]> bbs.cooldavid.org Git - net-next-2.6.git/blame - net/ipv4/tcp_output.c
[TCP]: Add missing skb_header_release() call to tcp_fragment().
[net-next-2.6.git] / net / ipv4 / tcp_output.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_output.c,v 1.146 2002/02/01 22:01:04 davem Exp $
9 *
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23/*
24 * Changes: Pedro Roque : Retransmit queue handled by TCP.
25 * : Fragmentation on mtu decrease
26 * : Segment collapse on retransmit
27 * : AF independence
28 *
29 * Linus Torvalds : send_delayed_ack
30 * David S. Miller : Charge memory using the right skb
31 * during syn/ack processing.
32 * David S. Miller : Output engine completely rewritten.
33 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
34 * Cacophonix Gaul : draft-minshall-nagle-01
35 * J Hadi Salim : ECN support
36 *
37 */
38
39#include <net/tcp.h>
40
41#include <linux/compiler.h>
42#include <linux/module.h>
43#include <linux/smp_lock.h>
44
45/* People can turn this off for buggy TCP's found in printers etc. */
46int sysctl_tcp_retrans_collapse = 1;
47
48/* This limits the percentage of the congestion window which we
49 * will allow a single TSO frame to consume. Building TSO frames
50 * which are too large can cause TCP streams to be bursty.
51 */
52int sysctl_tcp_tso_win_divisor = 8;
53
54static inline void update_send_head(struct sock *sk, struct tcp_sock *tp,
55 struct sk_buff *skb)
56{
57 sk->sk_send_head = skb->next;
58 if (sk->sk_send_head == (struct sk_buff *)&sk->sk_write_queue)
59 sk->sk_send_head = NULL;
60 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
61 tcp_packets_out_inc(sk, tp, skb);
62}
63
64/* SND.NXT, if window was not shrunk.
65 * If window has been shrunk, what should we make? It is not clear at all.
66 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
67 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
68 * invalid. OK, let's make this for now:
69 */
70static inline __u32 tcp_acceptable_seq(struct sock *sk, struct tcp_sock *tp)
71{
72 if (!before(tp->snd_una+tp->snd_wnd, tp->snd_nxt))
73 return tp->snd_nxt;
74 else
75 return tp->snd_una+tp->snd_wnd;
76}
77
78/* Calculate mss to advertise in SYN segment.
79 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
80 *
81 * 1. It is independent of path mtu.
82 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
83 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
84 * attached devices, because some buggy hosts are confused by
85 * large MSS.
86 * 4. We do not make 3, we advertise MSS, calculated from first
87 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
88 * This may be overridden via information stored in routing table.
89 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
90 * probably even Jumbo".
91 */
92static __u16 tcp_advertise_mss(struct sock *sk)
93{
94 struct tcp_sock *tp = tcp_sk(sk);
95 struct dst_entry *dst = __sk_dst_get(sk);
96 int mss = tp->advmss;
97
98 if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) {
99 mss = dst_metric(dst, RTAX_ADVMSS);
100 tp->advmss = mss;
101 }
102
103 return (__u16)mss;
104}
105
106/* RFC2861. Reset CWND after idle period longer RTO to "restart window".
107 * This is the first part of cwnd validation mechanism. */
108static void tcp_cwnd_restart(struct tcp_sock *tp, struct dst_entry *dst)
109{
110 s32 delta = tcp_time_stamp - tp->lsndtime;
111 u32 restart_cwnd = tcp_init_cwnd(tp, dst);
112 u32 cwnd = tp->snd_cwnd;
113
317a76f9 114 tcp_ca_event(tp, CA_EVENT_CWND_RESTART);
1da177e4
LT
115
116 tp->snd_ssthresh = tcp_current_ssthresh(tp);
117 restart_cwnd = min(restart_cwnd, cwnd);
118
119 while ((delta -= tp->rto) > 0 && cwnd > restart_cwnd)
120 cwnd >>= 1;
121 tp->snd_cwnd = max(cwnd, restart_cwnd);
122 tp->snd_cwnd_stamp = tcp_time_stamp;
123 tp->snd_cwnd_used = 0;
124}
125
126static inline void tcp_event_data_sent(struct tcp_sock *tp,
127 struct sk_buff *skb, struct sock *sk)
128{
129 u32 now = tcp_time_stamp;
130
131 if (!tp->packets_out && (s32)(now - tp->lsndtime) > tp->rto)
132 tcp_cwnd_restart(tp, __sk_dst_get(sk));
133
134 tp->lsndtime = now;
135
136 /* If it is a reply for ato after last received
137 * packet, enter pingpong mode.
138 */
139 if ((u32)(now - tp->ack.lrcvtime) < tp->ack.ato)
140 tp->ack.pingpong = 1;
141}
142
fc6415bc 143static __inline__ void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
1da177e4
LT
144{
145 struct tcp_sock *tp = tcp_sk(sk);
146
fc6415bc 147 tcp_dec_quickack_mode(tp, pkts);
1da177e4
LT
148 tcp_clear_xmit_timer(sk, TCP_TIME_DACK);
149}
150
151/* Determine a window scaling and initial window to offer.
152 * Based on the assumption that the given amount of space
153 * will be offered. Store the results in the tp structure.
154 * NOTE: for smooth operation initial space offering should
155 * be a multiple of mss if possible. We assume here that mss >= 1.
156 * This MUST be enforced by all callers.
157 */
158void tcp_select_initial_window(int __space, __u32 mss,
159 __u32 *rcv_wnd, __u32 *window_clamp,
160 int wscale_ok, __u8 *rcv_wscale)
161{
162 unsigned int space = (__space < 0 ? 0 : __space);
163
164 /* If no clamp set the clamp to the max possible scaled window */
165 if (*window_clamp == 0)
166 (*window_clamp) = (65535 << 14);
167 space = min(*window_clamp, space);
168
169 /* Quantize space offering to a multiple of mss if possible. */
170 if (space > mss)
171 space = (space / mss) * mss;
172
173 /* NOTE: offering an initial window larger than 32767
174 * will break some buggy TCP stacks. We try to be nice.
175 * If we are not window scaling, then this truncates
176 * our initial window offering to 32k. There should also
177 * be a sysctl option to stop being nice.
178 */
179 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
180 (*rcv_wscale) = 0;
181 if (wscale_ok) {
182 /* Set window scaling on max possible window
183 * See RFC1323 for an explanation of the limit to 14
184 */
185 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
186 while (space > 65535 && (*rcv_wscale) < 14) {
187 space >>= 1;
188 (*rcv_wscale)++;
189 }
190 }
191
192 /* Set initial window to value enough for senders,
193 * following RFC1414. Senders, not following this RFC,
194 * will be satisfied with 2.
195 */
196 if (mss > (1<<*rcv_wscale)) {
197 int init_cwnd = 4;
198 if (mss > 1460*3)
199 init_cwnd = 2;
200 else if (mss > 1460)
201 init_cwnd = 3;
202 if (*rcv_wnd > init_cwnd*mss)
203 *rcv_wnd = init_cwnd*mss;
204 }
205
206 /* Set the clamp no higher than max representable value */
207 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
208}
209
210/* Chose a new window to advertise, update state in tcp_sock for the
211 * socket, and return result with RFC1323 scaling applied. The return
212 * value can be stuffed directly into th->window for an outgoing
213 * frame.
214 */
215static __inline__ u16 tcp_select_window(struct sock *sk)
216{
217 struct tcp_sock *tp = tcp_sk(sk);
218 u32 cur_win = tcp_receive_window(tp);
219 u32 new_win = __tcp_select_window(sk);
220
221 /* Never shrink the offered window */
222 if(new_win < cur_win) {
223 /* Danger Will Robinson!
224 * Don't update rcv_wup/rcv_wnd here or else
225 * we will not be able to advertise a zero
226 * window in time. --DaveM
227 *
228 * Relax Will Robinson.
229 */
230 new_win = cur_win;
231 }
232 tp->rcv_wnd = new_win;
233 tp->rcv_wup = tp->rcv_nxt;
234
235 /* Make sure we do not exceed the maximum possible
236 * scaled window.
237 */
238 if (!tp->rx_opt.rcv_wscale)
239 new_win = min(new_win, MAX_TCP_WINDOW);
240 else
241 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
242
243 /* RFC1323 scaling applied */
244 new_win >>= tp->rx_opt.rcv_wscale;
245
246 /* If we advertise zero window, disable fast path. */
247 if (new_win == 0)
248 tp->pred_flags = 0;
249
250 return new_win;
251}
252
253
254/* This routine actually transmits TCP packets queued in by
255 * tcp_do_sendmsg(). This is used by both the initial
256 * transmission and possible later retransmissions.
