tcp_acceptable_seq(sk, tp);
1927 TCP_SKB_CB(buff)->when = tcp_time_stamp;
1928 tcp_transmit_skb(sk, buff);
1929 }
1930}
1931
1932/* This routine sends a packet with an out of date sequence
1933 * number. It assumes the other end will try to ack it.
1934 *
1935 * Question: what should we make while urgent mode?
1936 * 4.4BSD forces sending single byte of data. We cannot send
1937 * out of window data, because we have SND.NXT==SND.MAX...
1938 *
1939 * Current solution: to send TWO zero-length segments in urgent mode:
1940 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
1941 * out-of-date with SND.UNA-1 to probe window.
1942 */
1943static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
1944{
1945 struct tcp_sock *tp = tcp_sk(sk);
1946 struct sk_buff *skb;
1947
1948 /* We don't queue it, tcp_transmit_skb() sets ownership. */
1949 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
1950 if (skb == NULL)
1951 return -1;
1952
1953 /* Reserve space for headers and set control bits. */
1954 skb_reserve(skb, MAX_TCP_HEADER);
1955 skb->csum = 0;
1956 TCP_SKB_CB(skb)->flags = TCPCB_FLAG_ACK;
1957 TCP_SKB_CB(skb)->sacked = urgent;
1958 skb_shinfo(skb)->tso_segs = 1;
1959 skb_shinfo(skb)->tso_size = 0;
1960
1961 /* Use a previous sequence. This should cause the other
1962 * end to send an ack. Don't queue or clone SKB, just
1963 * send it.
1964 */
1965 TCP_SKB_CB(skb)->seq = urgent ? tp->snd_una : tp->snd_una - 1;
1966 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq;
1967 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1968 return tcp_transmit_skb(sk, skb);
1969}
1970
1971int tcp_write_wakeup(struct sock *sk)
1972{
1973 if (sk->sk_state != TCP_CLOSE) {
1974 struct tcp_sock *tp = tcp_sk(sk);
1975 struct sk_buff *skb;
1976
1977 if ((skb = sk->sk_send_head) != NULL &&
1978 before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)) {
1979 int err;
1980 unsigned int mss = tcp_current_mss(sk, 0);
1981 unsigned int seg_size = tp->snd_una+tp->snd_wnd-TCP_SKB_CB(skb)->seq;
1982
1983 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
1984 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
1985
1986 /* We are probing the opening of a window
1987 * but the window size is != 0
1988 * must have been a result SWS avoidance ( sender )
1989 */
1990 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
1991 skb->len > mss) {
1992 seg_size = min(seg_size, mss);
1993 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
846998ae 1994 if (tcp_fragment(sk, skb, seg_size, mss))
1da177e4
LT
1995 return -1;
1996 /* SWS override triggered forced fragmentation.
1997 * Disable TSO, the connection is too sick. */
1998 if (sk->sk_route_caps & NETIF_F_TSO) {
1999 sock_set_flag(sk, SOCK_NO_LARGESEND);
2000 sk->sk_route_caps &= ~NETIF_F_TSO;
1da177e4
LT
2001 }
2002 } else if (!tcp_skb_pcount(skb))
846998ae 2003 tcp_set_skb_tso_segs(sk, skb, mss);
1da177e4
LT
2004
2005 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
2006 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1da177e4
LT
2007 err = tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC));
2008 if (!err) {
2009 update_send_head(sk, tp, skb);
2010 }
2011 return err;
2012 } else {
2013 if (tp->urg_mode &&
2014 between(tp->snd_up, tp->snd_una+1, tp->snd_una+0xFFFF))
2015 tcp_xmit_probe_skb(sk, TCPCB_URG);
2016 return tcp_xmit_probe_skb(sk, 0);
2017 }
2018 }
2019 return -1;
2020}
2021
2022/* A window probe timeout has occurred. If window is not closed send
2023 * a partial packet else a zero probe.
2024 */
2025void tcp_send_probe0(struct sock *sk)
2026{
2027 struct tcp_sock *tp = tcp_sk(sk);
2028 int err;
2029
2030 err = tcp_write_wakeup(sk);
2031
2032 if (tp->packets_out || !sk->sk_send_head) {
2033 /* Cancel probe timer, if it is not required. */
2034 tp->probes_out = 0;
2035 tp->backoff = 0;
2036 return;
2037 }
2038
2039 if (err <= 0) {
2040 if (tp->backoff < sysctl_tcp_retries2)
2041 tp->backoff++;
2042 tp->probes_out++;
2043 tcp_reset_xmit_timer (sk, TCP_TIME_PROBE0,
2044 min(tp->rto << tp->backoff, TCP_RTO_MAX));
2045 } else {
2046 /* If packet was not sent due to local congestion,
2047 * do not backoff and do not remember probes_out.
2048 * Let local senders to fight for local resources.
2049 *
2050 * Use accumulated backoff yet.
2051 */
2052 if (!tp->probes_out)
2053 tp->probes_out=1;
2054 tcp_reset_xmit_timer (sk, TCP_TIME_PROBE0,
2055 min(tp->rto << tp->backoff, TCP_RESOURCE_PROBE_INTERVAL));
2056 }
2057}
2058
2059EXPORT_SYMBOL(tcp_connect);
2060EXPORT_SYMBOL(tcp_make_synack);
2061EXPORT_SYMBOL(tcp_simple_retransmit);
2062EXPORT_SYMBOL(tcp_sync_mss);