257 * All SKB's seen here are completely headerless. It is our
258 * job to build the TCP header, and pass the packet down to
259 * IP so it can do the same plus pass the packet off to the
260 * device.
261 *
262 * We are working here with either a clone of the original
263 * SKB, or a fresh unique copy made by the retransmit engine.
264 */
265static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb)
266{
267 if (skb != NULL) {
268 struct inet_sock *inet = inet_sk(sk);
269 struct tcp_sock *tp = tcp_sk(sk);
270 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
271 int tcp_header_size = tp->tcp_header_len;
272 struct tcphdr *th;
273 int sysctl_flags;
274 int err;
275
276 BUG_ON(!tcp_skb_pcount(skb));
277
278#define SYSCTL_FLAG_TSTAMPS 0x1
279#define SYSCTL_FLAG_WSCALE 0x2
280#define SYSCTL_FLAG_SACK 0x4
281
317a76f9
SH
282 /* If congestion control is doing timestamping */
283 if (tp->ca_ops->rtt_sample)
284 do_gettimeofday(&skb->stamp);
285
1da177e4
LT
286 sysctl_flags = 0;
287 if (tcb->flags & TCPCB_FLAG_SYN) {
288 tcp_header_size = sizeof(struct tcphdr) + TCPOLEN_MSS;
289 if(sysctl_tcp_timestamps) {
290 tcp_header_size += TCPOLEN_TSTAMP_ALIGNED;
291 sysctl_flags |= SYSCTL_FLAG_TSTAMPS;
292 }
293 if(sysctl_tcp_window_scaling) {
294 tcp_header_size += TCPOLEN_WSCALE_ALIGNED;
295 sysctl_flags |= SYSCTL_FLAG_WSCALE;
296 }
297 if(sysctl_tcp_sack) {
298 sysctl_flags |= SYSCTL_FLAG_SACK;
299 if(!(sysctl_flags & SYSCTL_FLAG_TSTAMPS))
300 tcp_header_size += TCPOLEN_SACKPERM_ALIGNED;
301 }
302 } else if (tp->rx_opt.eff_sacks) {
303 /* A SACK is 2 pad bytes, a 2 byte header, plus
304 * 2 32-bit sequence numbers for each SACK block.
305 */
306 tcp_header_size += (TCPOLEN_SACK_BASE_ALIGNED +
307 (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK));
308 }
309
317a76f9
SH
310 if (tcp_packets_in_flight(tp) == 0)
311 tcp_ca_event(tp, CA_EVENT_TX_START);
1da177e4
LT
312
313 th = (struct tcphdr *) skb_push(skb, tcp_header_size);
314 skb->h.th = th;
315 skb_set_owner_w(skb, sk);
316
317 /* Build TCP header and checksum it. */
318 th->source = inet->sport;
319 th->dest = inet->dport;
320 th->seq = htonl(tcb->seq);
321 th->ack_seq = htonl(tp->rcv_nxt);
322 *(((__u16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | tcb->flags);
323 if (tcb->flags & TCPCB_FLAG_SYN) {
324 /* RFC1323: The window in SYN & SYN/ACK segments
325 * is never scaled.
326 */
327 th->window = htons(tp->rcv_wnd);
328 } else {
329 th->window = htons(tcp_select_window(sk));
330 }
331 th->check = 0;
332 th->urg_ptr = 0;
333
334 if (tp->urg_mode &&
335 between(tp->snd_up, tcb->seq+1, tcb->seq+0xFFFF)) {
336 th->urg_ptr = htons(tp->snd_up-tcb->seq);
337 th->urg = 1;
338 }
339
340 if (tcb->flags & TCPCB_FLAG_SYN) {
341 tcp_syn_build_options((__u32 *)(th + 1),
342 tcp_advertise_mss(sk),
343 (sysctl_flags & SYSCTL_FLAG_TSTAMPS),
344 (sysctl_flags & SYSCTL_FLAG_SACK),
345 (sysctl_flags & SYSCTL_FLAG_WSCALE),
346 tp->rx_opt.rcv_wscale,
347 tcb->when,
348 tp->rx_opt.ts_recent);
349 } else {
350 tcp_build_and_update_options((__u32 *)(th + 1),
351 tp, tcb->when);
352
353 TCP_ECN_send(sk, tp, skb, tcp_header_size);
354 }
355 tp->af_specific->send_check(sk, th, skb->len, skb);
356
357 if (tcb->flags & TCPCB_FLAG_ACK)
fc6415bc 358 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1da177e4
LT
359
360 if (skb->len != tcp_header_size)
361 tcp_event_data_sent(tp, skb, sk);
362
363 TCP_INC_STATS(TCP_MIB_OUTSEGS);
364
365 err = tp->af_specific->queue_xmit(skb, 0);
366 if (err <= 0)
367 return err;
368
369 tcp_enter_cwr(tp);
370
371 /* NET_XMIT_CN is special. It does not guarantee,
372 * that this packet is lost. It tells that device
373 * is about to start to drop packets or already
374 * drops some packets of the same priority and
375 * invokes us to send less aggressively.
376 */
377 return err == NET_XMIT_CN ? 0 : err;
378 }
379 return -ENOBUFS;
380#undef SYSCTL_FLAG_TSTAMPS
381#undef SYSCTL_FLAG_WSCALE
382#undef SYSCTL_FLAG_SACK
383}
384
385
386/* This routine just queue's the buffer
387 *
388 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
389 * otherwise socket can stall.
390 */
391static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
392{
393 struct tcp_sock *tp = tcp_sk(sk);
394
395 /* Advance write_seq and place onto the write_queue. */
396 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
397 skb_header_release(skb);
398 __skb_queue_tail(&sk->sk_write_queue, skb);
399 sk_charge_skb(sk, skb);
400
401 /* Queue it, remembering where we must start sending. */
402 if (sk->sk_send_head == NULL)
403 sk->sk_send_head = skb;
404}
405
406static inline void tcp_tso_set_push(struct sk_buff *skb)
407{
408 /* Force push to be on for any TSO frames to workaround
409 * problems with busted implementations like Mac OS-X that
410 * hold off socket receive wakeups until push is seen.
411 */
412 if (tcp_skb_pcount(skb) > 1)
413 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
414}
415
f6302d1d
DM
416static void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb)
417{
418 struct tcp_sock *tp = tcp_sk(sk);
419
420 if (skb->len <= tp->mss_cache_std ||
421 !(sk->sk_route_caps & NETIF_F_TSO)) {
422 /* Avoid the costly divide in the normal
423 * non-TSO case.
424 */
425 skb_shinfo(skb)->tso_segs = 1;
426 skb_shinfo(skb)->tso_size = 0;
427 } else {
428 unsigned int factor;
429
430 factor = skb->len + (tp->mss_cache_std - 1);
431 factor /= tp->mss_cache_std;
432 skb_shinfo(skb)->tso_segs = factor;
433 skb_shinfo(skb)->tso_size = tp->mss_cache_std;
434 }
435}
436
437static inline int tcp_minshall_check(const struct tcp_sock *tp)
438{
439 return after(tp->snd_sml,tp->snd_una) &&
440 !after(tp->snd_sml, tp->snd_nxt);
441}
442
443/* Return 0, if packet can be sent now without violation Nagle's rules:
444 * 1. It is full sized.
445 * 2. Or it contains FIN.
446 * 3. Or TCP_NODELAY was set.
447 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
448 * With Minshall's modification: all sent small packets are ACKed.
449 */
450
451static inline int tcp_nagle_check(const struct tcp_sock *tp,
452 const struct sk_buff *skb,
453 unsigned mss_now, int nonagle)
454{
455 return (skb->len < mss_now &&
456 !(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) &&
457 ((nonagle&TCP_NAGLE_CORK) ||
458 (!nonagle &&
459 tp->packets_out &&
460 tcp_minshall_check(tp))));
461}
462
463/* This checks if the data bearing packet SKB (usually sk->sk_send_head)
464 * should be put on the wire right now.
465 */
466static int tcp_snd_test(struct sock *sk, struct sk_buff *skb,
467 unsigned cur_mss, int nonagle)
468{
469 struct tcp_sock *tp = tcp_sk(sk);
470 int pkts = tcp_skb_pcount(skb);
471
472 if (!pkts) {
473 tcp_set_skb_tso_segs(sk, skb);
474 pkts = tcp_skb_pcount(skb);
475 }
476
477 /* RFC 1122 - section 4.2.3.4
478 *
479 * We must queue if
480 *
481 * a) The right edge of this frame exceeds the window
482 * b) There are packets in flight and we have a small segment
483 * [SWS avoidance and Nagle algorithm]
484 * (part of SWS is done on packetization)
485 * Minshall version sounds: there are no _small_
486 * segments in flight. (tcp_nagle_check)
487 * c) We have too many packets 'in flight'
488 *
489 * Don't use the nagle rule for urgent data (or
490 * for the final FIN -DaveM).
491 *
492 * Also, Nagle rule does not apply to frames, which
493 * sit in the middle of queue (they have no chances
494 * to get new data) and if room at tail of skb is
495 * not enough to save something seriously (<32 for now).
496 */
497
498 /* Don't be strict about the congestion window for the
499 * final FIN frame. -DaveM
500 */
501 return (((nonagle&TCP_NAGLE_PUSH) || tp->urg_mode
502 || !tcp_nagle_check(tp, skb, cur_mss, nonagle)) &&
503 (((tcp_packets_in_flight(tp) + (pkts-1)) < tp->snd_cwnd) ||
504 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)) &&
505 !after(TCP_SKB_CB(skb)->end_seq, tp->snd_una + tp->snd_wnd));
506}
507
508static inline int tcp_skb_is_last(const struct sock *sk,
509 const struct sk_buff *skb)
510{
511 return skb->next == (struct sk_buff *)&sk->sk_write_queue;
512}
513
514/* Push out any pending frames which were held back due to
515 * TCP_CORK or attempt at coalescing tiny packets.
516 * The socket must be locked by the caller.
517 */
518void __tcp_push_pending_frames(struct sock *sk, struct tcp_sock *tp,
519 unsigned cur_mss, int nonagle)
520{
521 struct sk_buff *skb = sk->sk_send_head;
522
523 if (skb) {
524 if (!tcp_skb_is_last(sk, skb))
525 nonagle = TCP_NAGLE_PUSH;
526 if (!tcp_snd_test(sk, skb, cur_mss, nonagle) ||
527 tcp_write_xmit(sk, nonagle))
528 tcp_check_probe_timer(sk, tp);
529 }
530 tcp_cwnd_validate(sk, tp);
531}
532
84d3e7b9
DM
533void __tcp_data_snd_check(struct sock *sk, struct sk_buff *skb)
534{
535 struct tcp_sock *tp = tcp_sk(sk);
536
537 if (after(TCP_SKB_CB(skb)->end_seq, tp->snd_una + tp->snd_wnd) ||
538 tcp_packets_in_flight(tp) >= tp->snd_cwnd ||
539 tcp_write_xmit(sk, tp->nonagle))
540 tcp_check_probe_timer(sk, tp);
541}
542
f6302d1d
DM
543int tcp_may_send_now(struct sock *sk, struct tcp_sock *tp)
544{
545 struct sk_buff *skb = sk->sk_send_head;
546
547 return (skb &&
548 tcp_snd_test(sk, skb, tcp_current_mss(sk, 1),
549 (tcp_skb_is_last(sk, skb) ?
550 TCP_NAGLE_PUSH :
551 tp->nonagle)));
552}
553
554
1da177e4
LT
555/* Send _single_ skb sitting at the send head. This function requires
556 * true push pending frames to setup probe timer etc.
557 */
558void tcp_push_one(struct sock *sk, unsigned cur_mss)
559{
560 struct tcp_sock *tp = tcp_sk(sk);
561 struct sk_buff *skb = sk->sk_send_head;
562
d5ac99a6 563 if (tcp_snd_test(sk, skb, cur_mss, TCP_NAGLE_PUSH)) {
1da177e4
LT
564 /* Send it out now. */
565 TCP_SKB_CB(skb)->when = tcp_time_stamp;
566 tcp_tso_set_push(skb);
567 if (!tcp_transmit_skb(sk, skb_clone(skb, sk->sk_allocation))) {
568 sk->sk_send_head = NULL;
569 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
570 tcp_packets_out_inc(sk, tp, skb);
571 return;
572 }
573 }
574}
575
1da177e4
LT
576/* Function to create two new TCP segments. Shrinks the given segment
577 * to the specified size and appends a new segment with the rest of the
578 * packet to the list. This won't be called frequently, I hope.
579 * Remember, these are still headerless SKBs at this point.
580 */
581static int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len)
582{
583 struct tcp_sock *tp = tcp_sk(sk);
584 struct sk_buff *buff;
585 int nsize;
586 u16 flags;
587
588 nsize = skb_headlen(skb) - len;
589 if (nsize < 0)
590 nsize = 0;
591
592 if (skb_cloned(skb) &&
593 skb_is_nonlinear(skb) &&
594 pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
595 return -ENOMEM;
596
597 /* Get a new skb... force flag on. */
598 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
599 if (buff == NULL)
600 return -ENOMEM; /* We'll just try again later. */
601 sk_charge_skb(sk, buff);
602
603 /* Correct the sequence numbers. */
604 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
605 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
606 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
607
608 /* PSH and FIN should only be set in the second packet. */
609 flags = TCP_SKB_CB(skb)->flags;
610 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH);
611 TCP_SKB_CB(buff)->flags = flags;
612 TCP_SKB_CB(buff)->sacked =
613 (TCP_SKB_CB(skb)->sacked &
614 (TCPCB_LOST | TCPCB_EVER_RETRANS | TCPCB_AT_TAIL));
615 TCP_SKB_CB(skb)->sacked &= ~TCPCB_AT_TAIL;
616
617 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_HW) {
618 /* Copy and checksum data tail into the new buffer. */
619 buff->csum = csum_partial_copy_nocheck(skb->data + len, skb_put(buff, nsize),
620 nsize, 0);
621
622 skb_trim(skb, len);
623
624 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
625 } else {
626 skb->ip_summed = CHECKSUM_HW;
627 skb_split(skb, buff, len);
628 }
629
630 buff->ip_summed = skb->ip_summed;
631
632 /* Looks stupid, but our code really uses when of
633 * skbs, which it never sent before. --ANK
634 */
635 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
317a76f9 636 buff->stamp = skb->stamp;
1da177e4
LT
637
638 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) {
639 tp->lost_out -= tcp_skb_pcount(skb);
640 tp->left_out -= tcp_skb_pcount(skb);
641 }
642
643 /* Fix up tso_factor for both original and new SKB. */
d5ac99a6
DM
644 tcp_set_skb_tso_segs(sk, skb);
645 tcp_set_skb_tso_segs(sk, buff);
1da177e4
LT
646
647 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) {
648 tp->lost_out += tcp_skb_pcount(skb);
649 tp->left_out += tcp_skb_pcount(skb);
650 }
651
652 if (TCP_SKB_CB(buff)->sacked&TCPCB_LOST) {
653 tp->lost_out += tcp_skb_pcount(buff);
654 tp->left_out += tcp_skb_pcount(buff);
655 }
656
657 /* Link BUFF into the send queue. */
f44b5271 658 skb_header_release(buff);
1da177e4
LT
659 __skb_append(skb, buff);
660
661 return 0;
662}
663
664/* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
665 * eventually). The difference is that pulled data not copied, but
666 * immediately discarded.
667 */
668static unsigned char *__pskb_trim_head(struct sk_buff *skb, int len)
669{
670 int i, k, eat;
671
672 eat = len;
673 k = 0;
674 for (i=0; i<skb_shinfo(skb)->nr_frags; i++) {
675 if (skb_shinfo(skb)->frags[i].size <= eat) {
676 put_page(skb_shinfo(skb)->frags[i].page);
677 eat -= skb_shinfo(skb)->frags[i].size;
678 } else {
679 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
680 if (eat) {
681 skb_shinfo(skb)->frags[k].page_offset += eat;
682 skb_shinfo(skb)->frags[k].size -= eat;
683 eat = 0;
684 }
685 k++;
686 }
687 }
688 skb_shinfo(skb)->nr_frags = k;
689
690 skb->tail = skb->data;
691 skb->data_len -= len;
692 skb->len = skb->data_len;
693 return skb->tail;
694}
695
696int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
697{
698 if (skb_cloned(skb) &&
699 pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
700 return -ENOMEM;
701
702 if (len <= skb_headlen(skb)) {
703 __skb_pull(skb, len);
704 } else {
705 if (__pskb_trim_head(skb, len-skb_headlen(skb)) == NULL)
706 return -ENOMEM;
707 }
708
709 TCP_SKB_CB(skb)->seq += len;
710 skb->ip_summed = CHECKSUM_HW;
711
712 skb->truesize -= len;
713 sk->sk_wmem_queued -= len;
714 sk->sk_forward_alloc += len;
715 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
716
717 /* Any change of skb->len requires recalculation of tso
718 * factor and mss.
719 */
720 if (tcp_skb_pcount(skb) > 1)
d5ac99a6 721 tcp_set_skb_tso_segs(sk, skb);
1da177e4
LT
722
723 return 0;
724}
725
726/* This function synchronize snd mss to current pmtu/exthdr set.
727
728 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
729 for TCP options, but includes only bare TCP header.
730
731 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
732 It is minumum of user_mss and mss received with SYN.
733 It also does not include TCP options.
734
735 tp->pmtu_cookie is last pmtu, seen by this function.
736
737 tp->mss_cache is current effective sending mss, including
738 all tcp options except for SACKs. It is evaluated,
739 taking into account current pmtu, but never exceeds
740 tp->rx_opt.mss_clamp.
741
742 NOTE1. rfc1122 clearly states that advertised MSS
743 DOES NOT include either tcp or ip options.
744
745 NOTE2. tp->pmtu_cookie and tp->mss_cache are READ ONLY outside
746 this function. --ANK (980731)
747 */
748
749unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
750{
751 struct tcp_sock *tp = tcp_sk(sk);
752 int mss_now;
753
754 /* Calculate base mss without TCP options:
755 It is MMS_S - sizeof(tcphdr) of rfc1122
756 */
757 mss_now = pmtu - tp->af_specific->net_header_len - sizeof(struct tcphdr);
758
759 /* Clamp it (mss_clamp does not include tcp options) */
760 if (mss_now > tp->rx_opt.mss_clamp)
761 mss_now = tp->rx_opt.mss_clamp;
762
763 /* Now subtract optional transport overhead */
764 mss_now -= tp->ext_header_len;
765
766 /* Then reserve room for full set of TCP options and 8 bytes of data */
767 if (mss_now < 48)
768 mss_now = 48;
769
770 /* Now subtract TCP options size, not including SACKs */
771 mss_now -= tp->tcp_header_len - sizeof(struct tcphdr);
772
773 /* Bound mss with half of window */
774 if (tp->max_window && mss_now > (tp->max_window>>1))
775 mss_now = max((tp->max_window>>1), 68U - tp->tcp_header_len);
776
777 /* And store cached results */
778 tp->pmtu_cookie = pmtu;
779 tp->mss_cache = tp->mss_cache_std = mss_now;
780
781 return mss_now;
782}
783
784/* Compute the current effective MSS, taking SACKs and IP options,
785 * and even PMTU discovery events into account.
786 *
787 * LARGESEND note: !urg_mode is overkill, only frames up to snd_up
788 * cannot be large. However, taking into account rare use of URG, this
789 * is not a big flaw.
790 */
791
792unsigned int tcp_current_mss(struct sock *sk, int large)
793{
794 struct tcp_sock *tp = tcp_sk(sk);
795 struct dst_entry *dst = __sk_dst_get(sk);
796 unsigned int do_large, mss_now;
797
798 mss_now = tp->mss_cache_std;
799 if (dst) {
800 u32 mtu = dst_mtu(dst);
801 if (mtu != tp->pmtu_cookie)
802 mss_now = tcp_sync_mss(sk, mtu);
803 }
804
805 do_large = (large &&
806 (sk->sk_route_caps & NETIF_F_TSO) &&
807 !tp->urg_mode);
808
809 if (do_large) {
810 unsigned int large_mss, factor, limit;
811
812 large_mss = 65535 - tp->af_specific->net_header_len -
813 tp->ext_header_len - tp->tcp_header_len;
814
815 if (tp->max_window && large_mss > (tp->max_window>>1))
816 large_mss = max((tp->max_window>>1),
817 68U - tp->tcp_header_len);
818
819 factor = large_mss / mss_now;
820
821 /* Always keep large mss multiple of real mss, but
822 * do not exceed 1/tso_win_divisor of the congestion window
823 * so we can keep the ACK clock ticking and minimize
824 * bursting.
825 */
826 limit = tp->snd_cwnd;
827 if (sysctl_tcp_tso_win_divisor)
828 limit /= sysctl_tcp_tso_win_divisor;
829 limit = max(1U, limit);
830 if (factor > limit)
831 factor = limit;
832
833 tp->mss_cache = mss_now * factor;
834
835 mss_now = tp->mss_cache;
836 }
837
838 if (tp->rx_opt.eff_sacks)
839 mss_now -= (TCPOLEN_SACK_BASE_ALIGNED +
840 (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK));
841 return mss_now;
842}
843
844/* This routine writes packets to the network. It advances the
845 * send_head. This happens as incoming acks open up the remote
846 * window for us.
847 *
848 * Returns 1, if no segments are in flight and we have queued segments, but
849 * cannot send anything now because of SWS or another problem.
850 */
851int tcp_write_xmit(struct sock *sk, int nonagle)
852{
853 struct tcp_sock *tp = tcp_sk(sk);
854 unsigned int mss_now;
855
856 /* If we are closed, the bytes will have to remain here.
857 * In time closedown will finish, we empty the write queue and all
858 * will be happy.
859 */
860 if (sk->sk_state != TCP_CLOSE) {
861 struct sk_buff *skb;
862 int sent_pkts = 0;
863
864 /* Account for SACKS, we may need to fragment due to this.
865 * It is just like the real MSS changing on us midstream.
866 * We also handle things correctly when the user adds some
867 * IP options mid-stream. Silly to do, but cover it.
868 */
869 mss_now = tcp_current_mss(sk, 1);
870
871 while ((skb = sk->sk_send_head) &&
d5ac99a6 872 tcp_snd_test(sk, skb, mss_now,
1da177e4
LT
873 tcp_skb_is_last(sk, skb) ? nonagle :
874 TCP_NAGLE_PUSH)) {
875 if (skb->len > mss_now) {
876 if (tcp_fragment(sk, skb, mss_now))
877 break;
878 }
879
880 TCP_SKB_CB(skb)->when = tcp_time_stamp;
881 tcp_tso_set_push(skb);
882 if (tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC)))
883 break;
884
885 /* Advance the send_head. This one is sent out.
886 * This call will increment packets_out.
887 */
888 update_send_head(sk, tp, skb);
889
890 tcp_minshall_update(tp, mss_now, skb);
891 sent_pkts = 1;
892 }
893
894 if (sent_pkts) {
895 tcp_cwnd_validate(sk, tp);
896 return 0;
897 }
898
899 return !tp->packets_out && sk->sk_send_head;
900 }
901 return 0;
902}
903
904/* This function returns the amount that we can raise the
905 * usable window based on the following constraints
906 *
907 * 1. The window can never be shrunk once it is offered (RFC 793)
908 * 2. We limit memory per socket
909 *
910 * RFC 1122:
911 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
912 * RECV.NEXT + RCV.WIN fixed until:
913 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
914 *
915 * i.e. don't raise the right edge of the window until you can raise
916 * it at least MSS bytes.
917 *
918 * Unfortunately, the recommended algorithm breaks header prediction,
919 * since header prediction assumes th->window stays fixed.
920 *
921 * Strictly speaking, keeping th->window fixed violates the receiver
922 * side SWS prevention criteria. The problem is that under this rule
923 * a stream of single byte packets will cause the right side of the
924 * window to always advance by a single byte.
925 *
926 * Of course, if the sender implements sender side SWS prevention
927 * then this will not be a problem.
928 *
929 * BSD seems to make the following compromise:
930 *
931 * If the free space is less than the 1/4 of the maximum
932 * space available and the free space is less than 1/2 mss,
933 * then set the window to 0.
934 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
935 * Otherwise, just prevent the window from shrinking
936 * and from being larger than the largest representable value.
937 *
938 * This prevents incremental opening of the window in the regime
939 * where TCP is limited by the speed of the reader side taking
940 * data out of the TCP receive queue. It does nothing about
941 * those cases where the window is constrained on the sender side
942 * because the pipeline is full.
943 *
944 * BSD also seems to "accidentally" limit itself to windows that are a
945 * multiple of MSS, at least until the free space gets quite small.
946 * This would appear to be a side effect of the mbuf implementation.
947 * Combining these two algorithms results in the observed behavior
948 * of having a fixed window size at almost all times.
949 *
950 * Below we obtain similar behavior by forcing the offered window to
951 * a multiple of the mss when it is feasible to do so.
952 *
953 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
954 * Regular options like TIMESTAMP are taken into account.
955 */
956u32 __tcp_select_window(struct sock *sk)
957{
958 struct tcp_sock *tp = tcp_sk(sk);
959 /* MSS for the peer's data. Previous verions used mss_clamp
960 * here. I don't know if the value based on our guesses
961 * of peer's MSS is better for the performance. It's more correct
962 * but may be worse for the performance because of rcv_mss
963 * fluctuations. --SAW 1998/11/1
964 */
965 int mss = tp->ack.rcv_mss;
966 int free_space = tcp_space(sk);
967 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
968 int window;
969
970 if (mss > full_space)
971 mss = full_space;
972
973 if (free_space < full_space/2) {
974 tp->ack.quick = 0;
975
976 if (tcp_memory_pressure)
977 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U*tp->advmss);
978
979 if (free_space < mss)
980 return 0;
981 }
982
983 if (free_space > tp->rcv_ssthresh)
984 free_space = tp->rcv_ssthresh;
985
986 /* Don't do rounding if we are using window scaling, since the
987 * scaled window will not line up with the MSS boundary anyway.
988 */
989 window = tp->rcv_wnd;
990 if (tp->rx_opt.rcv_wscale) {
991 window = free_space;
992
993 /* Advertise enough space so that it won't get scaled away.
994 * Import case: prevent zero window announcement if
995 * 1<<rcv_wscale > mss.
996 */
997 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
998 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
999 << tp->rx_opt.rcv_wscale);
1000 } else {
1001 /* Get the largest window that is a nice multiple of mss.
1002 * Window clamp already applied above.
1003 * If our current window offering is within 1 mss of the
1004 * free space we just keep it. This prevents the divide
1005 * and multiply from happening most of the time.
1006 * We also don't do any window rounding when the free space
1007 * is too small.
1008 */
1009 if (window <= free_space - mss || window > free_space)
1010 window = (free_space/mss)*mss;
1011 }
1012
1013 return window;
1014}
1015
1016/* Attempt to collapse two adjacent SKB's during retransmission. */
1017static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *skb, int mss_now)
1018{
1019 struct tcp_sock *tp = tcp_sk(sk);
1020 struct sk_buff *next_skb = skb->next;
1021
1022 /* The first test we must make is that neither of these two
1023 * SKB's are still referenced by someone else.
1024 */
1025 if (!skb_cloned(skb) && !skb_cloned(next_skb)) {
1026 int skb_size = skb->len, next_skb_size = next_skb->len;
1027 u16 flags = TCP_SKB_CB(skb)->flags;
1028
1029 /* Also punt if next skb has been SACK'd. */
1030 if(TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_ACKED)
1031 return;
1032
1033 /* Next skb is out of window. */
1034 if (after(TCP_SKB_CB(next_skb)->end_seq, tp->snd_una+tp->snd_wnd))
1035 return;
1036
1037 /* Punt if not enough space exists in the first SKB for
1038 * the data in the second, or the total combined payload
1039 * would exceed the MSS.
1040 */
1041 if ((next_skb_size > skb_tailroom(skb)) ||
1042 ((skb_size + next_skb_size) > mss_now))
1043 return;
1044
1045 BUG_ON(tcp_skb_pcount(skb) != 1 ||
1046 tcp_skb_pcount(next_skb) != 1);
1047
1048 /* Ok. We will be able to collapse the packet. */
1049 __skb_unlink(next_skb, next_skb->list);
1050
1051 memcpy(skb_put(skb, next_skb_size), next_skb->data, next_skb_size);
1052
1053 if (next_skb->ip_summed == CHECKSUM_HW)
1054 skb->ip_summed = CHECKSUM_HW;
1055
1056 if (skb->ip_summed != CHECKSUM_HW)
1057 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
1058
1059 /* Update sequence range on original skb. */
1060 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
1061
1062 /* Merge over control information. */
1063 flags |= TCP_SKB_CB(next_skb)->flags; /* This moves PSH/FIN etc. over */
1064 TCP_SKB_CB(skb)->flags = flags;
1065
1066 /* All done, get rid of second SKB and account for it so
1067 * packet counting does not break.
1068 */
1069 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked&(TCPCB_EVER_RETRANS|TCPCB_AT_TAIL);
1070 if (TCP_SKB_CB(next_skb)->sacked&TCPCB_SACKED_RETRANS)
1071 tp->retrans_out -= tcp_skb_pcount(next_skb);
1072 if (TCP_SKB_CB(next_skb)->sacked&TCPCB_LOST) {
1073 tp->lost_out -= tcp_skb_pcount(next_skb);
1074 tp->left_out -= tcp_skb_pcount(next_skb);
1075 }
1076 /* Reno case is special. Sigh... */
1077 if (!tp->rx_opt.sack_ok && tp->sacked_out) {
1078 tcp_dec_pcount_approx(&tp->sacked_out, next_skb);
1079 tp->left_out -= tcp_skb_pcount(next_skb);
1080 }
1081
1082 /* Not quite right: it can be > snd.fack, but
1083 * it is better to underestimate fackets.
1084 */
1085 tcp_dec_pcount_approx(&tp->fackets_out, next_skb);
1086 tcp_packets_out_dec(tp, next_skb);
1087 sk_stream_free_skb(sk, next_skb);
1088 }
1089}
1090
1091/* Do a simple retransmit without using the backoff mechanisms in
1092 * tcp_timer. This is used for path mtu discovery.
1093 * The socket is already locked here.
1094 */
1095void tcp_simple_retransmit(struct sock *sk)
1096{
1097 struct tcp_sock *tp = tcp_sk(sk);
1098 struct sk_buff *skb;
1099 unsigned int mss = tcp_current_mss(sk, 0);
1100 int lost = 0;
1101
1102 sk_stream_for_retrans_queue(skb, sk) {
1103 if (skb->len > mss &&
1104 !(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1105 if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) {
1106 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1107 tp->retrans_out -= tcp_skb_pcount(skb);
1108 }
1109 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_LOST)) {
1110 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1111 tp->lost_out += tcp_skb_pcount(skb);
1112 lost = 1;
1113 }
1114 }
1115 }
1116
1117 if (!lost)
1118 return;
1119
1120 tcp_sync_left_out(tp);
1121
1122 /* Don't muck with the congestion window here.
1123 * Reason is that we do not increase amount of _data_
1124 * in network, but units changed and effective
1125 * cwnd/ssthresh really reduced now.
1126 */
1127 if (tp->ca_state != TCP_CA_Loss) {
1128 tp->high_seq = tp->snd_nxt;
1129 tp->snd_ssthresh = tcp_current_ssthresh(tp);
1130 tp->prior_ssthresh = 0;
1131 tp->undo_marker = 0;
1132 tcp_set_ca_state(tp, TCP_CA_Loss);
1133 }
1134 tcp_xmit_retransmit_queue(sk);
1135}
1136
1137/* This retransmits one SKB. Policy decisions and retransmit queue
1138 * state updates are done by the caller. Returns non-zero if an
1139 * error occurred which prevented the send.
1140 */
1141int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
1142{
1143 struct tcp_sock *tp = tcp_sk(sk);
1144 unsigned int cur_mss = tcp_current_mss(sk, 0);
1145 int err;
1146
1147 /* Do not sent more than we queued. 1/4 is reserved for possible
1148 * copying overhead: frgagmentation, tunneling, mangling etc.
1149 */
1150 if (atomic_read(&sk->sk_wmem_alloc) >
1151 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
1152 return -EAGAIN;
1153
1154 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
1155 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1156 BUG();
1157
1158 if (sk->sk_route_caps & NETIF_F_TSO) {
1159 sk->sk_route_caps &= ~NETIF_F_TSO;
1160 sock_set_flag(sk, SOCK_NO_LARGESEND);
1161 tp->mss_cache = tp->mss_cache_std;
1162 }
1163
1164 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
1165 return -ENOMEM;
1166 }
1167
1168 /* If receiver has shrunk his window, and skb is out of
1169 * new window, do not retransmit it. The exception is the
1170 * case, when window is shrunk to zero. In this case
1171 * our retransmit serves as a zero window probe.
1172 */
1173 if (!before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)
1174 && TCP_SKB_CB(skb)->seq != tp->snd_una)
1175 return -EAGAIN;
1176
1177 if (skb->len > cur_mss) {
1178 int old_factor = tcp_skb_pcount(skb);
1179 int new_factor;
1180
1181 if (tcp_fragment(sk, skb, cur_mss))
1182 return -ENOMEM; /* We'll try again later. */
1183
1184 /* New SKB created, account for it. */
1185 new_factor = tcp_skb_pcount(skb);
1186 tp->packets_out -= old_factor - new_factor;
1187 tp->packets_out += tcp_skb_pcount(skb->next);
1188 }
1189
1190 /* Collapse two adjacent packets if worthwhile and we can. */
1191 if(!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) &&
1192 (skb->len < (cur_mss >> 1)) &&
1193 (skb->next != sk->sk_send_head) &&
1194 (skb->next != (struct sk_buff *)&sk->sk_write_queue) &&
1195 (skb_shinfo(skb)->nr_frags == 0 && skb_shinfo(skb->next)->nr_frags == 0) &&
1196 (tcp_skb_pcount(skb) == 1 && tcp_skb_pcount(skb->next) == 1) &&
1197 (sysctl_tcp_retrans_collapse != 0))
1198 tcp_retrans_try_collapse(sk, skb, cur_mss);
1199
1200 if(tp->af_specific->rebuild_header(sk))
1201 return -EHOSTUNREACH; /* Routing failure or similar. */
1202
1203 /* Some Solaris stacks overoptimize and ignore the FIN on a
1204 * retransmit when old data is attached. So strip it off
1205 * since it is cheap to do so and saves bytes on the network.
1206 */
1207 if(skb->len > 0 &&
1208 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) &&
1209 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
1210 if (!pskb_trim(skb, 0)) {
1211 TCP_SKB_CB(skb)->seq = TCP_SKB_CB(skb)->end_seq - 1;
1212 skb_shinfo(skb)->tso_segs = 1;
1213 skb_shinfo(skb)->tso_size = 0;
1214 skb->ip_summed = CHECKSUM_NONE;
1215 skb->csum = 0;
1216 }
1217 }
1218
1219 /* Make a copy, if the first transmission SKB clone we made
1220 * is still in somebody's hands, else make a clone.
1221 */
1222 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1223 tcp_tso_set_push(skb);
1224
1225 err = tcp_transmit_skb(sk, (skb_cloned(skb) ?
1226 pskb_copy(skb, GFP_ATOMIC):
1227 skb_clone(skb, GFP_ATOMIC)));
1228
1229 if (err == 0) {
1230 /* Update global TCP statistics. */
1231 TCP_INC_STATS(TCP_MIB_RETRANSSEGS);
1232
1233 tp->total_retrans++;
1234
1235#if FASTRETRANS_DEBUG > 0
1236 if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) {
1237 if (net_ratelimit())
1238 printk(KERN_DEBUG "retrans_out leaked.\n");
1239 }
1240#endif
1241 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
1242 tp->retrans_out += tcp_skb_pcount(skb);
1243
1244 /* Save stamp of the first retransmit. */
1245 if (!tp->retrans_stamp)
1246 tp->retrans_stamp = TCP_SKB_CB(skb)->when;
1247
1248 tp->undo_retrans++;
1249
1250 /* snd_nxt is stored to detect loss of retransmitted segment,
1251 * see tcp_input.c tcp_sacktag_write_queue().
1252 */
1253 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
1254 }
1255 return err;
1256}
1257
1258/* This gets called after a retransmit timeout, and the initially
1259 * retransmitted data is acknowledged. It tries to continue
1260 * resending the rest of the retransmit queue, until either
1261 * we've sent it all or the congestion window limit is reached.
1262 * If doing SACK, the first ACK which comes back for a timeout
1263 * based retransmit packet might feed us FACK information again.
1264 * If so, we use it to avoid unnecessarily retransmissions.
1265 */
1266void tcp_xmit_retransmit_queue(struct sock *sk)
1267{
1268 struct tcp_sock *tp = tcp_sk(sk);
1269 struct sk_buff *skb;
1270 int packet_cnt = tp->lost_out;
1271
1272 /* First pass: retransmit lost packets. */
1273 if (packet_cnt) {
1274 sk_stream_for_retrans_queue(skb, sk) {
1275 __u8 sacked = TCP_SKB_CB(skb)->sacked;
1276
1277 /* Assume this retransmit will generate
1278 * only one packet for congestion window
1279 * calculation purposes. This works because
1280 * tcp_retransmit_skb() will chop up the
1281 * packet to be MSS sized and all the
1282 * packet counting works out.
1283 */
1284 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
1285 return;
1286
1287 if (sacked&TCPCB_LOST) {
1288 if (!(sacked&(TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))) {
1289 if (tcp_retransmit_skb(sk, skb))
1290 return;
1291 if (tp->ca_state != TCP_CA_Loss)
1292 NET_INC_STATS_BH(LINUX_MIB_TCPFASTRETRANS);
1293 else
1294 NET_INC_STATS_BH(LINUX_MIB_TCPSLOWSTARTRETRANS);
1295
1296 if (skb ==
1297 skb_peek(&sk->sk_write_queue))
1298 tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
1299 }
1300
1301 packet_cnt -= tcp_skb_pcount(skb);
1302 if (packet_cnt <= 0)
1303 break;
1304 }
1305 }
1306 }
1307
1308 /* OK, demanded retransmission is finished. */
1309
1310 /* Forward retransmissions are possible only during Recovery. */
1311 if (tp->ca_state != TCP_CA_Recovery)
1312 return;
1313
1314 /* No forward retransmissions in Reno are possible. */
1315 if (!tp->rx_opt.sack_ok)
1316 return;
1317
1318 /* Yeah, we have to make difficult choice between forward transmission
1319 * and retransmission... Both ways have their merits...
1320 *
1321 * For now we do not retransmit anything, while we have some new
1322 * segments to send.
1323 */
1324
1325 if (tcp_may_send_now(sk, tp))
1326 return;
1327
1328 packet_cnt = 0;
1329
1330 sk_stream_for_retrans_queue(skb, sk) {
1331 /* Similar to the retransmit loop above we
1332 * can pretend that the retransmitted SKB
1333 * we send out here will be composed of one
1334 * real MSS sized packet because tcp_retransmit_skb()
1335 * will fragment it if necessary.
1336 */
1337 if (++packet_cnt > tp->fackets_out)
1338 break;
1339
1340 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
1341 break;
1342
1343 if (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS)
1344 continue;
1345
1346 /* Ok, retransmit it. */
1347 if (tcp_retransmit_skb(sk, skb))
1348 break;
1349
1350 if (skb == skb_peek(&sk->sk_write_queue))
1351 tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
1352
1353 NET_INC_STATS_BH(LINUX_MIB_TCPFORWARDRETRANS);
1354 }
1355}
1356
1357
1358/* Send a fin. The caller locks the socket for us. This cannot be
1359 * allowed to fail queueing a FIN frame under any circumstances.
1360 */
1361void tcp_send_fin(struct sock *sk)
1362{
1363 struct tcp_sock *tp = tcp_sk(sk);
1364 struct sk_buff *skb = skb_peek_tail(&sk->sk_write_queue);
1365 int mss_now;
1366
1367 /* Optimization, tack on the FIN if we have a queue of
1368 * unsent frames. But be careful about outgoing SACKS
1369 * and IP options.
1370 */
1371 mss_now = tcp_current_mss(sk, 1);
1372
1373 if (sk->sk_send_head != NULL) {
1374 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN;
1375 TCP_SKB_CB(skb)->end_seq++;
1376 tp->write_seq++;
1377 } else {
1378 /* Socket is locked, keep trying until memory is available. */
1379 for (;;) {
1380 skb = alloc_skb(MAX_TCP_HEADER, GFP_KERNEL);
1381 if (skb)
1382 break;
1383 yield();
1384 }
1385
1386 /* Reserve space for headers and prepare control bits. */
1387 skb_reserve(skb, MAX_TCP_HEADER);
1388 skb->csum = 0;
1389 TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_FIN);
1390 TCP_SKB_CB(skb)->sacked = 0;
1391 skb_shinfo(skb)->tso_segs = 1;
1392 skb_shinfo(skb)->tso_size = 0;
1393
1394 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
1395 TCP_SKB_CB(skb)->seq = tp->write_seq;
1396 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1;
1397 tcp_queue_skb(sk, skb);
1398 }
1399 __tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_OFF);
1400}
1401
1402/* We get here when a process closes a file descriptor (either due to
1403 * an explicit close() or as a byproduct of exit()'ing) and there
1404 * was unread data in the receive queue. This behavior is recommended
1405 * by draft-ietf-tcpimpl-prob-03.txt section 3.10. -DaveM
1406 */
1407void tcp_send_active_reset(struct sock *sk, int priority)
1408{
1409 struct tcp_sock *tp = tcp_sk(sk);
1410 struct sk_buff *skb;
1411
1412 /* NOTE: No TCP options attached and we never retransmit this. */
1413 skb = alloc_skb(MAX_TCP_HEADER, priority);
1414 if (!skb) {
1415 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED);
1416 return;
1417 }
1418
1419 /* Reserve space for headers and prepare control bits. */
1420 skb_reserve(skb, MAX_TCP_HEADER);
1421 skb->csum = 0;
1422 TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_RST);
1423 TCP_SKB_CB(skb)->sacked = 0;
1424 skb_shinfo(skb)->tso_segs = 1;
1425 skb_shinfo(skb)->tso_size = 0;
1426
1427 /* Send it off. */
1428 TCP_SKB_CB(skb)->seq = tcp_acceptable_seq(sk, tp);
1429 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq;
1430 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1431 if (tcp_transmit_skb(sk, skb))
1432 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED);
1433}
1434
1435/* WARNING: This routine must only be called when we have already sent
1436 * a SYN packet that crossed the incoming SYN that caused this routine
1437 * to get called. If this assumption fails then the initial rcv_wnd
1438 * and rcv_wscale values will not be correct.
1439 */
1440int tcp_send_synack(struct sock *sk)
1441{
1442 struct sk_buff* skb;
1443
1444 skb = skb_peek(&sk->sk_write_queue);
1445 if (skb == NULL || !(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_SYN)) {
1446 printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n");
1447 return -EFAULT;
1448 }
1449 if (!(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_ACK)) {
1450 if (skb_cloned(skb)) {
1451 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
1452 if (nskb == NULL)
1453 return -ENOMEM;
1454 __skb_unlink(skb, &sk->sk_write_queue);
1455 skb_header_release(nskb);
1456 __skb_queue_head(&sk->sk_write_queue, nskb);
1457 sk_stream_free_skb(sk, skb);
1458 sk_charge_skb(sk, nskb);
1459 skb = nskb;
1460 }
1461
1462 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK;
1463 TCP_ECN_send_synack(tcp_sk(sk), skb);
1464 }
1465 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1466 return tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC));
1467}
1468
1469/*
1470 * Prepare a SYN-ACK.
1471 */
1472struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst,
60236fdd 1473 struct request_sock *req)
1da177e4 1474{
2e6599cb 1475 struct inet_request_sock *ireq = inet_rsk(req);
1da177e4
LT
1476 struct tcp_sock *tp = tcp_sk(sk);
1477 struct tcphdr *th;
1478 int tcp_header_size;
1479 struct sk_buff *skb;
1480
1481 skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC);
1482 if (skb == NULL)
1483 return NULL;
1484
1485 /* Reserve space for headers. */
1486 skb_reserve(skb, MAX_TCP_HEADER);
1487
1488 skb->dst = dst_clone(dst);
1489
1490 tcp_header_size = (sizeof(struct tcphdr) + TCPOLEN_MSS +
2e6599cb
ACM
1491 (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0) +
1492 (ireq->wscale_ok ? TCPOLEN_WSCALE_ALIGNED : 0) +
1da177e4 1493 /* SACK_PERM is in the place of NOP NOP of TS */
2e6599cb 1494 ((ireq->sack_ok && !ireq->tstamp_ok) ? TCPOLEN_SACKPERM_ALIGNED : 0));
1da177e4
LT
1495 skb->h.th = th = (struct tcphdr *) skb_push(skb, tcp_header_size);
1496
1497 memset(th, 0, sizeof(struct tcphdr));
1498 th->syn = 1;
1499 th->ack = 1;
1500 if (dst->dev->features&NETIF_F_TSO)
2e6599cb 1501 ireq->ecn_ok = 0;
1da177e4
LT
1502 TCP_ECN_make_synack(req, th);
1503 th->source = inet_sk(sk)->sport;
2e6599cb
ACM
1504 th->dest = ireq->rmt_port;
1505 TCP_SKB_CB(skb)->seq = tcp_rsk(req)->snt_isn;
1da177e4
LT
1506 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1;
1507 TCP_SKB_CB(skb)->sacked = 0;
1508 skb_shinfo(skb)->tso_segs = 1;
1509 skb_shinfo(skb)->tso_size = 0;
1510 th->seq = htonl(TCP_SKB_CB(skb)->seq);
2e6599cb 1511 th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1);
1da177e4
LT
1512 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
1513 __u8 rcv_wscale;
1514 /* Set this up on the first call only */
1515 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
1516 /* tcp_full_space because it is guaranteed to be the first packet */
1517 tcp_select_initial_window(tcp_full_space(sk),
2e6599cb 1518 dst_metric(dst, RTAX_ADVMSS) - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
1da177e4
LT
1519 &req->rcv_wnd,
1520 &req->window_clamp,
2e6599cb 1521 ireq->wscale_ok,
1da177e4 1522 &rcv_wscale);
2e6599cb 1523 ireq->rcv_wscale = rcv_wscale;
1da177e4
LT
1524 }
1525
1526 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
1527 th->window = htons(req->rcv_wnd);
1528
1529 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2e6599cb
ACM
1530 tcp_syn_build_options((__u32 *)(th + 1), dst_metric(dst, RTAX_ADVMSS), ireq->tstamp_ok,
1531 ireq->sack_ok, ireq->wscale_ok, ireq->rcv_wscale,
1da177e4
LT
1532 TCP_SKB_CB(skb)->when,
1533 req->ts_recent);
1534
1535 skb->csum = 0;
1536 th->doff = (tcp_header_size >> 2);
1537 TCP_INC_STATS(TCP_MIB_OUTSEGS);
1538 return skb;
1539}
1540
1541/*
1542 * Do all connect socket setups that can be done AF independent.
1543 */
1544static inline void tcp_connect_init(struct sock *sk)
1545{
1546 struct dst_entry *dst = __sk_dst_get(sk);
1547 struct tcp_sock *tp = tcp_sk(sk);
1548 __u8 rcv_wscale;
1549
1550 /* We'll fix this up when we get a response from the other end.
1551 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
1552 */
1553 tp->tcp_header_len = sizeof(struct tcphdr) +
1554 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
1555
1556 /* If user gave his TCP_MAXSEG, record it to clamp */
1557 if (tp->rx_opt.user_mss)
1558 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
1559 tp->max_window = 0;
1560 tcp_sync_mss(sk, dst_mtu(dst));
1561
1562 if (!tp->window_clamp)
1563 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
1564 tp->advmss = dst_metric(dst, RTAX_ADVMSS);
1565 tcp_initialize_rcv_mss(sk);
1da177e4
LT
1566
1567 tcp_select_initial_window(tcp_full_space(sk),
1568 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
1569 &tp->rcv_wnd,
1570 &tp->window_clamp,
1571 sysctl_tcp_window_scaling,
1572 &rcv_wscale);
1573
1574 tp->rx_opt.rcv_wscale = rcv_wscale;
1575 tp->rcv_ssthresh = tp->rcv_wnd;
1576
1577 sk->sk_err = 0;
1578 sock_reset_flag(sk, SOCK_DONE);
1579 tp->snd_wnd = 0;
1580 tcp_init_wl(tp, tp->write_seq, 0);
1581 tp->snd_una = tp->write_seq;
1582 tp->snd_sml = tp->write_seq;
1583 tp->rcv_nxt = 0;
1584 tp->rcv_wup = 0;
1585 tp->copied_seq = 0;
1586
1587 tp->rto = TCP_TIMEOUT_INIT;
1588 tp->retransmits = 0;
1589 tcp_clear_retrans(tp);
1590}
1591
1592/*
1593 * Build a SYN and send it off.
1594 */
1595int tcp_connect(struct sock *sk)
1596{
1597 struct tcp_sock *tp = tcp_sk(sk);
1598 struct sk_buff *buff;
1599
1600 tcp_connect_init(sk);
1601
1602 buff = alloc_skb(MAX_TCP_HEADER + 15, sk->sk_allocation);
1603 if (unlikely(buff == NULL))
1604 return -ENOBUFS;
1605
1606 /* Reserve space for headers. */
1607 skb_reserve(buff, MAX_TCP_HEADER);
1608
1609 TCP_SKB_CB(buff)->flags = TCPCB_FLAG_SYN;
1610 TCP_ECN_send_syn(sk, tp, buff);
1611 TCP_SKB_CB(buff)->sacked = 0;
1612 skb_shinfo(buff)->tso_segs = 1;
1613 skb_shinfo(buff)->tso_size = 0;
1614 buff->csum = 0;
1615 TCP_SKB_CB(buff)->seq = tp->write_seq++;
1616 TCP_SKB_CB(buff)->end_seq = tp->write_seq;
1617 tp->snd_nxt = tp->write_seq;
1618 tp->pushed_seq = tp->write_seq;
1da177e4
LT
1619
1620 /* Send it off. */
1621 TCP_SKB_CB(buff)->when = tcp_time_stamp;
1622 tp->retrans_stamp = TCP_SKB_CB(buff)->when;
1623 skb_header_release(buff);
1624 __skb_queue_tail(&sk->sk_write_queue, buff);
1625 sk_charge_skb(sk, buff);
1626 tp->packets_out += tcp_skb_pcount(buff);
1627 tcp_transmit_skb(sk, skb_clone(buff, GFP_KERNEL));
1628 TCP_INC_STATS(TCP_MIB_ACTIVEOPENS);
1629
1630 /* Timer for repeating the SYN until an answer. */
1631 tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
1632 return 0;
1633}
1634
1635/* Send out a delayed ack, the caller does the policy checking
1636 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
1637 * for details.
1638 */
1639void tcp_send_delayed_ack(struct sock *sk)
1640{
1641 struct tcp_sock *tp = tcp_sk(sk);
1642 int ato = tp->ack.ato;
1643 unsigned long timeout;
1644
1645 if (ato > TCP_DELACK_MIN) {
1646 int max_ato = HZ/2;
1647
1648 if (tp->ack.pingpong || (tp->ack.pending&TCP_ACK_PUSHED))
1649 max_ato = TCP_DELACK_MAX;
1650
1651 /* Slow path, intersegment interval is "high". */
1652
1653 /* If some rtt estimate is known, use it to bound delayed ack.
1654 * Do not use tp->rto here, use results of rtt measurements
1655 * directly.
1656 */
1657 if (tp->srtt) {
1658 int rtt = max(tp->srtt>>3, TCP_DELACK_MIN);
1659
1660 if (rtt < max_ato)
1661 max_ato = rtt;
1662 }
1663
1664 ato = min(ato, max_ato);
1665 }
1666
1667 /* Stay within the limit we were given */
1668 timeout = jiffies + ato;
1669
1670 /* Use new timeout only if there wasn't a older one earlier. */
1671 if (tp->ack.pending&TCP_ACK_TIMER) {
1672 /* If delack timer was blocked or is about to expire,
1673 * send ACK now.
1674 */
1675 if (tp->ack.blocked || time_before_eq(tp->ack.timeout, jiffies+(ato>>2))) {
1676 tcp_send_ack(sk);
1677 return;
1678 }
1679
1680 if (!time_before(timeout, tp->ack.timeout))
1681 timeout = tp->ack.timeout;
1682 }
1683 tp->ack.pending |= TCP_ACK_SCHED|TCP_ACK_TIMER;
1684 tp->ack.timeout = timeout;
1685 sk_reset_timer(sk, &tp->delack_timer, timeout);
1686}
1687
1688/* This routine sends an ack and also updates the window. */
1689void tcp_send_ack(struct sock *sk)
1690{
1691 /* If we have been reset, we may not send again. */
1692 if (sk->sk_state != TCP_CLOSE) {
1693 struct tcp_sock *tp = tcp_sk(sk);
1694 struct sk_buff *buff;
1695
1696 /* We are not putting this on the write queue, so
1697 * tcp_transmit_skb() will set the ownership to this
1698 * sock.
1699 */
1700 buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
1701 if (buff == NULL) {
1702 tcp_schedule_ack(tp);
1703 tp->ack.ato = TCP_ATO_MIN;
1704 tcp_reset_xmit_timer(sk, TCP_TIME_DACK, TCP_DELACK_MAX);
1705 return;
1706 }
1707
1708 /* Reserve space for headers and prepare control bits. */
1709 skb_reserve(buff, MAX_TCP_HEADER);
1710 buff->csum = 0;
1711 TCP_SKB_CB(buff)->flags = TCPCB_FLAG_ACK;
1712 TCP_SKB_CB(buff)->sacked = 0;
1713 skb_shinfo(buff)->tso_segs = 1;
1714 skb_shinfo(buff)->tso_size = 0;
1715
1716 /* Send it off, this clears delayed acks for us. */
1717 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(buff)->end_seq = tcp_acceptable_seq(sk, tp);
1718 TCP_SKB_CB(buff)->when = tcp_time_stamp;
1719 tcp_transmit_skb(sk, buff);
1720 }
1721}
1722
1723/* This routine sends a packet with an out of date sequence
1724 * number. It assumes the other end will try to ack it.
1725 *
1726 * Question: what should we make while urgent mode?
1727 * 4.4BSD forces sending single byte of data. We cannot send
1728 * out of window data, because we have SND.NXT==SND.MAX...
1729 *
1730 * Current solution: to send TWO zero-length segments in urgent mode:
1731 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
1732 * out-of-date with SND.UNA-1 to probe window.
1733 */
1734static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
1735{
1736 struct tcp_sock *tp = tcp_sk(sk);
1737 struct sk_buff *skb;
1738
1739 /* We don't queue it, tcp_transmit_skb() sets ownership. */
1740 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
1741 if (skb == NULL)
1742 return -1;
1743
1744 /* Reserve space for headers and set control bits. */
1745 skb_reserve(skb, MAX_TCP_HEADER);
1746 skb->csum = 0;
1747 TCP_SKB_CB(skb)->flags = TCPCB_FLAG_ACK;
1748 TCP_SKB_CB(skb)->sacked = urgent;
1749 skb_shinfo(skb)->tso_segs = 1;
1750 skb_shinfo(skb)->tso_size = 0;
1751
1752 /* Use a previous sequence. This should cause the other
1753 * end to send an ack. Don't queue or clone SKB, just
1754 * send it.
1755 */
1756 TCP_SKB_CB(skb)->seq = urgent ? tp->snd_una : tp->snd_una - 1;
1757 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq;
1758 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1759 return tcp_transmit_skb(sk, skb);
1760}
1761
1762int tcp_write_wakeup(struct sock *sk)
1763{
1764 if (sk->sk_state != TCP_CLOSE) {
1765 struct tcp_sock *tp = tcp_sk(sk);
1766 struct sk_buff *skb;
1767
1768 if ((skb = sk->sk_send_head) != NULL &&
1769 before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)) {
1770 int err;
1771 unsigned int mss = tcp_current_mss(sk, 0);
1772 unsigned int seg_size = tp->snd_una+tp->snd_wnd-TCP_SKB_CB(skb)->seq;
1773
1774 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
1775 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
1776
1777 /* We are probing the opening of a window
1778 * but the window size is != 0
1779 * must have been a result SWS avoidance ( sender )
1780 */
1781 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
1782 skb->len > mss) {
1783 seg_size = min(seg_size, mss);
1784 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
1785 if (tcp_fragment(sk, skb, seg_size))
1786 return -1;
1787 /* SWS override triggered forced fragmentation.
1788 * Disable TSO, the connection is too sick. */
1789 if (sk->sk_route_caps & NETIF_F_TSO) {
1790 sock_set_flag(sk, SOCK_NO_LARGESEND);
1791 sk->sk_route_caps &= ~NETIF_F_TSO;
1792 tp->mss_cache = tp->mss_cache_std;
1793 }
1794 } else if (!tcp_skb_pcount(skb))
d5ac99a6 1795 tcp_set_skb_tso_segs(sk, skb);
1da177e4
LT
1796
1797 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
1798 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1799 tcp_tso_set_push(skb);
1800 err = tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC));
1801 if (!err) {
1802 update_send_head(sk, tp, skb);
1803 }
1804 return err;
1805 } else {
1806 if (tp->urg_mode &&
1807 between(tp->snd_up, tp->snd_una+1, tp->snd_una+0xFFFF))
1808 tcp_xmit_probe_skb(sk, TCPCB_URG);
1809 return tcp_xmit_probe_skb(sk, 0);
1810 }
1811 }
1812 return -1;
1813}
1814
1815/* A window probe timeout has occurred. If window is not closed send
1816 * a partial packet else a zero probe.
1817 */
1818void tcp_send_probe0(struct sock *sk)
1819{
1820 struct tcp_sock *tp = tcp_sk(sk);
1821 int err;
1822
1823 err = tcp_write_wakeup(sk);
1824
1825 if (tp->packets_out || !sk->sk_send_head) {
1826 /* Cancel probe timer, if it is not required. */
1827 tp->probes_out = 0;
1828 tp->backoff = 0;
1829 return;
1830 }
1831
1832 if (err <= 0) {
1833 if (tp->backoff < sysctl_tcp_retries2)
1834 tp->backoff++;
1835 tp->probes_out++;
1836 tcp_reset_xmit_timer (sk, TCP_TIME_PROBE0,
1837 min(tp->rto << tp->backoff, TCP_RTO_MAX));
1838 } else {
1839 /* If packet was not sent due to local congestion,
1840 * do not backoff and do not remember probes_out.
1841 * Let local senders to fight for local resources.
1842 *
1843 * Use accumulated backoff yet.
1844 */
1845 if (!tp->probes_out)
1846 tp->probes_out=1;
1847 tcp_reset_xmit_timer (sk, TCP_TIME_PROBE0,
1848 min(tp->rto << tp->backoff, TCP_RESOURCE_PROBE_INTERVAL));
1849 }
1850}
1851
1852EXPORT_SYMBOL(tcp_connect);
1853EXPORT_SYMBOL(tcp_make_synack);
1854EXPORT_SYMBOL(tcp_simple_retransmit);
1855EXPORT_SYMBOL(tcp_sync_mss);